
Python Programming Techniques

Eliot Feibush

PICSciE
Princeton Institute for

Computational Science and Engineering

Princeton University

Versatile
Very efficient for user / programmer.

Python

Example 1

x = 0.
xmax = 10.
xincr = 2.

while x < xmax: # Here is a block of code
y = x * x
print(x, y)
x += xincr

Example 1

No variable declaration.

No memory allocation.

No compiling, no .o or .obj files

No linking.

No kidding - Just run.

Browser based IDE
https://repl.it/languages/python3

Try out the interpreter

>>> 2+3
5
>>> a = 5.1
>>> b = 6.2
>>> print (a*b)
31.62

Browser based IDE
https://repl.it/languages/python3

help() dir() type()

>>> help() # interpretor
help> keywords # if, else, for …

help> symbols # + - = / …
help> modules # math, os, sys

help> topics # USE UPPER CASE

Python Rosetta Stone

Variables

Case sensitive

start is not the same as Start
count is not the same as Count
R = 1 / r

Start with a letter, not a number

Long names OK

Types and Operators
int # scalar variable, holds a single value
float
long
complex a = (3 + 4j) # type(a)

+ - * / % // ** # Arithmetic operators

+= # Assignment operators
-=
*=
/=

< <= > >= == != # Comparison operators
+ # has magic overload abilities!

Casts

int()
long()
float()

hex() # string representation

oct() # string representation

str() # for printing numbers + strings

Built-in Constants

True <type ‘bool’>
False <type ‘bool’>
None <type ‘NoneType’>

Indenting Counts!
Indent 4 spaces or a tab -- be consistent

Convention, not a requirement

: at end of line indicates start of code block
requires next line to be indented

Code block ends with an outdent

Code runs but not as desired – check your indents

Program

Loops
Conditionals, Control
Functions

Keywords

Control
if else elif

while break continue

and or not

>>> help()
help > keywords

Programming Exercise

Write a python program that converts degrees to
radians for:

0, 10, 20, 30, ... 180 degrees

Write code: main.py
Click on Run.
Output in console window.

radians = degrees * 3.14 / 180.
print(degrees, radians)

x = 0.
xmax = 10.
xincr = 2.

while x < xmax:
y = x * x
print(x, y)
x += xincr

Debugging Tip

Interpreter shell retains variables in scope after

running program:

dir()

print(degree)

Comments

in line text after # is ignored
can be in any column

Text within triple quotes
“”” This is a multi-line
comment that will be
compiled to a string but
will not execute anything.
It is code so it must conform
to indenting ”””

sample2.py

s = “shrubbery”
print(s)

len(s)

Strings
Sequence of characters such as s = “abcdefg”
Indexed with [] starting at [0]

s[0] is a, s[1] is b

s[-1] refers to last character in string.
Negative indexing starts at last character.

Use s[p:q] for string slicing.
s[3:] evaluated as “defg”
s[:3] evaluated as “abc” up to but not 3
s[1:-2] evaluated as “bcde”

up to but not including -2

String Concatenation

first = ‘John’
last = ‘Cleese’

full = first + “ “ + last

sp = “ “
full = first + sp + last

+ Operator is Operand “Aware”

>>> “water” + “fall” # concatenate

>>> 3 + 5 # addition

__

>>> 3 + “George” # unsupported type

>>> “George” + 3 # TypeError

Printing
pi = 3.14159
print (‘The answer is ‘ + str(pi))

cast float to string to avoid TypeError

when combining string and numbers

The Immutable String

Can’t replace characters in a string.

s = “abcd”

s[1] = “g” Object does not support item
assignment

s = “agcd” # re-assign entire string

Automatic Memory Managment

malloc() realloc() free()
char name[32]

name = “as long as you want”

len(name) # len() function is part of __builtins__

Conditionals
a = 3

if a > 0:
print (“a is positive”)

elif a < 0:
print(“a is negative”)

else:
print (“a = 0”)

String Exercise

Degrees to radians:

Print column titles
Right align degree values
Limit radians to 7 characters

Reminder: len(s)

str Under the Hood
str - is a Class! Not just a memory area of characters

Object oriented programming
Encapsulated data and methods
Use the dot . to address methods and data

a = “hello”
a.upper() # returns “HELLO”

type(a)
dir(str)
help(str)

hidden methods start with __

>>> help()
help> topics
help> STRINGMETHODS

Math module

import math
dir(math)

math.sqrt(x)
math.sin(x)
math.cos(x)

from math import *
dir()

sqrt(x)

from math import pi
dir()

print pi

import from as

Keywords for Inclusion

import math Exercise

Degrees to radians and now cosine:

Use math.pi for defined constant
Use math.cos(radian) to compute cosine
Print cosine in 3rd column

Align cosine to decimal point
(Do not truncate the cosine)

