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Abstract

An inspector's game is a non-constant sum 2-person game in which
one player has promised to perform a certain duty and the other player is
allowed to occasionally inspect and verify that the duty has indeed been
rerformed.

A solution to a variant of such a game is given in this paper,
based on the aésumption that the inspector can announce his mixed strategy
in advance, if he so wishes, whereas the other player, who has already given

his promise, caﬁnot threat by explicitly saying that he will not keep his word.



1. Introduction.

The theory of constant-sum 2-person games exhibits a large
number of examples which can be called "hide and seek games™. In such
games, one player is trying to hide an object or camouflage an action,
while the other player tries to discover the hidden object or to uncover
the action.

In many real-life cases, however, there is an additional aspect
to the situation, which should not be ignored; namely, it is conceivable
that the object is not hidden at all or that the action is not taking place.
This possibility accounts for the fact that such a game is, in general, a
non-constant-sum game, for which today there does not exist a theory as
gsolid as for the constant-sum game theory.

It is precisely for the fact that most real-life situations are
not constant-sum games that Game Theory is sometimes being criticized
- unjustifiably in my opinion - of being of very little use in analyzing
peoplets conflicts.

The purpose of this paper is to describe a non-constant-sum
game, of the "hide and search" type in which it is possible to recommend
a strategy which is, in our opinion, as convincing as the minimax strategy
for the constant-sum games.

Take for example a treaty between two countries, in which some
kind of disarmament is agreed upon, and each side is allowed to inspect the
territory of the other party on certain occasiong in order to give some

guarantee that no violation occurs.



From the point of view of Game Theory, such a treaty exhibits
the following interesting features:

(i) The main purpose of the treaty is that at least "the

other country” will not violate its promise. It is also

hoped that, if obeyed, this treaty will lead to other

agreements towards more disarmament, towards controlling

the arms race, and, in general, towards achieving better

prospects for peaceful coexistence. It is therefore safe

to say that the utility of an obeyed treaty is higher than

the utility gained if the "other side" is violating it,

even if it .is caught.

(ii) There is a clear asymmetry in the possibility of
communication between the inspection role and the (possible)
violation role. The inspector can always announce in advance,
if he so wishes, and also commit himself to his mixed strategy

choice of using his available inspections,



whereas the violator who wishes to violate secretly, cannot

announce his mixed strategy, i. e., his probability distri-

bution on conducting secret vioclations under the various
possibilities. After all, he has just signed a treaty which
he solemnly promised to obey.

It turns out that this game theory formulation and the hinted
suggestion that "truth is the best lie", is the key to a relatively easy
and convincing method to arrive at a "best” strategy for the inspector.

Our game model is defined in Séction 2, and it is described
for a somewhat general class of real life situations (to which it can be
applied perhaps even better than to the problems involved in the above
treaty). Its solution is discussed in Sections 3 and 4, and its payoffs
are computed and their properties are discussed in Sections 5 and 6.
Sections 7, 8, 9 deal with difficulties which may arise in real-life
situations.

Our logical steps can be summarized as follows:

(1) We advocate that the inspector announce his choice of

mixed strategy in a binding way, prior to playing the game.

(ii) This leaves the suspected violator in a l-person game

which is easily solved as a maximum problem. Thus, for



each strategy choice of the inspector, it is possible

to compute the expected payoff to both parties.

(iii) Naturally, the inspector should announce that mixed
strategy which will yield him the highest expected payoff.

Such a strategy is easy to compute.

This procedure is an analogue to the price leadership procedure

in the duopoly problems in Economics.

(iv) It turns out that in our particular model, the in-
spector has to announce '"'almost' that strategy which is

a minimax strategy based on the suspected violator's pay-
off matrix, regarded as a constant-sum game. Thus he
should announce a strategy which is in essence opposing
the other party's interests. The "almost'" above comes to
indicate that his announced strategy is slightly modified in
order to force the suspected violator to use the wait-until-

all-the-available-inspections-were-used-up strategy.

(v) It turns out that the expected payoffs are Pareto optimal;
namely, any other outcome is less preferred by at least one

of the players to the outcome which we advocate.



These facts furnish an answer to the suggestion that the
inspector might have done even better by not disclosing his mixed strategy
in advance. Indeed, he could have obtained essentially more than what
our procedure guarantees, only if the suspected violator were to receive
less than the amount that our method provides him. But certainly, the
suspected violator can guarantee himself this amount by playing a minimax
strategy based on his own payoff matrix.

Thus, announcing his mixed strategy will not harm the inspector
(essentially). Moreover, by not announcing his strategy, the inspector
may actually obtain a smaller payoff (Sectio;n 7).

I wish to express my indebtedness to Professor H. W. Kuhn

and to Dr. M. Davis for various discussions that stimulated this paper.

2. The Inspector's Game.

This is a 2-person non-constant-sum game, whose players

are called the inspector and the violator. These players are assumed

to have signed a treaty in which the violator promises to obey certain
duties (for which he gets compensation from the inspector). In order to
give some assurance that the treaty is not secretly violated, the inspector
is allowed to conduct a certain amount of '"on site' inspections on sus-

picious occasions.



We make the following simplifying assumptions:

Assumption 1. There are exactly n '"'suspicious events', which are

known to both sides, and, as far as the inspector is concerned could

equally likely indicate a possible violation. No violation can otherwise

occur.

Assumption 2. The violator can make at most one of these events,

and no others, as a secret violation, and this violation will not cause this

event to look more suspicious to the inspector.

‘Assumption 3. The treaty specifies that the inspector is permitted

r inspections on these events, 0 <r <n. If a secret violation has

occurred and has been inspected, it will be identified with a certain fixed

positive probability.

The following assumptions are made on the utility payoffs.

1
Assumption 4. (i) If the violator violates (1) on event i, and the

inspector inspects this event, then the payoff to the violator is 0 units

of utility and the payoff to the inspector is 1 unit of utility. (ii) If the

violator violates on event i, and the inspector does not inspect this

(1) "Violates" will mean henceforth conducting a secret act which is
contrary to the terms of the treaty.



event, then the payoff to the violator is 1 unit of utility and the payoff

to the inspector is 0 wunits of utility.

Since the zeroes and the units of utility can be chosen at will
for each player, this assumption states then that if an event i is a
violation, then the violator prefers that i is not inspected whereas the
inspector prefers that it is inspected. It also states that "other things
being the same', it is irrelevant to both players which of the events is

a violation.

Assumption 5. Whether an inspection has occurred on event i or not

is known to the violator after event i and prior to event i+l . The

violator can make his decision at any moment and it is not known to the

inspector, unless a violation is inspected and is identified. An inspection

(1)

of an unviolated event, by itself' ', has no effect on the payoffs to both

players.
By the last statement we ignore many "psychological" aspects

of inspections which may exist in real-life situations, such as: losing

(1) I.e., aside from the fact that it reduces the number of the avail-
able inspections and that it yields the information that it existed.



face caused by inspecting and not discovering a violation, humiliating

the violator by treating him as a suspected liar, building up a trust or dis-

trust by inspecting "rarely" or 'too often", etc. It is also assumed that

the inspection can serve no purposes(l) other than discovering a violation.
As is usually (but not always) the case, we assume that the

primary purpose of the treaty is that it be observed. The inspections

play a secondary protective role. Accordingly, we denote by @ and §,

respectively, the payoffs in utility units to the inspector and to the violator,

if no violation took place during the n events. We make the following

(2)

Assumption 6. The utilities o and B are known to both parties

and they satisfy

(2. 1) a>1, 0<p<l

The assumption @ >1 means that the inspector would prefer
that the treaty is observed to a situation in which a violation occurs and

it is inspected.

