# Lecture 4: Urban Amenities WWS 582a

Esteban Rossi-Hansberg

Princeton University

#### Introduction

- Role of urban density in facilitating consumption has been found to be important: agglomeration force
- Other urban amenities are important as well: like weather, shores, lakes, rivers, etc.
- In the literature these forces have in general played a secondary role
- However, the evidence seems to suggest that they are becoming more important over time
  - ► Modern city based on amenities?
  - ► Role of ICT?
- Glaeser, Kolko, and Saiz (2001) is one of the first papers to document this empirically in a robust way

# Glaeser, Kolko, and Saiz (2001)

- Four critical urban amenities:
- Presence of a variety of services and consumer goods
  - Cities with more restaurants and theaters have grown faster
  - In cities with more educated populations rent growth is faster than wage growth since 1970
- Aesthetics and Physical Characteristics
  - Weather is the main determinant of population or housing price growth
- Public Services
  - More crime leads to less urban growth
- Speed
  - Higher value of time leads to higher rents in areas with easy access

#### Stylized facts: Reverse Commuting

|               | Daily Commutes (millions) |              | Annualized growth rate |              |              |
|---------------|---------------------------|--------------|------------------------|--------------|--------------|
|               | 1960                      | <u> 1980</u> | <u>1990</u>            | <u>80-60</u> | <u>90-80</u> |
| City-city     | 18.8                      | 20.9         | 24.3                   | 0.52%        | 1.52%        |
| City-suburb   | 2.0                       | 4.2          | 5.9                    | 3.65%        | 3.46%        |
| City-other    | 0.6                       | 1.2          | 1.9                    | 3.63%        | 4.70%        |
| Suburb-city   | 6.6                       | 12.7         | 15.2                   | 3.34%        | 1.81%        |
| Suburb-suburb | 11.3                      | 25.3         | 35.4                   | 4.09%        | 3.42%        |
| Suburb-other  | 1.1                       | 3.7          | 6.8                    | 6.22%        | 6.27%        |
| Total         | 40.5                      | 68.0         | 89.5                   | 2.62%        | 2.79%        |

Source: Commuting in America. ENO Transportation Foundation

#### Stylized facts: Reverse Commuting

 $\begin{tabular}{ll} \it TABLE~2 \\ \it Reverse~commuting~in~the~San~Francisco~Bay~Area~Counties \\ \end{tabular}$ 

|               | % change of employment in county | % change of employees<br>living in county |         |
|---------------|----------------------------------|-------------------------------------------|---------|
|               | (1)                              | (2)                                       | (2)-(1) |
| San Francisco | 9.2%                             | 14.5%                                     | 5.3%    |
| San Mateo     | 22.0%                            | 14.0%                                     | -7.9%   |
| Santa Clara   | 25.1%                            | 22.1%                                     | -3.0%   |
| Alameda       | 21.5%                            | 24.7%                                     | 3.1%    |
| Contra Costa  | 47.1%                            | 33.7%                                     | -13.5%  |
| Solano        | 35.5%                            | 57.0%                                     | 21.5%   |
| Napa          | 33.6%                            | 24.9%                                     | -8.7%   |
| Sonoma        | 51.0%                            | 51.0%                                     | 0.0%    |
| Marin         | 24.7%                            | 8.7%                                      | -16.0%  |

Source: Census Tabulations from the Metropolitan Transportation Comission, San Francisco Bay Area

#### Stylized facts: The Success of High Amenity Cities

|                                    | Population Growth |         |  |
|------------------------------------|-------------------|---------|--|
| UNITED STATES (77-95)              | Estimate          | t-value |  |
| Temperate climate                  | 0.35              | 17.8    |  |
| Proximity to ocean coast           | 0.24              | 12.5    |  |
| Live performance venues per capita | 0.14              | 6       |  |
| Dry climate                        | 0.12              | 6.5     |  |
| Restaurants per capita             | 0.05              | 2.9     |  |
| Art museums per capita             | -0.03             | -1.5    |  |
| Movie theaters per capita          | -0.05             | -2.6    |  |
| Bowling alleys per capita          | -0.19             | -11.3   |  |
| FRANCE (1975-1990)                 |                   |         |  |
| Restaurants per capita             | 0.45              | 5       |  |
| Hotel rooms per capita             | 0.33              | 4       |  |
| ENGLAND (1981-1997)                |                   |         |  |
| Tourist nights per capita          | 0.31              | 2.7     |  |

Notes: Each coefficient is the result of a separate regression of population growth on each amenity and other controls. The values of the variables were transformed to have standard error+1. The temperate climate variable is the inverse of (average temperature per year)\* of depress. All temperatures are measured in Farenite degrees. Day climate stands for the inverse of average precipitation. US regressions included corrors for county density, since of college education, and a shift-shear included corrors for county density, since of college declared, and a shift-shear included corrors for county density, since of college declared, and a shift-shear included corrors for county density, since of college declared, and a shift-shear included corrors for the profiles are of college declared, and a shift-shear included corrors for the controls, as defined in the Dan Appendix. The England regression included a dummy for Northern counties and initial population as coertries.

