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FREFACE

Game theordsts are aware of considerable interest in game theory
that has developed in the Soviet Union over the lest Yyears. Language
difficulties, however, have stocd in the way of proper acquaintance
with the original papers though some results have becoﬁe ‘known in
summary form. In order to overcome some of this gap the following
papers are being made available. They will immediately prove the high
quality of work done in the Soviet Union and they should stimwlate ...

further publicetion of translations.

The papers I to XI were translated by Kiyoshi Takeuchi 5 and

XII to XIV by Eugene Wesley.

Editing work was done by Louls Billera, Daniel Cohen and

. Richard Cornwall.

April 1968 Oskar Morgenstern
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GAMES WITH FORBIDDEN SITUATIONS

N. N. Vorobjev
I. V. Romanovsky

Vestnik Leningradskogo Universiteta,
seria Matematiki, Mekaniki i Astronomy,

No. 2, 1959, pp. 50-54.

1. We recall the definition of a game in normal form (see, for example [1]. Let
the following be given: +the set I = (1,...,n), the elements of which will be

called players; for each player iel, the set Si s of the strategies of player i,

and the vector-function K(u) = lKl(u),---,Kn(u)), defined for all peS = 8,X...xS ,
the values of which have real components.

The system < I, [Si], K > is called an n-person game in normal form. The
elements of § are called situations in this game. The number Ki(u) is called
the payoff of player i in the situation .u .

-In some games encountered in practice the choice of certain strategies by one
of th; Players narrows the choices of strategies of the other.players. In addition
the vector-function K(1) mentioned in the definition.of the game sometimes turns
out not to be defined on all of S , but only on some of its subsets. In connection
with this, we wi;l find that we can.benefit'by.a certain generalization of the con-
cept .of a game in normal form, i.e., the concept of a game with forbidden situations.
The present note will be devoted to the establshment Qf certain properties of such

games.

2. Let the following be given: the set I = (1,...,n}; the set . Si for each

ieI; the set M. C S = ISR S (the difference S\M is denoted by N); and

the vector-function XK(u), defined on M .



The system I'= < I, {Si}, M, ¥ > is called an n-person game in normal

form with forbidden situations. The eiements of the set N are called forbidden

situations in this commection.
A game T =< T, (Si}, XK > is sgid to be an extensioﬁ of a game with
forbidden situations I = < I, (8;}, M, ¥ > if |
- K(w) if peM .
% () =1 o(u) L if peN
where @ is a véctor vaiued function defired on N .
If o¢(u) = ¢ on N, then T Is ﬁenoted by fC , and K by K

®

c
A game T in normal form is said to be zero sum if for all ¢ in the

domain of definition of K(u) = & (u),...,K (1)),
) ,
5 Ki(.u) = 0.
i=1

A game in pormal form is said to be finite if all the sets 5 are finite sets.

For the rest of this paper o:ly4zero sum finife two-person games in nbrmal
form (witﬁ forbidden situations) will be considered. We will refer to these simply
as games (with forbidden situations). Such games in normal form, as is known (see,
for example, [2]), can be described by matrices which have as the entry in the
i-th row and j-th column the,payoff cf player 1 in the situation where he chooses
his owﬁ i-th strategy and player 2 chooses his own j-th strategy. If the pay-
off matrix of such a game is A , we shall henceforth without confusion use
K({i,3}) to méan aij instead of the vector (aij"_aij) .

Each probability measure on the set of strategies of a given player is

called a mixed strategy for this player. _We denote the set of all mixed strategies

of player 1 (player 2) by P {Q).- I% is knowm [2] that the minimaxes



min max £ K ({1,3)) P,
qeQ peP  1,]

and

max min Z K ({1,3)) Pqu

DeP Qe 1,3
exist and are equal. Their common value is called the value of the game. The
value of the game with matrix A 1s denoted by vy
We further denote the value of the game Pcp by vcp

3. In the following we shall use the simple assertions listed below:

Let the matrices A = (aij) end B. (bij), i=1,...,m,

Jd=1,...,n, be given. Then,
1) If bij = a

ij
2) 1If bij > aij’ then Vg > Vy

| < £, then vy - vl < £,

n
<

+ k, then v]3 + k.

3) If-]aij - By,

4., LEMMA: vy is a non-decreasing and Ve o X is & non-increasing continuous

function of x . -

PROOF: It is clear that for x2 > xl
_— L

Kxa(u) > le (m) .

Hence, from property 2, it follows that v > v

*2 *
Further, it is clear that K_ (p) - X (n) < x, - . Therefore, from 3
X5 X - 1
it follows that v}£2 -v, < Xo = % l.e., vx2 - X, < vxl - %

The continulty of these functions follows from property 3 .



5. We shall call a .point X which has the property that VX = X, a vdlue of

- O .
the game T  with forbidden situations. We denote the seét of all values of T
by v[T] .

THEOREM: The set V[I']  is non-empty, convex" :ands closed.

PROQGF: Assume

x = wax K(u)
LeM
In the game Tt
Xy .
K (b)) <x’ ,
X - 1
1
and. consequently, vxl < X, 1€ vxl_- Xy <0
Assuming
X2 = min K(IJ-) 1
peM
we obtain
v, =~ x2 >0
*2

But '.vx .is a.continuous function of x> » 80 that by Cauchy's theorem there exists
a point x, € [x2_-,x1] such that . VXO = %, - In this vay, V[T] 1 d.

If x' and x'' are two values of ¥ such that x' < x*' , then for

arbitrary -x € [x', x'!'] .we obtain from the lemma that

1 L2
0 = Vo= X 2V, = X2> V., -X = 0,

so that the set V[I'] is comvexua’.
Finally, the closedness of the set V-[I'] follows from the continuity of the

function vx - X .

COROLLARY: If @(p) e V[I'] for all W e N , then Uy € vir] .



6. THECREM: In order that inf V[D] = - o » it is necessary and sufficient

that N contain one of the columns of the matrix of the game. Similarly,

in order that sup V[T'] = w , it is necessary and sufficient that N coa-

tain one of the rows of the matrix of the game.

PROCF': We will prove only the first assertion. ILet each column contain at least

one element not belonging to N . We take x < minK(p) -1 - and consider
1 1 held » |
h . = {=..., =),

the game T, Let p {'m’ » m) Clearly,

m

v, > min Z i KX({i,‘j}).> X, i.e.
1<j<n i=1

x ¢ V[I']., V[] is bounded below in this case, and the necessity is provéd. The

sufficiency is evident.

7. The mixed strategy £ of player 1 in the game I‘X 1s called optimal if

m
ifl Kx({l;J]) 512 vX«’ J=1,...,n .

The mixed strategy n of player 2 is called optimal if

M3

l KX({i)j}) njfvx, i=l,o--,m .

J
The sed of all optimal strategies of player 1(2) is denoted by T, (1) (corres-

pordingly, by Tx(g)) .

THEOREM:  If X 5 Xy € V[I'] and x) <X, , then

T, ) C T ),

T (2) D, (2).

%o 1



PROCF: = Let ¢ ¢ T, (1) . Then
. 2
m
K ({4,3)) gi_z x, for j=1,...,n .
J=1" :

Further, '

KXJ(.{i’J})z X 5

1

and on the basis of the preVioﬁs inequality

m m
T K ({i,3)) e, >x -x, + £ K ({i,3)) & >x
4m1 X i=-"1 "2 i=1 *p i="1

for arbitrary j .

»

But since %, € V[I], we have v, =%, and therefore £ ¢ T%l(l) s
i 1

and the first part.of the theorem is proved. The second part is proved symmetrically.

COROLLARY: For Q = 1,2

TV[I'](a) = xeg[l_‘] Tx(a') :i: ¢ .

For the proof (for definiteness we take & = 2) it is sufficient in the case

of V[I'l bounded below to let x = min V[I'l] and note that then

T () = Ty (@) -

In the case, where inf V[I'] = - © , tHe result follows by the compactness of
the Tx(g) .
8. : .
THEOREM: Let X 5%, € V[T], x < X, , te Txl(l) and n € TXE(E)
Then . - o (* )
gi T]i - *

{i,3)eM



PROCF:  We have:
e

"
It

5z K({1,3)) & m,+x = E. 7.
{i,3)eM + {i,j)eny. = ¢

™

M
e
3

Il

woee Y T e R
Therefore V[I'] can have more than one element only in .the case where (¥) is
fulfilled.

This theorem shows that if a game with forbidden situations has more than
one value, then any ﬁlay of the game, which is optiﬁal simultaneously for any two
distinct values, must actually take place in these forbidden situations. If the
forbidden situations in a game are interpreted as the necessity to play another
game, then the existence of more than one value means that in.optimgl play, this”

offer game will be played.

9. A sufficient (but not necessary) condition for the existence of more than one

value in a game with forbidden situations is given in the following theorem.

THEOREM: If

min max K({i,j}) < max min K({i,3}) ,

J 1 i J
then V[I'] - has. more than one element.
PROOF: We have:
max K ({i,3)) = max { max K({i,3}) , x }
i - i
Therefore .
min max KX(,{i,j}) = min max f{maxX ({i,3}), %) =
J i J i : (1)-

max {min max K({i,j}), x }
J i

1l



and similarly

max min Kx({i,jl) = min {wex min X ({i,3}), x } . (2)
i 3 i 3

If it is now assumed that

x, = win max X ({i,3}) ,

1 .
3 i
then by virtue of (1)
x. = min max K ({i,3}) . (3)
1 X . X.
J i 1
But under the conditions of the theorem x, < max min K({izj}); therefore the
i J
first part of (2) is equal to Xy, 80 that
x. = max min K ({i,3}) . &)
1 . . X
i J 1
From (3) and (&) follows that x, = v, , i, x € V[I'] . In just the same
5 .
way we can establish that
x, = max min K({i,3}) e V[T'] ,

2 .
1 J

and. the theo;em_is proved.

That the above'mentioned criterion for the non-uniqueness of the value
of the game with forbidden situations is not necessary is seen in the example

of the game with the non-complete matrix:



Here minimaxes are equal, but at the same time the set of values of the game is
(*)

[2,5].

. SUMMAR

Let A be a certain non-complete matrix (i.e., a ﬁatrix in which some of
the entries are vacuous. These are called forbidden situations). The first
Player chooses row i > and the second column j. If in A the entry ({(i,3)
is occupied by the element ?ij > then the first player receives the payoff aij;

in any other case another game 1is playgd.

LITERATURE

[1] Nash, J., "Non-cooperative Games,” Ann. of Math., Vol. 54, No. 2, 286-295, 195%.
[2] McKinsey, J. C. C., Introduction to the Theory of Games, New York, 1952.

[3] Contribution to the Theory of Games, IIT. Ann. Math. Study, No. 39, Princeton,
1957. '

(Translated by Kiyoshi Takeuchi )

*
- Problems analogous. with these examined in our article are considered in the
articles of Milnor and Shapley, and also that of Everett [3].
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A SOLUTION OF A GAME OF D. BLACKWELL

I. V. Romanovsky

Vestnik Leningradskogo Universiteta,
seria Matematiki, Mekaniki i Astronomy
No. 1, 1962, pp. 16L4-166. '

0. In this note we will give a solution for one of the parficular cases

introduced by David Blackwell in "a game of exhéustion" ({11, see also [2]), namely
the so-called "game of women and cats versus men and mice." By an inductive argument,
the formula for the value of such a game will be deduced. After that, we will con-
sider some particulaf<gases of thié formula. Its asymptotic behavior, already -

partially obtained by Blackwell [1], will also be studied.