(1) Such as spying, sabotaging the activities of the violator, conducting
propaganda etc.

(2) Actually, we shall later see that only P need be known to them.



By B <1 we mean that the violator prefers breaking to not
breaking the treaty, if he is sure that his violation will not be inspected.
However, an inspection has a deterrent power, and the violator would
change his preference if he is sure that an inspection will follow a violation.
This accounts for 0<B.

Thus, vy =1-B measures how important it is to the violator
to conduct a secret violation. If y is near 0, he is almost indifferent
between obeying on the one hand and violating uninspected on the other hand.
If, however, it is very important for the violator to qonduct a secret test,
then y would be nearly 1, in which case obeying the treaty would look
to him almost as bad as violating it and being inspected.

Needless to say, Yy could be greater than or equal to ,1,([3 <0);
i.e., that even a sure inspection will not deter the violator. We do not

treat such cases in this paper.

Discussion. A real-life situation is, in general, more complicated.
The number of events need not be fixed, nor need they be equally likely
suspicious. The number of available inspections need not be fixed. The
probability of identifying an inspected violation may vary. There may
be different utility gains if, say, an uninspected violation takes place

in the first or in the 8th or in the n-th event. The "psychological"

aspects may play a decisive role, etc.
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Such circumstances can in many cases be included in a more
refined model and treated successfully. There are other instances in
which a refinement is not so easy to make. For instance, the real-
life situation may not be limited to just n events. It may perhaps re-
semble an infinite sequence of games of our type, with utilities which
vary from game to game, and which depend on the outcomes of the pre-
vious games. It is not a priori clear that what is a good strategy for
each game alone is also a good strategy for the entire situation.

Possibly both players have their own duties, each is
allowed to inspect the other side. Such a 2-sided inspectors' game
offers more mutual agreements prior to and during the playing of the

game, and it may be an essentially different game.

Thus, it should be stressed that applying our model or its
refinements to a real-life situation should not be made without a

careful consideration.

Measuring the utilities @ and $ is not an easy under-
taking. In many cases it is absurd to assume that the utilities are
known to both players. We shall have something to say on this in this

connection in Section 8.

It follows from Assumption 5, that the inspector will
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(1

plan to use all his available inspections '. He has, therefore, (?)
pure strategies, each of which consists of a choice of r out of the
n events, to be inspected. His mixed strategy is a probability distri-

bution of these strategies.

It will bé convenient to furnish a different description for
such mixed strategies, which describes prior to each event k + 1,
k=0,1 2, ..., n-1, the probability of inspecting it, when all the
necessary information on the previous inspections is given. Accord-

ingly, we make the following definition:

A history of k events, 1<k<n -1, denoted generically
by h(k) , is the set of those events, among the first k events, that
were actually inspected. Clearly, h(k) is known to both parties after
the k events had already taken place. We define h(o) to be the

empty set.

A possible history of k events is any history that could
have taken place under the rules of the game. Thus, it is a subset of

the first k events, 0 <k <n, which contains at most r elements,

(1) Of course, the moment a violation occurs, the game may be
considered over, prior to the next event and more inspections
are irrelevant. But there is no loss of generality in assuming
that the inspector will always act as if no violation has previously
occurred.
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and, moreover, if k = n-t and 1 St<r-l, then the history must
have contained at least r-t elements.

It is easy to see that any mixed strategy for the inspector
can be described as the set {q} = {a(h(k))}, © <q<1, where
q(h(k)) is the probability of inspecting the event k + 1, if the. history
h(k) has taken place previously. q(h(k)) is defined for all the possible

histories of k events and {q} is a strategy for the inspector if and

only if

(2.2) q(h(k)) = 0, whenever h(k) contains r elements,
(2. 3) q(h(k)) =1, whenever k = n-t, 1 <t<r and h(k)
N has exactly r-t elements.

If q(h(k)) depends only on the number of elements in h(k) ,

for each possible history, then {q} iscalled a.strongly behavioral strategy.

A pure strategy for the violator is a set {f} ={1 (h(k))} ,
where £ = 0,1 is defined for each possible history and denotes whether

(£ =0) or not (£=1) the event k+l is to be violated. It must satisfy:
(i) If
(2. 4) (k) = 1, h(k) C h(k,), k <k, ,

then

(2. 5) 2 (h,(k,)) =0 .
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Indeed, only one violation can take place Assumption 2.
(i) If k=n-t, 1 <t<r, and h(k) has r-t elements then
(2.6) £ (h(k)) =0

Indeed, under these conditions the violator knows that the
event kt+l will be inspected, and therefore, by Assumption 6 he will

not choose this event for a violation.

(iii) If h(k) contains r elements, and the k-th event is among them,
then Assumption 6 predicts that a violation must occur on one of the
events k+1, k+ 2, ..., n, unless an inspection has occurred pre-
viously. In order not to bother ourselves with sets of equivalent
strategies (See Assumption 4), we shall henceforth decide that

under such circumstances, the (k + 1)-th event will be inspected.

Thus, except for strategies which are equivalent to the
following ones, the totality of pure strategies which are available

to the violator consists of those which satisfy (i), (ii) and (iii) above.

The inspector game I'(n, r) is a 2-person game which

satisfies the above assumptions, and its strategies satisfy the above

requirements.

We impose the following additional assumptions on its




14.

players:

Assumption 7. The Violator cannot announce his choice of pure

or mixed strategy.

In fact, he has just signed a treaty which he promised to

fulfill,

Assumption 8. The inspector has the option of announcing and

committing himself to a specific mixed strategy, prior to playing the

game. If he uses his option, the violator hears the announcement and

knows that it will be observed.

This is usually the case in real-life situations, for people
would not risk their reputation by not fulfilling their commitments in
a way which is easy to discover. To make sure that the violator be-

lieves him, the inspector may agree that an objective outsider will

turn the roulette wheel.

Assumption 9. Each player is rational; i.e., of any two alternatives

which give rise to outcémes, a player will choose the one which yields

him the higher expected payoff.

3. Optimal Strategies.

We shall now study the consequences if the inspector uses his



15.

option of Assumption 8. We shall prove in Section 6, that, to say
the least, using this option will not harm his interests essentially.
Using Assumption 9, we shall now describe possible goals

of the players, and we shall later show that these goals can be achieved.

1
Procedure A. For any announced( ) strategy of the inspector, the

violator will choose his (pure) strategy which maximizes his expected

payoff. If several such strategies are available to the violator, he will

adopt a strategy among them which will MAXIMIZE the inspector's

expected payoff. Knowing this, the inspector will announce that strategy

which will maximize his expected payoff. If the inspector has several

(2

choices, he will choose a strategy among them which will minimize

the violator's expected payoff.