#### Stylized facts: The Success of High Amenity Cities

TABLE 4

#### Ranking of Top and Bottom US MSA's, according to Estimated Amenity Value

#### Metropolitan Statistical Area (MSA)

| Highest                              | Lowest                  |
|--------------------------------------|-------------------------|
|                                      |                         |
| Honolulu, HI                         | Stamford, CT            |
| Santa Cruz, CA                       | Norwalk, CT             |
| Santa Barbara-Santa Maria-Lompoc, CA | Anchorage, AK           |
| Salinas-Seaside-Monterey, CA         | Rochester, MN           |
| Los Angeles-Long Beach, CA           | Detroit, MI             |
| San Francisco, CA                    | Midland, TX             |
| San Jose, CA                         | Trenton, NJ             |
| Santa Rosa-Petaluma, CA              | Minneapolis-St.Paul, MN |
| Oxnard-Ventura, CA                   | Nassau-Suffolk, NY      |
| San Diego, CA                        | Bloomington-Normal, IL  |

Notes: Estimated Amenity Value measured as residual from an OLS regression of log median house value on log median income in 1990.

# Stylized facts: The Success of High Amenity Cities

Figure 1

Growth and Amenities in the US

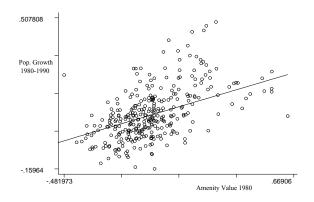



TABLE 5
Correlation between estimated amenity value and population

|      | Amenity-P | opulation correlation |
|------|-----------|-----------------------|
| TIO. | 1980      | 0.22                  |
| US   | 1990      | 0.36                  |

TABLE 6
Elasticities with respect to population size

|         |      | wages  | housing prices |
|---------|------|--------|----------------|
| U S     | 1980 | 0.05 1 | 0.114          |
|         | 1990 | 0.082  | 0.225          |
|         |      | wages  | housing rents  |
| England | 1988 | 0.047  | 0.036          |
| England | 1998 | 0.072  | 0.021          |

Notes: Population at the MSA level for US, county level for England. See Data Appendix for data description.

TABLE 7
Wage and rent growth in Paris and London

|                                                      | Wage growth | Rent growth |
|------------------------------------------------------|-------------|-------------|
| ENGLAND (1988- 1998)                                 |             |             |
| London                                               | 4.90%       | 8.60%       |
| Rest of England                                      | 4.70%       | 7.50%       |
| Difference-in-difference<br>(London amenity premium) |             | 0.90%       |
| FRANCE (1990-1995)                                   |             |             |
| Paris                                                | 3.60%       | 4.20%       |
| rest of France                                       | 4.00%       | 3.50%       |
| difference-in-difference                             |             |             |
| (Paris amenity premium)                              |             | 1.10%       |

Notes: Annualized growth rates. See Data Appendix for data sources

|                | 1993-1998     |                   |            |  |
|----------------|---------------|-------------------|------------|--|
|                | Income growth | Home value growth | Difference |  |
| San Francisco  | 2.46%         | 4.51%             | 2.05%      |  |
| Boston         | 3.11%         | 4.65%             | 1.54%      |  |
| Chicago        | 3.64%         | 3.76%             | 0.12%      |  |
| New York City  | 2.69%         | 2.57%             | -0.12%     |  |
| Los Angeles    | 1.82%         | 1.21%             | -0.61%     |  |
| Washington, DC | 3.83%         | 1.12%             | -2.71%     |  |

Notes: Annual growth rates over the 1993-1998 period

TABLE 9
Population distribution within the city

| Panel A: | All | <b>MSAs</b> |
|----------|-----|-------------|
|----------|-----|-------------|

| Share of City Population Living: | 1980   | 1990   |
|----------------------------------|--------|--------|
| Within one mile of CBD           | 10.70% | 10.30% |
| One to three miles of CBD        | 35.50% | 34.00% |
| Three to five miles of CBD       | 21.90% | 21.80% |
| Beyond five miles of CBD         | 31.90% | 33.90% |
|                                  |        |        |

#### Panel B: 10 biggest MSAs

| Share of City Population Living: | 1980   | 1990   |
|----------------------------------|--------|--------|
| Within one mile of CBD           | 4.80%  | 4.90%  |
| One to three miles of CBD        | 17.00% | 16.50% |
| Three to five miles of CBD       | 19.00% | 18.40% |
| Beyond five miles of CBD         | 59.20% | 60.20% |
| ·                                |        |        |

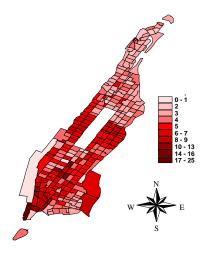
Notes: See data Appendix for data sources.

