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ABSTRACT

We consider the null hypothesis that a time series has a unit root with possibly
non—zero drift against the alternative that the process is ’trend—stationary’. The interest is
that we allow under both the null and alternative hypotheses for the presence of a one-time
change in the level or in the slope of the trend function. We show how standard tests of
the unit root hypothesis against trend stationary alternatives cannot reject the unit root
hypothesis if the true data generating mechanism is that of stationary fluctuations around
a trend function which contains a one—time break. This holds even asymptotically. We
derive test statistics which allow us to distinguish the two hypotheses when a break is
present. Their limiting distribution is established and selected percentage points are
tabulated. We apply these tests to the Nelson—Plosser data set and to the postwar
quarterly real GNP series. In the former, the break is due to the 1929 crash and takes the
form of a sudden change in the level of the series. For 11 out of the 14 series analyzed by
Nelson and Plosser we can reject at a high confidence level the unit root hypothesis. In the
case of the postwar quarterly real GNP series, the break in the trend function occurs at the
time of the oil price shock (1973) and takes the form of a change in the slope. Here again
we can reject the null hypothesis of a unit root. If one is ready to postulate that the 1929
crash and the slowdown in growth after 1973 are not realizations of an underlying
time-invariant stochastic process but can be modeled as exogenous, then the conclusion is
that most macroeconomic time series are not characterized by the presence of a unit root.
Fluctuations are indeed stationary around a deterministic trend function. The only
"shocks" which have had persistent effects are the 1929 crash and the 1973 oil price shock.

Key words: Hypothesis testing, intervention analysis, structural change, stochastic trends,
deterministic trends, functional weak convergence, Wiener process,
macroeconomic time series.






SECTION 1. INTRODUCTION

The unit root hypothesis has recently attracted a considerable amount of work in
both the economics and statistics literature. Indeed, the view that most economic time
series are characterized by a stochastic rather than deterministic nonstationarity has
become prevalent. The seminal study of Nelson and Plosser (1982) which found that most
macroeconomic variables have a univariate time series structure with a unit root has
catalyzed a burgeoning research program with both empirical and theoretical dimensions.

Nelson and Plosser’s study was followed by a series of empirical analyses which
basically confirmed their findings. Some (Stulz and Wasserfallen (1985) and Wasserfallen
(1986), among others) applied a similar Dickey—Fuller (1979) statistical methodology to
other economic series. On the statistical front, there emerged an interest to develop
alternative approaches to test the unit root hypothesis. Examples include: the class of tests
proposed by Phillips and Perron (1988) and the methodology suggested by Campbell and
Mankiw (1987, 1988) and Cochrane (1988) using an estimate of the spectral density at
frequency zero. Empirical applications of these methodologies generally reaffirmed the
conclusion that most macroeconomic time series have a unit root (e.g., Perron (1988)).

These studies had many effects on economic theorizing. They seem to confirm
previous analyses which had advanced the unit root hypothesis for particular economic
series, e.g., consumption (Hall (1978)), velocity of money (Gould and Nelson (1974)) and
stock prices (Samuelson (1973)). They also launched a series of theoretical investigations
with implications consistent with a unit root, e.g., Blanchard and Summers (1986) for
employment. Furthermore, a considerable stock of statistical tools was developed for more
general models with integrated variables; these include the cointegration framework (Engle
and Granger (1987)) and multivariate systems (Stock and Watson (1986) and Phillips and
Durlauf (1986)).

As far as macroeconomic theories are concerned, the most important implication of
the unit root revolution, is that under this hypothesis random shocks have a permanent
effect on the system. Fluctuations are not transitory. This implication, as forcefully
argued by Nelson and Plosser, has profound consequences for business cycle theories. It
runs counter to the prevailing view that business cycles are transitory fluctuations around a
more or less stable trend path. It is therefore of importance to assess carefully the
reliability of the unit root hypothesis as an empirical fact.



The aim of this paper appears startling, given the results in the above mentioned
literature. Our conclusion is that most macroeconomic time series are not characterized by
the presence of a unit root and that fluctuations are indeed transitory. Only two events
(shocks) have had a permanent effect on the various macroeconomic variables: the Great
Crash of 1929 and the oil price shock of 1973.

Of course, to reach such a conclusion, a particular postulate must be introduced
which differentiates our approach from the previous ones. This postulate is that the Great
Crash and the oil price shocks were not a realization of the underlying data—generating
mechanism of the various series. In this sense, we consider these shocks as exogenous. The
exogeneity assumption is not a statement about a descriptive model for the time series
representation of the variables. It is used here as a device to remove the influence of these
shocks from the noise function. A more detailed discussion of these issues and their
implications can be found in Section 6.

These two shocks are rather different in nature. On one hand, the Great Crash
created a dramatic drop in the mean of most aggregate variables. On the other hand, the
1973 oil price shock was followed by a change in the slope of the trend for most aggregates,
i.e.'a slowdown in growth. In this light, our aim is to show that most macroeconomic
variables are "trend-stationary" if one allows a single change in the intercept of the trend
function after 1929 and a single change in the slope of the trend function after 1973.

Our approach is in the spirit of the ’intervention analysis’ suggested by Box and
Tiao (1975). According to their methodology, ’aberrant’ or ’outlying’ events can be
separated from the noise function and be modeled as changes or ’interventions’ in the
deterministic part of the general time series model. Using such a strategy makes it
"possible to distinguish between what can and what cannot be explained by the noise"
(Box and Tiao (1975), p. 72). These ’interventions’ are assumed to occur at a known date.
The same strategy is used in the present analysis in that we consider the time of the
changes in the trend function as fixed rather than as a random variable to be estimated.

To make our point as unambiguous as possible, we use the same data set as Nelson
and Plosser, as well as the real GNP series analyzed by Campbell and Mankiw. The data
set used by Nelson and Plosser contains fourteen macroeconomic variables sampled
annually. All series end in 1970 and contain only one break, the 1929 Great Crash. We



shall not analyze the unemployment rate series since there is a general agreement that it is
stationary. The real GNP series is postwar quarterly from 1947:1 to 1986:III and so
contains only one break as well, the 1973 oil shock. Furthermore, to make our analysis as
similar as possible to previous ones, the statistical methodology applied here is an
extension of the Dickey—Fuller methodology (as used by Nelson and Plosser) to test for the
presence of a single unit root in a univariate time series.

The plan of the paper is as follows. Section 2 motivates the ensuing analysis and
presents the alternative models considered. Section 3 shows that usual tests will not be
able to reject the unit root hypothesis if in fact the deterministic trend of the series has a
single break (either in the intercept or the slope). In Section 4, we develop formal
statistical tests of the null hypothesis of a unit root which can distinguish the unit root
hypothesis from that of a stationary series around a trend which has a single break. The
asymptotic distributions under the null hypothesis are derived and tabulated. Empirical
results from applying these procedures are presented in Section 5. Section 6 contains a
discussion of some issues raised by our analysis and suggestions for future research. All
theorems are proved in Appendix 1.



SECTION 2: MOTIVATION

The null hypothesis considered is that a given series {yt}%‘ (of which a sample of

size T+1 is available) is a realization of a time series process characterized by the presence
of a unit root and possibly a non—zero drift. However, the approach is generalized to allow
a one-time change in the structure occurring at a time Ty (1<TB<T). Three different

models are considered under the null hypothesis: one that permits an exogeneous change in
the level of the series (a ’crash’), one that permits an exogenous change in the rate of
growth and one that allows both changes. These hypotheses are parameterized as follows:
Null hypotheses

Model (A) y; =4+ dD(TB), +y, ; +e

Model (B) Vi =# tYq t (/-"2 - l‘l)DUt + e

Model (C) Yy = by + ¥ + dD(TB); + (g — 4)DU, + ¢,

where D(TB), =1 if t = Tg + 1, 0 otherwise;
DUt =1 ift > TB, 0 otherwise;
N . 2 . th th
and A(L) e, = B(L)v,, v, ~ii.d. (0, ¢”), with A(L) and B(L) p" and ¢ order

polynomials, respectively, in the lag operator L.

The innovation series {et} is taken to be of the ARMA(p, q) type with the orders p
and q possibly unknown. This postulate allows the series {yt} to represent quite general

processes. More general conditions are possible and will be used in subsequent theoretical
derivations.

Instead of considering the alternative hypothesis that Yy is a stationary series

around a deterministic linear trend with time invariant parameters, we shall analyze the
following three possible alternative models:



Alternative hypotheses

Model (A) Yy = by + Bt + (hg - 4)DU, + e,
*
Model (B) vy = b+ Byt + (By = B;)DT, + e,
Model (C) A ﬂlt + (11'2 - ﬂl)DUt + (,52 - .B]_)DTt + €

*
where DT $ = t — TB ift> TB and 0 otherwise.

Here, Ty, refers to the time of break, i.e., the period at which the change in the
B

parameters of the trend function occurs. Model (A) describes what we shall refer to as the
crash model. The null hypothesis of a unit root is represented by a dummy variable which
takes the value one at the time of break. Under the alternative hypothesis of a
"trend—stationary" system, Model (A) allows for a one-time change in the intercept of the
trend function. For the empirical cases we have in mind, TB is the year 1929 and fey < fhy-

Model (B) is referred to as the "changing growth" model. Under the alternative
hypothesis, a change in the slope of the trend function without any sudden change in the
level at the time of the break is allowed. Under the null hypothesis, the model specifies
that the drift parameter x4 changes from Iy tO f, at time TB. In the empirical examples

presented in Section 5, TB is the first quarter of 1973 and ﬂ2 < ﬂl, reflecting a slowdown

in growth following the oil shock. Model (C) allows for both effects to take place
simultaneously, i.e., a sudden change in the level followed by a different growth path.

To motivate the use of these three models as possible alternatives to the unit root
with a drift hypothesis, we present in this section some descriptive analyses for three series:
‘nominal wages’ (1900-1970), ’quarterly real GNP’ (1947:1-1986:III) and ’common stock
prices’ (1871-1970).