Remark. It seems strange that we require that the inspector counts
on the good will of the violator, who, having achieved his maximum
payoff is supposed to also seek the benefit of the inspector. We shall

see in Section 4 that only slight changes occur if this is not required.

(I) From now on, it should be understood that "announced'" means
"announced and committed to'.
(2) One could just as well replace "minimize'" by "maximize", or
by any other rule which leads to a determined payoff.
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Theorem 3.1. Let I be an arbitrary 2-person game, where the

1 . .
players, called the violator and the inspector ( )are subject to Assumptions

7 and 8. There always exists a solution to the goals of Procedure A .

It yields the players a unique payoff.

Proof, Let 1,2,...,s be the pure strategies of the inspector, then
each of his mixed strategies is a probability distribution P = (pl, Posenes ps)

which can be regarded as a point in the simplex S :
(3.1) p1+p2+~--+p =1, p.>0, i=1,2,...,s

In a similar fashion we can describe each strategy for the violator
as a point in a simplex T .

For each announced strategy p by the inspector, the violator
has at least one pure strategy which yields him a maximum expected
payoff, since he has a finite number of Pure strategies. Therefore,
the set of (mixed) strategies for the violator which yields him a maximum
expected payoff is a face T* of T . Obviously, he can choose from
these strategies one which yields a maximum expected payoff to the

inspector, since the payoff to the inspector varies linearly with the

(1) These players do not necessarily assume the roles imposed
by Assumptions 1-6.
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strategy used by the violator. Moreover, he can even choose a
bure strategy which yields him and the violator these payoffs.  We
shall assume that he only chooses a pure strategy, and this will entail
no loss of generality.

Thus, for each announced strategy p, Prpcedure A dictates

unique payoffs fI(B) and fV(B) to the inspector and to the violator,

respectively.
Let
E ——
(3. 2) v = lim fI(B) » p €S.
2
There exists an infinite sequence of strategies B(l), p( ), .., cCOn-

verging to a point B(O) € S. such that

(n), _

(3. 3) lim £(p™) = v

n—>o

Moreover, since the violator has only a finite number of pure strategies,

We can assume that he uses the same pure strategy § in answer to each

2
of the strategies E(l), B( ), -+. . Strategy £ need not be the one
chosen as an answer to _E(O) » but at any rate,
(o) . (n)
3. =
(3.4) fV(B ) lim fV(B )

n —>oo

(3. 5) f (p
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Indeed, if (3.4) were not true, then the left hand side would be greater

than the right hand side, since by employing £ as an answer to p(o)

)

the violator can guarantee himself the right hand side. Let g be the

strategy employed by the violator as an answer to B(O) » then g

employed against R(n)

(n)

n
fV(-I:—)' ):.for a sufficiently large n . This contradicts the definition of

would yield him a payoff which is greater than

fV(B) . Relation (3.5) is certainly true, since, as we have just shown,

(o)

€ as an answer to P yields the violator and the inspector the expected

J

(p(o)) and v , respectively, and the violator is assumed

ffs f
payoffs £,
to be seeking the welfare of the inspector in addition.

There is a finite number of points p in S for which

als
2

fI(B) >v . If no such point exists, then v = Max €5 fI(_p_)_>_ v exists,

b
(o)

and is achieved at P If this number is not zero, then v exists and

is achieved either at B(O) or somewhere else.
Let K be the set of points p such that fI(B) =v, p&S. We
1 2
shall show that K is compact. If /ﬁ< ), /ﬁ( ), -+. 1is an infinite sequence
L . .. A(0)
of points in K, ~ converging to a point p »  we have to show that
(0)6 K. Again, we may assume that the violator answers each

» 1=1,2,..., by the same pure strategy m . The same reasoning

which lead to (3. 4) and to (3. 5) yields
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(3. 6) fv@(o)) - lim fV(/B\(n)) ,
n—=>oo

(3.7) fI({\E(O)) > lim fI(/ﬁ(n)) = v
n—> co

(o)

oD

By definition, £ ) <V ; hence fI (f)\(o)) sv, or /ﬁ(o)é K
By the compactness of K, it follows readily that there exists

a point in K, for which the violator gets the lowest expected payoff,

This completes the proof.
Remark. From now on we shall restrict the violator to pure strategies,
since he cannot gain in his goals by using mixed strategies.

A pair of strategies which adheres to Procedure A will be

called a pair of optimal strategies. A strategy for the inspector will be

called optimal, if there exists a strategy for the violator such that the
pair of strategies is optimal.
We return to the game I'(n,r). Let {qn’ I_} = {qn’ r(h(k))}

and {4 n } = {» n r(h(k))} be a fixed pair of optimal strategies for

r
this game, as described in Section 2. We shall be interested in

(o]

qn, r

o _ . . i
qn, r(h(o)) and ¢ - J n, r(h(o)) 5 1.e., in the probabilities
of inspecting and violating the first event, respectively, as determined

1
by these strategies( ).

(1) lr(l)r can be either 0 or 1.

J
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After the "roulette wheel' has been spun, and all the decisions
concerning the first event have been made, there can be one and only

one of four consequences, as shown in Table 1.

Y =1 ¥ =0
n, r n, r
The roulette wheel A violation occurred The parties face a
calls for inspection and it was inspected game I'(n-1,r-1)
The roulette wheel A violation occurred The parties face a
calls for no inspection and it was not inspected game I'(n-1,r)
Table 1.
If ﬂo =1, the game may be considered over after the first

n,r

event, since the payoff is independent of the actions taken in further

moves. Consequently, although, in general, the inspector does not

know whether ﬂz =0 or 1, it would not harm him to assume that
o
£ =0
n,r
o} o} s .
Theorem 3.2. Let 9 . and ln"‘ - be the specifications for the
first move, generated by fixed pairs of optimal strategies {qn o}
%, Pk
{ﬂ - r\,‘} » for the games F(n:}:,r:}:) , 0 < r"\ < nﬂ‘ <n . Then, the
n-+, - - b _ ————

following is an optimal strategy for I'(n, r) : the inspector inspects

the first event with a probability qz ;e If he has inspected the first
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event, he will inspect the second event with a pI‘ObabilitY qg 1, r-1"

b

if not - he will inspect the second event with a probability qﬁ_l r

ate
ks

and so on. At each stage he determines the number n of events still left

and the number r of inspections still available, and inspects the coming

event with the probability Loy - The violator chooses the first event

for violation if ¢ © . = 1. If not, he violates the second event either

H

. . . . . (0] .
if an inspection occurred in the first event and jln Lr] 1l or if an
. . o
inspection did not occur in the first event and [n 1p = 1 and so on. At

each stage, the violator chooses to violate the coming event if no violation

ol
b

=1, where n and r are, the

e
b4

. . o
occurred previously, and if ¢ o
nr‘\’ T

number of events and available inspections still left, respectively.

o) o) o 0
Proof. Clearly, ¢ =0, q o =1, 4 =L ¢, =0,
—_— n¥, o n¥, n¥ n¥, o n¥*, n%*
3k
n =1,2,...,n , therefore this strategy satisfies all the requirements
of Section 2. The theorem is true for n=1, r=0 or 1, since for each

case there is only one pair of strategies and it is optimal. Let us

3 5k

assume that the theorem is true for all the games l"(n", r), | where

1,
sk 5k

0 <r <n <n. Clearly, the theorem is true for I'(n,n) , so we have

to check only the games I'(n,r) for 0 fr<n. If lz - 1, then

the game is over after the first event and the pair of strategies desc-

ribed in the theorem is optimal because its relevant part coincides

with the optimal strategies {qn’ r} and {¢ n r} .