1. The game of women. and cats versus men and mice consists of the following:

There are two commands. One consists of a -women and b cats, the other
of ¢ men and d mice. Each of the commands dispatches a fepresentativé.indepen-
dently of the other. These representatives meet and one of them removes the other
from the game according to the following rule: woman eliminates man, man-cat,
cat-mouse, and mouse-woman. After this the game is continued by the same rule until
one of the commands is completely eliminated.

In this way, this game consists of a sequence of matrix games; in each of
these games each player has two pure strategies. The problem consists of finding
the probability of the survival of the first. command under the utilization of optimal
strategies by both commands. It is easlly seen, that if this probability is denoted

by f(a,b,c,d), then the following recurrence relations will hold:
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f(a-1, b,c,d) f(a,b,c-1,4)
f(a,b,c,d) = Val < ) > ()
f(a,b,c,d-1 ) f(a,b-1,c,d)
. wWhere
f(0,b,c,d) = f(a,0,c,d) = O, )
2
f(a,b,0,d) .= f(a,b,c,0) = 1.
2. THEOREM 1:¥ o a-k  B-X
‘ z c C
k=1 cat+c-1 bid-1
f(a:b)c)d) .= (3)
a+d-1
a+tb+c+d-2

PROOF : We will prove this formuwla by induction. First of all the validity of

equation (3) will be demonstrated when at least ane of a,b,c,d is equal to zero.

3

Clearly. we have, -
£(0,b,c,d) = f£(a,0,c,d) =.0 .

The two other relations in (2) are derived from the well-known formula

(2]

s .CK C”r-k. - Cnim
k=0 & &

Let us now assume. that we have proven the formula for all games with a given
number of participants. - Its validity will be established for a game whose number
of participants is one larger. We now calculate the valué of the matrix game

f(a-1, b,c,d) f(a,b,‘c'-l, a) .

<f(a,b,c, d-1) . f(a,b-1 ¢,d ))

As is known, it is equal to (see [3] )

— :

From here on we will sum from 1 to o exclusively . for the purpose of simplicity
of notation. Ungquestionably, in all these sums only a finite number of terms will
be different from zero.
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f(a,b,c-1,4) . f(a,b,c,d-1) - £(a-1,b,c,d) f(a,b-1,c,4) _ ()
f(a,b,c-1,4) + f(a,b,c,d-1) - £{a-1,b,c,d) -f(a,b-1,c,d)

. Let us substitute in place of f its value from formula (3) and calculate
fraction (4). Performing a series of elementary transformations, we find that

its denominator is equal to

0

a-k quk a~k b-k-1 ]
k=1 ate-2 Tb+d-1 7 Vate-1 b+d-2
a+d~1 *
a+b+e+d-3 .
o]
s Ca—k b-k _ p8=k-1  Db-k
kel atc-1 “b+d-2 ‘atc-2 bid-l
+ ' a+d-2 =
a+tb+c+d-3
Ca—l b-1
_ atb+e+d-2 at+c-2 a+b+c+d-2
T atbte+d-3 o atd-2 ’
atb+e+d-4
but the numerator is
2 a-k b~k ® a-k b~k
( = ¢ ) (= )
ke ate-2 b+q-l k=1 ate-1 ’b+d-2 _
a+d-2 at+d-1
-a+t+b+ct+d-3 a+b+c+d-3
o0
a-k b-k-1 *® a-k-1 _b-k
(kfl Ca.+c-l b+d-1 ) k=1 Ca-c-2 b+d-1 )
- atd-2 ata-1 =
a+b+c+d-3 at+b+c+d-3
a-1 b-1 %2 a-k b-k
- at+b+c+d-2 atc-2  b+d-2 =7 a+c-1 “b+d-1
atb+e+d- 5 a+d-1
a+d-
Ca+%+§+d-4 Catbtc+d-2

This proves the theorem.
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The optimal strategies for the players in

this game are:

P a+ b -1 _ b+c-1 ]
wom a+tb+c+d-2  ’ cat atb+cta-2 ’
P _c+a-1 P _ d+b-1
man atb+c+i-2  ’ mou atbt+c+d-2"
It is worthwhile to mention.some special cases of formula (3). For example,
£(ab, 1,1) = 1 - —= ,
atb
a
f(a,l, C)l) oie P)
- a
: C
atc-
f(a,b,c, 1) = 1< ._;i
Ca+b+c-l
3. From various game-theoretic considerations the function .£f must have
certain properties of symmetry, namely
f(a,b,c,d) .= f(b,a,c,d) ,
and e
f(a,b,c,d). = 1= f(c,d,a,b).

These properties are easily obtained directly from (3).

<

k. In concluding we will find the asymptotic behavior of our function.

It is

easily seen, that f(a,b,c,d) is the probability that a random variable, having

the hypergeometric distribution. with parameters

and M=a +c - 1,

takes a value not greater than a - 1 .

n=a+d-1, N = atbtctd-2

From the convergence

of the hypergeometric distribution to the normal distribution (c.f. [4]) we obtain:
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THEOREM 2: If M,N —» o and 0< r < %If m.< o, vwhere M,N
are defined.EE above, then
G xg
f(a,b,c,d)= - L L/ﬂ e . ix -» 0 ,
N2 T ) ’

where ‘

G- = : : =

J M(N-M) n (N-n)
M (W-1)
tecl) (b-1) - e a Vatbrord 3

N.(ate-1) (b+d-1), (a+d=1) (bt+c-1)

In particular, when a =0 p,b=Bp, c=7p, d =86p and p —»w

we obtain the result of D. Blackwell:

If af > > , then f(a,b,c,d) 51 when p —w .

SUMMARY

This note deals with D. Blackwell's game."Women and Cats Versus Men .and Mice."

In it we have proven that the value of the game is equal to

E a-k b-k
k1 atc-1 b+d+1-
f(a:b:c;d) = s
a+d~1
a+b+c+d-2

vhere a,b,c,d are the number of women, cats, men and mice, respectivel_y.

The probabilistic approach to the formula gives an asymptotic behavior for

the value when a,b,c,d tend to infinity.
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A MULTI-DIMENSIONAL GAME-TYPE RANDOM WALK

I. V. Romanovsky

Vestnik Leningradskogo Universiteta,
seria, Matematiki, Mekaniki i-Ast:onomy,
No. 2, 1962, pp. 89-95.

1. The purpose of this article is to study a multi-dimensicnal controlled random
walk with discrete time intervals. Although basically the problem will be one of
random walk controlled by two players with opposite intérests, all results are
applicable, of course, to the case where the control i carried out by one player,
since in this case the other player has only one strategy.

The scheme being considered is maturally the general game of survival with
random payoff (see El]).

In section 2 the basic definitions and formulations of the problem will be
given. In.sections 4 and 5 we obtain theorems on the existence of the value of the
game and on the functional equations which this value satisfies for the case of a
finite domain. The necessity for the assumptions made will be seen frgm the

example, mentioned in section 3.

2. Let the set D with boundary. S be én.open convex subset of ER , ‘the

k-dimensional Buclidean space. With the help of the spherical . mapping of S onto
an arbitrary sphere R within ..D , we shall define a o-algebra M of subsets of
S as the o-algebra of all inverse images under this map of the Borel sets of R .
The determination of this o-algebra evidently does not depend on the choice of the
sphere.

Furthermore let u be g probability measure on Ek . Let us denote by p;

the measure which is determined by, the relation
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k k
W) = ux+4A), ACES, xeE

L ad '
and by u*(B) the measure given on..S (not normalized) which is determined by the

relation (see Figure 1)

ryY X
K@) = W (ly|yed, (x+h(y-x)/n>0) NB & ¢}) . (1)

Finally, we shall denote by QX the measure on the set D , which on ‘D is

x 1
equal to W , but on 8 dis u .

The game being considered will have a general structure and be distinguished
only in its own specific functions. The conditions of each game will be characterized
by a point x of the set D . The transition from condition to condition will be
given by a random vector, 5ij » determined by the probability measure, “ij 5
which depends on two indices,.one of which (i) is chosen by the Ffirst player, and
the other J 1is chosen by the second player. Each index takes a finite number of
values. - If the ran@om vector Eij is.equal to y , then a game moves to the point
X + y. If this point belongs to the set D , ther the game is continued according

to the same rule. (p. 90) .If it.does not 5elong to.D , then the game ends at the

point x + Ay, where A 1is chosen so that x+ Ay €8 .

k)

HX@B) = uv¥@)

Figure 1.
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Game Pl: A measurable bounded function. K(x) ; the payoff to the first
player, is given on S . If the game ends at point x , the second player pays

K(x) +to the first player.

1]

Game T'; K(x) =0 . If the game does not end, the payoff of the first

player is equal to 1 .

Game P5: The payoff of the first player is equal to the number of steps

until the end of game.

2

game . PBM the maximum duration of the game, in game Pl is the termination in

the most profitable place. ‘

In this way, the goal of the first player is: in game T, '“"survival®™, in

Our description is cémplete enly in the description,bf game PE . In game
P5 we neea to provide for rules of terminating the game; in Pl the definition
of the payoff for infinite games is required.

This definition is. however artificiﬁl and it seems appropriate to isolate
that class of games in.which the value of the game does not depend on the
assigmment of payoff for infinite games.

The following example shows that none of the games.considered satisfies this

requirement.

3. Let us denote by p the uniform distribution in the unit square
(O'S x<1, O'f y < 1) in space E2 »  We shall consider game Fi determined
by the set '

D = {(xy)|y € (0, 5.04), xe (0, 2.02)} ,

by the payoff function

K(x,y) = [(3.02 - y) (y - 2.02)]"
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given on the boundary of rectangle D , and Ez the matrix

“ §kl” 2 k=l; 2, ---,8 ' '

c
» k
The random vector gkl is determined by the measure and

¢, = (-1.00, 2.03), 05 = (0, 2.03),
C, = (-1.00, 3.03), Ce = (0, 3.03),
c5 = (~1.00, -3.02), C7 = (0, -3.02),
¢, = (-1.00, -k.02), Cg = (0, ~k.02) .

It is easily seen that the player I at the cost of meking the choide borreS-
ponding to the strategy can guarantee for himself an infinite walk in the unshaded
zone of Figure 2. Nawmely, being found in.zéne Ak » he mugt chocse the strategy . k.
Hiwting the boundary from an unshaded zone will be possible only where the payoff K
is equal to zero. Therefore, if in an infinite game the maximum payoff is given,
the game will continue indefinitely and the value of the game will be equal to this
payoff.

In this way we can see that in order for the value of the game not to depend
oﬁ the detérmination of the payoff for infinite games, we will have to make some

supplementary assumptions.

L, We will say that the game satisfies the first condition of deflection, if there

€ > 0 and a vector ¢ + 0 , such that for all 1i,j

exist el, o

p.iJ.(c x> el) 2 &
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¥
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AT T 777 7% X o
r 4
Figure 2. _

LEMMA 1: If set .D is bounded and the game satisfies the first condition

—

of deflection, then no matter what strategies the players use, the game ends

with probability 1. (

This assertion is absolutely obvious. Further we will use the following

theorem, the proof of which will be given in another work.

¢

THEOREM 1: Let B “be the probability measure in Ek » depending on the

k-dimensional real parameter x € D . If a vector ¢ + O and €5 €5 >0

are found, such that for all x

My (cy> el).z €5

and
sup cy < o,

then the functional equation¥

o) = { o s (2)
AX = .
fcp(z) Ki@z), xeD,

*

. X
5 In notation .. +the lower index denotes the dependence on x , the upper
is understood. accOrding to the notations in. section 2 .
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has a unique bounded solution, satisfying the condition @(x) — O when

|l x || » ». This solution is @(x) =0 .

