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I. Introduction

Stories about search occupy a central position in the "new micro-
economics of inflation and employment." -This accounts for much of the
recent work by economistsl/ analyzing variants of the following problem:

A man is considering purchase of some good which is sold at different stores
at different prices. He can elicit price quotations from the various
sellers by paying a fee.g/ What search strategy will the man follow?

Economists are interested in the rules which searchers follow because
these rules determine the demand functions that sellers in such markets
face, and thus, in part, the nature of the markets themselves. Although
the only way to settle the question of what rules searchers follow is by
observation, very little empirical work has been done on this problem.§/
Instead, researchers have proposed search rules that reasonable consumers
might follow and examined their properties. Stigler, who is largely re-
sponsible for introducing this topic into economic theory, suggested that
the individual should visit n stores, obtain price quotations from each one
and then buy from the lowest price store. The expected price paid will be
M= gm (1 - F(p))"dp, where F(p) is the distribution of prices. If such
a procedure is followed, the only decision variable is n, the number of
stores visited. Stigler pointed out that the familiar marginal calcula-
tions of micro-economic theory will suffice to determine n. Clearly Mn is
8 decreasing function of n, while the expected gain from searching,

G =M _,-M = gm(l—F(P))n_l-F(p)dx, also decreases with n. Therefore n
should be chosen so that Gh z2c > Gn+l'

This rule has several interesting properties:

1) If all its potential customers follow this rule then a firm faces



a well-behaved demand function; expected sales are g non-increasing function
of the price it charges.

2) Customers' search behavior is a function of the cost of search c
and the distribution of prices F( ). Thus, it is possible to do comparative
staties so as to examine the consequences changes in F( ) and c¢. The most
important results of these exercises are:

3) If costs of search increase, the amount of search decreases.,

L) As prices become more dispersed, expected total costs decrease.
This follows from the fact that for all n, Mn decreases as the distribution
becomes more variable.E/ Other things equal, customers prefer to draw from
riskier distributions. This preference for risk or uncertainty on the part
of those normally deemed risk averse, can explain apparently odd or perverse
bPhenomena. For an application to the theory of migration see David (1973).

Interesting as these results are, they depend on People following a
particular search rule -- and not a particularly attractive one at that.
Although fixed sample size rules have a certain intuitive appeal, they are
not the best search procedures and are in some circumstances simply silly.

A person who rigidly follows a fixed sample size rule will, even if he gets
a price quotation less than the cost of search, keep on sampling until his
quota of price quotations is fulfilled. It is thus comforting to know that
the optimal search rule has all the attractive properties of the fixed
sample size rule. The optimal rule is sequential (after receiving each
Price quotation the searcher decides whether to continue searching or to
accept the quoted price) and is characterized by a reservation price;

there is a price R such that the searcher will accept any price less than

or equal to R while he will reject a price higher than R. Once again,



familiar economic reasoning suffices to determine R. If the lowest price

the customer has received to date is S then the expected gain from searching

once more is
3 3
g(s) = { (5 - p) aF(p) = g F(p) ap
The optimal rule isg to search whenever the cost of an additional search is

less than the expected gain from that search so that R must satisfy
g(R) = c. (1)

This reservation Price rule has the four DProperties listed above. That
Properties 1) and 2) hold is obvious. Increasing ¢ increases the reserva-
tion price and thus lowers the intensity of search so that 3) holds. Kohn
and Shavell (1973) have shown that increasing dispersion lowers the reser-—
vation price and thus total expected costsé/ so that 4) holds for this rule
as well. They do this by showing that if F(p, t) is, as in fn. L above, a

family of price distributions which becomes more dispersed as t increases,

then

s
g(s, t) = g f(p, t) dp

is an increasing function t. Therefore if

c = g(R, t) = g(R', t')
with t' > ¢, then R' < R. Thus the reservation price decreases as price
variability increases or,
5) Increased price dispersion increases the intensity of search.
This last result —- which doesvnot hold in general for fixed sample sigze

ruleséf -- is a kind of stability Property which could be useqd in a complete




model (one which explained price distributions exogenously) to show the
existence of an equilibrium distribution of prices. It should turn out in
most sensible models that increased search activity will decrease price
dispersion.Z/

These results depend on the assumption that the searcher behaves as if
he knows the distribution of prices. In any economic context, this is g
very bad assumption. Little is known about the nature of price distributions
and it seems absurd to Suppose that consumers know them with any degree of
accuracy.§/ Since the major reason for believing that searchers follow
optimal sequential rules is that they are optimal, it is important that
their cost minimizing properties not depend crucially on their being based
on correct knowledge of the price distribution. This is unfortunately not
true. Gastwifth (1971) explored the robustness of optimal reservation
price rules. He found that modest specification errors could lead to
dramatic increases in the expected number of searches and in the expected
cost of buying. TFor example, someone who chose g reservation price on the
assumption that prices were distributed uniformly on the unit interval
(F(x) = x) when they really were distributed according to a right triangular
distribution on the same interval (F(x) = x2), would on the average incur
fqughly twice the total costs and search five times as much as he would if
he were correctly informed. TIrf the results 1) to 5) are to be salvaged,
the problem of what the searcher should do if he does not know the price
distribution must be attacked. This‘can be done in two ways: by exploring
the properties of reasonable rules of thumb or by characterizing optimal
rules. Telser (1973) took the first approach. He calculated (using Monte

Carlo techniques) the expected costs of various search rules -~ which had




properties 1) through 4) -- against several differently shaped price distri-
butions and compared these costs to those which would ensue if the searcher
followed the naive rule of taking the first price offered to him.