2
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We now assume that 13 r 0, in which case, the players will face

either I'(n-1, r-1) or I'(n-l, r) in the second event, with probabilities

o o .
9 . and l_qn,r » respectively.

2

The pair {qn r} and {ln r} is optimal for T'(n,r). It yields

the expected payoffs Vo v and w v to the inspector and to the violator,

2 2

respectively. We shall show that the strategy described in the theorem
vields the same expected payoff. The strategies {qn r} {4 n r}
specify, in particular, what actions should be taken from the second event

on, in each of the two possibilities. Let ys, therefore, denote by

{q

n-1 r-l} and {1;_1 r—l} the generated strategies when the players

face I'(n-1,r-1) and by {q;_1 r} and {ln 1 r} the generated strategies

1.

(1) b sk
when the players face I'(n-1,7) . Let Vn-l, el and Wn—l, ro1 be the

expected payoffs to the inspector and to the violator, respectively, if the

strategies {q;_l r-l} and {1;_1 r-l} are used in a game I'(n-1,r-1) .

Similarly, let v and w

n-1, r n-l, r be the expected payoffs if the game

is I'(n-1, r) . Clearly,

o % fo) %k

(3.8) Vn, r qn, T Vn—l, r-1 * (1_qn, r) Vn—l, r '’
fe) ES fe) B3

3. = + -

(3.9) Wn, r qn, r Wn—l, r-1 (1 Cln, r) Wn—l, r

o . .
(1) 1f U,y = 0 or 1, {qn’ r} and {Zn, r} need not specify anything

for the game which occurs with a zero probability; however, in this
case we are free to choose any strategy for such a game. We shall
therefore define

) . o _ % _
{q _1’1._1} - {qn—l,r—l} if C_I_n’ r 0 and {qn—l,r} = {qn—]_

o 0 _
N }1fqn =1.

» T »
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Tracing Procedure A, we shall show that the starred strategies
are optimal in their corresponding games. Indeed, if the inspector could
get more in either I'(n-1,r-1) or in T(n-1,r), by employing a different
strategy, the corresponding game would have occurred with a non-zero
probability (since otherwise, by the preceding footnote, the starred
strategy is optimal). By (3.8), the inspector could have done better
than an expected payoff Vo p in the original game, contrary to the fact

3

that {qn’ r} is an optimal strategy. A similar contradiction results
from (3.9), if a strategy different from {ﬁ:_l, r-l} or {[:1—1, r} could
be used to benefit the violator in the corresponding game. Finally, by
(3.8) or (3.9), a contradiction would result if, either the violator can
replace a starred strategy in the corresponding game by a strategy
which gives him the same expected payoff but increases the expected pay-
off to the inspector, or if the inspector can replace a starred strategy
in the corresponding game by a strategy which gives him the same
expected payoff but decreases the expected payoff to the violator.

By the induction hypothesis, the strategy pair described by
the theorem generates optimal strategy pairs for the games I'(n-1, r-1)
and I'(n-1,r) in case either occurs on the second move with a non-zero
probability; therefore, these generated strategies yield the expected

e te sl

sk 3L sk
ayoffs v w and v W to whichever game arises.
pay n-l,r-1 n-1,r-1 n-l,r n-1,r g
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Therefore, by (3.8) and (3.9) the strategy pair described by the theorem
yields the expected payoffs v oV in the original game. Conse-

3 3

quently, this is a pair of optimal strategies in {n, r) .

Remark. We have proved, moreover, that as long as qz*’ - 4[ 0,1
and as long as no violation occurs, the optimal strategies must proceed
according to the description in the theorem; i.e., at each stage which
occurs with a non-zero probability, the '"rest' of the strategy pair must
be optimal for the coming events regarded as a new game, provided that

no violation has occurred previosuly.

Corrolary 3.1. The game I'(n,r) can be solved, according to the

goals of Procedure A, by strongly behavioral strategies (1)

Proof. The strategies described in Theorem 3. 2 are strongly
behavioral.
Theorem 3. 2 will be used for constructing optimal strategies
and for arriving at recursion formulas concerning the expected payoffs.
Clearly, if r=n, there is only one strategy pair, namely,

to inspect each event and never to violate the treaty. Also, if r=0,

(1) I.e., by strategies which, at each stage depend only on the number
of the events and the available inspections still left.
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the inspector cannot inspect, and the violator will violate the first

event. Both strategy pairs are optimal, and

3. = =1-v, =12,..., =1-p,
(3.10) Vn,n @ wn,n v n=1 y=1-8
(3.11) v =0 w =1, n=12,...

n, o n,o
Henceforth, we shall assume that 0 <r < > n= 2,3, ...

Our procedure will be similar to the method employed by
M. Dresher [1]. The same prbcedure has been used(l) by H. W. Kuhn
[3].

We shall derive the recursion formulas by analyzing Table 2,

which is justified by Theorem 3. 2.

Violator
Violate first event Do not violate

first event

q_:: inspect first
, T event - 1,0
3 ’ Vn—l, r-1"’ Wn—l, r-1
Inspector

o Do not inspect

l-g first event : 0,1 v y W

n, r o n-1, r n-1,r

Payoff Matrix.
Table 2 .

(1) Both papers treat constant-sum games.
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I. If the announced inspector's strategy is optimal from the second

event on, and if

o o o
. - > -
(3.12) 1 cln, r C'[n, r Wn-l, r-1 (1 qn, r n-1, r

then the violator should choose to inspect the first event, since his expected

payoff would be maximal with this choice. The expected payoffs will be

(o]

fv(qn, r)

o} o o
= - ) f = H i ]‘ i ’
1 qn, . and I(qn, r) U, to the violator and to the inspector

2

respectively.

