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Abstract

Occulter-based telescopy offers a promising new terrestrial planet-finding method-
ology that involves the formation flying of a conventional space telescope with a
large external occulter, which will block the light of a star and allow imaging of
its dim, close-by planetary companion. Recent advances in shaped-pupil technology
have enabled the design of occulters that have superior diffraction performance and
that can be manufactured easily. This approach is attractive because it eliminates
the precision-optical requirements of the alternative coronagraphic or interferometric
approaches. However, it introduces new scientific challenges in the area of precise
dynamics and control, which is the topic of this dissertation.

Due to the large distances between satellites, realignment is fuel intensive, which
increases the mission cost and reduces its lifetime. In order to overcome this problem,
this dissertation focuses on the trajectory design of the mask satellite and conducts
an optimization study to select the order and timing of imaging sessions.

The optimal configuration of satellite formations consisting of a telescope and
multiple occulters around Sun-Earth L2 Halo orbits is studied first. Focusing on the
Quasi-Halo orbits, which are of interest for fuel-free occulter placement, the phase
space around L2 is examined. The periodic orbits of interest around L2 are numeri-
cally computed and their stability properties analyzed.

Quasi-Halos are good candidates for occulter placement, as they are fuel-free orbits
and have large sky coverage with respect to the Halo orbit, where the telescope is
placed. With the aim of identifying these orbits, a new fully numerical method that
employs multiple Poincaré sections to find quasi-periodic orbits is developed. This
methodology has the advantage of very fast execution times and robust behavior
near chaotic regions that leads to full convergence. Its numerical implementations for
Lissajous and Quasi-Halo orbits are explained. These results are then extended from

the simplified three body model to find the orbits in the real solar system that have

il



the same characteristics.

Trajectory optimization of the occulter motion between imaging sessions of differ-
ent stars is performed using a range of different criteria and methods. This enables
the transformation of the global optimization problem into a Time-Dependent Trav-
eling Salesman Problem (TSP). The TSP is solved first for a formation consisting of
a telescope and a single occulter. Then, with the insight from the dynamical analysis,
multiple-occulter formations are analyzed and the global optimization is performed
for the multiple-occulter case.

For a concrete understanding of the feasibility of the mission, the performance of
an example spacecraft, SMART-1, is analyzed. The mission is shown to be feasible

with the current technology.
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Chapter 1

Extrasolar Planet Imaging and

Occulter-Based Telescopy



Studying terrestrial and giant planets outside the solar system is one of the primary
goals of NASA’s Origins Program. It is likely that the next decade will see NASA
launch the first in a series of missions dubbed Terrestrial Planet Finders (TPF) to de-
tect, image, and characterize extrasolar earthlike planets [1]. Current work is directed
at studying a variety of architecture concepts and the associated optical engineering
in order to prove the feasibility of such a mission. One such concept involves the for-
mation flying of a conventional space telescope on the order of 2 to 4 meter diameter,
in a Sun-Earth L2 Halo orbit, with a single or multiple large occulters, roughly 60 m
across and 50,000 km away. The occulter blocks the light of a star and allows imaging
of its dim, close-by planetary companion. Recent results in shaped-pupil technology
at Princeton have made the manufacture of such a starshade feasible [2, 3]. This
approach to planet imaging eliminates all of the precision optical requirements that
exist in the alternate coronagraphic or interferometric approaches. However, it intro-
duces the difficult problem of controlling and realigning the satellite formation. This
approach introduces scientific challenges in the area of precise dynamics and control,
which is my dissertation topic.

In this chapter, I first explain what a life-sustaining planet is and how such a
planet can be differentiated from other planets based on the spectra of the light that
is obtained via telescope imaging. Next, I discuss the scientific requirements and the
technological challenges associated with a planet-imaging telescopy mission. Then,
I describe a new approach, occulter-based coronagraphy, and I explain why it is a
good candidate for planet-imaging missions. Finally, I outline the organization of the
dissertation and explain how I approached the problems associated with the dynamics

and control of the telescope and the occulter formation.



1.1 Finding Extrasolar Life

1.1.1 Life-Sustaining Planets

In order to search for extrasolar life, we must first define what it means for a planet to
be life sustaining. The general astronomical understanding of a habitable planet is a
planet which can accommodate ”life as we know it”; in other words, where conditions
are favorable for life as it can be found on Earth. This region is called the habitable
zone and occurs in a star system where liquid water can exist. Figure 1.1 shows the
habitable zone parameterized in terms of the distance from a star and the mass of
a planet. As can be seen from the figure, new NASA missions such as the Kepler
mission [1] and the Space Interferometry Mission (SIM) [5] will be able to discover

possible life-sustaining extrasolar planets in the habitable zone.

1.1.2 Signs of Life

Today, over 270 planets have been discovered, starting with the first detection of
a planet several times the size of Jupiter by Mayor & Queloz in 1995 [7]. These
planets range in size from many earth masses, i.e., so called super-Earths, to many
times the mass of Jupiter. Of course, a distinction must be made between discovering
the existence of a planet and determining whether it supports life. Obtaining the
orbital parameters and mass of a planet through indirect observations will not suffice
for determining whether a planet sustains life. Instead, we must be able to directly
image the planet, so that the full spectrum, which gives the characteristics of the
planet, can be obtained.

Figure 1.2 shows the light spectrum data and the breakdown of the spectrum to
its components that would be obtained if we were to image Earth from an extrasolar
system [8]. In this figure we can see the spectroscopic biomarkers; the features in

an exoplanet spectra that a life-sustaining planet is expected to have. The main
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Figure 1.1: Semi-major axis vs mass of extrasolar planets. Shown in green is the
habitable zone. The capabilities of current and proposed NASA missions are overlayed

[6].

spectroscopic biomarkers are the existence of water, oxygen, ozone, and methane,
and the occurrence of a vegetation red edge. A habitable planet is expected to
contain large water bodies, which would lead to strong variability at 700 nm of the
spectroscopic data due to the presence of water clouds. An active plant life would lead

to the presence of free oxygen, which would in turn result in the presence of ozone.
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The atmosphere of planets with a low mass like Earth but without vegetation should
not contain methane due to stellar ultraviolet photodissociation; thus, its existence
would suggest a biological presence. As seen in figure 1.2, at around 750 nm, we

observe a vegetation red edge, which an Earth-like exoplanet might also exhibit [J]

[10).
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Figure 1.2: Earthshine spectrum and its components Woolf et al. [3]. In the figure,
I represents light intensity and A wavelength.

1.1.3 Challenges associated with imaging planets in the hab-

itable zone

Most astronomers now suspect that rocky and possibly Earth-like planets orbit around
nearby stars. To date, all known planets have been discovered by indirect means,

that is, by measuring the motion of light from the parent star. These methods are



insensitive to the smaller terrestrial planets of interest and do not allow the most
ambitious characterization. In order to capture the signs of life from a planet we
need direct imaging of that planet.

As seen in figure 1.3, which simulates how the Solar System would be seen from
a distant star, the direct observation of Earth-like planets is extremely challenging
because their parent stars are about 10'0 times brighter (in the visible spectrum) but
lie a fraction of an arcsecond away. Since the Earth atmosphere blurs the view of
the stars, telescopes that are stationed on Earth do not enable such high precision

imaging. Instead, space-based telescopy is required.
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Figure 1.3: Simulation of light spectrum of the Sun and planets as seen from a
distant star Des Marais et al. [I1]. In the figure, I represents light intensity and A
wavelength. ’Star’ stands for the Sun, and the solar planets are identified by their
initial letters.

Many difficulties are involved in trying to achieve the high contrast necessary to



image a dim planet orbiting its parent star. Coronagraphy methods have been the
most promising solution to this problems to this date. Shown in figure 1.4 is the draw-
ing of the proposed NASA TPF-C mission (C stands for Coronagraph). Originally
invented by Bernard Lyot to image the corona of the sun [12], coronagraphy is an
optical technique which removes the starlight from the final image, while minimally
affecting the planet, or which modifies the point spread function of the system so
that the contrast is unity at the planet location. It consists of a dark spot at the
image used to block the central core of the Airy pattern and a smaller aperture at a
reimaged pupil to remove the residual stellar light. Building on this idea, different
types of coronagraph designs that would give the needed high-contrast images have

recently been designed at Princeton’s TPF group, which is headed by Jeremy Kasdin.

An example is shown in figure 1.4.

Figure 1.4: On the left, an artist’s illustration of the TPF-C spacecraft [13]. On
the right, an optimized coronagraph pupil design by Vanderbei that can achieve the
needed contrast for exoplanet imaging if used with TPF-C [3].

The main challenge associated with designing a high-contrast imaging system is
the scattered light problem, which denotes the scattering of light in the final im-
age into the location of the planets point spread function due to aberrations in the
optics. Due to manufacturing imperfections, the surface figure of all mirrors and

lenses contains small variations from the desired shape, known as aberrations. This



negatively impacts imaging performance. Minor errors in reflectivity also affect the
quality of the final image. The combined amplitude and phase errors in the optics
typically degrade contrast by five or more orders of magnitude from the perfect optics
assumption. This becomes the critical design driver in any planet imaging telescope.
Until recently, solutions primarily focused on including an adaptive optics system in
the telescope. Such a system consists of multiple deformable mirrors that correct
the aberrated wavefront [11, 15]. Such a system measures the errors in the final im-
age, estimates the electric field, and computes corrections for the deformable mirrors.
Notwithstanding the recent progress in adaptive optics, such systems remain costly

and complex.

1.2 External Occulter for Exoplanet Imaging

An alternative approach to high-contrast imaging of extrasolar planets has been pro-
posed by Cash and Kasdin [9, 10, 16]. In this approach, an external screen or occulter
is used to block the wavefront from the star before it ever enters the telescope. The
poor diffraction performance of simple occulters has hitherto been an obstacle to
the wide acceptance of this approach. Fortunately, recent results in shaped-pupil
technology at Princeton have shown that these problems can be overcome with the
manufacture of a special starshade occulter. An example of a promising new occulter
design by Vanderbei, with a symmetric flower-shaped starshade, is shown in figure
1.5 [2]. This starshade is optimized for planet imaging by creating very high contrast
at small angles and suppressing the parent stars competing light. Since no starlight
can reflect off the surface aberrations, the need for wave-front control is eliminated.
Figure 1.6 shows a sketch of a sample occulter-based telescopy mission, consisting
of a roughly 50-m starshade flying 50,000 km from a conventional, 2-4-m diameter

telescope observatory [10]. The occulter significantly enhances the observatorys ca-



Figure 1.5: A multi-petal occulter design optimized for maximization of starlight
suppression [2].
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Figure 1.6: Occulter-based extra-solar planet-finding mission diagram [10]

pabilities and lowers the exoplanet mission cost by avoiding the need for expensive
telescopes such as those required for suggested coronagraph and interferometer mis-
sions such as TPF-C and TPF-I. Because the occulter is not built into the telescope
as an add-on instrument, scattered light is reduced due to the existence of fewer op-
tical surfaces. This is due mainly to the fact that, as indicated above, the external
occulter circumvents the use of high-precision wavefront control in the optical design.
There are no unwanted diffraction spikes resulting from coronagraph supports, and
the complexity of telescope instruments, such as the small-scale imperfections in the
manufacturing and surfaces, is reduced. However, it introduces the difficult problem
of controlling and realigning the satellite formation.

As shown in figure 1.7, the baseline design of this mission suggests the placement of
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Figure 1.7: A schematic diagram of occulter mission orbits projected into the ecliptic
plane [10]

an occulter satellite and a telescope near a Halo orbit about the Sun-Earth L2 point.
Spacecraft mission design around the L2 libration point has been used since the ISEE3
mission in 1978 due to its several advantages (see publications by Farquhar et al. for
more details [17, 18, 19, 20]). The energy level of the libration point orbits are close
to that of the Earth and the unstable manifold of L2 Halo orbits passes very close to
Earth. As a result, reaching these orbits is easy and requires minimal fuel. Since the
Sun, Earth and Moon are all in the same direction with respect to Sun-Earth L2 point,
half of the celestial sphere is available for imaging at any given time. The constant
distance to Earth also makes it relatively easier to keep communication with spacecraft
on L2 libration orbits than if it were on heliocentric drift-away orbits. Finally, L2 has
a stable thermal environment, which is a requirement for the temperature-sensitive

equipment — optical systems, lenses, and mirrors — on the telescopy mission under

study.

1.3 Dissertation Outline

This dissertation is presented in six chapters, the first of which is this introduction.

The remaining chapters are outlined below:
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Chapter 2: Dynamical Analysis of the L2 Region
This chapter focuses on the underlying physics and qualitative behavior of the
natural dynamics of this system. I review the relevant literature on the bounded
motion of a small point-mass particle near the L2 point of the Circularly Re-
stricted Three Body Problem (CRTBP). These fuel-free orbits are useful as the

point of departure for the occulter mission design.

Chapter 3: Periodic Orbits of Interest Around L2: Numerical Methods
The horizontal Lyapunov, the vertical Lyapunov, and the Halo periodic orbits
around the L2 point are obtained numerically, and their stability properties are
examined. The real orbits in our solar system that correspond to these periodic

orbits of interest are then computed.

Chapter 4: Multiple Poincaré Sections Method for Finding the Quasi-Halo
and Lissajous Orbits
Quasi-Halo orbits are good candidates for occulter placement, as they are fuel-
free orbits and have large sky coverage with respect to the Halo orbit, where
the telescope is placed. With the aim of identifying these orbits, I develop a
new numerical method that employs multiple Poincaré sections to find quasi-
periodic orbits. This method converges to the desired orbits quickly, and it
exhibits robust behavior near chaotic regions. Its numerical implementation for
Lissajous and Quasi-Halo orbits are explained. These results are then extended
from the simplified three body model to find the orbits in the real solar system

that have the same characteristics.

Chapter 5: Finding the Optimal Trajectories
The optimal control problem of the realignment and Earth to Halo transfers is
solved. Different implementations, including the fuel- and time-optimal trajec-

tories that take the occulter from a given star Line-Of-Sight (LOS) to another

11



LOS, and from Earth to Halo, are numerically calculated using Euler Lagrange,

shooting and nonlinear programming approaches.

Chapter 6: Global Optimization of the Mission: The Traveling Salesman
Problem
The global optimization problem of finding the sequencing and timing of the
imaging sessions is examined. By including the telescopy constraints, the prob-
lem becomes a Dynamic Time-Dependent Traveling Salesman Problem (TSP)
with dynamical constraints. Simulated annealing and branching heuristic meth-
ods are employed to solve the TSP. Global optimization is performed for both
the single and multiple occulter missions. A feasibility study of the mission is
performed by analyzing possible scenarios with the capabilities of the SMART-1

spacecraft.

12



Chapter 2

Dynamical Analysis of the L2

Region
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As discussed previously, the aim of this dissertation is to find the "best” trajec-
tories for each spacecraft that is part of the occulter-based telescopy mission. In
three-dimensional space, this translates into the optimization of 3 x N/ control
forces in a 6 x (Nj Je+ Ng,) dimensional dynamical system, where Nj /e and Ny, are
the number of spacecraft and gravitational bodies, respectively. In order to reduce
the complexity of the problem, I first analyze the control-free natural dynamics of a
single spacecraft under the simpler gravitational model.

This chapter focuses on the underlying physics and qualitative behavior of the
natural dynamics of this system. More specifically, I review the relevant literature
on the bounded motion of a small point-mass particle near the second Lagrange
point (also referred to as the libration point) of the Circular Restricted Three Body
Problem (CRTBP). This analysis helps identify the suitable regions of the phase space
for spacecraft placement.

In this chapter, I first derive the equations of motion for the CRTBP system
in a rotating frame. I then find the equilibrium points of this system. Linearizing
the equations of motion around the L2 equilibrium point, I categorize the types of
motion in the vicinity of the L2 point. Expanding the equations of motion in higher-
order Legendre polynomials, I apply the Lindstedt-Poincaré procedure to obtain the
periodic halo orbits, which do not exist in the linearized system. I then apply the
center manifold reduction procedure to obtain the complete periodic phase space in
the extended L2 neighborhood. These fuel-free orbits provides the point of departure

for the occulter mission design.
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2.1 Circularly Restricted Three Body Problem -
Equations of Motion

The Two-Body Problem, which can be solved analytically, describes the motion of
two bodies under the effect of their mutual gravitation interaction given their initial
conditions and masses [21, 22, 23]. There is no closed-form solution for the extension
of this problem to three bodies. Euler suggested a simplification of this Three-Body
Problem called the Circularly Restricted Three Body Problem (CRTBP) [24]. In the
CRTBP, the first two bodies, m; and ms, called the primaries, are in circular motion
around their center of mass, which is the result of their mutual interaction based
on two-body gravitational dynamics. The third body, mgs, which is free to move,
is assumed to be massless and hence to have no effect on the motion of the other
two bodies. The problem is to find the motion of the third body as determined by
the other two constrained bodies’ gravitational force. These assumptions reduce the
system’s degrees of freedom from nine to three, thereby increasing the tractability of
the solutions while still giving insightful information. The CRTBP is a useful model
for spacecraft mission design since the eccentricities of major planets in the Solar
system are small, and the mass of a spacecraft is negligible in comparison to the
celestial bodies.

In order to write the equations of motion under Newton’s law of gravitation, an
inertial frame of reference must be specified. The origin of the Newtonian inertial
frame, I, is located at the center of mass of m; and mo, O. I has coordinates X,Y, Z,
such that the circular motion of the primaries is in the X, Y plane and the angular
rotation of the primaries is in the positive Z direction. Without loss of generality, we
assume that the first primary is heavier than the second primary, m; > ms. In the

inertial frame I, the equation of motion of mg under the gravitational forces of m;
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and my 1s

a2’ G G
r _ s ri — 77127;13 rs, (2.1)
[r2]|

Ma—— =
Yar? I

where r; and ry are the relative positions of ms with respect to m, and ma, respec-

tively, and G is the universal gravitational constant.

S/

Figure 2.1: Sketch of the CRTBP in the rotating frame R, where the Sun, S, is m;
and the Earth, E, is my, and S/C refers to the spacecraft, ms.

In order to reduce the number of parameters and to generalize the solutions, the
variables of the problem are typically nondimensionalized. The unit of mass is chosen
as the total mass of the two main bodies, M = m + my; the distance unit is chosen
as the distance between the two main bodies, D = ||d; || + ||d2||; and the time unit is
chosen such that the period, T, of the circular motion is 27. Under these choices, the
universal gravitational constant, G, becomes unity in order to enforce the two-body
period equality, T = 27TMB+/G21/2. Angular velocity, w = 2%, becomes unity as well. As

a result, the nondimensional system depends only on a single parameter. This is the

mass parameter, p, defined as the ratio of the small body’s mass to the total mass:
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p = 52. Then, the nondimensional masses of the primaries can be expressed as

m = l—p (2.2)

me = W. (2.3)

Since the distances of the primaries from the center of mass are inversely proportional

to their masses, the nondimensional distances can be expressed as

il = (2.4)
ldall = 1—p. (2.5)
The nondimensionalized equation of motion becomes

425" 1—p W
Vo — 5 3r1 - S 312
dt? ]| 2]

(2.6)

In the inertial frame, I, the positions of the primaries are time dependent, making
the motion difficult to analyze. The time dependence of the equations of motion can
be eliminated by employing a rotating frame, R, with coordinates x,y, z. R is defined
with the origin at O; x directs from my to mo; y is perpendicular to x and lies in the
plane of the primaries” motion; and z coincides with Z (see figure 2.1). R is called
the synodical frame.

In order to write the equations in R, the acceleration of ms in the inertial coor-

a2rl

dinates, &

, should be expressed in terms of the rotating coordinate elements, x, ¥,
and z. The kinematical relationship between the acceleration in the inertial frame [
and the rotating frame R is

&7’ a2

Tm SUXFAIX@XD) WX (2.7)
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where & is the angular velocity of the rotating frame. In the nondimensional units, &
is equal to 1- Z; thus, the first term on the right hand side of equation 2.7 is nullified,
and the inertial acceleration is simplified to

N
RS

i =@ -2p—x)T+ (J+20—y)y+22 (2.8)

where the short-hand notation ~ is used for the time derivative of a scaler. Plugging

equation 2.8 into equation 2.6, the final form of the equation of motion is obtained,

(I—p)(z+p) pe—1+4p)

i o= 4x— S .
1] 2]
) . (I-py  py
y = 204y - = T
(oY o
B € ) (2.9)
[

In these equations, the nondimensional positions with respect to the primaries are

r1 = (x4+wpwz+yy+ 22 (2.10)

3 = (z—14p)d+yj+22. (2.11)

Defining an effective potential, U(z,y, 2), as

. L e
U = 2.12

the equations can be expressed in a simpler form,

Oz
dy
. OU(x,y,2)
Z = P . (2.13)
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Defined by the differential equation 2.13, CRTBP has a first integral called the

Jacobi Constant, C, which is given by

C(x,y, 2, 2,7, 2) = —(22 + 9* 4+ 22) + 20U + pu(1 — p). (2.14)

Differentiating C' with respect to time, it can be observed that it is time invariant

and thus a constant of motion:

d d -
d_tC = —Q(xx—i—yy—lizz)—f—QEU ) )
ou ou ou d -
oo+ %% 4 (—os 1+ YN 49U 9 &
<(y+ax)x+( x~|—ay)y+azz>+ dtU
ou . oU . oU d -
<axaﬁ+ayy+8zz>+ dtU 0 (2.15)

The existence of this integral of motion is due to the time-independent Lagrangian
nature of the CRTBP differential equation system (equation 2.13), which leads to

energy conservation (see [25] for details).