This paper takes the second tack. Optimal search rules from unknown
distributions are derived and characterized.gf The results of this exer-
cise are as follows: In section II the problem of a man who knows prices
belong to some finite set, but does not know how they are distributed is
formally described. ' Section III discusses an important
example -~ the case where the prior distribution is & Dirichlet. 1In the
next section dynamic programming is used to derive the optimal strategy.

It is possible to parameterize the problem so that the cptimal valuation
functions are continuous -- a fact which is exploited in section V where

it is shown that if a person follows the optimal strategy, search termi-
nates after a finite number of searches. This is used to prove that
property 3) holds for search from unknown distributions, that is that
search decreases as its cost increases. In section VI it is shown if prior
beliefs are Dirichlet the optimal search rule has a reservation price pro-
perty. Searchers will accept a price if and only if it is less than some
particular price Pp- The reservation price is a function of the searcher's
beliefs; it changes as his beliefs are revised in the light of experience.
Section VIIis devoted to proving an analogue of properties 4) and 5) for
the Dirichlet case.

The most important results of this Paper are that for the example of
section III, optimal search rules ffom unknown distributions have the same
qualitative properties as optimal rules from known distributions. Since

it is easy to construct examples for which this is not true, it is natural




to ask how general these results are. The final section considers this
question. T believe them to be more general than it may appear, as they do
not appear to depend on Prices being confined to a finite set. However, they
are still quite special as the proofs depend on the process of revising be-
liefs to accommodate new information having a particular -- and not terribly
natural -- local property. Whether similar results hold if this assumption

is abandoned is an open and difficult question.




IT. Preliminaries

Consider a man trying to buy a good at the lowest total expected cost.
At the beginning of each period this man pays ¢ and receives s price
quotation, which upon receiving he must decide whether +o accept or to pay
(at the beginning of next period) c again and receive another price quota-—
tion. Total costs include the price actually paid as well as the costs of

lQ/ I assumé that the man does not have the privilege of recall;

search.
that is, that an offer once spurned cannot be taken up again. As is well
known, this assumption is innocent -- it has no effect on the optimal strat-
€8y —-- when the price distribution is assumed known. It is not in the present
case.
For simplicity, suppose that there are only a finite number of prices

Ps p2,..., P and label them in ascending order so that

i Piap (2)
The probability distribution of prices is a multinomial distribution. It
is completely characterized by the vector T whose ith element L is the
probability that the ith price is chosen. Since I is a probability distri-

bution,

I e A =‘{(xl,...,xn) e R" | x. > o0, }ox, =1} .

Previous work has assumed that the searcher knows II. Instead, I agsume
he has a prior distribution F( ) over A. As he continues to search he
gathers more information about the distribution of prices which he assimi-
lates by updating his prior according to Bayes Rule. A1l necessary infor-

el ), where

mation about his experience is contained in the statistics N = (Nl’ 0

Ni is the number of times price i has been observed.



It is convenient to parameterize his experience slightly differently.

If s(N) = ZNi, then the vector whose ith element is
i

represents the average number of times that each price has been observed,

while

o =s(m)™ ()

represents the total number of prices he has observed; therefore, (u, p)
also contains all the information the searcher has accumulated. This para-
meterization permits a distinction between the content of this information,
represented by U, and its precision, represented by p. With these defini-
tions, new information is assimilated as follows: With the observation of

price i, (u, p) becomes

+
Wy My p M p

= ). (5)

P+1 " +1 "0 +1°p +1

hi(u, p) = (

There is a slight technical difficulty with this convention. The updating

rule (5) is not consistent with the definitions (3) and (4) when N = 0.

sessst );

This problem may be finessed. Suppose X = (x ,...,xn) and t = (tl n

define
X e . . x . (6)

A man with initial beliefs F(1) and no experience, is no different from a
man with initial beliefs F(I) and experience N = (Nl,...,Nn) where F(1) is

a probability distribution over A satisfying




) =g F(I)

for some positive constant K, or, using the definitions (3) ana (L),

-1

F(I) ple W) | K F(m) .

In the sequel, we largely ignore the prior distribution F( ) ana

focus instead on the information
(u, p) e T =X [0, 1] (7)

which is updateq according to (5),

Corresponding to any (u, o) is & vector defined by

u/p
fA m, T aF(m)
A (us p) = . (8)

f T dF(H

AMu, p) is & Probability distributlon which represents the searchers'
expected beliefs in that he would take a small bet on the proposition that
the next price observed would be 1 at the odds A (u, o) to (1 = A (u, 0)).
SinceA(u, p) may be considered the index of a posterior distribution based
~On a sample size of p—l which converges to g normal distribution with mean
equal to the sample mean as sample size increases,

lim A, (u, p) = Wy (9)
p=>0
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ITI. An example