II. If, instead of (3.12),

' o
. - < -
(3.13) 1 Cln, r qn, r Wn-l, r-1 T qn r) Wn

then the violator should not inspect the first event. The expected payoffs

. o _ )
will then be fV(qn, r) = qn’ v Wn—l, ro1 + (l-q

and f (q ) =¢q
III. If, instead of (3.12),

(o]
(3.14) Yn T G Voo e (e n-1,r

the violator will have the expected payoff fV(qZ r) = l-qz r * Tregardless

of his choice. However, by Procedure A, he will choose that strategy

which maximizes the inspector's payoff; hence

(¢]

o o o
fI(qn, r) - Max(qn, r’ C'{n, rvn—l, r-1 * (l—qn, r) Vn—l, r

)
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Denote

(3.15) tn = » 0<r<n,

"

t .
n, o n,n

We shall later prove that the denominator cannot vanish, since
w <w - It will then follow that 0 <t <l, 0<r<n.
n-1,r n-1, r-1 n,

Remembering that the inspector is interested in obtaining the

highest expected payoff to himself, we compute and compare his highest

expected payoffs in each of the above cases:

o
3.16 f = =
(3.16) o Sup I(qn, r) OSup qn,r 1:n,r
< <
qn,r tn,r E » T tn,l'
o o
3. f = - N
(3.17) Sup ey ) oSup la, Vo o gt @ U, Va1, o)
E ’ > tn; r 4 3 > tn’ r
- n, r n—l,r—l+(1-t ) ) v -l,r ’
since obviously(l) \4 \2
’ " n-l,rZ 'n-1,r-1

(1) For the same number of events, the inspector has more available
inspections in I'(n-l, r)
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Finally,
o
(3. 18) fI(qn, r) - Max[tn’ r’ tn, r'n-1,r-1 " (l—tn, r) Vn-1, r] ’
o
if I, r ~ 1:n, r
Thus, the highest expected payoff Vi is obtained if
qo =t » and it is equal to the right hand side of (3. 18).
n, r n,r
Clearly, the supremum in (3.16) is not achieved. Had we known
that v >v » we would have deduced that the supremum in
n-l, r n-1, r-1

(3.17) is not achieved. This would prove that only case III must be con-

sidered for Procedure A, that

o o o
3- = E] < ’ = ) = 3 = :2"~--:
(3.19) qn,r tn,r 0<r<n qn,o 0 qn,n 1 n=1
and that
(3. 20) w = 1-t , 0<r<n, n=12,...

(Compare (3.10) and (3.11) and the section preceding these formulas for
the cases r =0, r = n) . The following lemma will show that this is,

indeed, the case.

Lemma 3.1. If 0<r<n, then w < w and
_— n-1,r n-1, r-1

v > v
n-1, r n-1, r-1
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Proof. By (2.1), (3.10) and (3.11), the lemma holds for n= 2. Suppose

that the lemma is true for n=1v » v >2, we shall prove it for n = v+l .,

a. By (2.1) (3.10) and the induction hypothesis, 0 < l-y=pB =

= Wv—l,v—l < wu-l, b2’ hence, by (3.15) and (2.1),

0< tv-, vol= v/ (v + W1, v—Z) <y<l<wa . Consequently, by (3.18), and
the lines which follow this formula,

0<v = Max| t,

v,v-1 t

1< e,

,v-=1" v, v—lvv-l, v-2 * (1—tv, v—l)vv-l, v-1

because, by the induction hypothesis and (3.10), v o,

v-l,v-2 “Vy1 v "

Thus, by (3.10), 0<VV,V—1<VV,V = a. Also, since Vv—l,v—Z <Vv—1,v—l ,

we can apply (3. 20) and deduce that Wl s 1~tv vl hence, by (3.10) ,

B=w <w

, because 1-t
v,V v,v-1 v

v-l >1-y=B. This proves the lemma

H

for n=v+1, r=vy.

b. | By the induction hypothesis and (3. 11), Wv—l, 1 < Wv—l, o= 1; hence,
0< tv 1= (1 - Y, 1 1)/(2 - w ) <1. Consequently, by (3. 18),

bl

v-1,1

< = - : = <
0 Vv,l Max| tv,ltv,lvv—l,o +(1 tv,l) Vv-l,l] ; hence, 0 Vv,o Vv,l
. . . . S _
Moreover, since, by the induction hypothesis, Vv-l,l Vv—l, ° 0, we
. =1 - . ) = < .
can apply (3. 20) and deduce that WV,1 1 tv, 1 Thus, 1 wv’ o Wv, 1

This proves the lemma for n=v + 1 » r =1,

C. There remains the case n=v+l, 1<r <y - In this case by (3.18),

(3. 21) Vo o T Max[tv’r, t (1-t¢ ) v

A% +
v, r v-1l,r-1 v,r v-l,r
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(3.22) v = Max[t

v, r-1 -t

].

vor-l Yoraver, o2 T LYo L

It is easy to verify from (3.15) and fromthe induction

hypothesis that -

. < < . <
(3.23) 0< B <w, Wl 1 W, S I<r <y,

(3. 24) 0<t <t <1, 1<r<v,

. < s <r< 5
(3. 25) Vv-l,r—Z Vv-l,r-l <Vv—1,r l<r<v
(1) .
therefore, v > v and by (3.20), w < w . This com-
v, r v, r-1 v, r v,r-1
pletes the proof of the lemma.
Incidentally, it follows from B=w < w < w =1,
n, n n, r n, o
O0<r<n, that
(3.26) 0<t <y=1-B<1, 0<r<n,

n,r

It remains to find out which expression yields the maximum

in (3,18). By (3.20) and (3.15), it follows that tn ’ satisfies the

H

recursion formula:

(3.27) t = , 0<r<n, n=2,3,.

(1) (3.20) is used since it is substantiated by the induction hypothesis.
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Lemma 3. 2. If O <r <n, then vn v >t , and strict

inequality holds for 0 <r<n, n=12,.

Proof. The lemma certainly holds if r =0 and if r=n . In

particular, therefore, it holds for n =1. Suppose it holds for
n=v-1l,v =2,.3,...; we shall show that it holds for n =v O0<r<v

Using (3.18), (3.26), (3.27) and the induction hypothesis, we find that

3.28 >t 4 (1- >
( ) Vv,r— vV, T Vv—l,r—l ( tv,r)‘vv—l,r
+ - t =
tv,r 1:v—l,r—l tv-l,r tv,r v-l, r
t_va'-'-l, r(tv-l, r-1 tv—l, r)
- fha r
1+ -t !
tv -1, r v-1,r-1
t 1
= voo L =t Lo This completes the proof.

L T L YO P |

It follows from Lemma 3.2, that for 0 <r <n, the maximum
in (3.18) is reached by the second expression on the right hand side.

Combining the above results, we can now state

Theorem 3. 3. The expected payoffs Vor and WL for the inspector

and the violator, respectively, obtained by using optimal strategies in

the game I'(n,r) satisfy the recursion formulas
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= - , 0<r< ,

(3.29) M , T n,r Vn—l, r +a Wn, r) Vn-l, r-1 * n
W
(3. 30) w_ = n-l,r-1 , 0<r<n ,
’ LW e" Yanel,ra)
(3. 31) v =0, v o, W =1, w =1l-y, for n=12,...
n, o n,n n,o n,n

Proof. Formula (3. 31) is a repetition of (3.10) and (3.11) . The other

formulas follow from (3. 20), (3.21), (3.27) and Lemma 3. 2.

Theorem 3. 4. There is a unique pair of optimal strategies {q(h(k))}

and {Z£ (h(k))} to the game I'(n,r), of the type described by Theorem 3. 2;

afe
Ed

<n, qh(k)) =1 if r =n ,

e ats
3 A

namely g(h(k)) =1-w_, - if 0< r

=}

Al
=

1 the first time r becomes 0, (if this happens), and

£ (h(k))

ale ate
E3

0 otherwise. Here, n and r denote, respectively, the

4 (h(k))

number of events and available inspections left after the history h(k)

takes place.

