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Abstract

Occulter-based telescopy offers a promising new terrestrial planet-finding method-

ology that involves the formation flying of a conventional space telescope with a

large external occulter, which will block the light of a star and allow imaging of

its dim, close-by planetary companion. Recent advances in shaped-pupil technology

have enabled the design of occulters that have superior diffraction performance and

that can be manufactured easily. This approach is attractive because it eliminates

the precision-optical requirements of the alternative coronagraphic or interferometric

approaches. However, it introduces new scientific challenges in the area of precise

dynamics and control, which is the topic of this dissertation.

Due to the large distances between satellites, realignment is fuel intensive, which

increases the mission cost and reduces its lifetime. In order to overcome this problem,

this dissertation focuses on the trajectory design of the mask satellite and conducts

an optimization study to select the order and timing of imaging sessions.

The optimal configuration of satellite formations consisting of a telescope and

multiple occulters around Sun-Earth L2 Halo orbits is studied first. Focusing on the

Quasi-Halo orbits, which are of interest for fuel-free occulter placement, the phase

space around L2 is examined. The periodic orbits of interest around L2 are numeri-

cally computed and their stability properties analyzed.

Quasi-Halos are good candidates for occulter placement, as they are fuel-free orbits

and have large sky coverage with respect to the Halo orbit, where the telescope is

placed. With the aim of identifying these orbits, a new fully numerical method that

employs multiple Poincaré sections to find quasi-periodic orbits is developed. This

methodology has the advantage of very fast execution times and robust behavior

near chaotic regions that leads to full convergence. Its numerical implementations for

Lissajous and Quasi-Halo orbits are explained. These results are then extended from

the simplified three body model to find the orbits in the real solar system that have
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the same characteristics.

Trajectory optimization of the occulter motion between imaging sessions of differ-

ent stars is performed using a range of different criteria and methods. This enables

the transformation of the global optimization problem into a Time-Dependent Trav-

eling Salesman Problem (TSP). The TSP is solved first for a formation consisting of

a telescope and a single occulter. Then, with the insight from the dynamical analysis,

multiple-occulter formations are analyzed and the global optimization is performed

for the multiple-occulter case.

For a concrete understanding of the feasibility of the mission, the performance of

an example spacecraft, SMART-1, is analyzed. The mission is shown to be feasible

with the current technology.
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4 Multiple Poincaré Sections Method for Finding the Quasi-Halo and

Lissajous Orbits 58

4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Finding Invariant Tori via a Single Poincaré Section . . . . . . 60
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4.2.8 Numerical Computation of the Derivative of the Poincaré map 84
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Chapter 1

Extrasolar Planet Imaging and

Occulter-Based Telescopy
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Studying terrestrial and giant planets outside the solar system is one of the primary

goals of NASA’s Origins Program. It is likely that the next decade will see NASA

launch the first in a series of missions dubbed Terrestrial Planet Finders (TPF) to de-

tect, image, and characterize extrasolar earthlike planets [1]. Current work is directed

at studying a variety of architecture concepts and the associated optical engineering

in order to prove the feasibility of such a mission. One such concept involves the for-

mation flying of a conventional space telescope on the order of 2 to 4 meter diameter,

in a Sun-Earth L2 Halo orbit, with a single or multiple large occulters, roughly 60 m

across and 50,000 km away. The occulter blocks the light of a star and allows imaging

of its dim, close-by planetary companion. Recent results in shaped-pupil technology

at Princeton have made the manufacture of such a starshade feasible [2, 3]. This

approach to planet imaging eliminates all of the precision optical requirements that

exist in the alternate coronagraphic or interferometric approaches. However, it intro-

duces the difficult problem of controlling and realigning the satellite formation. This

approach introduces scientific challenges in the area of precise dynamics and control,

which is my dissertation topic.

In this chapter, I first explain what a life-sustaining planet is and how such a

planet can be differentiated from other planets based on the spectra of the light that

is obtained via telescope imaging. Next, I discuss the scientific requirements and the

technological challenges associated with a planet-imaging telescopy mission. Then,

I describe a new approach, occulter-based coronagraphy, and I explain why it is a

good candidate for planet-imaging missions. Finally, I outline the organization of the

dissertation and explain how I approached the problems associated with the dynamics

and control of the telescope and the occulter formation.
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1.1 Finding Extrasolar Life

1.1.1 Life-Sustaining Planets

In order to search for extrasolar life, we must first define what it means for a planet to

be life sustaining. The general astronomical understanding of a habitable planet is a

planet which can accommodate ”life as we know it”; in other words, where conditions

are favorable for life as it can be found on Earth. This region is called the habitable

zone and occurs in a star system where liquid water can exist. Figure 1.1 shows the

habitable zone parameterized in terms of the distance from a star and the mass of

a planet. As can be seen from the figure, new NASA missions such as the Kepler

mission [4] and the Space Interferometry Mission (SIM) [5] will be able to discover

possible life-sustaining extrasolar planets in the habitable zone.

1.1.2 Signs of Life

Today, over 270 planets have been discovered, starting with the first detection of

a planet several times the size of Jupiter by Mayor & Queloz in 1995 [7]. These

planets range in size from many earth masses, i.e., so called super-Earths, to many

times the mass of Jupiter. Of course, a distinction must be made between discovering

the existence of a planet and determining whether it supports life. Obtaining the

orbital parameters and mass of a planet through indirect observations will not suffice

for determining whether a planet sustains life. Instead, we must be able to directly

image the planet, so that the full spectrum, which gives the characteristics of the

planet, can be obtained.

Figure 1.2 shows the light spectrum data and the breakdown of the spectrum to

its components that would be obtained if we were to image Earth from an extrasolar

system [8]. In this figure we can see the spectroscopic biomarkers; the features in

an exoplanet spectra that a life-sustaining planet is expected to have. The main
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Figure 1.1: Semi-major axis vs mass of extrasolar planets. Shown in green is the
habitable zone. The capabilities of current and proposed NASA missions are overlayed
[6].

spectroscopic biomarkers are the existence of water, oxygen, ozone, and methane,

and the occurrence of a vegetation red edge. A habitable planet is expected to

contain large water bodies, which would lead to strong variability at 700 nm of the

spectroscopic data due to the presence of water clouds. An active plant life would lead

to the presence of free oxygen, which would in turn result in the presence of ozone.
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The atmosphere of planets with a low mass like Earth but without vegetation should

not contain methane due to stellar ultraviolet photodissociation; thus, its existence

would suggest a biological presence. As seen in figure 1.2, at around 750 nm, we

observe a vegetation red edge, which an Earth-like exoplanet might also exhibit [9]

[10].

Figure 1.2: Earthshine spectrum and its components Woolf et al. [8]. In the figure,
I represents light intensity and λ wavelength.

1.1.3 Challenges associated with imaging planets in the hab-

itable zone

Most astronomers now suspect that rocky and possibly Earth-like planets orbit around

nearby stars. To date, all known planets have been discovered by indirect means,

that is, by measuring the motion of light from the parent star. These methods are
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insensitive to the smaller terrestrial planets of interest and do not allow the most

ambitious characterization. In order to capture the signs of life from a planet we

need direct imaging of that planet.

As seen in figure 1.3, which simulates how the Solar System would be seen from

a distant star, the direct observation of Earth-like planets is extremely challenging

because their parent stars are about 1010 times brighter (in the visible spectrum) but

lie a fraction of an arcsecond away. Since the Earth atmosphere blurs the view of

the stars, telescopes that are stationed on Earth do not enable such high precision

imaging. Instead, space-based telescopy is required.

Figure 1.3: Simulation of light spectrum of the Sun and planets as seen from a
distant star Des Marais et al. [11]. In the figure, I represents light intensity and λ
wavelength. ’Star’ stands for the Sun, and the solar planets are identified by their
initial letters.

Many difficulties are involved in trying to achieve the high contrast necessary to
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image a dim planet orbiting its parent star. Coronagraphy methods have been the

most promising solution to this problems to this date. Shown in figure 1.4 is the draw-

ing of the proposed NASA TPF-C mission (C stands for Coronagraph). Originally

invented by Bernard Lyot to image the corona of the sun [12], coronagraphy is an

optical technique which removes the starlight from the final image, while minimally

affecting the planet, or which modifies the point spread function of the system so

that the contrast is unity at the planet location. It consists of a dark spot at the

image used to block the central core of the Airy pattern and a smaller aperture at a

reimaged pupil to remove the residual stellar light. Building on this idea, different

types of coronagraph designs that would give the needed high-contrast images have

recently been designed at Princeton’s TPF group, which is headed by Jeremy Kasdin.

An example is shown in figure 1.4.

Figure 1.4: On the left, an artist’s illustration of the TPF-C spacecraft [13]. On
the right, an optimized coronagraph pupil design by Vanderbei that can achieve the
needed contrast for exoplanet imaging if used with TPF-C [3].

The main challenge associated with designing a high-contrast imaging system is

the scattered light problem, which denotes the scattering of light in the final im-

age into the location of the planets point spread function due to aberrations in the

optics. Due to manufacturing imperfections, the surface figure of all mirrors and

lenses contains small variations from the desired shape, known as aberrations. This
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negatively impacts imaging performance. Minor errors in reflectivity also affect the

quality of the final image. The combined amplitude and phase errors in the optics

typically degrade contrast by five or more orders of magnitude from the perfect optics

assumption. This becomes the critical design driver in any planet imaging telescope.

Until recently, solutions primarily focused on including an adaptive optics system in

the telescope. Such a system consists of multiple deformable mirrors that correct

the aberrated wavefront [14, 15]. Such a system measures the errors in the final im-

age, estimates the electric field, and computes corrections for the deformable mirrors.

Notwithstanding the recent progress in adaptive optics, such systems remain costly

and complex.

1.2 External Occulter for Exoplanet Imaging

An alternative approach to high-contrast imaging of extrasolar planets has been pro-

posed by Cash and Kasdin [9, 10, 16]. In this approach, an external screen or occulter

is used to block the wavefront from the star before it ever enters the telescope. The

poor diffraction performance of simple occulters has hitherto been an obstacle to

the wide acceptance of this approach. Fortunately, recent results in shaped-pupil

technology at Princeton have shown that these problems can be overcome with the

manufacture of a special starshade occulter. An example of a promising new occulter

design by Vanderbei, with a symmetric flower-shaped starshade, is shown in figure

1.5 [2]. This starshade is optimized for planet imaging by creating very high contrast

at small angles and suppressing the parent stars competing light. Since no starlight

can reflect off the surface aberrations, the need for wave-front control is eliminated.

Figure 1.6 shows a sketch of a sample occulter-based telescopy mission, consisting

of a roughly 50-m starshade flying 50,000 km from a conventional, 2-4-m diameter

telescope observatory [10]. The occulter significantly enhances the observatorys ca-
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Figure 1.5: A multi-petal occulter design optimized for maximization of starlight
suppression [2].

Figure 1.6: Occulter-based extra-solar planet-finding mission diagram [16]

pabilities and lowers the exoplanet mission cost by avoiding the need for expensive

telescopes such as those required for suggested coronagraph and interferometer mis-

sions such as TPF-C and TPF-I. Because the occulter is not built into the telescope

as an add-on instrument, scattered light is reduced due to the existence of fewer op-

tical surfaces. This is due mainly to the fact that, as indicated above, the external

occulter circumvents the use of high-precision wavefront control in the optical design.

There are no unwanted diffraction spikes resulting from coronagraph supports, and

the complexity of telescope instruments, such as the small-scale imperfections in the

manufacturing and surfaces, is reduced. However, it introduces the difficult problem

of controlling and realigning the satellite formation.

As shown in figure 1.7, the baseline design of this mission suggests the placement of

9



Figure 1.7: A schematic diagram of occulter mission orbits projected into the ecliptic
plane [16]

.

an occulter satellite and a telescope near a Halo orbit about the Sun-Earth L2 point.

Spacecraft mission design around the L2 libration point has been used since the ISEE3

mission in 1978 due to its several advantages (see publications by Farquhar et al. for

more details [17, 18, 19, 20]). The energy level of the libration point orbits are close

to that of the Earth and the unstable manifold of L2 Halo orbits passes very close to

Earth. As a result, reaching these orbits is easy and requires minimal fuel. Since the

Sun, Earth and Moon are all in the same direction with respect to Sun-Earth L2 point,

half of the celestial sphere is available for imaging at any given time. The constant

distance to Earth also makes it relatively easier to keep communication with spacecraft

on L2 libration orbits than if it were on heliocentric drift-away orbits. Finally, L2 has

a stable thermal environment, which is a requirement for the temperature-sensitive

equipment – optical systems, lenses, and mirrors – on the telescopy mission under

study.

1.3 Dissertation Outline

This dissertation is presented in six chapters, the first of which is this introduction.

The remaining chapters are outlined below:
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Chapter 2: Dynamical Analysis of the L2 Region

This chapter focuses on the underlying physics and qualitative behavior of the

natural dynamics of this system. I review the relevant literature on the bounded

motion of a small point-mass particle near the L2 point of the Circularly Re-

stricted Three Body Problem (CRTBP). These fuel-free orbits are useful as the

point of departure for the occulter mission design.

Chapter 3: Periodic Orbits of Interest Around L2: Numerical Methods

The horizontal Lyapunov, the vertical Lyapunov, and the Halo periodic orbits

around the L2 point are obtained numerically, and their stability properties are

examined. The real orbits in our solar system that correspond to these periodic

orbits of interest are then computed.

Chapter 4: Multiple Poincaré Sections Method for Finding the Quasi-Halo

and Lissajous Orbits

Quasi-Halo orbits are good candidates for occulter placement, as they are fuel-

free orbits and have large sky coverage with respect to the Halo orbit, where

the telescope is placed. With the aim of identifying these orbits, I develop a

new numerical method that employs multiple Poincaré sections to find quasi-

periodic orbits. This method converges to the desired orbits quickly, and it

exhibits robust behavior near chaotic regions. Its numerical implementation for

Lissajous and Quasi-Halo orbits are explained. These results are then extended

from the simplified three body model to find the orbits in the real solar system

that have the same characteristics.

Chapter 5: Finding the Optimal Trajectories

The optimal control problem of the realignment and Earth to Halo transfers is

solved. Different implementations, including the fuel- and time-optimal trajec-

tories that take the occulter from a given star Line-Of-Sight (LOS) to another

11



LOS, and from Earth to Halo, are numerically calculated using Euler Lagrange,

shooting and nonlinear programming approaches.

Chapter 6: Global Optimization of the Mission: The Traveling Salesman

Problem

The global optimization problem of finding the sequencing and timing of the

imaging sessions is examined. By including the telescopy constraints, the prob-

lem becomes a Dynamic Time-Dependent Traveling Salesman Problem (TSP)

with dynamical constraints. Simulated annealing and branching heuristic meth-

ods are employed to solve the TSP. Global optimization is performed for both

the single and multiple occulter missions. A feasibility study of the mission is

performed by analyzing possible scenarios with the capabilities of the SMART-1

spacecraft.
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Chapter 2

Dynamical Analysis of the L2

Region
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As discussed previously, the aim of this dissertation is to find the ”best” trajec-

tories for each spacecraft that is part of the occulter-based telescopy mission. In

three-dimensional space, this translates into the optimization of 3 × Ns/c control

forces in a 6 × (Ns/c + Ngb) dimensional dynamical system, where Ns/c and Ngb are

the number of spacecraft and gravitational bodies, respectively. In order to reduce

the complexity of the problem, I first analyze the control-free natural dynamics of a

single spacecraft under the simpler gravitational model.

This chapter focuses on the underlying physics and qualitative behavior of the

natural dynamics of this system. More specifically, I review the relevant literature

on the bounded motion of a small point-mass particle near the second Lagrange

point (also referred to as the libration point) of the Circular Restricted Three Body

Problem (CRTBP). This analysis helps identify the suitable regions of the phase space

for spacecraft placement.

In this chapter, I first derive the equations of motion for the CRTBP system

in a rotating frame. I then find the equilibrium points of this system. Linearizing

the equations of motion around the L2 equilibrium point, I categorize the types of

motion in the vicinity of the L2 point. Expanding the equations of motion in higher-

order Legendre polynomials, I apply the Lindstedt-Poincaré procedure to obtain the

periodic halo orbits, which do not exist in the linearized system. I then apply the

center manifold reduction procedure to obtain the complete periodic phase space in

the extended L2 neighborhood. These fuel-free orbits provides the point of departure

for the occulter mission design.
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2.1 Circularly Restricted Three Body Problem -

Equations of Motion

The Two-Body Problem, which can be solved analytically, describes the motion of

two bodies under the effect of their mutual gravitation interaction given their initial

conditions and masses [21, 22, 23]. There is no closed-form solution for the extension

of this problem to three bodies. Euler suggested a simplification of this Three-Body

Problem called the Circularly Restricted Three Body Problem (CRTBP) [24]. In the

CRTBP, the first two bodies, m1 and m2, called the primaries, are in circular motion

around their center of mass, which is the result of their mutual interaction based

on two-body gravitational dynamics. The third body, m3, which is free to move,

is assumed to be massless and hence to have no effect on the motion of the other

two bodies. The problem is to find the motion of the third body as determined by

the other two constrained bodies’ gravitational force. These assumptions reduce the

system’s degrees of freedom from nine to three, thereby increasing the tractability of

the solutions while still giving insightful information. The CRTBP is a useful model

for spacecraft mission design since the eccentricities of major planets in the Solar

system are small, and the mass of a spacecraft is negligible in comparison to the

celestial bodies.

In order to write the equations of motion under Newton’s law of gravitation, an

inertial frame of reference must be specified. The origin of the Newtonian inertial

frame, I, is located at the center of mass of m1 and m2, O. I has coordinates X, Y, Z,

such that the circular motion of the primaries is in the X,Y plane and the angular

rotation of the primaries is in the positive Z direction. Without loss of generality, we

assume that the first primary is heavier than the second primary, m1 > m2. In the

inertial frame I, the equation of motion of m3 under the gravitational forces of m1
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and m2 is

m3
d2~r

dt2

I

= −Gm1m3

‖~r1‖3
~r1 −

Gm2m3

‖~r2‖3
~r2 , (2.1)

where ~r1 and ~r2 are the relative positions of m3 with respect to m1 and m2, respec-

tively, and G is the universal gravitational constant.

Figure 2.1: Sketch of the CRTBP in the rotating frame R, where the Sun, S, is m1

and the Earth, E, is m2, and S/C refers to the spacecraft, m3.

In order to reduce the number of parameters and to generalize the solutions, the

variables of the problem are typically nondimensionalized. The unit of mass is chosen

as the total mass of the two main bodies, M = m1 +m2; the distance unit is chosen

as the distance between the two main bodies, D = ‖ ~d1‖+ ‖ ~d2‖; and the time unit is

chosen such that the period, T , of the circular motion is 2π. Under these choices, the

universal gravitational constant, G, becomes unity in order to enforce the two-body

period equality, T = 2π D3/2

M1/2G1/2 . Angular velocity, w = 2π
T

, becomes unity as well. As

a result, the nondimensional system depends only on a single parameter. This is the

mass parameter, µ, defined as the ratio of the small body’s mass to the total mass:
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µ = m2

M
. Then, the nondimensional masses of the primaries can be expressed as

m1 = 1− µ (2.2)

m2 = µ . (2.3)

Since the distances of the primaries from the center of mass are inversely proportional

to their masses, the nondimensional distances can be expressed as

‖ ~d1‖ = µ (2.4)

‖ ~d2‖ = 1− µ . (2.5)

The nondimensionalized equation of motion becomes

d2~r

dt2

I

= −1− µ

‖~r1‖3
~r1 −

µ

‖~r2‖3
~r2 . (2.6)

In the inertial frame, I, the positions of the primaries are time dependent, making

the motion difficult to analyze. The time dependence of the equations of motion can

be eliminated by employing a rotating frame, R, with coordinates x, y, z. R is defined

with the origin at O; x directs from m1 to m2; y is perpendicular to x and lies in the

plane of the primaries’ motion; and z coincides with Z (see figure 2.1). R is called

the synodical frame.

In order to write the equations in R, the acceleration of m3 in the inertial coor-

dinates, d2~r
dt2

I
, should be expressed in terms of the rotating coordinate elements, x, y,

and z. The kinematical relationship between the acceleration in the inertial frame I

and the rotating frame R is

d2~r

dt2

I

= ~̇ω ×~r + ~ω × (~ω ×~r) + 2~ω × d~rR

dt
+
d2~r

dt2

R

, (2.7)
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where ~ω is the angular velocity of the rotating frame. In the nondimensional units, ~ω

is equal to 1 · ẑ; thus, the first term on the right hand side of equation 2.7 is nullified,

and the inertial acceleration is simplified to

d2~r

dt2

I

= (ẍ− 2ẏ − x) x̂+ (ÿ + 2ẋ− y) ŷ + z̈ ẑ (2.8)

where the short-hand notation ˙ is used for the time derivative of a scaler. Plugging

equation 2.8 into equation 2.6, the final form of the equation of motion is obtained,

ẍ = 2ẏ + x− (1− µ)(x+ µ)

‖~r1‖3 − µ(x− 1 + µ)

‖~r2‖3

ÿ = −2ẋ+ y − (1− µ)y

‖~r1‖3
− µy

‖~r2‖3

z̈ = −(1− µ)z

‖~r1‖3 − µz

‖~r2‖3 . (2.9)

In these equations, the nondimensional positions with respect to the primaries are

~r1 = (x+ µ)x̂+ yŷ + zẑ (2.10)

~r2 = (x− 1 + µ)x̂+ yŷ + zẑ . (2.11)

Defining an effective potential, Ū(x, y, z), as

Ū(x, y, z) =
1− µ

‖~r1‖
+

µ

‖~r2‖
+
x2 + y2

2
, (2.12)

the equations can be expressed in a simpler form,

ẍ = 2ẏ +
∂Ū(x, y, z)

∂x

ÿ = −2ẋ+
∂Ū(x, y, z)

∂y

z̈ =
∂Ū(x, y, z)

∂z
. (2.13)
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Defined by the differential equation 2.13, CRTBP has a first integral called the

Jacobi Constant, C, which is given by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2Ū + µ(1− µ). (2.14)

Differentiating C with respect to time, it can be observed that it is time invariant

and thus a constant of motion:

d

dt
C = −2(ẋẍ+ ẏÿ + żz̈) + 2

d

dt
Ū

= −2

(
(2ẏ +

∂Ū

∂x
)ẋ+ (−2ẋ+

∂Ū

∂y
)ẏ +

∂Ū

∂z
ż

)
+ 2

d

dt
Ū

= −2

(
∂Ū

∂x
ẋ+

∂Ū

∂y
ẏ +

∂Ū

∂z
ż

)
+ 2

d

dt
Ū = 0 (2.15)

The existence of this integral of motion is due to the time-independent Lagrangian

nature of the CRTBP differential equation system (equation 2.13), which leads to

energy conservation (see [25] for details).