We will note, that this theorem is easily extended to the case of the functiomnal
"ineguality"

0 , X * D
o(x) < { (3)
- M/WQ(Z) Hi(d z) , xeD

which also does not have a bounded non-negative solution converging to zero at
infinity except the trivial one.

Hence from lemma 1 fhe theorem about the value of the game Pl follows

directly.

THEOREM 2:  TIf.the set D 1is bounded and the game satisfies the first

condition of deflection, then the value of the game exists regardless of the

v “where @(x)
starting point XO €D, 2£>therg§me, and Ef gqual 32 ¢(§b)]satisfies the

functional equatien

K(x) , xe8S,

p(x) = %
val | ECP(Eij)H , .xeD

. This equation'has a unique bounded solution, and it may be obtained as the

limit of the sequence of functions @ (x)
_ k. okl n

K(x) , X eS8
¢n+l(x) = .{ .
val || E @n(ﬁij)”, xeD, n=0, 1,...,

whdre - - qb(x) is an arbitrary measurable function, satisfying the

conditions
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@O(x) = K(x) for x€ 8,

sup . (x) < sup @, (x) ,
p o - g ©

inf cpo(x) > inf cpo(x)

D S

PROOF: As usual we shall consider two sequences of functions wn(x), generated

respectively by the function

ch(X) = sup  Q,(y), =xeD,
Y€D
and the function
¢b(x) = inf ¢b(Y), xeD,

y €8

and we prove that these sequences converge to one limit. Indeed, the difference of
these limits (which exist by virtue of monotonicity and boundedness of these segquences )
is non-negative a?d sétisfies the relation (3), and consequently is equal to O .

The condition of deflection as introduced is, of course, too rigid. However,
as we already sald, in the game Fi some condition of this type, guaranteeing the
end of the game, is necessary. It would be interesting to weaken the condition of
deflection and, in particular, to cobtain a similar "guarantee", starting from the

special form of the payoff function. (Certain results in this direction obtained

by V. F. Kolichini are already known.)

5. For games I', and T such rigid conditions are not required, and it is

2 3
Possible to manage with weaker conditions. Let Pp and g be probability
vectors corresponding to the indicies. We shall denote by gpq the random

variable, which with probability Piqj is equal to gij , and by Hpq = X Piquij
i3

the corresponding probability measure.
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We will say that the game satisfies the second condition of deflection, if

there exist

€5 €, >0, avector c + 0 - and strategy qo of the player II

such that whichever strategy p of the player I was selected,

(c x_-_>el) > e,

Hpqo

THEOREM 3: If the set D E_bounded and the game satisfies the second

condition of deflection, then the value of the game 1"2 is equal to O and

the functional equation (2), which this value must satisfy,does not have any

“bounded non-negatidve solution except the trivial ome.

-

PROCE : The first part of the theorem is evident. The second part follows from

S
the fact that solutions of equation (2) do not exceed solutions of the equation

) = {O, }'cevS,

‘max E Y (EF ), x €D ;

P Pl

Whose only solution is equal to O by virtue of ftheorem 1.

THEOREM 4: If the set D is bounded:and the game satisfies the second .

condition of deflection, then the game I

3 “ends_with_probability 1, regardless

- of thev starting poin‘b x , and the value of the game o(x) as & function of

the initial condition,_sat‘_lsfies the functional equation

{Ao , x¢D, ,.(h)

1+ Val ”Ecpn(g?;j)_ | » xeD.

o (x)

. Functional equation (4) has a u.niq_ue bounded solution, and this solution may

. be obta,ined as the limit ‘ _o_f_ the sequence of the functions

.0 , xéD,
(x) ={

l+Val,“Ecpn (gfj Yl , xebD

q-)n+l
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PROCF : From the assumptions of the theorem it follows.at .once that the value of
thé game exists and is bounded. We now will prove that functional equation {4)
has & unique solution.

We introduce the random variable gij(a) , which with probablility 1 - ® co-
incides with the corresponding variable 'gij and with probability & guarantees
that the outcome will be beyond the boundary of the domain.from any point of the

domain. We will denote the function which is equal to

1+val |Ef (g’i‘J(ﬁ)) I

for x €D and O .otherwise by Tﬁ(f) . Let us consider the sequences
[s)
go = O )
&) o)
8 i1 Ty (e, )
and '
5 o, x4¢D,
h = {
0 A, xeD,
5 8
hn+l TS (hn )

It is clear that the seduence {gi} does not monotonically decrease and for
5 > ga . We also have:
n - °n

all n h

B B ) 5 X
sup (b (x) - g (%) < up mex B [, (£, 6)) - & , (£ 6N <

3]
< (1-3) sup (hn-l

: () - & (x)) < A (1-8)°

Furthermore, that the sequence -{gz} converges follows from.its being bounded

.above by the constant . . Consequently, the sequences hi and gi converge
1-5
to one limit f
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Now let f be some bounded solution of equation (4). We will prove, that

f5 - f when .8 -0 . We have:

B

go 5 f J
and therefore, 5

'g«l < f for all n
.and falf ¢
Further, if f (x) <K , then for sufficiently large A we obtain hf’l > m%—f
Indeed we assume A = K . Then hg > T%KS f . Assume the required inequality is
true for n . We will prove it for n+l . We note, that

Bl£(87,) - £(e],(6))] < K5 .

In connection with this we have:

ta} ! 5,.X 1 b4
b (¥)= 1+vVal | E B8 8N 1> 1+ 5 Val [ E £(8;,60) 11>
Jite) 1 X _ 1 -
21 Tt T PLIEAE ) = )
In this way,
1 s}
T ST = f

from.vwhich follows the required convergence.

Since the sequence f6 éonverges to any solution .f , it follows that this
solution is unique and our assertion is completely proven.

That the value of the game satisfies the functional equation (4) and that it
may be obtained as the limit of successive approximations (5) is proved in. the

usual way.
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6. The requirement of the boundedness of the domain D  is not necessary;
corresponding theorems can be obtained for infinite domains. We reproduce these
theorems here without proofs.

We consider the convex domain ..D and its closure D . It is known that for
an.arbitrary point x € D , there exists a maximum convex cone Kx with summit
at point x , entirely lying in. domain D . Cones corresponding to different
points x coincide under parallel translation. Thié permits us to consider the

cone K of infinite directions of set D , whose construction is possible by

starting from point O .
The polar cone K¥ of the cone K is the convex cone which consists of

vectors forming obtuse angles with all vectors in K .

THEOREM 5: If for certain ¢ € K*

val [Ee g [[>0,

then in game Ié player IT can choose E»strategy under which the game ends

with probability 1 independently of the behavior of player I , and the value

of the game is equal to O .

THEOREM 6: If for certain c¢ e K¥

Val | E ¢ gijv” = 0

and 0 <De¢ gij <o forall 1iand j , then the assertion of theorem 5

holds.

TEEOREM 7:  If for arbitrary c € K*

Val || E ¢ £ |l >0,

then the value of game P2 as a function of the initial conditions of the
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game x ( x € D ) satisfies the functional equation

flx) = -{ 0, ' x¢D,

X
Val HEf(giJ) l, xeD,

and is its unique solution converging_}g l.Eg.the cone K¥ .

THEOREM 8: Under the hypotheses of theorem 5, the value of the game P2

satisfies the functional equation

o, x ¢ D
g(x) ={ %
1+Val || E g(gi

J.) | xeD.

This solution may be obtained as the limit of the sequence of functions

gé(x) = 0,

0, x¢D,

@ = {
Gl ™ ¢ 1+ Val IlEgn(Ef.fj) I, xeD.

The proof of theorems 5 - 7 is carried out in the same way as the
corresponding theorems about the walk on the half-line (c.f. {1]). Theorem 8 is
préved by the same method as theorem 4 of the present work.

It is possible to give certain a priori evaluations for the solution of the

functional equations considered in this work. We shall treat them in a later paper.
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SUMMARY

The paper contains some results on random walks in a convex set in
Euclidean space. The surface of the set. is an absorbing one. The walk is con-
trolled by two opposite players who choose correspondingly a row and a column of
the prescribed matrix of random vectors.

Two particular cases are discussed.:In the first the payoff function is
defined in terms of tﬁ;‘absorbing point of the random walk and in the second i
is defined in terms oflglration of the game (the number of steps until absorbtion. )

Values of these games (when they exist) satisfy certain functidnal equations
which under some restrictions have unique solutions. These may be found by
successive approximations.

Corresponding theorems are proved for the case of a bounded domain for

walking and are formulated for an unbounded one.

LITERATURE

1. I. V. Romanovskyi(Sluchaynye bluzhdania) igrovogo tipa. Teopia veroyatnosteg
i ee primenenia, 6 , 4 , L26-L29, 1961.

The article was received by the editor on September 22, 1961.

(Translated by Kiyoshi Takeuchi)
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Iv

THE THEORY OF THE CORE. OF AN n-PERSON GAME

0. N. Bondareva

Vestnik Leningradskogo:Universiteta,
seria Matematiki, Mekaniki i Astronomy,
No. 3, 1962, pp. 1h41-142.

We will call the following pair an n-person game: a .set of players

I, = {1,2,...,n} and a real valued function V(8), defined on the subsets of

this set
OSV(S)SV(In) y S C Ini V(d) .= 0

The function V(S) is called the characteristic function of the game T .

The set of n-dimensional vectors «a = (a.l, .. -,an) such that a; >V({i}),

n
i=1,...,n and % a, = V(In) = M, is called the set of .all imputations and
is denoted by A . We shall assume from now on that the game is O~1 normalized,
i.e., V(In) = 1,V({i}) = o i=1,...,n .

The following subset of the set A is called the core:

U = {oeA: Z‘.aiz V(s), for all. 8 . C In} .
S
Let 8., Sgsrees8 be all those sets S I, , for which V(S8) >0 or Vv(s)=o0,
but |s] = 1. .
We shall associate with each set S I ‘the vector 8§ = (s(1>,...,s(n,)) ,
where (1) : o, 5 4: s,
s = Y1, ies:

Let us call the set of real numbers k-l >0 ,e00, }\m;Z 0 a g -6@- covering of
m
the set In if the condition jél Kj Sj = In_is satisfied, where q is the number

of 7\.J_,> 0, and is the system of vectors Sj corresponding to these positive ?x.j
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The set of all q - @ coverings considered as points in m-dimensional
Euclidean space is a bounded, closed, and convex set with a finite number of ex-
treme points. The extreme points correspond to the so-called reduced coverings;

these are easily found.

THIEOREM 1: In order for the core to exist in the game I' , it is necessary and

sufficient that for any reduced g - 6 - covering (Xl,...,hm) the condition

m
5 N, V(S,) < 1
J=l J J -

be satisfied.

The theorem is proved by using the necessary and sufficient condition for the
solvability of a system of linear inequalities (see [1]).
We now investigate the relation between the core and the solution in the sense

of von-Neumann-Morgenstern.

THEOREM 2: In order that the core of the game I' be a solution, it is

necessary that it have a non-empty intersection with each hyperplane

a = 0, i=1,...,n.

If we extend the concept of covering by introducing g - ej - quasl - covering
(as the "covering" sets we consider in addition the set 83 = In - 83 where

|Sjl> 1, with the characteristic function redefined as Ss. so that V(S;) = 1 -V(Sj)
thén it is possible in terms of these quasi-coverings to prove a sﬁfficient condition

for the existence of a unique solution in the game (coinciding with the core). It

is Possible to significantly weaken this condition.
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THEOREM 3: In order for a unique solution to exist in the game I', it is

sufficient that the condition V(S).S ——%— be satisfied for all S In

where 1r is the rank offthe matrix composed of wectors 'éj , Where

v(sj) > 0, and in

2

As a corollary of this theorem we can derive the well-known theorem of D. Gillies

in which the sufficient condition for the existence of a solution in the game is

V(S) < - forall § CI_.(see [2]).