Proof. By Theorem 3.2, it is sufficient to verify the theorem for
the first move. It certainly holdsif r =0 orif r=n. For
0<r<n, ¢ mustsatisfy (3.19); i.e., by (3.20), q° =1

» Gy, e Y y 2. 270 d-een By 12 Yy T Ve

Thus, the first move for the inspector is determined. Moreover,

we know that only case III can yield the inspector the highest payoff,
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(see the discussion preceding Lemmé. 3.1). 1In this case, the violator
obtains the same expected payoff, regardless of his strategy choice;
but, by Lemma 3.2, and (3.18), only if he chooses not to violate the
first event, is the expected payoff to the inspector maximized, as

required by Procedure A; hence /{ © - 0 for 0<r<n. This com-

2

pletes the proof.

Discussion. The optimal strategies can be given the following verbal

description:

As long as 0 < r <n , the inspector announces that

probability of inspecting the next event, that will render the violator

ale
o

the same expected payoff, regardless of his strategy choice. If r

At
4

becomes equal to n , the inspector inspects each of the subsequent

3
b3

events. If r becomes 0 and n*> 0 , the inspector, of course,
cannot inspect any additional event.

The violator's strategy is simply to wait until all the in-
spections are used up, and then inspect if there are events left.

So far we have limited ourselves to optimal strategies of
the type described by Theorem 3.2. We are now in a position to show
that there are no other pairs of optimal strategies. Indeed, as long

as 0<r <n , and as long as no violation has previously occurred,

q(h(k)) =t

— lies in the open interval (0,1), by (3,26); hence,
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by the remark which followed the proof of Theorem 3.2, the next event

must be inspected with the probability tn"‘

<
3

. and a violation must
T

not occur for this event. This process is unique, and it will continue

abe s ale
E s by i

until either r =0 or r =n , in which case the process will still

continue in a unique way. Summarizing this result we state

(1)

Corollary 3.2. There is a unique pair of optimal strategies

Theorem 3. 5. The optimal strategy used by the inspector renders

the violator the same expected payoff, regardless of his strategy choice

(2)

It is a minimax strategy for the inspector, for a constant-sum game

defined by the violator's payoff matrix alone.

Proof. By induction the theorem is true if r =0 or r =n, sincein
these cases, only one strategy is available to the inspector. In parti-
cular, it is true if n = 1. Suppose that the first part of the theorem is

true for n-1 events, 0 <r <n-1. Consider the game I'(n,r),

1<r <n-1. Inthis case, we know that q; s tn - (see (3.19)). Let

H

£ be a pure strategy for the violator, which calls for a violation of

(1) Within the strategy space defined by the requirements in Section 2.

(2) Provided that the violator chooses a strategy which satisfies the
requirement. '
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the first event. Then, if the violator uses this strategy as an answer

to the inspector's optimal strategy {qn r} , his expected payoff is

equal to 1—tn L (see (3.20)). Let m be a pure strategy for

the violator which does not call for a violation of the first event; then

if he uses n as an answer to {qn 1“} , the players will face in the

I

second event the game I'(n-1,r-1) with the probability tn v and the

game I'(n-1,r) with the probability 1-’cn . Strategy m generates
strategies ny and n, for the games I'(n-1,r-1) and I'(n-1,r),
respectively, which, by the induction hypothesis, yield the violator

an expected payoff Wn—l,'r-l and w

, respectively, because
n-l, r

the strategies generated by {qlr1 r} for the corresponding games are
optimal. The violator's expected payoff is therefore equal to

t w + (1-t ) w

nr Va1, -l o) Vool r which, by (3.14), (3.19) and (3. 20)

is equal to 1-t

it
&

Thus, whatever strategy is used by the
n, r n,r

violator, he obtains the same expected payoff Wn,

In order to show that {qn, r} is a minimax strategy, we have
to show that the violator can guarantee himself at least Wn, , When a
constant-sum game A(n, r) based on his payoff matrix is played.
By induction, we assume that this is true for the games A(n-1,r),
0 <t <n-l1. The statement is certainly true for A(n,o) and A(n,n).

Consider the game A(n,r), 0<r <n. Since A(n,r) is a constant-



36.

sum game, we can assume that the inspector announces his minimax

strategy {a\n, I_} prior to playing the game. If ‘/q\_z, - < tn, r the

violator may choose to violate the first event, and his expected payoff,

AO
1- i al to 1-t = . t is strictl
. r is greater than or equ n T Vor (It i ictly
. o o .
greater than w if fc\i <t ). If /c} >t , the violator
n,r n, r n,r n, r n,r

may choose not to violate the first event, and from the second event on

to act in such a way as to guarantee to himself at least W1 rol if

the first event has been inspected, and w 1y if not. This is possible

by the induction hypothesis. Thus, the violator can guarantee to himself

[e]

-1, r-1 * (l_qn, r)Wn—l, r

2

an expected payoff not smaller than /az » Yy

which in view of Lemma 3.1 is greater than t + (1—1:n )W =

w
n,r n-1, r-1 , ' n-l,r

=1-t = w , by (3.14), (3.19) and (3.20). This completes the

proof.

4. A non-generous opponent.

It has been required in Procedure A that, after achieving
his maximum payoff, the violator's secondary goal is to attempt to
maximize the inspector's expected payoff.

Obviously, if this requirement is not made, the inspector
will, in general, receive less than v r if he announces his optimal

strategy (see Lemma 3.2 and (3.18)). If, for instance, the violator's

secondary goal is to minimize the inspector's expected payoff, it is
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easy to see that the extremum problem for the inspector has no solution;

(i.e., the supremum of f (p) is not achieved) for 0<r <n.

I
However, we shall show that no matter what the violator's

secondary goal is, the inspector can force an outcome arbitrarily close

to (v BRI r) by acting properly.

H 3

Procedure B. For any announced strategy of the inspector in the game

I'(n,r) , the violator chooses a strategy which maximizes his expected

payoff. If he has several alternatives, he will choose any one of them,

either arbitrarily or not. The inspector's goal is to force an outcome

. (1) .
in the range ([Vn, r T Va r])[wn, e’ Yng +¢ ]). Here ¢ is an

arbitrarily small positive number.

Theorem 4. 1. The inspector's goal in Procedure B can be achieved

if he modifies his optimal strategy(z) {qn r} by slightly increasing

o e e e
- o b ER3

q 1'(h(k)) whenever 0<r <n . Here, n and r are, respectively
2

(1) Obviously, he cannot expect to obtain more than v, p DBOrcan he
expect that the violator will receive less than w ’, since his
. n,
strategy is assumed to be announced.

(2) Optimal in the original sense, based on Procedure A.
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the number of the events and the number of the available inspections

left after history h(k) has taken place.

Proof. The theorem is true for r=0 or r=n. Suppose that 0 <r <n.

It follows readily by induction and by the analysis in the proof of

Theorem 3.2 that when such a modified strategy is announced, then

(i) The violator will choose not to violate until all the
available inspections were used up, and then inspect, if

there are events left.

(ii) The violator's expected payoff /\;}n - will be greater

2

than w

B

(iii) The inspector'!s expected payoff will be less than v
p P y n

B

By (i) and Theorem 3.4, we see that the violator's strategy
is identical with {# n, r} : therefore, by modifying {qn, r} ‘slightly
enough, the expected payoffs will lie in the stated intervals.