Figure 1 shows a plot of the logarithm of the nominal wage series. A feature of this
graph is the marked decrease between 1929 and 1930. Apart from this change, the trend
appears fairly stable (same slope) over the entire period. The solid line is the estimated



trend line from a regression on a constant, a trend and a dummy variable taking a value of
0 prior and at 1929 and value 1 afterwards. Table 1 presents the results from estimating
(by OLS) a regression of the Dickey—Fuller type, i.e.:

_ N ~ k ] ~
(1) y,=b+Bt +ay,_; +3;_ G4y, + &,

The first row presents the full sample regression. The coefficient on the lag
dependent variable is 0.910 with a t-statistic for the hypothesis that @ = 1 of ~2.09. Using
the critical values tabulated by Dickey and Fuller, we cannot reject the null hypothesis of a
unit root. When the sample is split in two (pre-1929 and post—1929), the estimated value
of a decreases dramatically: 0.304 for the pre-1929 sample and 0.735 for the post—1929
sample. However, due to the small sample available, the t—statistics are not large enough
(in absolute value) to reject the hypothesis that a = 1, even at the 10 % level.

Two features are worth emphasizing from this example: a) the full sample estimate
of a is markedly superior to any of the split sample estimates and relatively close to one.
It appears that the 1929 crash is responsible for the near unit root value of a ; and b) the
split sample regressions are not powerful enough to reject the hypothesis that a = 1 even
though the estimates are well below one. It would be useful, in this light, to have a more
powerful procedure based on the full sample that would allow the 1929 break to be
€x0genous.

Figure 2 graphs the postwar quarterly real GNP series. Here, the series behave
according to Model (B) where there is no sharp change in the level of the series at the
1973:1 break point but rather a change in the slope. The solid line is a fitted trend where a
dummy variable is included in the regression, taking the value 0 prior and at 1973:I and
the value (t-105) after 1973:I (1973 being the 105
compares regressions of type (1) with full and split samples. Again, the estimate of a is

observation in the sample). Table 1

lower in both sub—samples than with the full sample (given the quarterly nature of the
series, the difference is important). The same features discussed above appear to hold
when there is a change in the slope of the trend function.

As a final example, consider the common stock price series graphed in Figure 3.
The break point is again in 1929 but in this case there appears to be both a sudden change
in the level of the series in 1929 and a higher growth rate after. The solid line is the



estimated trend with two dummy variables added, an intercept dummy (0 prior and at
1929, 1 after 1929) and a slope dummy (0 prior and at 1929 and t after 1929). The
estimated values of a (in regression (1)) with the full sample are 0.913 but are only 0.732
using the pre-1929 sample and 0.788 using the post—1929. Here again, the t—statistics are
not large enough, however, to reject the unit root hypothesis at even the 10 % level using
any of the sub—samples.!

Table 2 presents the autocorrelation function of the "detrended series" for the full
set of variables analyzed by Nelson and Plosser, along with the postwar quarterly real GNP
series. All series are detrended according to Model (A) (with a constant, a trend and an
intercept dummy) except for the postwar Quarterly Real GNP Series (with a slope dummy
instead of the intercept dummy, Model (B)) and the real wage and common stock price
series (with both a slope and intercept dummy, Model (C)). Unlike the "standard"
detrended series (see Table 4 of Nelson—Plosser), the autocorrelations decay quite rapidly
for all variables except for the consumer prices and velocity series. This behavior of the
autocorrelation function is certainly not the one usually associated with either a random
walk or a detrended random walk. Indeed, the "detrended" series appear stationary.

The results of this section motivate the analysis presented in the following sections.
We first investigate the effects of the two types of changes in the trend function that we
consider on the statistical properties of autoregressive estimates of the type found in
regression (1) (both in finite samples and asymptotically). We find that such changes
create a spurious unit root that may not vanish, even asymptotically. To overcome the
problem of the low power associated with testing for a unit root using split samples, formal
test statistics, which permit the presence of either or both an intercept and a slope shift,
are developed in Section 4.



SECTION 3: THE EFFECT OF A SHIFT IN THE TREND FUNCTION ON TESTS
FOR A UNIT ROOT

To assess the effects of the presence of a shift in the level of the series or a shift in
the trend (at a single point of time) on tests for the presence of a unit root, we first present
a small Monte Carlo experiment. Consider first the "crash hypothesis" (Model (A)). We
generated 10,000 replications of a series {yt} of length 100 defined by:

(2) Vi = by + (bg— ) DU, + Bt + ¢ t=1,..,T
where DUt =1 ift> TB ,and 0 otherwise .

For simplicity, p =0, g =1, TB = 50, T = 100 and the innovations e, are iid.

N(0, 1). For the "changing growth" hypothesis, a similar setup is considered except that
¥y is generated by:

*
(3) ¥ = b+ Byt + (B, - B;)DT, + e, t=1,..T
*
where DT =t TB ift > TB , and 0 otherwise .

Again, p = 0, ﬂl =1, Tg = 50, T = 100 and ¢, ~ iid. N(0, 1). For each

replication, we computed the autoregressive coefficient & in the following regression, using
ordinary least squares.

(4) yo=R+Bt+ay,_;+8

Figure 4 graphs the cumulative distribution function of & when the data generating
process (D.G.P.) is given by (2) for various values of p,. This experiment reveals that as

the magnitude of the crash increases (“2 decreases), the c.d.f. of & becomes more

concentrated at a value ever closer to 1. The corresponding mean and variance of the
sample of & generated are shown in Table 3. Figure 5 graphs the c.d.f. of @ when the



D.G.P. is given by (3) for various values of ﬂz. As ﬂ2 diverges from ﬂl, again, the c.d.f.

becomes more concentrated and closer to one. The computed mean and variance of &
presented in Table 3 confirms this behavior.2

What emerges from this experiment is that if the magnitude of the shift is
significant, one could hardly reject the unit root hypothesis even if the series is that of a
trend (albeit with a break) with i.i.d. disturbances. In particular, one would conclude that
the shocks have permanent effects. Here, the shocks clearly have no permanent effects,
only the one-time shift in the trend function is permanent.

To analyze the effect on the distribution of & with an increase in the sample size
with a shift of a given magnitude, we derive the asymptotic limit of o To this end, we
again consider processes generated by Models (A), (B) or (C) under the alternative
hypothesis, but we enlarge the framework by allowing general conditions on the error
structure {et}. Many such sets of conditions are possible and would allow us to carry out

the asymptotic theory. For simplicity, we use the "mixing-type" conditions of Phillips
(1987) and Phillips and Perron (1988). These are stated in Assumption 1.

ASSUMPTION 1

a) E(e,) =0allt;
b) suptE|et| bteg for some § > 2 and € > 0,
c) o?=limg | Tl g (S%) exists and o2 > 0;

d) {e,}{ is strong mixing with mixing numbers o, that satisfy:
ET alllhl—z/ A < m.

These conditions are general enough to permit the series {et} to be generated by a

finite order ARMA(p,q) process with Gaussian innovations. To carry out the asymptotic
analysis, we shall require that both the pre-break and post—break samples increase at the
same rate as the total number of observations, T, increases. To this effect, we assume, for
simplicity, that Tg = AT for all T. We refer to A as the "break fraction". The asymptotic
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limits are taken as T increases to infinity in a sequence that ensures an integer value of TB

for a given A. This type of increasing sequence is assumed throughout the paper. The
results proved in Appendix 1 are presented in the following theorem.

THEOREM 1:

Let {yt}%‘ be a sample of size T + 1 generated under one of the alternative
hypotheses with the innovations {et} satisfying Assumption 1. Furthermore, let Tp = AT,
for all T and 0<A<1,thenasT - w:

a) The "crash hypothesis" ; Under Model (A):
~ 2 2 2, -1
a- {[#1 - ﬂz] A+ 71}{[151 - /‘2] A+ Ue}

T

where A=[A- 4)‘2 + 6,\3 - 3,\4] , M= limT-em Tl 21 €€ 1 and

2 .. -1 T 2
Ue"hmT—»mT 21 €;-

b) The "breaking trend hypothesis" ; Under either Model (B) or (C):

~N

i) a—1
i) T(&-1) - {3(-1 +4x =532+ 2%} - 23+ ax -2+ 33yl

Part (a) of Theorem 1 shows that under the crash hypothesis, the limit of & depends

on the relative magnitude of [y, - p2]2A and cg. In particular, this limit gets closer to one

as [p; - u2]2 increases. Another feature is that the limit of & is always greater than the
true first—order autoregressive coefficient of the stationary part of the series, 0 / ag.

However, since & does not converge to 1, the usual statistics for testing that & = 1, such as
T(a - 1) or the t-statistic on &, would eventually reject the null hypothesis of a unit root.
Nevertheless, added to the generally poor power properties of tests for a unit root is the
consideration that the limit of & is inflated above its true value. These conditions are such
that it could be difficult to reject the unit root hypothesis in finite samples.
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There is another interpretation to the results under the crash hypothesis. As stated
in model (A), the change in the intercept of the trend function is given by (”2 - ul), a fixed

value. This implies that in the asymptotic derivations we are considering a shift which
decreases relative to the level of the series as the sample size increases. It may be more
appropriate to specify the change in the intercept as a magnitude relative to the level of
the series at the time of the break. Since at this period the level of the series is
proportional to T, we can specify (“2 - ul) as a proportion of Ty, say, (u2 - ,ul) = 7T

In this case the "crash" is proportional to the level of the series. Since TB —oasT — o,

it is clear, from part (a), that under this interpretation, a — 1.

Such ambiguity does not occur under the "breaking trend hypothesis" (Models (B)
or (C)) as is shown by part (b) of Theorem 1. Here, the limit of o is 1 irrespective of the
behavior of the intercept and the limit of T(a ~ 1) is invariant to the relative magnitude of
the shift (4, versus f;). The expression in part (b,ii) is a function of A. However, it varies

from 0 to 1/2 for values of A in the range (0,1). Since the one-sided 5 % asymptotic
critical value of T(a — 1) is —21.8 under the null hypothesis of a unit root (Fuller (1976)),
Theorem 2 implies that the wunit root hypothesis could not be rejected, even
asymptotically.3

These results could be extended to more general test statistics, such as the
t—statistics. Nevertheless, the picture is clear. Tests of the unit root hypothesis are not
consistent against "trend stationary" alternatives when the trend function contains a shift
in the slope. Although they are not inconsistent against a shift in the intercept of the
trend function (if the change is fixed as T increases), their power is likely to be
substantially reduced due to the fact that the limit of the autoregressive coefficient is
inflated above its true value. When interpreting the ’crash’ as proportional to the level of
the series as T increases, & unambiguously converges to one and implies a considerable loss
in power. There is therefore a need to develop alternative statistical procedures that could
distinguish a process with a unit root from a process stationary around a breaking trend
function.
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SECTION 4: ALTERNATIVE STATISTICAL PROCEDURES

In this section, we extend the Dickey—Fuller testing strategy to ensure a consistent
testing procedure against shifting trend functions. We shall present several ways to do so,
all of which are asymptotically equivalent, and discuss the main differences between each.