With the help of this established theorem it is possible to obtain new (and
also some already known) results for quota games and the market game of Shapley.
It is also possible to study Y-person games, writing out for these cases the con-

ditions for the existence of a core and a solution.

SUMMARY

A necessary and sufficient condition is given for the existence of a core in

an n-person game in terms of the characteristic function. Sufficient conditions

for the existence of a unidque von=Neﬁmann-Morgenstern solution (coinciding with

the core) are given. Gillies existence theorem (see [2]) is shown to be a corollary

of this theorem.

LITERATURE
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smezhnye voprosy," M. Il, 1959.

2. D. B. Gillies, "Sclutions to General Non-Zero Sum Games," Contribution to the
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A DISCRETE VARTANT OF MOSER'S PROBLEM

S. 5. Kislitsyn

. Vestnik Leningradskogo Universitets,
seria Matematiki, Mekaniki i Astronomy,
No. 4, 1962, pp. 140-142.

Let n . carefully mixed cards with the numbers 1,2,...,n written on them
‘be given. A person is presented with the problem choosing the card with tﬁe
largest number possible. It is possible to throw out the first cards, and then
. to solve the problem of whether or not to select the (k+l)St card on the basis of
an ordinal comparison of it with the k cards already drawn (without exact knowledge
of the numbers written on these cards). The problem allows the following humorous
interpretation. A fiancee has n bridegrooms. Let them be numbered in increasing
order of their merits and propose marriage alternately. The fiancee can compare
each proposer with the earlier persons who were rejected by her. What kind of be-
havior will maximize the mathematical expectation of the number of the chosen
'bridegroom and what numerical value is this maximum?

If in addition the assumption of knowledge of the numbers already drawn is
introduced, then the problem becomes complicated. For the case of uniform distri-
bution on [0,1] this variant was considered by Moser [1]. The generalization of
the problem of Moser can be found in [2]. The article of Rindung [3] is devoted
to the problem of the maximization of the probability of the selection of the

largest number.
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1. Let us denote by S(k,n-k) the largest average valﬁe of the chosen number
under the condition that k numbers were already taeken out. It is clear that

S(n,0) =0 . "We are interested in S(0,n). We will determine the recurrence

relation connecting S(k, n-k) and S(k+l, n-k-1) . We note that if k numbers

were already removed, then in the following step it is only possible to use one of

the k42 strategies: either select as final choice the (k+l)St number if it is
better than the i_th one of the k opreceeding (O_S i< k), or in all cases to
proceed to the following step. In fact, any strategy with "a zone of final selection”
of measure i is dominated by the strategy of choosing the (k+1)St number if it

is better than the (k-i+l)th, of the numbers drawn earlier. Any strategy with a

random selection of a zone is dominated by the better components of its pure

strategies. Hence, the relation

. k
8, n-k) =  max [ —— S(x+l, n-k-1) + — I E(k,4,n)] 1)

0<i<ktl k+l . k+l 4=1
holds, where E(k,4,n) is the mathematical expectation of the (k+l)St number
_ being the best choice if it is known that it is larger than 4 of the k already
poséessed for comparison. We have now to find E(k,f,n). The (k+l)St number can
take values {+1,...,n e depending on how many of n~k-1 numbers written
down on the remaining cards prove to be smaller than it. The probability that the
(k+l)St number is eqpaivto {*i+j (0 < j <n-k-1) is equal to the probability
that J of the remaining n-k-1 numbers fall Into the 4+j cells up to the (k+l)St
pumber, but n-(k+j+l) numbers are in the remaining n- (L+3+1) cells. Using the
well~-known formula for the number of allocations of indistinguishable objects into

cells ([4], p. 60), we obtain, that the probability being sought is equal to



3 k-4 k+1 ) N
C{+j cn-{~j-;//// Cn . From this we get,

n-k-1 c;]d*_.ck']%_ 1
Ex,Ln) = = (Drj+1) J D7
3=0 o+l
n

The last expression can be simplified, using the identity

I k-
n-k-1 cHp. . C .
= @+ 5 +1) by netrg-1 (L+1) 2L, (2)
ji=o0 K+ K+2
n

Equation, (2) can be proven more simply starting from theprobabilistic considerations.

We will note at first that (2) is equivalent to

n-x
R A k-2 k+2
C = .
Z g oty T Can (3)
J=1
. s R s 1.\n+l
The right-hand side of (3) is equal to (to within a factor of @5) ) the

probability of event A: the occurrence of k+2 favorable outcomes in n+l Bernoulli

trials with p = % . The left-hand side (to within the same factor) is equal to the

sum of the probabilities of disjoint events Aj (3=1,2,. ., n-k), where Aj means

the occurrence of 4+l favorable outcomes in the first {+j trials, a favorable

outcome in the ({*j+l)5t trial and k-4 favorable outcomes in the remaining
n-k

n-{~j trials. It is clear that A = U A

52 and from this follows the validity
J=1

of both (3) and (2).
Substituting the obtained value of E(k,f,n) in (1) and summing over 4 , we

obtain finally:

s (k = [ 5(es1, noke1) + 2L (mel) (ie+i)] (&)
(k, n-k) = o <??X< oy L e N (S D =) ' |
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2. Formula (4) can probably be used with success for the computation of S(0O,n)
167/522
et/5ee,

for large values of n . Thus, for example, 8(0,12) = We will note

that the maximum of the right-hand side of (4) is attained for the smallest number
i, satisfying
S(k+1, n-k-1) <

n+ 1l ..
—xrz Gl

_ k+2
n+l

i= S(k+l, n-k-1)] .

We now prove that

s(0,n) = n + 0(n) . (5)

The plan of the proof is as follows. We will establish that

S(n-k; k) = By, 0+ 0(n) (6)

for fixed k and n-»«. Furthermore, it will be proved, that . lim ay = 1.
K o0
The desired result will then be a consequence of the inequality S(n-k, k) < 8(0,n)<n.
We will prove relation (6) by means of mathematical induction. Direct calcula-

tioh from formula (k) will give

S(n-1, 1) = nzl ,

so that for k=1 relation (6) holds. We will assume, that it is valid for k=K ,

and prove its valid;ty for k =K +'% ..  We have o B
S(n-K-1, K+1) = S(g:ﬁ’_K) . ~[~n;ﬁl S(n-K,K) + @nK] +
+ B 2(n—KI)ié—IJE+l)[ S (KD 8+ 1] X
x BB sk, K)+ 60l
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vhere 0< 6 __ <1 . Substitubing in the right-hand side of the last equality

nk
for S(n-K, K) its value (6), .we obtain
2
n
S(n-K-1, K+1) = ag + 121+0(n)- ' (7)

The validity of (6) for k = K+1 is then proven. Conseguently, (6) is true in

general. Furthermore, from (7) it follows that

Bl T T2 T B (8)
with the initial condition that a; = ‘% . It is easily seen that lim 8y = 1.

k— o

The exact expression for a, can be found in [1].

k

SUMMARY

In a box are placed n slips numbered from-1l,...,n. The player draws one
slip after another and stops after some number of such drawings. He does not know
the number of the drawn slip but can compare it ordinally with the numbers on the
slips drawn earlier. His gain is the number written on the last slip. A recurrance

relation 1s obtained for the maximum of the expected gain. It is shown that this

maximum is n + O(n) .
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VI

A SOLUTION OF A CERTAIN. DISCRETE TWO-PERSON GAME WITH BLUFFING

M. A. Genin

Vestnik Leningradskogo Universiteta,
seria Matematiki, Mekaniki 1 Astronomy,
No. 1, 190k, pp. 20-35.

In the present article a particular modified model of the well-known card
game called "believe it or not" is studied. This finite zero-sum two-person
game is a typical examplé.of.a game with bluffing. In recent years.a great deal
of the articles have appeared devoted to the study of concreté games with bluffing,
mostly dealing with-a type of poker (see, for example, [1]), bﬁt the general theéry
of these games has not yet been.worked out. Therefore their‘solutions have only
been guessed at in most cases.

Wé will make certain assumptions on the form of solutions which will make
it possible to find them and prove thelr optimality.

In section 1 the rules of the game are formalized and a description of the
set of strategies of each player is given. In sections 2,3, and 4 the particular
cases of this game are considered, and the optimal strategies of the players and
the value of the game invthése particular cases are found. Section.5 is devoted
to the study‘of the general case. Here the optimal strategies of the players and
the value of the game are also found. -In.section 6 relations, allowing the sim-
plification of the computation of the values of the games, are considered.: Then
an. application is given in which the optimal strategies of the players in some

particular cases are mentioned.
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1. Formulation of the problem. The game involves two players. Each player
has a set of m cards numbered 1,2,.. ,m. To begin the play, player I names an
arbitrary card r e (1,2,...,m) and places a card s ¢ (1,2,...,m) face down
on the table. It is now player II's turn. He can "believe" of "not believe"
player I.

a) If II chooses to doubt, he must check the card on the table. If s * r,

player I must take back the card s , and the game starts anew, with player II

beginning the play by naming a card, etc. If s r , then player II must pick
up the card r and discard the pair (r,r), and the play reverts to player I ,

who begins.the game (Wiéh m-1 cards) by naming a card r' and placing a card

s' on the table.

b) ‘If II Dbelieves I, then he plays a card p e (1,2,...,m), asserting
that it is r . Player I now has the option of believeing or not.

Ih this way the game is continued, each player asserting that he is playing
card r until one of the players checks. .

a') If the checking player reveals that an incorrect card was delivered
on the last move by his opponent, then. the opponent must gather up all the cards
played on the table and throw out all the pairs he can make using the cards on
the table and those already in his hand. The move goes to the one who checked,
who begins the play by naming a new card r' and playing card s’

b') If the checking Player reveals that the correct card was played on his
opponents last move, then the checking player must gather the played cards and
throw out all pairs. The move now goes to the opponent, who begins the play as
before with a new card r!

When the two players have just one card each, then the player who moves second
must check the move of the first. If the card is the one claimed, then the first

wins the game. Otherwise the second wins.
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of using strategies bOl’ blE’ b25, then
Pr = EVV\LII: 3 'P-)Ee ';—'iTV]& b) ¥ = iv)-l-v b (’4‘)
+ + -
- V5 Ly g 3 2 5 ' 3
. Vg(v5+v2) . Va= V), . . Vs + Vg
g - = ) e o C i, > (5)
| 3V : 3 ‘ '
where vh satisfies the equation
Vo (V + 2V, + 1) 4V, (Vo4 UV, + W, +V.) + Vov. -V, V. = 0. (6)
b V'3 2 L 3 2.3 3 -2 32 32
PROOF: We shall first find the solution of the game. in which player I may utilize

only alE’ a23, a54, and player II only 'bOl’ b12 ,_vb23 . Afterwards.we shall prove
that this solution is éQuivalent to the solution of the original game. From matrix (%)

we obtain the conditions to which p? B q? (i,j = 1,2,3) are subject, i.e.:

p’f,‘ Vs - p’é. v, - gvu' =,

-péiy5+p§_v2-p§v3 =V, } (7)
AR AERE TN

p’{+p§+p§¥l; pt > 0 (i=1,2,3),

V- Qi+ a¥ =,

.qe{v“qage e-q%e_vg =V, s } (8)
_qi Vh - g% V5 + q% = Vu 5

q§+q§+q§;1; % >0 (3 = 1,2,3).
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Let us denote the value of the game by Vm (considering the payoff to
pléyer I). If in his own first move player IT doubts the card and s + r , then
.the continuation can be considered as a new game with value Vm- If s =1,
then it turns out that each of the players has m.- 1 cards; it becomes player

I's turn and the value of the continued game will be Vm_ Similarly it is

1
Possible to find the value of the game which is given as a result of the check
by player I or player II after the kth move (1 <k <m1l).
The following are the strategiés for player I: 1) aok(l <k<m) is in the
course of the first k - 1 moves to bluff*, and at the gh move. to check; 2)
& (l.f i< m) is to exhibit a correct’” card at the ith move, and to bluff
at the remaining moves without checking; 3) 85 is to deliver a correct card
at the ith move, and to check at the kth move (l_f i<k<m).
The following are the strategies for player II: 1) ’boj (1<j<m) is
to check at the j?h( move without exhibiting correct cards; 2) bro (l.f r<m)
is to play a correct card at the rth move and never check; 3) brj (1_5 r<j<m)
is to deliver a correct card at the rth move, and to check at the jth neve.