Thus, from a practical point of view, we are justified in con-
sidering Procedure A; and regarding Vn, r and wn’ . a8 the final
expected payoffs. One need only keep in mind that the optimal strat-
egies should eventually be slightly modified and that the resulting pay-
offs will only approximate Vn, v and Wn, -

In Section 9 we shall discuss some other relevant practical

aspects.
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5. Formulas and Properties of the Expectéd Payoffs.

The recursion formulas (3. 29), (3.30) and (3. 31) enable us to

compute WL and v . to any desired pair (n,r) . They are

b n’

tabulated for 1<n < 6 in Tables 3 and 4 .

n 0 1 2 3 4 5 6
1 1 1-vy
1
2 -
1+y 1-y
3 |1 1+vy 1
1-
+2y 1+y+yf K
1+2vy 1+y+\(2 1 '
4! 43y T - 2 3 1-vy
Y 1+2Y+3Y2 I+vy+y +y
2 3
5 |1 43y 1+2y+3y 1+y+\/2+y 1 .
1+4 2 2 3 oY
Y +3vy+6y 1+2vy+3y +4vy 1+y+y2+y3+y4
2 2
6 11+4y 1+3vy+6y 1+2y+3y +4Y3 1+Y+Y2+y3+y4 1

1+5y 2 2 3 2 3 l-vy
1+4y+10y "~ 1+3vy+6y +10vy 1+2y+3y +4vy +5\{4 l+y+yz+y3+y4+y5

The expected payoifs W to the violator

2

Table 3.
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1 0 @
o
2
1+y
3 o a(l+vy)
1+2vy 2
vty >
o a(l+2y)  a(l+y+y)
4 1+3 "2 2 3 ¢
v I+2vy+3y 1+y+y +vy

2 2 3
o o(l+3y)  o(l+2y+3y ) e(l+yty +y))

2 N 2 3 4
Y haviey® 1rayesyieayS Leyhy +y 4y

2 2 3 2 3
o  a(l+4y) a(l+3y+6y ) a(l+2y+3y +4vy") o(l+vy+y +vy +y4)

2 N 2 3 _ 4 Z 3 5
MY 1 avi10v® 143v#6y P10y LizyeayPeay 45y T Teyiyiey iyt
y

The expected payoffs Voo to the inspector

3

Table 4.

The reader will recognize that for 0 <r <n, the payoffs
are rational functions in y and that the coefficients of the polynomials
are arithmetic sequences of increasing orders, generated by the

sequence 1,1,1, ..
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In this section we obtain formulas for the expected payoffs

and deduce from them some of the properties of the outcomes,

Theorem 5. 1. The expected payoffs‘ to the violator and to the inspector

for the games I'(n,r), O0<r <n, when both players use optimal

strategies are, respectively,

P (v)
(5.1) w = _n-l,r ,
Pn,r(v)
aP (v)
(5. 2) v = n-1,r-1 ,
Pn,r(v)
where
.3 =1, vy =1, =1,2,...,
(5.3) Pn’ O(Y) 1 Pn’ n(Y) 1 n=1
L oitn-r-1 i
(5. 4) Pnr(y)= = i )Y ,n=2,3,..., 0<r<n,
! i=0
and y=1-p .

The proof follows readily by induction, from the recursion
formulas, and the cases r =1 and r = n-1 are treated separately.

It will be omitted.
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Another expression for 'Pn r(?) s 0<r<n, is
2

n-r-1 n-r-1 I
1 d 1 d 1-
(7) = ) o

= P Y
- ! -1 - -7 i -1
s ¥ (Il r l) a n-r-1 n, n 1 (1’1 r l) a n-r-1 1

(5.5) B

Expressions of the type (5.14) appear in the study of the negative
binomial distribution. (See, e. g., W. Feller [2].)

The above formulas enable us to deduce the following properties
of the outcomes:

A. If y is almost O , i, e., if a violation is relatively

unimportant to the violator, then w . is near B (i. e.,

n,

near 1) and v, , ismnear @, 0<r<n.
obd

B. If it is very important to the violator to break the

treaty secretly; i. e., if ¥ is almost 1 , then

n-1 n
(5.6) Vor ( r')/ (r) =1l-r/, 0<r<n, n=12,...,
(5.7) Vi, ~a(?:i)/ (;l). = ar/n, _(%) =0, 0<r<mn, n=1,2,...
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In such a case, the inspector faces a situation almost equivalent
to a situation in which the violator does not violate with a probability
r/n, and violates being uninspected with a probability 1 - r/n .

The violator can regard the situation as being almost equivalent
to a situation in which he violates, and the probability that he is in-

spected is r/n .

Lemma 5.1. The expressions Pn

] ’ =i, 3

are decreasing functions of t, 0<r<n, 0<t< o, n=23,...
The proof is straight forward, and it will be omitted.

C. It follows from Lemma 5.1, and (5.2), thatif 0 <r <n,
then the more important it is for the violator to break the treaty

secretly, the less is the expected payoff to both players(l).

6. Should the inspector announce his mixed strategy?

It is the purpose of this section to answer this question affirm-
atively.

Let us regard a pair of expected payoffs (x,y) , where x is
the expected payoff to the inspector and y is the expected payoff to the

violator, as a point in the euclidean plane; then if 0 <r <n, all the

(1) It is assumed, of course, that both players know vy .

L LB/P (t) and P (/P (t)
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possible expected payoffs fill a closed triangle whose vertices are (0,1),
(1, O) and (a, B) ; because these vertices are the only possible outcomes
to the game(l).

The straight segment [(0,1) («, B)] is, therefore, the Pareto

optimum of the game; i.e., a point (x,y) belongs to this segment, if

and only if any other point is less preferred by at least one of the players.

Theorem 6.1 . The outcome (Vn AL r) is Pareto optimal.

H 3

Proof. This is trivially true for r =0 andfor r=n. Let 0<r<n,

n=2,3,..., then we have to show that
r 1 v r
6. L I R L L.
(6. 1) B-w o - v
n,r n, r

It follows from (5. 3) and (5. 4) that

(6.2) P WM-P 5 =vyP ,  N=0PP_ , (V;
therefore,
(6.3) P +pP (W =P . (NP 40

(1) This triangle contains also points that can only be achieved if the
players correlate their strategies - an unlikely situation, since
there is no communication medium for such a correlation - the
violator has signed a promise not to violate secretly and this
rules out any agreement in which there is a promise to violate
under certain conditions.
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Multiplying each side of (6. 3) by Pn , and subtracting the

2

expression P 1 (v) Pn 1 (v) from each side, we obtain
n_

(v) -

, T -1, r-1
2
(6. 4) [P, OV) BP 1, VWP, M -P WP =
- Pn, r(Y)Pn-l, r(Y)+Pn, r(Y)Pn—l, r—l(Y) B Pn-l, r(Y)Pn-l, r-1

By (5.1) and (5. 2), this relation is equivalent to (6.1) . This com-
pletes the proof.