2.2 Equilibrium Points

At the equilibrium of a differential system, the state variables stay constant for all

time. Thus, in order to find the equilibrium points of CRTBP, all derivative terms in

equation 2.13 are set equal to zero:

0 =
∂Ū

∂x
= x− (1− µ)(x+ µ)

‖~r1‖3 − µ(x− 1 + µ)

‖~r2‖3 (2.16)

0 =
∂Ū

∂y
= y

(
1− (1− µ)

‖~r1‖3
− µ

‖~r2‖3

)
(2.17)

0 =
∂Ū

∂z
= z

(
−(1− µ)

‖~r1‖3 − µ

‖~r2‖3

)
. (2.18)
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The five sets of values that satisfy these equations are called the Lagrange or the

libration equilibrium points. It is apparent from equation 2.18 that, at any equilibrium

point, z should be equal to zero. There are two possible solutions for equation 2.17;

y = 0 or y 6= 0. In the former case, there are three x values that satisfy equation 2.16

([24]). These are the collinear Lagrange points L1, L2, and L3 with coordinates

L1 = {1− µ− γ1, 0, 0} , (2.19)

L2 = {1− µ+ γ2, 0, 0} , (2.20)

L3 = {−µ− γ3, 0, 0} . (2.21)

where γ1, γ2, and γ3 refer to the distances between the collinear Lagrange points and

their closest primaries. These are uniquely given by the positive roots of the following

quintic equations:

γ5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − µγ2

1 + 2µγ1 − µ = 0 , (2.22)

γ5
2 + (3− µ)γ4

2 + (3− 2µ)γ3
2 − µγ2

2 − 2µγ2 − µ = 0 , (2.23)

γ5
3 + (2 + µ)γ4

3 + (1 + 2µ)γ3
3 − (1− µ)γ2

3 − 2(1− 2µ)γ3 − (1− µ) = 0 . (2.24)

The other set of equilibrium points arise when y 6= 0. In this case, r1 = r2 = 1 should

be satisfied for equation 2.17 to hold. The positions of m1, m2, and m3 then form

an equilateral triangle. There are two equilibrium points that satisfy this constraint;

these are L4 and L5 with positions

L4 = {µ− 1

2
,

√
3

2
, 0} , (2.25)

L5 = {µ− 1

2
,−
√

3

2
, 0}. (2.26)
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Figure 2.2: Sketch of the locations of the Lagrange points [26]

2.3 Series Expansion around L2

While the ultimate aim is to characterize motion in the neighborhood of L2, analyt-

ical solutions are not available. I therefore proceed with asymptotic analysis, which

requires series expansion of the expressions on the right hand side of equation 2.13.

It is necessary to first change the variables such that the coordinates themselves are

small parameters. Subsequently, an appropriate expansion method is employed to

obtain the full series expressions.

2.3.1 Translation of L2 to the origin, and rescaling

In order to linearize CRTBP around the L2 point, which has the coordinates {1 −

µ + γ2, 0, 0}, the equations must be written in a different set of coordinates, where

L2 is at the origin. In the next section, I will perform asymptotic analysis in the

neighborhood of L2, which extends from L2 to m2. Following Richardson [27], I

therefore change the unit of distance from D, the distance between the primaries, to
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γ2, the distance from L2 to m2, since this is more in line with the length scales of the

problem. The distance unit rescaling ensures that the series expansions have good

numerical properties. In order to translate L2 to the origin and rescale the units, the

following change of variables is applied:

xnew =
x− 1 + µ− γ2

γ2

(2.27)

ynew =
y

γ2

(2.28)

znew =
z

γ2

(2.29)

(2.30)

The mass unit is kept as M . Time unit is chosen such that the gravitational constant,

G, is unity in the new unit system as it was before. In the new time unit, the period

of the circular motion of the primaries, T , is 2π
(

D
γ2

)3/2

, as a result of the Keplerian

period equation for the primaries, T = 2π D3/2

M1/2G1/2 . To simplify the equations, we

define a new variable, γL,

γL ,
γ2

D
.

Then, the period of the primaries is T = 2πγL
− 3

2 , and the angular velocity, ω = 2π
T

,

is γL
3
2 . Change in the unit of time scales the time derivative operator, ˙, in the new

unit system by γL
3
2 . To keep the differential equations consistent, we define a new

time variable, s,

s , γL

3
2 t ,

and a derivative with respect to this new time variable,

′ ,
d

ds
.
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This notation enables the use of the old differential equations by only replacing, ˙,

with, ′ . From here on, subscripts for xnew, ynew and znew are dropped for convenience.

2.3.2 Series Expansion of the Equations

The right hand terms in the equations of motion, equation 2.13, are expanded using

the fact that

1

‖~r + ~ρ‖
=

1

‖~r‖

∞∑
n=0

Pn (cos(α))

(
‖~ρ‖
‖~r‖

)n

(2.31)

where Pn (·) are the Legendre polynomials, and

cos(α) =
~ρ ·~r
‖~ρ‖‖~r‖

. (2.32)

Defining ~ρ = x, y, z, distances to primaries can be written as

~r1 = (
1

γL

+ 1)x̂+ ~ρ (2.33)

~r2 = x̂+ ~ρ . (2.34)

Using equations 2.31-2.34, the gravitation potential can be expanded in Legendre

polynomials around L2,

1− µ

‖~r1‖
+

µ

‖~r2‖
=

∞∑
n>2

cnρ
nPn

(
x

ρ

)
. (2.35)

where ρ = ‖~ρ‖ and the cn coefficients are

cn =
(−1)n

γL
3

(
µ+

(1− µ)γL
n+1

(1 + γL)n+1

)
. (2.36)
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Thus, the series expansion for the effective potential, Ū , in equation 2.12 becomes

Ū =
x2 + y2

2
+

1− µ

‖~r1‖
+

µ

‖~r2‖

=
1

2

(
(1 + 2c2)x

2 + (1− c2)y
2 − c2z

2
)

+
∞∑

n>3

cnρ
nPn

(
x

ρ

)
. (2.37)

Substituting the new coordinates in equation 2.13 and employing the Ū expansion,

the equations of motion become:

x′′ − 2y′ − (1 + 2c2)x =
∂

∂x

∞∑
n>3

cnρ
nPn

(
x

ρ

)
=

∞∑
n>2

(n+ 1)cn+1ρ
nPn

(
x

ρ

)

y′′ + 2x′ + (c2 − 1)y =
∂

∂y

∞∑
n>3

cnρ
nPn

(
x

ρ

)
=

∞∑
n>3

cnyρ
n−2P̃n

(
x

ρ

)

z′′ + c2z =
∂

∂z

∞∑
n>3

cnρ
nPn

(
x

ρ

)
=

∞∑
n>3

cnzρ
n−2P̃n

(
x

ρ

)
, (2.38)

where

P̃n =

[(n−2)/2]∑
k=0

(3 + 4k − 2n)Pn−2k−2

(
x

ρ

)
, (2.39)

and the bracket operator, [ ], gives the integer part of a real number.

2.4 Analysis of the Linear Part around L2

Before looking at the more complicated non-linear dynamical system, I investigate

the linearized system to gain insight into the stability and the structure of the phase

space. Ignoring the second and high-order terms in equation 2.38, the linear equations
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of motion are

x′′ − 2y′ − (1 + 2c2)x = 0

y′′ + 2x′ + (c2 − 1)y = 0

z′′ + c2z = 0 . (2.40)

The linearized motion in the x−y plane and in the z direction are independent of one

another. For the purpose of our studies, which focus on the motion around the Earth-

Sun L2 with µ = 3.040423398444176 × 10−6, the c2 constant can be obtained from

equation 2.36 as 4.006810788883402. Noting that c2 > 0, motion in the z direction is

a simple harmonic oscillator. To study the in-plane motion, the differential equations

are written in the first-order form:

d

dt



x

y

x′

y′


=



0 0 1 0

0 0 0 1

(1 + 2c2) 0 0 2

0 −(c2 − 1) −2 0





x

y

x′

y′


. (2.41)

This system has four eigenvalues, which are

e1,2 = ±λ = ±
√
c2 − 2 +

√
9c22 − 8c2√

2

e3,4 = ±iν = ±i
√
−c2 + 2 +

√
9c22 − 8c2√

2
, (2.42)

where λ and ν are positive constants. This can be shown through algebraic manip-

ulation for µ < 1
2

[24]. Thus, the planar system has two real eigenvalues, λ and −λ

, corresponding to the divergent and convergent modes, respectively, and, two imag-

inary eigenvalues, ±ν, corresponding to the oscillatory modes. The corresponding
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eigenvectors for these modes are

~vλ =



1

−σ

λ

−λσ


, ~v−λ =



1

σ

−λ

−λσ


, ~v−ν =



1

ik

iν

−νk


, ~vν =



1

−ik

−iν

−νk


, (2.43)

where

σ =
2λ

λ2 + c2 − 1
and

k =
ν2 + 2c2 + 1

2ν
. (2.44)

The general solution to the linear ODE can then be written as:



x(s)

y(s)

x′(s)

y′(s)


= C1e

λs



1

−σ

λ

−λσ


+ C2e

−λs



1

σ

−λ

−λσ


+ C3



cos(νs)

−k sin(νs)

−ν sin(νs)

−νk cos(νs)


+ C4



sin(νs)

k cos(νs)

ν cos(νs)

−νk sin(νs)


.

(2.45)

The x− y plane has a center × saddle structure. This can be visualized by drawing

the projection of the motion in these subspaces onto the x-y coordinates, by ignoring

the velocity components (See figure 2.3). Including the z-direction mode, the linear

phase space around the L2 point has the center × center × saddle structure.

Saddle behavior around the Lagrange point can be utilized to design efficient

trajectories that veer in and out of the libration region for spacecraft missions. Fur-

thermore, analyzing the stable and unstable manifolds, it can be shown that there

exists a heteroclinic connection between the L1 and L2 points [28, 25]. This charac-

teristic is useful in mission design, such as the GENESIS mission trajectory to move
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Figure 2.3: Projection onto the x-y coordinates of the saddle subspace (on the left)
and center subspace (on the right) of the linearized planer motion around L2

between Sun-Earth L1 and L2 [29, 30].

Because this dissertation focuses on the types of motion that stay around the L2

region for all time, i.e. the libration orbits, this stable and unstable behavior will not

be analyzed further. Instead, I focus on the librational motion.

2.5 High-Order Analysis (The Lindstedt-Poincaré

Procedure and Halo Orbits)

As seen above, there are periodic (and quasiperiodic) orbits near the collinear libration

points. I now turn to higher-order approximations for further insight.

Without loss of generality, if we restrict the initial conditions such that divergent

motion is not allowed, i.e. that the stable and unstable modes in the x-y plane are

excluded, we obtain the linear quasi-periodic orbits around L2, which can be written

in compact form as

x = −Axcos(νs+ φ)

y = kAxsin(νs+ φ)

z = Azcos(ωzs+ ψ) , (2.46)
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where ωz =
√
c2. In the general case, when the in-plane and out-of-plane frequencies

are not commensurable, i.e., when ν
ωz
6= i1

i2
where i1 and i2 are integers, Lissajous

orbits are obtained. In the linear analysis of the Earth-Sun CRTBP L2 point, these

frequencies,

ν = 2.073256862131411 and

ωz = 2.001701973042791 , (2.47)

are not commensurable. As a result, there are no three-dimensional periodic orbits

in the linear L2 system. However, as we move further away from the origin, and Ax

and Az increase, these amplitudes may affect the frequencies ν and ωz in a nonlinear

fashion. Since the frequencies in the x-y plane and in the z direction are very close

to one another, it makes intuitive sense to seek the possibility of 1-1 commensurate

nonlinear three-dimensional orbits. When the in-plane and out-of-plane frequencies

are equal, i.e. ν = ωz, 1-1 commensurable periodic orbits are obtained. These

orbits were first discovered by Farquhar, who coined the term “Halo” orbits due to

the resemblance of the Earth-Lunar L2 Halo orbits to a halo when seen from Earth

[31, 32, 33].

The linearized equations give the first approximation for this type of periodic

motion. In order to find the solutions for the Halo orbits up to the third order,

I use Richardson’s application of the Lindstedt-Poincaré successive approximation

technique [27]. In the Lindstedt-Poincaré procedure, the frequency correction for the

periodic motion is expanded in powers of the amplitude O(An
x),

ω = 1 +
∑
n>1

ωn, ωn < 1 , (2.48)

where the coefficients ωn are chosen to remove the secular terms at each step.

A new time variable, τ = ωs, is introduced, and the equations of motion 2.38 are
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expanded up to the third order, which yields

ω2x′′ − 2ωy′ − (1 + 2c2)x =
3

2
c3(2x

2 − y2 − z2) + 2c4x(2x
2 − 3y2 − 3z2) +O(4)

ω2y′′ + 2ωx′ + (c2 − 1)y = −3c3xy −
3

2
y(4x2 − y2 − z2) +O(4)

ω2z′′ + c2z = −c3xz −
3

2
z(4x2 − y2 − z2) +O(4) . (2.49)

It can be shown that the choice of

ω1 = 0 and ω2 = s1A
2
x + s2A

2
z, (2.50)

removes the secular terms up to third order, with the requirement that in-plane and

out-of-plane amplitudes and phases satisfy the following conditions:

0 = l1A
2
x + l2A

2
z + ∆

ψ = φ+ n
π

2
, n = 1, 3 . (2.51)

For lengthy variables, l1, l2, s1, s2 and ∆, see [27]. From these equations, we see

that the smallest Halo orbit occurs when Az = 0, which, in the Sun-Earth L2 case,

corresponds to approximately Ax = 200, 000 km.

Using the frequency correction and the phase amplitude constraints, the third-

order solution of the Halo orbit is

x = a21A
2
x + a22A

2
z − Axcos(τ1) + (a23A

2
x − a24A

2
z)cos(2τ1)

+ (a31A
3
x − a32AxA

2
z))cos(3τ1)

y = kAxsin(τ1) + (b21A
2
x − b22A

2
Z)sin(2τ1) + (b31A

3
x − b32AxA

2
z)sin(3τ1)

z = δn(Azcos(τ1) + d21AxAz(cos(2τ1)− 3)

+(d32AzA
2
x − d31A

3
z)cos(3τ1)) , (2.52)
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where

τ1 = ντ + φ ,

δn = 2− n, n = 1, 3 . (2.53)

Depending on the value of n, there are two types of Halo orbits, called the northern

(n = 1) and southern Halos (n = 3), which are the mirror images of each other with

respect to the x− y plane. This is due to the CRTBP’s mirror symmetry across the

z = 0 plane, that is, the equations of motion are invariant under the transformation:

{x, y, z, ẋ, ẏ, ż} ⇒ {x, y, −z, ẋ, ẏ, −ż}. Figure 2.4 shows an approximate northern

Halo orbit obtained via the Richardson formulation. While it is possible to extend
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Figure 2.4: Sample northern Halo orbit approximation via the Richardson formula-
tion.

this analysis further to higher orders (see [34]), the Richardson results are adequate
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for a quantitative understanding of the Halo orbits and as an initial estimate for the

numerical procedure that will be used in the chapters to follow.

2.6 Reduction to Center Manifold

In the previous sections, I first looked at the linear phase space around L2, and then at

the higher-order series solutions to find an approximation for the Halo orbits. To gain

more insight into the periodic and quasi-periodic librational motions, I now turn to an

analysis of the full periodic subspace, i.e. the center manifold around L2. This can be

done by separating the periodic and divergent manifolds through the center manifold

reduction technique. This method is based on symplectic Lie-transformations on

the series expansion of the Hamiltonian. Here, I explain how the center manifold

reduction technique is applied to CRTBP, and I summarize the results obtained by

Jorba and Masdemont in [35, 36].

2.6.1 Transformation into complex normal form

Introducing new momenta,

px = x′ − y

py = y′ + x

pz = z′ , (2.54)

the corresponding Hamiltonian for equation 2.38 becomes

H=
1

2
(p2

x + p2
y + p2

z) + ypx − xpy −
∞∑

n=2

cnρ
nPn

(
x

ρ

)
. (2.55)

31



To be able to apply the Lie series procedure, the quadratic part of the Hamiltonian,

which corresponds to the linear ODE, must be in the normal form,

H̃2 = λx̃p̃x + ν(ỹ2 + p̃y
2) + ωz(z̃

2 + p̃z
2) , (2.56)

where λ, ν and ωz are the eigenvalues of the linear ODE system as defined previously.

Analyzing the eigenvectors from the last section, it can be shown that the following

symplectic transformation takes H2 into the normal Hamiltonian form H̃2,

x̃

ỹ

z̃

p̃x

p̃y

p̃z


=



2λ
s1

0 0 0 −2λ
s1

2ν
s2

0

λ2−2c2−1
s1

ν2−2c2−1
s2

0 λ−2c2−1
s1

0 0

0 0 1√
ωz

0 0 0

λ2+2c2+1
s1

ν2+2c2+1
s2

0 λ+2c2+1
s1

0 0

λ3+(1−2c2)λ
s1

0 0 −λ3−(1−2c2)λ
s1

ν3+(1−2c2)ν
s2

0

0 0 0 0 0
√
ωz





x

y

z

px

py

pz


,

(2.57)

where,

s1 =
√

2λ((4 + 3c2)λ2 + 4 + 5c2 − 6c22)

s2 =
√
ωz((4 + 3c2)ν2 − 4− 5c2 + 6c22) . (2.58)
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Finally, H2 is transformed into the complex normal form in order to simplify the

symbolic numerical manipulations and to keep the notation concise.



q1

q2

q3

p1

p2

p3


=



1 0 0 0 0 0

0 1√
2

0 0 − i√
2

0

0 0 1√
2

0 0 − i√
2

0 0 0 1 0 0

0 − i√
2

0 0 1√
2

0

0 0 − i√
2

0 0 1√
2





x̃

ỹ

z̃

p̃x

p̃y

p̃z


(2.59)

This transformation brings the quadratic Hamiltonian to its complex normal form,

H2(q, p) = λq1p1 + iνq2p2 + iωzq3p3 . (2.60)

Then the expanded Hamiltonian becomes:

H(q, p) = H2(q, p) +
∑
n>3

Hn(q, p)

= λq1p1 + iνq2p2 + iωzq3p3 +
∑
n>3

Hn(q, p) , (2.61)

where Hn is the nth order homogenous polynomial of the canonical coordinates and

momenta

Hn(q, p) =
∑

‖k‖1=n

hk
nq

k1
1 q

k2
2 q

k3
3 p

k4
1 p

k5
2 p

k6
3 , (2.62)

and where the short notation k = {k1, k2, k3, k4, k5, k6} is used with ‖ ‖1 as the usual

1-norm given by ‖k‖1 = |k1|+ |k2|+ |k3|+ |k4|+ |k5|+ |k6|.
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2.6.2 The Procedure Explained

The aim of the center manifold reduction is to separate the motion of the center part

from the saddle part. This is achieved by applying successive canonical transforma-

tions to H, which results in the transformed Hamiltonian, H̄, whose exponents of q1

and p1 are always the same, i.e. k1 = k4. Eliminating all the polynomials, where

k1 6= k4 up to the Nth order, we obtain a new Hamiltonian of the following form,

H̄(q, p) = λq1p1 + iνq2p2 + iωzq3p3 +
N∑

n>3

H̄n(q1p1, q2, q3, p2, p3) +R(q, p) . (2.63)

It is easy to see that I = q1p1 is a first integral of motion when the effect of the

residue, R(q, p), is ignored. Using the fact that the time flow of this system is given

by Hamilton’s equations,

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
, (2.64)

the constancy of I can be observed by differentiating it:

dI

dt
= q1

∂H̄

∂p1

− p1
∂H̄

∂q1

= 0 . (2.65)

Hence, if I = 0 at time zero, it is zero for all time and the truncated Hamiltonian, H̄,

is constrained to be a function of only q2, q3, p2, and p3. The origin of the reduced

H̄(0, q2, q3, p2, p3) system is an elliptic equilibrium point. It is restricted to a manifold

tangent to linear center space, hence it is reduced to the center manifold.
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2.6.3 Implementation of the Lie Series Method

Center manifold reduction is achieved by using successive canonical transformations,

which are almost identity, through the Lie Series method. This method uses the time

flow of a generating function, G, to canonically transform the original Hamiltonian

into H̄ through the following Lie series:

H̄ = H + [H,G] +
1

2
[[H,G], G] +

1

3!
[[[H,G], G], G] + . . . , (2.66)

where [ · , · ] is the Lie bracket operator. H is given in equation 2.61 and we want

H̄ to be of the form given in equation 2.63. As a result, the problem is reduced to

finding G in the polynomial equation 2.66. Similar to the expansion of H via the

equations 2.61 and 2.62, H̄ and G are expanded in power series with the notation,

G = G2 +G3 +G4 + ...

H̄ = H̄2 + H̄3 + H̄4 + ... , (2.67)

where H̄n and Gn are nth-order homogenous polynomials given as

Gn =
∑

‖k‖1=n

gk
nq

k1
1 q

k2
2 q

k3
3 p

k4
1 p

k5
2 p

k6
3

H̄n =
∑

‖k‖1=n, k1=k4

h̄k
n(q1p1)

k1qk2
2 q

k3
3 p

k5
2 p

k6
3 . (2.68)

The problem of finding the transformation is now converted into finding the coeffi-

cients gk
n. Using the Lie bracket property that [Hn, Gm] is a homogeneous polynomial

of degree n +m− 2, the expanded equation is split up into polynomial equations of
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increasing degrees:

H̄2 = H2

H̄3 = H3 + [H2, G3]

H̄4 = H4 + [H2, G4] + [H3, G3] +
1

2
[[H2, G3], G3]

... (2.69)

For k vector values with k1 6= k4, H̄ is zero. Thus, the equations simplify to

0 = H3 + [H2, G3]

0 = H4 + [H2, G4] + [H3, G3] +
1

2
[[H2, G3], G3]

... (2.70)

For the first equation, the solution is

gk
3 =


−hk

3

(k4−k1)λ+i(k5−k2)ν+i(k6−k3)ωz
for k1 6= k4 & ‖k‖1 = 3

0 otherwise.

(2.71)

Then, the equations given in 2.70 are solved sequentially to first find G3, then G4,

and so on, in order to obtain the generating function up to a finite truncated order.

Since k1 6= k4, the denominator term is non-zero, and the series solution diverges very

slowly.

Once the manifold reduction is complete and G and H̄ have been obtained, the

qualitative structure of the center space can be analyzed. In the case of expansion

around L2, this manifold is four-dimensional and difficult to visualize. To visualize

the qualitative behavior on a two-dimensional figure, the system must be reduced

by two more dimensions. This is achieved by first restricting the system to a fixed

Hamiltonian and then taking a Poincaré section through the surface q3 = 0. Now we
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can see the projection of the system to two dimensions. Figure 2.5 shows a collection

of two-dimensional plots representing the dynamics in the periodic phase space with

different Hamiltonians.

Figure 2.5: Poincaré sections of the center manifold for different Hamiltonian values
[36].

While analyzing these plots, it is important to keep in mind that these are Poincaré

sections. In other words, the fixed points correspond to periodic orbits in the center

manifold, and the closed curves correspond to quasi-periodic orbits. The fixed point

at the central part of the plot corresponds to the out-of-plane periodic orbit, whose

linear solution is given in Eqn 2.45. Surrounding it are the Lissajous orbits. In the

figure, it can be seen that, after a certain increase in the energy level, two lobes

appear. These are the north and south Halo orbits, which are surrounded by quasi-

periodic orbits called the Quasi-Halos. They bifurcate from the in-plane periodic

orbits. These orbits and their properties are discussed in the next chapter.
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Chapter 3

Periodic Orbits of Interest around

L2: Numerical Methods
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The second chapter looked at the dynamical properties and the low-order analyt-

ical solutions for the periodic and quasi-periodic orbits around L2 for the simplified

CRTBP. In this chapter, I find the real orbits in our solar system that correspond

to these analyzed orbits. The chapter proceeds in two sections. The first section ex-

plains the numerical tools that are used to find the exact solutions and the stability

properties for the periodic orbits in the CRTBP. These methods are then applied to

find the horizontal Lyapunov, the vertical Lyapunov, and the Halo orbits, and their

stability properties.