It is easily seen that a_y 1s dominated by the strategy*** (1 <k <m).

fk-1 x
t
Indeed, against any strategy of player II in which he. checks on the k b move oY

later, strategies &k and ak-l X give the equal payoffs. However against a

strategy in which player II checks on the (k-l)St move, a5 is seen to be

better than s . In addition, a., is not better than a, (1 <i<m),
ok io im —_

since at the last move checking is more profitable than delivering an incorrect card.

*I-e.,'unrlay any card not coinciding with the one mentioned before the first move.

*¥%
I.e., to exhibit the card declared before the first move.

On. domination of strategies see [2].



S I

Similarly for player II, bOj is dominated by b,

51,5 @<3<m), ana

b is dominated by b

0 (1<r<m.l)

r,m-1

From intuitive considerations strategies for

8100 Bpzott 0 By Zpo

player I and b for player II seem to be the meost

b b b
01 "12,.. , m-2 m-1’ m-10

suitable for use in an optimel mixture. However, it is not the case that all of
them need be used. It will be proved that for m > 4 the optimal strategy for

player I is a mixture of ale,.a 37 a5u, and. for player II a mixture of

2

b12’ b25; for m= 2 player I has to mix ayn> a20, and player II b

Po1’ 01°P10 °

for m= 3 player I mixes ayp7 a25, a}O’ and player II bOl’ b12’ b20 .

2. The Case m = 2.

We consider here-a game in which each of the players has 2 cards.

There will be the following strategies for player I: 810 is at the first

move to play a correct card, and at the second check; a is at the first move

10

to play a correct card and at the second an incorrect omne; a is at the first

20

move to play an incorrect card, and at the second a correct one; a02 is at the

first move to play an incorrect card and at the second to check.

For player II: bol is not to believe at the first move; blO is to play

a correct card at the first move; b02 is to play an incorrect card at the first

move. The matrix of this game is as follows:

bOl blO b02
alE 1 -1 1
800 V5 - 1
alO 1 -1 -1
a02 jVE -1 1




- ho

Clearly, strategies alo; aOE’ bo2 are dominated, and the optimal strategies

can be found in the matrix:

0l 10
S| 1 -1
a20 -V2 1

#1207 Bpp
bOl’ blO are played respectively. They must satisfy the following conditions:

Let pl*, PE*’ qi*, qe* be probabilities with which strategies

PP V=T -Gt o= Vo
¥+ BF = Uy " F VR =V,
Pl* ¥ PE*_ = 1 ql* + q2* = 1,
pl*.z-o , i=1,2, qj* >0, J=1,2
Hence it follows that:
p* - 2 éLZE_ ’ Pt = _};%_Yg_ 5
and Yg is found from the equation
Vg + 4 V2 -1 = 0. |
V2 = - 5'- 2  is an ifrelevant root. Thus, VQ = JB -2 .
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3. The case m = 3. In this case player I, in accordance with the set of

strategies described in section 1, has strategies:

8 1<k<3), a,, A<1i<3), a, (1<i<k<3), where a;0(l<1<2)

and aOk(l <k < 3) are dominated and there remain only a_._, & _, &

12> 713 %3 2 %z )
player II has strategies: ble’ bOj(l-S 3 < 3), bro(l_f r<2), where

and b are dominated, and therefore, there remain only b b

Poor Po3 10

From the matrix

oy’ 12’ bEO'

bOl b12 b20
s § V2 o Vo
a25 -V5 A -1
a5o' rVB l-V2 1
al5 V2 —V2 -1
we can see that a15 1s dominated by strategy 512- We will denote by Pl*’ Pé*’
95% : ql%’ qz*, qa* the probabilities with which a12’ QQB, 350, bOl’ b12’.b20

are played respectively. They satisfy the following conditions:

i
<

3 '3 - 37

ENPE R S Vs s } )

* - * - *
Py Vo - Bt V- RV

* - * * =
PtV - BT AR = Vs
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* - g ¥ * =
9 V2 qzl V2 + q3 V2 v R

3
- * * - = i
%" Vs + 4, a5’ Vs o } (2)
- * - * * =
* * * = . * - .
q.l' + q2 + in 1 qj 2 0 (J 1J2;5)
i il - * . * * - * - * * :
Substituting 1 pl‘ pe‘ for p5 and 1 ql- qu fo? q5: , we have
+ V
1 VE + V5 2 1 + V2
. V5(V2 + 1) . V2 - V5
a = B q = =
1 Vol 1 -V 2 2V

2 3

These values are obtained from the first and the second equations of systems (1)
and (2) . Substituting pl* 5 pg* in the third equation of system (1) , we obtain

the relation:

2 2 2 _ -
VB(YE + 3) + VB(—VE + Uk v, + 1) + vo-V, = 0. (3)

Any negative root would be irrelevant to the given problem. Let us denote

the coefficient of V2 by a , the coefficient of V, by b . We will prove

3 3
that V, >V, . -
b+~ b+ 4 v a(l-v,.)
V. = e 2
) 2 a
RN
2Vya +Db-N b2+ L4V, a(l-v,)
V. =V = . 5
2 5 2 a
but o o -
(2V2a+b) >b +hV2a(l-V%) ,
or

uveab>l+v2a(1-vz)

* * * * . i
Therefore, ,V2 >'V5 >0 . Then Py >0, Py > 0, 4 >0, A >éQV Adding the
second and the third equations of system (1), we obtain P5* = 2 >0 .

1- V2
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Subtracting the second equation from the third in gystem (2), we obtain
% % l+V2 >0
A

a

4. The Case m = 4. Based on the solutions of the game for m = 2, m= 3

and from intuitive considerations it is possible to conjecture that in the case

m = Y4 the optimal strategies will be given by a mixbture of the strategies

2155 B a54, 8, for player I and b bla’ b23, b for player II (a

01’ 20
description of these strategies is given in section 1), i.e., that the game with

matrix
bOl | blE ' b25 b50
a5 V.5 -V5 _ V5 V5
a5 | V), v, -V, v, _ (%)
2y, -V, -V5 1 -1
) _Vh -V5 -V2 1

containing matrices for m=2 and m= 3 in the lawer right cormer, will be
fully mixed (for fully mixed games, see, for example, [2]). However, this is

not the case. It turns out that the following theorem is true.

THEOREM 1: In the game under consideration, if each of the players has

_4 cards then an optimal strategy for player I is.represented by. & mimiure

b

of o5 a25, aB&, and one for player II by a mixture of bOl’ 107 b23 .

And if we denote by pl*, PE* , 93* (Pi*.f 0, i=1,2,3%; Pl* + py¥ + pf* =1)

'the probabilities of using strategies 807 a25, a5u respectively, and by

4%, 4, q_5* (qj* >0, 3=2,2,5 q* + ¥+ q§* = 1) the probabilities
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end 1 - q"{- q,2* in place of q5 5

Substituting 1 - p*{ - p’é in place of p”%

_we find from the first two equations of systems (7) and (8) that

2V v v
pr o= —b pr - 2k
ql* Wy (V5 +V,) o = VBE_VV)-L

v3(v2 - Vu) : 3

Substituting the values found for pl* s PE* into the third equation of system (1),
we obtain equation (6).

"We shall prove that V3.> Vh >0 . Clearly any negative root of eguation (6)
is irrelevant, so that VlL > 0 . Let us denote the coefficient of V)_f by a,

the coefficient of - Vh_ by b and consider the difference

5
_ 2Vya+b.- VoSt bav v, -V

)
3
v, -V =
5 b 2 a

We shall show that (2 7V

2
b=V +V, V
3 2.3

2 2 R
5a,+b) >b +_)+aV‘.3V2 (l-VB) . Since

+V, >V, (1-\]3) , then &4 v3 ab>h V5 a vV, (1-v3) .

Therefore, V5 >V4 s and hence, pl* >0, p"z6 > 0, ql* > 0 ; »q_‘e* > 0.

+ 37,

‘ : v
Adding the second and the third equations of system (7), we obtain _p5* = '32__\74 > 0;
’ 3

subtracting the second equation from the third one in system (8), we obtain

It remains for us to show that these strategies are optimal for the original
game .

The set of the strategies for player I consists of the elements aio(l <i<h),
aOk(l <k <), and gik(l <i<k<k); the set for player II comsists of
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bro(l <r<3), boj(l <Jj<hk), end brj(l <r < j<3). Their description

is given in section 1, and there it is explained why a; (l_f i< 3), aOk(l <k <kh)

o
and bro(l <r<3), boj(l < j <L) can not be included in the optimal mixture.

The matrix, in which all the remaining strategies are included, has the following

form:
Por P12 Ppy Py P13
2l Y5 Vs V5 V5 Uy
a23 'Vh V2 -V2 V2 V2
o | W, T, 1 1 1 (**)
I T A, v,
a,ll; Vg Vg -V, -1 -V,
oy | Wy Va ;Ve -1 Vo
240 | o V3 * Ve

We shall denote the vector (pl*, pgf, PB*) by p¥ , and the vector
(qi*’ qe*, qj*) by @* and denote by R(p,q) the mathematical expectation of
the payoff of player I, when he plays the mixed strategy p , and player II plays

« .

q . From matrix (x) it is seen that R(p,a¥) < R( p% g*) and that
R(;p*,q*) < R(jp*,‘blB); it is then necessary only to prove that R(I#jq*) < R(p*,bzo)
i * * - D% L
i.e., Vh < Pl. V3 + p2' V2 P5,

Adding to both sides of this inequality the third equation of system (7), we
3 >2 Vh or py > V?T , but pl‘ = V3 - Vu >.V5 . ence the

above strategies are optimal, and the theorem is proved.

obtain 2 pl* v
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5. The Case m > L. A description of the sets of strategies for the players

in this case was given in section 1. There it was proven that the utilization

of strategies aio(l <i<ml), 8o (1 <k <m) in the optimal strategy of

player T and b in"ghhe optimal strategy of player II is impossible.

10 7 Pox

THEOREM 2: In the game under consideration when m > L, +the optimal

strategy of player I is represented by a mixture of b b And if

01’ "12’ b25 )
we denote by pl*, PE*’ P3* the probabilities with which player I plays

N * s ¥* * * =
807 a23, th respectively (pi >0, 1~ 1,2,3, P ¥ + p ¥ + p5 1),
and by ql*, Cle*, qj* the probabilities with which player II chooses
* | = * ] % * =
byys Pyo OF b25 (qj. >0, §=1,2,3 g%+ L* + a5 1), then
: 2V
1 m " Vna Vol T Ve 5 VaexVpa
¥ = Vm(Vm-l * Vm—2) . g ¥ = Vm-l B Vm . g% = g % Vm-l * Vm—2
= ; ¢ = ; =
1 Vm-l(vm-fa - Vm) 2 2 Vm-l 3 2 Vm-2 + Vm__5

where Vm is found from equation (12) introduced below.