Data Structures
Resemble arrays in other languages

List [] # ordered sequence of stuff

Tuple () # n-tuple, immutable

Dictionary { } # key – value pairs

Lists []
Indexed from [0]
Last index is [-1] or length - 1

Class object with its own methods, e.g.
.append()
.sort()

Magic slice operator :
Magic iter() function actually __iter__()

min() max() are builtins

Declare a List

x = [59, 50, 42, 34, 23, 14]

x.append(4) # works in place, no return

Identify the sequence? Next item?
x.append(“Spring St”)

x[3] = ”Penn Station”
list is mutable, can replace values

x = [] # create empty list, then append to it
x = list()

List methods
append()
extend()
insert()
remove()
sort() # in place, does not return a new list
reverse() # in place
index()
count()

cList = aList + bList # concatenate lists

range() Function
range(stop) # assumes start=0 and incr=1
range(start, stop) # assumes incr=1
range(start, stop, incr)

Returns sequence of integers, up to, but not including stop.
Python 2 returns a list.

Python 3 returns a "range class" to save memory.
Both give you an iterable sequence.

range() is a built-in function: dir(__builtins__)

Keywords Looping with range()

for in

for i in range(10):

for s in dayList: # dayList = [“Mon”, ”Tue”, “Wed”]

List Techniques

d = list(range(4)) # [0, 1, 2, 3]

d = [0] * 4 # [0, 0, 0, 0]

d = [-1 for x in range(4)]
[-1, -1, -1, -1]

List Comprehension

Lists Exercise

Degrees to radians, cosines, and now lists:

Create a list of radians and a list of cosines
Print the lists
Use a range() loop instead of while

Plot Exercise

Degrees to radians, cosines, lists, now plot:

Plot a curve: x axis: radians, y axis: cosines
import matplotlib.pyplot as plt
plt.plot(radiansL, cosinesL)
plt.show() # displays on screen

matplotlib + LaTeX

import matplotlib.pyplot as plt

plt.rc(“text”, usetex=True)
set config to draw text with Tex

plt.xlabel(r”\textbf{Time}”)
draw x label “Time” in bold font

compare to: plt.xlabel(“Time”)

s = r”\n” # raw string has \n, not linefeed
latex.py example - requires latex installation

del keyword

del a[3] # deletes element at index 3

del a[2:4] # deletes element 2 and 3

list slicing

del a # deletes entire list. a is gone.

Unpack a list into variables

name = [“Abe”, “Lincoln”]

first, last = name
multiple variables on left side of =
number of variables must be len(name)

List of Lists

d = [[0]*4 for y in range(3)]

[

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]

]

d[2][0] = 5
[

[0, 0, 0, 0],
[0, 0, 0, 0],
[5, 0, 0, 0]

]

N-dimensional Arrays

import numpy

ndarray class – optimized to be very fast.
Integrated with matplotlib for graphing.

princeton.edu/~efeibush

Python Programming mini-course

numpy

numpy2016.pdf

46

http://princeton.edu/~efeibush

numpy.arange()

Note: arange can use floats for interval & step

import numpy
radA = numpy.arange(1.5, 2.5, .1)

Returns numpy array of evenly spaced floats
min, max, step

for x in radA: # can iterate on numpy array

numpy.linspace()

Note: linspace can use floats for interval

integer for number of steps

import numpy
a = numpy.linspace(1.5, 2.5, 11)

Returns numpy array of evenly spaced floats
min, max, number of steps

a = list(a) # cast array to list

for x in a:

numpy.random

Random number generator

>>>help(numpy.random)
examples for each function

python Runs Your Program
Command Line version

python sample1.py

sample1.py source code is run directly instead

of compile, link, run.

No .obj nor .o files of compiled code.

No .exe nor a.out of executable code.

python -i exdeg.py

Command Line Arguments

import sys
print (sys.argv)

sys.argv is a list
sys.argv[0] has the name of the python file.

Subsequent locations have command line args.
Does not apply in interpreter.

>>> help(sys)

Shell Scripting

import os

fileL = [] # set up a list

for f in os.listdir("."):
if f.endswith(".py"):

print(f)
fileL.append(f)

fileL.sort() # list function, sort in place

print (fileL)

much better text handling than csh or bash; shell independent

import subprocess # Advanced
then use the Popen class for running programs

#!/bin/csh

foreach file (*.py)
echo $file
end

Defining a Function

Block of code separate from main.