2.2 Equilibrium Points

At the equilibrium of a differential system, the state variables stay constant for all
time. Thus, in order to find the equilibrium points of CRTBP, all derivative terms in

equation 2.13 are set equal to zero:

or 15 =
ou (I—p) n )

0 = &y (1 B S/ A 2.17
oy STk (217)
ou < (1—p) p )

0 = —=z|-— — . 2.18
- L (2.18)
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The five sets of values that satisfy these equations are called the Lagrange or the
libration equilibrium points. It is apparent from equation 2.18 that, at any equilibrium
point, z should be equal to zero. There are two possible solutions for equation 2.17;
y = 0ory # 0. In the former case, there are three x values that satisfy equation 2.16

([24]). These are the collinear Lagrange points Ly, L, and L3 with coordinates

L1 = {1_ﬂ_,}/17070}’ (219)
Ly = {1 _”+’727070}7 (220)
Ly = {_:u _737()’0}' (221)

where v1, 72, and 73 refer to the distances between the collinear Lagrange points and
their closest primaries. These are uniquely given by the positive roots of the following

quintic equations:

W= B=w+B—=2u — i +2un —p=0, (2.22)
Y4+ (3—p)vs + (3 —=2u)7s — 3 —2uye —p =0, (2.23)

7+ Qs+ (2093 — (1= )i —2(1 = 2u)ys — (1 —p) = 0. (2.24)

The other set of equilibrium points arise when y # 0. In this case, r; = ro = 1 should
be satisfied for equation 2.17 to hold. The positions of my, ms, and mgs then form
an equilateral triangle. There are two equilibrium points that satisfy this constraint;

these are L, and Ls; with positions

Lo -2 %0y, (2.25)
Ly — {u—%,—\/;,()}. (2.26)
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Figure 2.2: Sketch of the locations of the Lagrange points [20]
2.3 Series Expansion around L2

While the ultimate aim is to characterize motion in the neighborhood of L2, analyt-
ical solutions are not available. I therefore proceed with asymptotic analysis, which
requires series expansion of the expressions on the right hand side of equation 2.13.
It is necessary to first change the variables such that the coordinates themselves are
small parameters. Subsequently, an appropriate expansion method is employed to

obtain the full series expressions.

2.3.1 Translation of L, to the origin, and rescaling

In order to linearize CRTBP around the L, point, which has the coordinates {1 —
i+ 72, 0, 0}, the equations must be written in a different set of coordinates, where
Ly is at the origin. In the next section, I will perform asymptotic analysis in the
neighborhood of L, which extends from L2 to ms. Following Richardson [27], I

therefore change the unit of distance from D, the distance between the primaries, to
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~9, the distance from L2 to ms, since this is more in line with the length scales of the
problem. The distance unit rescaling ensures that the series expansions have good
numerical properties. In order to translate Ly to the origin and rescale the units, the

following change of variables is applied:

Tnew = 2.27
Y2 ( )
Yy

new - 228

y - (2.28)
z

Znew = — 2.29
V2 ( )

(2.30)

The mass unit is kept as M. Time unit is chosen such that the gravitational constant,
(7, is unity in the new unit system as it was before. In the new time unit, the period

3/2
of the circular motion of the primaries, T, is 27 (%) , as a result of the Keplerian

D3/2

2izgiz- Lo simplify the equations, we

period equation for the primaries, T = 27

define a new variable, v,

a2
L=
Then, the period of the primaries is T' = 27rfyL’%, and the angular velocity, w = 2%,

is VL%- Change in the unit of time scales the time derivative operator, °, in the new
unit system by ’yL%. To keep the differential equations consistent, we define a new

time variable, s,
S £ ,VL%t )
and a derivative with respect to this new time variable,

ds

s d
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This notation enables the use of the old differential equations by only replacing, °,

with, . From here on, subscripts for Z,cw, Ynew and 2., are dropped for convenience.

2.3.2 Series Expansion of the Equations

The right hand terms in the equations of motion, equation 2.13, are expanded using

the fact that

||r+p|| Z

(%)n (2.31)

where P, () are the Legendre polynomials, and

p-r
cos(a) = — . (2.32)
Hﬁl\ ]|
Defining p'= z,y, z, distances to primaries can be written as
— 1 A —
rim = (—+LDz+p (2.33)
L
ry, = T+4/p. (2.34)

Using equations 2.31-2.34, the gravitation potential can be expanded in Legendre

polynomials around L,

AT S (7)) (235)

n>2

where p = ||g]] and the ¢, coefficients are

Cn = (=1" (u + %) . (2.36)

fyL3 (1 + ,-)/L)n+1
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Thus, the series expansion for the effective potential, U, in equation 2.12 becomes

_ I2+ 2 1_
o - AT R
2 [E A

((1 + 202)x2 + (1 — 02)y2 _ ngQ) + chpnpn (%) . (237)

n>3

DO | —

Substituting the new coordinates in equation 2.13 and employing the U expansion,

the equations of motion become:

0= x = " x
2" =2y — (14 2c)x = E chp P, (;) = Z(n + 1)e,1p" Py, (;)

n>3 n>2
0 = x - - (x
Yy n>3 p n>3 P
0 — x = - (x
2= — chp”Pn (—) = chzp"_2Pn <—) . (2.38)
02 n>=3 p n>3 P
where
3 [(n—2)/2] .
Pn = Z (3 —+ 4k — 2n)Pn,2k,2 (-) s (239)
k=0 P
and the bracket operator, [ ], gives the integer part of a real number.

2.4 Analysis of the Linear Part around L2

Before looking at the more complicated non-linear dynamical system, I investigate
the linearized system to gain insight into the stability and the structure of the phase

space. Ignoring the second and high-order terms in equation 2.38, the linear equations
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of motion are

" =2y —(14+2c)r = 0
v'+22" + (= 1)y = 0

2 ez = 0. (2.40)

The linearized motion in the z —y plane and in the z direction are independent of one
another. For the purpose of our studies, which focus on the motion around the Earth-
Sun L2 with p = 3.040423398444176 x 1075, the ¢, constant can be obtained from
equation 2.36 as 4.006810788883402. Noting that co > 0, motion in the z direction is
a simple harmonic oscillator. To study the in-plane motion, the differential equations

are written in the first-order form:

T 0 0 1 0 x
d 0 0 0 1
- I _ 1. (2.41)
bl (1+ 2¢y) 0 0o 2| |«
Yy’ 0 —(ce—1) =2 0/ \¢
This system has four eigenvalues, which are
— 24+ +/9c%? -8
€12 = A==+ \/CQ + @ @
V2
_ 21 /9,2 —
€34 = Liv = +i Ve + 2+ Ve — 8o (2.42)

\/§ )

where \ and v are positive constants. This can be shown through algebraic manip-
ulation for p < % [24]. Thus, the planar system has two real eigenvalues; A and —\
, corresponding to the divergent and convergent modes, respectively, and, two imag-

inary eigenvalues, v, corresponding to the oscillatory modes. The corresponding
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eigenvectors for these modes are

1 1 1 1
—0 o ik —ik
‘7/\ = 7‘7’*)\ = 7‘7*1/ = 7‘_;1/ = ) (243)
A —A w —iv
—Ao —\o —vk —vk
where
2\
= — d
g A2 + Cco — 1 At
242 1
kE = virietl ' (2.44)
2v
The general solution to the linear ODE can then be written as:
x(s) 1 1 cos(vs) sin(vs)
y(s —0 o —k sin(vs k cos(vs
( ) = OleAS + CQG_AS + 03 ( ) + 04 ( )
2'(s) A —A —v sin(vs) v cos(vs)
y'(s) —\o —\o —vk cos(vs) —vk sin(vs)
(2.45)

The x — y plane has a center x saddle structure. This can be visualized by drawing
the projection of the motion in these subspaces onto the x-y coordinates, by ignoring
the velocity components (See figure 2.3). Including the z-direction mode, the linear
phase space around the Lo point has the center x center x saddle structure.

Saddle behavior around the Lagrange point can be utilized to design efficient
trajectories that veer in and out of the libration region for spacecraft missions. Fur-
thermore, analyzing the stable and unstable manifolds, it can be shown that there
exists a heteroclinic connection between the Ly and Lo points [28, 25]. This charac-

teristic is useful in mission design, such as the GENESIS mission trajectory to move
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Figure 2.3: Projection onto the x-y coordinates of the saddle subspace (on the left)
and center subspace (on the right) of the linearized planer motion around L2

between Sun-Earth L1 and L2 [29, 30].
Because this dissertation focuses on the types of motion that stay around the Lo
region for all time, i.e. the libration orbits, this stable and unstable behavior will not

be analyzed further. Instead, I focus on the librational motion.

2.5 High-Order Analysis (The Lindstedt-Poincaré

Procedure and Halo Orbits)

As seen above, there are periodic (and quasiperiodic) orbits near the collinear libration
points. I now turn to higher-order approximations for further insight.

Without loss of generality, if we restrict the initial conditions such that divergent
motion is not allowed, i.e. that the stable and unstable modes in the x-y plane are
excluded, we obtain the linear quasi-periodic orbits around L2, which can be written

in compact form as

x = —Agcos(vs+ 9)
y = kAgsin(vs+ @)

z = A,cos(w,s+ 1), (2.46)
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where w, = /cy. In the general case, when the in-plane and out-of-plane frequencies

s
Wz

are not commensurable, i.e., when #+ Z—; where i, and iy are integers, Lissajous
orbits are obtained. In the linear analysis of the Earth-Sun CRTBP L2 point, these

frequencies,

v = 2.073256862131411 and

w, = 2.001701973042791 , (2.47)

are not commensurable. As a result, there are no three-dimensional periodic orbits
in the linear L2 system. However, as we move further away from the origin, and A,
and A, increase, these amplitudes may affect the frequencies » and w, in a nonlinear
fashion. Since the frequencies in the x-y plane and in the z direction are very close
to one another, it makes intuitive sense to seek the possibility of 1-1 commensurate
nonlinear three-dimensional orbits. When the in-plane and out-of-plane frequencies
are equal, i.e. v = w,, 1-1 commensurable periodic orbits are obtained. These
orbits were first discovered by Farquhar, who coined the term “Halo” orbits due to
the resemblance of the Earth-Lunar L2 Halo orbits to a halo when seen from Earth
31, 32, 33].

The linearized equations give the first approximation for this type of periodic
motion. In order to find the solutions for the Halo orbits up to the third order,
I use Richardson’s application of the Lindstedt-Poincaré successive approximation
technique [27]. In the Lindstedt-Poincaré procedure, the frequency correction for the

periodic motion is expanded in powers of the amplitude O(A?),

wzl—i—an, wp < 1, (2.48)

n>1

where the coefficients w,, are chosen to remove the secular terms at each step.

A new time variable, 7 = ws, is introduced, and the equations of motion 2.38 are
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expanded up to the third order, which yields

3
Wi — 2wy — (14 2c)z = 503(2x2 —y? — 2%) + 2c4w(22% — 3y* — 32%) + O(4)
2, 1 / 3 2 2 2
wY" + 2w + (e — 1)y = —3czxy — §y(4x -y —27)+0(4)

3
W2+ = —czzz— §z(4x2 —y? = 2%+ 04). (2.49)
It can be shown that the choice of
wy =0 and wy = 542+ 5542 (2.50)

removes the secular terms up to third order, with the requirement that in-plane and

out-of-plane amplitudes and phases satisfy the following conditions:

b o= gb—l—ng, n=1,3. (2.51)
For lengthy variables, [, ls, s1, so and A, see [27]. From these equations, we see

that the smallest Halo orbit occurs when A, = 0, which, in the Sun-Earth L2 case,
corresponds to approximately A, = 200,000 km.
Using the frequency correction and the phase amplitude constraints, the third-

order solution of the Halo orbit is

T = ag A2 4 agnA? — Aycos(Ty) + (a3 A2 — agyA?)cos(27))

+ (a3 A — azy A, A?))cos(311)
y = kAgsin(my) + (by A2 — by A%)sin(211) + (b1 A2 — bsy A, A%)sin(37)
z = dp(A,cos(my) + da AL A, (cos(2m) — 3)

+(d3p A, A2 — d31 A%)cos(3m)) (2.52)
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where

d0p = 2—m, n=1,3. (2.53)

Depending on the value of n, there are two types of Halo orbits, called the northern
(n = 1) and southern Halos (n = 3), which are the mirror images of each other with
respect to the x — y plane. This is due to the CRTBP’s mirror symmetry across the
z = 0 plane, that is, the equations of motion are invariant under the transformation:
{z,y, z, &, 9, 2} = {z, y, —2, &, y, —2}. Figure 2.4 shows an approximate northern

Halo orbit obtained via the Richardson formulation. While it is possible to extend

1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.006 1.007 1.008 1.009 1.01 1.011 1.012 1.013
X(AU) X(AU)

0
Y(AU)

Figure 2.4: Sample northern Halo orbit approximation via the Richardson formula-
tion.

this analysis further to higher orders (see [31]), the Richardson results are adequate
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for a quantitative understanding of the Halo orbits and as an initial estimate for the

numerical procedure that will be used in the chapters to follow.

2.6 Reduction to Center Manifold

In the previous sections, I first looked at the linear phase space around L2, and then at
the higher-order series solutions to find an approximation for the Halo orbits. To gain
more insight into the periodic and quasi-periodic librational motions, I now turn to an
analysis of the full periodic subspace, i.e. the center manifold around L2. This can be
done by separating the periodic and divergent manifolds through the center manifold
reduction technique. This method is based on symplectic Lie-transformations on
the series expansion of the Hamiltonian. Here, I explain how the center manifold
reduction technique is applied to CRTBP, and I summarize the results obtained by

Jorba and Masdemont in [35, 30].

2.6.1 Transformation into complex normal form

Introducing new momenta,

Pz = T =Y
by = y/ +x
p. = 2, (2.54)

the corresponding Hamiltonian for equation 2.38 becomes

Lo 2 2 S n x

n=2
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To be able to apply the Lie series procedure, the quadratic part of the Hamiltonian,

which corresponds to the linear ODE, must be in the normal form,
Hy = \ip, +v(§° +5,%) +w.(2* + 5.7, (2.56)

where )\, v and w, are the eigenvalues of the linear ODE system as defined previously.
Analyzing the eigenvectors from the last section, it can be shown that the following

symplectic transformation takes Hs into the normal Hamiltonian form Ho,

i 2 0 0 0 -2 AN
g Aticrl 1/27?20271 0 ,\72;1271 0 0 y
z _ 0 0 ﬁ? 0 0 0 2
Do A2+§1@+1 u2+§§2+1 0 A+2sc12+1 0 0 De
ﬁy )\3—‘,-(18:262))\ 0 0 _)\3—(18:202)>\ y3+(ls;202)l/ 0 py
D 0 0 0 0 0 /W, D
(2.57)
where,

512 /20((4 + e2) X2 + 4+ 5y — 63)

5= \Jw((44 Bea)r? — 4 — 5ey + 6c3) (2.58)
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Finally, H, is transformed into the complex normal form in order to simplify the

symbolic numerical manipulations and to keep the notation concise.

T 1 0 0 0 0 0 T
0 0 % 0 0 —J% 0 7
as| [0 0 5 0 0 -3 3 (259
i 0 0 0 1 0 0 P
D2 0 —% 0 0 2 0 Dy
ps 0 0 -5 0 0 5 D=

This transformation brings the quadratic Hamiltonian to its complex normal form,

Hy(q,p) = Aqup1 + ivgaps + iw.qsps - (2.60)

Then the expanded Hamiltonian becomes:

H(q,p) = Halg,p)+ > Halg,p)

n>3

= A1+ ivgeps +iwasps + Y Ha(4,p) (2.61)
n>3

where H,, is the ny, order homogenous polynomial of the canonical coordinates and

momenta

H,(q,p) = Y hid a5 e pi*p e | (2.62)
i T=n

and where the short notation k = {k1, ko, k3, k4, ks, ke } is used with || ||* as the usual

I-norm given by ||k||* = |ky| + |ko| + k3| + [ka| + |ks| + | ke
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2.6.2 The Procedure Explained

The aim of the center manifold reduction is to separate the motion of the center part
from the saddle part. This is achieved by applying successive canonical transforma-
tions to H, which results in the transformed Hamiltonian, A, whose exponents of ¢;
and p; are always the same, i.e. k; = ky. Eliminating all the polynomials, where

k1 # k4 up to the Ny, order, we obtain a new Hamiltonian of the following form,

N
H(q.p) = Aip1 + ivgaps + iw.qsps + Y Hu(qip, 42, q3,p2,p3) + R(q,p) . (2.63)

n>=3

It is easy to see that [ = ¢p; is a first integral of motion when the effect of the
residue, R(q, p), is ignored. Using the fact that the time flow of this system is given

by Hamilton’s equations,

oOH OH
)= ——, (= — 2.64
the constancy of I can be observed by differentiating it:
dl OH OH
— = N5 — Py
dt Op oq
= 0. (2.65)

Hence, if I = 0 at time zero, it is zero for all time and the truncated Hamiltonian, H,
is constrained to be a function of only ¢o, g3, p2, and p3. The origin of the reduced

H(0, g2, g3, p2, p3) system is an elliptic equilibrium point. It is restricted to a manifold

tangent to linear center space, hence it is reduced to the center manifold.
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2.6.3 Implementation of the Lie Series Method

Center manifold reduction is achieved by using successive canonical transformations,
which are almost identity, through the Lie Series method. This method uses the time
flow of a generating function, G, to canonically transform the original Hamiltonian

into A through the following Lie series:

_ 1 1
H=H+[H G|+ 5[[H, G|, G] + 5[[[1‘[, G|,G), G+ ..., (2.66)
where |-, -] is the Lie bracket operator. H is given in equation 2.61 and we want

H to be of the form given in equation 2.63. As a result, the problem is reduced to
finding G in the polynomial equation 2.66. Similar to the expansion of H via the

equations 2.61 and 2.62, H and G are expanded in power series with the notation,

G = Ga+Gs5+G4+ ...

H = Hy+H;+H,+ ..., (2.67)

where H,, and (,, are ng,-order homogenous polynomials given as

Gu = D ndi @ a5 P DS’
K=

Hy = Y hlap)" 6 e’ (2.68)
¥ ey

The problem of finding the transformation is now converted into finding the coeffi-
cients g¥. Using the Lie bracket property that [H,,, G,,] is a homogeneous polynomial

of degree n + m — 2, the expanded equation is split up into polynomial equations of

35



increasing degrees:

H, = H,
Hy = Hs;+ [Hy, G

1
Hy = Hy+ [Hy, Gy + [Hs, G3] + 5[[H27 Gs), G3]

(2.69)
For k vector values with ki # k4, H is zero. Thus, the equations simplify to
0 = Hz+ [Hy, Gs
1
0 = Hi+[Hy, G4+ [Hs,Gs| + 5[[H2, Gs), G]
(2.70)
For the first equation, the solution is
k (k4—kl)>\+i(k5:Z§)V+i(k6—k3)wz for &, 7& ks & HkHl =3
93 = (2.71)
0 otherwise.

Then, the equations given in 2.70 are solved sequentially to first find G, then Gy,
and so on, in order to obtain the generating function up to a finite truncated order.
Since ky # k4, the denominator term is non-zero, and the series solution diverges very
slowly.

Once the manifold reduction is complete and G and H have been obtained, the
qualitative structure of the center space can be analyzed. In the case of expansion
around L2, this manifold is four-dimensional and difficult to visualize. To visualize
the qualitative behavior on a two-dimensional figure, the system must be reduced
by two more dimensions. This is achieved by first restricting the system to a fixed

Hamiltonian and then taking a Poincaré section through the surface ¢z = 0. Now we

36



can see the projection of the system to two dimensions. Figure 2.5 shows a collection
of two-dimensional plots representing the dynamics in the periodic phase space with

different Hamiltonians.

05

04}

03}

Figure 2.5: Poincaré sections of the center manifold for different Hamiltonian values

[30].

While analyzing these plots, it is important to keep in mind that these are Poincaré
sections. In other words, the fixed points correspond to periodic orbits in the center
manifold, and the closed curves correspond to quasi-periodic orbits. The fixed point
at the central part of the plot corresponds to the out-of-plane periodic orbit, whose
linear solution is given in Eqn 2.45. Surrounding it are the Lissajous orbits. In the
figure, it can be seen that, after a certain increase in the energy level, two lobes
appear. These are the north and south Halo orbits, which are surrounded by quasi-
periodic orbits called the Quasi-Halos. They bifurcate from the in-plane periodic

orbits. These orbits and their properties are discussed in the next chapter.
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Chapter 3

Periodic Orbits of Interest around

L2: Numerical Methods
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The second chapter looked at the dynamical properties and the low-order analyt-
ical solutions for the periodic and quasi-periodic orbits around L2 for the simplified
CRTBP. In this chapter, I find the real orbits in our solar system that correspond
to these analyzed orbits. The chapter proceeds in two sections. The first section ex-
plains the numerical tools that are used to find the exact solutions and the stability
properties for the periodic orbits in the CRTBP. These methods are then applied to
find the horizontal Lyapunov, the vertical Lyapunov, and the Halo orbits, and their

stability properties.

3.1 Numerical Tools for Periodic Libration Orbits
around L2

Finding periodic orbits of a first order ODE system can be formulated as a boundary
value problem (BVP). Shooting algorithms were the first methods to be employed
to solve these types of BVPs. Their easy implementation and lack of computational
intensity ensures their continued popularity as BVP solving methods. Howell obtained
the Halo orbits numerically for the first time using a shooting method, [37].

The accurate analytical approximations for the periodic orbits of interest obtained
in the last chapter form the starting points of the numerical algorithms. While the
shooting method only uses one point from the analytical approximation, the collo-
cation method uses the whole approximation. This extra information ensures the
superior performance of the collocation algorithm. The collocation algorithms have
higher accuracy and a bigger region of attraction (minimal need of continuation pro-
cedure). In order to verify and confirm the correctness of the results, I implemented
both shooting and collocation algorithms to find the periodic orbits of interest.

In addition, as we will see in the last section of this chapter, the collocation

algorithm can be modified to transfer these orbits from the CRTBP to a full Solar
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System model. For these reasons, I explain the implementation of the collocation
algorithms to the CRTBP periodic orbits and refer the reader to [37] for further

details on the shooting method.