PROCF : We shall first fiﬁd the solution of the game in which player I may use

only 80 6.23, a% , and player II b b and then prove that this

01’ "12’ b23’
solution is a solution for the original game. The matrix of the game corresponding

to the strategies is as follows:

P01 Pz Ppy

alE Vm— 1 -Vm- 1 vm— 1

23 -Vm vm- 2 -Vm- 2 *
_ - v

S2h Vm Vm- 1 m-3
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Consequently, pi*,-qj*(i,j = 1,2,3) are subject to the following conditions:

* - * . - * =

Pl_ Vi1 = P" pj Vi Vi

. * - * =

Pyt Vi F B Vo - BV Vi s } (9)
* - * * =

Pt Vo TR Ve F Pi Vm—B = Vo

. x* .

yo¥ - * * =

U Vpy” RV eV 7 Vo
-q ¥ * - * = '

OV RV -t Ve = Vo } (10)
- * - * * =

c‘ll’ Vm ) Vm-2 * qj Vm-5 vm ’

* * ¥ = . * « _
L P 15 9*> 0 (3=1,23)

b

for q3* in system (10), we obtain from the first two equations of each system

Substituting 1 - pl* - PE* for p,* in system (9) and 1 - ql* - qe*

2V V +V
p% = mv ", p.¥ = m m-1 s
TIv . TV —
1 _Vm + mel 2 Vm-l + 2
: (11)
+ - -
Q¥ = (vm'-l_' .Ym-.;’a?)‘ ' T qe* a Vm—l Vm
= ; = — =
1 Vm-l (Vm_2 -ﬁ\Tm) 2 Vm-l

Substituting these values for pi*, p,* into the third equation of system. (9),
we come to the following equation for Vm:

2 2
Vo W + 27V +Vm_5)+Vm(-Vm_l+V

m m- 1. m-2 m-1 Vm—2 +3V v +V A )+

m-1 m-3 m-2 m-3

(12)

+V -V _,) =0

m-1 vm-2 (vm- 1 m-3
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2
Let us denote the coefficient of Vm by a , and the coefficient of Vm by b .

We shall prove by induction that Vm-

1>Vm>0 . We have V2>V3>V4> o .
Suppose that V, > V3 >0 Vm_2 >V 4> 0, then
- 2 _ -
b4+NbE - havV LV (Vo Vioos)
v =
m
2 a
&ny negative root is irrelevant). Consider the difference
7
- b -
v v -y ) o+ + U4 a Vm-l Vm-e(vm-3 Vm_l) )
m-1 m m-1 5 g -
= - Ape -

B | C2aVy g +b-NpPrlka Vm-l'vm—E(vm-B V)
It is fot difficult to show that, ca

(2a Vm—l +b)" > v +hoa Vo1 vm-Q(Vm-5 - Vm-l)
Indeed, it is sufficient to convince ourselves that

ba Vp1 2> ba Va1 Vm-E(Vm—5 -.Vm-l) ’

" but this is valid, since
2
b=-Vyq +V 4 Vm—2 + 3 Vm-l Vm_3 + Vm_2 Vm_5 > Vm-E(Vm-5 - Vm_l) .

. * * * * .
Consequently, Vm—l >Vm >0 Clearly, Py >0, Py >0, 4y >0, e >0

Adding the second and the third equations of system (9), we obtain

2V
p¥* = n > 0 . Subtracting from the third equation of system (10)
3 AY -~ v :
. m-3 m-1 Vm 1 * Vm 5
the second one, we have g ¥ = g ¥ - >0 .
o) v +V
m-2 m-3

Let us denote the vector (pl*, pe*, PB*) by p¥ , and (C.L"le; q.*, q3*) by a¥;

we shall denote by p an arbitrary mixed strategy for player I ; and an arbitrary
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one for player IT by q ; R(p,q) is the mathematical expectation of the payoff
of player I, when he plays strategy p and his opponent plays q . We will
prove that p¥ and g* are optimal strategies of player I and player II res-
rectively. For this if is necessary to prove that R(p,q*)_f R(p¥,q*) < R(p*,q) ,
for any p,qa . |

a) R(p,a*) <R (p*, a*) .

Player I can use only strategies a (1<i<k<m). The remaining

w0’ ik
ones, as was proved in section 1, are dominated. Player II, using g¥* , checks at
least by the third move; therefore, any strategy of player I under which he bluffs
in ﬁpe course of the first three moves will be dominated by a strategy prescribing
at one of these moves to exhibit a correct card. Hence for player I there remain
only strategies aik(i <3, 1<i<k<m). Inaddition, it is evident that 81
is not better than a), > when 1 <3, k>L . 1In this way, it is necessary to

show only that among the strategies aik(l_f 1<k <k4) only the 8, i+l(i =1,2,3)

are not dominated. This is seen from the matrix:

Po1  Pip Ppy
812 Vi1 Vi1 Vo1
a23‘ -Vm Vm_2 -Vm_2
T I Va1 Vs
alj_ Vi1 V-1 'Vm-2
B14 Vol me1 Vmeo
Bol F.-Yﬁ Ym—Q Voo

b) R(p*,a%) < R(p*,q)



As was proved in section 1, player II can use only strategies -

b .(I<r<j<uml).
rJ - -

move, Therefore, all strategies, by which player II bluffs in the course of the
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bm-l o’
But player I playing p¥, checks at least by the fourth

first three moves, are dominated by those, under which he plays a correct card at

one of these moves. Hence, if m > U4 , player II can use only bOl’ brj(r_f 3,

1<r<j<mwml). In addition, b ) dominates er

will write down the matrix of the game, in which player I uses

player IT uses by, brj(l_f r<j<kh)
bor Pz Pps Py Pyz Py
"12 Va1 Vpe1 Vm—l Veer V1 Vpa
8oz | -V V-2 'Vm-g V-2 Ve Vo
B “Vn Ve Vm-5 _Vm-B Vm-5 Vm-5

Obviously, strategies b15’ bl&’ b2LL are dominated. We shall prove that b

not be included in an optimal strategy,

2

R(p¥, b3}+) = Vm—l Pl.’_(- + Vm_2 vt -

i.e., that

Vm45 p3_

* > Vm

.

3.12, 8‘23} aBLI-,

34

for j.>4% and r<3. Ve

and

will
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Let us add the third equation of system (9) to both sides of this inequality.

We obtain
Vm
. *
2p§-ﬁ qul>2Vm or Py > 7 B
‘ m-1
2V v
: . . . _ m m
which is obvious, since p¥ = >
1 V_+V v
. m m-1 m-1

Therefore, the solution (p¥, q¥*) is an optimal solution for the entire game.

6. The Asymptotic Behavior of the Values of the Game.

To compute the values of the game and cptimal strategies for the players for

Vv
different m , it was convenient to consider the quantity o = v—m— . Dividing
m-1
equation (12) by Vm Vm-l Vm-2 » we obtain the following relation for o :
al.a (@ a +20a +1) +a (-oz2 o +.0, a +
m m-l" mel me2 7 m2 m' mel m-2 m-1 m-2
- (13)
+ 5am_l+1) +o¢m_104m._2 -1 = 0.

THEOREM 3: The sequence {am} converges.

PROOF:  We will denote the explicit expression for o . derived from equation (13)

by f(am-l" am-2)' Consider the difference

. -a = f_(ozm,_l, am,_g) - f(am_l, am_e).
By the formula of finite increments
d f(& g
o, -0 = (am'l’ * 2‘) (o -a ) +
m' m oo mi-1 -1
m-1
(1)
oo dtly Gy p) . .
da m'-2 m-2 4
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where a1 is between o1 and Qg and e o 1is between am'-2 and
am_2 . From equation (10)
2
3¢ ) -am(e Q1 %ot o+ 1) - am(- 2a @ o+ @ o+ 3)- oo
o B 2 2 ‘
-1 2ra (ozm O ot2 QO s 1 ) - O 1%p T O Pt 3, 1
2 2

df B e R M e T 2)
3 = 2 '

- - +

m-2 2 amam_l(am_lam_ ot 2 o o5 +1)- o lozm_ ot & ot 3 o 4 1

As is seen . from the supplement (see below) and by virtue of the continuity of

f(am_l 5 am—E) there exists an mo such that for m - 2 > mo

L0.361 < o < 0.3%62 .

By calculations it is shown that for these m

0 f
Ja_| S%6 s |sg | 203,
m=-1 m-2
and then from (14) we have
]am; - aml o6 Iqm’-l T %1 | +o0.3 lo‘m'-2 " Ypep l
Let us denote lam'-i - am—il by pm—i + Then
o < < e <
pm < bl pm-l + cIL pm-2-— b2 pm-2 + c2 pm—5 - -
S o Pe1 Pkl F o1 PpaS PP to P S
where
bl = 0.6, c, = 0.3, bk = bk-l bl s o = bk-l ey >
(15)
k = 2,3... 3 mk>k .

0
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It converges, since it 1s bounded below by zero and monotonically decreases. Then
bk — 0, and together with bk 5, by virtue of (15), Cy -0 for k » o .
Consequently, lam, - aml - 0 as m, m' -» « ; i.e., the sequence ﬁzm} converges.

Going to the limit as m —« in equation (13) and reducing the similar terms,

we have 5

o 3

+,a4+2a +l+oz2+a- 1 = 0

or, dividing both sides by (@ + 1)2 , we obtain

.aa-a2,+5,o: -1 =0 ,

from which we get that «a = 0.36110308 .
The above theorem allows us to find out the asymptotic behavior of the optimal
strategies of the players.
From {(11) for m —;w , We have:
& 1-a
2

. .
* = — * = M * = ———— * = —
Py o’ 2T T 9 4] Ta ’ %

In conclusien the author expresses thanks to I.V. Romanovsky and E.B. Yanovsky

for advice and criticisms made during the process of this work.

SUMMARY

A concrete zero-sum two-person game is considered. The game is a simplified
model of the card game called "verish - ne - verish" (believe dt ornot).

Optimal strategies for the game and récurrence relations for its value as a
function of m are found, where m .is Fhe number of cards that each player holds.

The asymptotic behaviocr of the value of ﬁhe games is also investigated.
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Supplement

n = Vi P P P 4 % 3
1 1.0000 1

2 .23607 0.2361 0.38  0.62 0 0.62 0.38 .20
3 .35386  0.0'8353 0.52  0.26  0.22  0.48  0.32 .08
4 . 39301 0.013285 0.56 0.37 0.07 0.62 0.30 .12
5 . 34270 0.011125 0.51 0, 38 0.11 0.55 0.33% .12
6 . 36694 0.02k128 0.54 0.35 0.11 0.56 0.%2 .11
7 . 36119 0.021&91 0.53 0.37 0.10 0.57 6.52 .12
8 . 35982 0.075366 0.55 0.3  0.11  0.56 0.3 .11
9 36192 0.0°1942  0.5%  0.36  0.11  0.57 0.3 11
10 . 36083 0.0&7007 0.53% 0.3%6 0.11 0.57 0.32 L1
11 .36111 o.oh253o 0.53% 0.3%6 0.11 0.57 0.32 .11
12 . 36115 0.0°9138  0.55  0.36 0.11  0.57 0.32 11
13 . 36107 0.053300 0.5% 0.36 0.11 0.57 0.32 11
1k 0.36111  0.0°1192 0.55 0.3  0.11  0.57 0.3 11
15 .36111 o.o6h505‘ 0.53 0.36 0.11 0.57 0.32 W11
16 36111 0.061555 0.53 0.36 0.11 0.57 0.32 11
17 . 36111 0.075611 0.53 0.36 0.11 0.57 0.32 .11
18 . 36111 0.072026 0.55  0.%6 0.11  0.57 0.%2 11

Note: O. 059158

.9138 x 1077
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ON THE DURATION OF A GAME OF SURVIVAL

I. V. Romanovsky

Sibirsky Matematichesky Zhurnal,
Vol. IV, No. 4, pp. 862-869.