Define function before calling it.

def myAdd(a, b): # define before calling
return a + b

p = 25 # main section of code
q = 30

r = myAdd(p, q) # case sensitive

Keywords

Functions (methods, subroutines)
def
return

Define a Function Exercise

Degrees to radians, cosines, lists, now function:

Format the radians using a function call

import

import math # knows where to find it

import sys
sys.path.append(“/Users/efeibush/spline”)
import cubic.py # import your own code

reload – debugging your own module from the interpreter

n-Tuple ()
Immutable List

Saves some memory
Cannot be modified when passed to function

aTuple = tuple(aList) # Create from a list
No append, no assignment; OK to extract slice

cTuple = aTuple + bTuple # OK to concatenate

print aTuple[0] # index using brackets

Dictionary { }
Key : Value

Look up table
Index by key -- Any hashable (immutable) type
print d[key] # prints value for specified key

Order of key:value pairs is not guaranteed.
Good for command line arguments

name list files, nicknames, etc.
d[key] = value # to add a key-value pair

such as d[“New Jersey”] = “Trenton”

Dictionary methods

d = { }
d = dict()

eDict.update(gDict) # combine dictionaries

del eDict[key]

if key in eDict:
print (eDict[key])

d.keys() # returns set of all keys
d.items() # returns set of all key:value pairs as tuples

Read a Text File

gFile = open("myfile.txt”, “r”) # built-in function

for j in gFile: # python magic: text file iterates on lines
print j # print each line

gFile.close()

see readsplit.py str.split()
.split() method parses a line of text into list of words

Write a Text File

f = open("myfile.txt", "w")
open is a built-in function

a = 1
b = 2

f.write("Here is line " + str(a) + "\n");
f.write("Next is line " + str(b) + "\n");

f.close()
.write() and .close() are file object methods

1. Read, Parse, Store, Writeimport sys

inF = open(sys.argv[1], "r") # open the file specified on the command line

linesL = inF.readlines() # read all lines of text into a list of Strings

inF.close() # no longer needed

from collections import OrderedDict

kvD = OrderedDict() #kvD = {} # preserves order

for lineS in linesL: # iterate through each line of text in the list

wL = lineS.split() # parse the line into words

keyS = wL[0] # first word is the key

valueS = wL[2] # third word is the value, assume w[1] is =

kvD[keyS] = valueS # add key-value pair to dictionary; items are strings

print keyS, valueS

print " "

print kvD.keys()

print kvD.values()

print " "

print kvD.viewitems()

2. Read, Parse, Store, Write

import datetime

outF = open("log", "w") # open new file; will replace existing file

for k in kvD: # iterate through each key in dictionary

v = kvD[k] # get the value for the key; it's a string

logTime = datetime.datetime.now() # generate a date-time object

cast to str for printing

s = str(logTime) + ": " + k + " " + v + "\n"

outF.write(s) # write entire line to file

outF.close()

try
except
finally

Keywords for Exception Handling

Summary – Elements of Python

Scalar variables, operators
Strings - Class with methods
List [] tuple () dictionary { }
Control
Comments, indenting
def your own functions
import modules – use functions
Plotting
Text File I/O

Built-in Classes

str, list, tuple, dict, file

dir(str)
help(str)

hidden methods start with __

Built-in Functions

len()
range()
type()
input() # read from standard input

Python 2: raw_input()
print()
open() # file I/O
help() # interpreter

abs() round() complex()
min() max() sum() pow()

dir() dir(__builtins__)
e.g. help(input)

Interpreter help()

>>> help() # go into help mode
help>

keywords
symbols
topics
modules

enter topic UPPER CASE
q

>>>

Python at princeton.edu

ssh nobel.princeton.edu

% which python

/usr/bin/python
version 2.7.5

/usr/bin/python3
version 3.6.8

module load anaconda3/2020.7
python 3.8.3 Spyder IDE, debugger

nobel

della

perseus

tiger

tigressdata

More Info & Resources

python.org
docs.python.org

princeton.edu/~efeibush/python
notes3 folder has exercises

pythontools folder has presentation, examples

Resources

University library: O'Reilly books on-line

Python in a Nutshell

https://learning.oreilly.com/library/view/python

-in-a/9781491913833/

Where to?

Anaconda distribution of python

matplotlib – draw graphs
numpy – arrays & math functions
scipy – algorithms & math tools
PIL - Image Processing
Multiprocessing
Pycuda à GPU, CUDA
GUI – Tkinter, pyqt, wxpython
Visualization toolkit – python scripting

Python

Art Contest

Write a pgm (world’s simplest) image file:

Replace my line for a gradient with your code

to make an image.

Change maxIntensity to your scale.

Display your picture:

python pgmdisplay.py

Reading a netCDF File

Structured, scientific data file format

Can read from URL

scipy – netcdf_file class for read/write

numpy – multi-dimensional data arrays

Mac
Magnifying glass: idle (idle.app)

Command line from terminal also possible.

Windows
Start Menu

Python 3.6

IDLE (Python GUI)

Python

IDLE

(Python GUI)

Interpreter
Integrated Development Environment -- idle

Everything that a program can have:

Variables
Strings
Lists
Expressions
Import modules

Great for learning & trying new lines of code

idle

IDE – Integrated Development Environment

Color-coded syntax

Statement completion
Interpreter retains “scope” after program ends

Written in Python with tkinter GUI module.

IDLE à Preferences

Font, Keys

History-previous: up-arrow

History-next: down-arrow

idle: File à New File

Save command-s

Run à Run Module F5 key