3.1.1 Collocation as a Numerical Tool to Find Periodic Or-
bits

If a trajectory ¢(t,xo) begins at a point Xy at time t = 0, and at some later time
t = T the trajectory ¢(T,xg) returns to the point of departure, then this trajectory
is called a periodic orbit with period T'. Finding periodic orbits of a first-order ODE
system can be formulated as a BVP. For a generic system, the problem mathematically

reduces to finding the solution x(t) of the autonomous ODE

x(t) = £(t,x) , (3.1)

within the time boundaries

0<t<T, (3.2)

where the system is subjected to boundary conditions which correspond to the peri-

odicity condition, i.e. the trajectory closing on itself:

g(x(0), x(T)) = x(0) - x(T) = 0. (3.3)

After formulating the computation of the periodic orbit as a BVP, the state vector,
x(t), which is subjected to the differential equation and boundary constraints, is

solved. To implement the problem on a digital computer, the time and state variables

40



are discretized at N + 1 points along the trajectory

O=to<ty ... <t <...<tnyn1<ty=T,

xo =x(0), ..., x; =x(t;), ..., xy =x(T). (3.4)

Now, we need to find the discrete relationship that corresponds to the ODE

X(t) — f(t,X) =0= F(ti,XZ‘,ti+1,Xi+1) =0. (35)

There are schemes that can be used for this discretization. Among the most popular
are the Runge-Kutta formulas and the Simpson’s quadrature. Cash and his colleagues
have developed a number of effective solvers - for example, Cash and Wright TWBVP
[38, 39], where the basic formula is Simpson’s rule for quadrature. In the BVP solver
COLNEW, Ascher et al. [10, 11], implemented a family of implicit Runge-Kutta
methods. T used the Kierzenka et al.’s [12] bupde implementation, where a Simpson’s
formula for the quadrature is implemented. One advantage of this implementation is
that the discretized equations can be analytically solved without intermediate vari-
ables. If the initial guess is sufficiently close to the real solution, the discretized

Simpson quadrature equation, which corresponds to the differential equation, gives

the following constraint at every point:

h;
F(Xl) = —Xi+1 + X; + E (f(tl, Xi) + f(tz‘+1, Xi+1>) e (36)
+3 f( 5 =, 5 - g[f(tuxi) —f(ti+1,x,~+1)]>],
where
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In order to obtain the full discrete version of the BVP, the constraint vector is aug-

mented with the constraints at the boundaries:

Fy(x0,xn) = g(X0,Xn) - (3.8)

Solving for this set of equations is equivalent to a general finite difference implemen-
tation. The correct solution is obtained when constraint equations are equal to zero.
The N + dim(g) dimensional nonlinear equation given by [Fp, F((x;)] = 0 is solved
using Newton’s method, where an initial guess q° = {x0,X1, ..., XN_1,Xn} is iterated

according to

DF(¢")-(d —d") = —F(d™"). (3.9)

Before taking the next Newton step, the accuracy of the current guess is assessed and
the values are redistributed.

The full state along the trajectory is approximated by a piecewise polynomial,
S(t,q'). Employing Hermite cubic polynomials, a C! representation that interpolates

x and x for each subinterval [x;, ;1] is constructed as

S(t,q') = A1 (t)x; + As()Xip1 + Bi(t)%; + Ba(t) %1 + O(h?) | (3.10)

where A;(t), As(t), Bi(t), Ba(t) are the third-order Hermite polynomial function,
which satisfies the continuity boundary conditions for each subinterval [z;, ;1] of
the mesh.

Once the approximation for the continuous solution by this spline is obtained, the
estimate of the error norm in the current stage of iteration is needed to make decisions

for the following iteration steps. Defining the residue between the spline and the real
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solution as
r(t) =S'(x?) — f(x),S(x%)) , (3.11)

the error norm is calculated by integration of the residue between the spline and the
real solution by a 5-point Lobatto quadrature approximation [13] on each subinterval

Il = ( ) " (3.12)

Based on the norm of the residual of the continuous solution, the mesh points, x7,
are redistributed. Extra points are added to the intervals with residues larger than
minimum error tolerance, and the points on the intervals which have errors much
smaller than the minimum tolerance are removed. Then, the Newton’s iteration is
continued until ||r(x?)|| < €, where € is a preset tolerance for the BVP solution. Then,

it is assumed that the iteration converged and that the correct answer is obtained.

3.1.2 Stability Analysis of Periodic Orbits

The stability of an orbit of a dynamical system determines whether nearby orbits
will stay in close proximity to that orbit or be repelled from it as time progresses.
The Poincaré map enables us to determine the stability of a periodic orbit for a
time-independent dynamical system (for a detailed mathematical explanation, see
Guckenheimer & Holmes [11]). It does so by converting the n-dimensional continuous
dynamical system into an (n — 1)-dimensional map.

Let us consider surface section X, a subspace with a dimension lower than the
dynamical system of interest, that is transversal to the flow direction. A first return
map or Poincaré map is the intersection of a periodic orbit, z(t), in the state space of

the continuous dynamical system with Y. If we consider a periodic orbit with initial
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conditions, g, on the Poincaré section and observe the successive points at which this
orbits returns to the section, x;, we can reduce the dynamical system to the following

map

zi1 = P(x;) (3.13)

on the section ¥ section. The periodic orbit of the dynamical system becomes the

fixed point of the map P when

2o = P(x) . (3.14)

Thus, the transformation converts the condition for the stability of the periodic orbit
to determining the stability of the map P. In order to study the stability of the

Poincaré map, it is linearized around the fixed point

The fixed point of this map, x(, is asymptotically stable if the moduli of all the
eigenvalues of DP are less than one and unstable if any of the eigenvalues are outside
the unit circle. The stability of the periodic orbit is determined by the fixed point of
the map.

Floquet theory offers an attractive numerical alternative to determining the sta-
bility of a periodic orbit without employing Poincaré maps. Instead of using a section
in the phase space, we linearize the T-periodic vector field around the periodic or-
bit. Solving the linearized equations, we obtain the Floquet multipliers that define
the rate of convergence or divergence of small perturbations from the periodic orbit.
Guckenheimer and Holmes prove that one of the Floquet multipliers is unity with the

eigenvector corresponding to motion along the periodic orbit, and that the (n — 1)
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eigenvalues of DP are equal to (n — 1) of the Floquet multipliers of the periodic orbit
[44].

In what follows, I investigate the stability of one particular periodic solution x(t)
with period T of the autonomous system given as: @ = f(x). I proceed by linearizing
the T-periodic vector field around the periodic orbit ¢(t,xg). First, let us note that

the trajectory satisfies its own ODE,

d 99(t,z,)

G omg 1 (@z0)), with 6(0,z0) = o (3.16)

Differentiating this equation with respect to zy, we obtain

d 99(t, 1)
dt 3x0

:Df(gb)%go), with initial condition %@ff)):]. (3.17)

Rewriting equation 3.17 in terms of the state transition matrix, ®(¢), where ®(t) :=

%, we obtain
o

d=Df(x)®, ®0)=1. (3.18)

The monodromy matrix, M, of a periodic solution, z(t), with period 7" and initial

condition z, is defined as

_ a¢(T7 370) ]

M := ®(T) o

(3.19)

The eigenvalues of the monodromy matrix are the Floquet multipliers [11]. They
define the full stability properties of the periodic orbit of interest. We can see this by
looking at how much a perturbed trajectory ¢(t, xo+0xq) separates from the periodic

trajectory ¢(t, o) after one period.

0x(T) = (T, x0+ 0xo) — (T, x0) . (3.20)
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Expanding the right hand side of the equation in Taylor series gives the approximation

a¢(T7 IO)
8.%‘0

~ Moz (3.21)

ox(T) dzo + high order terms

Thus, M quantifies how perturbations on initial conditions progress after one period.
All we need to do to understand the stability of the periodic orbit of interest is to
integrate the equation 3.18 from ¢t = 0 to ¢t = T, and then check the eigenvalues of
M, i.e. the Floquet multipliers. If the Floquet multipliers are less than one then the
orbit is stable, if one of them is larger than one then the orbit is unstable. While the
eigenvectors define the stable and unstable direction, the magnitude of the eigenvalue

define the rate of convergence or divergence.

3.2 Application to the Periodic Orbits of the CRTBP

Around L2

The linear six-dimensional phase space around L2 is a center X center x saddle as
discussed in the second chapter. For energy values close to that at L2, where it is
sufficient to consider only the linear approximation to the equations of motion, there
exist two families of periodic orbits; the horizonal Lyapunov orbits, which are in the
ecliptic plane, and the horizontally symmetric figure-eight-shaped vertical Lyapunov
orbits. As the energy is increased, and nonlinear terms become important, the linear
phase space is broken and a new periodic family, Halo orbits, bifurcates from the
horizontal Lyapunov orbit family. These orbits are three-dimensional and asymmetric
about the ecliptic plane.

In this section, I explain how the numerical tools of the previous section can be

used to obtain and analyze all the periodic orbits in the vicinity of L2. These three
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periodic orbits, namely, horizontal Lyapunov, vertical Lyapunov, and Halo orbits, are
studied in the following subsections.

First, the orbit finding problem is converted to the canonical form for the imple-
mentation of the collocation algorithm. Rewriting the CRTBP ODE given as equation

2.9 in the first-order form, with the state vector x = {x, vy, 2, %, y, 2}, we obtain

@
Y
5
x = f(x) = . (3.22)
29+ %

. ou

ou
0z

Although we have approximations for the periods of the periodic orbits, we do not
know the exact period. For the collocation algorithm to work, we need to explicitly
define the time boundaries for the BVP. However, in our case, the time interval is
[0, T'], where the end time, T, for the BVP is an unknown parameter. To overcome
this problem, I redefine the system on the fixed time interval [0, 1] by rewriting the

equation in terms of a new time variable

T =

t
7 (3.23)

Introducing T" as a new state variable, the extended differential equation becomes

dx

iy A

dr ()

dT

— = 0. 3.24
dr ( )

The collocation algorithm is used on this modified system.
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After finding the periodic orbit, the stability analysis is conducted. The Jaco-
bian of the differential equation that is used in equation 3.18 to integrate the state
transformation, ®, and find Monodromy matrix, M, is

0 I
Df = , (3.25)

Uz, 29

where 0 is the 3x3 zero matrix, I is the 3x3 identity matrix, U}, is the matrix of

symmetric second partial derivatives of U with respect to x, y and z,

Tx U:cy Tz

U;C - 7yz 7yy 7yz ) (3'26)
sz Uzy Uzz
and §) is
0 10
Q=11-10 ol . (3.27)
0 00

Now we define a new 42-dimensional augmented state vector consisting of the 6-
dimensional state vector and the 36-dimensional state transition matrix: Xaug =
[x; @(:)]. Integrating the augmented state vector, M = ®(T") is obtained.

Before going into the details of each orbit calculation, I would like to point out
some of the properties of the eigenvalues of the monodromy matrix of the periodic
orbits of the CRTBP. Since this is a map, an eigenvalue of 4+1 indicates a stationary
mode, and an eigenvalue of modulus one indicates a rotational mode. An eigenvalue
of modulus greater than +1 indicates the exponentially growing mode and a modulus

less than one indicates an exponentially decaying mode. As the direction along the
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periodic orbit will always come back to the same point on the map, M always has
+1 as an eigenvalue, with the corresponding eigenvector tangent to the periodic orbit
direction at xy. Since the CRTBP is an autonomous Hamiltonian system, it has an
energy integral, the Jacobi Constant, which means that the periodic orbits come in
families. Thus, there will be another stationary mode and another +1 eigenvalue of
M, which is in the direction of the periodic orbit family, and the eigenvalue +1 has
an algebraic multiplicity of at least two. Moreover, M is symplectic for autonomous
Hamiltonian systems. Hence, if ) is an eigenvalue of M, then A~!, A (conjugate of
A), and A7! are also eigenvalues of M, with the same multiplicity. To sum up, at
least two of the eigenvalues of M will be +1 and the other four will have to be such
that the conjugate and the inverse of these eigenvalues have to be eigenvalues as well.

These properties are useful for the stability analysis of the CRTBP orbits.

3.2.1 Horizontal Lyapunov Orbits

Horizontal Lyapunov Orbit

L, Point
1.015

Figure 3.1: Horizontal Lyapunov periodic orbit around L2 libration point
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The first type of periodic orbits are the horizontal Lyapunov orbits, which are con-
strained to the x-y plane. As a result, z = Z = 0 throughout the trajectory. In
addition, the CRTBP dynamical system, which was defined in equation 3.22, is in-

variant under the transformation

{z(t), y(1), 2(1)} = {2(=1), =y(=1), 2(=1)} . (3.28)

Due to this invariance, the solution of the horizontal Lyapunov orbits will be sym-
metric with respect to the y plane and will cross the y plane perpendicularly [37].

Thus, at y(0) = 0, the periodic horizontal Lyapunov orbit has to satisfy

y(0) =0, 2(0) =0, &(0) =0, 3(0) =0. (3.29)

These constraints simplify the problem such that for a given z(0) = ¢, we only need
to find ¢(0) to specify a horizontal Lyapunov orbit. When choosing the boundary
condition, we need to be careful to avoid the degenerate solution, where x(0) = x(1)
with 7' = 0. However, the degenerate solution becomes infeasible if we set y(0) to a
constant value, 7o, as the initial condition, instead of setting z(0) = . The constant
Yo is the orbit size parameter. Changing this parameter enables us to find periodic

orbits with different sizes and energies. Keeping these considerations in mind, I set
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the boundary value problem as follows:

I then solve the BVP with the differential equation 3.24 and the boundary condition
equation 3.30, using the initial estimate from equation 2.45. Figure 3.1 shows a typical
horizontal Lyapunov periodic orbit around the Sun-Earth L2 point, which is found
with this method. By varying the 1, parameter, periodic orbits on different energy

levels are solved using collocation. The full horizontal Lyapunov family is obtained

as shown in figure 3.2.
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Figure 3.2: Horizontal Lyapunov Family around L2
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The stability of these orbits is studied via their monodromy matrices. This four-
dimensional in-plane system has four eigenvalues. Two eigenvalues are equal to +1.
These correspond to the neutral directions, namely, the tangent direction to the
periodic orbit, and the variation in the energy level sets. The two positive eigenvalues,
A and 1/\, where A is a very large parameter on the order of 103, correspond to the

unstable and stable modes, respectively. A decreases as the size of the orbit increases.

3.2.2 Vertical Lyapunov Orbits

Vertical Lyapunov Orbit

. . L, Point
Moon Orbit 1015

Figure 3.3: Vertical Lyapunov periodic orbit around L2 libration point

The second type of periodic orbit around L2 is the vertical Lyapunov orbit, where the
vertical motion dominates, even though the trajectory has components in all three
dimensions. These orbits are symmetric with respect to the z plane, and their shape
resembles the figure eight, crossing the z plane at a single point. As discussed in the
previous section, the solution of the vertical Lyapunov orbits will be symmetric with

respect to the y plane and thus will cross the y plane perpendicularly. This partitions
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the vertical Lyapunov orbit into four symmetric parts. Instead of obtaining the
whole orbit, it is thus sufficient to find one of the symmetric parts, and this reduces
the computation time. As the orbit crosses the y plane at time zero, the periodic

vertical Lyapunov orbit has to satisfy

y(0) =0, #(0) =0, 2(0) =0 . (3.31)

At t = 1/4, the orbit crosses the y and z planes

y(1/4) =0, 2(1/4) =0, #(1/4) = 0. (3.32)

As before, to avoid the degenerate solution, where x(0) = x(1/4) with 7" = 0, I specify
an initial condition that makes the degeneracy infeasible. I choose 2(1/4) = %14 as

the orbit size parameter.

(0) =0,
2(1/4) =0,
2(1/4) = 214 . (3.33)

I solve the BVP with differential equation 3.24 and the boundary condition equation
3.33, using the initial guess from equation 2.45. Figure 3.3 shows a typical vertical
Lyapunov periodic orbit around L2 found by using this method. By varying the 2,4
parameter, periodic orbits on different energy levels are solved using collocation and

the full vertical Lyapunov family is obtained as shown in figure 3.4.
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Figure 3.4: Vertical Lyapunov Family around L2

The stability of these orbits is studied via their six-dimensional monodromy ma-

trices.

This six-dimensional system has six eigenvalues, two of which are equal to

+1. These correspond to the neutral directions, namely, the tangent direction to the

periodic orbit and the variation in the energy level sets. The two positive eigenvalues,

A and 1/)\, where X is a very large parameter on the order of 103, correspond to the

unstable and stable modes, respectively. A decreases as the size of the orbit increases.

In addition, there is an eigenvalue couple, cos(o) £ isin(o) with modulus 1, which

corresponds to the periodic mode.

As the size of the orbit increases, the o value

increases from zero moving the eigenvalues on the unit circle.
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3.2.3 Halo Orbits

Halo Orbit

Moon Orbit

Figure 3.5: Halo periodic orbit around L2 libration point.

The third type of periodic orbit is the Halo orbit. These three-dimensional orbits are
described analytically in detail in section 2.5. As before, the solution of the Halo orbits
will be symmetric with respect to the y plane and cross the y plane perpendicularly,
partitioning the Halo orbit into two symmetric parts. It is thus sufficient to obtain
one of the symmetric parts, rather than having to find the whole orbit. This reduces
the computation time. As the orbit crosses the y plane at time zero, the halo orbit

has to satisfy

y(0) =0, &(0) =0, 2(0) =0 (3.34)

As before, to avoid the degenerate solution where x(0) = x(1/2) with 7" = 0, I specify
an initial condition that makes the degeneracy infeasible. I choose y(0) = o as the

orbit size parameter. Changing this parameter enables us to find periodic orbits with
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different energy levels. So, I set the boundary value problem as follows:

y(0) = y(1/2) =0,
#(0) = i(1/2) =0,
§(0) = 9o,

£(0) = 2(1/2) = 0. (3.35)

I solve the BVP with differential equation 3.24 and the boundary condition equa-
tion 3.35, using the initial estimate from equation 2.52. Figure 3.5 shows a typical
northern Halo periodic orbit around L2 that was found with this method. By varying
the 1o parameter, periodic orbits on different energy levels are solved using collo-
cation, and the full northern Halo family is obtained, as shown in figure 3.6. The
CRTBP dynamical system, which is defined in equation 3.22, is invariant under the

transformation

{z(8),y(t), ()} = {2(t),y(t), —2(1)} . (3.36)

Due to this invariance,there is a mirror symmetry across the z = 0 plane. Therefore,
there is also a southern Halo orbit family which is the mirror copy of the northern

family with respect to the z plane (not shown on figure 3.6).
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Figure 3.6: Northern Halo orbit family around L2 libration point

The stability of these orbits is studied via their six-dimensional monodromy ma-
trices. This six-dimensional system has six eigenvalues. Two eigenvalues are equal
to +1, and correspond to the neutral directions, namely, the tangent direction to the
periodic orbit and the variation in the energy level sets. The two positive eigenvalues,
A and 1/\, where X is a very large parameter on the order of 103, correspond to the
unstable and stable modes, respectively. A decreases as the size of the orbit increases.
In addition, there is an eigenvalue couple, cos(o) £ isin(o) with modulus 1, which
corresponds to the periodic mode. As the size of the orbit increases, the o value
increases from zero moving the eigenvalues on the unit circle. For a more detailed

bifurcation analysis of the halo orbits, please see [15].
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Chapter 4

Multiple Poincaré Sections Method
for Finding the Quasi-Halo and

Lissajous Orbits
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There are three main challenges associated with finding quasi-periodic orbits. The
first is to minimize the time it takes to program the software that numerically solves
for the orbits. This reduces the threshold for researchers who work on trajectory
design. The second is to achieve reasonable execution times, allowing results to be
obtained quickly and “on the go”. The third is to improve the robustness of the
method in order to map the very large regions of attraction that are needed to obtain
the full families of quasi-periodic orbits.

Symbolic methods such as the Lindstedt-Poincaré method by Gémez et al. [10]
and the reduction to the center manifold by Jorba et al. [36, 47], which depend
on series expansions, are very slow because an exponential increase in the number of
coefficients is needed for every additional increase in the order of expansion. The speed
problem can be overcome to a great extent by programming a symbolic manipulator
for the problem of interest, but this leads to a significant increase in programming
time. More importantly, some of these techniques have instability problems near
resonances.

This led to the consideration of fully numeric methods. However, instead of taking
a mesh on the whole surface, which requires many points and is thus memory and
CPU intensive, I considered only a section on the torus containing the quasi-periodic
trajectories, thus representing the full torus by only points on this section. This is
an invariant circle. These points on the invariant circle must be integrated for one
period at each iteration step. The initial errors in the estimation of the section increase
exponentially with the highest Lyapunov exponent as the integration time increases.
This is of great concern, especially for the CRTBP L2 case where the Lyapunov
exponent is more than 103. The effect is more dramatic near resonant and chaotic
regions. To overcome this problem, I reduce the integration times by taking multiple
sections on the torus, integrating only between the consecutive Poincaré sections. The

methodology is parallel to the multiple shooting method used in two-point boundary

29



value problems [18].

This chapter consist of four sections. In the first section, I explain the main
idea of the procedure without going into details of the numerical implementation.
Here, T first introduce the methodology by explaining the procedure for a single
Poincaré section. The results are then extended to multiple Poincaré sections. I
discuss different implementations using various Poincaré surfaces. A continuation
method to find the full family of quasi-periodic orbits is introduced.

In the second section, numerical details for obtaining the real quasi-periodic orbits
around L2 are explained.

The third section presents the results section, where I give the solutions for the
quasi-periodic orbits around L2 of the CRTBP, the Lissajous and the Quasi-Halo
orbits, and show the full periodic family and compare the results with the literature.

In the last section, I explain and apply the numerical method to ”transfer” these
orbits from the CRTBP model to the real ephemeris model of the Solar System.

This chapter is based on previous work by Kolemen and Kasdin [19].

4.1 Procedure

4.1.1 Finding Invariant Tori via a Single Poincaré Section

For the occulter-based telescopy mission under study, the main quasi-periodic orbits
of interest are the Quasi-Halos which lie on two-dimensional invariant manifold. As
discussed in the introductory section, the multiple Poincaré section procedure aims
to reduce the problem of finding the two-dimensional invariant manifold of the full
ordinary differential equation to finding the invariant circles, i.e., the one-dimensional
invariant manifold of the Poincaré map. These invariant circles compactly define the
full two-dimensional manifold.