A simple and important example will illustrate the nature of the
searcher's problem and clarify the meaning of N, (u, o) and A(yu, p).
Suppose that the searcher's prior is a Dirichlet distribution. Since the
Dirichlet is the conjugate prior of the multinomial distribution, the
posterior distribution will also be a Dirichlet. The Dirichlet is an n para-
meter distribution, completely characterized by the numbers N = (N ,...,Nn).ll/
The properties of the Dirichlet are best illustrated by the following parable,
which describes a problem exactly equivalent to that faced by the searcher.lg/
Assume the Ni are integers. In an urn there are S(N) = ) Ni pieces of paper;
pl is written on Nl of these slips, P, on N2 of them, and so on. A man draws
from the urn at random. If he draws a slip with p; on it he may either pay
pi Or pay ¢, return the slip to the urn, place another slip with Pi on it
in the urn, and draw from the urn again. That is, if he chooses to continue

sampling, he faces the same problem as before except that the parameter

describing the urn is

Ji(N) =N +e, (10)

,where.ei is the vector with 1 in the ith Place and 0's elsewhere. The
Probability of getting price 1 from an urn with Parameter N is just

Ai(N) = Ni/S(N). S(N) measures how fast these probabilities will change

with successive drawings. If S(N) is small new drawings will alter the

composition of the urn considerably; if S(N) is large they will hardly
affect it. There is no reason why the Ni have to be integers. The above
problem is equivalent to the searchers' problem for any positive N as long

as the probability of drawing b, from an urn with parameter N is Ni/S(N)
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and N is updated By (10) when p, is observed. Letting u, = Ni/S(N) and
p = S(N)-l it is easy to check that the updating formula (10) is consistent
with (5) and that A Gy e) = A (W) = w /s(w) = M -

It is important to realize that this story does not describe how price
quotations are generated. In fact, there is a real price distribution which
generates price quotation. However, the searcher does not know this distri-
bution. His knowledge of the distribution is described by N, the composition
of the urn. If Price quotations are really generated by I then the law of
large numbers states that the proportion of prices in the urn will, with
probability one, eventually be equal to II.

The Dirichlet case is more general than it might appear. We have
shown that if the prior is Dirichlet then it is possible to Parameterize
experience so that Ai(u, p) = M, . As we show below this property charac-
terizes the Dirichlet completely. Thus, it follows from (9) that as ex-

ol

berience accumulates, all searchers come to behave as if their priors were

Dirichlet.

Proposition 1: a Searcher has a Dirichlet brior if and only if it is

possible to Parameterize his experience so that li(u, p) = My for all

(Uo p) e T,

Proof: The "only if" part of the proposition has already been demon-
strated. Suppose F( ) is & probability measure on A and that when Ai(u, o)
is defined by (8), Ai(u, p) = M - There is a Dirichlet distribution 5( )
so that, when i(u, p) is defined analogously, X(u, ) = Ay, p). Tt follows

that for all N = o,




N+ e, N+e, ~
IR i dF(m) _ f,n 1 dar(m)

N N .~
. dr
[yn " ar(m) [,n (1)
It is easy to see by induction that

f,n ¥ ar(m)

il
—

Dv

=

for all non-negative integer N. The Stone-Weierstrass theorem implies

that
[ju(n) ar(n) = [yu(n) & (m)

for all bounded continuous functions, u( ), defined on A. Thus, by

Theorem 1.3 of Billingsley (1968), #( ) and ¥( ) coincide.

12



IV. The optimal strategy

It is now possible to describe the optimal strategy of a man whose
knowledge of prices is represented by the parameters (u, p) which are up-
dated according to (4). This is done in the standard way, by induction.

Let

Vo (4, ) Z A (s 0) b, (12.a)

i
and

Up (b ) = Dage,0uin (p,, V(8 (K, 0)) + c]. (12.1)

i
VT _ l(u, p) is the minimum expected cost incurred by a man with prior
experience (u, p) who is allowed to search at most T times but must accept
the Tth price offer made to him. It is easy to see by induction that,
VT(u, p) < VT_l(u, p) and VT(u, o} = P, for all T, so that the VT(U, p)
converge. Let

V (4, p) = lim Volw o) .

T -0

Then V(u, p) satisfies
V(Ua O) = z )\i(]Js O) Min[Pia V(hi(U: O)) + C] s (13)
i

an equation which defines the optimal policy: If 1 is drawn when beliefs

are (U4, p) accept if

otherwise elicit another price offer.

Proposition 2: V (u, p) is continuous.

This fact, although of little interest itself, is the basis of the

13



proof of the next section and justifies the use of extreme examples in the
sections that follow. Tt is important to realize that all the proofs
given hold for any (u, p) €T including such strange boundary values as

(u = €5 p =0) or (u = €» P = 1) vhere e, is the vector whose 1B com-
ponent is 1 while all other components are equal to 0.

Proof: Since Ki(u, p) is continuous so is Vo(u, P). A simple in-
duction establishes that VT(u, p) is continuous for all T. It remains to
show that the VT converge uniformly.

Let VT(u, p) be the expected total cost to a man who for T periods
follows the policy of accepting the elicited price only if (1k4) is satis-
fied; if after T Periods no price has been accepted, the man must pay P,

V (u, p) is defined similarly except that if he has not chosen after T

Periods he receives P - From their definitions it follows that

Volus o) 2 Vlus 0) 2 V(y, o) 2 Volus o)

It will suffice to show that | ¥ (u, p) = Vplus p) | converges to o

uniformly.

[Vpus o) = Vo, o)) = Bp(us 0) p_

where BT(u, p) is the probability -- calculated according to the prior
(u, p) =-- that sampling will not terminate after T periods. However, from

the definition of VT(u, p) it must be that

Pn

80 | By (u, p) < S Fo

and BT(u, p) converges to 0 uniformly. This completes the proof.