3.1 Numerical Tools for Periodic Libration Orbits

around L2

Finding periodic orbits of a first order ODE system can be formulated as a boundary

value problem (BVP). Shooting algorithms were the first methods to be employed

to solve these types of BVPs. Their easy implementation and lack of computational

intensity ensures their continued popularity as BVP solving methods. Howell obtained

the Halo orbits numerically for the first time using a shooting method, [37].

The accurate analytical approximations for the periodic orbits of interest obtained

in the last chapter form the starting points of the numerical algorithms. While the

shooting method only uses one point from the analytical approximation, the collo-

cation method uses the whole approximation. This extra information ensures the

superior performance of the collocation algorithm. The collocation algorithms have

higher accuracy and a bigger region of attraction (minimal need of continuation pro-

cedure). In order to verify and confirm the correctness of the results, I implemented

both shooting and collocation algorithms to find the periodic orbits of interest.

In addition, as we will see in the last section of this chapter, the collocation

algorithm can be modified to transfer these orbits from the CRTBP to a full Solar
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System model. For these reasons, I explain the implementation of the collocation

algorithms to the CRTBP periodic orbits and refer the reader to [37] for further

details on the shooting method.

3.1.1 Collocation as a Numerical Tool to Find Periodic Or-

bits

If a trajectory φ(t,x0) begins at a point x0 at time t = 0, and at some later time

t = T the trajectory φ(T,x0) returns to the point of departure, then this trajectory

is called a periodic orbit with period T . Finding periodic orbits of a first-order ODE

system can be formulated as a BVP. For a generic system, the problem mathematically

reduces to finding the solution x(t) of the autonomous ODE

ẋ(t) = f(t,x) , (3.1)

within the time boundaries

0 6 t 6 T , (3.2)

where the system is subjected to boundary conditions which correspond to the peri-

odicity condition, i.e. the trajectory closing on itself:

g(x(0),x(T )) = x(0)− x(T ) = 0. (3.3)

After formulating the computation of the periodic orbit as a BVP, the state vector,

x(t), which is subjected to the differential equation and boundary constraints, is

solved. To implement the problem on a digital computer, the time and state variables
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are discretized at N + 1 points along the trajectory

0 = t0 < t1 . . . < ti < . . . < tN−1 < tN = T ,

x0 = x(0), . . . , xi = x(ti), . . . , xN = x(T ) . (3.4)

Now, we need to find the discrete relationship that corresponds to the ODE

ẋ(t)− f(t,x) = 0 ⇒ F (ti,xi, ti+1,xi+1) = 0 . (3.5)

There are schemes that can be used for this discretization. Among the most popular

are the Runge-Kutta formulas and the Simpson’s quadrature. Cash and his colleagues

have developed a number of effective solvers - for example, Cash and Wright TWBVP

[38, 39], where the basic formula is Simpson’s rule for quadrature. In the BVP solver

COLNEW, Ascher et al. [40, 41], implemented a family of implicit Runge-Kutta

methods. I used the Kierzenka et al.’s [42] bvp4c implementation, where a Simpson’s

formula for the quadrature is implemented. One advantage of this implementation is

that the discretized equations can be analytically solved without intermediate vari-

ables. If the initial guess is sufficiently close to the real solution, the discretized

Simpson quadrature equation, which corresponds to the differential equation, gives

the following constraint at every point:

F (xi) = −xi+1 + xi +
hi

6
(f(ti,xi) + f(ti+1,xi+1)) . . . (3.6)

+
2hi

3
f

(
ti + ti+1

2
,
xi + xi+1

2
− hi

8
[f(ti,xi)− f(ti+1,xi+1)]

)
] ,

where

hi = ti+1 − ti. (3.7)
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In order to obtain the full discrete version of the BVP, the constraint vector is aug-

mented with the constraints at the boundaries:

F0(x0,xN) = g(x0,xN) . (3.8)

Solving for this set of equations is equivalent to a general finite difference implemen-

tation. The correct solution is obtained when constraint equations are equal to zero.

The N + dim(g) dimensional nonlinear equation given by [F0, F (xi)] = 0 is solved

using Newton’s method, where an initial guess q0 = {x0,x1, ...,xN−1,xN} is iterated

according to

DF (qj−1) · (qj − qj−1) = −F (qj−1) . (3.9)

Before taking the next Newton step, the accuracy of the current guess is assessed and

the values are redistributed.

The full state along the trajectory is approximated by a piecewise polynomial,

S(t,qj). Employing Hermite cubic polynomials, a C1 representation that interpolates

x and ẋ for each subinterval [xi, xi+1] is constructed as

S(t,qj) = A1(t)xi + A2(t)xi+1 +B1(t)ẋi +B2(t)ẋi+1 +O(h4) , (3.10)

where A1(t), A2(t), B1(t), B2(t) are the third-order Hermite polynomial function,

which satisfies the continuity boundary conditions for each subinterval [xi, xi+1] of

the mesh.

Once the approximation for the continuous solution by this spline is obtained, the

estimate of the error norm in the current stage of iteration is needed to make decisions

for the following iteration steps. Defining the residue between the spline and the real
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solution as

r(t)j = S′(xj)− f(xj,S(xj)) , (3.11)

the error norm is calculated by integration of the residue between the spline and the

real solution by a 5-point Lobatto quadrature approximation [43] on each subinterval

i:

||r(xj)||i =

(∫ xi+1

xi

||r(xj)||2
)1/2

. (3.12)

Based on the norm of the residual of the continuous solution, the mesh points, xj,

are redistributed. Extra points are added to the intervals with residues larger than

minimum error tolerance, and the points on the intervals which have errors much

smaller than the minimum tolerance are removed. Then, the Newton’s iteration is

continued until ||r(xj)|| < ε, where ε is a preset tolerance for the BVP solution. Then,

it is assumed that the iteration converged and that the correct answer is obtained.

3.1.2 Stability Analysis of Periodic Orbits

The stability of an orbit of a dynamical system determines whether nearby orbits

will stay in close proximity to that orbit or be repelled from it as time progresses.

The Poincaré map enables us to determine the stability of a periodic orbit for a

time-independent dynamical system (for a detailed mathematical explanation, see

Guckenheimer & Holmes [44]). It does so by converting the n-dimensional continuous

dynamical system into an (n− 1)-dimensional map.

Let us consider surface section Σ, a subspace with a dimension lower than the

dynamical system of interest, that is transversal to the flow direction. A first return

map or Poincaré map is the intersection of a periodic orbit, x(t), in the state space of

the continuous dynamical system with Σ. If we consider a periodic orbit with initial
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conditions, x0, on the Poincaré section and observe the successive points at which this

orbits returns to the section, xi, we can reduce the dynamical system to the following

map

xi+1 = P (xi) (3.13)

on the section Σ section. The periodic orbit of the dynamical system becomes the

fixed point of the map P when

x0 = P (x0) . (3.14)

Thus, the transformation converts the condition for the stability of the periodic orbit

to determining the stability of the map P . In order to study the stability of the

Poincaré map, it is linearized around the fixed point

δxi+1 = DP (x0)δxi. (3.15)

The fixed point of this map, x0, is asymptotically stable if the moduli of all the

eigenvalues of DP are less than one and unstable if any of the eigenvalues are outside

the unit circle. The stability of the periodic orbit is determined by the fixed point of

the map.

Floquet theory offers an attractive numerical alternative to determining the sta-

bility of a periodic orbit without employing Poincaré maps. Instead of using a section

in the phase space, we linearize the T-periodic vector field around the periodic or-

bit. Solving the linearized equations, we obtain the Floquet multipliers that define

the rate of convergence or divergence of small perturbations from the periodic orbit.

Guckenheimer and Holmes prove that one of the Floquet multipliers is unity with the

eigenvector corresponding to motion along the periodic orbit, and that the (n − 1)
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eigenvalues of DP are equal to (n− 1) of the Floquet multipliers of the periodic orbit

[44].

In what follows, I investigate the stability of one particular periodic solution x(t)

with period T of the autonomous system given as: ẋ = f(x). I proceed by linearizing

the T-periodic vector field around the periodic orbit φ(t, x0). First, let us note that

the trajectory satisfies its own ODE,

d

dt

∂φ(t, x0)

∂x0

= f(φ(t, x0)), with φ(0, x0) = x0 . (3.16)

Differentiating this equation with respect to x0, we obtain

d

dt

∂φ(t, x0)

∂x0

= Df(φ)
∂φ(t, x0)

∂x0

, with initial condition
∂φ(0; x0)

∂x0

= I. (3.17)

Rewriting equation 3.17 in terms of the state transition matrix, Φ(t), where Φ(t) :=

∂φ(t,x0)
∂x0

, we obtain

Φ̇ = Df(x)Φ, Φ(0) = I . (3.18)

The monodromy matrix, M , of a periodic solution, x(t), with period T and initial

condition x0, is defined as

M := Φ(T ) =
∂φ(T, x0)

∂x0

. (3.19)

The eigenvalues of the monodromy matrix are the Floquet multipliers [44]. They

define the full stability properties of the periodic orbit of interest. We can see this by

looking at how much a perturbed trajectory φ(t, x0 +δx0) separates from the periodic

trajectory φ(t, x0) after one period.

δx(T ) = φ(T, x0 + δx0)− φ(T, x0) . (3.20)
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Expanding the right hand side of the equation in Taylor series gives the approximation

δx(T ) =
∂φ(T, x0)

∂x0

δx0 + high order terms

≈ Mδx0. (3.21)

Thus, M quantifies how perturbations on initial conditions progress after one period.

All we need to do to understand the stability of the periodic orbit of interest is to

integrate the equation 3.18 from t = 0 to t = T , and then check the eigenvalues of

M , i.e. the Floquet multipliers. If the Floquet multipliers are less than one then the

orbit is stable, if one of them is larger than one then the orbit is unstable. While the

eigenvectors define the stable and unstable direction, the magnitude of the eigenvalue

define the rate of convergence or divergence.

3.2 Application to the Periodic Orbits of the CRTBP

Around L2

The linear six-dimensional phase space around L2 is a center × center × saddle as

discussed in the second chapter. For energy values close to that at L2, where it is

sufficient to consider only the linear approximation to the equations of motion, there

exist two families of periodic orbits; the horizonal Lyapunov orbits, which are in the

ecliptic plane, and the horizontally symmetric figure-eight-shaped vertical Lyapunov

orbits. As the energy is increased, and nonlinear terms become important, the linear

phase space is broken and a new periodic family, Halo orbits, bifurcates from the

horizontal Lyapunov orbit family. These orbits are three-dimensional and asymmetric

about the ecliptic plane.

In this section, I explain how the numerical tools of the previous section can be

used to obtain and analyze all the periodic orbits in the vicinity of L2. These three

46



periodic orbits, namely, horizontal Lyapunov, vertical Lyapunov, and Halo orbits, are

studied in the following subsections.

First, the orbit finding problem is converted to the canonical form for the imple-

mentation of the collocation algorithm. Rewriting the CRTBP ODE given as equation

2.9 in the first-order form, with the state vector x = {x, y, z, ẋ, ẏ, ż}, we obtain

ẋ = f(x) =



ẋ

ẏ

ż

2ẏ + ∂Ū
∂x

−2ẋ+ ∂Ū
∂y

∂Ū
∂z


. (3.22)

Although we have approximations for the periods of the periodic orbits, we do not

know the exact period. For the collocation algorithm to work, we need to explicitly

define the time boundaries for the BVP. However, in our case, the time interval is

[0, T ], where the end time, T , for the BVP is an unknown parameter. To overcome

this problem, I redefine the system on the fixed time interval [0, 1] by rewriting the

equation in terms of a new time variable

τ =
t

T
. (3.23)

Introducing T as a new state variable, the extended differential equation becomes

dx

dτ
= T · f(x)

dT

dτ
= 0 . (3.24)

The collocation algorithm is used on this modified system.
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After finding the periodic orbit, the stability analysis is conducted. The Jaco-

bian of the differential equation that is used in equation 3.18 to integrate the state

transformation, Φ, and find Monodromy matrix, M , is

Df =

 0 I

Ū∗
xx 2Ω

 , (3.25)

where 0 is the 3×3 zero matrix, I is the 3×3 identity matrix, Ū∗
xx is the matrix of

symmetric second partial derivatives of U with respect to x, y and z,

Ū∗
xx =


Ūxx Ūxy Ūxz

Ūyx Ūyy Ūyz

Ūzx Ūzy Ūzz

 , (3.26)

and Ω is

Ω =


0 1 0

−1 0 0

0 0 0

 . (3.27)

Now we define a new 42-dimensional augmented state vector consisting of the 6-

dimensional state vector and the 36-dimensional state transition matrix: xaug =

[x; Φ(:)]. Integrating the augmented state vector, M = Φ(T ) is obtained.

Before going into the details of each orbit calculation, I would like to point out

some of the properties of the eigenvalues of the monodromy matrix of the periodic

orbits of the CRTBP. Since this is a map, an eigenvalue of +1 indicates a stationary

mode, and an eigenvalue of modulus one indicates a rotational mode. An eigenvalue

of modulus greater than +1 indicates the exponentially growing mode and a modulus

less than one indicates an exponentially decaying mode. As the direction along the
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periodic orbit will always come back to the same point on the map, M always has

+1 as an eigenvalue, with the corresponding eigenvector tangent to the periodic orbit

direction at x0. Since the CRTBP is an autonomous Hamiltonian system, it has an

energy integral, the Jacobi Constant, which means that the periodic orbits come in

families. Thus, there will be another stationary mode and another +1 eigenvalue of

M, which is in the direction of the periodic orbit family, and the eigenvalue +1 has

an algebraic multiplicity of at least two. Moreover, M is symplectic for autonomous

Hamiltonian systems. Hence, if λ is an eigenvalue of M , then λ−1, λ̄ (conjugate of

λ), and λ̄−1 are also eigenvalues of M , with the same multiplicity. To sum up, at

least two of the eigenvalues of M will be +1 and the other four will have to be such

that the conjugate and the inverse of these eigenvalues have to be eigenvalues as well.

These properties are useful for the stability analysis of the CRTBP orbits.

3.2.1 Horizontal Lyapunov Orbits

Figure 3.1: Horizontal Lyapunov periodic orbit around L2 libration point
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The first type of periodic orbits are the horizontal Lyapunov orbits, which are con-

strained to the x-y plane. As a result, z = ż = 0 throughout the trajectory. In

addition, the CRTBP dynamical system, which was defined in equation 3.22, is in-

variant under the transformation

{x(t), y(t), z(t)} ⇒ {x(−t),−y(−t), z(−t)} . (3.28)

Due to this invariance, the solution of the horizontal Lyapunov orbits will be sym-

metric with respect to the y plane and will cross the y plane perpendicularly [37].

Thus, at y(0) = 0, the periodic horizontal Lyapunov orbit has to satisfy

y(0) = 0, z(0) = 0, ẋ(0) = 0, ż(0) = 0 . (3.29)

These constraints simplify the problem such that for a given x(0) = x0, we only need

to find ẏ(0) to specify a horizontal Lyapunov orbit. When choosing the boundary

condition, we need to be careful to avoid the degenerate solution, where x(0) = x(1)

with T = 0. However, the degenerate solution becomes infeasible if we set ẏ(0) to a

constant value, ẏ0, as the initial condition, instead of setting x(0) = x0. The constant

ẏ0 is the orbit size parameter. Changing this parameter enables us to find periodic

orbits with different sizes and energies. Keeping these considerations in mind, I set
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the boundary value problem as follows:

x(0) = x(1),

y(0) = y(1) = 0,

z(0) = z(1) = 0,

ẋ(0) = ẋ(1) = 0,

ẏ(0) = ẏ(1) = ẏ0,

ż(0) = ż(1) = 0 . (3.30)

I then solve the BVP with the differential equation 3.24 and the boundary condition

equation 3.30, using the initial estimate from equation 2.45. Figure 3.1 shows a typical

horizontal Lyapunov periodic orbit around the Sun-Earth L2 point, which is found

with this method. By varying the ẏ0 parameter, periodic orbits on different energy

levels are solved using collocation. The full horizontal Lyapunov family is obtained

as shown in figure 3.2.

0.98 0.99 1 1.01 1.02 1.03
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

X(AU)

Y
(A

U
)

Figure 3.2: Horizontal Lyapunov Family around L2
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The stability of these orbits is studied via their monodromy matrices. This four-

dimensional in-plane system has four eigenvalues. Two eigenvalues are equal to +1.

These correspond to the neutral directions, namely, the tangent direction to the

periodic orbit, and the variation in the energy level sets. The two positive eigenvalues,

λ and 1/λ, where λ is a very large parameter on the order of 103, correspond to the

unstable and stable modes, respectively. λ decreases as the size of the orbit increases.

3.2.2 Vertical Lyapunov Orbits

Figure 3.3: Vertical Lyapunov periodic orbit around L2 libration point

The second type of periodic orbit around L2 is the vertical Lyapunov orbit, where the

vertical motion dominates, even though the trajectory has components in all three

dimensions. These orbits are symmetric with respect to the z plane, and their shape

resembles the figure eight, crossing the z plane at a single point. As discussed in the

previous section, the solution of the vertical Lyapunov orbits will be symmetric with

respect to the y plane and thus will cross the y plane perpendicularly. This partitions
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the vertical Lyapunov orbit into four symmetric parts. Instead of obtaining the

whole orbit, it is thus sufficient to find one of the symmetric parts, and this reduces

the computation time. As the orbit crosses the y plane at time zero, the periodic

vertical Lyapunov orbit has to satisfy

y(0) = 0, ẋ(0) = 0, ż(0) = 0 . (3.31)

At t = 1/4, the orbit crosses the y and z planes

y(1/4) = 0, z(1/4) = 0, ẋ(1/4) = 0 . (3.32)

As before, to avoid the degenerate solution, where x(0) = x(1/4) with T = 0, I specify

an initial condition that makes the degeneracy infeasible. I choose ż(1/4) = ż1/4 as

the orbit size parameter.

y(0) = y(1/4) = 0,

ẋ(0) = ẋ(1/4) = 0,

ż(0) = 0,

z(1/4) = 0,

ż(1/4) = ż1/4 . (3.33)

I solve the BVP with differential equation 3.24 and the boundary condition equation

3.33, using the initial guess from equation 2.45. Figure 3.3 shows a typical vertical

Lyapunov periodic orbit around L2 found by using this method. By varying the ż1/4

parameter, periodic orbits on different energy levels are solved using collocation and

the full vertical Lyapunov family is obtained as shown in figure 3.4.
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Figure 3.4: Vertical Lyapunov Family around L2

The stability of these orbits is studied via their six-dimensional monodromy ma-

trices. This six-dimensional system has six eigenvalues, two of which are equal to

+1. These correspond to the neutral directions, namely, the tangent direction to the

periodic orbit and the variation in the energy level sets. The two positive eigenvalues,

λ and 1/λ, where λ is a very large parameter on the order of 103, correspond to the

unstable and stable modes, respectively. λ decreases as the size of the orbit increases.

In addition, there is an eigenvalue couple, cos(σ) ± isin(σ) with modulus 1, which

corresponds to the periodic mode. As the size of the orbit increases, the σ value

increases from zero moving the eigenvalues on the unit circle.
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3.2.3 Halo Orbits

Figure 3.5: Halo periodic orbit around L2 libration point.

The third type of periodic orbit is the Halo orbit. These three-dimensional orbits are

described analytically in detail in section 2.5. As before, the solution of the Halo orbits

will be symmetric with respect to the y plane and cross the y plane perpendicularly,

partitioning the Halo orbit into two symmetric parts. It is thus sufficient to obtain

one of the symmetric parts, rather than having to find the whole orbit. This reduces

the computation time. As the orbit crosses the y plane at time zero, the halo orbit

has to satisfy

y(0) = 0, ẋ(0) = 0, ż(0) = 0 . (3.34)

As before, to avoid the degenerate solution where x(0) = x(1/2) with T = 0, I specify

an initial condition that makes the degeneracy infeasible. I choose ẏ(0) = ẏ0 as the

orbit size parameter. Changing this parameter enables us to find periodic orbits with
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different energy levels. So, I set the boundary value problem as follows:

y(0) = y(1/2) = 0,

ẋ(0) = ẋ(1/2) = 0,

ẏ(0) = ẏ0,

ż(0) = ż(1/2) = 0 . (3.35)

I solve the BVP with differential equation 3.24 and the boundary condition equa-

tion 3.35, using the initial estimate from equation 2.52. Figure 3.5 shows a typical

northern Halo periodic orbit around L2 that was found with this method. By varying

the ẏ0 parameter, periodic orbits on different energy levels are solved using collo-

cation, and the full northern Halo family is obtained, as shown in figure 3.6. The

CRTBP dynamical system, which is defined in equation 3.22, is invariant under the

transformation

{x(t), y(t), z(t)} ⇒ {x(t), y(t),−z(t)} . (3.36)

Due to this invariance,there is a mirror symmetry across the z = 0 plane. Therefore,

there is also a southern Halo orbit family which is the mirror copy of the northern

family with respect to the z plane (not shown on figure 3.6).
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Figure 3.6: Northern Halo orbit family around L2 libration point

The stability of these orbits is studied via their six-dimensional monodromy ma-

trices. This six-dimensional system has six eigenvalues. Two eigenvalues are equal

to +1, and correspond to the neutral directions, namely, the tangent direction to the

periodic orbit and the variation in the energy level sets. The two positive eigenvalues,

λ and 1/λ, where λ is a very large parameter on the order of 103, correspond to the

unstable and stable modes, respectively. λ decreases as the size of the orbit increases.

In addition, there is an eigenvalue couple, cos(σ) ± isin(σ) with modulus 1, which

corresponds to the periodic mode. As the size of the orbit increases, the σ value

increases from zero moving the eigenvalues on the unit circle. For a more detailed

bifurcation analysis of the halo orbits, please see [45].
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Chapter 4

Multiple Poincaré Sections Method

for Finding the Quasi-Halo and

Lissajous Orbits
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There are three main challenges associated with finding quasi-periodic orbits. The

first is to minimize the time it takes to program the software that numerically solves

for the orbits. This reduces the threshold for researchers who work on trajectory

design. The second is to achieve reasonable execution times, allowing results to be

obtained quickly and “on the go”. The third is to improve the robustness of the

method in order to map the very large regions of attraction that are needed to obtain

the full families of quasi-periodic orbits.

Symbolic methods such as the Lindstedt-Poincaré method by Gómez et al. [46]

and the reduction to the center manifold by Jorba et al. [36, 47], which depend

on series expansions, are very slow because an exponential increase in the number of

coefficients is needed for every additional increase in the order of expansion. The speed

problem can be overcome to a great extent by programming a symbolic manipulator

for the problem of interest, but this leads to a significant increase in programming

time. More importantly, some of these techniques have instability problems near

resonances.