Consider first detrending the raw series {y,} according to either model (A), (B) or
(C). Let {ﬁ}, i = A, B, C be the residuals from a regression of y, on 1) i = A: a constant,
a time trend and DU, ; 2) i = B: a constant, a time trend and DT: ; 3)i = C: a constant,
a time trend, DUt and DTt' Furthermore, let '&i be the least squares estimator of ai in the

following regression:

(5) V,=aY g+ & i=A,B,C
t=1,2,.,T.

Up to this point the extensions from the no break model are straightforward enough.
However, matters are not so simple concerning the distribution of the statistics of interest,
namely the normalized bias, T(&' — 1) and the t-statistic on &, tei (i = A, B, C).

Needless to say, the only manageable analytical distribution theory is asymptotic in nature.
But two additional features are also present over the usual procedure : a) extra regressors
and b) the split sample nature of these extra regressors. To this effect, we derive the
asymptotic distribution of T(&1 -1) and ted under the null hypothesis of a unit root. As in

Section 3, we require that the break point TB increases at the same rate as the total
sample size T. Again, for simplicity, it is assumed that TB = AT with both T and TB

integer valued.

The method of proof is similar to that of Phillips (1987) and Phillips and Perron
(1986). We use weak convergence results that hold for normalized functions of the sum of
the innovations when the latter are assumed to satisfy Assumption 1. The limiting
distributions obtained under this general setting are then specialized to the i.i.d. case. The
asymptotic distributions in the i.i.d. case are evaluated using simulations, and critical
values are tabulated. We then show how the results can be extended to innovations {e;}



13

that follow the general ARMA(p, q) process in the same way that the Dickey—Fuller
regressions are modified by adding extra lags of first—differences of the data as regressors.

The main results concerning the asymptotic distributions of the normalized bias

estimators and the t—statistics of the autoregressive coefficient under the null hypothesis of
a unit root are presented in the next theorem.

THEOREM 2: Let {y,} be generated under the null hypothesis of model i (i = A, B, C)
with the innovation sequence {e,} satisfying Assumption 1. Let '’ denote weak

convergence in distribution and A = Tg/T for all T. Then, as T — w:
a)  T(& -1) - H/K,

b) i (o/o,) By/(g X))

where
Hy =84 Dy~ D59 -Dg vy Ky =84 Dy—Dy %y —Dg ¥y
Hp =gp Dy + Dy 5+ Dg 9 ; Kg =8p Dy + Dy 9y + D3 935
Ho=8cDg+ D3 ¥ -Dyy %  Ko=8cDyg=Dig %+ D1y %5
with
4, = 6D, + 12D, ; Yy = 6D, + (1-X)ATID, ;

¥ = (1+23)(1 - A) Dy — (1 + 3A)D,;
= (1+2))(1-2)"Dy-(1- 07D, ;

. _ 2 3
¥5=Dj9—Dyy; Y5 =95+ (1 -2)" Dyo/27;
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and
Dy = (Hw(1)" - /") ~w(D)fgwls)dr; Dy = Jgw(r)’ds - [[gw(r)ar |2
Dy = [grw(r)dr - (4)]gw(r)ds ; D, = [pw(x)dz - Afgw(r)ds ;
D = w(1)/2 - [gw(r)dr ; Dg = w(A) = Aw(1) ;

Dy = [yrw(s)dr - A jwlz)dr — (1 - )%/2)[gw(z)dr

Dg = (1= X°)/2)w(1) - [ywlr)dr ;

Dy = Jow(s)*ds = X ([gwl)an)? - (1 - )7 wldn)?

Dy = (w(1)? - 03/0%)/2 = X w(A) gwla)dr — (w(1) — w(X)(1-3) " wle)dr ;
Dyy = Jorw()dr - (3)(1 + \)[gwle)dr + (§)]w(r)dr ;

Dyy = [orw(n)dr - (A/2)f jw(x)dr ;

D;3 = (1= A)w()/2 + w(A)/2 - [qw(r)dr ;

Dy = Aw(\)/2 - [qw(r)dr ;

gp=1-3(1-2)A; gg = 31°; go = 12(1 - 2%,

and where w(r) is the unit Wiener process defined on C[0, 1], o2 = limy, E[T_1 S.%],

T 2 _ -1 T 2
Sp =1 ¢, and o, =limp_ E[T ~ 5] e].
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Theorem 2 provides a representation for the limiting distribution of the normalized
least squares estimators and their t—statistics in terms of functionals of Wiener processes.
These limiting distributions are functions of the parameter A, the ratio of the pre-break
sample size to total sample size. It is easy to verify that when A is either 0 or 1, the
limiting distributions are identical over all models and are given by:

T(&-1) - H/K  and ty — (0/0,) B/K?
where
H = ())(w(1)’ - 02/0?)
+ 12[[prw(x)dr - () gw(x)d] - [[gw(z)dr - (4)w(D)] - w(1)[gw(r)de
K = [ow(e) dr - 12(/grw(x)dr)” + 12/ gw(r)de Grw(r)ds - 4(Jfw(r)dr)?.

These latter asymptotic distributions correspond to those derived by Phillips and
Perron (1988) in the case where no dummy variables are included.

The expressions for the limiting distributions in Theorem 2 depend on additional

nuisance parameters, apart from A, namely o and ag. As in Phillips (1987) and Phillips

and Perron (1988), ai is the variance of the innovations and o° is, in the case of weakly
stationary innovations, equal to 27f(0) where f(0) is the spectral density of {e,} evaluated
at frequency zero. When the innovation sequence {et} is independent and identically
distributed o® = 02 and, in that case, the limiting distributions are invariant with respect

e
to nuisance parameters, except A.

Therefore, when 02 = az, percentage points of the limiting distributions can be

tabulated for given values of A. Tables 4, 5 and 6 present selected percentage points that
will allow us to carry hypothesis testing. The critical values are obtained via simulation
methods. We briefly describe the steps involved. First, we generate a sample of size 1,000
of i.i.d. N(0, 1) random deviates, {e;}. We then construct sample moments of the data
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which converge weakly to the various functionals of the Wiener process involved in the
representation of the asymptotic distributions. For example, as T —u, T Erfet —

T
w(1), T 5, Be, - w(a), T 3/2z}“2J 16— [tw(r)dr, 2T _ 1T e, — ()(w(1)? -

1) , etc. With a sample size of 1,000 and i.i.d. N(0, 1) variates, we can expect the
approximation to be quite accurate. Once the various functionals are evaluated, we
construct the expressions in Theorem 2 and obtain one realization of the limiting
distributions of the statistics T(&' - 1), tai (i = A, B, C). We replicate this procedure

5,000 times and obtain the critical values from the sorted vector of replicated statistics.
This procedure is performed for each statistic with nine values of the parameter ), the ratio
of pre-break sample size to total sample size.4

Several features are worth mentioning with respect to these critical values. First, as
expected, for a given size of the test, the critical values are larger (in absolute value) for
each model than the standard Dickey—Fuller critical values when considering the left tail.
One would therefore expect a loss in power. Secondly, although the critical values are not
significantly influenced by the value of the parameter ), the maximum (in absolute value)
occurs around the value A = 0.5, i.e., for a break at mid—sample.5 In the left tail, critical
values of the statistics are smallest (in absolute value) when ) is close to 0 or 1. This is to
be expected since, as previously mentioned, the critical values are identical to those of
Dickey and Fuller when A = 0, 1.

Some critical values are worth noticing. Consider the t-statistics. Under Model
(A), the "crash hypothesis", the 5 % critical value has a minimum (over values of )) of
—3.80. Under Models (B) and (C), the corresponding figures are —3.96 and —4.24
respectively. The critical values under the various models are therefore significantly larger
than the standard Dickey—Fuller critical value of —3.41.

These sets of results can be used to perform hypothesis testing. One simply picks
the critical value corresponding to the sample value of A at the chosen significance level.
Since we only provide critical values for a selected grid of X’s, the procedure suggested is to
choose the critical value corresponding to the value of A nearest to its sample value, i.e.,
Ty /T. Given that the differences in the critical values over adjacent values of ) in the

tables are not substantially different, this procedure should not cause misleading inferences.
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Extensions to more general error processes: Case (1)

Using regressions (5) (i=A,B,C) and the critical values in Tables 4, 5 and 6 is valid
only in the case where the innovation sequence {e,} is uncorrelated. When there is

additional correlation, as one would expect, an extension is necessary. Two approaches are
possible. One is to follow the approach suggested by Phillips (1987) and Phillips and

Perron (1988). This involves finding a set of transformed statistics that would converge

weakly to the limiting distributions expressed in Theorem 2 with 02 = ag. The other

approaches are those suggested by Dickey and Fuller (1979) and Said and Dickey (1984).

Consider first the extension to Phillips’ (1987) procedure. It is useful first to write
the limiting distributions of Theorem 2 in a different, more compact form. To do so, we
adopt the framework suggested by Ouliaris, Park and Phillips (1988). Define wi(r) (i = A,

B, C) to be the stochastic process on [0,1] such that w;(r) is the projection residual of a

Wiener process w(r) on the subspace generated by the following set of functions: 1) i = A:
1, 1, du(r) where du(r) = 0ifr ¢ A and du(r) = 1ifr > A; 2)i = B: 1, 1, dt*(r) where
dt*(r) = 0ifr < A and dt*(r) =r - Aifr > X;3)i = C: 1, 1, du(z), dt(r) where dt(r) = 0
if r < A and dt(r) = rif r > A. Adopting this notation, an alternative representation of the
limiting distributions in Theorem 2 is given by:

T(& - 1) ([gw@)dw) + HUgwEa) " i=A,B,C
and

tyi - (o]0 )[gwi(D)dw(x) + 8/ Ugw@ary ™ i=A,B,C
where § = (o® - 62)/(26%).