1k
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V. Finiteness of search

In this section it is shown that search will cease after a finite time.
The idea of the proof (for which T am indebted to Robert Lucas) is a straight-
forward one. Regardless of his beliefs a person will always accept Pl' If
1% does not appear for a long time then he will come to believe that P, is
the lowest possible brice and will of course accept it. Thus, there is a
t2 such that after t2 trials either the person has stopped sampling or he
will be willing to accept Py Similar arguments establish the existence
of t3, th”"’tn with the same Property. After tn trials, the searcher has
either stopped or will accept any price that occurs.

Theorem I: There is a number t such that a person following the

optimal strategqy will have stopped searching after t trials.

Proof: The theorem is not a Probability statement. Let @ be the set
of all infinite sequences of the prices pl""’Pn and by w denote an element
of Q. We shall show that there is a t such that for any w, sampling will
have stopped by the time the tth pPrice is quoted. Before we do so some
notation is necessary. For any w, let W, denote its sth coordinate. Since
(4, p) are updated as functions of w, we may define (v, ) (w(q)) as the

~ values of (y, p) obtained after observation of wl,...,wq.

Define the acceptance set Ai by Ai = {(u, p) eT l pi < V(hi(u, p))+ cl.

It follows from (9) that if K, = {(ws o) e | b = p = 0} then Ky, cA,.

Since A2 is open and D compact there is an e > 0 such that if (ul,...,u ,0)
n

€ I' and Li + p < g, then (ul,...,un,p) € A2. We may choose t2 such that
if

w, # p; for s < t5 (15)
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then uy (w(t,)) + o(u(t,)) < e; thus if y satisfies (15), (s p) (u(t,)) e a,.
Furthermore, if y satisfies (15) anda w, = p, for s, > t2, then sampling

1
will have terminated by 8¢ since either W = ?1 for t2 < 8 < sl or

(s p) (w(sl)) e A,.

3 < A3 and,

by arguments analagous to those used above, there exists a t3 such that if

Now let K3 = {(u, p) eT l b S, T p o= 0}. Clearly K

w satisfies (15) ang

wg # Pis o wg # p, for ty <8 < t3

then

(s plolt,) e A y A

3 2

3
Continuing in this we establish the existence of g tn such that for all g

n
elther sampling has stopped by tn or (u, p)(w(tn)) e U Ai . Letting t = ¢

) n
i=1

completes the proof.

This theorem has two important implications. First, it suggest that
computing optimal search rules and the expected costs of following them is
a finite problem; thus that it should be possible to compute the loss from
’following such ad hoc rules as those discussed by Telser (1973) rather than
following optimal rules. Secondly, it shows that 6 brove propositions about
V(r, p) it is sufficient to prove them about all VT(u, p). This technique
is used repzatedly in the sequel. TFor example, it may be used to prove that

Property (3) holds in general.

Proposition 3: As the costs of search increase, search decreases.

Proof: Since the optimal search rule is to keep on searching whenever
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p; 2 V(hi(u, p)) + ¢ , it will suffice to show that if V(u, p) is the value
of having information (u, p) when costs are ¢ and O(u, p) is the value of

A .
having the same information when costs are ¢ > ¢, then 0(u, p) = Viu, o).

Theorem I implies that this will be true if, for all T,
A
Volu, p) 2 Vo(us o)

But this is clearly true if T = 0 and that it is true for all T follows by

induction from (12.b), the definition of Vi
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VI. Reservation Prices

When the distribution of Prices is knowm, optimal search rules are

characterized by a reservation price; there is a price ;ﬁ

searcher will accept all prices less than or equal to PR and reject all

such that the

Prices greater than pR. When the distribution of prices is unknown, ac-
ceptable prices change as information changes, so that optimal Bayesian
search procedures cannot be characterized by a single reservation price.
It is however worthwhile to ask whether or not they have g reservation
Price property, that is, whether for every state of information (u, o)
there is g pR(u, 0) such that prices below pR(u, 0) are accepted and those
above it are rejected; if the acceptance sets of all customers in a market
are characterigzed by reservation prices, then the demand function of each
seller in that market is well behaved ~- if he raises prices expected sales
will not increase. Raising prices may increase sales if customers accep-
tance sets are not characterized by reservation prices.

In general, optimal Bayesian search rules do not have the reservation
price Property. Counter examples are easy to construct. Suppose there are
three prices, $1.00, $2.00 ang $3.00 and that the cost of search is $.01.
Prior beliefs admit the Possibility of only two distributions of prices.
Either all prices are $3.00 or they are distributed between $1.00 apg $2.00
in the Proportions 99 to 1. & man with these beliefs should accept a price
of $3.00 (as this is & signal that no lower prices are to be had) ang reject
a quote of $2.00 (which indicates that the likelihood that a much better
Price will be obtained on another draw is high).

It is easy to see what makes this counter example work. Price quota-

tions have value asg information. TIf my beliefs are (u,p) then, the informa-




tional value of getting price i is just V(hi(u, 0)). In the counter example
above, the differences in the information value of prices far exceeded the

differences in the prices themselves. If differences in the value of price
information are less than differences in brices, then optimal search rules

have the reservation price property.

Proposition 3: If for all (u, p) € A

bl

p; =Pl 2 | Vn, (u, o) - Vi (u, 0)) | (16)
then
Vb (u, 0)) + e 2p, > D, (17)
implies
Vi (u, o)) + ¢ 2 P . (18)

Note that (17) implies (18) is precisely the reservation price property.