TABLE 10 Income distribution within the city

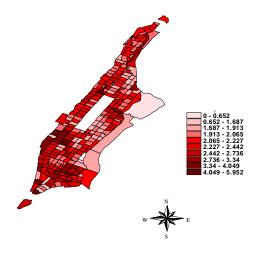
#### Panel A: All MSAs

| Income Relative to City Average | 1980 | 1990 |  |
|---------------------------------|------|------|--|
| Within one mile of CBD          | 89%  | 94%  |  |
| One to three miles of CBD       | 95%  | 95%  |  |
| Three to five miles of CBD      | 101% | 100% |  |
| Beyond five miles of CBD        | 109% | 107% |  |
|                                 |      |      |  |

#### Panel B: 10 biggest MSAs


| Income Relative to City Average | 1980 | 1990 |  |
|---------------------------------|------|------|--|
| Within one mile of CBD          | 144% | 163% |  |
| One to three miles of CBD       | 88%  | 97%  |  |
| Three to five miles of CBD      | 86%  | 86%  |  |
| Beyond five miles of CBD        | 105% | 100% |  |

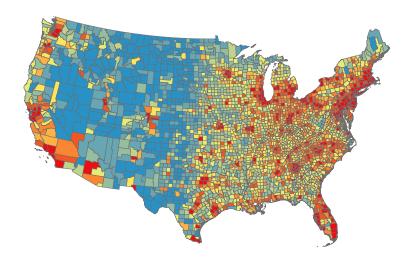
Notes: See data Appendix for data sources.


• Manhattan: median income by tract, 1990

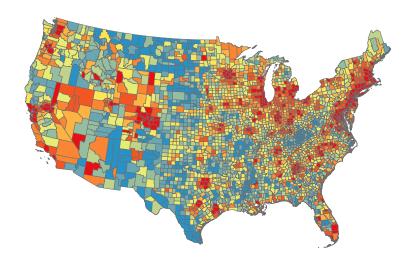


• Manhattan: income1990/income1970



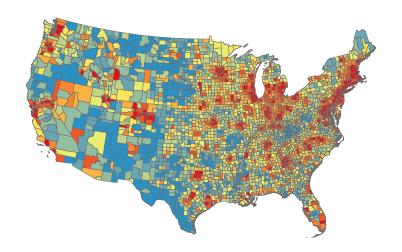

• Manhattan: median rent 1990/median rent 1980




# Estmating Productivity and Amenities for US Counties

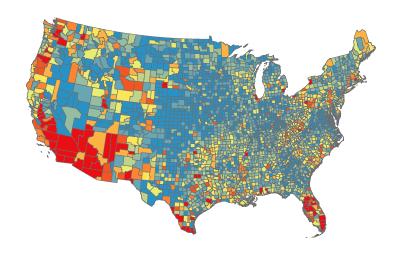
- Can identify a topography of productivities A and amenities u consistent with estimates transport costs and observed distribution of economic activity (wages, w, and population, L)
  - ▶ Use model in Allen and Arkolakis (2014)
- Intuition: consider locations i and j with identical bilateral trade costs. Then since  $\bar{u} = \frac{w(i)}{P(i)} a(i)$ 
  - ▶ Utility equalization implies  $\frac{a(i)}{a(j)} = \frac{w(j)/P(j)}{w(i)/P(i)}$ .
  - ▶ Balanced trade identifies  $\frac{A(i)}{A(j)}$
- Note:  $\bar{A}$  and  $\bar{u}$  cannot be identified without knowledge of externality elasticity ( $\alpha$  for production,  $\beta$  for amenities)

#### Observed L




#### Observed w




# Productivity

•  $\alpha = 0.1$ 



#### Amenities

•  $\beta = -0.3$ 



### Moving to Nice Weather (Rappaport, 2007)

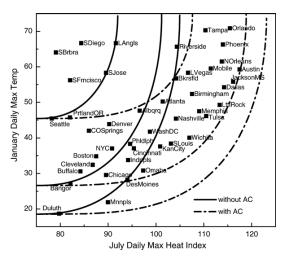



Fig. 1. Iso-utility over weather.