Now, define '5? and "}gi to be, respectively, any consistent estimator of 02 and az

based on the estimated residuals from regression (5) (i=A,B,C).(i Also define S? (i=A,B,C)
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to be the residual sum of squares from the regression of Yi_10n 1)i=A: 1,t, DUt; 2)i=
*
B: 1,t, DTt; and 3)i= C: 1,t, DUt, DTt. We then define the transformed statistics as:

(6)  2(&) = T(& -1) - T2(5? - 5%,)/262 i=A,B,C
(1) Z(tgi) = (54/5)tni - T(52 - 52 /255, i=A,B,C

Following Ouliaris, Park and Phillips (1988), it is straightforward to show that:

(8)  Z(&)~ (Jiw,@aw(n)(f 1w, (r)ar) ! i=A,B,C
and
9)  Zlig) - Ugw@aw)([gwy(r)ar) i=A,B,C.

The limiting distributions in (8) and (9) are those whose critical values are
presented in Tables 4, 5 and 6 derived using the representation given by Theorem 2.

The other approach adopts the procedures suggested by Dickey and Fuller (1979,
1981) and Said and Dickey (1984) which add extra lags of the first differences of the data
as regressors in equation (5). This extended framework is characterized by the following
regression (again estimated by OLS):

~ ~in k
(10) Yy = @y, 1+2

j= 1.]Ayt']+e i=AB,C

where A?rt =¥, - S;t—l'

In the above representation, a is the sum of the autoregressive coefficients and the
test is again that a = 1. The parameter k specifies the number of extra regressors added.
In a simple AR(p) process, k = p. In a more general ARMA(p, q) process with p and g
unknown, k must increase at a controlled rate with the sample size. Arguments similar to
those developed by Said and Dickey can be used to show that the limiting distributions of
the statistics tad, i = A, B, C are the same when the innovation sequence is an ARMA(p,
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q) process and regression (10) is used, as they are when the errors are i.i.d. and regression
(5) is used. However, slightly more restrictive assumptions are needed with respect to the
innovation sequence {e,} and the truncation parameter k for this asymptotic equivalence to

hold. They are detailed in the following Assumption (see Said and Dickey (1984)).
ASSUMPTION 2

a) A(L)e, = B(L)v,;
b) v, is a sequence of i.i.d. (0, 02) random variable with finite (4 + 6)th, moment

for some 6 > 0;

C) k—»ma,ndT_lkS-—»OasT-—»m.

Extensions to more general error processes: Case (2)

A possible drawback of the methods suggested above is that they imply that the
change in the trend function occurs instantaneously. Given, for instance, that the Great
Depression was not an instantaneous event but lasted several years, one may wish to allow
for such a transition period during changes in the trend function. One way to model this is
to suppose that the economy reacts gradually to a shock to the trend function.? Consider,
for instance, Model (A) where a crash occurs. A plausible specification of the trend
function, say 7 £ is given by:

(11) n‘? =p + 0+ W(L)DUt

where 9(L) is a stationary and invertible polynominal in L and v = fooy=Hq - The long run

change in the trend function is given by y¢(1) while the immediate impact is simply 7. A
similar framework holds for models (B) and (C).

One way to incorporate such a gradual change in the trend function is to suppose
that the economy responds to a shock to the trend function the same way as it reacts to
any other shock, i.e. to impose (L) = B(L)—IA(L) (see Section 2). We can then
implement tests for the presence of a unit root in a framework that directly extends the
Dickey—Fuller strategy by adding dummy variables in regression (1). The following
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regressions, corresponding to Models (A), (B) and (C) are constructed by nesting the
corresponding models under the null and alternative hypotheses:

(12) g, =u"+ 020U, + f4 T atD(TB), + oty + I ¢ Ay, +e,

(13) A ,u +OBDU +ﬂBt+'y DT +aByt1+21:_1lAytl+e

C

(19) 5y, =pC+0 C

Yi-1
+)3k 1clAyt 1+e

DU, + £ + 1°DT +dCD(TB)t+a

t-

The null hypothesis of a unit root imposes the following restrictions on the true
parameters of each model: Model (A), the "crash hypothesis": aA =1, ﬂA =0, 0A = 0;
Model (B), the "breaking slope with no crash": B = 1, 'yB =0, ﬂB = 0 and Model (C),
where both effects are allowed: aC =1, 'yC =0, ﬂc = 0. Under the a.lterna.tlve hypothesis
of a "trend stationary" process, we expect aA B, aC <1 ﬂA ﬂB ﬂ $0; 6’A OC B,
'y # 0. Finally, under the alternative hypothesis, dA, dCand 0B should be close to zero
while under the null they are expected to be significantly different from zero.

The asymptotic distribution of the t—statistics t A and t C in (12) and (14) are the
same, respectively, as the asymptotic distribution of t'&A and tr&C in (10). However such a
correspondence does not hold for the t-statistic txB in (13). Apart from the one-time
dummy variable d(TB),, regressions (13) and (14) are equivalent, hence the asymptotic
distribution of t(“xB is identical to the asymptotic distribution of t;xC' This implies that in

the above framework, it is not possible to test for a unit root under the maintained
hypothesis that the trend function has a change in slope with the two segments joined at
the time of the change. Consequently, tests for the presence of a unit root in Model (B)
will have less power using regression (13) than using (10) where the asymptotic critical
values of the t—statistic on « are smaller (in absolute value). However, it is still possible to
test for a unit root with constant drift against a trend stationary process as in Model (B)
and use the critical values of Table 5. One simply runs the regression :

(15) A +ﬂBt+'y DT +a yt1+)3k Aytl+e
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The asymptotic distribution of the t-statistic t B in (15) is the same as the
asymptotic distribution of the t—statistic t,B in (10). Given that the regressor DU, is

absent from (15), this case, however, implies that the change in drift is not permitted
under the null hypothesis.

Finally, note that it is possible to apply Phillips’ non—parametric procedure using
regressions (12) through (14) without the lagged first—differenced regressors and applying
the corrections given by (6) and (7). However, such a procedure has the unattractive
feature of imposing only a one—period adjustment to the change in the trend function. In
the notation of (10), it imposes L) = 1 - ;L where o, is the coefficient on the first lag

in the polynomial A(L).

The procedures outlined in this section permit testing for the presence of a unit root
in a quite general time series process which allows a one-time break in the mean of the
series or its rate of growth (or both). In the next section, we apply these procedures in the
specific context of breaks at the time of the 1929 crash and the 1973 oil shock.
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SECTION 5: EMPIRICAL APPLICATIONS

We apply the test statistics derived in the previous section to the data set used by
Nelson and Plosser and to the postwar quarterly real GNP series. The data set considered
by Nelson and Plosser consists of fourteen major macroeconomic series sampled at an
annual frequency. We omit the analysis of the unemployment rate series given that it is
geherally perceived as being stationary. The sample varies for each series with a starting
date between 1869 and 1909. However, each series ends in 1970. Given that we entertain
the hypothesis that only the 1929 Great Crash and the 1973 oil price shock caused a major
change in trend function, each series in this data set contains only one break. It is
therefore possible to apply the tests described in the previous section. Similarly, the
quarterly postwar real GNP series contains a single break as the sample goes from 1947:I to
1986:III. Following Nelson and Plosser, we consider the logarithm of each series except for
the interest rate for which we use the level.

Of the thirteen series in the Nelson—Plosser data set that we analyze, preliminary
investigations showed that eleven were potentially well-characterized by a trend function
with a constant slope but with a major change in their level occurring right after the year
1929. For these series, the maintained hypothesis is, therefore, that of Model (A) and
given that the Great Crash did not occur instantaneously but lasted several years, we apply
regression (12) to carry our testing procedure. The two series that were not modeled as
such are the 'real wages’ and ’common stock price’ series. For these series, it appeared
that not only a change in the level occurred after 1929 but there was also an increase in the
slope of the trend function after this date. For these reasons, the maintained hypothesis is
that of Model (C), and we use regression (14) to implement our tests.

The postwar quarterly real GNP series offers yet a different picture. The 1973 oil
price shock did not cause a significant drop in the level of the series. However, after that
date, the slope of the trend function has sensibly decreased. This phenomenon is consistent
with the much discussed slowdown in the growth rate of real GNP since the mid—-seventies;
see, for example the recent symposium in the Journal of Economic Perspectives (1988).
For these reasons, the maintained hypothesis is that of Model (B). Given the inherent
difficulty in testing for a unit allowing lagged effects for the change in the trend function,
we apply regression (5) (i = B) to carry of testing procedure. Modeling the change in the
trend function following the 1973 oil price shock as instantaneous, at least appears more
plausible than the change that occurred during the Great Depression.
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Table 7 presents the corresponding estimated regressions for each series along with
the t-statistic on the parameters for the following respective hypotheses: p =10, =0, § =
0, y=0,d =0and a=1. Recall that under the hypothesis of a unit root process x # 0 (in
general), # = 0, # = 0 (except in regression Models (C)), y=10,d # 0 and @ = 1. Under
the alternative hypothesis of stationary fluctuations around a deterministic breaking trend
function: 440,040,540, v#0 (in general),d =0 and a < 1.

The value of k chosen is determined by a test on the significance of the estimated
coefficients ¢;- We actually used a fairly liberal procedure choosing a value of k equal to

say k* if the t—statistic on ¢; was greater than 1.60 in absolute value and the t-statistic on
cy for £ > k* was less than 1.60 (with a maximum value for k of 12). This liberal

procedure is justified in the sense that including too many extra regressors of lagged
first—differences do not affect the size of the test but only decreases its power. Including
too few lags may have a substantial effect on the size of the test.

Consider first the series for which we applied Model (A). To evaluate the
significance of the t—statistic on a, we use the critical value presented in Table 4b with a
value of A closest to the ratio of pre-break sample size to total sample size. Of the eleven
series in that group, the unit root hypothesis cannot be rejected even at the 10 % level for
three of them: ’consumer prices’, ’interest rate’ and ’velocity’. However, we can reject the
null hypothesis of a unit root at that 2.5 % level or better for all other eight series. We can
reject it at the 1 % level for the following series: ’real GNP’, 'nominal GNP, ’industrial
production’, ’employment’ and 'wages’, and at the 2.5 % level for the series ’{eal per capita
GNP’, ‘GNP deflator’ and ’money stock’. In some cases the coefficient o which is an
estimate of the sum of the autoregressive coefficients, is dramatically different from one.
For example, it is 0.282 for ’real GNP’ and 0.322 for ’industrial production’.