Proof: Suppose that (16) holds. Then, using (17),
lpi.- Pkl =P; -p 2 IV(hi(u .p)) - Vo (u,0))| 2 V(n, (u,0)) - V(n, (u,0)).
Thus p, - V(hk(u,o)) *es<p, - V(hi(u,p)) ¥ c < 0.

This is a useful criterion. It is used to prove

Theorem II. Optimal rules for searchers with Dirichlet briors have
the reservation price pbroperty.

In view of Proposition 1 and Equation (9) this is about the most
general result which could be hoped for in this context. The proof which
follows is purely formal and conveys little insight. It is not, however,
hard to see why the theorem should be true. Proposition 3 implies that

search rules will have the reservation price Property whenever observing

19
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& price does not convey information about the relative likelihood -- as

measured by Aku, p) —- of observing other Prices in the future. The rule
for updating the Dirichlet is completely neutral in this sense. TFor all
distinet i, j, and k observing pi has no effeet on Aj/Ak .

Proof: 1In view of Propositions 1 and 3 it will suffice to show that

A (s 0) = wy (19)
implies
By = Bl = [V, 0)) - V(n(u, ) (20)
where
My Hy *ose iy P (21)

S
hy(u, p) = T+s0 > Trep " TFo T

is (u, p) updated according to (5) after s observations of p;. Note that
(16) is Just (21} with s = 1. Theorem T implies that it will suffice to

show, for all t,li/
lp; - | > th(hi) - Vt(hi)l (22)

which can be done by induction. Suppose, as we shall throughout the proof,

. (23)
Then from (12) and (21),

: Sy 1 : -1

vo(hi) T 1+ s g uj Pj * 1+s Pi -

Thus,
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Vo(hi) - Vo(h]i) = ﬁ%p (pi - Pk) < (Pi - Pk)

so that (22) holds for t = 0. The inductive step, that if (22) holds for
t =T -1, then it holds for t = T, is proven in a series of lemmas below.
, . s S
I : > >
Lemma 1: pi > pk implies VT(hi) > VT(hk).

Proof: We have already shown that

S Sy _ __sp
Vo(hi) - Vo(hk) =T (pi -p, ) > 0.

k

Suppose the lemma true for t

T - 1. Then letting

h, h°
J 1

8, _ .8
hj (hi(u, p)) = hy hj ,

Vp(h)) - Vp(m) = 7 Ly D oy, vy (0 np) + o)

. S
- Min (pj, VT_l(hk hj) +¢) ]

+ —P X s+1

Min (p. Uy  (2571) + c) ] (24)

The terms in square brackets which multiply are of the form J(A,B,C)

1
1+p
= Min(A,B) - Min(4,C), where B > C by the induction hypotheses. Thus they

are all non-negative. Consider the term multiplying —£ « It is of the

1+p
form
J(A,B,C,D) = Min(A,B) - Min(C,D) _ (25)
_ _ s+1 _ - s+l
where A = p;s B = VT_l(hi ) + e, C= P, > and D VT_l(hk ) + ¢. Thus

A > C and B 2 D by the induction hypotheses. These two inequalities imply

(25)  is non-negative. Since (2k) is a weighted average of non-negative




quantities, it is non-negative.

Lemma 2: If (22) holds for t = T - 1 then

. ) S
Min (p . V (nh hk + ¢c) - Min (pj, VT—l(hjhk) + c)

Proof: The L.H.S. of (2:) has the form

J(A,B,C) = Min(A,B) - Min(A,C)

J

Lemma 1 imply

) S
W = =YV + =V +
here A p., B T l(hjh. ) c and C T 1(hjhk) C. Together (22) and

0<B-2Cc< D; =D, - (27)

IT B <A, then C <A and J = B - C. IfB>A, either C<Aand J=4A - C

€B-CorC>Aand J=A-A=0<B-C. Thus J < (B -2¢C) < Py = D
Lemma 3: If (22) holds for t+ = T - 1,
. s+1 s+1
Min (pys Vo o (077) + ¢) - min (p,, Vo (. 7) + ¢)
< -
<P - P (28)

Proof: The R.H.S. of (28) is of the same general form as (25) with

s+l

A= P;» B = Vo l( ) + ¢, C = p, and D = Vo hk c. Also by hypo-

thesis, A =2 C and Lemma 1 implies B > D. We want to show that J < A - C.

There are four cases to consider:

—
[N
~
=
1/

< Band C <Dy so that J = 4 - C.

(i1) A < B and C > D. This case may be disregarded since if it obtains

+ +
B-D2A-D>A-CorV (hi l h; l = Py which contradicts




(22).

(i1i) A > B and C > D so that J = (B - D) < A - ¢ vy (22).

1

(iv) A>Band C < D SO that J = (B -~ C) < A - C since 4 > B.
Lemma 4: If (22) holds for t =T - 1 it holds for t =T,

Proof: Use Lemmas 2 and 3 to caleulate

2l

[V (n3) - v ()

1]

1 ; s . s
T+ s § My [Min (pj, VT—l<hjhi) + ¢) - Min (pj, VT-l(hjhk) +c)]

sp . s+1 . s+1
+ T+ 5 [Min (pi, VT_l(hi ) + ¢) - Min (pk: VT—l(hk ) + e)]

1 Sp
< - + - =
T 5 § u (pi pk) T+ o (pi pk)

This completes the proof of Theorem IT.