1. We will consider a two-person game, in which player I has a certain finite
amount of capital x and player II has infinite capital. This géme consists of
separate groups, in .each of whichvthe rlayers play a matrix game with random
payoffs gij s and the game is continued up to the point when the first player
becomes bankrupt. In the case in which the value of this matrix game is negative
Player I becomes bankrupt with probability 1 . Here we shall consider the problem
of determining the duration of the game, where the first player endeavors to pro-
long the game, while the second player endeavors to make the‘first bankrupt as
promptly as possible.

We Vill prove that when optimal strategies are used by each player, the
.average time, considered as a function of the initial capital x of player I,
satisfies the functional equation

0, x<0,
£(x) = { )
1 + Val |Ef(x + gij)ﬂ , x>0,

and has an order f(x) = x/c , .where c is the average payoff of the first
player in each of the separate groups.
The problem of determining the optimal strategies for the players is not

considered in this article.



.

2. ’ The following zero-sum two-person game will be stﬁdied. Let the matrix

Il gij” be given, the elements of which are random varisbles having & finite
mathematical expectation, and let there be given a number x , characterizing

the initial condition of the game. Player I chooses row 1 of the matrix,

Player II chooses column j . After this, player II pays a unit to Player I

and the condition of the geme becomes x +y , where y is the realization of

the random variable gij . (The mixed strategies of the players are determined in
the usual way.) The game is repeated until the condition of the game ceases to be
a positive quantity. By the end of the game the second player has payed a quan£ity
to the first player proportionate to the duration of the game.

We note that for the game to end with probebility 1 , it is sufficient that

Val”EgiJ.” = «c<0,
Where
Val fla, .| = minmax = a., p. q. = mex min 2 a,,p. q, -
+d q P 1, R P q 1i,j R

(For the above notation and terminology, see, for example,[1],[2]). Later on we

will assume that this condition is satisfied.

3. Before proceeding to the study of the game itself, we shall prove certain

auvxiliary assertions.

LEMMA 1: Let the function ¢(x) be determined for x >0 and satisfy

the following conditions:

1) for arbitrary X5 there exists a y > X such that

sup @(x) < @(y) ; and
X_< XO

2) there exist an a >0 and b , such that for all x>0

P(x) < ax +b
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Then for arbitrary L >0 . and e >0 .there exist . r>0, d , and
X : such that
o(x) < rx +d for x > % - L
and
CP(XO)"E rox, + d - re.
PROOF: TIet ..
Moo= (XJ‘.Y)IXEO: y_<CP(x) )

and detonote by M the closure of M .- Denote by N the convex hull of M , and
by 7= p(x) the boundary of N .

If for X >1L there exists a point (%,7) ¢ H , lying on the boundary of
N , then the assertion.of the lemma holds. In fact, let ¥ = p(x). Let us
construct at (x,y) the tangent to the concave curve p(x) . It is evident that
its slope will be larger than zero. It will be the line being sought, since the
first condition is evidently satisfied. The second requirement is satisfied by

virtue of the fact that, from the definition, & point can be found in M which

is as close as is desired to (%,y) . In fact, we can choose a point of the form

(x, o(x)) > Tfor which the second requirement. will be fulfilled.

We shall assume now that for s > 1 such points do not exist. Let

A

Xy o= max (x| (x, p(x)) e (%

It is easily seen that for x > X p(x) is a straight line. Let .p(x) = r x + q
the '
(vhere r > 0 ). From the points of M in linterval [xo, L]. we choose one which

meximizes the expression y - (r - - ri ) x . Let us denote this point by

(;c, ¥) and construct through it the straight line y = (r -‘E%—_) X+8. Asa

result of the convexity of the set N there exists a point (x,¥) e M such that

x>L and y> (r - —%E ) X+ s . We shall consider the set of all such points

and find sup(y - (Fx+q)) =a on this set. Choosing from this set a point
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(x,y) such that y - rx-q>a - EEE ,, We can now prove without difficulty

that in the neighborhood.of (%,¥) a point. (x,y) can be found satisfying the
requirement of the lemma, if y - r X - q +-£is - QO is chosenas d . And
so the lemms is proven.

It is possible to exclude ¢ondition (1) if it is required that the function
¢ be determined and be equal to zero for x < 0 . When condition (1) is not
satisfied, the straight line sought is the supporting line to N , constructed
through the point. (~L, 0).- We shall refer to this fact as well as to lemma 1.

Let gij be a random variable such that for certain L > O and for all
. 5. ]
P(gij L) 1

i,j and
Val ” E glJ” = -c¢<0.
We shall now consider the sequence x/c x<0
- » ? - ?
T (%) = {
o , x>0,

] ‘x/c x < 0,
fn+l(x) ) u{ v

max {f (x), 1 +Val | E_fn(x + gij)”} , x>0 .

This lemma-1s completely obvious. From this result it should be equally clear that

the sequence [fn] converges to some function fo and this function satisfies the

functional equation

) X x < o,
£y(x) = { max (£ (x), 1+ Vall E Folx + _E,ij)ll} x>0 .

LEMMA 3: The functions %n and T

0

are monotonically non-decreasing.
This is obvious.
Before proceeding further, we shall note that the set of points in which

EO(X) >1 + Valle fo(x + gij)“ is clearly an interval (a,b) and for
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x € {(0,b) we have f‘o (x) =0 . This follows from the monotonicity of the
sequence {fn} and from the monotonicity of the functions f‘n(x) . We will
also note that the function . fo will not increase too slowly. In fact, for

x>0 E,0) > X .

IEMMA k- %O(x) = X.,
——— C

PROCF : Let the lemma be assumed false. We then consider the function

p(x) = —Jc-(—-- :'f"o(x) - It satisfies condition (2) of lemma 1, and according to

the remark made after lemma.l for arbitrary e there exist r >0 , d, and

XO > b such that
cp(x)_< rx+d for xsz-L

'CP(XO)Z rxo.+d - Tre.

In comnection with fo(x) we obtain

- 1 )
fo(x)z(z-r)x-d for X>%,-1L
and . 1
) < ($-r)xy-d + re,
.where we can assume that % - r>0 . We have now
Folxg) = 1+Vel | B E(x, + &5 >
1 1 1 .
>1-4+ (E" r) X +'(E' r).Val | E gijll__ (E' r) X,-d+er,
which for € < c¢ leads to a contradiction.
In this way, we have proven the following:
THEOREM 1: Iet Val “E gij ” =-¢<O0 and for some L >0 -and for all i,j

.P(._‘E,ij >~ L) =1 . Then the sequence [f‘n} converges to the function
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?O(x) = x/c , satisfying the equation
- x/c 5 x<0, (
Ey(x) = { (3)

1+ Val |B fo(x + gij) l, x>0.

COROLLARY : Undexr the hypothesis of theorem 1 , the sequence =

- X
fl(x) _ {-c-+a, XSO,
a ; x>0,
,»x/c +a, x<O0,
£ ()= . ~ ()
max” € (x) , 1+ Val i fn(x + 513)“3 , x>0,
converges to the function Eo(x) =Z+a.

c
Theorem 1 is valid without the assumption of boundedness from below. on the
random variable gij . However, we shall not prove it in the general case. The

weaker result is sufficient for our purpose, although it leads to some difficulties

in the proof of theorem 2.
k., Let us now turn to the study of our game.

THEOREM 2: The value (duration) of the game fo(x) . (as a function of the

initial condition of the game x.) is equal to the limit of the sequence

of functions

1l
o

£, (x)

fn+l

| o, x<0,
(x) = { = (5)
1+ Val |[E fn(x + gij)” , x>0 .

fo(x) satisfies functional equation (1) and has as order

£,(x) = = (L+o0(1)) and 0(1) > 0.
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PROOCF : Before proceeding to the proof we shall introduce two lemmss.
IEMMA 5: Let P(x) < ¥(x) for x<0 . Assume
P(x) , x<0,
£1(x) = { ;
o , x>0,
P(x) , x<0,
fr'1+l(x) - { !
max {fn(x) , L+Val | E fr'l(x + gij)u} s x>0,
2nd W(x) , x<o0
£(x) = { -
0] 5 x>0,
1 (x) { v(x) , x<0,
T xX) = ' ‘
n+l gl "
max {fn(x) , L+Val | E -fn(x + gij,)u) , xX>0.

If the sequence {f:l] converges to a function f(')' , then the sequence {f;l}

n .
also converges to some function fé and f(;(x) <1, (x) + In addition if for

13° >-L) = 1, then it is sufficient
that @(x) < ¥(x) only for - L<x<oO0.

scme L >0 and for all i,j P(¢

The proof follows from the monotonicity of the sequences '{fr'l(x)] and
(f;(x)] and from the fact that f;l(x) < f;;(x) )

- We adopt. the notation :&I:.'Lj = max (gij’ - L)

IEMMA 6: Let

i fi(x) = O 2
Lo (x) ek 20
Ty (x) = {
N+l 1+ Val ”Ef.Ir:(x+§§_'j) l, =x>o0.
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If the sequence {fi} converges to a function fL , ‘then the sequence (fn}

" also converges to some function fo and fo < fL

The proof follows from the monotomicity of the sequences [fn] and {f’i"l }

and from the fact that fn(x) < fi (x) .

Let us now turn to the proof of the theorem. That the value of the game

-

1s equal to the limit of the sequence of equations (5) and satisfies functional
equation (1) follows from the principle of optimality of R. Bellman {2] . We must
prove that this limit exists,.and find the order of the limiting function.

I L

Let us choose I such that Val | E E’i]:]" = = ¢ < 0. By the coréllary

to theorem 1 there exists a limit for the sequence

T+t T, x50,
~L c c
(x) =
1 L
T x>0,
X L
pa? r T - *=0,
n-i-l(x) - { ¢
max (F7 (x), 1+ Val HEf x+§ )H} s, X>0,
. . ~L X L ‘ . R fl.
which is equal to fo =5 + T + By lemma 5 there exists a limit 0 of
¢
. ~L
of the sequence {ff'l_} in (6), where fO < f]("J' < fo . By lemma 6 it follows
that the sequence (5) also has a limit fy » where
L b X L
fola) < fo(x) < £ = T+ 5 - (7)

C

We have now proved that the theorem is valid in case of a random variable

bounded from below, but for the general case there still remalins for us to prove

that . fO (x) = ic{( 1+O0 (1) . For this it is necessary for us to prove that.

X L X
fo(x)_>z . We use that fo(x) > C—L—- ,» and that f]a(x) - fo(x) for L »o .

The latter needs to be proved.
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IEMMA T7: TFor arbitrary x

lim fg(x) = fy(x) .

Lo o

PROOF . of Lemma: We shall divide the proof into a sequence of steps.

L. For arbitrary k > 0 the sequence

K fo(k+x)—fo(k), x<0,
g, (x)
o, x>0,
. fo(k+x)-fo(k), x<0,
gn+l(x) { k k
max (g (x), 1+ Val | E g (x + gij)ll] , x>0,
. k k
converges to function go(x) = fo(x + k) - fo(k) . Indeed, gn(x) > fn(x tk) - £5(k)
and glri(x) < fo(x + k) - fo(k), .

-II. There exist an a and a d such that for all k >0 fo (x+k) - fo (x )_<_ ax + 4.
This follows (bylemma 5) from the fact that g’lg (x) < fn(x) , .and from the existence

of the limit fo (x) for the sequence [f.n} » - vwhich is bounded by a linear function.
ITT. When L —» for a1l 1,3

L
mix E(fo(x+ gij)j_ fo(x+ gij)) - + 0.