The first step in the single Poincaré section procedure is to find a convenient
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Poincaré section. This can be a section in any of the 6-dimensional phase-space
coordinates including the position and/or the velocity elements of the state. Figure
4.1 shows the projection to the position space of a torus and its intersection with a
Poincaré section.

When choosing the plane of the section, the main concern is to ensure that the
velocity vector of the quasi-periodic orbit is as transverse to the surface of section,
3., as possible. This reduces the possibility that the integrated points will not return
to the Poincaré section. Thus, a good candidate for the Poincaré section is the plane
perpendicular to the velocity of the Halo orbit section. For the specific case of the
CRTBP, another suitable plane-of-section is the ecliptic plane, since the type of quasi-
periodic orbits of interest by their nature transversely cross this plane. I used both

types of Poincaré sections for the results in this dissertation.
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Figure 4.1: Converting the search for a torus problem of a differential equation to the
search of the circle of a map

I expand the invariant circle, v, in a truncated Fourier series with the expansion

parameter § € [0, 27), the angle parameter on the invariant circle,

Nmaz

v(0) = % + Z [an, cos(nb) + b, sin(nd)] , (4.1)

n=1
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where n,,., is the truncation order of the Fourier series expansion.
Here, the choice of the angle parameter, 6, is problem-dependent. In the case

where the Poincaré section is taken on the ecliptic plane, i.e., z = 0, an intuitive

angle parameter is 0 = atan(g:g}}‘l:ll‘;). It is important to note that the system must
be parameterized such that every point on the invariant circle is uniquely defined by
one value of the parameter, v(6;). For invariant circles with complex shapes, other
parameters, such as the ratio of the arc length between a specific point on the circle
and the full arc length of the closed orbit [50], should be used to ensure uniqueness.
For the CRTBP, however, this simple parameter gives satisfactory results.

I then take N points on the invariant circle by choosing a set of angle variables in

the interval [0, 27),
(i) = L i=0,1,....N—2,N—1. (4.2)

Every element of the angle vector, 6y(), corresponds to a six-dimensional coordinate
vector, x;, on the phase space. Concatenating these coordinate vectors, a 6 x N-

dimensional coordinate vector, X, is obtained, which can be expressed as:

Nmazx

Xo = % + Y [an cos(nfo) + b, sin(nfy)] . (4.3)

n=1

Since this is a linear transformation, it can be expressed as a matrix multiplication:
XO - AQOQ y (44)

where Q is the truncated Fourier coefficients vector and Ay is the discrete Fourier ma-
trix that takes Fourier coefficients to coordinate variables. I map these points, P(Xg),

by integrating the equations of motion until they intersect the Poincaré section:
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Quasi-Halo Orbit Halo Orbit

Figure 4.2: Schematic illustration of the numerical procedure for finding the invariant
torus

X, = P(Xo) = 6(r(Xo),Xo). (4.5)

Here, 7(Xp) is the time it takes for a given set of points, Xg, to reach to the Poincaré
section, ¥. Recall also that the notation ¢(t, zo) is used for the flow of the ODE from
a given initial condition, xy, for the specified time, ¢t. The first variations of these
equations are integrated along with Xg for later use in the iteration process.

If all the mapped points, X, fall exactly on the guessed invariant circle, this means
that the initial guess for the invariant circle is indeed correct. Using this intuition, it
is possible to set up a numerical scheme in order to find the correct parameterization
of the quasi-periodic orbit. The schematic illustration of this numerical scheme is
shown in figure 4.2, where the error vector to be minimized, i.e., F(Q), is expressed.
Thus, finding the quasi-periodic orbit is equivalent to finding the Fourier coefficient

vector, Q, which minimizes the distance between the mapped points X, and the
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invariant circle. This condition can be written in mathematical terms as:

F(Q) = X; — AGXTQ =0. (46)

Here, fx. is the projection of the mapped points onto the invariant circle, which is
described in detail in section 4.2.3, and Ay, is the Fourier coefficient matrix, which
has the same structure as Ay,, but uses the projected angle elements instead of the
original ones.

One advantage of this formulation is that a Newton iteration can be used, which
has the potential to lead to quadratically convergent solutions. In Newton’s iteration,

an initial guess QO is iterated according to

DF(Q) (@' - Q) = -F(Q) (4.7)

until a satisfactory answer is reached. Here, the superscript defines the value of Q at
a given iteration step. To find an explicit form for this equation, all its variables are

expanded in terms of Q. F then becomes:

FQ = XT_X%(r,Xo)

(4.8)
= ¢(T7 AGO Q) - A9¢(T,A90 Q) Q :
I then take the derivative with respect to Q:
dX; dX dX dbs dx, dX
DFQ) = & W~ @, ix, o @
(4.9)

= DP Ag, — (DAg,,, o Q) Lo DP Ay, ,

dX-

where DP is the differential of the Poincaré map that is obtained from the first
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Figure 4.3: Iteration procedure in steps

variation of the map that was integrated with X. Employing Newton’s iteration,
solutions converge usually within 3-4 iterations. An example of an iteration procedure
is shown in figure 4.3. Here, the sample points are shown as crosses and the return
maps are represented by circles. After four iterations, all the sample points and the

return maps are aligned on the same invariant circle.

4.1.2 Extension to Multiple Poincaré Sections

In order to overcome the potential instability that results from the long integration
times, the invariant torus is cut by several Poincaré sections, as mentioned before.
Figure 4.4 shows the invariant circles which are obtained when the tori of interest

are cut with multiple sections. As a result, all the invariant circles in figure 4.4 are
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determined, instead of only a single one, as was the case in the previous section.

W s O s N W A

b b A o a4 N w s

Figure 4.4: Multiple Poincaré Section Procedure: Invariant circles obtained by sec-
tioning the invariant tori

The numerical procedure is similar to the single Poincaré section method. This
time, the sample points are integrated until they hit the next Poincaré section, rather
than being integrated for the whole period. For all these invariant circles to lie on the
same invariant torus, all the mapped points must be aligned with the invariant circles
of the next Poincaré section. The closure of the mathematical problem is obtained
by requiring that the sample points from the last Poincaré section map to the first
invariant circle. Mathematically, the invariance condition for the invariant circles can
be expressed in the same form as in the single Poincaré section case by letting Q,
the vector containing the Fourier coefficients, be the concatenation of q;, the Fourier

coefficients of each of the invariant circles,

Q=[d1; a2 --; ANp—15 AN, |, (4.10)

where N, is the number of Poincaré sections.

Thus, the invariance condition for all the invariant circles parameterized by q; to
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be on the same torus is

a1 ¢(Tv A90 ql) A0¢("7A90 ar) Q2
q2 ¢(T> A90 (]2) A%(T,Aeo az) a3
FQ) = F| : - | - = 04.11)
qu—l ¢(7-7 A90 qu—l) A9¢(T,A90 aN,—1) qu
qu ¢(7—7 AGO qu) A9¢(T,A90 qu) ql

Finally, as before, we apply Newton’s iteration to the root finding problem:

DF(Q) (@' - Q) = —F(Q). (4.12)

4.1.3 Different Implementations

The quasi-periodic orbits reside in six-dimensional phase space, which has a four-
dimensional center manifold (periodic subspace). Each quasi-periodic orbit is of di-
mension two. Thus, two properties of a given quasi-periodic orbit must be specified
in order to uniquely define it. Many different parameters can be used to specify a
quasi-periodic orbit; among these, the most intuitive and relevant for mission design
are the Hamiltonian (or the Jacobi constant) of the orbit, the period of the orbit, and
the size of the orbit. Since prescribing the period also prescribes the Hamiltonian
and vice versa, two implementations where the period or the Hamiltonian is preset
are considered in this section.

When the Hamiltonian is used to specify a quasi-periodic orbit, another constraint
is needed in order to define the properties of the orbit of interest. I chose to specify
the size of the orbit as the second variable. This is a relevant parameter since the
distance between the telescope and the occulter is set by the size of the Quasi-Halo
orbit. Since the numerical method is based on Poincaré sections, size can be specified

by the two-dimensional area, A, which is enclosed by the invariant circle. Then, the
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constraint vector is augmented to include the new constraints:
F = [F 3 Hﬁxed — HQ ’ Afixed — AQ] (413)

Another implementation is to set the period of the quasi-periodic orbit to a con-
stant. Quasi-Halo orbits have two periods; one around the Halo orbit and the other
along the Halo orbit. The period along the Halo orbit is very important for space
missions that require all spacecraft to stay close to one another at all times. An
uncontrolled mismatch in this period would lead to a separation on the order of the
size of the Halo orbit, which is unacceptable. However, this period for a numerically
computed two-dimensional structure is vague, unlike the one-dimensional case. I de-
fine this period of the Quasi-Halo to be the average time it takes for all the sample
points starting from the initial Poincaré section to return back to it. That is, the

period is

n

Z 7(x) . (4.14)

=1

T =

S|

Here, n is the total number of sample points taken on the Poincaré section. This
way, the period of the quasi-periodic orbit can be specified along with the integration
direction for the return map. In this case, there is one more degree of freedom to
specify a unique orbit. Choosing the Hamiltonian as a constraint is not an option, as
discussed before. Thus, I specify the size of the orbit by choosing the area parameter:
the two-dimensional area, A, which is enclosed by the invariant circle. This can be
done by augmenting the error vector with a new constraint, such as the projected size

along one direction:

F = [F, Tfigced — TQ; Afz’zed — AQ ] (415)
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4.1.4 Continuation Procedure

Figure 4.5: A schematic illustration of continuation in the area variable

Once the Fourier coefficients for a given orbit have been obtained, it is important
to extend these results to find the complete quasi-periodic family. This procedure is
called continuation, in which the previous solutions for quasi-periodic orbits in a given
family are used to extrapolate another member of the family along a continuation
parameter. Ultimately, the full quasi-periodic family is obtained.

In this study, I used the area variable, A, as the continuation parameter. In figure
4.5, a schematic illustration of continuation in the area variable is shown. The inner
orbits in the figure have a smaller area. The arrow indicates the direction of the
continuation. Given a set of blue orbits that have already been found in a Quasi-Halo
family, the aim of the continuation is to find the Quasi-Halo that is shown in red, in
order to extend the results.

While there is no intuitive way to continue the coordinate variables, {x,y, z, &, 7, 2},
the continuation of the Fourier coefficients is straight-forward, since they vary in-
crementally between sufficiently close quasi-periodic family members. A low-order
polynomial fit is thus sufficient for continuing these parameters. Even a very simple

linear continuation in the area variable, A, gives satisfactory results:

Ay

A —
Qiyn = Qi+t h(Qk — Qp-1). (4.16)
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Here, as before, the superscript of Q defines the Newton’s iteration step, while the
subscript defines the continuation step.
Once the initial guess for Q% is obtained, the multiple Poincaré section method

is applied on this guess to get the correct Qg.1. Then, the continuation is repeated

to find Qpyo.

4.2 Numerical Application for the Quasi-Periodic

Orbits Around the L2 Region of the CRTBP

In this section, I show the numerical computation in implementation order. The

details of the computations are discussed in the sections that follow.

1. Compute the initial guess QY.

2. Compute Xj.

Xo = Ag, Qi (4.17)

3. Compute Poincaré map for each ;.

X, = P(Xp) (4.18)
4. Compute 6x_.
Ox. = arctan(ﬁigi) for Lissajous orbits (4.19)
Ox, = arctan(ﬁi—g) for Quasi-Halo orbits
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5. Compute the error.
F(QY) = X~ A QL (4.20)
6. Compute the Jacobian of the error.

DF(Q}) = DP Ay, — (DAgy. QL) 52 DP Ay, (4.21)

7. Augment the error vector and the Jacobian.

F = [F;Aﬁxed—AQ;...],

DF = [DF; DA; .. (4.22)

8. Perform Newton’s iteration.
DF(QL) (Q' —Ql) = —F(Ql) (4.23)

9. Decision step:

(

Qr = Q"' and go to 10 if |F(Q))] < e,

Decision: ¢ Go to 2 if § < Jmaz and \F(Q{()| > €

Redo 10 otherwise.
\

10. Continuation: Extrapolate an initial guess for QY 41 from previous Fourier ele-

ments {Qp, ..., Qx} and continuation variables {Ag, ..., Az}

Qi1 = polyfunc(Apsr). (4.24)
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Stop the numerical implementation if the full quasi-periodic family is obtained.

Otherwise, go to 2.

4.2.1 Initial estimate for Q

Let us consider the monodromy matrix, M, which was discussed in the last chapter,
as a linear map from the initial variations around the periodic orbit at time 0 to

variation after one period T,

M := dx9 — Sz . (4.25)

Recall that the monodromy matrices for vertical Lyapunov and Halo orbits each have
an eigenvalue couple, coso + isino with modulus 1 and corresponding eigenvector

vi £ ivy. By the definition of eigenvalue and eigenvector,

M (vi +1ivy) = (coso +isino) (vq +iva)

= €0S0 V1 — ISino Vg + i(sino vi + coso va) (4.26)
M (vi —ivy) = (coso —isino) (vi — ivy)

= (0S80 Vi — iSino Vg — i(sino vi + coso va) . (4.27)

Using these properties, it is possible to find the invariant circle of the map M. Let

us consider a closed curve, ¢, of this map, parameterized with 6 = [0, 2],

©(0) = K(cosbvy — sinfvy) . (4.28)
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Using trigonometric manipulation, it can now be shown that the monodromy matrix

maps this closed curve onto itself:

() MM k(cosl vy — sinf va)
= k(cos(0+ p) vi — sin(6 + p) va)

= ¢(0+p). (4.29)

Thus, ¢(f) is a periodic orbit of this map (which should not be confused with the
invariant circle of the Poincaré section) with x magnitude. It is a linear approximation
to the relative distance from the quasi-periodic orbit to the periodic orbit. In the
numerical scheme, I used the linear approximation with small x as the starting point
for the multiple Poincaré scheme.  values of order 107° have been sufficiently small
to give reasonable startup approximations. (Please recall that, in the normalized
units, 1 is the distance between Sun and Earth).

©(0) is a periodic orbit of the monodromy map. I first chose a high number,

Njy; = 100, of parametrization variables,

B 271

O (i) = N

1=0,1,...,Np, —2,N,, — 1, (4.30)
and obtained the corresponding Nj, points on the closed curve:

For the multiple Poincaré algorithm, an initial estimate is needed for the periodic
orbit on the Poincaré map. To this aim, I integrated Xy; and found their intersection
with the Poincaré sections of interest. The methods I employed are the subject of the
two chapter sections that follow.

The initial estimate for the Fourier elements, QQ, was obtained by using fast
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Fourier transform (fft) on the intersecting points. It is important to note that this
is the only time that a Fourier transform is employed in the algorithm. Once QQ
is obtained, all the transformations, including the continuation step, take Q — X.
For ease of programming, I chose to use real valued Fourier coefficients rather than

imaginary ones. Below, a pseudo-code shows how to obtain the Fourier coefficients:

input: X
N= length(X);
y = fft(X);
Q(1) = 1/sqrt(2)/N*real(y(1));
for { i=2:i_max
Q(2x(i-1))= 2/N¥real(y(i));
Q(2x(i-1)+1)= -2/N*imaginary(y(i));}

output: Q

where i_max was chosen to be 20. I would like to note that, due to sin(0)=0, the

imaginary part of y(1) is always 0.

4.2.2 Choosing the Poincaré Section Surfaces

When choosing the planes of the section, the main concern is to ensure that the
velocity vector of the quasi-periodic orbit is as transverse to the surface of section, 3,
as possible. This reduces the possibility of the integrated points not returning to the
Poincaré section.

For the Lissajous orbits, I restrict the Poincaré sections to be on one side of the
z = 0 plane because of the mirror symmetry of the CRTBP with respect to the z
plane, which was discussed in the previous chapters. For the single Poincaré section
method, I used a section on the z = 0 plane. When extending this to multiple

Poincaré sections, an intuitive choice was to use sections parallel to this z = 0. Thus,
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I chose four sections over the half period (equivalent to seven sections over the full
period). Two of these are z = 0 and the other two are z = zf;,.q, One section as the
trajectories cross these sections in one direction and another while they cross in the

other direction:

0 = gi(x) = Zfized, — zZgn(T3) - (4.32)

I chose zfizeq to be half of the maximum displacement in the z-direction to ensure
that all the trajectories are transversal.

For Quasi-Halos, sections that are parallel to one another cannot be considered,
since the torus twists in space. A good candidate for the Poincaré section surface,

g(x), is the plane perpendicular to the velocity of the halo orbit section:

0 = gi(x) = [zn(ts) — 2qn(7:)]En + [Yn(ti) — Yan(7:)]Un + [20(t:) — 2qn(73)] 20, (4.33)

where subscript 5, stands for the Halo orbit and subscript 4, stands for the Quasi-Halo
orbit.
Along the Quasi-Halo, ten of these sections, g;—g.. 9, are taken with equal separation

in time, i.e., t; = where ¢ = 0, ...,9. Figure 4.6 shows the multiple Poincaré

i
9T
sections on a sample Quasi-Halo orbit. Then, the Fourier coefficients that correspond
to all the sections along the trajectory are continued, giving initial conditions to the

next Quasi-Halo.

dfx,
dx,

4.2.3 Choosing § and computing its derivative

I choose the Poincaré sections to be along the coordinate variables of the state. Thus,
an intuitive choice for # would be to pick it as the angle between the coordinate
variables of the invariant circles. Since all the sections, g;(X) = Zfized, — 2qn(7:), for

the Lissajous case are parallel to one another, it is feasible to choose 6 as the angle

5



W s O s oW A

b b A o 4 v e s

3
x10

Figure 4.6: Multiple Poincaré section selection on the Quasi-Halo orbit

between the coordinate variables § = arctan(y/x). A single form of parametrization,
0 = arctan(y/x), defines the cross sections on all the Poincaré sections uniquely, and
this is therefore the parametrization that I use.

A major advantage of such a parametrization is the reduction in size of Q. Since
z is constant on the Poincaré section, the Fourier coefficient is not needed for this
vector. In addition, an explicit interdependence of  and y makes it feasible to use
one Fourier element vector to define both these states. Thus, instead of using six sets
of Fourier element vectors to define six states, it can be reduced to four sets. The

reduced Fourier series vector is

Q=|Qr; Qx; Qy; Qi (4.34)

where R = \/m and Qr, Qx, Qy, Q; are the Fourier series coefficients of the
R, x, vy, %, variables of the invariant circle, respectively.

Unlike in the Lissajous case, the Poincaré sections given in equation 4.33 are not
parallel in the case of the quasi-halo orbits. The choice of # as the angle along the

coordinate variables leads to different parameterizations for each of the sections. In
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order to reduce the extra complication that this would entail, I opted for a simpler
parametrization that works for all the sections at the same time, as in the Lissajous
case. Figure 4.7 shows the projection of the invariant circle on different axes of all
the closed orbits on the Poincaré sections. Looking at this figure, it is apparent that
parametrization 6 = arctan(Z/y) works for all the sections. As with the Lissajous
case, a major advantage of such a parametrization is the reduction in size of Q. The

reduced Fourier series vector for a quasi-halo is thus

Q=1Qx; Qy; Q.; Qx; Qr| > (4.35)

where R = /92 + 22 and Qx, Qy, Qz, Qx, Qr are the Fourier series coefficients of

the x, y, z, , R variables of the invariant circle, respectively.

Figure 4.7: The relative distance from the invariant circle is projected on different
axes for a sample orbit. The upper three sub-plots show the projection on the position
space, while the lower ones show the projection on the velocity space. The sub-plot
on the lower right corner, which is the V,, (i.e. ¢) versus V, (i.e. £), is highlighted in
red.
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Finally, employing the chain rule, the derivative of # with respect to X, can be

obtained as

dfx, y x o

ax. = [ 2+ 21y 0,0,0,0,] for Lissajous
dox. 2 y .
5l [0,0,0,0, TR 22] for Quasi-Halo .

4.2.4 Computing Ay and DA

Recall that the invariant circle, v, on the Poincaré section was defined via a finite

Fourier series:

v(0) = % + f[an cos(nf) + b, sin(nd)] , (4.36)

with 6 on the interval [0, 27). and Ay as the transformation from the Fourier elements
to the state vector.

In this section, I explain how to obtain this matrix and its derivative. The Fourier
coefficients vector, Q, for Lissajous and Quasi-Halo orbits was defined in equations
4.34 and 4.35. The state vector, X, can then be obtained by multiplying Q with the

following Ay:

Assection, 0 0 0
0 Asections *** 0 0
Ay = : : 0 0 : (4.37)
0 0 0 Asectionn,,. 1 0
|0 0 0 0 Asectiony,,,

In the above equation, the maximum number of sections, N, is four for Lissajous
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orbits and ten for Quasi-Halo orbits, and

Ay
Ay
Asectioni = ) (438)

anoints -1

An,

npoints |

where Nppoints = 40 is the number of points on each Poincaré section. A; for Lissajous

orbits is given by

cos(0;)es(0;)) 0 0 0
sin(0;)cs(0;)) 0 0 0
0 0 0 0
0 cs(0;) 0 0
0 0 es(6;) O
0 0 0 cs(6)

Note that the constant value of zf;,.q has to be added to Ay Q later on. For the

Quasi-Halo orbits, A; is given by

cs(6;)) 0 0 0 0
0 es(6;) O 0 0
0 0 es(0;) O 0
0 0 0 cs(6;) 0
0 0 0 0 cos(0;)cs(6;)
0 0 0 0 sin(0;)cs(6;)
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where ¢s(0;) is the vector
cs(0;) = {% cos(0;) sin(0;) cos(20;) sin(20;) ---  cos(Nyb;) sin(NOQi)}(4-41)

In the equation above, Ny = 20 is the maximum number of Fourier elements to
be used in the system. DA = % can be obtained in a similar fashion. To save
space, I do not include the explicit form of DA. It can be obtained via term-by-term

differentiation of Ag.

4.2.5 Augmenting the error vector F and its derivative DF

One of the main advantages of this algorithm is the ease with which constraints can
be added. For example, in order to fix the value of the Hamiltonian (i.e. the Jacobi
constant), equation 4.13 is used to augment the error vector, where Hp,eq is set to
the Hamiltonian of the base Halo or the vertical Lyapunov orbit. The equation to

obtain the Hamiltonian is listed in 2.14.