Theorem IT implies that the reservation price of those searchers who
remain in the market must eventually increase to pn. I conjecture (but
have not been able to prove) that if the prior is Dirichlet, the reserva-
tion price will increase monotonically —- g5 ig occasionally postulated in

models of the market behavior of searchers (e.g., Diamond 1971).
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VII. Effects of increasing uncertainty

The introduction listed some results on the effects of increased price
dispersion when the price distribution is known. It is natural to ask
whether these results -- that increased price dispersion lowers total ex—
pPected costs and increases search activity -- hold when the distribution is
unknown. Since the searcher's knowledge of the price distribution is de-
fined in the parameters (u, p), the question is what effect changes in p
and p which represent increased uncertainty have on V(p,;p). To answer
this it is necessary to decide what changes in (us p) represent increased
uncertainty. There are two obvious candidates: A (yu, p) is the expected
price distribution in the sense that the man is just willing to bet that
the next price will be p; at odds Ai(u, p) to (1 - Ai(u, p)). However,

P represents the precision of the searcher's knowledge of the price distri-
bution he faces (p= 0 is subjective certainty). Thus A(u, p) represents
what the searcher believes while p represents how firmly he believes it.
Increased uncertainty could correspond either to an increase in the dis-
persion of A(y, p),holding ¢ constant, or to an increase in p, holding

Ay, p) constant. With what I hope is a pardonable abuse of language, I
shall call the first case increasing objective uncertainty, and the second
case increasing subjective uncertainty. This terminology is Justified by
the fact that increasing objective uncertainty is the natural analogue of
the increases in uncertainty studied when price distributions are assumed
known. Both cases are discussed below.

The effects of increased subjective uncertainty are ambiguous. As
seems reasonable, it appears that whether increasing the subjective certainty

with which a searcher holds his beliefs increases or decreases expected costs




depends on what those beliefs are. If my expectations are of the best,

L .
Ai(u,p) = (l,O,...,O;p);—/ then Increased confidence will decrease expected

costs. That is,

V(1,...,050) > V(1,...,0;0) = D

for any o > 0, so that V(u, p) is increasing in p for at least some p .

Similarly,

V(0,...,150) < v(0,...,130)

]
o)

so that V(u, p) is decreasing in p for some p. It follows that nothing
general can be said about the effect of increased subjéctive uncertainty
on the willingness of searchers to accept or reject prices.

The effects of increased objective uncertainty, at least for the
Dirichlet case, are not ambiguous.

Theorem IIT: If the searcher's prior is a Dirichlet () (u, p) = u),

then if | is riskier than Us V(;, p) < v(u, p).

Proof: Suppose ﬂ is riskier than u. It will suffice to prove the
theorem if y and ; differ by a single mean preserving spread (Rothschild

and Stiglitz, 1970) so we shall consider four Prices
Pl < P2 < PS < Ph
such that u, = Zi for i ¢ (1, 2, 3, 4), and
=A>0 (29)
Hy =y = my =B >0 (30)

where
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Alp, - p) + B(p3 -p,) =0 (31)

We shall prove the theorem by showing

~

Vplfls ) 2 Vi(u, o) (32)

for all T by induction. That (32) holds for T = 0 follows from (31) ana
(12). 1In an obvious notation, let Ej = hj(u, p).

Let R satisfy

R N
Volus o) = % uips t ] ow

TS (hj) + c).

1oy

Theorem II guarantees the existence of such an R. Note that

Tp(is 0) = [, Min [pys ¥y (hy) + e]
R n ~
< % ujpj + Rzl u(VT_l(hj) + c)
R _ n
< % HyPy * Rzl u(VT_l(hj) + c)

(the last inequality follows from the induction hypothesis). Tet

~

v R n
H(u, u) = % (uy - uy) oy + Rgl iy =) (V[ () + e) (33)

Then, it will suffice to show that H(u, ) > O.
There are five cases to consider, depending on the relationship of P

to pl’ p29 p3’ p)-l-.
* o = - N + -7
1. pg 2p). In this case, H(u, 1) (uy = up) Py *+ (uy - 1y) P,

+ (u3 - 53) Py + (”h - ;h) p) = A(p2 - p) + B(p3 - Ph) = 0,




2, ph > pR > p3. In this case, H(y, ;) = A(p2 - Pl) +

v

Blpy = (Vg_ () + ¢)) Alp, - py) + B(p; - p,) = 0.

3, Py > pp Py In this case, H(n, E) = A(P2 - Pl) +

B(VT_l(h3) = VT—l(hh)) 2 A(P2 - Pl) * B(p3 - Ph) = 0. The second inequality

follows from (22).

B ) = AV (5)) + e - ) + B(Vp_y (1) - v (m))

AlVp_y (hy) - vy (n)) + B(Vy_y (hy) = vy (1)), (3k)

It is shown below in TLemms 5 that

;_(h2) = Vo_; (1)) X ;J(hh) - Vp_y (1) (35)
P, - Py P) = Pg
so that
A(p2 - pl)
A(VT—l(hZ) - VT-l(hl)) > (VT_l(hh) - VT_l(h3))

ph_pB

Combining (34) and (35) we obtain

T_l(h3)

. Vog () = v

Hu, u) (A(p, - p)) +B(py - D)) = 0.

ph—p3
5. Py b3 Pp. In this case, H(y, ﬂ) is just equal to the last expres-
sion in (34) and (35) can be used to show H(y, 1) = 0.
To complete the proof we only need prove