This led to the consideration of fully numeric methods. However, instead of taking

a mesh on the whole surface, which requires many points and is thus memory and

CPU intensive, I considered only a section on the torus containing the quasi-periodic

trajectories, thus representing the full torus by only points on this section. This is

an invariant circle. These points on the invariant circle must be integrated for one

period at each iteration step. The initial errors in the estimation of the section increase

exponentially with the highest Lyapunov exponent as the integration time increases.

This is of great concern, especially for the CRTBP L2 case where the Lyapunov

exponent is more than 103. The effect is more dramatic near resonant and chaotic

regions. To overcome this problem, I reduce the integration times by taking multiple

sections on the torus, integrating only between the consecutive Poincaré sections. The

methodology is parallel to the multiple shooting method used in two-point boundary
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value problems [48].

This chapter consist of four sections. In the first section, I explain the main

idea of the procedure without going into details of the numerical implementation.

Here, I first introduce the methodology by explaining the procedure for a single

Poincaré section. The results are then extended to multiple Poincaré sections. I

discuss different implementations using various Poincaré surfaces. A continuation

method to find the full family of quasi-periodic orbits is introduced.

In the second section, numerical details for obtaining the real quasi-periodic orbits

around L2 are explained.

The third section presents the results section, where I give the solutions for the

quasi-periodic orbits around L2 of the CRTBP, the Lissajous and the Quasi-Halo

orbits, and show the full periodic family and compare the results with the literature.

In the last section, I explain and apply the numerical method to ”transfer” these

orbits from the CRTBP model to the real ephemeris model of the Solar System.

This chapter is based on previous work by Kolemen and Kasdin [49].

4.1 Procedure

4.1.1 Finding Invariant Tori via a Single Poincaré Section

For the occulter-based telescopy mission under study, the main quasi-periodic orbits

of interest are the Quasi-Halos which lie on two-dimensional invariant manifold. As

discussed in the introductory section, the multiple Poincaré section procedure aims

to reduce the problem of finding the two-dimensional invariant manifold of the full

ordinary differential equation to finding the invariant circles, i.e., the one-dimensional

invariant manifold of the Poincaré map. These invariant circles compactly define the

full two-dimensional manifold.

The first step in the single Poincaré section procedure is to find a convenient
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Poincaré section. This can be a section in any of the 6-dimensional phase-space

coordinates including the position and/or the velocity elements of the state. Figure

4.1 shows the projection to the position space of a torus and its intersection with a

Poincaré section.

When choosing the plane of the section, the main concern is to ensure that the

velocity vector of the quasi-periodic orbit is as transverse to the surface of section,

Σ, as possible. This reduces the possibility that the integrated points will not return

to the Poincaré section. Thus, a good candidate for the Poincaré section is the plane

perpendicular to the velocity of the Halo orbit section. For the specific case of the

CRTBP, another suitable plane-of-section is the ecliptic plane, since the type of quasi-

periodic orbits of interest by their nature transversely cross this plane. I used both

types of Poincaré sections for the results in this dissertation.

Figure 4.1: Converting the search for a torus problem of a differential equation to the
search of the circle of a map

I expand the invariant circle, γ, in a truncated Fourier series with the expansion

parameter θ ∈ [0, 2π), the angle parameter on the invariant circle,

γ(θ) =
a0√
2

+
nmax∑
n=1

[an cos(nθ) + bn sin(nθ)] , (4.1)
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where nmax is the truncation order of the Fourier series expansion.

Here, the choice of the angle parameter, θ, is problem-dependent. In the case

where the Poincaré section is taken on the ecliptic plane, i.e., z = 0, an intuitive

angle parameter is θ = atan( y−yhalo

x−xhalo
). It is important to note that the system must

be parameterized such that every point on the invariant circle is uniquely defined by

one value of the parameter, γ(θi). For invariant circles with complex shapes, other

parameters, such as the ratio of the arc length between a specific point on the circle

and the full arc length of the closed orbit [50], should be used to ensure uniqueness.

For the CRTBP, however, this simple parameter gives satisfactory results.

I then take N points on the invariant circle by choosing a set of angle variables in

the interval [0, 2π),

θ0(i) =
2πi

N
i = 0, 1, . . . , N − 2, N − 1 . (4.2)

Every element of the angle vector, θ0(i), corresponds to a six-dimensional coordinate

vector, xi, on the phase space. Concatenating these coordinate vectors, a 6 × N -

dimensional coordinate vector, X0, is obtained, which can be expressed as:

X0 =
a0√
2

+
nmax∑
n=1

[an cos(nθ0) + bn sin(nθ0)] . (4.3)

Since this is a linear transformation, it can be expressed as a matrix multiplication:

X0 = Aθ0Q , (4.4)

where Q is the truncated Fourier coefficients vector and Aθ is the discrete Fourier ma-

trix that takes Fourier coefficients to coordinate variables. I map these points, P(X0),

by integrating the equations of motion until they intersect the Poincaré section:
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Figure 4.2: Schematic illustration of the numerical procedure for finding the invariant
torus

Xτ = P(X0) = φ(τ(X0),X0) . (4.5)

Here, τ(X0) is the time it takes for a given set of points, X0, to reach to the Poincaré

section, Σ. Recall also that the notation φ(t, x0) is used for the flow of the ODE from

a given initial condition, x0, for the specified time, t. The first variations of these

equations are integrated along with X0 for later use in the iteration process.

If all the mapped points, Xτ , fall exactly on the guessed invariant circle, this means

that the initial guess for the invariant circle is indeed correct. Using this intuition, it

is possible to set up a numerical scheme in order to find the correct parameterization

of the quasi-periodic orbit. The schematic illustration of this numerical scheme is

shown in figure 4.2, where the error vector to be minimized, i.e., F (Q), is expressed.

Thus, finding the quasi-periodic orbit is equivalent to finding the Fourier coefficient

vector, Q, which minimizes the distance between the mapped points Xτ and the
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invariant circle. This condition can be written in mathematical terms as:

F (Q) = Xτ − AθXτ
Q = 0 . (4.6)

Here, θXτ is the projection of the mapped points onto the invariant circle, which is

described in detail in section 4.2.3, and AθXτ
is the Fourier coefficient matrix, which

has the same structure as Aθ0 , but uses the projected angle elements instead of the

original ones.

One advantage of this formulation is that a Newton iteration can be used, which

has the potential to lead to quadratically convergent solutions. In Newton’s iteration,

an initial guess Q0 is iterated according to

DF(Qj) (Qj+1 −Qj) = −F (Qj) (4.7)

until a satisfactory answer is reached. Here, the superscript defines the value of Q at

a given iteration step. To find an explicit form for this equation, all its variables are

expanded in terms of Q. F then becomes:

F (Q) = Xτ −Xθφ(τ,X0)

= φ(τ, Aθ0 Q)− Aθφ(τ,Aθ0
Q)

Q .

(4.8)

I then take the derivative with respect to Q:

DF(Q) = dXτ

dX0

dX0

dQ
− dX

dθφ

dθφ

dXτ

dXτ

dX0

dX0

dQ

= DP Aθ0 − (DAθφ(τ,Aθ0
Q)

Q)
dθφ

dXτ
DP Aθ0 ,

(4.9)

where DP is the differential of the Poincaré map that is obtained from the first
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Figure 4.3: Iteration procedure in steps

variation of the map that was integrated with X. Employing Newton’s iteration,

solutions converge usually within 3-4 iterations. An example of an iteration procedure

is shown in figure 4.3. Here, the sample points are shown as crosses and the return

maps are represented by circles. After four iterations, all the sample points and the

return maps are aligned on the same invariant circle.

4.1.2 Extension to Multiple Poincaré Sections

In order to overcome the potential instability that results from the long integration

times, the invariant torus is cut by several Poincaré sections, as mentioned before.

Figure 4.4 shows the invariant circles which are obtained when the tori of interest

are cut with multiple sections. As a result, all the invariant circles in figure 4.4 are
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determined, instead of only a single one, as was the case in the previous section.

Figure 4.4: Multiple Poincaré Section Procedure: Invariant circles obtained by sec-
tioning the invariant tori

The numerical procedure is similar to the single Poincaré section method. This

time, the sample points are integrated until they hit the next Poincaré section, rather

than being integrated for the whole period. For all these invariant circles to lie on the

same invariant torus, all the mapped points must be aligned with the invariant circles

of the next Poincaré section. The closure of the mathematical problem is obtained

by requiring that the sample points from the last Poincaré section map to the first

invariant circle. Mathematically, the invariance condition for the invariant circles can

be expressed in the same form as in the single Poincaré section case by letting Q,

the vector containing the Fourier coefficients, be the concatenation of qi, the Fourier

coefficients of each of the invariant circles,

Q = [q1; q2; . . . ; qNp−1; qNp ] , (4.10)

where Np is the number of Poincaré sections.

Thus, the invariance condition for all the invariant circles parameterized by qi to
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be on the same torus is

F (Q) = F



q1

q2

...

qNp−1

qNp


=



φ(τ, Aθ0 q1)

φ(τ, Aθ0 q2)

...

φ(τ, Aθ0 qNp−1)

φ(τ, Aθ0 qNp)


−



Aθφ(τ,Aθ0
q1)

q2

Aθφ(τ,Aθ0
q2)

q3

...

Aθφ(τ,Aθ0
qNp−1)

qNp

Aθφ(τ,Aθ0
qNp

)
q1


= 0.(4.11)

Finally, as before, we apply Newton’s iteration to the root finding problem:

DF(Qj) (Qj+1 −Qj) = −F (Qj). (4.12)

4.1.3 Different Implementations

The quasi-periodic orbits reside in six-dimensional phase space, which has a four-

dimensional center manifold (periodic subspace). Each quasi-periodic orbit is of di-

mension two. Thus, two properties of a given quasi-periodic orbit must be specified

in order to uniquely define it. Many different parameters can be used to specify a

quasi-periodic orbit; among these, the most intuitive and relevant for mission design

are the Hamiltonian (or the Jacobi constant) of the orbit, the period of the orbit, and

the size of the orbit. Since prescribing the period also prescribes the Hamiltonian

and vice versa, two implementations where the period or the Hamiltonian is preset

are considered in this section.

When the Hamiltonian is used to specify a quasi-periodic orbit, another constraint

is needed in order to define the properties of the orbit of interest. I chose to specify

the size of the orbit as the second variable. This is a relevant parameter since the

distance between the telescope and the occulter is set by the size of the Quasi-Halo

orbit. Since the numerical method is based on Poincaré sections, size can be specified

by the two-dimensional area, A, which is enclosed by the invariant circle. Then, the
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constraint vector is augmented to include the new constraints:

F = [F ; Hfixed − HQ ; Afixed − AQ]. (4.13)

Another implementation is to set the period of the quasi-periodic orbit to a con-

stant. Quasi-Halo orbits have two periods; one around the Halo orbit and the other

along the Halo orbit. The period along the Halo orbit is very important for space

missions that require all spacecraft to stay close to one another at all times. An

uncontrolled mismatch in this period would lead to a separation on the order of the

size of the Halo orbit, which is unacceptable. However, this period for a numerically

computed two-dimensional structure is vague, unlike the one-dimensional case. I de-

fine this period of the Quasi-Halo to be the average time it takes for all the sample

points starting from the initial Poincaré section to return back to it. That is, the

period is

T =
1

n

n∑
i=1

τ(xi) . (4.14)

Here, n is the total number of sample points taken on the Poincaré section. This

way, the period of the quasi-periodic orbit can be specified along with the integration

direction for the return map. In this case, there is one more degree of freedom to

specify a unique orbit. Choosing the Hamiltonian as a constraint is not an option, as

discussed before. Thus, I specify the size of the orbit by choosing the area parameter:

the two-dimensional area, A, which is enclosed by the invariant circle. This can be

done by augmenting the error vector with a new constraint, such as the projected size

along one direction:

F = [F ; Tfixed − TQ ; Afixed − AQ ]. (4.15)
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4.1.4 Continuation Procedure

Figure 4.5: A schematic illustration of continuation in the area variable

Once the Fourier coefficients for a given orbit have been obtained, it is important

to extend these results to find the complete quasi-periodic family. This procedure is

called continuation, in which the previous solutions for quasi-periodic orbits in a given

family are used to extrapolate another member of the family along a continuation

parameter. Ultimately, the full quasi-periodic family is obtained.

In this study, I used the area variable, A, as the continuation parameter. In figure

4.5, a schematic illustration of continuation in the area variable is shown. The inner

orbits in the figure have a smaller area. The arrow indicates the direction of the

continuation. Given a set of blue orbits that have already been found in a Quasi-Halo

family, the aim of the continuation is to find the Quasi-Halo that is shown in red, in

order to extend the results.

While there is no intuitive way to continue the coordinate variables, {x, y, z, ẋ, ẏ, ż},

the continuation of the Fourier coefficients is straight-forward, since they vary in-

crementally between sufficiently close quasi-periodic family members. A low-order

polynomial fit is thus sufficient for continuing these parameters. Even a very simple

linear continuation in the area variable, A, gives satisfactory results:

Q0
k+1 = Qk +

Ak+1 − Ak

Ak − Ak−1

(Qk −Qk−1). (4.16)
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Here, as before, the superscript of Q defines the Newton’s iteration step, while the

subscript defines the continuation step.

Once the initial guess for Q0
k+1 is obtained, the multiple Poincaré section method

is applied on this guess to get the correct Qk+1. Then, the continuation is repeated

to find Qk+2.

4.2 Numerical Application for the Quasi-Periodic

Orbits Around the L2 Region of the CRTBP

In this section, I show the numerical computation in implementation order. The

details of the computations are discussed in the sections that follow.

1. Compute the initial guess Q0
0.

2. Compute X0.

X0 = Aθ0 Qj
k (4.17)

3. Compute Poincaré map for each Σi.

Xτ = P (X0) (4.18)

4. Compute θXτ .

θXτ = arctan(Xτ (2)
Xτ (1)

) for Lissajous orbits

θXτ = arctan(Xτ (6)
Xτ (5)

) for Quasi-Halo orbits
(4.19)
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5. Compute the error.

F
(
Qi

k

)
= Xτ − AθXτ

Qj
k

(4.20)

6. Compute the Jacobian of the error.

DF(Qj
k) = DP Aθ0 − (DAθXτ

Qj
k)

dθφ

dXτ
DP Aθ0

(4.21)

7. Augment the error vector and the Jacobian.

F = [F ; Afixed − AQ ; . . .] ,

DF = [DF ; DA ; . . .] (4.22)

8. Perform Newton’s iteration.

DF(Qj
k) (Qj+1

k −Qj
k) = −F (Qj

k) (4.23)

9. Decision step:

Decision:


Qk = Qj+1

k and go to 10 if |F (Qj
k)| < ε,

Go to 2 if j < jmax and |F (Qj
k)| > ε

Redo 10 otherwise.

10. Continuation: Extrapolate an initial guess for Q0
k+1 from previous Fourier ele-

ments {Q0, . . . ,Qk} and continuation variables {A0, . . . ,Ak}

Q0
k+1 = polyfunc(Ak+1) . (4.24)
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Stop the numerical implementation if the full quasi-periodic family is obtained.

Otherwise, go to 2.

4.2.1 Initial estimate for Q

Let us consider the monodromy matrix, M , which was discussed in the last chapter,

as a linear map from the initial variations around the periodic orbit at time 0 to

variation after one period T ,

M := δx0 → δxT . (4.25)

Recall that the monodromy matrices for vertical Lyapunov and Halo orbits each have

an eigenvalue couple, cosσ ± isinσ with modulus 1 and corresponding eigenvector

v1 ± iv2. By the definition of eigenvalue and eigenvector,

M (v1 + iv2) = (cosσ + isinσ) (v1 + iv2)

= cosσ v1 − isinσ v2 + i(sinσ v1 + cosσ v2) , (4.26)

M (v1 − iv2) = (cosσ − isinσ) (v1 − iv2)

= cosσ v1 − isinσ v2 − i(sinσ v1 + cosσ v2) . (4.27)

Using these properties, it is possible to find the invariant circle of the map M . Let

us consider a closed curve, ϕ, of this map, parameterized with θ = [0, 2π],

ϕ(θ) = κ(cosθv1 − sinθv2) . (4.28)
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Using trigonometric manipulation, it can now be shown that the monodromy matrix

maps this closed curve onto itself:

ϕ(θ)
M→ M κ(cosθ v1 − sinθ v2)

= κ(cos(θ + ρ) v1 − sin(θ + ρ) v2)

= ϕ(θ + ρ) . (4.29)

Thus, ϕ(θ) is a periodic orbit of this map (which should not be confused with the

invariant circle of the Poincaré section) with κmagnitude. It is a linear approximation

to the relative distance from the quasi-periodic orbit to the periodic orbit. In the

numerical scheme, I used the linear approximation with small κ as the starting point

for the multiple Poincaré scheme. κ values of order 10−6 have been sufficiently small

to give reasonable startup approximations. (Please recall that, in the normalized

units, 1 is the distance between Sun and Earth).

ϕ(θ) is a periodic orbit of the monodromy map. I first chose a high number,

NM = 100, of parametrization variables,

θM(i) =
2πi

NM

i = 0, 1, . . . , Nm − 2, Nm − 1 , (4.30)

and obtained the corresponding NM points on the closed curve:

XM = ϕ(θM) . (4.31)

For the multiple Poincaré algorithm, an initial estimate is needed for the periodic

orbit on the Poincaré map. To this aim, I integrated XM and found their intersection

with the Poincaré sections of interest. The methods I employed are the subject of the

two chapter sections that follow.

The initial estimate for the Fourier elements, Q0
0, was obtained by using fast
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Fourier transform (fft) on the intersecting points. It is important to note that this

is the only time that a Fourier transform is employed in the algorithm. Once Q0
0

is obtained, all the transformations, including the continuation step, take Q → X.

For ease of programming, I chose to use real valued Fourier coefficients rather than

imaginary ones. Below, a pseudo-code shows how to obtain the Fourier coefficients:

input: X

N= length(X);

y = fft(X);

Q(1) = 1/sqrt(2)/N*real(y(1));

for { i=2:i_max

Q(2*(i-1))= 2/N*real(y(i));

Q(2*(i-1)+1)= -2/N*imaginary(y(i));}

output: Q

where i max was chosen to be 20. I would like to note that, due to sin(0)=0, the

imaginary part of y(1) is always 0.

4.2.2 Choosing the Poincaré Section Surfaces

When choosing the planes of the section, the main concern is to ensure that the

velocity vector of the quasi-periodic orbit is as transverse to the surface of section, Σ,

as possible. This reduces the possibility of the integrated points not returning to the

Poincaré section.

For the Lissajous orbits, I restrict the Poincaré sections to be on one side of the

z = 0 plane because of the mirror symmetry of the CRTBP with respect to the z

plane, which was discussed in the previous chapters. For the single Poincaré section

method, I used a section on the z = 0 plane. When extending this to multiple

Poincaré sections, an intuitive choice was to use sections parallel to this z = 0. Thus,
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I chose four sections over the half period (equivalent to seven sections over the full

period). Two of these are z = 0 and the other two are z = zfixed, one section as the

trajectories cross these sections in one direction and another while they cross in the

other direction:

0 = gi(x) = zfixedi
− zqh(τi) . (4.32)

I chose zfixed to be half of the maximum displacement in the z-direction to ensure

that all the trajectories are transversal.

For Quasi-Halos, sections that are parallel to one another cannot be considered,

since the torus twists in space. A good candidate for the Poincaré section surface,

g(x), is the plane perpendicular to the velocity of the halo orbit section:

0 = gi(x) = [xh(ti)− xqh(τi)]ẋh + [yh(ti)− yqh(τi)]ẏh + [zh(ti)− zqh(τi)]żh ,(4.33)

where subscript h stands for the Halo orbit and subscript qh stands for the Quasi-Halo

orbit.

Along the Quasi-Halo, ten of these sections, gi=0...9, are taken with equal separation

in time, i.e., ti = i
9T

, where i = 0, . . . , 9. Figure 4.6 shows the multiple Poincaré

sections on a sample Quasi-Halo orbit. Then, the Fourier coefficients that correspond

to all the sections along the trajectory are continued, giving initial conditions to the

next Quasi-Halo.

4.2.3 Choosing θ and computing its derivative dθXτ

dXτ

I choose the Poincaré sections to be along the coordinate variables of the state. Thus,

an intuitive choice for θ would be to pick it as the angle between the coordinate

variables of the invariant circles. Since all the sections, gi(x) = zfixedi
− zqh(τi), for

the Lissajous case are parallel to one another, it is feasible to choose θ as the angle
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Figure 4.6: Multiple Poincaré section selection on the Quasi-Halo orbit

between the coordinate variables θ = arctan(y/x). A single form of parametrization,

θ = arctan(y/x), defines the cross sections on all the Poincaré sections uniquely, and

this is therefore the parametrization that I use.

A major advantage of such a parametrization is the reduction in size of Q. Since

z is constant on the Poincaré section, the Fourier coefficient is not needed for this

vector. In addition, an explicit interdependence of x and y makes it feasible to use

one Fourier element vector to define both these states. Thus, instead of using six sets

of Fourier element vectors to define six states, it can be reduced to four sets. The

reduced Fourier series vector is

Q =

[
QR ; Qẋ ; Qẏ ; Qż

]
, (4.34)

where R =
√
x2 + y2 and QR, Qẋ, Qẏ, Qż are the Fourier series coefficients of the

R, ẋ, ẏ, ż, variables of the invariant circle, respectively.

Unlike in the Lissajous case, the Poincaré sections given in equation 4.33 are not

parallel in the case of the quasi-halo orbits. The choice of θ as the angle along the

coordinate variables leads to different parameterizations for each of the sections. In
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order to reduce the extra complication that this would entail, I opted for a simpler

parametrization that works for all the sections at the same time, as in the Lissajous

case. Figure 4.7 shows the projection of the invariant circle on different axes of all

the closed orbits on the Poincaré sections. Looking at this figure, it is apparent that

parametrization θ = arctan(ż/ẏ) works for all the sections. As with the Lissajous

case, a major advantage of such a parametrization is the reduction in size of Q. The

reduced Fourier series vector for a quasi-halo is thus

Q =

[
Qx ; Qy ; Qz ; Qẋ ; QR

]
, (4.35)

where R =
√
ẏ2 + ż2 and Qx, Qy, Qz, Qẋ, QR are the Fourier series coefficients of

the x, y, z, ẋ, R variables of the invariant circle, respectively.
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Figure 4.7: The relative distance from the invariant circle is projected on different

axes for a sample orbit. The upper three sub-plots show the projection on the position

space, while the lower ones show the projection on the velocity space. The sub-plot

on the lower right corner, which is the Vy (i.e. ẏ) versus Vz (i.e. ż), is highlighted in

red.
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Finally, employing the chain rule, the derivative of θ with respect to Xτ can be

obtained as

dθXτ

dXτ

= [− y

x2 + y2
,

x

x2 + y2
0, 0, 0, 0, ] for Lissajous

dθXτ

dXτ

= [ 0, 0, 0, 0, − ż

ẏ2 + ż2
,

ẏ

ẏ2 + ż2
] for Quasi-Halo .

4.2.4 Computing Aθ and DA

Recall that the invariant circle, γ, on the Poincaré section was defined via a finite

Fourier series:

γ(θ) =
a0√
2

+
nmax∑
n=1

[an cos(nθ) + bn sin(nθ)] , (4.36)

with θ on the interval [0, 2π). and Aθ as the transformation from the Fourier elements

to the state vector.