0 r(6)

Figure 4.8: Polar coordinates integration region [51].

As for the determination of the area variable, A, use of the Fourier coefficients is

of great help. If R denotes the region enclosed by a curve r(f), as shown in figure
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4.8, and the rays # = a and 6 = b, where 0 < b — a < 27, the area of R is

1
A=y / r(60)? do. (4.42)

Substituting the Fourier expansion in equation 4.36 for r(#), and noting that a = 0
and b = 27 and r(0) = r(27), the well-known Parseval Theorem [52] states that the

area integral becomes

A=2 <QrQr>, (4.43)

where < ., . > is the usual dot product.

For the fixed period case, the augmentation given in equation 4.15 is used to
obtain the error vector, where T';;.q is set to the period of the base Halo or the
vertical Lyapunov orbit. The period of quasi-periodic orbit, 7', is obtained from
equation 4.14.

As for the derivative terms, the derivative of the Hamiltonian is

DH = DHdx DP A, (4.44)
where
[ Cou(—lapta)  2(-pm(utw) |
2'2: + (_1+M+w)2+y2+22)3/2 (M+x)2+y2+22)3/2
—2uy 2(1-py
2?/ + (—1+ptz)2+y2+22)=3/2  (ptz)2+y2+22)—3/2
—2uz o (1—p)z
DHdx (—1+p+z)2+y2+22)"3/2  ((pta)2+y2+22)—3/2 (4.45)
—2z
-2z
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The Jacobian of A is simply

DA = Qg . (4.46)
Finally, the Jacobian of T is
DT = — 1 Dr(Xo) A (4.47)
"~ npoints TR0/ Ao '

where D7(Xg) is given in equation 4.51.

4.2.6 Numerical Integration of the Orbits

The CRTBP has a nonstiff and smooth ordinary differential equation. For nonstiff
problems, an explicit numerical integration technique achieves the desired accuracy
with minimal computational costs. Additionally, for smooth ODEs, higher-order
integration methods can be employed which further reduces the computation time.
Thus, to numerically propagate the initial state variables, I used an explicit 8-7 Runge-
Kutta method. The method integrates a system of ordinary differential equations
using 8-7th order Dorman and Prince formulas [53].

This is an 8th-order accurate integrator; therefore, the local error normally ex-
pected is @(h?). In this scheme, the approximation for the state at xi(h + to) is

obtained from the state at zo(to) with the equation

=1
where F; is obtained from
E = f(to—i-hci,a:g—i—hZaiij) , (449)
j=1
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and where the constants, the lower triangular a;; matrix and the b; and ¢; vectors,
are listed in [53]. The number of stages, s, is 13. Thus, the procedure requires 13
function evaluations per integration step. The error check is done by finding both
the 7th and 8th order solutions and looking at the difference between them. If the
difference is above a preset error bound ¢, which I chose to be 107! for high accuracy,

the step size is reduced and the solution recomputed.

4.2.7 Numerical computation of the Poincaré map

Remember that the Poincaré map is defined by

X, = P(Xo) = ¢(7(Xo),Xo)- (4.50)

The Poincaré section, 3, given by {g(x) = 0}, separates the phase space in two.
Assuming that X is to be crossed in the direction from the initial state’s, Xy, side of
the phase space to the other side, the following pseudo-code is used to numerically

obtain the Poincaré map:
input: X0, f, h, tol, g, Dg
t=0; y=X0;

while [g(y)*g(X0)] > 0 {

rk87 (£) (t,y) —> (t+h,y+deltay)
t = t+h; y = y+deltay }
while |g(y)| > tol {
delta = - g(y)/(Dg(y)f(y))
rk87(f) := (t,y) -> (t+delta,y+deltay) }

output: t, y.

where rk87 is the 8-Tth order Runge-Kutta integration step.
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Each iteration of the last loop corresponds to performing a Newton iteration to

find a zero of the function F' := g(¢(delta,y)) = 0 with initial condition delta = 0.

In this case, DF = 5 = d’iia - dd’((iieellt;’y). Remembering the Euler approximation to

integration, ¢(delta,y) ~ y + f(y)delta, I obtain DF = Dg(y) f(y). It is possible
to see that the pseudo-code employs root finding via the Newton iteration, delta =

—FDF~'. At the end of the algorithm, P(Xo) =y and 7(X,) = t.

4.2.8 Numerical Computation of the Derivative of the Poincaré
map

The differential of the Poincaré map is computed as

d

DP(x) = “Lo(r(x),x) = - 0(r(x),x) +Do(r(x),x)

= f(P(x))D7(x) + Do(r(x),x) , (4.51)

where the differential of the time to reach X is obtained by differentiating the Poincaré

section condition,

0 = ¢(P(x))
~ = Dg(P(x))DP(x)
— Dg(P(x)) [f(P(x))D(x) + D(7(x), x)]

= Dg(P(x))F(P(x))] Dr(x) + Dg(P(x))D(r(x), x)
L Drpg - DEPE9I(0. )

D(P (x))£(P(x) 452
Substituting equation 4.52 in equation 4.51, I obtain the final form of DP:
DP(x) = —f(P(x))D]g)(;;’Zii(fT(g‘()};;» + Dé(r(x),x)) . (4.53)
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Recall that in this study two types of Poincaré sections are used. For the Quasi-Halo

Poincaré section defined in 4.33, Dg is

Dg={di 4y 2000}, (4.54)

and for the Lissajous Poincaré section defined in 4.32, Dg is

Dg={001000}. (4.55)

4.2.9 Continuation

For the Quasi-Halo continuation with both the constant Hamiltonian and the constant
period cases, I used the area, A, of the projection of the invariant circle on the
Poincaré section to the yy — 2 plane as the continuation parameter in accordance with
the choice of 0 as arctan(Z/y). For the Lissajous orbit continuation with the constant
Hamiltonian case, I used the area, A, of the projection of the invariant circle on the
Poincaré section to the x — y plane as the continuation parameter in accordance with
the choice of 8 as arctan(y/x).

For the first continuation, I used a linear extrapolation from the Qg value to
find Q. For the second and third continuations, I used a second- and third-order
polynomial fit to extrapolate the value of Q. From the fourth onwards, I used a fourth-
order polynomial fit to extrapolate the value of Q from the known values. Higher-
order polynomial fits were avoided due to the well-known Runge’s phenomenon, which

leads to wildly oscillating interpolant function [54]. First, I obtain the polynomial fit:

poly func(A) = polyfit([Qk, Qk_1, ---, Qo, 0], [Ag, Ax_1, ..., Ag, 0], order)(4.56)

where poly fit is the usual least square polynomial fit of degree order. Then, the
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continuation of the Fourier coefficient is performed by extrapolation:

Qi1 = polyfunc(Agy1), (4.57)

where

While choosing AA, there is a compromise between speed and convergence. The
larger the AA, the shorter the continuation procedure takes, while the possibility of
non-convergence increases with increasing step size. To find the optimal iteration

step size automatically, I set

(

1.2 AA if Newton iteration converged for all previous cases
AA =14 0.8AA if Newton iteration did not converge: repeat the previous step

AA otherwise .

\

Thus, when the iteration is convergent, increasingly large steps are taken to speed
up the process, until the maximum step size is exceeded and the algorithm becomes
divergent. Then, the step size is reduced and the iteration is continued with the
optimal step size.

Finally, I would like to note that as A — 0, so does Q — 0. Therefore, when
A =0, Q = 0. I use this property in the initial step of the continuation by setting
the initial AA = A,.

For illustration purposes, figure 4.9 is a continuation curve for the constant Hamil-
tonian Quasi-Halo family which shows how the first four elements of the Q vector

vary with the continuation parameter.
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Figure 4.9: The first four elements of Q for the constant Hamiltonian Quasi-Halo

family versus the continuation variable Area, A.

4.3 Results

The four-dimensional center manifold around L2 is occupied by quasi-periodic orbits
of two different families: the Lissajous family around the vertical Lyapunov orbits,
and the Quasi-Halo orbits around the Halo orbits. These quasi-periodic orbits reside
on invariant tori about the corresponding periodic orbit.

In this section, I apply the Multiple Poincaré numerical method to find these
orbits. Once the Fourier coefficients on the Poincaré sections are obtained as de-
scribed in the previous section, the two-dimensional quasi-periodic orbit is obtained

by integrating a sample point on one of the Poincaré sections until it crosses the
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same section again. Due to error bounds on the multiple Poincaré algorithm, this
intersection point is very close to, but not exactly on, the one-dimensional invariant
circle. This point is projected onto the invariant circle by finding 6,,,; = arctan(y/z)
or 805 = arctan(z/y), depending on whether the point is on a Quasi-Halo or on

a Lissajous orbit. Then the projected point X,.,; = Ay, Q is integrated, as with

T0J
the initial sample point, until it crosses the Poincaré section, and the procedure is
repeated for the desired period length. Finally, these solutions are patched together

to obtain the full orbit.

4.3.1 Lissajous Orbits

Lissajous Orbit

. L, Point
1015

Figure 4.10: Lissajous orbits around the L2 libration point

The Lissajous family resides on invariant tori about the vertical Lyapunov orbits.
These orbits, which were studied analytically in Chapter 2, can be obtained numer-
ically by employing the multiple Poincaré section method. The full Lissajous family
was obtained via this method, as shown in figure 4.14. Figure 4.10 and 4.11 shows

typical Lissajous orbits around the L2 point.
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4.3.2 Quasi-Halo Orbits

Quasi-Halo Orbit

Figure 4.12: Quasi-Halo orbits around the L2 libration point

The quasi-halo family reside on invariant tori about the halo orbits. These orbits
which were studied analytically in chapter 2 can be obtained numerically by employing
the multiple Poincaré section method. The full Quasi-Halo family was obtained via
this method, as shown in figure 4.14. Figure 4.12 and 4.13 shows typical Quasi-Halo

orbits around the L2 point.
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Figure 4.13: Example Quasi-Halo Orbit around L2

4.3.3 Complete Periodic Family around L2

To visualize the four-dimensional center manifold, which consists of all the periodic
and quasi-periodic orbits, on a two-dimensional figure, the center manifold must be
constrained by two dimensions. A convenient way of achieving this is to choose
periodic and quasi-periodic orbits which have the same energy, and to take a Poincaré
section when these orbits cross the ecliptic plane. Thus, figure 4.14 is obtained. In
this figure, since this is a Poincaré section, the equilibrium points correspond to
the periodic orbits of the original system, while the closed curves correspond to the
quasi-periodic orbits. This correspondence of the real orbits and the sections on the

Poincaré map is shown in figure 4.14.
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Figure 4.14: All the periodic and quasi-periodic orbits around L2 shown on a Poincaré

section of the ecliptic plane

4.3.4 Comparison of the Results with the Literature

The Poincaré section in time, where I specified the orbit period along the Halo, is
shown in figure 4.15. Here, the results are compared to Gémez et al.’s [10]. By
specifying the period of all the orbits to be the same as that of the base Halo orbit,
it is possible to ensure that the spacecraft stay close at all times. This is of great
importance particularly for natural, control-free, formation-flying missions. The main
advantage of the Poincaré section approach is that, due to the numerical nature of
the algorithm, the calculations take only a few minutes of computation time, with

minimal programming requirement. Note that, since the Hamiltonians for these orbits
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are not equal to one another, the orbits may intersect.

0.54

0.52

05

048

0.46

- ~ = G ¥ = < N 008 009 01 011 012 013 014 015 0.16 017

Figure 4.15: The Poincaré section of the invariant tori, where the period of all the
orbits is equal to that of the base Halo orbit. The multiple Poincaré section method
is employed on the left, while the Lindstedt-Poincaré method is used on the right [16].

Utilizing the multiple sections approach, the complete quasi-periodic orbit families
around the libration points are found. Figure 4.16 shows the Poincaré section of the
quasi-periodic family with constant energy on the ecliptic plane, and it compares the
results obtained by our multiple Poincaré method with Gémez and Mondelo’s refined
Fourier analysis [55, 0] and Gémez et al.’s Lindstedt-Poincaré analysis [16]. While
the Lindstedt-Poincaré analysis [16] cannot obtain the complete families and a cluster
of parallel computers was required to get the complete families with the refined Fourier
analysis [0, 50], the current method obtains the complete set of quasi-periodic orbits
with a computation time for the full families of only a few minutes on a 2.15 GHz

Intel Pentium processor.

4.4 Extension of the CRTBP Results to the Full

Ephemeris Model

The quasi-periodic orbits obtained above reside on two-dimensional surfaces around
the libration points of the CRTBP. These orbits do not exist in the real Solar system

due to the eccentricity of the Earth’s orbit and the perturbing effects of many celestial

93



1.009

1.0085

1.008

1.0075

1.007
8

Figure 4.16: The Poincaré section of the complete quasi-periodic family around L2
with energy that is equivalent to the 500,000 km-sized halo orbit on the ecliptic plane
(on the left). Similar results from Gémez & Mondelo [55, 56] (in the middle) and
Goémez et al. [16] (on the right).

bodies. Nevertheless, since the CRTBP is a good first-order approximation to the real
Solar System dynamics, there are orbits in the Solar System that have very similar
shapes and properties to the orbits found in the simplified problem. The aim of this
chapter is to find these orbits.

I take the real Solar System dynamics to be the point-mass gravitational inter-
actions of the major Solar system bodies given at each time-instant with the JPL
DE-406, which is the latest version of the JPL Solar System Ephemeris [57]. Tt spec-
ifies the past and future positions of the Sun, Moon, and nine planets (Pluto is still
defined as a planet in this ephemeris) in three-dimensional space. The ephemeris gives
the Chebyshev polynomial coefficients corresponding to the J2000 standard epoch po-
sitions of these Solar bodies [57, 5&]. In the calculations to follow, deviation from the
spherical symmetry of the bodies such as oblateness is not taken into account. Since
the specifications of the spacecraft that will be placed in these orbits are not known,
neither are drag and solar pressure included in the study. However, note that for a
spherical spacecraft, the effect of solar pressure can easily be included without any
additional force terms, by only reducing the effective mass of the Sun. This is the case

because both the gravitation and the solar pressure forces are inversely proportional
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to distance square (i.e. F o< =), only differing by a constant.

The aim is to find real solar trajectories that have the same characteristics as
the quasi-periodic orbits obtained in this chapter. Thus, the algorithm first takes
the orbits in the CRTBP and converts them from the synodical frame to the so-
lar frame. For astronomically simplified models, better results are obtained when
the Earth/Moon system is treated as a single planet with the center-of-mass at the
Earth/Moon Barycenter, than when the effect of the Moon is ignored in the model.

I employ the usual synodical frame, which has its center at the center-of-mass
of the Sun-Earth/Moon Barycenter system, to map the CRTBP results to the full
solar model, and I find that the large distance between the Sun and the spacecraft
trajectory leads to undesirable behavior. Multiplying small errors with this large
distance leads to non-convergent transfers. Thus, I move the position of the axis
center from the usual definition, which is the center-of-mass of the Sun-Earth/Moon
Barycenter system, to the Earth/Moon Barycenter. In order to map the synodical
coordinates to solar coordinates, the following steps are taken.

In what follows, sSubscripts cm, syn, sun» em, and ¢/s refer, respectively, to the center-
of-mass synodical frame, the Sun, the Earth/Moon Barycenter, and the Earth/Moon
Barycenter with respect to the Sun. Superscripts # and ! refer to the rotating and the
inertial coordinates. r and v are the position and velocity components of the space-
craft. Finally, R and V are the position and velocity components of the solar system

bodies with respect to the solar system center-of-mass, unless specified otherwise.

1. First, the position and velocities of the Sun, the Earth/Moon Barycenter, and

their relative distances are obtained from DE-406:

— — —

Re/s = Rem — Roun - (459)
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Rcm = Rem ;

ch = Vem )

- Rs/e X Rs/e

Woyn = — =
|RS/6|

2. The position, velocity and rotation rate of the rotating frame are calculated:

(4.60)

. (1 — ) is subtracted from the x-coordinates of the synodical frame elements,

and the synodical elements are multiplied with the length and time scale to

redimensionize the coordinates:

Fﬁ;n = ||R8/6|| (Fé%g;n_{l_lj“7 OJO}T)a
‘_;Z;n = ||R8/6|| ||(Dsyn|| ‘_;Z;n’

(4.61)

. The rotation matrix is obtained from the synodical frame to inertial frame:

R = [él é2é3]7
where
él e _’;/e’ A3 — (’isyn ’ and é2 — M .
HRS/EH ||wsyn|| ||€3 X 61”

. The synodical coordinates are expressed in inertial frame coordinates:

rsyn =R rsyn )

—] o —

Vsyn =R Vsyn

=] —

and velocity, T

. Finally, the inertial position, T T ars

solar»
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(4.63)

(4.64)

of the spacecraft are



found with respect to the solar center-of-mass:

=l _ =l 3

Coolar = rsyn + Rcm )

-] o -] — -] =

Volar = Vsyn + Wsyn X rsyn + ch . (465>

Once the position and velocities are mapped to solar system coordinates, I take
these orbits as initial guesses, and find the natural orbits in the full ephemeris model
that stay close to them. My approach to this problem was to take an orbit for a
specified time interval, which would be the time frame of the mission, and to feed this
guess to the collocation algorithm. However, this time, I ran the algorithm without
boundary conditions (see section 3.1.1 for details of the implementation). Thus,
without any constraints, I look for an orbit that satisfies the full Solar System ODE,
starting with the initial guess obtained from the CRTBP. The result is a natural orbit
of the Solar System which is very close in shape and characteristics to the CRTBP
orbit.

The main advantage of this approach is that all the available information, i.e.,
the full guess for the orbit, is used. This is helpful because the Halo and Quasi-Halo
orbits around L2 are unstable, and long-term integration with bad initial guesses
might lead to trajectories that diverge from the original orbit. Thus, I employ a
collocation algorithm, which is a robust boundary value problem-solving technique.

Finally, for visualization purposes, the results in the solar coordinates are con-
verted back to the synodical frame by applying the algorithm backwards. Figures
4.17, 4.18, and 4.19 show the results for three different types of orbits - Halo, Quasi-
Halo and Lissajous orbits - around the Sun-Earth L2 point, transferred to the JPL
DE-406 model.

The collocation algorithm performs robustly around the Sun-Earth L2 point where

the missions of our interest will be located. I also implemented the multiple shoot-
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ing algorithm, developed by Gémez et al. [16] for the Quasi-Halo refinement. The
obtained results and the computation time from both methods are similar. Further
comparisons, including the more computationally challenging orbits of the Earth-

Moon system, will be performed as part of future research.
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Figure 4.17: An example of a Halo orbit around L2 transferred to the JPL DE-406
model
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Chapter 5

Finding the Optimal Trajectories
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The control problem can be separated into two parts; first, the line-of-sight (LOS)
control of the formation during imaging, and second, the trajectory control for ma-
neuvering the occulter from one star LOS to another between imaging sessions, i.e.,
the realignment maneuver. Here, I focus on the latter, since the realignment dom-
inates the Delta-V budget. In this chapter, I find the optimal trajectories for the
realignment processes. Although this is not the main aim of this chapter, I also
solved for the optimal trajectories from Earth to Halo orbits as a sample problem for
the control algorithms that were developed, and to give an idea about the transfer

trajectories.

5.1 Different Optimal Control Approaches

During the imaging of a given planetary system, the telescope and the occulter must
be aligned to the LOS of the star position. Thus, the inertial velocities of the telescope
and the occulter should be the same. In addition, the optics of the diffraction pattern
are such that the telescope will most probably be designed for a prespecified constant
occulter-telescope separation. Thus, based on this optical constraint, the distance
between the occulter and the telescope should be roughly the same for all observations.
This fixes the position of the occulter to be on a sphere around the telescope. The
realignment problem then becomes one of finding an optimal trajectory between two
two-dimensional surfaces, as shown in figure 5.1. I examine six optimization strategies
for the realignment. Depending on the type of thruster the mission uses, either
continuous or discrete control might be needed. Since the most probable devices
are Hall-type thrusters, where we have access to continuous, low magnitude thrust
throughout the trajectory, I studied five continuous thrust methods (and one discrete
one). For all the control algorithms developed in this chapter, I assume that the

there is a single thruster that can be instantaneously thrusted towards any direction
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Configuration

T~ Space of the

Occulter

_| Telescope’s
Orbit

10075

Possible Occulter Trajectories from ¢, to t,

Figure 5.1: The sphere of possible occulter locations about the telescope at two times,
and example optimal trajectories connecting them
of choice.

First, we look at the optimal control problem of finding the trajectory that takes
the occulter from a given star LOS to another star LOS, the realignment maneuver.
Here it is presupposed continuous thrust between two given star LOS’s with a given
time of flight. In this case, I examined the point-to-point transfer in the phase space
with an energy-cost function. While this is not the most physically meaningful of
the cost functions, its quadratic nature makes it easier to solve and it was used as
the initial feed for other types of optimizations. The second optimization leaves out
the time of flight but adds a constraint on the maximum thrust. The third option
presumes continuous thrust and knowledge of the initial condition but the end point
is free to be in any position on the spherical configuration space.

The fourth optimization focuses on the trajectories that minimize fuel consump-
tion, where the magnitude of the control effort was minimized. The fifth option finds

the minimum-time optimal trajectories between the phase space points. Finally, there
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is the discrete control consisting of two impulsive Delta-V maneuvers, one at the be-
ginning and one at the end of the trajectory.

In the following sections, I go over these six different optimization strategies,
and I discuss the approaches taken to solve the optimal control problem that arises
from these different assumptions. Before going any further, I first review the general
optimal control problem.

The stars to be observed were taken from the list with the most suitable 100 stars
for the TPF-C mission [59]. I then used the astrometrical data from the Hipparcos
astronomical catalog [60]. T employed the NOVAS routines developed by Kaplan [(1]
to convert and update the exact star locations of the target stars relative to the Solar
system, starting from 1 January 2010, the mission start day of my choice. For high-
fidelity applications, I developed the capability to use the full nonlinear solar system
model based on the JPL DE-406 ephemeris [57] for differential equations. However,
in the analysis to follow, the CRTBP simplified model is used for the dynamical
model, and a uniformly rotating star model is employed for the star locations for
faster calculations.