Lemma 5: (35) holds for all T.
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Proof:

(35) holds for t = T - 1, Let R satisfy

R
k n
Vol ) =) uy Pyt ) u(Vpy (hy ) +e)
1 R +1
k
It follows from Lemma 1 that Rl < R2 < R3 < Rh’ so that
n
Vop(hy) = Vao(n,) < ] uj(VT_l(h2j) = Vpy (b))
R_+1
3
while
n
Vp(hy) = Vp(ny) < ] uj(VT_l(hhj) = Vg (hgs))
R3+l

The induction hypothesis implies

.. % ; Vo (b)) - Vo1 (hy ;) i oy (By5) - Vp_y (B35)
J
3t Py = Py Py = P3
¢ Yo (hp) -V (m) V() - vy ()

The last inequality follows from (36) and (37).

If T = 0, both sides of (35) are equal to (/1 + ).

Suppose

(36)

(37)

An immediate consequence of Theorem ITI is an analogue of the property

5) that increased price dispersion leads to increased search.
Corollary:
Jective uncertainty lowers the reservation price.

The proof which is obvious is omitted.

If the searcher's prior is Dirichlet, then increasing ob-
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VITII. Conclusion

The most important results of this paper, Theorems IT and ITII, state
that for what Proposition 1 suggests is a quite significant example, the
qualitative behavior of persons searching optimally from unknown distri-
butions is the same as that of persons searching optimally from known
distributions. Since it is easy to construct examples for which this
is not true, it is natural to ask Just how general these results are.
This problem is best stated by focusing on a very general and abstract
formulation of the problem of optimal search. Let K be a compact 1/
set of the real line and let Z(K) be the set of all probability measures on
K. Y(K) is a compact separable metric space so that we can, in the standard
way, define probability measures on ‘/)L(K).l6—/ Such a probability measure,
say ¥, represents a searcher's a priori beliefs about the price distribution
he faces (which is some probability distribution inYA(K) ). If a price p
is observed then as long as the conditional distributions (on ¥(K) given
P) can be calculated, Bayes rule may be used to update his beliefs from
¥ to, say, ¥'. As in sections IT and IV above, the optimal Bayesian
strategy can be devised. “)"completely determines the optimal search rule.
The question at hand is: TFor what class of ¥’ do analogues of Theorems II
" and TIT hold?

Each ¥ has two rather distinect aspects. The first is S(¥), the
support of %ﬂ which is roughly the set of price distributions which the
man whose beliefs are described by Wjudges to be conceivable. This paper
has focused on the case where S(¥) contains only multinomial distributions.
The second aspect of ¥ is the updatiﬁg rule. Theorems II and ITT required
that the updating rule be of a very special kind —- if p; is observed then

the(subjective) likelihood of observing P in the future is increased while



the likelihood of observing all other prices is decreased (and by the same
proportion).

Some recent work of Ferguson (1973)11/ suggests that it is only the
restrictioné on the updating rule and not those on S(+) which are required
for Theorems II and ITT. Ferguson introduces a class of distributions whose
support is essentially all of 7(K); I conjecture that analogues of Theorems I,
IT, and III hold for these distributions. However, these pProbability measures
imply very special updating rules. Ignoring many technicalities, Ferguson's
work may be summarized ag follows: Let o be a finite measure on K and let B =
(Bl, B2""’Bn) be a measurable partition of K (that is, the Bi are measur-
able and ; Bi = K and Bi n Bj =@ if i # j). Consider the probability that
the next observed Price belongs to Bl’ B2, or Bn. This is a multinomial
distribution described by the numbers (P(Bl),...,P(Bn)) € A. Each such
multinomial distribution belongs to#(K) and is thus assigned probability
by . %Z is a Ferguson distribution with parameter o if the distribution
of (P(Bl), P(BE),...,P(Bn)) is Dirichlet with parameter (a(B,), a(B,),...,
a(Bn)). Ferguson shows (1973, pp. 215-216) that the support of *g is the
set of all measures y e 7(K) which are absolutely continuous with respect
to a. By choosing a appropriately S(%&) can be made very large.

The rule for updating ¥a is very simple. TIf %; is a Ferguson distri-
bution with parameter o, after price p is observed it is updated to a

Ferguson distribution with parameter
h(a) =a+ 6§
p( o (39)

where 6p is the probability measure concentrated on the point p. This

formula is an exact analogue of the rule (10) given above for updating
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Dirichlet priors.

Proving analogues of Theorems I, TI, and III for Ferguson distributions
whose parameters have compact support should involve only technical prob-
lems%g/Therefore the results of this baper are quite general in the sense
that they apply to searchers whose beliefs are not restricted in any way
beyond boundedhess. However, they are quite special in that they apply
only to people who revise their beliefs in a very special way. Formula
(39) implies that information is strictly local, or to put the matter more
colloquially, that a miss is as good as a mile. My future beliefs about
the likelihood of observing p are affected in exactly the same way by ob-
serving p + lO_lO as by observing p + 1010. I would like to know whether
the conclusions of theorems IT and IIT hold when information is not so
completely local. At present there seems no way to answer this question
with generality. I know of no class of ¥ £ #(K) which both has large
support and tractable updating rules other than the Ferguson distributions.

It is possible to examine the property of #'s with rather restricted
support by examining parametric families of distributions with tractable
updating rules. For example, it is a simple consequence of DeGroot's
(1968) work that optimal search rules from normal distributions with un-
known means and known variance have the reservation price property when
the prior distribution is also normal .