In this section, I explain how to obtain this matrix and its derivative. The Fourier

coefficients vector, Q, for Lissajous and Quasi-Halo orbits was defined in equations

4.34 and 4.35. The state vector, X, can then be obtained by multiplying Q with the

following Aθ:

Aθ =



Asection1 0 · · · 0 0

0 Asection2 · · · 0 0

...
...

. . . 0 0

0 0 0 AsectionNsec−1
0

0 0 0 0 AsectionNsec


. (4.37)

In the above equation, the maximum number of sections, Nsec, is four for Lissajous
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orbits and ten for Quasi-Halo orbits, and

Asectioni
=



A1

A2

...

ANnpoints−1

ANnpoints


, (4.38)

where Nnpoints = 40 is the number of points on each Poincaré section. Ai for Lissajous

orbits is given by

Ai =



cos(θi)cs(θi) 0 0 0

sin(θi)cs(θi) 0 0 0

0 0 0 0

0 cs(θi) 0 0

0 0 cs(θi) 0

0 0 0 cs(θi)


. (4.39)

Note that the constant value of zfixed has to be added to Aθ Q later on. For the

Quasi-Halo orbits, Ai is given by

Ai =



cs(θi) 0 0 0 0

0 cs(θi) 0 0 0

0 0 cs(θi) 0 0

0 0 0 cs(θi) 0

0 0 0 0 cos(θi)cs(θi)

0 0 0 0 sin(θi)cs(θi)


, (4.40)
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where cs(θi) is the vector

cs(θi) =

{
1
2

cos(θi) sin(θi) cos(2θi) sin(2θi) · · · cos(N0θi) sin(N0θi)

}
.(4.41)

In the equation above, N0 = 20 is the maximum number of Fourier elements to

be used in the system. DA = dAθ

dθ
can be obtained in a similar fashion. To save

space, I do not include the explicit form of DA. It can be obtained via term-by-term

differentiation of Aθ.

4.2.5 Augmenting the error vector F and its derivative DF

One of the main advantages of this algorithm is the ease with which constraints can

be added. For example, in order to fix the value of the Hamiltonian (i.e. the Jacobi

constant), equation 4.13 is used to augment the error vector, where Hfixed is set to

the Hamiltonian of the base Halo or the vertical Lyapunov orbit. The equation to

obtain the Hamiltonian is listed in 2.14.

Figure 4.8: Polar coordinates integration region [51].

As for the determination of the area variable, A, use of the Fourier coefficients is

of great help. If R denotes the region enclosed by a curve r(θ), as shown in figure
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4.8, and the rays θ = a and θ = b, where 0 < b− a 6 2π, the area of R is

A =
1

2

∫ b

a

r(θ)2 dθ. (4.42)

Substituting the Fourier expansion in equation 4.36 for r(θ), and noting that a = 0

and b = 2π and r(0) = r(2π), the well-known Parseval Theorem [52] states that the

area integral becomes

A =
π

2
< QR,QR > , (4.43)

where < . , . > is the usual dot product.

For the fixed period case, the augmentation given in equation 4.15 is used to

obtain the error vector, where Tfixed is set to the period of the base Halo or the

vertical Lyapunov orbit. The period of quasi-periodic orbit, T , is obtained from

equation 4.14.

As for the derivative terms, the derivative of the Hamiltonian is

DH = DHdx DP Aθ0 , (4.44)

where

DHdx =



2x+ −2µ(−1+µ+x)

(−1+µ+x)2+y2+z2)3/2 − 2(1−µ)(µ+x)

(µ+x)2+y2+z2)3/2

2y + −2µy
(−1+µ+x)2+y2+z2)−3/2 − 2(1−µ)y

(µ+x)2+y2+z2)−3/2

−2µz
(−1+µ+x)2+y2+z2)−3/2 − (1−µ)z

((µ+x)2+y2+z2)−3/2

−2ẋ

−2ẏ

−2ż


. (4.45)
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The Jacobian of A is simply

DA = πQR . (4.46)

Finally, the Jacobian of T is

DT =
1

npoints
Dτ(X0) Aθ0 , (4.47)

where Dτ(X0) is given in equation 4.51.

4.2.6 Numerical Integration of the Orbits

The CRTBP has a nonstiff and smooth ordinary differential equation. For nonstiff

problems, an explicit numerical integration technique achieves the desired accuracy

with minimal computational costs. Additionally, for smooth ODEs, higher-order

integration methods can be employed which further reduces the computation time.

Thus, to numerically propagate the initial state variables, I used an explicit 8-7 Runge-

Kutta method. The method integrates a system of ordinary differential equations

using 8-7th order Dorman and Prince formulas [53].

This is an 8th-order accurate integrator; therefore, the local error normally ex-

pected is O(h9). In this scheme, the approximation for the state at x1(h + t0) is

obtained from the state at x0(t0) with the equation

x1 = x0 + h

s∑
i=1

biFi , (4.48)

where Fi is obtained from

Fi = f(t0 + h ci, x0 + h

s∑
j=1

aijFj) , (4.49)
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and where the constants, the lower triangular aij matrix and the bi and ci vectors,

are listed in [53]. The number of stages, s, is 13. Thus, the procedure requires 13

function evaluations per integration step. The error check is done by finding both

the 7th and 8th order solutions and looking at the difference between them. If the

difference is above a preset error bound ε, which I chose to be 10−13 for high accuracy,

the step size is reduced and the solution recomputed.

4.2.7 Numerical computation of the Poincaré map

Remember that the Poincaré map is defined by

Xτ = P(X0) = φ(τ(X0),X0) . (4.50)

The Poincaré section, Σ, given by {g(x) = 0}, separates the phase space in two.

Assuming that Σ is to be crossed in the direction from the initial state’s, X0, side of

the phase space to the other side, the following pseudo-code is used to numerically

obtain the Poincaré map:

input: X0, f, h, tol, g, Dg

t=0; y=X0;

while [g(y)*g(X0)] > 0 {

rk87(f) := (t,y) -> (t+h,y+deltay)

t = t+h; y = y+deltay }

while |g(y)| > tol {

delta = - g(y)/(Dg(y)f(y))

rk87(f) := (t,y) -> (t+delta,y+deltay) }

output: t, y.

where rk87 is the 8-7th order Runge-Kutta integration step.
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Each iteration of the last loop corresponds to performing a Newton iteration to

find a zero of the function F := g(φ(delta, y)) = 0 with initial condition delta = 0.

In this case, DF = dg
dφ(delta,y)

dφ(delta,y)
ddelta

. Remembering the Euler approximation to

integration, φ(delta, y) ≈ y + f(y) delta, I obtain DF = Dg(y) f(y). It is possible

to see that the pseudo-code employs root finding via the Newton iteration, delta =

−F DF−1. At the end of the algorithm, P (X0) = y and τ(X0) = t.

4.2.8 Numerical Computation of the Derivative of the Poincaré

map

The differential of the Poincaré map is computed as

DP(x) =
d

dx
φ(τ(x),x)) =

d

dτ
φ(τ(x),x) + Dφ(τ(x),x)

= f(P (x))Dτ(x) + Dφ(τ(x),x) , (4.51)

where the differential of the time to reach Σ is obtained by differentiating the Poincaré

section condition,

0 = g(P (x))

⇒ = Dg(P(x))DP(x)

= Dg(P(x)) [f(P(x))Dτ(x) + Dφ(τ(x),x)]

= [Dg(P(x))f(P(x))] Dτ(x) + Dg(P(x))Dφ(τ(x),x)

⇒ Dτ(x) = −Dg(P(x))φ(τ(x),x))

Dg(P(x))f(P(x))
(4.52)

Substituting equation 4.52 in equation 4.51, I obtain the final form of DP:

DP(x) = −f(P(x))
Dg(P(x))φ(τ(x),x))

Dg(P(x))f(P(x))
+ Dφ(τ(x),x)) . (4.53)
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Recall that in this study two types of Poincaré sections are used. For the Quasi-Halo

Poincaré section defined in 4.33, Dg is

Dg = { ẋ ẏ ż 0 0 0 } , (4.54)

and for the Lissajous Poincaré section defined in 4.32, Dg is

Dg = { 0 0 1 0 0 0 } . (4.55)

4.2.9 Continuation

For the Quasi-Halo continuation with both the constant Hamiltonian and the constant

period cases, I used the area, A, of the projection of the invariant circle on the

Poincaré section to the ẏ− ż plane as the continuation parameter in accordance with

the choice of θ as arctan(ż/ẏ). For the Lissajous orbit continuation with the constant

Hamiltonian case, I used the area, A, of the projection of the invariant circle on the

Poincaré section to the x− y plane as the continuation parameter in accordance with

the choice of θ as arctan(y/x).

For the first continuation, I used a linear extrapolation from the Q0 value to

find Q1. For the second and third continuations, I used a second- and third-order

polynomial fit to extrapolate the value of Q. From the fourth onwards, I used a fourth-

order polynomial fit to extrapolate the value of Q from the known values. Higher-

order polynomial fits were avoided due to the well-known Runge’s phenomenon, which

leads to wildly oscillating interpolant function [54]. First, I obtain the polynomial fit:

polyfunc(A) = polyfit([Qk,Qk−1, ...,Q0,0], [Ak,Ak−1, ...,A0, 0], order)(4.56)

where polyfit is the usual least square polynomial fit of degree order. Then, the
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continuation of the Fourier coefficient is performed by extrapolation:

Qk+1 = polyfunc(Ak+1) , (4.57)

where

Ak+1 = Ak + ∆A . (4.58)

While choosing ∆A, there is a compromise between speed and convergence. The

larger the ∆A, the shorter the continuation procedure takes, while the possibility of

non-convergence increases with increasing step size. To find the optimal iteration

step size automatically, I set

∆A =


1.2 ∆A if Newton iteration converged for all previous cases

0.8 ∆A if Newton iteration did not converge: repeat the previous step

∆A otherwise .

Thus, when the iteration is convergent, increasingly large steps are taken to speed

up the process, until the maximum step size is exceeded and the algorithm becomes

divergent. Then, the step size is reduced and the iteration is continued with the

optimal step size.

Finally, I would like to note that as A → 0, so does Q → 0. Therefore, when

A = 0, Q = 0. I use this property in the initial step of the continuation by setting

the initial ∆A = A0.

For illustration purposes, figure 4.9 is a continuation curve for the constant Hamil-

tonian Quasi-Halo family which shows how the first four elements of the Q vector

vary with the continuation parameter.
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Figure 4.9: The first four elements of Q for the constant Hamiltonian Quasi-Halo

family versus the continuation variable Area, A.

4.3 Results

The four-dimensional center manifold around L2 is occupied by quasi-periodic orbits

of two different families: the Lissajous family around the vertical Lyapunov orbits,

and the Quasi-Halo orbits around the Halo orbits. These quasi-periodic orbits reside

on invariant tori about the corresponding periodic orbit.

In this section, I apply the Multiple Poincaré numerical method to find these

orbits. Once the Fourier coefficients on the Poincaré sections are obtained as de-

scribed in the previous section, the two-dimensional quasi-periodic orbit is obtained

by integrating a sample point on one of the Poincaré sections until it crosses the
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same section again. Due to error bounds on the multiple Poincaré algorithm, this

intersection point is very close to, but not exactly on, the one-dimensional invariant

circle. This point is projected onto the invariant circle by finding θproj = arctan(y/x)

or θproj = arctan(ż/ẏ), depending on whether the point is on a Quasi-Halo or on

a Lissajous orbit. Then the projected point Xproj = Aθproj
Q is integrated, as with

the initial sample point, until it crosses the Poincaré section, and the procedure is

repeated for the desired period length. Finally, these solutions are patched together

to obtain the full orbit.

4.3.1 Lissajous Orbits

Figure 4.10: Lissajous orbits around the L2 libration point

The Lissajous family resides on invariant tori about the vertical Lyapunov orbits.

These orbits, which were studied analytically in Chapter 2, can be obtained numer-

ically by employing the multiple Poincaré section method. The full Lissajous family

was obtained via this method, as shown in figure 4.14. Figure 4.10 and 4.11 shows

typical Lissajous orbits around the L2 point.
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Figure 4.11: Example of a Lissajous Orbit around L2
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4.3.2 Quasi-Halo Orbits

Figure 4.12: Quasi-Halo orbits around the L2 libration point

The quasi-halo family reside on invariant tori about the halo orbits. These orbits

which were studied analytically in chapter 2 can be obtained numerically by employing

the multiple Poincaré section method. The full Quasi-Halo family was obtained via

this method, as shown in figure 4.14. Figure 4.12 and 4.13 shows typical Quasi-Halo

orbits around the L2 point.
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Figure 4.13: Example Quasi-Halo Orbit around L2

4.3.3 Complete Periodic Family around L2

To visualize the four-dimensional center manifold, which consists of all the periodic

and quasi-periodic orbits, on a two-dimensional figure, the center manifold must be

constrained by two dimensions. A convenient way of achieving this is to choose

periodic and quasi-periodic orbits which have the same energy, and to take a Poincaré

section when these orbits cross the ecliptic plane. Thus, figure 4.14 is obtained. In

this figure, since this is a Poincaré section, the equilibrium points correspond to

the periodic orbits of the original system, while the closed curves correspond to the

quasi-periodic orbits. This correspondence of the real orbits and the sections on the

Poincaré map is shown in figure 4.14.

91



Figure 4.14: All the periodic and quasi-periodic orbits around L2 shown on a Poincaré

section of the ecliptic plane

4.3.4 Comparison of the Results with the Literature

The Poincaré section in time, where I specified the orbit period along the Halo, is

shown in figure 4.15. Here, the results are compared to Gómez et al.’s [46]. By

specifying the period of all the orbits to be the same as that of the base Halo orbit,

it is possible to ensure that the spacecraft stay close at all times. This is of great

importance particularly for natural, control-free, formation-flying missions. The main

advantage of the Poincaré section approach is that, due to the numerical nature of

the algorithm, the calculations take only a few minutes of computation time, with

minimal programming requirement. Note that, since the Hamiltonians for these orbits
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are not equal to one another, the orbits may intersect.

Figure 4.15: The Poincaré section of the invariant tori, where the period of all the
orbits is equal to that of the base Halo orbit. The multiple Poincaré section method
is employed on the left, while the Lindstedt-Poincaré method is used on the right [46].

Utilizing the multiple sections approach, the complete quasi-periodic orbit families

around the libration points are found. Figure 4.16 shows the Poincaré section of the

quasi-periodic family with constant energy on the ecliptic plane, and it compares the

results obtained by our multiple Poincaré method with Gómez and Mondelo’s refined

Fourier analysis [55, 56] and Gómez et al.’s Lindstedt-Poincaré analysis [46]. While

the Lindstedt-Poincaré analysis [46] cannot obtain the complete families and a cluster

of parallel computers was required to get the complete families with the refined Fourier

analysis [55, 56], the current method obtains the complete set of quasi-periodic orbits

with a computation time for the full families of only a few minutes on a 2.15 GHz

Intel Pentium processor.

4.4 Extension of the CRTBP Results to the Full

Ephemeris Model

The quasi-periodic orbits obtained above reside on two-dimensional surfaces around

the libration points of the CRTBP. These orbits do not exist in the real Solar system

due to the eccentricity of the Earth’s orbit and the perturbing effects of many celestial
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Figure 4.16: The Poincaré section of the complete quasi-periodic family around L2
with energy that is equivalent to the 500,000 km-sized halo orbit on the ecliptic plane
(on the left). Similar results from Gómez & Mondelo [55, 56] (in the middle) and
Gómez et al. [46] (on the right).

bodies. Nevertheless, since the CRTBP is a good first-order approximation to the real

Solar System dynamics, there are orbits in the Solar System that have very similar

shapes and properties to the orbits found in the simplified problem. The aim of this

chapter is to find these orbits.

I take the real Solar System dynamics to be the point-mass gravitational inter-

actions of the major Solar system bodies given at each time-instant with the JPL

DE-406, which is the latest version of the JPL Solar System Ephemeris [57]. It spec-

ifies the past and future positions of the Sun, Moon, and nine planets (Pluto is still

defined as a planet in this ephemeris) in three-dimensional space. The ephemeris gives

the Chebyshev polynomial coefficients corresponding to the J2000 standard epoch po-

sitions of these Solar bodies [57, 58]. In the calculations to follow, deviation from the

spherical symmetry of the bodies such as oblateness is not taken into account. Since

the specifications of the spacecraft that will be placed in these orbits are not known,

neither are drag and solar pressure included in the study. However, note that for a

spherical spacecraft, the effect of solar pressure can easily be included without any

additional force terms, by only reducing the effective mass of the Sun. This is the case

because both the gravitation and the solar pressure forces are inversely proportional
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to distance square (i.e. F ∝ 1
r2 ), only differing by a constant.

The aim is to find real solar trajectories that have the same characteristics as

the quasi-periodic orbits obtained in this chapter. Thus, the algorithm first takes

the orbits in the CRTBP and converts them from the synodical frame to the so-

lar frame. For astronomically simplified models, better results are obtained when

the Earth/Moon system is treated as a single planet with the center-of-mass at the

Earth/Moon Barycenter, than when the effect of the Moon is ignored in the model.

I employ the usual synodical frame, which has its center at the center-of-mass

of the Sun-Earth/Moon Barycenter system, to map the CRTBP results to the full

solar model, and I find that the large distance between the Sun and the spacecraft

trajectory leads to undesirable behavior. Multiplying small errors with this large

distance leads to non-convergent transfers. Thus, I move the position of the axis

center from the usual definition, which is the center-of-mass of the Sun-Earth/Moon

Barycenter system, to the Earth/Moon Barycenter. In order to map the synodical

coordinates to solar coordinates, the following steps are taken.

In what follows, subscripts cm, syn, sun, em, and e/s refer, respectively, to the center-

of-mass synodical frame, the Sun, the Earth/Moon Barycenter, and the Earth/Moon

Barycenter with respect to the Sun. Superscripts R and I refer to the rotating and the

inertial coordinates. r and v are the position and velocity components of the space-

craft. Finally, R and V are the position and velocity components of the solar system

bodies with respect to the solar system center-of-mass, unless specified otherwise.

1. First, the position and velocities of the Sun, the Earth/Moon Barycenter, and

their relative distances are obtained from DE-406:

~Re/s = ~Rem − ~Rsun . (4.59)
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2. The position, velocity and rotation rate of the rotating frame are calculated:

~Rcm = ~Rem ,

~Vcm = ~Vem ,

~ωsyn =
~Rs/e × ~Rs/e

|~Rs/e|2
. (4.60)

3. (1 − µ) is subtracted from the x-coordinates of the synodical frame elements,

and the synodical elements are multiplied with the length and time scale to

redimensionize the coordinates:

~rR
syn = ||~Rs/e||

(
~rR

syn − { 1− µ, 0, 0 }T
)
,

~vR
syn = ||~Rs/e|| ||~ωsyn|| ~vR

syn . (4.61)

4. The rotation matrix is obtained from the synodical frame to inertial frame:

R = [ ê1 ê2 ê3 ] , (4.62)

where

ê1 =
~Rs/e

||~Rs/e||
, ê3 =

~ωsyn

||~ωsyn||
, and ê2 =

ê3 × ê1
||ê3 × ê1||

. (4.63)

5. The synodical coordinates are expressed in inertial frame coordinates:

~rI
syn = R~rR

syn ,

~vI
syn = R ~vR

syn . (4.64)

6. Finally, the inertial position, ~rI
solar, and velocity, ~rI

solar, of the spacecraft are
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found with respect to the solar center-of-mass:

~rI
solar = ~rI

syn + ~Rcm ,

~vI
solar = ~vI

syn + ~ωsyn ×~rI
syn + ~Vcm . (4.65)

Once the position and velocities are mapped to solar system coordinates, I take

these orbits as initial guesses, and find the natural orbits in the full ephemeris model

that stay close to them. My approach to this problem was to take an orbit for a

specified time interval, which would be the time frame of the mission, and to feed this

guess to the collocation algorithm. However, this time, I ran the algorithm without

boundary conditions (see section 3.1.1 for details of the implementation). Thus,

without any constraints, I look for an orbit that satisfies the full Solar System ODE,

starting with the initial guess obtained from the CRTBP. The result is a natural orbit

of the Solar System which is very close in shape and characteristics to the CRTBP

orbit.

The main advantage of this approach is that all the available information, i.e.,

the full guess for the orbit, is used. This is helpful because the Halo and Quasi-Halo

orbits around L2 are unstable, and long-term integration with bad initial guesses

might lead to trajectories that diverge from the original orbit. Thus, I employ a

collocation algorithm, which is a robust boundary value problem-solving technique.

Finally, for visualization purposes, the results in the solar coordinates are con-

verted back to the synodical frame by applying the algorithm backwards. Figures

4.17, 4.18, and 4.19 show the results for three different types of orbits - Halo, Quasi-

Halo and Lissajous orbits - around the Sun-Earth L2 point, transferred to the JPL

DE-406 model.

The collocation algorithm performs robustly around the Sun-Earth L2 point where

the missions of our interest will be located. I also implemented the multiple shoot-
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ing algorithm, developed by Gómez et al. [46] for the Quasi-Halo refinement. The

obtained results and the computation time from both methods are similar. Further

comparisons, including the more computationally challenging orbits of the Earth-

Moon system, will be performed as part of future research.

1.0075 1.008 1.0085 1.009 1.0095 1.01 1.0105 1.011

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−3

X(AU)

Y
(A

U
)

1.0075 1.008 1.0085 1.009 1.0095 1.01 1.0105 1.011
−3

−2

−1

0

1

2

3

4
x 10

−3

X(AU)
Z

(A
U

)

−505

x 10
−3

−3

−2

−1

0

1

2

3

4
x 10

−3

Y(AU)

Z
(A

U
)

1.008
1.009

1.01
1.011

−5

0

5

x 10
−3

−2

0

2

4

x 10
−3

X(AU)
Y(AU)

Z
(A

U
)

Figure 4.17: An example of a Halo orbit around L2 transferred to the JPL DE-406
model
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Figure 4.18: An example of a Quasi-Halo orbit around L2 transferred to the JPL
DE-406 model
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Figure 4.19: An example of a Lissajous orbit around L2 transferred to the JPL DE-406
model

100



Chapter 5

Finding the Optimal Trajectories
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The control problem can be separated into two parts; first, the line-of-sight (LOS)

control of the formation during imaging, and second, the trajectory control for ma-

neuvering the occulter from one star LOS to another between imaging sessions, i.e.,

the realignment maneuver. Here, I focus on the latter, since the realignment dom-

inates the Delta-V budget. In this chapter, I find the optimal trajectories for the

realignment processes. Although this is not the main aim of this chapter, I also

solved for the optimal trajectories from Earth to Halo orbits as a sample problem for

the control algorithms that were developed, and to give an idea about the transfer

trajectories.

5.1 Different Optimal Control Approaches

During the imaging of a given planetary system, the telescope and the occulter must

be aligned to the LOS of the star position. Thus, the inertial velocities of the telescope

and the occulter should be the same. In addition, the optics of the diffraction pattern

are such that the telescope will most probably be designed for a prespecified constant

occulter-telescope separation. Thus, based on this optical constraint, the distance

between the occulter and the telescope should be roughly the same for all observations.