Given that the unit root hypothesis can be rejected for the eight series mentioned
above, we can assess the significance of the other coefficients using the fact that the
asymptotic distribution of their t-statistic is standardized normal. In all cases, the
estimated coefficients on the constant (p.), the post—break dummy (0) and the trend (B) are
significant at least at the 5 % level. All series showed a trend function with a positive
slope and a significant decrease in level just after 1929. For these eight series the
coefficient on the break dummy (d) is not significant. These results strongly suggest that,
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except for the ’consumer price’, *velocity’ and 'interest rate’ series, the underlying process
is one of stationary fluctuations around a deterministic trend function.

Consider now panel (b) of Table 7 which presents the results for the ’common stock
price’, and ’real wages’ series estimated under Model (C). We can reject the null
hypothesis of a unit root at the 2.5 % level for ’common stock prices’ and at the 5 % level
for the ’real wages’ series. In both cases, the constant (;&), the post—break constant dummy
(6), the trend (8) and the post-break slope dummy (7) are highly significant while the
break dummy (d) is not. The coefficients a for the real wages’ series is very low at 0.298
while for the ’common stock price’ it is at 0.718 showing substantial mean reversion effects.
This finding about the *common stock price’ series is particularly striking given the vast
amount of theoretical and empirical studies supporting the random walk hypothesis in this
situation.

Finally, panel (c) of Table 6 presents the results for the postwar quarterly real GNP
series using regression (5) corresponding to Model (B). In this case, the null hypothesis
that @ = 1 can be rejected at the 5 % level with an estimated coefficient o equal to '0.859.
This result is especially significant given the usual poor power properties of tests for a unit
root against stationary alternatives when using a data set with a small span sampled
frequently (see, e.g., Perron (1987) and Shiller and Perron (1985)). The other estimated
coefficients in panel (c) confirm the relevance of the ’trend stationary’ model versus the
‘unit root’ model. The coefficient on the post-break slope dummy coefficient (%) is highly
significant. The estimated regression is therefore consistent with an underlying process
characterized by stationary fluctuations around a deterministic trend function with a
decrease in the slope after 1973.8

Table A3 in Appendix 2 presents the estimated value for the sum of the
autoregressive coefficient, a, and its t—statistic for the null hypothesis a = 1, for all values
of the truncation lag parameter k between 1 and 12. In general, the results are quite robust
to which value of k is selected.9

The results presented in this section are quite striking. The unit root hypothesis
can be rejected for all but three series. To obtain these results, only a rather weak
postulate needed to be imposed, namely the presence of a one~time change in the trend
function. We claim that this is a weak postulate for the following reasons. As shown by
Nelson and Plosser and Campbell and Mankiw, all the series analyzed have a unit root if
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the trend function is not allowed to change. This view implies that the 1929 crash is
simply one big outlier in the innovation sequence. On the other hand, it also implies that
the post—1973 growth slowdown is a succession of smaller innovations and that the mean of
the innovations is different for the pre-1973 than the post—1973 period. These alternative
interpretations are, we think, less appealing than the hypothesis of a break in the trend
function, especially given that we allow such a break under both the null and alternative
hypotheses.

Given that the ’consumer price’, ’velocity’ and ’interest rate’ series appear to be
characterized by the presence of a unit root, it seems worthwhile to see if this feature is
stable in the pre and post 1929 samples. The sub-sample Dickey—Fuller type regressions
are presented in Appendix 2 for values of k between 1 and 12. Consider first the ’consumer
price index’. With k = 2, the estimated value of the sum of the autoregressive coefficients,
& is 0.965 for the pre-1929 sample with a t-statistic of —1.28. We therefore cannot reject
the null hypothesis of a unit root for this sub—period. However, for the post—1929 sample,
the picture is rather different, when k = 7, & has a value of 0.704 with a t-statistic of —4.56
significant at the 1% level. The non-rejection of the unit root hypothesis using the full
sample is due to the pre-1929 sample. After 1929, the unit root is no longer present.

The case for the velocity’ series has a special feature. It has been well documented
that the U.S. velocity series declined steadily until 1946, remained at a fairly constant level
until 1970 before increasing (see for example Poole (1988) and Gould and Nelson (1974)).
For this reason, we discuss applications of the standard Dickey—Fuller procedure for the
following three samples: 1869-1929, 1930-1945, 1946-1970. We cannot reject the unit root
hypothesis with the pre-1929 sample even though a is only 0.865 (k = 0). However, the
picture is dramatically different using post—1929 samples. For the period 1930-1945, with
k = 1, & is estimated at —0.011 with a t-statistic (for testing & = 1) of —3.44 which is
significant at the 5 % level. Though this result should be taken with caution due to the
small number of observations, it is suggestive of a quite different behavior. The period
1946-1970 affords a modest amount of additional information and still yields more
dramatic results: with k = 4, @ is equal to 0.00 with a t-statistic (for & = 1) of —5.86,
significant at the 1 % level using the Dickey—Fuller critical values. It therefore appears
that the ’velocity’ and ’consumer price’ series yield similar results: the presence of a unit
root before 1929 but not after.
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The results for the interest rate series indicate that, in this case, the unit root
hypothesis cannot be rejected at usual significance levels for both sub-samples (even
though a is estimated at 0.540 (k = 3) with the pre-1929 sample). Indeed, given our
previous results, we can conclude that only the ’interest rate’ series is characterized by the
presence of a unit root after 1929. All the other series are better construed as stationary
fluctuations around a deterministic trend function for this period.
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SECTION 6: DISCUSSION AND CONCLUDING COMMENTS

When testing for the presence of a unit root in a time series of data against the
hypothesis of stationary fluctuations around a deterministic trend function, the use of a
long span of data has definite advantages. It allows tests with larger power compared to
using a smaller span, in most cases even if the latter allows more observations (see Shiller
and Perron (1985) and Perron (1987)). The drawback, however, is that a data set with a
large span has more chance to include a major event which one would rather consider as an
outlier or as exogenous given its relative importance. The arguments in this paper rest on
the postulate that two such events have occurred in the 20th century: the 1929 Great
Crash and the slowdown in growth after the oil shock of 1973. We therefore considered, as
a relevant alternative, a trend function with a change in the intercept in 1929 and a change
in the slope after 1973.

Let us discuss, in more detail, what are the relevant issues in drawing particular
conclusions are about the nature of economic fluctuations from our results. It is
particularly important to put our results into perspective and also highlight what has not
been shown.

The first important issue to point out is that we have not provided a formal
unconditional statistical model of the time series properties of the various aggregates. A
rejection of the null hypothesis of a unit root conditional on the possibility of shifts in the
underlying trend function at known dates does not imply that the various series can be
modeled as stationary fluctuations around a completely deterministic breaking trend
function. As a matter of general principle, a rejection of the null hypothesis does not imply
acceptance of a particular alternative hypothesis. However, since the tests were designed
to have power against a specific class of alternative hypotheses, it is useful to look among
close members of that class to propose an interesting statistical model for the various
aggregate. Only with such a model is it possible to provide forecasts with appropriate
standard errors.

We certainly do not entertain the view that the trend function including its changes
are deterministic. This would imply that one would be able to forecast with certainty
future changes. This is indeed quite unappealing. What we have in mind in specifying our
class of maintained hypotheses can be parameterized as follows:
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(16) Vi =M+ Zy ; M, =ty + Byt

.. 2
where A(L)Z, = B(L)e,; e,~ i.i.d.(0, 0%); By = #y_y + V(L)v, and g, = By + W(L)w,.
Here, the Zt’s are (not necessarily stationary) deviations from the trend function Ty The
intercept and the slope of the trend functions, A and ﬂt, are themselves random variables

modeled as integrated processes with W(L), V(L) stationary and invertible polynomials.

However, the important distinction is that the timing of the occurrence of the shocks vy

and W, are rare relative to the sequence of innovations {et}, for example, poisson processes

with arrival rates specified such that their occurrences are rare relative to the frequency of
the realizations in the sequence {et}. The intuitive idea behind this type of modeling is

that the coefficients of the trend function are determined by long-term economic
fundamentals (e.g., the structure of the economic organization, population growth, etc.)
and that these fundamentals are rarely changed. In our examples, 2 is non—zero in 1929

(the great depression) and W, is non—zero in 1973 (the oil price shock).

In this sense, our exogeneity assumption about the changes in the trend function is a
device that allows to take these shocks out of the noise function into the trend function
without specific modeling of the stochastic nature of the behavior of A and ﬂt' It is in this

sense that our approach does not provide an unconditional representation of the time series
properties of the various variables.

Estimation of models of the form (16) by specifying a probability distribution for
the error sequences {e,, L Vt} are clearly an important avenue of future research.

Interesting recent advances on this topic have been provided by Hamilton (1987) and Lam
(1988) where the slope of the trend function is allowed to take two different values and the
changes are modeled as a binomial process. However, no methods are currently available
to test whether Zt is integrated or not in this framework.1® Problems in estimation of

models of the form (16) are further compounded by the fact that, according to our view,
only one non-zero realization of both vy and W, would be present in the data set typically

available for the series of interest.
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In the above framework, the purpose of this paper is to test whether Zt is an
integrated process or not, i.e. to test whether the shocks {et} have persistent effects that do

not vanish over a long horizon. Our approach is to remove from the noise function two
events that occurred at two dates where we believe positive occurrences of the shocks {vt,

Wt} happened and to model them as part of the trend function. The fact that we model

theses changes as exogenous implies that our results are conditional. That is, conditional
upon the presence of a change in the trend function in 1929 and 1973, the fluctuations are
transitory (i.e. Z, is stationary).

An important direction for future research is to make this conditional result into an
unconditional statement. This could, in principle, be achieved by a direct test for
structural change in the trend function. In a sense, our procedure allows such a test, but
conditional on a change occurring at a fixed known date. Hence, problems of pre-testing
and "data mining" could be raised regarding the role of looking, ex—post, at the data on the
choice of the date.!! Accordingly, what is needed is a test for structural changes in the
trend function occurring at unknown dates. The problem, however, is that care must be
applied to ensure that the test have an adequate size under both the unit root and
trend—stationary hypotheses. No such test is currently available in the literature. We
hope to report, in the near future, developments in this area and applications in this
context.