For ease of comparison, all the missions scenarios discussed from here on assume

a base Halo orbit around L2 with an out-of-plane amplitude of 500,000 km.

5.1.1 The Euler-Lagrange Formulation of the Optimal Con-
trol Problem (Indirect Method)

The Euler-Lagrange method, otherwise known as the adjoint method, employs the

variational calculus to find the optimal control of a differential system. Here I only

outline the methodology; for details see Stengel [62] and Bryson & Ho [63]. T wish to

find a trajectory, x(t), and control, u(t), that minimizes the cost function, J, in the
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time interval [to, t],

J = o(x(t))) + / 7 Lt w)dt (5.1)

to

subjected to the ordinary differential equations,
x = f(t,x,u) (5.2)
with boundary conditions at each end of the interval
x(to) =x0 and P(tf) =0, (5.3)

for some terminal function ¢ (¢;). The Euler-Lagrange equations give the optimal so-
lution path as a BVP with a differential algebraic equation in terms of the augmented
state consisting of the normal state vector, x, and an additional state vector, A, called

the adjoint states,

x = f(t,x,u) , (5.4)
S (6H(t,a);,u,)\)) (5.5)
0= 8H(t,8)1<1, u, \) (5.6)

In addition to the boundary conditions given in equation 5.3, the algebraic differential
equations are subjected to the following additional boundary conditions given for the

adjoint states at the final time:

Aty) = (aG(g:(‘tf;” ) ”)) . (5.7)
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In these equations, H, the Hamiltonian, and G are given as

H(t,x,u) = L(t,x,u) + AT f(t,x,u) , (5.8)

Gty x(ty),v) = o(x(ty)) + v v (x(ty)). (5.9)

The main advantage of using the Euler-Lagrange formulation is that the optimality of
the solution can be checked, and the computational effort for solving the BVP using
shooting or collocation methods will be minimal if a feasible solution can be found.
The main disadvantage of this formulation is that it may be difficult to generate

sufficiently good initial guesses for the adjoint states.

5.1.2 The Sequential Quadratic Programming Formulation

of the Optimal Control Problem (Direct Method)

The second approach to solving optimization problem defined in equations 5.2, 5.1,
and 5.3 is to discretize integral and states and solve a high-dimensional nonlinear
optimization problem via an appropriate nonlinear optimization algorithm. I discuss
such algorithms at the end of the section. Since there are no intermediate steps, such
as the introduction of the adjoint state, involved in solving the problem, numerical
methods that employ nonlinear programming algorithms to solve the discretized op-
timal control problem are called the direct method. Here I give an brief overview of
the direct method see Betts [0] for details. In this method, first the time interval is

discretized,
tim'tial = t() < tl < tN—l < tN = tfinal~ (510)

Then, the continuous state vector, x(¢), is approximated at these time points, x; =

x(t;), at each time point ¢;. The continuous control variables, u(t), are approximated
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between the time intervals [t;, ,t;11] as u; = u(t;) (for example, a zero-order hold). If
our guess is sufficiently close to the real solution, the discretized quadrature equation
corresponds to the differential equation. For instance, a first-order discretization of

the differential given in equation 5.2 in the middle of every time interval leads to

. Xi+1 — X
PN — 5.11
% T (5.11)
where
s tinn— 1t _ it1 — X
ti = % and X; = %, (513)

and h; = t;;1 — t;. Thus, the differential constraint is converted to an algebraic one,
0=F(t,%x,u). (5.14)

There are many other possible discretization schemes; the Euler type discretization
is used here for illustration. Along with the differential equation, the cost function

and the constraints, if the latter exist, are discretized as well.
N
I (b, x5, = o(x(t7)) + > L(ti, xi, ;)b (5.15)

=0

Then, the constraint vector is augmented with inequality conditions such that

F,=0 i€€&

F,<0, iel, (5.16)
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where & and Z are the sets of indices for equality and inequality constraints, re-
spectively. The high-dimensional discrete nonlinear optimization problem (NLP) is

formulated as

[NLP]: min{J(¢) : F(§)=0,i€&, Fi(¢)<0,iecl}, (5.17)

where £ = {x;,w;} is the augmented variables vector. This NLP is solved via a
nonlinear optimization algorithm.

One of the most efficient and promising methods currently in use is the sequential
programming algorithm (SQP). The SQP algorithm is a generalization of Newton’s
method for unconstrained optimization in that it finds a step away from the current
point by minimizing a quadratic model of the problem. The SQP algorithm replaces
the objective function, J(&), with a quadratic approximation and replaces the con-
straint functions by linear approximations. A more detailed overview of the SQP
method can be found in Gill et al. [65].

I utilized the IPOPT [60], a open-source interior point method SQP-solver soft-
ware, and the MATLAB optimization toolbox software fmincon. To minimize the
time it takes to convert the optimal control problem to a form that can be used with
the direct method, I created an automated symbolic software. This algorithm dis-
cretizes the optimal control problem, which is defined effortlessly in MATLAB. It then
symbolically converts the problem to the form needed by the SQP solver. This code
is then converted and compiled in FORTRAN which is much faster than MATLAB.
These compiled functions are in a form that can be called from within a MATLAB
script (see MATLAB’s “mex” [67] utility for more information). This enables me to
solve the problem without leaving the convenience of the MATLAB environment while
benefiting from the speed of the FORTRAN’s fast compiler. The software allows for

a choice between many different discretization methods, such as Runge-Kutta, Euler,
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and trapezoidal, in order to suit the needs of the specific problem. I hope to make

this software available for the public soon.

5.2 Unconstrained Minimum Energy Optimization

In this approach, I assume that the control variable is the acceleration of the spacecraft
due to the force applied by the thrusters throughout its trajectory, u = (%)thrust@’/‘-
Then, the effect of the control can be added to the normal control-free Newtonian

equations such that
x = fu.(t,x, 1), (5.18)
where
£ (t,x,u) = £(t,x) + {0, 0, 0, uy, uy, u, }*, (5.19)

and where the control vector, u, is defined as u = { g, u,, u, }*. My aim is to
minimize the control effort given these differential equations of motion. In this section,

I use a cost function of the quadratic form,

ty 1
J = / —u-udt. (5.20)
b 2

0

Here, I use the notation, -, for the dot product of vectors. The Hamiltonian for this

optimal control problem is

1
H(t,x,\,u) = Ju-u + Mf(t,x) + pTu, (5.21)
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where I use the intermediate variable, p, which is the last three elements of the adjoint

vector:

P = {)\4a )\57 )\6 }T' (522)

In this section, I consider the point-to-point optimal control, where both the initial

and final states are fixed a priori.

Qﬁ(tf) = X(tf) — Xf = 0 (523)

Solving the optimality condition,

OH (t,x,\,u)
=7 24
0 Tu (5.24)
I obtain,
u=-p. (5.25)

Substituting for u in the Euler-Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

x =f(t,x,\),
A=— (%) A, (5.26)

with twelve boundary conditions

x(tg) — Xo

=0. (5.27)
x(tr) — x¢
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To make sure that this solution is indeed an optimal solution of the problem, I check

that the Legendre-Clebsch and Weierstrass conditions are satisfied:

O?H(t,x,u, \)
ou?

—71>0. (5.28)

The BVP arising from the optimal control problem is solved using a collocation
algorithm. As an example consider the transfer from Earth to an L2 Halo orbit. Let
the final condition be on the Halo orbit with high z value to show the out-of-plane
characteristic of the optimal trajectories. The initial orbit of the satellite around
Earth and the final position on the Halo orbit are shown in figure 5.3. Below are

the exact initial and final states in the normalized synodical units that I used for the

orbit.

9.999969595766015 107! 1.011080356710551 10°

—1.007824043999068 1073 7.419127797265952 10~*
0 3.655679288769010 1073

X0 = P Xf =

7.237761726886938 102 6.534277927644666 10~*
0 —1.054583863270762 102
0 7.362873998458644 104

(5.29)

I solved the optimal control problem with various time intervals and obtained the
cost function as shown in figure 5.2. There is a local minimum of the cost at around
90 days, after which the cost increases until a time-of-flight of approximately 170
days. After that, the results from the BVP solver become very sensitive, most likely
due to branching of the optimal trajectories. Figure 5.3 shows the optimal trajectory
for a 90 day time-of-flight and figure 5.4 shows the optimal control throughout the

trajectory.
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Figure 5.2: Dependence of the optimal quadratic cost function on the time-of-flight

for Earth to Halo orbit transfers.
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Figure 5.3: The optimal minimum-energy trajectory for the 90-day Earth to Halo
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right are the components of the position.
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shown on the right.

For the case of transfer from a star LOS to another, the occulter-to-telescope
distance, R, of 50,000 km is used. For the time-of-flight, I chose two weeks which is
a representative slew time for the mission under study. I assumed the telescope to
be on a Halo orbit, and I assume that the first star the occulter-telescope formation
looks at is in the direction given by the unit vector €y while the second star to be
imaged is in direction of the unit vector &;. I chose &g and &; such that the angle
between them in the order of a typical slew. The exact numerical values used in the

example to follow are

6.324555320336759 10! 0
€0 = | —6.324555320336759 1071 | , é=]0]| . (5.30)
4.472135954999580 101 1

such that the angle between the unit vector is 63 degrees. I obtained the star and
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end positions the occulters from the unit vectors as

Toce = Ttel T Ré , (531)

where roce and rye are the position of the occulter and the telescope in the synodical
frame, respectively. I obtained the velocities based on the requirement that the inertial

velocities of both the telescope and the occulter be the same,

Voce = Viel + W X R &, (5.32)

where voee and viep are the velocity of the occulter and the telescope, respectively,
and w = {0,0,1}7 is the angular velocity of the CTRBP. Thus, the numerical values

in the normalized synodical units for the BVP algorithm are

1.008708480181499 10° 1.009397510830226 10°
5.219658053604695 1073 5.341370714348193 1073
1.494719120781122 10~* 1.843136365772625 103

X = . Xp= . (5.33)
3.123278717913480 1073 3.951895067977367 103
2.077725728577118 1073 —2.937081366176431 103
6.483432393011172 1073 5.838803068471303 103

Figure 5.5 shows the optimal trajectory of the occulter relative to the telescope on

the Halo orbit. Figure 5.6 shows the optimal control throughout the trajectory.

5.3 Constrained Minimum Energy Optimization

Next, I add an inequality constraint on the control to the minimum energy problem.
The magnitude of the control vector, |u|, must be less than a specified limit, %4,

such that |u| < Upme,. The augmented Hamiltonian for the optimal control problem
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can be written as

1 Hepf = 0 if Ceff(ll) <0
Heyg(t,x, A u) = §u a4+ )\Tf(t,x) +plu+ PeffCefr(1)

presr 2 0 if cepp(u) =0,

(5.34)

where c.sr(u) is the inequality constraint function effective on the boundary,

Cepp() =u-u—u?, <0, (5.35)

max

and p.rs is the corresponding Lagrange multiplier.
Since ¢,y is only a function of u, the adjoint differential equations are not altered.

However, the condition for control optimality becomes

OHT u + p, Ceff < 0
0=— = 5.36
Ta (5.36)
u-+p+ 2,ueffu, Ceff = 0.
Solving the first part of the equation gives u = —p, as before. The second part asks
that the following two equations be satisfied:
u=-——"P . lu| = Umaz , (5.37)
1+ 2,ueff
which are solved to give
U= Ftap £ (5.38)
p|

In order to decide which sign the control should take, I use the Pontryagin’s Minimum

Principle (See Stengel for details [62]), which states that the optimal control, u*, in
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the set of feasible controls U is

u(t) = arg{ min H(t,x,u, )x)} : (5.39)
u(t)eu

Looking at the part of the Hamiltonian with control influence, I obtain

1 1
Eu* ‘u* +pTut < Fu-u +pTu, (5.40)

where the superscript {* } denotes the optimal elements. Now it becomes apparent

that the correct choice of the sign is minus. This defines the optimal control as

—Pb lf |P| g Umaz
u= (5.41)

—Umaz ﬁ lf |P| > Umaz -

Substituting for u in the Euler Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

x =f(t,x,\)
: of(t,x, A\
A=—| ————=] A 42
with boundary conditions
X(tp) — X
o) =x0) o (5.43)
X(ty) — Xe

Considering applications, I first looked at the Earth-to-halo transfer optimization.
While solving the constrained optimization problem, I used the same xg and x¢ given
in equation 5.29 in the last section, and I used the solutions from the last section as

the initial guess for the BVP. Figure 5.7 compares the trajectory of the satellite for the
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Earth-to-Halo transfer from the bounded control such that u,,,, = 6.1le — 5. Figure
5.8, on the right, shows the optimal control effort and compares it with the unbounded
control case. How the norm of the control changes with maximum allowable control
is shown in figure 5.8 on the left. For a given u,,,,, there is no guarantee that a 90
day transfer trajectory from Earth to Halo orbit exists. As seen from the figures 5.8,

for 4. < 6e — 5 the control power is not enough to reach the destination within 90

days span.
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Figure 5.7: The optimal minimum-energy trajectory for the 90-day Earth to Halo
transfer with bounded control. In red is the bounded optimal trajectory. The blue
unbounded trajectory is also plotted for comparison.

Next, I considered the case of realignment maneuver. While solving the con-
strained optimization problem, I used the same xg and xs given in equation 5.33 in
the last section, and I used the solutions from the last section as the initial guess
for the BVP. Figure 5.9 shows the magnitude and the components of optimal control

history throughout the trajectory.
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5.4 Free-End Condition Optimization

The third optimization presumes continuous thrust and knowledge of the initial con-
dition and leaves open the end point on the spherical configuration space at t;. In
this case, the initial state of the occulter, x(ty) = xo, is known at ¢ =y, and I seek
to find the target occulter state, x(tf), at time 7, that minimizes the energy cost
function. Thus, the end time is fixed while the end position is free to change. Due
to the optical requirements that were discussed previously, this final position, x(ts),
resides on the two-dimensional possible occulter locations at a given final time ¢ = ¢;.

The Lagrangian and the differential equations are the same as before:

ty 1
J = / —u-udt. (5.44)
to 2

The same Hamiltonian as before is also used:

1
H= Ju-u + M'f(x) + p'u, (5.45)

but instead of the six-dimensional equality constant, x(¢;) = x¢, at the end of the
interval, now there are only four conditions. The first of these constraints is that the
distance between the occulter and the telescope at the final time must be equal to
the predefined radius, R. The other three are that the inertial velocity vector of the
occulter and the telescope must be the same in order to be able to lock on a target

star. Noting that the inertial velocity is

vi=vituwxr, (5.46)
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where w = {0,0,1}7, the final time constraint vector becomes

(@(ty) — onlte))? + (y(ty) —yn(te))? + (2(tr) — zn(ty))® — R?
B(tr) = y(ts) — (@nlty) — ynlty))
glty) +x(ty) — (nlty) + an(ty))

Z(tr) — znlty)

(5.47)
This four-dimensional condition does not change the differential equation for x and

A, but the final condition for the adjoint variables becomes

vi(z(ty) — xalty)) + v

ni(y(ts) — unlty)) — 12

xe, )\ vi(z(ty) — z(t
Mtf):@%:étf) )) _ ((f)y2 n(ts) | (5.48)

where the components of v, the constant Lagrange multiplier vector corresponding
to the end constraints, are given as v = {v, /5, 13,4 }. Eliminating the elements of

v, these six equations can be turned into two constraints in term of A(¢y):

A\ (ts) + Na(t z(ty)—zn(ty) + A
)

(ts)—yn(t
—Xa(ty) + >\3(tf)?:(t;)——ZZ(t; —M

With the addition of the four () constraints given in equation 5.47 on the final time

and the six initial conditions, z(tg) = xo, I obtain the twelve boundary conditions
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needed to solve the 12-dimensional BVP given in equation 5.6:

x(tg) — Xo
Y(ty) =0. (5.50)
Vada(ts)

I solved this BVP via collocation.

This hypothetical problem was specifically designed for the case of the realignment
maneuver. While solving the free-end condition problem, I used the x¢ that is given in
equation 5.33, a time-of-flight of two weeks, and an R of 50,000 km, as before. I also
used the solutions from the previous sections as the initial guess for the BVP. Figure
5.10 shows the relative trajectory of the occulter with respect to the telescope on
the Halo orbit. As can be seen from figure 5.11, the control effort is two magnitudes

smaller than in the previous examples of the fixed-end-point optimization cases.

-5

x 10

X (AU)

10 12 14

6 8
Time (days)

Figure 5.10: An optimal trajectory of the occulter relative to the telescope for an
unprescribed end condition realignment maneuver.
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Figure 5.11: The open-ended optimal minimum-energy control effort for the realign-
ment maneuver shown in figure 5.10. The magnitude of the control is shown on the
left, while its components are shown on the right.

5.5 Minimum-Time Optimization

I now consider the realignment between two targets in minimum time under a max-
imum thrust constraint. In this case, I want to go from a point in phase space to

another point in the minimum amount of time. The cost function thus becomes

tr
J_/ 1 dt . (5.51)
to

Since the minimum time solution dictates that the maximum control be employed at

all times, I simplify the problem by redefining the control:
U= Upgy U. (5.52)
Now I have a new constraint that needs to be satisfied throughout the trajectory:

(5.53)

o
=
I

[u—
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I include this constraint in the Hamiltonian by augmenting it with additional La-

grange multipliers p:

H =1+ Mf(X) + Uneeptd + p(-0—1). (5.54)

While the augmentation does not affect the adjoint differential equation, the optimal-

ity condition becomes

0H
0= 5 = UpmazP + pi . (5.55)

Thus, the optimal control @i can be obtained by solving this equation along with the

constraint equation 5.53,

Uz if |p| #0
u= el (5.56)
undetermined ifp=0.

Previously, I used the optimality condition and Pontryagin’s Minimum Principle to
determine u*(¢) for all time ¢ € [to, tf] in terms of the extremal states, x*, and adjoint
states, \*. If, however, there is a time interval [t;, t5] of finite duration during which
this principle provides no information about the optimal control, then the problem is
called singular and the interval [t;, 5] is called the singular interval.

In order to determine whether it is possible to have singular intervals, the case
where p is zero for finite time interval is considered. This condition implies that
derivatives of all orders of p should be zero during that time interval. In other words,

d*p
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Writing the differential equation for p from the adjoint states ODE,

—A1 + 2py
P=|-X—2p |- (5.58)
_)\3

we can see that the singularity condition leads to A = 0. However, for the open-end-
time problem under study there is another boundary condition. The Hamiltonian for
the open-end-time problems, where it is not an explicit function of time, is equal to
zero at all times (see Stengel [62] and Bryson & Ho [63] for details). Therefore, for

the CRTBP where H is not an explicit function of time:

H=0. (5.59)

For the singular intervals, we know that A\ = 0. Substituting this equality in the
Hamiltonian, I obtain H = 1, which leads to a contradiction. Thus, there cannot be
singular intervals for this minimum-time optimization problem.

Substituting for @ in the Euler-Lagrange equations, I obtain a 12-degree ODE in

terms of the state and adjoint state only:

x = f(t,x,\)
C o (of(x, )\
A= — (8—x) A, (5.60)
with boundary conditions
H p—
X(to) —Xo | — 0. (561)
X(tf) — Xr
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To apply numerical methods to solve this problem, the time boundaries for the BVP
must be defined explicitly. However, in this case, the time interval is [0, ¢;], where
the end time for the BVP, t;, is an unknown parameter. In order to overcome
this problem, I redefine the system on the fixed-time interval [0, 1] by rewriting

the equation in terms of a new time variable:

T=—. (5.62)

Introducing t; as a new state variable, the extended differential equation becomes

;l—j = t;f(t,x,u)

d\ f(x, \)\ ©

D ()T

dr ox

dt

- = 0. (5.63)

Now the 13-dimensional BVP can be solved.

I first employed the collocation algorithm to solve the time-optimal transfer from
Earth to L2. I solved the problem with a range of maximum-allowable control as
shown in figure 5.12. The minimum time-of-flight as a function of maximum control
is shown in figure 5.13. Position and control histories for a sample trajectory are
shown in figure 5.14.

Next, I looked at the LOS realignment problem. The requirement for the re-
alignment is that, at the final time, the occulter must be positioned to look at a
pre-specified star with the inertial positional direction, é. Recall that, at different

times, the position and velocity of the occulter are given as below:

Toce = Ttel + Ré (564)

Voce = Viel + W X R & (5.65)
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Figure 5.12: A sample of time-optimal trajectories from Earth to Halo projected on

the ecliptic plane. For comparison, a 90 day minimum-energy transfer orbit is shown

in red.
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Figure 5.13: The minimum Earth to Halo transfer time for varying maximum allow-
able control. Red dot shows the SMART-1 spacecraft capability (0.2 mm/s).
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Figure 5.14: Shown on the left is the time-optimal control trajectory for the 57-day
Earth to Halo transfer. The components of the control for this trajectory are shown
on the right.