This fixes the position of the occulter to be on a sphere around the telescope. The

realignment problem then becomes one of finding an optimal trajectory between two

two-dimensional surfaces, as shown in figure 5.1. I examine six optimization strategies

for the realignment. Depending on the type of thruster the mission uses, either

continuous or discrete control might be needed. Since the most probable devices

are Hall-type thrusters, where we have access to continuous, low magnitude thrust

throughout the trajectory, I studied five continuous thrust methods (and one discrete

one). For all the control algorithms developed in this chapter, I assume that the

there is a single thruster that can be instantaneously thrusted towards any direction
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Figure 5.1: The sphere of possible occulter locations about the telescope at two times,
and example optimal trajectories connecting them

of choice.

First, we look at the optimal control problem of finding the trajectory that takes

the occulter from a given star LOS to another star LOS, the realignment maneuver.

Here it is presupposed continuous thrust between two given star LOS’s with a given

time of flight. In this case, I examined the point-to-point transfer in the phase space

with an energy-cost function. While this is not the most physically meaningful of

the cost functions, its quadratic nature makes it easier to solve and it was used as

the initial feed for other types of optimizations. The second optimization leaves out

the time of flight but adds a constraint on the maximum thrust. The third option

presumes continuous thrust and knowledge of the initial condition but the end point

is free to be in any position on the spherical configuration space.

The fourth optimization focuses on the trajectories that minimize fuel consump-

tion, where the magnitude of the control effort was minimized. The fifth option finds

the minimum-time optimal trajectories between the phase space points. Finally, there

103



is the discrete control consisting of two impulsive Delta-V maneuvers, one at the be-

ginning and one at the end of the trajectory.

In the following sections, I go over these six different optimization strategies,

and I discuss the approaches taken to solve the optimal control problem that arises

from these different assumptions. Before going any further, I first review the general

optimal control problem.

The stars to be observed were taken from the list with the most suitable 100 stars

for the TPF-C mission [59]. I then used the astrometrical data from the Hipparcos

astronomical catalog [60]. I employed the NOVAS routines developed by Kaplan [61]

to convert and update the exact star locations of the target stars relative to the Solar

system, starting from 1 January 2010, the mission start day of my choice. For high-

fidelity applications, I developed the capability to use the full nonlinear solar system

model based on the JPL DE-406 ephemeris [57] for differential equations. However,

in the analysis to follow, the CRTBP simplified model is used for the dynamical

model, and a uniformly rotating star model is employed for the star locations for

faster calculations.

For ease of comparison, all the missions scenarios discussed from here on assume

a base Halo orbit around L2 with an out-of-plane amplitude of 500,000 km.

5.1.1 The Euler-Lagrange Formulation of the Optimal Con-

trol Problem (Indirect Method)

The Euler-Lagrange method, otherwise known as the adjoint method, employs the

variational calculus to find the optimal control of a differential system. Here I only

outline the methodology; for details see Stengel [62] and Bryson & Ho [63]. I wish to

find a trajectory, x(t), and control, u(t), that minimizes the cost function, J , in the
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time interval [t0, tf ],

J = φ(x(tf )) +

∫ tf

t0

L(t,x,u)dt (5.1)

subjected to the ordinary differential equations,

ẋ = f(t,x,u) (5.2)

with boundary conditions at each end of the interval

x(t0) = x0 and ψ(tf ) = 0 , (5.3)

for some terminal function ψ(tf ). The Euler-Lagrange equations give the optimal so-

lution path as a BVP with a differential algebraic equation in terms of the augmented

state consisting of the normal state vector, x, and an additional state vector, λ, called

the adjoint states,

ẋ = f(t,x,u) , (5.4)

λ̇ = −
(
∂H(t,x,u, λ)

∂x

)T

(5.5)

0 =
∂H(t,x,u, λ)

∂u
. (5.6)

In addition to the boundary conditions given in equation 5.3, the algebraic differential

equations are subjected to the following additional boundary conditions given for the

adjoint states at the final time:

λ(tf ) =

(
∂G(tf ,x(tf ), ν)

∂x(tf )

)T

. (5.7)
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In these equations, H, the Hamiltonian, and G are given as

H(t,x,u) = L(t,x,u) + λTf(t,x,u) , (5.8)

G(tf ,x(tf ), ν) = φ(x(tf )) + νTψ(x(tf )). (5.9)

The main advantage of using the Euler-Lagrange formulation is that the optimality of

the solution can be checked, and the computational effort for solving the BVP using

shooting or collocation methods will be minimal if a feasible solution can be found.

The main disadvantage of this formulation is that it may be difficult to generate

sufficiently good initial guesses for the adjoint states.

5.1.2 The Sequential Quadratic Programming Formulation

of the Optimal Control Problem (Direct Method)

The second approach to solving optimization problem defined in equations 5.2, 5.1,

and 5.3 is to discretize integral and states and solve a high-dimensional nonlinear

optimization problem via an appropriate nonlinear optimization algorithm. I discuss

such algorithms at the end of the section. Since there are no intermediate steps, such

as the introduction of the adjoint state, involved in solving the problem, numerical

methods that employ nonlinear programming algorithms to solve the discretized op-

timal control problem are called the direct method. Here I give an brief overview of

the direct method see Betts [64] for details. In this method, first the time interval is

discretized,

tinitial = t0 < t1 . . . < tN−1 < tN = tfinal. (5.10)

Then, the continuous state vector, x(t), is approximated at these time points, xi =

x(ti), at each time point ti. The continuous control variables, u(t), are approximated
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between the time intervals [ti, , ti+1] as ui = u(ti) (for example, a zero-order hold). If

our guess is sufficiently close to the real solution, the discretized quadrature equation

corresponds to the differential equation. For instance, a first-order discretization of

the differential given in equation 5.2 in the middle of every time interval leads to

ẋi ≈
xi+1 − xi

hi

(5.11)

≈ f (t̄i, x̄i,ui) , (5.12)

where

t̄i :=
ti+1 − ti

2
and x̄i :=

xi+1 − xi

2
, (5.13)

and hi = ti+1 − ti. Thus, the differential constraint is converted to an algebraic one,

0 = F (t̄, x̄,u) . (5.14)

There are many other possible discretization schemes; the Euler type discretization

is used here for illustration. Along with the differential equation, the cost function

and the constraints, if the latter exist, are discretized as well.

J(ti,xi,ui = φ(x(tf )) +
N∑

i=0

L(ti,xi,ui)hi (5.15)

Then, the constraint vector is augmented with inequality conditions such that

Fi = 0, i ∈ E

Fi < 0, i ∈ I , (5.16)
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where E and I are the sets of indices for equality and inequality constraints, re-

spectively. The high-dimensional discrete nonlinear optimization problem (NLP) is

formulated as

[NLP]: min{J(ξ) : Fi(ξ) = 0, i ∈ E , Fi(ξ) < 0, i ∈ I} , (5.17)

where ξ = {xi ,ui} is the augmented variables vector. This NLP is solved via a

nonlinear optimization algorithm.

One of the most efficient and promising methods currently in use is the sequential

programming algorithm (SQP). The SQP algorithm is a generalization of Newton’s

method for unconstrained optimization in that it finds a step away from the current

point by minimizing a quadratic model of the problem. The SQP algorithm replaces

the objective function, J(ξ), with a quadratic approximation and replaces the con-

straint functions by linear approximations. A more detailed overview of the SQP

method can be found in Gill et al. [65].

I utilized the IPOPT [66], a open-source interior point method SQP-solver soft-

ware, and the MATLAB optimization toolbox software fmincon. To minimize the

time it takes to convert the optimal control problem to a form that can be used with

the direct method, I created an automated symbolic software. This algorithm dis-

cretizes the optimal control problem, which is defined effortlessly in MATLAB. It then

symbolically converts the problem to the form needed by the SQP solver. This code

is then converted and compiled in FORTRAN which is much faster than MATLAB.

These compiled functions are in a form that can be called from within a MATLAB

script (see MATLAB’s “mex” [67] utility for more information). This enables me to

solve the problem without leaving the convenience of the MATLAB environment while

benefiting from the speed of the FORTRAN’s fast compiler. The software allows for

a choice between many different discretization methods, such as Runge-Kutta, Euler,
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and trapezoidal, in order to suit the needs of the specific problem. I hope to make

this software available for the public soon.

5.2 Unconstrained Minimum Energy Optimization

In this approach, I assume that the control variable is the acceleration of the spacecraft

due to the force applied by the thrusters throughout its trajectory, u = (d2x
dt2

)thruster.

Then, the effect of the control can be added to the normal control-free Newtonian

equations such that

ẋ = fctr(t,x,u) , (5.18)

where

fctr(t,x,u) = f(t,x) + { 0, 0, 0, ux, uy, uz }T , (5.19)

and where the control vector, u, is defined as u = {ux, uy, uz }T . My aim is to

minimize the control effort given these differential equations of motion. In this section,

I use a cost function of the quadratic form,

J =

∫ tf

t0

1

2
u · u dt . (5.20)

Here, I use the notation, ·, for the dot product of vectors. The Hamiltonian for this

optimal control problem is

H(t,x, λ,u) =
1

2
u · u + λT f(t,x) + pTu , (5.21)
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where I use the intermediate variable, p, which is the last three elements of the adjoint

vector:

p = {λ4, λ5, λ6 }T . (5.22)

In this section, I consider the point-to-point optimal control, where both the initial

and final states are fixed a priori.

ψ(tf ) = x(tf )− xf = 0 (5.23)

Solving the optimality condition,

0 =
∂H(t,x, λ,u)

∂u
(5.24)

I obtain,

u = −p . (5.25)

Substituting for u in the Euler-Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

ẋ = f(t,x, λ) ,

λ̇ = −
(
∂f(t,x)

∂x

)T

λ , (5.26)

with twelve boundary conditions

x(t0)− x0

x(tf )− xf

 = 0 . (5.27)
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To make sure that this solution is indeed an optimal solution of the problem, I check

that the Legendre-Clebsch and Weierstrass conditions are satisfied:

∂2H(t,x,u, λ)

∂u2
= I > 0 . (5.28)

The BVP arising from the optimal control problem is solved using a collocation

algorithm. As an example consider the transfer from Earth to an L2 Halo orbit. Let

the final condition be on the Halo orbit with high z value to show the out-of-plane

characteristic of the optimal trajectories. The initial orbit of the satellite around

Earth and the final position on the Halo orbit are shown in figure 5.3. Below are

the exact initial and final states in the normalized synodical units that I used for the

orbit.

x0 =



9.999969595766015 10−1

−1.007824043999068 10−3

0

7.237761726886938 10−2

0

0


, xf =



1.011080356710551 100

7.419127797265952 10−4

3.655679288769010 10−3

6.534277927644666 10−4

−1.054583863270762 10−2

7.362873998458644 10−4


.

(5.29)

I solved the optimal control problem with various time intervals and obtained the

cost function as shown in figure 5.2. There is a local minimum of the cost at around

90 days, after which the cost increases until a time-of-flight of approximately 170

days. After that, the results from the BVP solver become very sensitive, most likely

due to branching of the optimal trajectories. Figure 5.3 shows the optimal trajectory

for a 90 day time-of-flight and figure 5.4 shows the optimal control throughout the

trajectory.
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Figure 5.2: Dependence of the optimal quadratic cost function on the time-of-flight
for Earth to Halo orbit transfers.
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Figure 5.3: The optimal minimum-energy trajectory for the 90-day Earth to Halo
transfer. Shown on the left, in red, is the three-dimensional trajectory. Shown on the
right are the components of the position.
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Figure 5.4: The optimal minimum-energy control effort for the 90-day Earth to Halo
transfer. The magnitude of the control is shown on the left, while its components are
shown on the right.

For the case of transfer from a star LOS to another, the occulter-to-telescope

distance, R, of 50,000 km is used. For the time-of-flight, I chose two weeks which is

a representative slew time for the mission under study. I assumed the telescope to

be on a Halo orbit, and I assume that the first star the occulter-telescope formation

looks at is in the direction given by the unit vector ê0 while the second star to be

imaged is in direction of the unit vector ê1. I chose ê0 and ê1 such that the angle

between them in the order of a typical slew. The exact numerical values used in the

example to follow are

ê0 =


6.324555320336759 10−1

−6.324555320336759 10−1

4.472135954999580 10−1

 , ê1 =


0

0

1

 , (5.30)

such that the angle between the unit vector is 63 degrees. I obtained the star and
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end positions the occulters from the unit vectors as

rocc = rtel +R ê , (5.31)

where rocc and rtel are the position of the occulter and the telescope in the synodical

frame, respectively. I obtained the velocities based on the requirement that the inertial

velocities of both the telescope and the occulter be the same,

vocc = vtel + ω ×R ê , (5.32)

where vocc and vtel are the velocity of the occulter and the telescope, respectively,

and ω = {0, 0, 1}T is the angular velocity of the CTRBP. Thus, the numerical values

in the normalized synodical units for the BVP algorithm are

x0 =



1.008708480181499 100

5.219658053604695 10−3

1.494719120781122 10−4

3.123278717913480 10−3

2.077725728577118 10−3

6.483432393011172 10−3


, xf =



1.009397510830226 100

5.341370714348193 10−3

1.843136365772625 10−3

3.951895067977367 10−3

−2.937081366176431 10−3

5.838803068471303 10−3


. (5.33)

Figure 5.5 shows the optimal trajectory of the occulter relative to the telescope on

the Halo orbit. Figure 5.6 shows the optimal control throughout the trajectory.

5.3 Constrained Minimum Energy Optimization

Next, I add an inequality constraint on the control to the minimum energy problem.

The magnitude of the control vector, |u|, must be less than a specified limit, umax,

such that |u| < umax. The augmented Hamiltonian for the optimal control problem
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Figure 5.5: The trajectory of the occulter relative to the telescope for an energy-
optimal realignment maneuver.
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Figure 5.6: The optimal minimum-energy control effort for the realignment maneuver
shown in figure 5.5. The magnitude of the control is shown on the left, while its
components are shown on the right.
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can be written as

Haug(t,x, λ,u) =
1

2
u · u + λT f(t,x) + pTu + µeffceff (u)


µeff = 0 if ceff (u) < 0

µeff > 0 if ceff (u) = 0 ,

(5.34)

where ceff (u) is the inequality constraint function effective on the boundary,

ceff (u) = u · u− u2
max 6 0 , (5.35)

and µeff is the corresponding Lagrange multiplier.

Since ceff is only a function of u, the adjoint differential equations are not altered.

However, the condition for control optimality becomes

0 =
∂H

∂u

T

=


u + p, ceff < 0

u + p + 2µeffu, ceff = 0 .

(5.36)

Solving the first part of the equation gives u = −p, as before. The second part asks

that the following two equations be satisfied:

u = − p

1 + 2µeff

and |u| = umax , (5.37)

which are solved to give

u = ±umax
p

|p|
. (5.38)

In order to decide which sign the control should take, I use the Pontryagin’s Minimum

Principle (See Stengel for details [62]), which states that the optimal control, u∗, in
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the set of feasible controls U is

u∗(t) = arg

{
min

u(t)∈U
H(t,x,u, λ)

}
. (5.39)

Looking at the part of the Hamiltonian with control influence, I obtain

1

2
u∗ · u∗ + p∗Tu∗ 6

1

2
u · u + p∗Tu , (5.40)

where the superscript { ∗ } denotes the optimal elements. Now it becomes apparent

that the correct choice of the sign is minus. This defines the optimal control as

u =


−p if |p| 6 umax

−umax
p
|p| if |p| > umax .

(5.41)

Substituting for u in the Euler Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

ẋ = f(t,x, λ)

λ̇ = −
(
∂f(t,x, λ)

∂x

)T

λ , (5.42)

with boundary conditions

x(t0)− x0

x(tf )− xf

 = 0 . (5.43)

Considering applications, I first looked at the Earth-to-halo transfer optimization.

While solving the constrained optimization problem, I used the same x0 and xf given

in equation 5.29 in the last section, and I used the solutions from the last section as

the initial guess for the BVP. Figure 5.7 compares the trajectory of the satellite for the
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Earth-to-Halo transfer from the bounded control such that umax = 6.1e − 5. Figure

5.8, on the right, shows the optimal control effort and compares it with the unbounded

control case. How the norm of the control changes with maximum allowable control

is shown in figure 5.8 on the left. For a given umax, there is no guarantee that a 90

day transfer trajectory from Earth to Halo orbit exists. As seen from the figures 5.8,

for umax < 6e− 5 the control power is not enough to reach the destination within 90

days span.
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Figure 5.7: The optimal minimum-energy trajectory for the 90-day Earth to Halo
transfer with bounded control. In red is the bounded optimal trajectory. The blue
unbounded trajectory is also plotted for comparison.

Next, I considered the case of realignment maneuver. While solving the con-

strained optimization problem, I used the same x0 and xf given in equation 5.33 in

the last section, and I used the solutions from the last section as the initial guess

for the BVP. Figure 5.9 shows the magnitude and the components of optimal control

history throughout the trajectory.
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Figure 5.8: The optimal minimum-energy control effort for the 90-day Earth to Halo
transfer with varying bounds on control. The effect of the varying bounds on the
magnitude of the control effort is show on the left. The components of the control
effort are show on the right; red for a bounded case and blue for the unbounded one.
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Figure 5.9: An optimal minimum-energy control effort for the realignment maneuver.
The magnitude of the control is shown on the left, while its components are shown
on the right.
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5.4 Free-End Condition Optimization

The third optimization presumes continuous thrust and knowledge of the initial con-

dition and leaves open the end point on the spherical configuration space at tf . In

this case, the initial state of the occulter, x(t0) = x0, is known at t = t0, and I seek

to find the target occulter state, x(tf ), at time tf , that minimizes the energy cost

function. Thus, the end time is fixed while the end position is free to change. Due

to the optical requirements that were discussed previously, this final position, x(tf ),

resides on the two-dimensional possible occulter locations at a given final time t = tf .

The Lagrangian and the differential equations are the same as before:

J =

∫ tf

t0

1

2
u · u dt . (5.44)

The same Hamiltonian as before is also used:

H =
1

2
u · u + λT f(x) + pTu , (5.45)

but instead of the six-dimensional equality constant, x(tf ) = xf , at the end of the

interval, now there are only four conditions. The first of these constraints is that the

distance between the occulter and the telescope at the final time must be equal to

the predefined radius, R. The other three are that the inertial velocity vector of the

occulter and the telescope must be the same in order to be able to lock on a target

star. Noting that the inertial velocity is

v= = v< + ω × r , (5.46)
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where ω = {0, 0, 1}T , the final time constraint vector becomes

ψ(tf ) =



(x(tf )− xh(tf ))
2 + (y(tf )− yh(tf ))

2 + (z(tf )− zh(tf ))
2 −R2

ẋ(tf )− y(tf )− (ẋh(tf )− yh(tf ))

ẏ(tf ) + x(tf )− (ẏh(tf ) + xh(tf ))

ż(tf )− żh(tf )


= 0 .

(5.47)

This four-dimensional condition does not change the differential equation for x and

λ, but the final condition for the adjoint variables becomes

λ(tf ) =

(
∂G(tf ,xf , ν)

∂x(tf )

)T

=



ν1(x(tf )− xh(tf )) + ν3

ν1(y(tf )− yh(tf ))− ν2

ν1(z(tf )− zh(tf )

ν2

ν3

ν4


, (5.48)

where the components of ν, the constant Lagrange multiplier vector corresponding

to the end constraints, are given as ν = {ν1, ν2, ν3, ν4}. Eliminating the elements of

ν, these six equations can be turned into two constraints in term of λ(tf ):

ψadd(tf ) =

−λ1(tf ) + λ3(tf )
x(tf )−xh(tf )

z(tf )−zh(tf )
+ λ5

−λ2(tf ) + λ3(tf )
y(tf )−yh(tf )

z(tf )−zh(tf )
− λ4

 . (5.49)

With the addition of the four ψ(tf ) constraints given in equation 5.47 on the final time

and the six initial conditions, x(t0) = x0, I obtain the twelve boundary conditions
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needed to solve the 12-dimensional BVP given in equation 5.6:


x(t0)− x0

ψ(tf )

ψadd(tf )

 = 0 . (5.50)

I solved this BVP via collocation.

This hypothetical problem was specifically designed for the case of the realignment

maneuver. While solving the free-end condition problem, I used the x0 that is given in

equation 5.33, a time-of-flight of two weeks, and an R of 50,000 km, as before. I also

used the solutions from the previous sections as the initial guess for the BVP. Figure

5.10 shows the relative trajectory of the occulter with respect to the telescope on

the Halo orbit. As can be seen from figure 5.11, the control effort is two magnitudes

smaller than in the previous examples of the fixed-end-point optimization cases.
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Figure 5.10: An optimal trajectory of the occulter relative to the telescope for an
unprescribed end condition realignment maneuver.
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Figure 5.11: The open-ended optimal minimum-energy control effort for the realign-
ment maneuver shown in figure 5.10. The magnitude of the control is shown on the
left, while its components are shown on the right.

5.5 Minimum-Time Optimization

I now consider the realignment between two targets in minimum time under a max-

imum thrust constraint. In this case, I want to go from a point in phase space to

another point in the minimum amount of time. The cost function thus becomes

J =

∫ tf

t0

1 dt . (5.51)

Since the minimum time solution dictates that the maximum control be employed at

all times, I simplify the problem by redefining the control:

u = umax û . (5.52)

Now I have a new constraint that needs to be satisfied throughout the trajectory:

û · û = 1 . (5.53)
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I include this constraint in the Hamiltonian by augmenting it with additional La-

grange multipliers µ:

H = 1 + λT f(x) + umaxpû + µ(û · û− 1) . (5.54)

While the augmentation does not affect the adjoint differential equation, the optimal-

ity condition becomes

0 =
∂H

∂û
= umaxp + µû . (5.55)

Thus, the optimal control û can be obtained by solving this equation along with the

constraint equation 5.53,

u =


−umax

p
|p| if |p| 6= 0

undetermined if p = 0 .

(5.56)

Previously, I used the optimality condition and Pontryagin’s Minimum Principle to

determine u∗(t) for all time t ∈ [t0, tf ] in terms of the extremal states, x∗, and adjoint

states, λ∗. If, however, there is a time interval [t1, t2] of finite duration during which

this principle provides no information about the optimal control, then the problem is

called singular and the interval [t1, t2] is called the singular interval.

In order to determine whether it is possible to have singular intervals, the case

where p is zero for finite time interval is considered. This condition implies that

derivatives of all orders of p should be zero during that time interval. In other words,

dkp

dtk
= 0 k=1, 2, . . . (5.57)
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Writing the differential equation for p from the adjoint states ODE,

ṗ =


−λ1 + 2p2

−λ2 − 2p1

−λ3

 , (5.58)

we can see that the singularity condition leads to λ = 0. However, for the open-end-

time problem under study there is another boundary condition. The Hamiltonian for

the open-end-time problems, where it is not an explicit function of time, is equal to

zero at all times (see Stengel [62] and Bryson & Ho [63] for details). Therefore, for

the CRTBP where H is not an explicit function of time:

H = 0 . (5.59)

For the singular intervals, we know that λ = 0. Substituting this equality in the

Hamiltonian, I obtain H = 1, which leads to a contradiction. Thus, there cannot be

singular intervals for this minimum-time optimization problem.