However, an important issue of observational equivalence could not even be settled
by such a formal test for structural change. Consider, for instance, the following limiting
case in the crash model.1? A trend-stationary model with a break and where the errors
have zero variance is observationally equivalent to a unit root model with drift where the
errors have a high probability of being zero but are occasionally non-zero and finite. In
general, when the variance of the errors is non—zero, the two models will be nearly
observationally equivalent with the disturbances in the unit root model having fat tails.
We are able to make a distinction in our empirical result through the mixing conditions
(see Assumptions 1 and 2) which prohibit fat tailed disturbances. Any formal test for
structural change would, presumably, also have to impose some mixing condition
prohibiting fat—tailed disturbances; thereby not resolving this issue of near—observational
equivalence.
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In fact, any test for the presence of a unit root against trend-stationary alternatives
is subject to another type of observational equivalence, as recently argued by Cochrane
(1987) and Blough (1988). Indeed, in finite samples, any trend—stationary process is nearly
observationally equivalent to a unit root process with a strong mean-reversion component,
i.e. where the errors have a moving—-average component with a root near minus one.!3 The
fact that we reject the unit root hypothesis excluding the event of 1929 suggests that if
there is a unit root at all the correlation structure of the innovation sequence must exhibit
substantial mean reversion.

To sum up: trend stationary processes with a break are nearly observationally
equivalent to unit root processes with strong mean-reversion and a fat—tailed distribution
for the error sequence. Whichever view one adopts cannot be decided by data alone.
Nevertheless, the picture under any of these views is basically the same: shocks had little,
if at all, persistence effect over a long horizon. Only those associated with the Great
depression and the oil price shock significantly altered the long run behavior of the series.

While choosing one view over the other is a matter of convenience for interpreting
the data, it has profound implications for a multitude of statistical procedures. Indeed,
under the unit root view one must ensure the validity of the procedures under fat-tailed
disturbances, and at the moment very few are appropriate in a time series context. Hence
for all practical purposes, it may be more advantageous to adopt the trend—stationary view
with breaks and detrend our series accordingly prior to analyzing the remaining noise.
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FOOTNOTES

Dickey—Fuller tests for the presence of a unit root using split samples are presented in
Appendix 2 for all the series considered. The results are presented for values of k
ranging from 1 to 12. These results show that 1) the conclusions drawn are not
sensitive to the value of k chosen; 2) for some series it is possible to reject the unit
root hypothesis, especially when considering the post-1929 subsample. Furthermore,
the statistical significance of the lagged first—differences (not reported) suggest that a
large value of k may be needed. For example, the t—statistics on the eighth lagged
first—difference is often statistically significant. A similar pattern will occur in the full
sample tests reported in subsequent sections.

Note that when the error structure is ii.d., & is free of nuisance parameters and hence
can be used as a formal test statistic on the same ground as the t-statistic. However,

we also performed a similar experiment with the t-statistic on & (@ =1) in regression
(4) as well as in a regression with additional lags of first-differences as regressors. The
results obtained show the same behavior. If anything, the t—statistic with extra lags of
first—differences as regressors shows a still greater bias toward non-rejection of the null
hypothesis of a unit root. These results are available upon request. We prefer to

report our result in terms of the behavior of the estimator & instead of its t—statistic
because it makes clear that what causes the non-rejection is not due solely to the

- behavior of the variance estimator. What is of importance is that the @ is.biased
towards unity.

After the first draft of this paper was written, we became aware of a result similar to
part (b, i) of Theorem 1 proved by Rappoport and Reichlin (1987). In fact, in the case
of deterministic trends with multiple shifts in slope, they prove the following more
general result: "If the true model contains K + 1 segments, then any fitted model
involving K or less segments will, asymptotically, yield a larger sum of squares
residuals than [a difference stationary] model" (p. 9).

For some evidence on the adequacy of this method to obtain critical values for limiting
distributions involving functions of Wiener processes, see Chan (1988).

The simulated critical values suggest that the limiting distributions are symmetric
around A = 0.5. This feature seems intuitively plausible. We have not, however,
proved that such is the case.

See Phillips (1987), Phillips and Perron (1988) and Perron (1988) for details.

Again, this treatment is analogous to the methodology proposed by Box and Tiao
(1975) concerning intervention analyses.

Basically, the same estimates of the sum of the autoregressive coefficient o and its
t—statistic were obtained using regressions (13) and (14), for all values of k, showing
some robustness for the results presented. We also applied Phillips’ nonparametric
procedure to the detrended series (equations (6) and (7), i = B). These test statistics
did not allow the rejection of the null hypothesis of a unit root.
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One notable exception is the quarterly real GNP series where the t—statistic is
significant at the 5 % level with k = 2 or k = 10. It is significant at the 2.5 % level
with k = 11, with a value of 4.32. We choose to report the result of k = 10 because
the 10th lagged first—difference was highly significant (t-statistic of 2.29) while the
11th and 12th lags were not.

Both authors studied the behavior of the postwar quarterly real GNP with possible
shifts in the slope of the trend function. Hamilton (1987) imposes Zt to be an

integrated process while Lam (1988) imposes Zt to be a stationary process.

See, for example, Christiano (1988).
This issue and its following illustration were raised by a referee.

This observational equivalence problem only disappears asymptotically. In other
words, in finite samples, any test for a unit root with ARMA' errors should have zero
power. Formally, the critical values should be determined such that the test has size
B, say, over all possible values of the nuisance parameters (here, the additional
correlation is in the errors). Given the near observational equivalence, any such test
would have zero power by definition. The unit root tests can be rationalized by
arguing that we are willing to have the wrong size over some of the parameter space
exactly because for all practical purposes it does not matter whether we label a series
as trend stationary or difference stationary with a strong mean—reversion component.
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APPENDIX 1

The conditions imposed by Assumption 1 permit us to use a functional weak

convergence result due to Herrndorf (1984). Let 5, =% j =1 & (S = 0) and define the

following variable lying in the space DJ[0,1]:
-1 1, : :
Xop(r) = o T‘*S[Tr] =0 IT %sj_l (G-1)/T<r<j/T

j=1,..,T
-1
Xp(1) = 0T 7¥s,

Herrndorf’s theorem states that under the conditions of Assumption 1, Xrp(r) = w(r)

where ‘- denotes weak convergence to the associated probability measure and w(r) is the
unit Wiener process defined on C[0,1], the space of all continuous functions on the interval
[0,1]. Following Phillips (1987) and Phillips and Perron (1988), it is easy to derive the
following lemma related to functions of St' These results will be used in proving both

Theorems 1 and 2.

Lemma A.1 Let §, =% ; t j=1; (S0 = 0) and assume that the innovation sequence {et}

satisfies the conditions of Assumptlon 1. Furthermore, let TB = AT for all T, then as T ~

00 :
-3/2, 1B by 2.TB2 2,4 .2

a) T %y Sj - ofgw(r)dr ; b) T "%, Sj - 0 [yw(r)“dr ;
5/2¢ B A ~3/2, 1B A

c) T % ij - ofqrw(r)dr ; dT % jej - a(Aw(A) - [ow(r)dr) ;

e) T'51s, Y 2 (P [2)(w(1)? - 62/ o).

The results in (a) through (d) are simple extensions of those in Phillips (1987) and
Phillips and Perron (1988), part (e) is proved in Phillips (1987). The previous results can
be recovered by simply letting A = 1 in which case TB = T. For example, to prove part

(a):
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T T, .
3/2,TB B i/T 1 A
T3/2%g, 5, = o5, B/ Tt Sppepdr = ofgXp(r)dr = of dw(z)dr

using Herrndorf’s weak convergence result and the continuous mapping theorem (see, e.g.,
Billingsley (1968)). The proofs of (b), (c) and (d) are entirely analogous.

Proof of Theorem 1

We consider first the most general model (C) in which both § (the slope) and x (the
intercept) are allowed to change, i.e.:

Vi = Hy + Bt + e 0<t< Ty
(A1)
yt=ﬂ2+(ﬂ2_ﬂ1)TB+ﬂ2t+et TB<tST'

The following lemma provides a convenient representation of the sample moments of

{r;}-

Lemma A.2 Assume that {yt}rg is generated according to (A.1) with the innovation

sequence {e, } satisfying Assumption 1, then,
a) Zity, , =(1 /6)I8,(3) =A%) + Bo(2 - 3x + A%)T3
+ DA + (1= 2%) + 21 - 2)(8, - )72
+ 13720 + (3/2)(1 = Nty - iy = (1/3)8 1 = (1/3)8y(1 - A)|T

+ [T_3/ 25T5e ]T3/ 2, o(T)

171




37

b) 373,y = (6,07 -23) + (1 + 22 - BT
+ Dy + (1= Vg + (3/2)8,2 ~ (11 + )T
+ [T_*Erfet_I]T% = (g~ 17)
) Iy = (1/3)[83%(3 - 22) + fa(1-2)% + 36, 8,01 - 24T

+ [plﬁl,\?' + ﬂ252(1 - ’\2) - G)(ﬂl)‘ + ﬁ2(1 - ’\)2)]T2
4T -3/2, 1B ~3/2,T 3/2
+ 28, - By)T Bp 418+ AT, Pley - gy By prieT

+ D + (1768 + BN + (L= N + (1/6)83(1 - 2)
+ igfy(1=3) = 298, + TIETe2_IT + o(T).

) By, = /3 -2) + -3 + 36,,0(1 - \)4|T®
+ [y 822 + poff(1 ~ A7

T
-3/2¢" B -3/2¢T 4T 3/2
+2[ﬂ1T )31 te, ; + ﬂ2T ETB+1tet—1 + /\(ﬂl—ﬂ2)T ETB+let]T

+1r + 21— - (1/3)(M + (1= 2)82)
+ /\(ﬁg - ﬂ1ﬂ2) + ’\ﬂl(/"z + ll'l) - 2’\/‘2,52]':[‘ + o(T).

It is straightforward but tedious to show that a is given by:

a=A/D
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where

(A2) A= (T%2+1/2)% ty, 0y,
3 2
-(T°/3 + T°/2 + T/6)2 Ve 12y, —T(E ty, ;)2 ty,

+(T%/2+ T/2)8y, 3 ty, + (1912~ T2 /12)8 3y,

and

(A.3) D= (T%12-T2/19)8 Vi~ TSty )
2 3 2 2
T+ TSty By, - (T3 + T2 4+ T/6)(2y, )

where all summations run from 1 to T. To prove part (b) we derive the limits of T_7A and
T D using Lemma A.2 :

T'D = (1/12)T 5% Vi -T oty )2
+T 95y, , - T23 Vo1~ (/3T Ey, )%+ o(1) |
= (1/36)[A2° + (1 -3) + 22%) + 36,8, A(1 - A%)]
~ (1/36)[8,A(3 = X%) + (2 - 32 + A3))?
+ (L12IBA3 = 2% + By(2 - 33 + X% [8,2(2 - X) + o1 - 1)
= (1/12)[8 (2 - ) + By(1 - M) + o(1) .