Thus, before knowing the time-to-go, the position of the telescope, and, as a conse-
quence, the final position of the occulter, x¢, cannot be specified. This problem can
be solved in two ways. The first option is to change the time-independent final time

constraint to

vy =| Mt fie) (5.66)

Voce — (Vtel +wx R é)
This changes the 13th boundary condition H(tf) =0 to

oY(ty)
ot

Hity) + =0. (5.67)

However, due to the time-dependent nature of the boundary condition, it is difficult
to solve this BVP. As a result, I instead used an iterated approach to solving the
target-chasing minimum-time problem. In order to find the minimum-time transfer,
the following procedure is followed. I first estimated the ¢; and then integrated

the equations of motion to find the location of the telescope and the star at that
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time. From the LOS requirement, I found x; and then solved the time-independent
version of the problem. After obtaining the minimum time-to-go, x¢ is calculated
and the optimization is repeated with the new final position constraint. I continued
iteration until the difference between the estimate and the ¢; from the optimization
was negligible. In this case, two to three iterations were adequate. Figure 5.15 shows

the time-optimal trajectories for three scenarios and the control components for one

of them.
x10™ 4
4 : : - T x 10
— U __=16e-4 2
max
U =20e-4
= U= 3.0e-4 %
5 2F =o.le-4 14 K4
~ « max
x =]
0o 2 5 é 8 10 12 14 -2 X
x10™ o ., 2 4 6 8 10
0 : : : - x 10
2 :
§ / )
< < 0
>-2F 1 é
3>_2
-4 L L L L L L -4
o 2 4 6 8 10 12 14 0 2 4 6 8 10
4 x 10 ‘ ‘ ‘ ‘ ‘ ‘ X 10
4
=) G 2
Zop ] E
N - L
JN 0
0 ‘ ‘ ‘ ‘ ‘ ‘ ) ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 0 2 4 6 8 10
Time (days)

Time (days)
Figure 5.15: On the left is a sample of trajectories of the occulter relative to the

telescope for the time-optimal control for different w,,,,. The components of the
control for the green trajectory are shown on the right.

5.6 The Minimum-Fuel Optimization

In the fuel-optimal problem, the aim is to find the control history that takes the
spacecraft to the predefined final position in a given time ¢; while keeping the final

mass m(ts) as high as possible. The mass of a spacecraft at a given time ¢ can be
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determined by the relationship
m(t) = my — mt, (5.68)

where m is the constant propellant flow rate and mg is the mass of the spacecraft at
the initial time. Assuming that the total change in the mass throughout the trajectory

is negligible, Newton’s second law of motion can be written as
lulme = m Ve, (5.69)
and it follows that

m(ty) =~ mog— ——

(5.70)

where V., is the velocity of exhaust with respect to the body and u is the iner-
tial acceleration due to spacecraft propulsion, the control input that has been used
throughout this chapter. The velocity of the exhaust depends on the specifications
of the spacecraft thruster.

The constant mass approximation is a very good one for the LOS realignment
maneuver since such maneuvers take at most a few weeks. For the Earth-Halo transfer
case, this assumption is not a very good one, but the more complicated optimization,
where the dynamics of the change in mass is included in the dynamical equations, is
not considered, since the Earth-Halo transfer is not the main objective of this study.

With this approximation, maximizing final mass is equivalent to minimizing the
magnitude of the control throughout the trajectory. For this case, the cost function

18
ty
J:/ ] dt . (5.71)
to

130



The Hamiltonian for the control problem becomes
H(t,x,\,u) = [u| + \Tf(t,x) + p’u. (5.72)
The Pontryagin’s Minimum Principle states that the optimal control is

u(t) = arg{ min H(t,x,u, A)} . (5.73)
u(t)eu
Looking at the part of the Hamiltonian with control influence, I obtain

u*|+p*u* < |ul +p T, (5.74)

where the superscript {* } denotes the optimal elements. Along with the inequality

constraint |u| < ,q., the optimal control is obtained as

0 if [p| <1

U if [p| > 1 (5.75)

Undetermined if |p|=1.

\

It is important to now determine whether the undetermined case leads to singular
control. Because it is very difficult to prove or disprove whether singular control exists
in the nonlinear case, I therefore look at the linear case.

To prove that no singular control intervals exist for the realignment maneuver, I

linearized the differential equations and obtained the linearized ODE as

x = Ax + Bu. (5.76)

In these equations, it can be shown that A is not singular and that the controllability
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matrix,
C=[BABA’B ... A" 'B], (5.77)

where n is the dimension of the system, is of full rank n. We know that, for a
non-singular system with complete controllability, the system does not have singular
solutions (see Kirk [08] for details). Thus, the control law for the linearized system

does not have singular arcs, and is

0 if |p| < 1
u— (5.78)

e if[p .21,

I assume that the linear analysis extends to the nonlinear case and use this control
law for the realignment maneuver. Substituting for @ in the Euler-Lagrange equations,

I obtain a 12-degree ODE in terms of the state and adjoint state only:

x =f(t,x,\)
: Of(x, \)\ "
A=—|———=] A .
=t (5.79)
with boundary conditions
X(fg) — X
(o) =0} _ (5.80)
X(tf) — Xf

For the slew from one target to another, I employed a backward shooting approach
where I used the solution from the previous section as the initial guess for the adjoint

variables at final time A¢. Integrating the 12-dimensional differential equation, I set
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the root-finding problem as:

¢(t0 — tf, [Xf; /\f]) — Xo = 0. (581)

Successive iteration gives the value of the \¢ in a few iterations. Figure 5.16 shows
a sample fuel-optimal trajectory, where the relative trajectory of the occulter with
respect to the telescope on the Halo orbit is plotted. The bang-off-bang structure for
the J = [ |u| type of optimization can be seen in figure 5.16, where the magnitude

and the components of the control effort for the realignment maneuver are shown.
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Figure 5.16: The trajectory of the occulter relative to the telescope for a minimum-
fuel realignment maneuver.

Although it might be possible to prove or disprove the existence and the form
of the singular control law for the Earth to Halo transfer, I did not attempt this
analysis and used the direct SQP method for the numerical application where the
control does not need to be specified. Collocation algorithms cannot be used for
this type of problem since, as discussed before, it assumes smoothness of the state
variables. However, since the control is not continuous, it follows that the velocity

elements are not smooth. Figure 5.18 shows a sample optimal trajectory with the
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Figure 5.17: The minimum-fuel control effort for the realignment maneuver shown in
figure 5.16. The magnitude of the control is shown on the left, while its components
are shown on the right.

same boundary conditions that were defined in the previous sections. Figure 5.19

show the optimal control effort used for this trajectory.

5.7 Impulsive Thrust: Minimum-Fuel Optimiza-
tion

Finally, I looked at the fuel-optimal impulsive control problem. The trajectories
that take the occulter from one target star LOS to another with minimum fuel were
studied for an impulsive thrusting system. As seen in figure 5.19, for the continuous
case, the fuel-optimal solution is a bang-off-bang control. As the upper bound on |u]
is increased, the bang-off-bang nature of the control is retained, with the thrusting
phase (bang part) becoming increasingly small. In the limit, we obtain the impulsive
optimal control solution where the velocity instantaneously changes at the beginning
and at the end of the interval. This corresponds to an impulsive maneuver like the

one that would be obtained from an impulsive chemical rocket. In this case, the
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Figure 5.18: The minimum-fuel trajectory for the 90-day Earth to Halo transfer.
Shown on the left, in red, is the three-dimensional trajectory. Shown on the right are
the components of the position.
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Figure 5.19: The minimum-fuel control effort for the 90-day Earth to Halo transfer.
The magnitude of the control is shown on the left, while its components are shown
on the right.
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control consists of two large Delta-V maneuvers at the beginning and at the end of
the trajectory. The control changes the velocity of the occulter while keeping its
position constant. Thus, the objective is to find the velocities at the initial time,
to, and the final time, ¢;, given the initial and final positions. The Delta-V will be
the difference between the computed velocity and the required velocity for planetary
system observation. I write the components of the state vector as x = [z, v, 2, %, y, Z].
Mathematically, the problem is to solve for the 3 unknown velocities at both boundary
points, a total of 6 unknowns, given the 3 known positions at both boundary points.

Then, the BVP is defined by

x = f(t,x), (5.82)
with boundary conditions
I(tg) — Xy
y(to) — vo
z(tg) — 2
o) =20 (5.83)
w(ty) — g
y(ty) —ys
2(ty) =z

This is a well-posed BVP which was solved by employing a collocation algorithm.
Since the control consists of two Delta-V maneuvers at the beginning and at the end

of the interval, the control history figures are not plotted.

5.8 Conclusion

In this chapter, the optimal trajectories for the Earth-to-L2 Halo orbit transfers and

the realignment of the occulter between target star LOS’s were analyzed. Employing
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Euler-Lagrange, SQP, and shooting algorithms, I obtained the energy, time, and fuel
optimal control for continuous thrusters and the fuel-optimal control for impulsive
thrusters. The trajectories for various boundary conditions were solved. These tra-
jectories are used in the next chapter for the global optimization of the space telescopy

mission consisting of a telescope and a constellation of occulters.
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Chapter 6

Global Optimization of the
Mission: The Traveling Salesman

Problem
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In the previous chapter, the trajectory optimization for star target-to-target ma-
neuvers was conducted, where I found the minimum Delta-V that is needed for the
realignment processes. Here, the sequencing and timing of the imaging session is
examined in order to globally optimize the full occulter-based telescopy mission.

This chapter aims to arrive at the algorithms that optimize the different mission
scenarios from beginning to end, and that reduce the complexities of the various
missions to simple graphs, where a side-by-side comparison of the advantages and
disadvantages of these missions is possible. This makes possible a trade-off study,
using different control strategies, in terms of cost, i.e., the total Delta-V for the
mission, and scientific achievement, i.e., the number of planetary systems that are
imaged.

In the first section, the results from the previous chapter are combined, and the
cost of realignment as a function of mission parameters is obtained.

In the second section, a more detailed overview of the realistic mission conditions
and constraints is given. It is explained how the global optimization problem can
be reduced to a sorting problem that is similar to the Traveling Salesman Problem
(TSP).

In the third section, the well-known Traveling Salesman Problem (TSP) is intro-
duced. The mathematical formulation and numerical solution methods are shown,
and the global optimization problem is solved based on a TSP approximation.

In the fourth section, a mathematical model for the realistic mission optimization
is produced, which is akin to a Time-Dependent TSP (TDTSP).

In the fifth section, numerical methods to solve the TDTSP are discussed. These
numerical methods are applied to various mission concepts with no control limitations.

In the sixth section, a feasibility study of the mission is performed by analyzing

possible scenarios with the capabilities of the SMART-1 spacecraft.
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Finally, the global optimization for the telescopy mission with multiple occulters

is analyzed.

6.1 Realignment Cost Analysis

The optimal solution for point-to-point trajectories was obtained in the last chapter.
In this section, I attempt to put these results into context. The important parameters
of the system are the time-to-go, the angle between the LOS of the initial and final
target stars, and the radius of the formation. In order to better understand how
the optimal Delta-V depends on these parameters, I obtain the optimal trajectories
using the methods from the last chapter over a wide range of parameters. These
results are then averaged to give a fuller understanding of the global problem. In this
section, I use only the unconstrained solutions, i.e., minimum-energy and discrete
optimizations, to give general results. The case with constrained results (minimum
time and minimum fuel) is studied in section 6.6 for specific Uz -

As the positions of the target LOS’s, I choose equally-spaced points on the sphere
of possible occulter locations. I do this by using the method of equal area partitioning
of a sphere, which was developed by Leopardi [69]. This allows me to make sure that
the whole phase space is covered with minimal computation power, since the phase
space is represented by a minimum number of points. These results are then averaged

over the parameters of interest.

Figure 6.1: Equal partitioning of a unit sphere [(9]

140



Using the optimization method developed above, I find the Delta-V that is needed
to go between these targets at 20 equally placed locations in the Halo orbit. In figure
6.2, the Delta-V resulting from these millions of optimizations are averaged for the
minimum-energy optimization, giving Delta-V as an approximate function of the
radius and the LOS angle for a transfer time of 2 weeks.

c0? AV (AU/day)

o5 1 15 2 Radius (10* km)

Figure 6.2: The surface of Delta-Vs as a function of distance from the telescope, and
the angle between the LOS vectors of consecutively imaged stars for minimum-energy
optimization (At = 2 weeks).

In order to make the mission analysis more realistic, the top 100 TPF-C target
stars given in [59] were used. I found the Delta-V for the realignment between each
target for impulsive maneuvers, as shown in figure 6.3. In the figure, the identification

numbers of the stars are sorted in ascending declination.

6.2 Defining the Global Optimization Problem

Now that the relevant optimal trajectories between any two given star-imaging ses-
sions have been found, it is important to examine the sequencing and timing of the
imaging sessions, in order to minimize the global cost of the mission. This section
gives an overview of the constraints that are associated with an occulter-based tele-

scopy mission. [ explain how the global optimization problem can be reduced to a
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Star Identification #

Figure 6.3: The minimum Delta-V for impulsive maneuvers needed to realign the
occulter between the Top 100 TPF-C targets (At = 2 weeks).
sorting problem that is similar to the TSP.

The reflection of sunlight from the occulter to the telescope interferes with the
imaging of the planetary system. This constrains the occulter to be between approx-

imately 45 to 95 degrees from the Sun direction (see figure 6.4).

Target stars
* *

Occulter
Operating «—

Range =>

Figure 6.4: The operating range restriction of the occulter is shown on a skymap.

By including the constraints that are imposed by the telescopy requirements, the
problem becomes a TDTSP with dynamical constraints (see figure 6.5). The problem
reduces to finding the minimum-sum sequence that connects the rows and columns of
the TDTSP matrix. The mission requirements also impose other constraints on the
sequencing that are not shown in this figure. To ensure that the images of the plane-
tary system of interest do not produce the same results, the minimum time between

re-imaging of a target is 6 months. In order to conduct an approximate analysis, I
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construct an example Design Reference Mission (DRM) by randomly choosing which
stars are to be revisited, and how many times. While it is possible to ensure that
there are no planets along the LOS, and to take into account the albedo effect of the
Moon, I chose not to consider these minor constraints at this stage of optimization

in order to save on computation.

A|lB|C]|D E F G
A 5| o | »w| 9 4 7
B 3 W | 0 7 8 1
:> c w0 w0 D | o | o | w
D|w | »w|wx o | o | w
E 4 7| o | » 1 1
F 8 3| w | w| 7 8
G 9 2 D | o 6 9

Figure 6.5: By including the constraints, the global optimization problem is converted
to the search for the best ordering of target stars, where the Delta-Vs between the
targets are shown on the time-dependent TSP matrix. In the figure, unaccessible
zones are shown as oo.

6.3 The Classical Traveling Salesman Problem

In the classical Traveling Salesman Problem (TSP), a salesman must visit a given
number of cities, whose distances from one another are known, by the shortest possible
route. The salesman’s optimal path, which starts and ends in the same city, must
include all cities once and only once.

Mathematically, this problem can be formulated by using a graph. The nodes
and the arcs of this graph correspond to the cities and the route between cities,
respectively. The TSP then becomes an assignment problem on the graph, where

every node has one and only one arc leading towards it and one and only one leading
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away from it. This can be expressed by employing the variable

1 if arc(i,j) is in the tour,

0 otherwise,

fori =1,2,...,nand j = 1, 2, ..., n, and where n is the number of cities, or in
our case, stars to visit.

On this graph, the TSP becomes the arc length minimization problem given below:

Min E Cij Lij
i?j

st Y =1 V4
> oz =1 Vi
J

Here, ¢;; are the elements of the cost matrix, c. Every element of this matrix represents
the distance between two cities.

However, this formulation may not give the desired, single loop that connects all
the nodes. Multiple, unconnected loops, or “subtours”, may result. To overcome
this problem, additional constraints must be added to the formulation. The Miller-
Tucker-Zemlin formulation [70], which introduces new variables, u; for i = 1,...,n

for subtour exclusion, is one of the most well-known formulations:

Ulzl
2<uy; €n Vi#1l
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The constraint formulation given in equation 6.3 is satisfied when the position of the

node 7 in the tour is u;.

W o

-
S

Figure 6.6: Travelling salesman solution to the top 100 TPF-C targets shown on a
skymap.

While there exist exact solution methods for the TSP, such as dynamic program-
ming, the cutting-plane method, and branch-and-bound methods, the computation
time is proportional to the exponent of the number of cities. For those who are in-
terested in exact solutions of the TSP, CONCORDE is the current state-of-the-art
software [71].

When the exact optimal solution is not necessary, heuristic methods can be used,
which quickly construct good, feasible solutions with high probability. These methods
can find solutions for large problems consisting of millions of cities in a moderate time
span, while only deviating 2-3% from the optimal solution (see Gutin and Punnen
for details [72]).

Since this dissertation focuses on the analysis of the mission concept, exact solu-
tions are not necessary at this stage. In figure 6.6, a sub-optimal solution for the TSP
problem for the top 100 TPF-C targets is given. The solution was obtained using the
simulated annealing method. The numerical implementation of this heuristic method

is discussed in section 6.5.
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6.4 Mathematical Formulation of the Global Op-
timization Problem

In this section, the mathematical formulation for the realignment problem is obtained,
starting from the classical TSP formulation. There are four major differences between
the classical TSP and the realignment problem. First, the cost matrix in our case is
time dependent due to the motion of the telescope on the Halo orbit, the change in
the star directions relative to the telescope, and the evolution of the exclusion zone.
Second, additional constraints must be satisfied. Third, the occulter may visit some
of the star targets more than once. And finally, the occulter does not have to visit
all the possible star targets.

I formulate the travelling occulter problem given the following parameters: the
total number of observations, Ny, the identification number of the stars that can be
imaged more than once, i,, and the slew time between imaging sessions, At. For the
sake of simplicity, I assumed that the maximum number of visits to any given star
was two. The results can easily be extended to the case with more than two visits.
The formulation of the problem is set such that the multiple occulter case is obtained

with minimal modification of this formulation, as seen in section 6.7.

6.4.1 Cost function

First, let us define the cost function for the problem with only a single measurement
for each star. The time interval between each observation, At, is assumed to be
constant in order to simplify the problem. Then, t;, the time when the ith target is
being imaged, becomes At u;, which is only a function of how many observations were

conducted before the current target. Thus, the cost matrix that is to be minimized
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can be expressed as:
Min Z C(?:,j, Uz) Lij - (64)
2

In this formulation, ¢(i,7,u;) is a three-dimensional matrix at each time instance
given with u;, which can be precomputed.

At each time interval, the constraints, such as the stars which are non-imageable
due to their location relative to the Sun, are calculated. For the stars that cannot be
observed at that time, the c(i, j,u;) is set to infinity.

The sequence after the maximum visit number should not matter in the total cost
computation. In order to ensure that it is excluded, the matrix elements of ¢(i, 7, u;)
for all u; greater than the user-specified maximum number of total observations, Ny,

are set to zero.
c(i,j,u;) =0 for w; = Ny + 1 (6.5)

Thus, the algorithm only minimizes cost for the Delta-V budget up to this value and

does not take into account the remaining nodes.

6.4.2 Including the revisits into the formulation

In this section, a method to include the option of revisiting sample stars with identi-
fication numbers i, is introduced into the formulation. As stated, I assume that the
maximum number of imaging of a given star is two. Higher numbers can easily be
introduced into the formulation without loss of generality.

First, I double the number of nodes such that each star now corresponds to two
nodes, one for the first visit and the other for the second visit. ¢ and j are redefined to

be double the size toi = 1,2, ....2nand 57 = 1, 2, ..., 2n, where n is the number
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stars. In this notation, elements of ¢ and j from 1 through n represent a first visit of
a target star with the identification number i or j. The elements from n + 1 through
2n represent a second visit of a target star with the identification number ¢ — n or

j —n. Correspondingly, I redefine the cost matrix to be double the size:

Cia ‘7ui Cia '7ui
c(i, j, ui) := (o) el o) : (6.6)
C(i,j,ui) C(i,j,ui)

If a star with identification number £ is not allowed to be revisited, the cost for a

second visit is set to infinity (or a very large number):
clk+n,::)=00, c(,k+n,:)=0c0. (6.7)
This formulation enables me to keep the TSP formulation for the x;;:
» ay=1 Vj A
» ay=1 Vi
J
iy € {0, 1} Vi, j. (6.8)

The revisits, if they happen, should be after a certain amount of time. For a given
star with identification number 7 and position in the sequence u;, its revisit partner

with position u;., should be separated by a minimum distance
Uy + Nrevisit < uiJrn ) (69)

where n is the number of stars of interest and N, is the minimum re-imaging
interval. These constraints ensure that the revisit only happens after a certain amount

of time has passed. Since the time between each observation is assumed to be constant,
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t; = Atwu; is only a function of how many observations were conducted before. For
example, for a realignment maneuver of two weeks, and a minimum allowable revisit

time of six months, N,eyisit = 12.

6.4.3 Full Formulation

The full formulation for the mathematical model can thus be written as:

Min Zc(i,j, ;) Tij
.3

7

J

u =1

2<u; <2n Vi#1
w—u;+1<2n—-1)(1— ) Vi#l Vi#1

Ui + Nrevisit < Uitn Vi

zi; € {0, 1} Vi, j, (6.10)

where c¢ is a precalculated three-dimensional matrix. For the minimum-fuel problem,
the elements of ¢ are the Delta-V calculated in the previous sections. Without loss of
generality, u; is set to one, which can be changed for different starting stars.

For the minimum-time optimization problem, the elements of the ¢ matrix are the
time-to-go between each target. In this case, the time spent between each realignment
is no longer a constant. The cost and the constraints that are associated with the arc
1 — 7 are now dependent on time ¢; at position wu;.

The time at a given arc can be expressed as the sum of all the costs, or the
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time-to-go, before that node:

t1=0
tr :Zc(i,j,ti) zi; Vistou;=1,...,k—1 and Vjst.u;=2,...,k (6.11)
1,J

Here, the indices of the stars which have already been visited must first be identified
from the elements of u. Then, the total time is calculated by summing all the pre-
vious time intervals. The cost function ¢ is a continuous function of time, since the
observable stars change with time while the time is dependent upon all the previous
observations. This formulation is a much more complicated nonlinear programming

problem.

6.5 Numerical Methods Employed for Solving the
Global Optimization Problem

As discussed before, I do not implement the exact solution methods for the optimiza-
tion problem. In line with the scope of this dissertation, which is the analysis of the
mission concept, I use heuristic methods, which deviate only a few percent from the
optimal solution, and quickly construct good, feasible solutions with high probability.

While solving the classical TSP, I implemented the tabu search [73], ant colony
optimization [71], cross-entropy [75], and simulated annealing methods [76] to famil-
iarize myself with the heuristic methods. They all performed well.

The ant colony optimization and cross-entropy methods employ a swarm of can-
didate solutions. These methods are not suitable for our problem, because of the
existence of a high level of constraints. As far as the cross-entropy method is con-
cerned, one infeasible solution in a group would bring the statistical average of the

group up, but trying to impose the constraints on the elements is against the spirit
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of the swarms of trials and averaging. As for the ant colony optimization, it is not
apparent how the constraint can be imposed that prevents the same star from being
revisited before a certain amount of time.