Substituting for û in the Euler-Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

ẋ = f(t,x, λ)

λ̇ = −
(
∂f(x, λ)

∂x

)T

λ , (5.60)

with boundary conditions


H = 0

x(t0)− x0

x(tf )− xf

 = 0 . (5.61)
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To apply numerical methods to solve this problem, the time boundaries for the BVP

must be defined explicitly. However, in this case, the time interval is [0, tf ], where

the end time for the BVP, tf , is an unknown parameter. In order to overcome

this problem, I redefine the system on the fixed-time interval [0, 1] by rewriting

the equation in terms of a new time variable:

τ =
t

tf
. (5.62)

Introducing tf as a new state variable, the extended differential equation becomes

dx

dτ
= tf f(t,x,u)

dλ

dτ
= −tf

(
∂f(x, λ)

∂x

)T

λ

dtf
dτ

= 0 . (5.63)

Now the 13-dimensional BVP can be solved.

I first employed the collocation algorithm to solve the time-optimal transfer from

Earth to L2. I solved the problem with a range of maximum-allowable control as

shown in figure 5.12. The minimum time-of-flight as a function of maximum control

is shown in figure 5.13. Position and control histories for a sample trajectory are

shown in figure 5.14.

Next, I looked at the LOS realignment problem. The requirement for the re-

alignment is that, at the final time, the occulter must be positioned to look at a

pre-specified star with the inertial positional direction, ê. Recall that, at different

times, the position and velocity of the occulter are given as below:

rocc = rtel +R ê (5.64)

vocc = vtel + ω ×R ê (5.65)
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Figure 5.12: A sample of time-optimal trajectories from Earth to Halo projected on
the ecliptic plane. For comparison, a 90 day minimum-energy transfer orbit is shown
in red.
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Figure 5.14: Shown on the left is the time-optimal control trajectory for the 57-day
Earth to Halo transfer. The components of the control for this trajectory are shown
on the right.

Thus, before knowing the time-to-go, the position of the telescope, and, as a conse-

quence, the final position of the occulter, xf , cannot be specified. This problem can

be solved in two ways. The first option is to change the time-independent final time

constraint to

ψ(tf ) =

 rocc − (rtel +R ê)

vocc − (vtel + ω ×R ê)

 . (5.66)

This changes the 13th boundary condition H(tf ) = 0 to

H(tf ) +
∂ψ(tf )

∂t
= 0 . (5.67)

However, due to the time-dependent nature of the boundary condition, it is difficult

to solve this BVP. As a result, I instead used an iterated approach to solving the

target-chasing minimum-time problem. In order to find the minimum-time transfer,

the following procedure is followed. I first estimated the tf and then integrated

the equations of motion to find the location of the telescope and the star at that
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time. From the LOS requirement, I found xf and then solved the time-independent

version of the problem. After obtaining the minimum time-to-go, xf is calculated

and the optimization is repeated with the new final position constraint. I continued

iteration until the difference between the estimate and the tf from the optimization

was negligible. In this case, two to three iterations were adequate. Figure 5.15 shows

the time-optimal trajectories for three scenarios and the control components for one

of them.
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Figure 5.15: On the left is a sample of trajectories of the occulter relative to the
telescope for the time-optimal control for different umax. The components of the
control for the green trajectory are shown on the right.

5.6 The Minimum-Fuel Optimization

In the fuel-optimal problem, the aim is to find the control history that takes the

spacecraft to the predefined final position in a given time tf while keeping the final

mass m(tf ) as high as possible. The mass of a spacecraft at a given time t can be
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determined by the relationship

m(t) = m0 − ṁt , (5.68)

where ṁ is the constant propellant flow rate and m0 is the mass of the spacecraft at

the initial time. Assuming that the total change in the mass throughout the trajectory

is negligible, Newton’s second law of motion can be written as

|u|m0 ≈ ṁ Vex/b , (5.69)

and it follows that

m(tf ) ≈ m0 −
tf |u|
Vex/b

, (5.70)

where Vex/b is the velocity of exhaust with respect to the body and u is the iner-

tial acceleration due to spacecraft propulsion, the control input that has been used

throughout this chapter. The velocity of the exhaust depends on the specifications

of the spacecraft thruster.

The constant mass approximation is a very good one for the LOS realignment

maneuver since such maneuvers take at most a few weeks. For the Earth-Halo transfer

case, this assumption is not a very good one, but the more complicated optimization,

where the dynamics of the change in mass is included in the dynamical equations, is

not considered, since the Earth-Halo transfer is not the main objective of this study.

With this approximation, maximizing final mass is equivalent to minimizing the

magnitude of the control throughout the trajectory. For this case, the cost function

is

J =

∫ tf

t0

|u| dt . (5.71)
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The Hamiltonian for the control problem becomes

H(t,x, λ,u) = |u|+ λT f(t,x) + pTu . (5.72)

The Pontryagin’s Minimum Principle states that the optimal control is

u∗(t) = arg

{
min

u(t)∈U
H(t,x,u, λ)

}
. (5.73)

Looking at the part of the Hamiltonian with control influence, I obtain

|u∗|+ p∗Tu∗ 6 |u|+ p∗Tu , (5.74)

where the superscript { ∗ } denotes the optimal elements. Along with the inequality

constraint |u| < umax, the optimal control is obtained as

u =


0 if |p| < 1

−umax
p
|p| if |p| > 1

Undetermined if |p| = 1 .

(5.75)

It is important to now determine whether the undetermined case leads to singular

control. Because it is very difficult to prove or disprove whether singular control exists

in the nonlinear case, I therefore look at the linear case.

To prove that no singular control intervals exist for the realignment maneuver, I

linearized the differential equations and obtained the linearized ODE as

ẋ = Ax +Bu . (5.76)

In these equations, it can be shown that A is not singular and that the controllability
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matrix,

C = [B AB A2B . . . An−1B] , (5.77)

where n is the dimension of the system, is of full rank n. We know that, for a

non-singular system with complete controllability, the system does not have singular

solutions (see Kirk [68] for details). Thus, the control law for the linearized system

does not have singular arcs, and is

u =


0 if |p| < 1

−umax
p
|p| if |p| . > 1 .

(5.78)

I assume that the linear analysis extends to the nonlinear case and use this control

law for the realignment maneuver. Substituting for û in the Euler-Lagrange equations,

I obtain a 12-degree ODE in terms of the state and adjoint state only:

ẋ = f(t,x, λ)

λ̇ = −
(
∂f(x, λ)

∂x

)T

λ , (5.79)

with boundary conditions

x(t0)− x0

x(tf )− xf

 = 0 . (5.80)

For the slew from one target to another, I employed a backward shooting approach

where I used the solution from the previous section as the initial guess for the adjoint

variables at final time λf . Integrating the 12-dimensional differential equation, I set
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the root-finding problem as:

φ(t0 − tf , [xf ;λf ])− x0 = 0 . (5.81)

Successive iteration gives the value of the λf in a few iterations. Figure 5.16 shows

a sample fuel-optimal trajectory, where the relative trajectory of the occulter with

respect to the telescope on the Halo orbit is plotted. The bang-off-bang structure for

the J =
∫
|u| type of optimization can be seen in figure 5.16, where the magnitude

and the components of the control effort for the realignment maneuver are shown.
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Figure 5.16: The trajectory of the occulter relative to the telescope for a minimum-
fuel realignment maneuver.

Although it might be possible to prove or disprove the existence and the form

of the singular control law for the Earth to Halo transfer, I did not attempt this

analysis and used the direct SQP method for the numerical application where the

control does not need to be specified. Collocation algorithms cannot be used for

this type of problem since, as discussed before, it assumes smoothness of the state

variables. However, since the control is not continuous, it follows that the velocity

elements are not smooth. Figure 5.18 shows a sample optimal trajectory with the
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Figure 5.17: The minimum-fuel control effort for the realignment maneuver shown in
figure 5.16. The magnitude of the control is shown on the left, while its components
are shown on the right.

same boundary conditions that were defined in the previous sections. Figure 5.19

show the optimal control effort used for this trajectory.

5.7 Impulsive Thrust: Minimum-Fuel Optimiza-

tion

Finally, I looked at the fuel-optimal impulsive control problem. The trajectories

that take the occulter from one target star LOS to another with minimum fuel were

studied for an impulsive thrusting system. As seen in figure 5.19, for the continuous

case, the fuel-optimal solution is a bang-off-bang control. As the upper bound on |u|

is increased, the bang-off-bang nature of the control is retained, with the thrusting

phase (bang part) becoming increasingly small. In the limit, we obtain the impulsive

optimal control solution where the velocity instantaneously changes at the beginning

and at the end of the interval. This corresponds to an impulsive maneuver like the

one that would be obtained from an impulsive chemical rocket. In this case, the
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Figure 5.18: The minimum-fuel trajectory for the 90-day Earth to Halo transfer.
Shown on the left, in red, is the three-dimensional trajectory. Shown on the right are
the components of the position.
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Figure 5.19: The minimum-fuel control effort for the 90-day Earth to Halo transfer.
The magnitude of the control is shown on the left, while its components are shown
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control consists of two large Delta-V maneuvers at the beginning and at the end of

the trajectory. The control changes the velocity of the occulter while keeping its

position constant. Thus, the objective is to find the velocities at the initial time,

t0, and the final time, tf , given the initial and final positions. The Delta-V will be

the difference between the computed velocity and the required velocity for planetary

system observation. I write the components of the state vector as x = [x, y, z, ẋ, ẏ, ż].

Mathematically, the problem is to solve for the 3 unknown velocities at both boundary

points, a total of 6 unknowns, given the 3 known positions at both boundary points.

Then, the BVP is defined by

ẋ = f(t,x) , (5.82)

with boundary conditions



x(t0)− x0

y(t0)− y0

z(t0)− z0

x(tf )− xf

y(tf )− yf

z(tf )− zf


= 0 . (5.83)

This is a well-posed BVP which was solved by employing a collocation algorithm.

Since the control consists of two Delta-V maneuvers at the beginning and at the end

of the interval, the control history figures are not plotted.

5.8 Conclusion

In this chapter, the optimal trajectories for the Earth-to-L2 Halo orbit transfers and

the realignment of the occulter between target star LOS’s were analyzed. Employing
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Euler-Lagrange, SQP, and shooting algorithms, I obtained the energy, time, and fuel

optimal control for continuous thrusters and the fuel-optimal control for impulsive

thrusters. The trajectories for various boundary conditions were solved. These tra-

jectories are used in the next chapter for the global optimization of the space telescopy

mission consisting of a telescope and a constellation of occulters.
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Chapter 6

Global Optimization of the

Mission: The Traveling Salesman

Problem
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In the previous chapter, the trajectory optimization for star target-to-target ma-

neuvers was conducted, where I found the minimum Delta-V that is needed for the

realignment processes. Here, the sequencing and timing of the imaging session is

examined in order to globally optimize the full occulter-based telescopy mission.

This chapter aims to arrive at the algorithms that optimize the different mission

scenarios from beginning to end, and that reduce the complexities of the various

missions to simple graphs, where a side-by-side comparison of the advantages and

disadvantages of these missions is possible. This makes possible a trade-off study,

using different control strategies, in terms of cost, i.e., the total Delta-V for the

mission, and scientific achievement, i.e., the number of planetary systems that are

imaged.

In the first section, the results from the previous chapter are combined, and the

cost of realignment as a function of mission parameters is obtained.

In the second section, a more detailed overview of the realistic mission conditions

and constraints is given. It is explained how the global optimization problem can

be reduced to a sorting problem that is similar to the Traveling Salesman Problem

(TSP).

In the third section, the well-known Traveling Salesman Problem (TSP) is intro-

duced. The mathematical formulation and numerical solution methods are shown,

and the global optimization problem is solved based on a TSP approximation.

In the fourth section, a mathematical model for the realistic mission optimization

is produced, which is akin to a Time-Dependent TSP (TDTSP).

In the fifth section, numerical methods to solve the TDTSP are discussed. These

numerical methods are applied to various mission concepts with no control limitations.

In the sixth section, a feasibility study of the mission is performed by analyzing

possible scenarios with the capabilities of the SMART-1 spacecraft.
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Finally, the global optimization for the telescopy mission with multiple occulters

is analyzed.

6.1 Realignment Cost Analysis

The optimal solution for point-to-point trajectories was obtained in the last chapter.

In this section, I attempt to put these results into context. The important parameters

of the system are the time-to-go, the angle between the LOS of the initial and final

target stars, and the radius of the formation. In order to better understand how

the optimal Delta-V depends on these parameters, I obtain the optimal trajectories

using the methods from the last chapter over a wide range of parameters. These

results are then averaged to give a fuller understanding of the global problem. In this

section, I use only the unconstrained solutions, i.e., minimum-energy and discrete

optimizations, to give general results. The case with constrained results (minimum

time and minimum fuel) is studied in section 6.6 for specific umax.

As the positions of the target LOS’s, I choose equally-spaced points on the sphere

of possible occulter locations. I do this by using the method of equal area partitioning

of a sphere, which was developed by Leopardi [69]. This allows me to make sure that

the whole phase space is covered with minimal computation power, since the phase

space is represented by a minimum number of points. These results are then averaged

over the parameters of interest.

Figure 6.1: Equal partitioning of a unit sphere [69]
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Using the optimization method developed above, I find the Delta-V that is needed

to go between these targets at 20 equally placed locations in the Halo orbit. In figure

6.2, the Delta-V resulting from these millions of optimizations are averaged for the

minimum-energy optimization, giving Delta-V as an approximate function of the

radius and the LOS angle for a transfer time of 2 weeks.

Figure 6.2: The surface of Delta-Vs as a function of distance from the telescope, and
the angle between the LOS vectors of consecutively imaged stars for minimum-energy
optimization (∆t = 2 weeks).

In order to make the mission analysis more realistic, the top 100 TPF-C target

stars given in [59] were used. I found the Delta-V for the realignment between each

target for impulsive maneuvers, as shown in figure 6.3. In the figure, the identification

numbers of the stars are sorted in ascending declination.

6.2 Defining the Global Optimization Problem

Now that the relevant optimal trajectories between any two given star-imaging ses-

sions have been found, it is important to examine the sequencing and timing of the

imaging sessions, in order to minimize the global cost of the mission. This section

gives an overview of the constraints that are associated with an occulter-based tele-

scopy mission. I explain how the global optimization problem can be reduced to a
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Figure 6.3: The minimum Delta-V for impulsive maneuvers needed to realign the
occulter between the Top 100 TPF-C targets (∆t = 2 weeks).

sorting problem that is similar to the TSP.

The reflection of sunlight from the occulter to the telescope interferes with the

imaging of the planetary system. This constrains the occulter to be between approx-

imately 45 to 95 degrees from the Sun direction (see figure 6.4).

Figure 6.4: The operating range restriction of the occulter is shown on a skymap.

By including the constraints that are imposed by the telescopy requirements, the

problem becomes a TDTSP with dynamical constraints (see figure 6.5). The problem

reduces to finding the minimum-sum sequence that connects the rows and columns of

the TDTSP matrix. The mission requirements also impose other constraints on the

sequencing that are not shown in this figure. To ensure that the images of the plane-

tary system of interest do not produce the same results, the minimum time between

re-imaging of a target is 6 months. In order to conduct an approximate analysis, I
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construct an example Design Reference Mission (DRM) by randomly choosing which

stars are to be revisited, and how many times. While it is possible to ensure that

there are no planets along the LOS, and to take into account the albedo effect of the

Moon, I chose not to consider these minor constraints at this stage of optimization

in order to save on computation.

Figure 6.5: By including the constraints, the global optimization problem is converted
to the search for the best ordering of target stars, where the Delta-Vs between the
targets are shown on the time-dependent TSP matrix. In the figure, unaccessible
zones are shown as ∞.

6.3 The Classical Traveling Salesman Problem

In the classical Traveling Salesman Problem (TSP), a salesman must visit a given

number of cities, whose distances from one another are known, by the shortest possible

route. The salesman’s optimal path, which starts and ends in the same city, must

include all cities once and only once.

Mathematically, this problem can be formulated by using a graph. The nodes

and the arcs of this graph correspond to the cities and the route between cities,

respectively. The TSP then becomes an assignment problem on the graph, where

every node has one and only one arc leading towards it and one and only one leading
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away from it. This can be expressed by employing the variable

xij =


1 if arc(i,j) is in the tour,

0 otherwise,

(6.1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n, and where n is the number of cities, or in

our case, stars to visit.

On this graph, the TSP becomes the arc length minimization problem given below:

Min
∑
i,j

cij xij

s. t.
∑

i

xij = 1 ∀ j 6= i

∑
j

xij = 1 ∀ i 6= j

xij ∈ {0, 1} ∀ i, j . (6.2)

Here, cij are the elements of the cost matrix, c. Every element of this matrix represents

the distance between two cities.

However, this formulation may not give the desired, single loop that connects all

the nodes. Multiple, unconnected loops, or “subtours”, may result. To overcome

this problem, additional constraints must be added to the formulation. The Miller-

Tucker-Zemlin formulation [70], which introduces new variables, ui for i = 1, . . . , n

for subtour exclusion, is one of the most well-known formulations:

u1 = 1

2 6 ui 6 n ∀ i 6= 1

ui − uj + 1 6 (n− 1)(1− xij) ∀ i 6= 1, ∀ j 6= 1 . (6.3)
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The constraint formulation given in equation 6.3 is satisfied when the position of the

node i in the tour is ui.

Figure 6.6: Travelling salesman solution to the top 100 TPF-C targets shown on a
skymap.

While there exist exact solution methods for the TSP, such as dynamic program-

ming, the cutting-plane method, and branch-and-bound methods, the computation

time is proportional to the exponent of the number of cities. For those who are in-

terested in exact solutions of the TSP, CONCORDE is the current state-of-the-art

software [71].

When the exact optimal solution is not necessary, heuristic methods can be used,

which quickly construct good, feasible solutions with high probability. These methods

can find solutions for large problems consisting of millions of cities in a moderate time

span, while only deviating 2-3% from the optimal solution (see Gutin and Punnen

for details [72]).

Since this dissertation focuses on the analysis of the mission concept, exact solu-

tions are not necessary at this stage. In figure 6.6, a sub-optimal solution for the TSP

problem for the top 100 TPF-C targets is given. The solution was obtained using the

simulated annealing method. The numerical implementation of this heuristic method

is discussed in section 6.5.
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6.4 Mathematical Formulation of the Global Op-

timization Problem

In this section, the mathematical formulation for the realignment problem is obtained,

starting from the classical TSP formulation. There are four major differences between

the classical TSP and the realignment problem. First, the cost matrix in our case is

time dependent due to the motion of the telescope on the Halo orbit, the change in

the star directions relative to the telescope, and the evolution of the exclusion zone.

Second, additional constraints must be satisfied. Third, the occulter may visit some

of the star targets more than once. And finally, the occulter does not have to visit

all the possible star targets.

I formulate the travelling occulter problem given the following parameters: the

total number of observations, Ntot, the identification number of the stars that can be

imaged more than once, ir, and the slew time between imaging sessions, ∆t. For the

sake of simplicity, I assumed that the maximum number of visits to any given star

was two. The results can easily be extended to the case with more than two visits.

The formulation of the problem is set such that the multiple occulter case is obtained

with minimal modification of this formulation, as seen in section 6.7.

6.4.1 Cost function

First, let us define the cost function for the problem with only a single measurement

for each star. The time interval between each observation, ∆t, is assumed to be

constant in order to simplify the problem. Then, ti, the time when the ith target is

being imaged, becomes ∆t ui, which is only a function of how many observations were

conducted before the current target. Thus, the cost matrix that is to be minimized
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can be expressed as:

Min
∑
i,j

c(i, j, ui) xij . (6.4)

In this formulation, c(i, j, ui) is a three-dimensional matrix at each time instance

given with ui, which can be precomputed.

At each time interval, the constraints, such as the stars which are non-imageable

due to their location relative to the Sun, are calculated. For the stars that cannot be

observed at that time, the c(i, j, ui) is set to infinity.

The sequence after the maximum visit number should not matter in the total cost

computation. In order to ensure that it is excluded, the matrix elements of c(i, j, ui)

for all ui greater than the user-specified maximum number of total observations, Ntot,

are set to zero.

c(i, j, ui) = 0 for ui > Ntot + 1 (6.5)

Thus, the algorithm only minimizes cost for the Delta-V budget up to this value and

does not take into account the remaining nodes.

6.4.2 Including the revisits into the formulation

In this section, a method to include the option of revisiting sample stars with identi-

fication numbers ir is introduced into the formulation. As stated, I assume that the

maximum number of imaging of a given star is two. Higher numbers can easily be

introduced into the formulation without loss of generality.

First, I double the number of nodes such that each star now corresponds to two

nodes, one for the first visit and the other for the second visit. i and j are redefined to

be double the size to i = 1, 2, . . . , 2n and j = 1, 2, . . . , 2n, where n is the number
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stars. In this notation, elements of i and j from 1 through n represent a first visit of

a target star with the identification number i or j. The elements from n+ 1 through

2n represent a second visit of a target star with the identification number i − n or

j − n. Correspondingly, I redefine the cost matrix to be double the size:

c(i, j, ui) :=

c(i, j, ui) c(i, j, ui)

c(i, j, ui) c(i, j, ui)

 . (6.6)

If a star with identification number k is not allowed to be revisited, the cost for a

second visit is set to infinity (or a very large number):

c(k + n, :, :) = ∞ , c(:, k + n, :) = ∞ . (6.7)

This formulation enables me to keep the TSP formulation for the xij:

∑
i

xij = 1 ∀ j 6= i

∑
j

xij = 1 ∀ i 6= j

xij ∈ {0, 1} ∀ i, j . (6.8)

The revisits, if they happen, should be after a certain amount of time. For a given

star with identification number i and position in the sequence ui, its revisit partner

with position ui+n should be separated by a minimum distance

ui +Nrevisit 6 ui+n , (6.9)

where n is the number of stars of interest and Nrevisit is the minimum re-imaging

interval. These constraints ensure that the revisit only happens after a certain amount

of time has passed. Since the time between each observation is assumed to be constant,
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ti = ∆t ui is only a function of how many observations were conducted before. For

example, for a realignment maneuver of two weeks, and a minimum allowable revisit

time of six months, Nrevisit = 12.

6.4.3 Full Formulation

The full formulation for the mathematical model can thus be written as:

Min
∑
i,j

c(i, j, ui) xij

s. t.
∑

i

xij = 1 ∀ j 6= i

∑
j

xij = 1 ∀ i 6= j

u1 = 1

2 6 ui 6 2n ∀ i 6= 1

ui − uj + 1 6 (2n− 1)(1− xij) ∀ i 6= 1, ∀ j 6= 1

ui +Nrevisit 6 ui+n ∀ i

xij ∈ {0, 1} ∀ i, j , (6.10)

where c is a precalculated three-dimensional matrix. For the minimum-fuel problem,

the elements of c are the Delta-V calculated in the previous sections. Without loss of

generality, u1 is set to one, which can be changed for different starting stars.

For the minimum-time optimization problem, the elements of the c matrix are the

time-to-go between each target. In this case, the time spent between each realignment

is no longer a constant. The cost and the constraints that are associated with the arc

i− j are now dependent on time ti at position ui.

The time at a given arc can be expressed as the sum of all the costs, or the
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time-to-go, before that node:

t1 = 0

tk =
∑
i,j

c(i, j, ti) xij ∀ i s.t. ui = 1, . . . , k − 1 and ∀ j s.t. uj = 2, . . . , k (6.11)

Here, the indices of the stars which have already been visited must first be identified

from the elements of u. Then, the total time is calculated by summing all the pre-

vious time intervals. The cost function c is a continuous function of time, since the

observable stars change with time while the time is dependent upon all the previous

observations. This formulation is a much more complicated nonlinear programming

problem.