#### Moving to Nice Weather

Table 3 Population growth and weather

|                             |           | (1)       | (2)           | (3)            | (4)       | (5)      | (6)      |
|-----------------------------|-----------|-----------|---------------|----------------|-----------|----------|----------|
| Dependent variable →        |           | Annual po | pulation grov | vth rate, 1970 | ) to 2000 |          |          |
| Independent variables ↓     |           |           |               |                |           |          |          |
| Coast/river/topography (7)  |           | No        | Yes           | Yes            | Yes       | Yes      | Yes      |
| Initial density spline (7)  |           | No        | No            | Yes            | Yes       | Yes      | Yes      |
| Concentric total pop (7)    |           | No        | No            | Yes            | Yes       | Yes      | Yes      |
| Ag/mnrl/mnfct (17)          |           | No        | No            | No             | Yes       | Yes      | Yes      |
| Census divisions (8)        |           | No        | No            | No             | No        | Yes      | No       |
| Weighted regression         |           | No        | No            | No             | No        | No       | yes      |
| January daily max temp      | Linear    | 0.0751    | 0.0663        | 0.0655         | 0.0513    | 0.0497   | 0.0488   |
|                             |           | (0.0098)  | (0.0104)      | (0.0099)       | (0.0093)  | (0.0099) | (0.0092) |
|                             | Quadratic | 0.0012    | 0.0012        | 0.0014         | 0.0013    | 0.0016   | 0.0013   |
|                             |           | (0.0004)  | (0.0004)      | (0.0004)       | (0.0003)  | (0.0003) | (0.0003) |
| July daily heat index       | Linear    | -0.0626   | -0.0508       | -0.0505        | -0.0215   | -0.0242  | -0.0170  |
|                             |           | (0.0116)  | (0.0127)      | (0.0126)       | (0.0112)  | (0.0114) | (0.0114) |
|                             | Quadratic | -0.0002   | -0.0003       | 0.0004         | -0.0006   | -0.0002  | -0.0008  |
|                             |           | (0.0005)  | (0.0005)      | (0.0005)       | (0.0005)  | (0.0005) | (0.0005) |
| July daily rel humidity     | Linear    | -0.0371   | -0.0410       | -0.0621        | -0.0395   | -0.0549  | -0.0385  |
|                             |           | (0.0142)  | (0.0147)      | (0.0162)       | (0.0129)  | (0.0132) | (0.0123) |
|                             | Quadratic | 0.0005    | 0.0006        | -0.0001        | -0.0003   | -0.0008  | -0.0003  |
|                             |           | (0.0005)  | (0.0005)      | (0.0004)       | (0.0004)  | (0.0003) | (0.0004) |
| Annual precipitation        | Linear    | 0.0216    | 0.0231        | 0.0153         | -0.0044   | -0.0029  | -0.0048  |
|                             |           | (0.0107)  | (0.0107)      | (0.0100)       | (0.0082)  | (0.0087) | (0.0080) |
|                             | Quadratic | -0.0004   | -0.0004       | 0.0001         | 0.0002    | 0.0002   | 0.0002   |
|                             |           | (0.0002)  | (0.0002)      | (0.0002)       | (0.0001)  | (0.0001) | (0.0001) |
|                             | Linear    | 0.0053    | 0.0041        | 0.0021         | 0.0064    | 0.0061   | 0.0065   |
|                             |           | (0.0060)  | (0.0060)      | (0.0061)       | (0.0048)  | (0.0054) | (0.0047) |
|                             | Quadratic | -0.0002   | -0.0002       | -0.0003        | -0.0002   | -0.0002  | -0.0002  |
|                             |           | (0.0001)  | (0.0001)      | (0.0001)       | (0.0001)  | (0.0000) | (0.0001) |
| Observations                |           | 3067      | 3067          | 3067           | 3067      | 3067     | 3067     |
| # of indep. variables       |           | 10        | 17            | 31             | 48        | 56       | 48       |
| R-squared                   |           | 0.272     | 0.282         | 0.382          | 0.503     | 0.517    | 0.497    |
| Control variables R-squared |           |           | 0.094         | 0.226          | 0.433     | 0.471    | 0.423    |
| Marginal R-squared          |           |           | 0.188         | 0.156          | 0.070     | 0.046    | 0.074    |

Table shows results from regressing (Hog 2000 Pop Density) - log(1970 Pop Density)) 1: 100/30) on the enumerated weather variables, control variables, and a constant. Quadratic weather variables have had their respective sample mean subtracted. Standard errors in parentheses are robust to a spatial correlation using the procedure discussed in the main text. Bold type signifies coefficients that statistically differ from zero at the 0.05 level. The Column For reservation weather observations according to 1/14 - 2000/2 roodulation.

#### Moving to Nice Weather

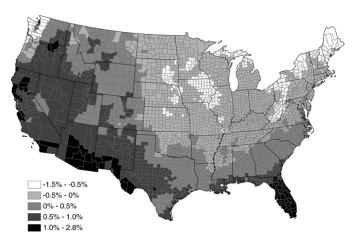



Fig. 2. Expected population growth from weather (1970 to 2000). Figure shows the fitted annual population growth rate controlling for coast, topography, initial density, concentric population, and industrial composition.