We can now claim that we have a case for recommending a dis-
closure of the inspector’'s mixed strategy, which is just as strong as the
case for recommending a minimax strategy in a constant -sum game:

Indeed, by Theorem 4.1, the inspector can force an expected

payoff arbitrarily near to Voo By Theorem 6.1, the inspector would

H

have achieved an expected payoff higher than Voop only if the violator

H

were to end up with an expected payoff which is less than W But

the violator can assure himself an expected payoff of at least WL

by playing a minimax strategy based on his own payoff matrix regarded
as a constant-sum game (Theorem 3.5). Thus, the only way for the
inspector to gain more than v . is that the violator makes wrong

assumptions and consequently ends up with an amount which is smaller

than the amount he can guarantee for himself.



46.

We ought to stress that this clear-cut answer could be achieved
mainly because it is in the nature of this game that the inspector can
announce his mixed strategy in a binding way, whereas the violator is

not granted this privilege.

7. The case in which no player is allowed to announce his strategy.

Although, the above analysis yields a convincing answer to the
particular game considered in this paper, one may wish to know what
could happen if the inspector does not make use of his option; or, in
general, what would the case be, if he cannot make the opponent believe
that he will indeed use a certain mixed strategy. Then, we are back
again to an analysis of a non-constant-sum game, with all its theoretical
difficulties, and we have no definite answer to offer. However, we can,
at least, speculate on some possibilities.

Conceivably, a player will assume that the other player is
trying to harm him as much as possible, in which case he will choose
a minimax strategy based on his own payoff matrix, regarded as a

constant-sum game. We shall call such a strategy a pessimistic strategy.

Another possibility is that a player will assume (or discover) that the
other player is going to use a pessimistic approach, and he will therefore

choose that (pure) strategy which will maximize his profits, if indeed
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his opponent will act as he is assumed to act. We shall call such a

strategy - an optimistic strategy.

We shall omit the calculations - they are straight forward and
employ Dresher's method [1} and shall merely state the results, assuming

0 <r <n, since otherwise the game is determined.

(i) The inspector's pessimistic strategy {(;n r(h(k))} is

R

(a)

if 0 <zr¥*<n%* ,

(7.0 a, (h(K)

n* , T E

. a 1 % = o>
(7.2) 9, r(h(k)) 0 if r 0, n 0,

H

(7.3) q J(B(K) =1 if vk =o%

3

where n¥ and r*%* are, respectively, the number of events and

inspections which are left after history h(k) has taken place.

If this strategy is chosen by the inspector, it will yield him an

expected payoff equal to

aP ()
(7. 4) 3 - n-1, r-1 ,
Pn, r(oz)

regardless of the strategy used by the violator.
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It follows from Lemma 5.1, (5.2) and (2.1), that Gn <V

0<r<n.

(ii) The violator's pessimistic strategy {Fn ‘ (h(k))}, where

3

Fn r(h(k)) is the probability to violate the event after the history h(k) ,

is

W "
n* , e

(7. 5) f (h(k))=1- =

n,r
W
n:}:_l, r:{:_l

if 0 <r* <n* and if no violation has occurred during the history h(k) ,

(7.6) 2 (h(k) =1,

3

if r*¥ =0, n* >0 and no violation has occurred dyring the history h(k) ,

(7.7) zn’ r(h(k)) =0 ,

if either r* = n* or if a violation has occurred during the history h(k).

" Here, n* and r* have the same meaning as in (i) .

If this strategy is chosen by the violator, it will yield him an

expected payoff equal to Vo regardless of the strategy used by the

2

inspector.

(iii) The inspector's optimistic strategy is to inspect the last

r events.
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(iv) The violator's optimistic strategy is to violate only after

all the available inspections were used up and if there are still events

left.

Consequently, the various payoffs can be deduced. They are

summarized in Table 5.

Violator
Pessimistic Optimistic
e . ~ ~ A
Pessimistic 4 y W v y W
n,r n,r n, r n, r
Inspector
Optimistic Voo r Wn, r a, B
Table 5 -
Here,
n-1 r
g (@ + (e
A -1, r-
(7. 8) w o= —2t L ,
Pn, I_(oz)
~ . . . a .
and v is defined in (7.4) . Clearly, w > w . Indeed, if
n,r n,r n,r

the inspector takes his pessimistic strategy, and the violator takes his
optimistic strategy, the violator acts as if he knew the inspector's
strategy. The inspector's optimistic strategy differs from his optimal
strategy described in Theorem 3.4, which is a unique minimax strategy

based on the violator's payoff matrix. (See proof of Theorem 3. 5).
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Thus, the pessimistic strategy is not such a minimax strategy, and,
therefore, the violator can assure himself more than Voo if he acts
properly.

We see from Table 5, that the only way (among these alternatives)
for the inspector to get more than v - is if

(a) each player wrongly assumes that his opponent is taking

a pessimistic strategy,

(b) each player takes the risk and adopts the optimistic strategy.

8. Interpersonal comparisons of utilities

We have recommended that the inspector announces a strategy
which almost opposes the interests of the violator. It is chosen in such
a way as to give the violator a bonus of '"g'" , if and only if he conforms
to the wait-until—all—the-available-inspections-Were—used—up strategy.

It may be argued that such a small prize may not satisfy the
violator. He would rather give up the ¢ , and cause the inspector a
heavy loss.

We claim that this argument is not valid in our game! If the
violator is rational, as we assume he is - why would he sacrifice his

€ to begin with ?
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The problem could arise if the violator was in a position to
make a threat of the form: "If you do not give me a substantial bonus,
I shall act differently, whereby I shall suffer only a small loss, but
your damage will be great'". Such a threat, if it were possible, would
have brought us to questions concerning interpersonal comparisons of
utilities, to which game theory does not at present have a satisfactory
answer(l). Fortunately, in our game, the violator cannot make such
a threat; i.e., he cannot announce that he will violate under certain

circumstances, because he has signed a promise never to violate, and

his signature blocks his communication medium.

9. Some practical aspects.

It turns out that the optimal strategy for the inspector depends
only on the violator's payoff matrix; namely on B . In real life situ-
ations, however, it is extremely hard to expect that the preciée value
of B is known to the inspector. Aside from objective aspects of the

situation, which, perhaps, can be estimated, the violator may have

(1) But it is, perhaps, safe to say that the players would settle

somewhere in the intervals ([v. , v. ], [w. . & .
n,r n, r n, r n, r
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antagonistic feelings toward the inspector, which enter into the value
of B . These are next to impossible to measure, because the inspector
cannot "interview" the violator on such aspects and expect an honest
answer. Moreover, these antagonistic feelings may well depend on the
actions taken by the inspector, for each inspection may mean an insult.

We do not see how to overcome these difficulties within the frame-
work of a mathematical theory. Qualitatively speaking, however, if the
antagonistic feelings are not too great, the inspector should give the
violator a substantial bonus, to cover up for the inaccuracy of estimating
B . He would achieve this if he underestimates B (i.e., overestimates
Y ), as our analysis in Sections 3 and 4 shows,

Note that even if the inspector places ﬁim 0 (i.e., y~ 1), his
expected payoff (5.7) will be greater than the amount :;n he can

3

guarantee for himself by playing a pessimistic strategy. This follows

from Lemma 5.1, (2.1), (5.2) and (7. 4).
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