Simple algebra yields:

(A.4) T7'D - (1/36)(-3A2 + 423 — 324 4 3\5 _ 28)(8, - B,)2.
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Similarly,

T A = T3y, ty, - T8y, —(1/3)T s y,_)* -1 ty, ;)
+ (1/12)T 8 3,3, | + o(1)
= (1190823 = %) + By(2 =33 + 03] - [BA2- ) + (1~ 2]
= (1128122 - 3) + By(1 = 2P~ (1/36)8,7(3 - A2) + fy(2 - 34 + A3)2

+ (1/36)822% + 21 - 32 + 2%) + 36,6, M(1 - A2)] + o(1)

- and

TA - (1/36)(-33% + 433 — 332 4 325 _ 288, - 8,)%

Therefore o= 7A/T D - 1 proving part (b,i). To prove part (b, ii), note that
T(a-1) = 10 (A-D)/T™ D. Simple manipulation yields :

T8 - D) = (1/12)77 2% Y~ (/12T %852 | 41758 ty,_ 2y,
O gy, g - T By, - (12T 4B y,_)2 4 o(1)
= (1/20)[833% + 61~ 22 + 26,8,0(1 - )]
+ (1/12)[8,A3 - ¥%) + fy(2 - 3x + A% [B,A(2 - A) + Bo(1- 27
+ (1/12)[(B; ~ BA + ) - [B,M(2 - 4) + By(1 - 1)?]
= (1/12)[(B; ~ Bp)A + By] [B, M3 = 22) + B,(2 - 3 + A3

= (1/12)[8,M(2 = A) + By(1 - )2 + o(1)
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and

T%(A - D) - (1/24)(8, - )22 + 423 —5x% 4 209

Therefore,

T(a—1) - (3/2)[1 + 4A =522 + 207 . [-3 4 01 - 322 4 323 _ 4!
proving part (b,ii).

Proof of part (a)

The proof of part (a) is straightforward but tedious. The following arguments
present the main steps. First, the expressions for the moments of {yt} in Lemma A.2 can

be written as follows:

Sity, = a,T° + b1 + ¢, T3/2 4 4 T + o(T)
B1¥y g = 2,72 4+ byT + ¢, T2 4 d

B1Yey = agT® 4 b, T2 4 ¢,73/2 4 d,T + o(T)

T .3 2 3/2
Elytyt—l =a,T" + b,T" + ¢, T " + d4T + ofT).

The coefficients a, ‘bi, ¢, and di (i=1,...,4) are given by the corresponding
expressions in Lemma A.2 where the condition ,61 = ﬂ2 = fis imposed. From (A.3), the

denominator of & is given by:

-5 2 2 2
T"D= [a.3/12 —ay + a3y —a5/3]T

2
+ [bg/12 - 2a;b; +a;b, + bag + 2,2, - (2/3):=L2b2 —a,/2]T
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+[cg/12 - 2a.¢; +a,Cy + ¢ja, - (2/3)a2c2]T%
2
2 2
+dyay +a;b, + bja, - b5/3 - (2/3)agd, - agby — a5/6] + o(1).

Now, tedious algebra shows that the O(Tz), 0(T) and O(T‘}) coefficients all cancel
out and the sum of the 0(1) coefficients yields the following result:
TD - (1/12)o2 + (1/12)[; — ol A - 432 + 623 - 321,

To analyze the limit of T_'5A, the numerator of &, we need the expansions for ¥ Yy

and X ty,. These are given by:

S1ty, = a,T° + (by + /2)T% + ¢, 132 4 (1/3)(d; + (5/6)8 + y)T + ofT)
%1¥, = 252 + (b + AT + ¢, T+ d, .
Then we can write, using (A.2):
T A = [a,8, ~ 22/3 -2 + 2, /12]T?
+ [a2g + (by + B)(2y/2 - 29/3) + (by + B/2)(ag/2 ~ 3;) —a2/2 + b, /12
+a;by/2-a;b, - agby/3 + bja, /2T

+ [a;c, + Ciag = (2/3);12c2 —2a.¢ + c4/12]T%

+HoyHB)(by/2 + a/2=by/3 = 3y/2) + (1/3)(d, + (5/6)8 + py)(ag/2-,)
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+(b; + B/2)(by/2 + a9/2-b;) + djaq/2 + byag/2 —ayd,/3 - agbo/2
—a3/6—dja, + a1dy/2 + d,/12 + a,/12].

Again, tedious algebra shows that the 0(T2), 0(T) and O(T’}) terms all cancel out
and that the sum of the coefficients remaining yields the following result:

TA - (1/12)02 + (1 112)[s, = ol - 432 + 623 — 304,
This proves part (a).

Proof of Theorem 2

We first note some invariance properties of the estimators & (1 = A, B, C): oA is
invariant with respect to ¢ and d; aB is invariant to Hq and Hg; and @~ is invariant to

d,p,l, and He- Hence, without loss of generality, we can study the limiting distribution of
T(a-1) and t~i under the null hypothesis that the sequence {yt} is generated according

to:
(A.5) Ve =Yg+ t=1,.. T

with the innovation sequence satisfying Assumption 1. It is also straightforward to show
that under (A 5), & (i = A, B, C) are asymptotically equivalent to the least—squares
estimators o' (i = A, B, C) in the following regressions:

(A.6) +0ADU +ﬂAt+a Ve 1+e1:‘

(A.7) ¥y = uB + ﬂBt + 'yBDT* + aByt 1+ eB

(A.8) ¥y = ;aC + l9CDUt + ﬂCt + 'yCDT + a7y, 4+ eC
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- = DT* = 0 ; - * _ 4 _ -t
where DU, =1 and DT, =DT} = 0if t ¢ Ty and DU, = 0, DT =t - Ty, DT, =t if
t > Tp. Since we are also concerned with regressions of the type (A.6) — (A.8) later in the

text, we shall derive the limiting distributions concerning & (i = A, B, C) using the
representation of o' (i = A, B, C). Note, however, that o® in (A.6) and aC in (A.9) are
not invariant to the value of the parameter d under the null hypothesis. To achieve
invariance, one must introduce a dummy variable D(TB),G taking value 1 at t=Tg+1 and 0

elsewhere, as is done in regressions (12) and (14). Under the null hypothesis, o is not
invariant to a drift taking two distinct values: pq and Hg- To achieve invariance, the

variable DU, must be introduced in (A.7). However, this affects the limiting distribution

of oP which becomes equivalent to that of ZxC Hence, one cannot analyze directly the case
of joint segmented trend function in a one-step type regression. We now turn to the proof
of the theorem deriving the limiting distribution of T(a'-1) and t° A=A B C)in

(A.6).through (A.8).

The following Lemma provides weak convergence results for the sample moments of
the data and will be used extensively. Its proof is a simple extension of Lemma A.1 and
follows the methods of Phillips (1987) and Phillips and Perron (1988).

Lemma A.3 Let {yt}’(l)1 be a stochastic process generated according to (A.5) with the

innovation sequence satisfying Assumption 1. Furthermore, let TB = AT, thenas T - 00 :

T T
a) 73/ 221Byt - af a\w(r)dr ; b) 175/ 2531]31;yt - of érw(r)dr
. T 2, 2
c) T 21 yt-oa jow(r) dr ; d T Elyt 18 —»(a /2)(w(1) ae/a ).

Parts (a), (b) and (c) are simple generalizations of results in Phillips (1987) and
Phillips and Perron (1988) where Ty = T and hence A = 1; part d) is proved in Phillips

(1987).




44

Using the property that a regression of the form y= Xlﬂl + X2ﬂ2 + e yields a
numerically identical estimator bz as obtained in a regression of the form y* = X§ﬂ2 +e
where y* and XE are projections of y and X2, respectively, on the space spanned by the

vectors in X, (A.6), (A.7) a,nd'(A.S), can be written as:

- A y ok o -
(A9) Y, =A%, + UXoyy + A¥H g + e t=1,.. T
i=A B,C

where 3, = 04, 9 = B, i = 3C
Yae=Yp=%-Y ;
YAt-1= VBt =¥i1 -V
X148 =Xpy=t-1;
XlCt =t- ¢y ift < TB and =t ~ Co otherwise ;
Xoat =DU;=2 ;
Xopy =—tF ift < Tp and =t - Ty —t* otherwise ;
X2Ct =t-¢ ift < TB and = 0 otherwise ;
YCt =.yt -Aiftg TB and = y; — B otherwise ;
Y?:H =Yg A iftg Ty and = ¥;_j — B’ otherwise ;

and
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T-T
T=T8Tt = (T+1)/2 ; =172 Bi=T-nZ2+(1-2)2;
¢, =t-T(1-2)/2 ; cog =1+ TA/2 ;
1.1 TB —1-1 TB
A=Y+ 2T % (yt—Y); B=Y-(1-2)""T ¥ (yt—Y);

T T
» = ~lp-1x"B Ry -1-1¢" B
A= Y—l +A°T 21 (yt_1 -—Y_l) ; B = Y—l -1-x"T 21 (yt_1 —Y_l)

)

— m1yT X g P
Y=T Elyt : Y—I_T Elyt—l'

Y * * ’ — | J— —_
Now, let Y! = (yi,O’ ey yi,T—l)’ E = (el, vny eT), 7 = [Xli’x2i]’ Xy = (Xli,l’ very
Xli,T)’ Xo; = (X2i,1’ ey X2i,T)’ then, under the null hypothesis:

i — ) -1 ) ) -1 ) ) -1 )
where Py = Y,(V2v,)ly;.
1

Furthermore, define the following terms:

H.
i

J.

i L

1

b; ¢;

; ZE ={KiJ.