I chose to use simulated annealing rather than a tabu search, since, due to the
constraints, the optimal solution and initial feed might be in separated parts of the
search space, and random motion given in simulated annealing might be of use to get
out of local minima.

Next, I explain the implementation of simulated annealing for the problem at

hand.

6.5.1 Simulated annealing

Developed by Kirkpatrick et al. [70], simulated annealing is a global optimization
method suitable for problems with a large search space. The method is inspired by
the way crystalline structures are formed in the thermal annealing process, such as
the production of high-strength steel.

The analogy between the physical annealing process and the numerical optimiza-
tion is such that the temperature change is akin to the time spent in the optimization,
and the energy level is analogous to the cost function to be minimized. Similarly to
the physics of atoms under the annealing process, simulated annealing generates ran-
dom solutions in the neighborhood of the old one. Initially, when the temperature is
high (the initial stages of optimization), random moves which lead to higher energy
(higher cost) levels are allowed frequently, but as the system cools down (optimization
time increases), the tendency to allow moves which increase the energy is reduced.

The algorithm becomes more like a downhill search method.
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Algorithm Pseudo-Code

Below is the pseudo-code for the simulated annealing algorithm used in the global

optimization problem.

input: X0, Tmin, kappa
energy = cost(X0);
X = XO0;
while{ T > Tmin
X_new = neighbor (X);
energy_new = cost(X);
delta = energy - energy_new;
if (delta > 0) or (exp(delta/T) > random())
X = X_new;
energy = energy_new;
T = Txkappa;
end }

output: X, energy

Here, X is a vector which contains the visiting sequence of each star (and visiting
partners, if they exist). Temperature is represented by T, the freezing temperature by
Tmin and the cooling constant by kappa. Three functions are used in the algorithm;
random() is a uniform-distribution random number generator in the interval (0, 1);
cost is the cost function for a given visiting sequence; and neighbor is a function which
generates random visiting strings in the neighborhood of X.

For the constants in the algorithm, a cooling constant of ~0.99 and initial temper-
atures in the range of 10-40 degrees gave good results. I set the freezing temperature

to be one degree.
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As for the functions, I used the cost function defined in the previous sections.

This cost function can be rewritten in terms of X, the visiting sequence vector, as

mlnz X(k+1),k). (6.12)

For the neighbor function, I considered different options . The choice of the neighbor
function is of critical importance for the success of the simulated annealing process.

This is discussed in more detail in the next section.

Choosing the neighbor function

The neighbor function is an operator that converts one tour into another by us-
ing exchanges or moves of the sequence vector. This function defines an associated
neighborhood for each tour that can be obtained with a single function operation.
Incremental improvements in the cost function are obtained by continually moving
from one neighbor to a better one, with a lower cost. This is done by repeated use
of the neighbor function. Finally, the optimal solution is obtained when there are no
better neighbors left. The 2-Opt operation is the most famous and tested of the sim-
ple neighbor operator functions. The 2-Opt operator removes two edges and replaces
these with two different edges that reconnect the fragments in the reverse order. The

illustration of this operation is shown in figure 6.7.

36543 74 5 6|7 1

Figure 6.7: Illustration of the 2-Opt move [77].

2-Opt was the first method of choice, but it failed to give good results. Due
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to the high number of constraints involved in our problem, a constraint was broken
almost every time when a part of the sequence was reversed. I decided not to use this
operator.

Consider that, as the simulated annealing proceeds, the energy of the state will be
lower than that of a random state. Thus, if the neighbor function results in arbitrary
states, these moves will all be rejected after a few steps. Therefore, in simulated
annealing, the neighbor function should be chosen such that the neighbors and the
current tour have similar energy levels. As a result, I opted for an operation where I
swapped the two consecutive stars, swap (X(k), X(k+1)), rather than arbitrary stars.

Additionally, if the operator does not obey the constraints by default, many fruit-
less trials result. I avoided this by choosing the initial guess to satisfy all the con-
straints, and by making sure that all the neighbor perpetration satisfy the constraint.
When swapping the stars in consecutive positions, I checked whether the swap oper-
ation leads to a minimum distance between the pair partners, a star and its revisit
partner, of less than N,...;s:. If so, the swap is not performed and another random k
is chosen to swap (X(k), X(k+1)). This ensures that, as long as the initial sequence
obeys the minimum separation between pairs of less than N,.,;s:, the neighbor will
also obey this constraint. By not breaking any constraints, the algorithm is able to
move through the neighborhood quickly.

However, the neighbor function should be able to reach every possible state of
the system, and the swapping that is described above may not ensure this property,
because it is done in pairs. To overcome this problem, I used three more operators
that enlarge the neighborhood sufficiently to avoid getting stuck in local minima.

These are the following operators:

1. Swap random star pairs: Two random pairs, {i,7 +n} and {j, j +n}, two stars

and their revisit partners, are swapped, swap (X({u;,%i+n}), X({j,uj4n}))-

2. Mutate random star pairs (1): Two random pairs, {i,7 + n} and {j,j + n},
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are mutated such that the locations of ¢ and j are swapped. If the resultant
sequence gives rise to a minimum distance between the pairs that is less than

N, evisit, the swap is not performed and another random pair is chosen.

3. Mutate random star pairs (2): Two random pairs, {i,i+n} and {j,j +n}, are
mutated such that the location of stars i + n and j + n are swapped. If the
resultant sequence gives rise to a minimum distance between the pairs that is

less than N,..isit, the swap is not performed and another random pair is chosen.

I used these operators less frequently than the consecutive pair swaps, for a total
of 10% of the time for each operator as opposed to 70% for the swapping of the

consecutive pairs, in order to allow a fast and efficient local search.

6.5.2 Branching for time-optimal case

In the time-optimal case, the fact that the cost function cannot be obtained before-
hand complicates the employment of the annealing method. More importantly, the
constraints are no longer known beforehand, and instead change with each neighbor
operator. As a result, I used a branching algorithm, where the constraints are dealt
with as they arise.

Here, all the possible moves from a given initial star location are considered. Each
move is the first element of a possible visiting sequence. From all these sequences,
all the possible second elements are considered, and the algorithm proceeds in this
manner. This leads to an exponential amount of possible sequences to be tried and
stored, which is not practical. Thus, after every stage, an elimination of some of
the sequences is necessary. There are many possible approaches to this selection.
While the most obvious approach is to eliminate the sequences with the highest cost,
these high-cost sequences may in the later stages lead to better results, and thus a

diversification, as in the simulated annealing case, can be used. I experimented with
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some diversification methods, which did not lead to better results. As a result, I used
only the criterion of cost.

When, in the end, the sequence length reaches the total imaging sessions, the
list element with the lowest cost is taken as the optimal solution. Unfortunately, this
algorithm will lead to local minima, but the solution of the full problem is prohibitively
difficult to obtain. The advantage of this algorithm is that the constraints of Sun
avoidance, minimum revisit time, and no revisit after two visits, are satisfied in the

final solution with minimal computational effort.

6.5.3 Results

The global optimal solutions for a few representative cases are shown in this section. I
use only the unconstrained solutions, i.e., the minimum-energy and discrete optimiza-
tions, in order to give general results. The case with constrained results (minimum
time and minimum fuel) is studied in section 6.6 for specific Uz -

A sample solution to the global optimization problem with no revisits and 75
imaging sessions is shown in figure 6.8, where the minimum-energy control law was

used.

Figure 6.8: The global optimal solution to the single occulter case, with 75 imaging
sessions of the Top 100 TPF-C stars, and 2 weeks’ flight time between targets and no
revisits.
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Figure 6.9 shows a sample solution to the global optimization problem for 110
imaging sessions with maximum two visits, where the 50 stars that can be revisited
with minimum 6 months’ delay were chosen at random, and discrete optimal control

was used.

oo
L2/

Figure 6.9: The global optimal solution for 110 imaging sessions of the top 100 TPF-
C stars, for the single occulter, with 2 weeks’ flight time between targets and 50
randomly chosen stars that can be visited twice.

The algorithms developed so far enable us to find the total minimal-cost require-
ment for a given mission. Figure 6.10 shows the averaged Delta-V obtained for the
TPF-C top 100 stars for minimum-energy optimization, where the 50 stars that can
be revisited with minimum 6 months’ delay were chosen at random. The global opti-
mal solutions for the optimal control for impulsive case with the same requirements
are shown in figure 6.11. As seen from these figures, the case that is energy optimal
requires more Delta-V than the impulsive maneuver case. This is due to the fact
that energy-optimal control minimizes the square of the control effort rather than the
control, i.e.; the Delta-V, effort, while the impulsive maneuver is the limit that the
minimum-fuel trajectories reach as the bound of the maximum acceleration, ,,q., is
increased to infinity. Since the impulsive maneuver uses unbounded control as op-
posed to the minimum-fuel solutions, the Delta-V requirement will be lower. Thus,

the Delta-V for impulsive solutions can be thought of as the lower bound for a given
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mission scenario, making it smaller than both minimum-fuel with bounded control

input and minimum-energy control.
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Figure 6.10: The global Delta-V curves for the single occulter mission with energy-
optimal control (Left: At = 1 week, Right: At = 2 weeks).
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Figure 6.11: The global minimum Delta-V curves for the single occulter mission with
impulsive control (Left: At = 1 week, Right: At = 2 weeks).

In order to understand the thrust capability that is needed for a given spacecraft,
it is important to know the maximum thrust and acceleration it has to perform in
flight. Table 6.1 shows that the maximum acceleration needed for energy-optimal
control increases as the radius of the formation does. Here, the thrust is obtained by
multiplying the acceleration requirements with the mass of the SMART-1 spacecraft

that is discussed in the next section.
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Table 6.1: Maximum thrust needed for the minimum-energy control effort solutions
with a At of 2 weeks, obtained in figure 6.10.

Radius Max Thrust

18,000 km | 18 mN (~ 0.05 mm/s?)
30,000 km | 31 mN (~ 0.10 mm/s?)
50,000 km | 52 mN (~ 0.15 mm/s?)
70,000 km | 70 mN (~ 0.2 mm/s?)

6.6 Performance of SMART-1 as an Occulter

For a concrete understanding of the feasibility of the mission, the performance of a
sample spacecraft, SMART-1, as an occulter is analyzed. Designed by ESA to test
continuous solar-powered ion thrusters, SMART-1 successfully left the gravitational
field of Earth and reached the mission objective of impacting the Moon [78]. SMART-
1 was chosen for a feasibility test because its solar-powered Hall-effect thrusters may
be good candidates for the occulter-based telescopy mission under study. For this
feasibility study, I used the top 100 TPF-C targets and the exact specifications of the

SMART-1 spacecraft, given in table 6.2.

Table 6.2: Specifications of the SMART-1 spacecraft

Maximum Thrust 68 mN
Mass Ratio 0.83
Propellant Mass 80 kg
Total Delta-V 3600 m/s
Isp 1640 s
Maximum Acceleration | 0.2 mm/s?
Full Thrust Life Time | 210 days

First, the minimum realignment time between targets was obtained. An example
minimum-time surface is shown in figure 6.12.

The minimum-time charts were employed to find the targets which can be reached
within a given time span. Then, minimum-fuel trajectories were obtained for these

feasible targets. An example minimum-fuel surface is shown in figure 6.13. For the
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Figure 6.12: Minimum time-to-realign between top 100 TPF-C targets with SMART-
1 capibilities (R=50,000 km).

sake of reasonable display, the unreachable targets are shown with a Delta-V of zero
as opposed to infinity. Thus, the two regions in the lower left and upper right corners,

shown in dark blue, represent targets which cannot be reached within 2 weeks.
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Figure 6.13: Delta-V to realignment between top 100 TPF-C targets with SMART-1
capibilities (R=50,000 km and At=2 weeks).

Now, I look at a feasibility study, where the mission is constrained to use the

SMART-1 spacecraft with all its limitations, including the fuel on board and maxi-

160



mum thrust. I assume that the spacecraft continues imaging until the fuel is depleted.
Figure 6.14 shows the results that would be obtained if a minimum-fuel strategy were
employed. Since the fuel on board is limited, a more spendthrift fast slew approach,
where the time between the imaging sessions is decreased, leads to a decrease in the
total number of observations. The last data points at 20,000 km for 1 week and 70,000
km for 2 weeks are very restrictive, since they give very few options for consecutive
targets. As a result, they do not provide the flexibility that is needed in a real-life

mission.
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Figure 6.14: The total number of imaging sessions versus the radius, for the fuel-
optimal control case (with SMART-1 capabilities).

Figure 6.15 shows the results that would be obtained if a minimum-time trans-
fer strategy were employed. This figure shows that, as the radius of the formation
increases, the total number of imaging sessions decreases. When this is compared
with figure 6.14, it is apparent that the minimum-time strategy trades off the speed
of observations against the total number of observations.

Even though the results from figures 6.14 and 6.15 should be treated as the opti-

mistic upper bounds for the number of possible imaging sessions, it is apparent that,
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Figure 6.15: The total number of imaging sessions versus the radius, for the time-
optimal control case (with SMART-1 capabilities).

notwithstanding the difficulties, the mission is within reach of the current technology.
The Delta-V requirements for the occulter are reasonable. With the next generation
of thrusters, it should be possible to maneuver the approximately 60-meter diameter

occulter to do sufficient imaging to be able to find Earth-like planets.

6.7 Multiple Occulters

Having solved the single occulter problem, I study the best configuration of the con-
stellation consisting of multiple occulters. The use of multiple occulters has several
advantages [79]. First, as the number of occulters increases, so does the target ob-
servation rate. Second, the mass of each occulter can be reduced with a multiple
occulter approach. Third, the lifetime of the mission can be increased. Finally, the
redundancy in the system design would guard against the loss of the whole mission

in case of a failure in one of the occulters.
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I consider two approaches to the multiple occulter formation, in the first, the
occulters are placed on fuel-free Quasi-Halo orbits around the telescope’s Halo orbit.
This method is discussed in the first section. In the other approach, the global
optimization problem is formulated as in the single occulter case, and it is solved
using simulated annealing. This method is explored in the later sections and results
are shown. The single and the multiple occulter approaches are compared in light of

these results.

6.7.1 Multiple Occulters on Quasi-Halo Orbits

First, I consider the approach where multiple occulters are placed on Quasi-Halo
orbits around the base Halo orbit. The optimal placement problem then becomes
an optimization of the 3 x N parameters that uniquely define N Quasi-Halo orbits,
namely the size and the two-phase angles (R, 61, 65) of all the occulters, such that,
in the absence of any control, the occulters’ trajectories come close to intersecting
the maximum number of star LOS within a given time span. This is achieved by
first choosing points in the (R, 0y, 03) space that define the Quasi-Halos found in the
second section, and then integrating these forward in time ( See Figure 6.16 ). The
relative motion of these orbits with respect to the base Halo orbit is transformed to
inertial coordinates; an easily reachable region, such as +5, -5 degrees from the path,
is then defined; and the number of targets that would be enclosed in this region is
found. The 3 x N parameters that give the highest number of targets in the union
are taken to be the best initial guess for the formation.

These ideas were implemented by Princeton mechanical and aerospace engineer-
ing student Azuka Chikwendu in his undergraduate thesis [30]. Looking at spacecraft
placed on multiple Quasi-Halo orbits, he showed that the two-occulter mission de-
creases the Delta-V drastically, while the addition of a third occulter is of less value

for the mission. As an example from his work, the best set of three quasi-halo orbits
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Figure 6.16: Skyplot of the areas of the sky which are easily accessible by two different
Quasi-Halo orbits.

with 70,000 km radius around the halo orbit is shown in figure 6.17, which plots the

star coverage that would be achieved by these orbits for half of the five-year mission.

: ‘;}Zégé—?’%

Figure 6.17: Ideal three-occulter mission, shown for 5 orbital periods, with 5 degree
range indicated [30].

6.7.2 Global Optimization with Constraints

In this section, the global optimization problem is formulated as in the single occulter

case, and it is solved using simulated annealing.
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Mathematical Model

The full formulation for the mathematical model for the case with two occulters,
maximum two visits and no revisit of the same star with the same occulter, can be

written as:

Min ZC(i,j, ’U,l) xij + C(?;,j, Ui> yij
i,J
J

j
zi; € {0, 1}, yi; € {0, 1} Vi, j
=1 v =1

2<u; <n, 2<v;<n Vi#1
w—uj+1<(n—1)1—-xz;), vi—v;+1<(n—1)(1—-y;) Vi#l j#1

Nrem'sit < abs(vi - uz) V1 > (613)

where z;; and y;; are 1 if arc(s,j) is in the tour of the first and second occulter,
respectively, and u; and v; are the positions of the ith target in the first and second
occulters tour. The cost matrix, ¢, is the same as in the single occulter case. Without
loss of generality, u; and v; can be set to different starting target stars. The more
complicated case, where the same occulter is allowed to image the same star more

than once, is not included in this dissertation.

Numerical Method: Simulated Annealing

I proceed as in the single occulter case, using simulated annealing to this time solve the
two-occulter global optimization. The results can be easily extended for formations

with more than two occulters.
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First, I define X, the vector which contains the visiting sequence of each star, as
well as the visiting partner, if they exist. However, this time, X includes the sequence
for two occulters. The odd elements of X refer to the identification number of the
star that is being imaged at that time by the first occulter, and the even elements
refer to that of the second occulter. The time interval between each imaging is fixed.
The telescope first images star X(1) using the first occulter. After time At, it images
star X(2) using the second occulter, and then, after At, it images star X(3) using the
first occulter, and so on.

For the constants in the algorithm, a cooling constant of ~0.99-0.999 and an
initial temperature of approximately 100 degrees gave good results. I set the freezing
temperature to be one degree.

I used the same three-dimensional cost matrix, ¢, as is in the single occulter
simulated annealing algorithm. As for the functions, since even and odd elements
of X, the visiting sequence vector, define different occulters, the cost for the total

mission is the summation of the cost for each occulter. This can be expressed as
min Y e(X (k), X (k +2), k). (6.14)
k

Here, for summation over odd values of 7, the cost associated with the first occulter
is obtained, while for summation over even values of i, the cost associated with the
second occulter is found.

I used the same neighbor function as in the single occulter case. The random
swap and mutations are kept the same, with the single difference that the swapping
of the consecutive imaging sessions is now equivalent to swap(X(k), X(k+2)) instead

of swap(X(k), X(k+1)).
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Results

I applied the simulated annealing method to the multiple occulter case. Figure 6.18
shows the optimal solution trajectory for a mission scenario consisting of two occul-
ters with 20,000 km radius separation from the telescope, and where no revisiting is

allowed with 1 week flight time.

Figure 6.18: The global optimal solution to the two-occulter formation, for 80 imaging
sessions of the top 100 TPF-C stars, with At of 1 week and no revisiting.

In the simulated annealing process, as in the formation of crystals, the optimal
solution is obtained slowly by random moves. Figure 6.19 shows how the annealing
process is performed. As the temperature is decreased slowly, Delta-V decreases, and
the optimal solution is obtained.

The global optimal solution to a two-occulter formation is shown in figure 6.20.
The occulters are placed at 20,000 km radius separation from the telescope, and they
perform 110 imaging sessions of the top 100 TPF-C stars, in a 1-week flight time
between targets (each occulter takes 2 weeks to move from a target to another target
but the At between imaging sessions for the telescope is 1 week) and randomly chosen
revisitable stars. For comparison, the single-occulter global optimal solution for the
same scenario with 2 weeks’ flight time is given in figure 6.9.

However, in order to obtain the same scientific achievement in a given mission
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Figure 6.19: The change in Delta-V as the temperature decreases in the simulated
annealing, for the optimization shown in figure 6.20.
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Figure 6.20: The global optimal solution to the two-occulter formation, for 110
imaging sessions of the top 100 TPF-C stars, with At of 1 week and 50 randomly
chosen revisitable stars.

lifetime, a single-occulter mission must reduce the At to 1 week to make up for the
lack of a second occulter. The single-occulter mission for this specific case has a Delta-
V cost of 3800 m/s, while the two-occulter mission has a Delta-V requirement of 2000
m/s. This reduction in Delta-V due to the use of multiple spacecraft becomes roughly

equivalent to the reduction in Delta-V that would be achieved if the flight time of
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a single spacecraft mission were doubled. This is roughly equivalent to halving the
Delta-V cost; the fact that the occulters can take twice as long for the slews reduces
the Delta-V cost by half. Since this holds true generally, for all cases, I do not provide

further charts of the global optimal solution for the multiple occulter case.

Conclusion

As discussed previously, there are advantages to using multiple spacecraft. Compared
with the single-occulter case, only half the Delta-V is needed to obtain the same
scientific achievement, which means that the occulters can carry roughly half the
fuel on board. In the case of the continuous thruster, the thruster system can also
be scaled down. For solar-powered thrusters, the size of the solar panel for each
spacecraft can be reduced by one fourth. Also, the cost of a spacecraft is markedly
lower when it is mass produced than when it is a unique unit. Finally, the redundancy
in the system design is a good risk management strategy against the loss of the whole
mission in case of a failure in one of the occulters. Given these advantages, the option
of using multiple occulters must be studied thoroughly when possible mission designs

for an occulter-based telescopy mission are considered.
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Chapter 7

Conclusion
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A methodology to find the optimal configuration of satellite formations consisting
of a telescope and multiple occulters around Sun-Earth L2 Halo orbits was outlined.
The dynamics around L2 was examined with a focus on the Quasi-Halo orbits which
are of interest for occulter placement. A new fully numerical method which employs
multiple Poincaré sections to find quasi-periodic orbits around L2 was developed. Tra-
jectory optimization of the occulter motion between imaging sessions of different stars
was performed. The global optimization problem was solved for missions consisting
of a telescope and a single occulter employing heuristic methods. Then, these results
are extended to perform the global optimization for the multiple-occulter formation.
This dissertation introduced a baseline optimal mission design for the occulter-based
imaging mission, and enables a trade-off study comparing different occulter-based

approaches with one another as well as with their alternatives.
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