6.5 Numerical Methods Employed for Solving the

Global Optimization Problem

As discussed before, I do not implement the exact solution methods for the optimiza-

tion problem. In line with the scope of this dissertation, which is the analysis of the

mission concept, I use heuristic methods, which deviate only a few percent from the

optimal solution, and quickly construct good, feasible solutions with high probability.

While solving the classical TSP, I implemented the tabu search [73], ant colony

optimization [74], cross-entropy [75], and simulated annealing methods [76] to famil-

iarize myself with the heuristic methods. They all performed well.

The ant colony optimization and cross-entropy methods employ a swarm of can-

didate solutions. These methods are not suitable for our problem, because of the

existence of a high level of constraints. As far as the cross-entropy method is con-

cerned, one infeasible solution in a group would bring the statistical average of the

group up, but trying to impose the constraints on the elements is against the spirit
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of the swarms of trials and averaging. As for the ant colony optimization, it is not

apparent how the constraint can be imposed that prevents the same star from being

revisited before a certain amount of time.

I chose to use simulated annealing rather than a tabu search, since, due to the

constraints, the optimal solution and initial feed might be in separated parts of the

search space, and random motion given in simulated annealing might be of use to get

out of local minima.

Next, I explain the implementation of simulated annealing for the problem at

hand.

6.5.1 Simulated annealing

Developed by Kirkpatrick et al. [76], simulated annealing is a global optimization

method suitable for problems with a large search space. The method is inspired by

the way crystalline structures are formed in the thermal annealing process, such as

the production of high-strength steel.

The analogy between the physical annealing process and the numerical optimiza-

tion is such that the temperature change is akin to the time spent in the optimization,

and the energy level is analogous to the cost function to be minimized. Similarly to

the physics of atoms under the annealing process, simulated annealing generates ran-

dom solutions in the neighborhood of the old one. Initially, when the temperature is

high (the initial stages of optimization), random moves which lead to higher energy

(higher cost) levels are allowed frequently, but as the system cools down (optimization

time increases), the tendency to allow moves which increase the energy is reduced.

The algorithm becomes more like a downhill search method.
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Algorithm Pseudo-Code

Below is the pseudo-code for the simulated annealing algorithm used in the global

optimization problem.

input: X0, Tmin, kappa

energy = cost(X0);

X = X0;

while{ T > Tmin

X_new = neighbor(X);

energy_new = cost(X);

delta = energy - energy_new;

if (delta > 0) or (exp(delta/T) > random())

X = X_new;

energy = energy_new;

T = T*kappa;

end }

output: X, energy

Here, X is a vector which contains the visiting sequence of each star (and visiting

partners, if they exist). Temperature is represented by T, the freezing temperature by

Tmin and the cooling constant by kappa. Three functions are used in the algorithm;

random() is a uniform-distribution random number generator in the interval (0, 1);

cost is the cost function for a given visiting sequence; and neighbor is a function which

generates random visiting strings in the neighborhood of X.

For the constants in the algorithm, a cooling constant of ∼0.99 and initial temper-

atures in the range of 10-40 degrees gave good results. I set the freezing temperature

to be one degree.
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As for the functions, I used the cost function defined in the previous sections.

This cost function can be rewritten in terms of X, the visiting sequence vector, as

min
∑

k

c(X(k), X(k + 1), k) . (6.12)

For the neighbor function, I considered different options . The choice of the neighbor

function is of critical importance for the success of the simulated annealing process.

This is discussed in more detail in the next section.

Choosing the neighbor function

The neighbor function is an operator that converts one tour into another by us-

ing exchanges or moves of the sequence vector. This function defines an associated

neighborhood for each tour that can be obtained with a single function operation.

Incremental improvements in the cost function are obtained by continually moving

from one neighbor to a better one, with a lower cost. This is done by repeated use

of the neighbor function. Finally, the optimal solution is obtained when there are no

better neighbors left. The 2-Opt operation is the most famous and tested of the sim-

ple neighbor operator functions. The 2-Opt operator removes two edges and replaces

these with two different edges that reconnect the fragments in the reverse order. The

illustration of this operation is shown in figure 6.7.

Figure 6.7: Illustration of the 2-Opt move [77].

2-Opt was the first method of choice, but it failed to give good results. Due

153



to the high number of constraints involved in our problem, a constraint was broken

almost every time when a part of the sequence was reversed. I decided not to use this

operator.

Consider that, as the simulated annealing proceeds, the energy of the state will be

lower than that of a random state. Thus, if the neighbor function results in arbitrary

states, these moves will all be rejected after a few steps. Therefore, in simulated

annealing, the neighbor function should be chosen such that the neighbors and the

current tour have similar energy levels. As a result, I opted for an operation where I

swapped the two consecutive stars, swap (X(k), X(k+1)), rather than arbitrary stars.

Additionally, if the operator does not obey the constraints by default, many fruit-

less trials result. I avoided this by choosing the initial guess to satisfy all the con-

straints, and by making sure that all the neighbor perpetration satisfy the constraint.

When swapping the stars in consecutive positions, I checked whether the swap oper-

ation leads to a minimum distance between the pair partners, a star and its revisit

partner, of less than Nrevisit. If so, the swap is not performed and another random k

is chosen to swap (X(k), X(k+1)). This ensures that, as long as the initial sequence

obeys the minimum separation between pairs of less than Nrevisit, the neighbor will

also obey this constraint. By not breaking any constraints, the algorithm is able to

move through the neighborhood quickly.

However, the neighbor function should be able to reach every possible state of

the system, and the swapping that is described above may not ensure this property,

because it is done in pairs. To overcome this problem, I used three more operators

that enlarge the neighborhood sufficiently to avoid getting stuck in local minima.

These are the following operators:

1. Swap random star pairs: Two random pairs, {i, i+ n} and {j, j + n}, two stars

and their revisit partners, are swapped, swap (X({ui,ui+n}), X({uj,uj+n})).

2. Mutate random star pairs (1): Two random pairs, {i, i + n} and {j, j + n},
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are mutated such that the locations of i and j are swapped. If the resultant

sequence gives rise to a minimum distance between the pairs that is less than

Nrevisit, the swap is not performed and another random pair is chosen.

3. Mutate random star pairs (2): Two random pairs, {i, i+ n} and {j, j + n}, are

mutated such that the location of stars i + n and j + n are swapped. If the

resultant sequence gives rise to a minimum distance between the pairs that is

less than Nrevisit, the swap is not performed and another random pair is chosen.

I used these operators less frequently than the consecutive pair swaps, for a total

of 10% of the time for each operator as opposed to 70% for the swapping of the

consecutive pairs, in order to allow a fast and efficient local search.

6.5.2 Branching for time-optimal case

In the time-optimal case, the fact that the cost function cannot be obtained before-

hand complicates the employment of the annealing method. More importantly, the

constraints are no longer known beforehand, and instead change with each neighbor

operator. As a result, I used a branching algorithm, where the constraints are dealt

with as they arise.

Here, all the possible moves from a given initial star location are considered. Each

move is the first element of a possible visiting sequence. From all these sequences,

all the possible second elements are considered, and the algorithm proceeds in this

manner. This leads to an exponential amount of possible sequences to be tried and

stored, which is not practical. Thus, after every stage, an elimination of some of

the sequences is necessary. There are many possible approaches to this selection.

While the most obvious approach is to eliminate the sequences with the highest cost,

these high-cost sequences may in the later stages lead to better results, and thus a

diversification, as in the simulated annealing case, can be used. I experimented with
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some diversification methods, which did not lead to better results. As a result, I used

only the criterion of cost.

When, in the end, the sequence length reaches the total imaging sessions, the

list element with the lowest cost is taken as the optimal solution. Unfortunately, this

algorithm will lead to local minima, but the solution of the full problem is prohibitively

difficult to obtain. The advantage of this algorithm is that the constraints of Sun

avoidance, minimum revisit time, and no revisit after two visits, are satisfied in the

final solution with minimal computational effort.

6.5.3 Results

The global optimal solutions for a few representative cases are shown in this section. I

use only the unconstrained solutions, i.e., the minimum-energy and discrete optimiza-

tions, in order to give general results. The case with constrained results (minimum

time and minimum fuel) is studied in section 6.6 for specific umax.

A sample solution to the global optimization problem with no revisits and 75

imaging sessions is shown in figure 6.8, where the minimum-energy control law was

used.

Figure 6.8: The global optimal solution to the single occulter case, with 75 imaging
sessions of the Top 100 TPF-C stars, and 2 weeks’ flight time between targets and no
revisits.
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Figure 6.9 shows a sample solution to the global optimization problem for 110

imaging sessions with maximum two visits, where the 50 stars that can be revisited

with minimum 6 months’ delay were chosen at random, and discrete optimal control

was used.

Figure 6.9: The global optimal solution for 110 imaging sessions of the top 100 TPF-
C stars, for the single occulter, with 2 weeks’ flight time between targets and 50
randomly chosen stars that can be visited twice.

The algorithms developed so far enable us to find the total minimal-cost require-

ment for a given mission. Figure 6.10 shows the averaged Delta-V obtained for the

TPF-C top 100 stars for minimum-energy optimization, where the 50 stars that can

be revisited with minimum 6 months’ delay were chosen at random. The global opti-

mal solutions for the optimal control for impulsive case with the same requirements

are shown in figure 6.11. As seen from these figures, the case that is energy optimal

requires more Delta-V than the impulsive maneuver case. This is due to the fact

that energy-optimal control minimizes the square of the control effort rather than the

control, i.e., the Delta-V, effort, while the impulsive maneuver is the limit that the

minimum-fuel trajectories reach as the bound of the maximum acceleration, umax, is

increased to infinity. Since the impulsive maneuver uses unbounded control as op-

posed to the minimum-fuel solutions, the Delta-V requirement will be lower. Thus,

the Delta-V for impulsive solutions can be thought of as the lower bound for a given
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mission scenario, making it smaller than both minimum-fuel with bounded control

input and minimum-energy control.

Figure 6.10: The global Delta-V curves for the single occulter mission with energy-
optimal control (Left: ∆t = 1 week, Right: ∆t = 2 weeks).
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Figure 6.11: The global minimum Delta-V curves for the single occulter mission with
impulsive control (Left: ∆t = 1 week, Right: ∆t = 2 weeks).

In order to understand the thrust capability that is needed for a given spacecraft,

it is important to know the maximum thrust and acceleration it has to perform in

flight. Table 6.1 shows that the maximum acceleration needed for energy-optimal

control increases as the radius of the formation does. Here, the thrust is obtained by

multiplying the acceleration requirements with the mass of the SMART-1 spacecraft

that is discussed in the next section.
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Table 6.1: Maximum thrust needed for the minimum-energy control effort solutions
with a ∆t of 2 weeks, obtained in figure 6.10.

Radius Max Thrust
18,000 km 18 mN (∼ 0.05 mm/s2)
30,000 km 31 mN (∼ 0.10 mm/s2)
50,000 km 52 mN (∼ 0.15 mm/s2)
70,000 km 70 mN (∼ 0.2 mm/s2)

6.6 Performance of SMART-1 as an Occulter

For a concrete understanding of the feasibility of the mission, the performance of a

sample spacecraft, SMART-1, as an occulter is analyzed. Designed by ESA to test

continuous solar-powered ion thrusters, SMART-1 successfully left the gravitational

field of Earth and reached the mission objective of impacting the Moon [78]. SMART-

1 was chosen for a feasibility test because its solar-powered Hall-effect thrusters may

be good candidates for the occulter-based telescopy mission under study. For this

feasibility study, I used the top 100 TPF-C targets and the exact specifications of the

SMART-1 spacecraft, given in table 6.2.

Table 6.2: Specifications of the SMART-1 spacecraft
Maximum Thrust 68 mN
Mass Ratio 0.83
Propellant Mass 80 kg
Total Delta-V 3600 m/s
Isp 1640 s
Maximum Acceleration 0.2 mm/s2

Full Thrust Life Time 210 days

First, the minimum realignment time between targets was obtained. An example

minimum-time surface is shown in figure 6.12.

The minimum-time charts were employed to find the targets which can be reached

within a given time span. Then, minimum-fuel trajectories were obtained for these

feasible targets. An example minimum-fuel surface is shown in figure 6.13. For the
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Figure 6.12: Minimum time-to-realign between top 100 TPF-C targets with SMART-
1 capibilities (R=50,000 km).

sake of reasonable display, the unreachable targets are shown with a Delta-V of zero

as opposed to infinity. Thus, the two regions in the lower left and upper right corners,

shown in dark blue, represent targets which cannot be reached within 2 weeks.
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Figure 6.13: Delta-V to realignment between top 100 TPF-C targets with SMART-1
capibilities (R=50,000 km and ∆t=2 weeks).

Now, I look at a feasibility study, where the mission is constrained to use the

SMART-1 spacecraft with all its limitations, including the fuel on board and maxi-
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mum thrust. I assume that the spacecraft continues imaging until the fuel is depleted.

Figure 6.14 shows the results that would be obtained if a minimum-fuel strategy were

employed. Since the fuel on board is limited, a more spendthrift fast slew approach,

where the time between the imaging sessions is decreased, leads to a decrease in the

total number of observations. The last data points at 20,000 km for 1 week and 70,000

km for 2 weeks are very restrictive, since they give very few options for consecutive

targets. As a result, they do not provide the flexibility that is needed in a real-life

mission.
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Figure 6.14: The total number of imaging sessions versus the radius, for the fuel-
optimal control case (with SMART-1 capabilities).

Figure 6.15 shows the results that would be obtained if a minimum-time trans-

fer strategy were employed. This figure shows that, as the radius of the formation

increases, the total number of imaging sessions decreases. When this is compared

with figure 6.14, it is apparent that the minimum-time strategy trades off the speed

of observations against the total number of observations.

Even though the results from figures 6.14 and 6.15 should be treated as the opti-

mistic upper bounds for the number of possible imaging sessions, it is apparent that,
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Figure 6.15: The total number of imaging sessions versus the radius, for the time-
optimal control case (with SMART-1 capabilities).

notwithstanding the difficulties, the mission is within reach of the current technology.

The Delta-V requirements for the occulter are reasonable. With the next generation

of thrusters, it should be possible to maneuver the approximately 60-meter diameter

occulter to do sufficient imaging to be able to find Earth-like planets.

6.7 Multiple Occulters

Having solved the single occulter problem, I study the best configuration of the con-

stellation consisting of multiple occulters. The use of multiple occulters has several

advantages [79]. First, as the number of occulters increases, so does the target ob-

servation rate. Second, the mass of each occulter can be reduced with a multiple

occulter approach. Third, the lifetime of the mission can be increased. Finally, the

redundancy in the system design would guard against the loss of the whole mission

in case of a failure in one of the occulters.
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I consider two approaches to the multiple occulter formation, in the first, the

occulters are placed on fuel-free Quasi-Halo orbits around the telescope’s Halo orbit.

This method is discussed in the first section. In the other approach, the global

optimization problem is formulated as in the single occulter case, and it is solved

using simulated annealing. This method is explored in the later sections and results

are shown. The single and the multiple occulter approaches are compared in light of

these results.

6.7.1 Multiple Occulters on Quasi-Halo Orbits

First, I consider the approach where multiple occulters are placed on Quasi-Halo

orbits around the base Halo orbit. The optimal placement problem then becomes

an optimization of the 3 × N parameters that uniquely define N Quasi-Halo orbits,

namely the size and the two-phase angles (R, θ1, θ2) of all the occulters, such that,

in the absence of any control, the occulters’ trajectories come close to intersecting

the maximum number of star LOS within a given time span. This is achieved by

first choosing points in the (R, θ1, θ2) space that define the Quasi-Halos found in the

second section, and then integrating these forward in time ( See Figure 6.16 ). The

relative motion of these orbits with respect to the base Halo orbit is transformed to

inertial coordinates; an easily reachable region, such as +5, -5 degrees from the path,

is then defined; and the number of targets that would be enclosed in this region is

found. The 3 × N parameters that give the highest number of targets in the union

are taken to be the best initial guess for the formation.

These ideas were implemented by Princeton mechanical and aerospace engineer-

ing student Azuka Chikwendu in his undergraduate thesis [80]. Looking at spacecraft

placed on multiple Quasi-Halo orbits, he showed that the two-occulter mission de-

creases the Delta-V drastically, while the addition of a third occulter is of less value

for the mission. As an example from his work, the best set of three quasi-halo orbits
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Figure 6.16: Skyplot of the areas of the sky which are easily accessible by two different
Quasi-Halo orbits.

with 70,000 km radius around the halo orbit is shown in figure 6.17, which plots the

star coverage that would be achieved by these orbits for half of the five-year mission.

Figure 6.17: Ideal three-occulter mission, shown for 5 orbital periods, with 5 degree
range indicated [80].

6.7.2 Global Optimization with Constraints

In this section, the global optimization problem is formulated as in the single occulter

case, and it is solved using simulated annealing.

164



Mathematical Model

The full formulation for the mathematical model for the case with two occulters,

maximum two visits and no revisit of the same star with the same occulter, can be

written as:

Min
∑
i,j

c(i, j, ui) xij + c(i, j, vi) yij

s. t.
∑

i

xij = 1,
∑

i

yij = 1 ∀ j 6= i

∑
j

xij = 1,
∑

j

yij = 1 ∀ i 6= j

xij ∈ {0, 1}, yij ∈ {0, 1} ∀ i, j

u1 = 1, v1 = 1

2 6 ui 6 n, 2 6 vi 6 n ∀ i 6= 1

ui − uj + 1 6 (n− 1)(1− xij), vi − vj + 1 6 (n− 1)(1− yij) ∀ i 6= 1, j 6= 1

Nrevisit 6 abs(vi − ui) ∀ i , (6.13)

where xij and yij are 1 if arc(i,j) is in the tour of the first and second occulter,

respectively, and ui and vi are the positions of the ith target in the first and second

occulters tour. The cost matrix, c, is the same as in the single occulter case. Without

loss of generality, u1 and v1 can be set to different starting target stars. The more

complicated case, where the same occulter is allowed to image the same star more

than once, is not included in this dissertation.

Numerical Method: Simulated Annealing

I proceed as in the single occulter case, using simulated annealing to this time solve the

two-occulter global optimization. The results can be easily extended for formations

with more than two occulters.
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First, I define X, the vector which contains the visiting sequence of each star, as

well as the visiting partner, if they exist. However, this time, X includes the sequence

for two occulters. The odd elements of X refer to the identification number of the

star that is being imaged at that time by the first occulter, and the even elements

refer to that of the second occulter. The time interval between each imaging is fixed.

The telescope first images star X(1) using the first occulter. After time ∆t, it images

star X(2) using the second occulter, and then, after ∆t, it images star X(3) using the

first occulter, and so on.

For the constants in the algorithm, a cooling constant of ∼0.99-0.999 and an

initial temperature of approximately 100 degrees gave good results. I set the freezing

temperature to be one degree.

I used the same three-dimensional cost matrix, c, as is in the single occulter

simulated annealing algorithm. As for the functions, since even and odd elements

of X, the visiting sequence vector, define different occulters, the cost for the total

mission is the summation of the cost for each occulter. This can be expressed as

min
∑

k

c(X(k), X(k + 2), k) . (6.14)

Here, for summation over odd values of i, the cost associated with the first occulter

is obtained, while for summation over even values of i, the cost associated with the

second occulter is found.

I used the same neighbor function as in the single occulter case. The random

swap and mutations are kept the same, with the single difference that the swapping

of the consecutive imaging sessions is now equivalent to swap(X(k), X(k+2)) instead

of swap(X(k), X(k+1)).
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Results

I applied the simulated annealing method to the multiple occulter case. Figure 6.18

shows the optimal solution trajectory for a mission scenario consisting of two occul-

ters with 20,000 km radius separation from the telescope, and where no revisiting is

allowed with 1 week flight time.

Figure 6.18: The global optimal solution to the two-occulter formation, for 80 imaging
sessions of the top 100 TPF-C stars, with ∆t of 1 week and no revisiting.

In the simulated annealing process, as in the formation of crystals, the optimal

solution is obtained slowly by random moves. Figure 6.19 shows how the annealing

process is performed. As the temperature is decreased slowly, Delta-V decreases, and

the optimal solution is obtained.

The global optimal solution to a two-occulter formation is shown in figure 6.20.

The occulters are placed at 20,000 km radius separation from the telescope, and they

perform 110 imaging sessions of the top 100 TPF-C stars, in a 1-week flight time

between targets (each occulter takes 2 weeks to move from a target to another target

but the ∆t between imaging sessions for the telescope is 1 week) and randomly chosen

revisitable stars. For comparison, the single-occulter global optimal solution for the

same scenario with 2 weeks’ flight time is given in figure 6.9.

However, in order to obtain the same scientific achievement in a given mission
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Figure 6.19: The change in Delta-V as the temperature decreases in the simulated
annealing, for the optimization shown in figure 6.20.

Figure 6.20: The global optimal solution to the two-occulter formation, for 110
imaging sessions of the top 100 TPF-C stars, with ∆t of 1 week and 50 randomly
chosen revisitable stars.

lifetime, a single-occulter mission must reduce the ∆t to 1 week to make up for the

lack of a second occulter. The single-occulter mission for this specific case has a Delta-

V cost of 3800 m/s, while the two-occulter mission has a Delta-V requirement of 2000

m/s. This reduction in Delta-V due to the use of multiple spacecraft becomes roughly

equivalent to the reduction in Delta-V that would be achieved if the flight time of
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a single spacecraft mission were doubled. This is roughly equivalent to halving the

Delta-V cost; the fact that the occulters can take twice as long for the slews reduces

the Delta-V cost by half. Since this holds true generally, for all cases, I do not provide

further charts of the global optimal solution for the multiple occulter case.

Conclusion

As discussed previously, there are advantages to using multiple spacecraft. Compared

with the single-occulter case, only half the Delta-V is needed to obtain the same

scientific achievement, which means that the occulters can carry roughly half the

fuel on board. In the case of the continuous thruster, the thruster system can also

be scaled down. For solar-powered thrusters, the size of the solar panel for each

spacecraft can be reduced by one fourth. Also, the cost of a spacecraft is markedly

lower when it is mass produced than when it is a unique unit. Finally, the redundancy

in the system design is a good risk management strategy against the loss of the whole

mission in case of a failure in one of the occulters. Given these advantages, the option

of using multiple occulters must be studied thoroughly when possible mission designs

for an occulter-based telescopy mission are considered.
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Chapter 7

Conclusion
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A methodology to find the optimal configuration of satellite formations consisting

of a telescope and multiple occulters around Sun-Earth L2 Halo orbits was outlined.

The dynamics around L2 was examined with a focus on the Quasi-Halo orbits which

are of interest for occulter placement. A new fully numerical method which employs

multiple Poincaré sections to find quasi-periodic orbits around L2 was developed. Tra-

jectory optimization of the occulter motion between imaging sessions of different stars

was performed. The global optimization problem was solved for missions consisting

of a telescope and a single occulter employing heuristic methods. Then, these results

are extended to perform the global optimization for the multiple-occulter formation.

This dissertation introduced a baseline optimal mission design for the occulter-based

imaging mission, and enables a trade-off study comparing different occulter-based

approaches with one another as well as with their alternatives.
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