Perhaps the strongest possible result along the lines of Theorem IILQ/
which could be hoped for is the following

Conjecture: Optimal search rulés from exponential families of distri-

butions have the reservation price property if the unknown barameters have
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conjugate prior distributions.

Establishing this would significantly expand the applicability of the
results of this paper. Still I think enough has been done to establish that
economists can without great loss assume that the qualitativé properties of
demand functions which arise from optimal search from unknown distributions

are the same as those which arise from optimal search from known distribu-

tions.




FOOTNOTES

l-/See Stigler [1961, 1962], McCall (1965, 1970], Nelson [1970], Gastwirth

[1971], Kohn and Shavell [1973] and Telser [1973].

2/

— This fee, the cost of search, is generally interpreted as the cost of
visiting a storé and obtaining a price quotation. It could also inelude

the cost of doing without the item in question while search continues, in
which case the fact that search takes time would have to be formally incor-
-porated in the model, see fn. 10 below. Other rather trivial, from the
formal point of view, generalizations are possible. Price and cost may be
measured in utility rather than money. However, the utility function must be
linear so this is a small generalization. The same framework may be used to
analyze search for jobs when wages (or the utility of jobs) are random ang
unknown. I shall largely ignore these matters of interpretation.

§/A cynic might suspect that the lack of empirical work reflects a lack of

interest in the real world on the part of those concerned with search rules.

A glance_at the authors in fn. 1, above, suggests that this is not the only
reason. It seems to this author -- whose interest in such matters is

admittedly casual -- that the>problem of détermiﬂing characteristics of

search rules empirically is a very difficult one.

4/ T

— This is generally demonstrated by calculating d02 < 0 for particular

parametric famflies of distributions. However, the result is much more

general. Let F(p, t) be a family of.distribution functions with support

in [0, B] indexed by t. Then, as Diamond and Stiglitz [1973] have shown,

increases in t correspond to increases in risk in the sense of Rothschild

and Stiglitz [1970] if
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[P ar(p, ) =1 (1)
0
fY Ft(p, t)dp = 0 0<Y<B (ii)
0
and [P 7 (2, t)ap = 0 (1i1)
0

If h(p) is any increasing function, then

fB h(p)Ft(p, t)dp < 0
0

Note that M_(t) = f? (1 - F(p, t))"ap and

a (t)
n
at

= % (1 - F(p, £))271 . F.(p, t)dp <0
0

since -n(1 - F(p, t)) is increasing in p.

5/

= Total expected costs to & searcher following a reservation price rule are
Just equal to the reservation price. This follows from the fact that ex-
Pected costs do not change as the searcher continues to sample. The logic
of the rule (1) might be stated as: Accept any price less than the ex-

pected costs of continuing to search, otherwise continue.

: §/If in the notation of fn. 3? Gn(t) = Mn_l(t) __Mn(t)’ then it is not true
that Gn(t) increases with t whenever F(p, t) satisfies (1), (ii), and (iii).
I suspect that most increases in price dispersion which do not lead to
piling up of Probability mass at the extreme points of the distribution will

increase Gn(t) but I have not yet been able to formulate this DPrecisely.

T/

~ For discussion of the need for such a complete model see Rothsehila [1973].

§/I'suspect they vary a great deal. Characteristics of empirical wage




distributions -- which are related to -- but distinet from distributions of

wage offers -- are unstable over occupations and across cities, Buckley

[1968].

9/

= The statistical literature on optimal search rules is extensive. Breiman
[1964], DeGroot [1970, Chapter 13], and Chow, Robbins and Siegmund [1971]
are surveys of increasing sophistication. Some of the results of this
baper appear to be new, particularly Theorems I, IT and III. The work

most closely related to that presented here is that of Yahav [1966] and
DeGroot [1968]. Yahav considered the general problem of searching with
recall (the searcher is allowed to return to stores previously sampled)
from an unknown distribution, showed that optimal rules existed under quite
general circumstances, and discussed how they could be approximated. De
Groot completely solved the problem faced by a man searching (with or with-
out recall) from a normal distribution of known variance and unknown pre-

cision.

10/

== Given that the process takes place in time, perhaps it would be more
logical to minimize discounted expected costs. This would introduce no
complications. See Kohn and Shavell [1973] for a discussion of the effect

of varying the discount rate on search rules,

ll-/See, for example, DeGroot [1970, pp. 49-51] for a discussion of the

properties of the Dirichlet distritution.

12/

=1 am indebted to David Blackwell for pointing out to me this way of

loocking at Dirichlet distributions.

13/ The arguments (u, o) will be suppressed where this may be done without
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confusion.

l&/Since V(u, p) is continuous on T this is a meaningful example.

lé/I continue to insist that price distributions be bounded. No meaningful

generality and much complication ensues if this assumption is abandoned.

16/ See Parthasarthy [1967, pp. 39 £f.] for details.

lz-/Blackwell and MacQueen [1973] show how Ferguson distributions may be

understood in terms of the urn model of section IIT. Tn terms of that
model, we can phrase our question as follows: Do our results hold when
the composition of the urn is altered (upon observation of price pi) by

some other way than adding another slip with P, written on it?

18/

It should be possible to push through proofs very similar to those in

the text, once a topology is found in which Proposition 2 holds.

19/

I am not certain how propositions about the effects of increasing dis-

persion are best stated in this context.
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