Straightforward manipulation yields the following representation for o—1:

i 2\v,

2vvs 2 2

= E,/F;.
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The quantities involved are defined as follows with their respective limits as T - oo,
obtained using Lemma A.3:

3 -3 -3
a) =ag=T"/12-T/12 T a, =T ag - 1/12
b, = ~(1 - A)AT?/2 F T %b, (1 - A)A/2
1
cpy = (1=-2)AT ;T ey = (1= 2)A

2 = VY2 R § 2 .
YAYA=YRYp =305, - Y ) ;
-2y, -2, 20,1 .2 1 2
TOY Y, =T YpYp - o7[[gw(r)“dr - (Jow(z)dr)?]
YiE=YZE=31(y,  -Y .)e, ;
A B 1V~ )8
TYE = T8 - (o%/2)(w(1)? - 02/0%) - Pw(1) [ow(n)dr
Hy =Hp=314(y,  -Y )
AT BT MW, '

75/ ’n A= 75/ 2HB -+ af 3rw(r)dr —(a/2){ (l)w(r)dr

T
B -3/2 1
Iy =13 (¥;4 —Y_l) ;T 3/ Jp - ajéw(r)dr = oA[gw(r)dr
vl -3/2 -3/2 1
K, =Kg =21tut_t21ut ;T / K,=T / KB—’(0/2)W(1)—af0w(r)dr
Ty "
Ly=5% (e, —E) ; T 2Ly = ow(}) - oAw(1)
by = BL (t-t)(t - Ty) i A (1- A)2(1 + 2))/12
B™“T B ’ B
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T-T
42 B oK\ 2 -3 3

Ig =37 g1t TR) =Y ) ;

T_5/2JB - ajirw(r)dr - Aaj/l\w(r)dr -((1- /\)2/2)j(l)w(r)dr

Lp = 5% +1(6=Tp)e - B) ; T35 4 (1= 3D /2)ow(1) - of yw(r)dr

T
B 2 -3 2 3
ag =%, "(t-c))? + 57 1) Tag = (1-0)2/12 + A%/12
T
B 2 -3 3
bo =3, “(t-c,) ;T30 2312
T
B 2 -
co =2 (t-c;) ;T ¢+ 2312

T
v v B 2. T o2
YoYo =3 (4 - A) +2TB+1(yt—1 B)"

TV Y- o2[fdw(r)dr - X7 faw(r)dn)? - (1- )Y Sw(r)dr)?]

Y’E—-ETB( ~Ae, + 3% | (v,  —BYe,
c" =4 Ui t 7 Tp+1Vt-1 ’

TIYYE - (o2/2)(w(1)? - 72/7%) = N P Aw(z)dr

— oA(w(1) - w(A))(1 - A)7Ly Jw(r)dr
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TB , T ’
HC = 2]_ (t - cl)(yt—l -A ) + ETB+1(1: - 02)(yt_1 -B ) X
T%2H G ol grwla)ds - (1)1 + X) w(a)dr + (3)/Aw(e)a]

T
JIo=3 Pt~y - A) ; /21 4 of [Arwiz)dr - (A/2) Jow(z)di]

K —)JTB(t— ) + 3% t ;
c=4 €1/ TB+1( ~Coley ;

2K g o)1 - (1) + (w(3) - [w(e)e]

T
Lo =3 2(t-cp)e, i T3/ of(3/2)w(x) - Jowlz)d).

Now, using (A.11), we can write the statistics as follows:

. _ by b
(A.12) T(a"-1) =T E,/T%F,
(A.13) toA=TVE, /83 - T, . T%a,c ek
(A.14) T(al - 1) = T 'E/T8F, ;i=B, C
ax - o 1 2vq3 .
(A.15) toi =T Ey/[s2 . T3, . T (e, b)) ;i=B,C

&2 —1oT7i
where Si =T Elet .

The results of Theorem 2 follow taking the limits of the expressions in (A.12)
through (A.15) as T - oo, using the weak convergence results of the relevant moments
(given above) and the fact that S? (i=A,B,C) converges in probability to ag as T - oo.
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TABLE 4A

Percentage Points of the Asymptotic Distribution of T(% — 1) in Model A

Time of Break Relative to Total Sample Size: A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% —-34.17 3585 -35.07 -34.44 34.07 -35.83 -35.59 -34.86 -34.65
25% -2893 -30.35 —29.92 —29.96 -29.00 -29.80 -29.61 -29.40 -29.35
5% -25.04 -26.00 -25.90 -25.40 25.25  -2556 —25.99 2582 -25.40
10 % —-21.45 —22.16 -21.93 —21.61 —21.55 —21.79 —22.33 -22.10 —21.48
90 % —4.57 -5.19 -5.13 —4.28 -3.85 —4.36 -5.15 —5.32 —4.62
95 % -3.40 -3.90 -3.80 —2.83 —2.38 -2.92 -3.86 -3.87 -3.27
975 % —2.35 -2.92 —-2.85 -1.69 -1.42 -1.89 -2.78 —2.84 -2.13
99 % -1.28 -1.70 -1.60 -0.61 -0.40 —0.78 -1.58 -1.78 -1.39
TABLE 4B
Percentage Points of the Asymptotic Distribution of tey in Model A
Time of Break Relative to Total Sample Size: )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% -4.30 —4.39 —4.39 -4.34 —4.32 —4.45 —4.42 —4.33 —4.27
25 % -3.93 —4.08 —4.03 —4.01  —4.01 —4.09 —4.07 -3.99 -3.97
5% -3.68 =3.77 -3.76 -3.72 -3.76 -3.76 -3.80 -3.75 -3.69
10 % -3.40 -3.47 -3.46 -3.44 -3.46 -3.47 -3.51 -3.46 -3.38
90 % -1.38 -1.45 -1.43 -1.26 -1.17 —1.28 —1.42 —1.46 -1.37
95 % —1.09 -1.14 -1.13 -0.88 -0.79 -0.92 -1.10 -1.13 -1.04
97.5% -0.78 —0.90 -0.83 -0.55 -0.49 -0.60 -0.82 -0.89 -0.74
99 % -0.46 —0.54 -0.51 -0.21 -0.15 -0.26 -0.50 -0.57 -0.47




TABLE 5A

Percentage Points of the Asymptotic Distribution of T(a - 1) in Model B

Time of Break Relative to Total Sample Size: A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% ~-34.34  -37.16 -38.07 -39.21 -39.77  —40.08 —-38.70 -36.18  -34.69
25% -28.74 3197 -32.78 —-33.49 —-33.60 -33.21 -32.31 3145 2942
5% —25.00 -27.16 -28.61 -29.23 —20.65 -29.51 —-28.68 -27.24 2595
10 % ~21.26 —23.10 2420 -25.04 2540 -25.15 ~24.30 -23.01 -21.24
90 % —4.27 -5.09 -5.92 —6.62 —6.96 -6.71 —6.08 -5.26 —4.45
95 % -3.12 -3.85 —4.50 -5.06 -5.31 -5.15 —4.59 -3.82 -3.16
975% —2.20 -2.69 -3.30 -3.90 —4.14 -3.94 -3.36 -2.72 -2.21
99 % -1.11 -1.58 -2.19 -2.50 -3.01 -2.54 -2.20 -1.50 -1.24
TABLE 5B
Percentage Points of the Asymptotic Distribution of t~ in Model B
Time of Break Relative to Total Sample Size: )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% —4.27 —4.41 —4.51 —4.55 —4.56 —4.57 —4.51 —4.38 —4.26
25% -3.94 —4.08 —4.174 —4.20 —4.26 —4.20 —4.13 —4.07 -3.96
5% -3.65 -3.80 -3.87 -3.94 -3.96 -3.95 -3.85 -3.82 -3.68
10 % -3.36 -3.49 -3.58 -3.66 -3.68 -3.66 -3.57 -3.50 -3.35
90 % -1.35 -1.48 -1.59 -1.69 -1.74 -1.71 -1.61 -1.49 -1.34
95 % -1.04 -1.18 -1.27 -1.37 -1.40 -1.36 -1.28 —-1.16 -1.04
97.5% —0.78 -0.87 -0.97 -1.11 -1.18 -1.11 —0.97 -0.87 -0.77
99 % —0.40 -0.52 -0.69 -0.75 ~-0.82 -0.78 -0.67 -0.54 -0.43




TABLE 6A

Percentage Points of the Asymptotic Distribution of T(& — 1) in Model C

Time of Break Relative to Total Sample Size: X

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% —36.17  -39.97  42.98 4552 44.07 4475 —43.02 -41.48 -36.58
25% -30.65 —-34.92 3648 -37.12 3756 -37.72  —37.50 -35.16  -31.82
5% —26.63 —-29.95 -32.47 3322 -33.79 -33.19 -33.11 -30.70  -27.16
10 % —22.68 —25.50 27.90 —29.39 -29.41 —29.04 -28.14 -25.79 —22.62
90 % —4.74 ~-5.85 ~7.35 -8.43 -8.84 —8.55 —-7.41 —6.17 —4.89
95 % -3.41 —4.34 -5.50 -6.67 -7.19 -6.79 -5.66 —4.52 -3.52
97.5% -2.51 -3.19 —4.14 -5.37 -5.82 -5.47 —4.33 -3.35 -2.49
99 % -1.31 -2.14 -2.82 -3.96 —4.39 —4.24 -2.80 -2.02 -1.28
TABLE 6B
Percentage Points of the Asymptotic Distribution of t~ in Model C
Time of Break Relative to Total Sample Size: )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% —4.38 —4.65 —4.78 —4.81 —4.90 —4.88 —4.75 -4.70 —4.41
2.5 % —4.01 -4.32 —4.46 —4.48 —4.53 —4.49 —4.44 —4.31 —4.10
5% =3.75 -3.99 —4.17 —4.22 —4.24 —4.24 —4.18 —4.04 -3.80
10 % -3.45 -3.66 -3.87 -3.95 -3.96 -3.95 -3.86 -3.69  -3.46
90 % -1.44 -1.60 -1.78 -1.91 -1.96 -1.93 -1.81 -1.63 -1.44
95 % -1.11 -1.27 —-1.46 -1.62 -1.69 -1.63 -1.47 -1.29 -1.12
97.5% —0.82 -0.98 -1.15 -1.35 -1.43 -1.37 -1.17 -1.04 —0.80
99 % —0.45 -0.67 —0.81 -1.04 -1.07 -1.08 -0.79 -0.64 -0.50
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APPENDIX 2

Extended set of Results for Tests of a Unit Root

using Split and Full Samples
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