This gssertion follows from IT and from the existence of E gij .

) T hen
CRILN - ) -
B T max E [fo(x + gij) fo(X + gij)] <b< 1,  the

-1
1-5

fhx) < £, (x) .

We will prove that L 1 ,
fn(X) S m fO(X).
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For n =1 this holds. Further, if it is valid for n , then

L

£ (x) —l+Val”EfL(x+§ DR

b, 1 - =
51+T:E+-J?b-.val ”Efo(X+ glJ)” lbe(X)

Now the assertion of the lemma follows from the fact that according to ITIT
b -0 as L - w,

From this theorem follows without difficulty.

5. In the proof of uniqueness we will festrict ourselves (for the sake of
simplicity) only to the case where, for all L Val ” E § H > Val ” E g ” In

the general case the proof also holds but instead of "reductlon of random variables

a more complex discussion is necessary.

THECREM. 3: Functlonal equation (1) has a. unigue solutlon in the,K class of

*
non-negative non-decrea51ng functions, increasing not faster than linearly.

PROCF : .We shall prove this theorem in several steps. First we still prove the
&

unigueness (in the case of sufficiently large L ) of the solution of the equation

L 10, x<0,
& (x) { . . (8)
T+maxp [Eg'(x+£3) gy x>0,
D J
where qo is an optimal strategy of blayer IT in the game ” E gﬁj H . Then we

still prove that if f is a solution of egquation (l), and- g 1is a solution of

equation (8) , then f < g . Finally, we still prove that the solution of the

eguation -:

=

After finding the solution we shall understand the function of this eclass.
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L() - 0, x<0,
£ { 1+ Val []Ef;(x+§i?.)|l, x>0, ()

always exceeds the solution of equation (1) . From Lemma 7 we then obtain the

uniqueness of the solution.
I. Uniqueness of the solution of (8). Suppose that equation (8) has two
solutions g(x) and h(x). We will prove that g(x) < h(x) . Assume not. We have

k(x) g(x) - h(x)

w3 B glx + € ) g - mexp || B nG+ £ g <

< ma.xP“Ek(X'*'E.i?) qu
b

The function k(x) satisfies the conditions of lemma 1, by virtue of which for

given L. and € < there exist an r >0 and a d and an x. such that

0]

k(x) <rx+d for x>%y-L, and k(x)frxo+d_-re . Hence

wlo

L - b a - =2re
m%xp”Ek(xO+gij)”qofrxo+d rer< rx, +d 5

which leads to a contradiction. Therefore, k(x) <O , and hence k(x) = O .

IT. Let f be a solution of the equation (1). We prove that f <g-
Indeed,

k(x)

1

£(x) - g(x) = Val || B £f(x + gij)ll - max p||E glx + EI{J- Mgy <
P

< Vel | E £(x + gli‘j)ll - mex ol E g(x + '§Ii‘j) ey =

min max pl| E f(x + 'in‘.)H q - mex pl| E g(x + E.?j)ll 9y <
a D J P

L L L
< m%x p B f(x + gij)” 9 - m%x P”E E(X'i'gij)” % = m%x plE k(x'l'éij)” 9
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The rest of the proof is similar to the one given in.section I.

IIT From I and IZ follows that each solution of equation (1) has an order
x/c. We shall prove that any solution f of equation (1) does not exceed a solu-
tion fL of equation (9). Indeed, from the fact that cL <c, it follows that
¥ nas an order x/cL and g&p(f(x) - fL(x)) < o« . Setting k(x) = f(x) - fL(x),
we have k(x) < m%x plE k(x+gLij)”' CJ.O(X) ; vhere qo(x) is an optimal strategy
for player II in the game |[E fL(x + in“j)N} .

Taking into account that b < w,-k(x) .= 0 for X <0 and that there exists
the sequence {xn}, for which ¥y 2%y <o and k(xn) —»b , we can construct\a
contradiction to the assumption of the positivity of quantity b . (Roughly speaking,
the contradiction consists of the fact that the maximum value of function 1 is
found to.be smaller than its average, in which the trivially smaller values are

given positive weight.

- IV. Now from lemma 7 follows the uniqueness of the solution to equation (1),
since for its arbitrary solution f we have f(x) > fn(x) and f(x) < fL(x)--
But, fn(x) —afo(x) for n —»w and fL(x) —»fo(x) for L —»o . And so the theorem
1s proven.

Received
19. III. 1962.
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VIII

THE EXISTENCE OF A SOLUTTON, COINCIDING WITH THE CORE,

IN.AN n-PERSON GAME

0. N. Bondareva

Trudil VI Vsesoyuznogo Soveshchaniya
po Teorii Veroyatnosti i '
Matematicheskoy Statistikd, 1962, p. 337.

SUMMARY

An n-person game with an arbitrary characteristic function is considered.
Sufficient conditions are given for the existence of a solution coinciding with
the core (making the solution unique) and having the same dimensionality as the

set of all imputations. If we represent the coalition .S , v(S8) >0 by the
0 i¢s

1 ies ’
, where .v(S) is the characteristic

vectors § = (s(;)ol~-;é(n))f where s1) {

e
r

then the aforementioned
sufficient conditions will be: v(8) <

function, and r is the rank of the matrix consisting of these vectors.

(Translated by Kiyoshi Takeuchi )
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MINIMAX PROBLEMS IN THE THEORY OF DIFFUSION: FROCESSES

I. V. Glrsanov

Trudi VI Vsesoyuznoge Soveshchaniya
po Teorii Veroyatznostd.
1 Matematicheskoy Statistiki, 1962? pp. 339-340.

Summary of a part of the joint lecture
with V. A. Kolchin (p. 359) and I. V. Romanovsky
(p. 365).1

The following game is considered. Let U be the domain in the (nt+l) -
dimensional space of variables '(Xl’ ENERRPE t) . with the boundary 7y . A
class of diffusion processes X(ml, ‘m?) -is given in .U with the diffusion matrix
A = Haij(t,x)” and the velocity vector b = {bi(t,x)} . Moreover b = 1b° + m's m2,
where the vector field mi belongs to some admissible set M' of the vector field
in U . If Ax(.)) is a functional on the continuous curves in U , and
u(u,ml,me) = EpE{XX(ﬂ)) lml,mE] is the mathematical expectation of the wvalue
of this functional on the trajectory of the procéss X(ml,me) with the initial dis-
tributieon @ , then taking Mi as the set of strategies of the ith player, and
._u(p,ml,mg) as the payoff function, we obtain some. game G(u,M;,ME) in normal

form.

We assume that M- consists of the vector fields, satisfying the condition

E o < o) @)

but A(x(+)) is given by the formula

1
A more detailed presentation of the results is contained in [2].
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T
4
Us()) = 2le, w ) el [nlexg) as) +
7
0
. T?’ S (2)
+fg(8,x.s) exz:[fh(u,xu) du] as ,
0 o}
where 417 is the moment of the outcome on .y . The following theorem holds:
THEOREM: Let X(mw,m") be the diffusion process, A = oy (es3)]  ite

diffusion matrix and b = bO + m:L + m2 be the velocity vector. Let M

be given by condition (1), and £ by formula (2). Let the equation

2
%1‘_;- + alJ(t,X) g}% + bg(t,/X) %U.T + h('t,X) u .+
19%5 X

1 (3)
s [cl(t,x) - ca(t,X)] [ Z(%'uf )2]2 = g(t,x) ,
i

have a continuous general solution in WU y » taking on ¥ the value of
f(t,x).

Then f h(o ;) dp is the value of the game G , and the vector field

(-I)l+l c vu - if vu exists,
S du 2.2 T T
- {0 2 (G
0 » 1f wu is not determined,

gives the optimal strategy of ith _player.

A special case Of the theorem is interesting. If the coefficients of the
right side of equation (3) do not depend on t , and U .is a cylinder with the
base UO » then the problem is reduced to the determination of a minimeax point for

the elliptic eguation, which is reduced to the investigationof a quasi-linear equation:
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1
2% du 1., 2 du (2.2
aij(x),&'?m‘; + bi(X)g’E +h(x)u+ [e(x)-c (X)].[Z_(B;;i)] = gx) .

If one of the Mi contains only one point, we cbtain the problem of
determining the extreme.

The existence of the gemeral solution for equation (3) is proved by sufficiently
broad assumptions with respect to A, b, h, f, g,.ci and. U, . In case of small ci
Friedman [1] proved the existence of the classical solution. Using stronger a priori
evaluation and the theorem of Lere-Schauder on the index of the solution, it becomes
possible to remove this restriction.

Similar problems concerning the variations of the leading coefficients reduce

1o equations with strong nonlinearity of the form:

2 2 )
3 u 12 du 2 . .
813 3. ox. (@7 - am)s Z(EX.EX;)
i 1 J
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SOME PROBLEMS IN THE THEORY OF DYNAMIC GAMES

V. F. Kolchin

Trudi VI Vsesoyuznogo Soveshchaniya
po Teorii Veroyatnostd.
1 Matemeticheskoy Statistikd, 1962, pp. 359-361.

A part.of the joint lecture with I.V. Girsanov
(p- 339) and I.V. Romanovsky (p.365).

We shall consider the following process. Let the state of the process be
given by the n-dimensional vector x(t) = fxl(t),...,xn(t)], where t =0, 1,...J
and let the possible increments of the proéesg form the r x s matrix A = Ha(i,j)ﬂ,
each element of which is an‘n-dimensionél vector a(i,j) = [al(i’j)’°"’an(i’j)]'

Wi shall call the function f(xl,...,xn):= [fl(xl"'"xn)""’fr(sl?""xn)] > £,20,
iél £, =1 (a probability distribution on the set [1,2,...,r]).the strategy of player

I. The strategy of player II is given by the function g(xl,...,xn) =

S
(g, (x ,...,xﬁ),...,gs(xl,...,xn)], 8 .> 0 ’igl g, = 1, (a probability distribution

on the set [1,2,...,s8]).

Let player I chose the strategy f(xl,...,

and let the process for t = 0 .be found in the state x(0) = [xl(O),...,xh(O)] .

xn), and player II g(xl,...,xn) 5

The process is then developed in the following way. In .the first step, from the
probability distributions f[xl(o),...,xn(O)] and g[xl(O),---,Xn(O)] , are chosen
indexes i, and J, , and the process obtains the increment a(iO, jo) , passing
into the state x(1) = x(0) +-a(io,jo) , and so on. In this way, under the given
strategies of the players we obtain a Markov random process. . With respect to this

process it is possible to consider the following problems:
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1. To study the average behavior of x(t)/t depending on the strategies of the

players. To determine whether or not there exists an n. for arbitrary e >0,

0
x(;
such that player I independently of player II can attain P [p¢“§22 ; 8) < e} > 1-e

for all n>n where S .is some subset of the space of the values of the process,

O J
and p(x,y) is the distance between x and 7y.
Eor arbitrary S +the answer is known only for the univariate case. For the

multivariate case it is known that each convex set possesses the property indicated

above for one of the players. Sufficient conditions are given in {1].

2. It is possible to study the probability that +the outcome of the'7procesé
exceeds certain: boundaries depending on the strategies of the players. This approach
generalizes the game of survival, considered by Milnor and Shapley [2]-

Let us denote by K +the n-dimensional cube {x: 0 < x, <1, i=1,...,n}, by

n n
P, +the domain igl {(x: % > 1} and by ;Tb the domain igl {x: x; < 1) - Pl . We

1

shall define a functional on the realizations of the process x(t): if the process
goes out of the domain. Ib » the functionai is equal to. 0 , if the process éoes
into the domain Tb ~- K, then. it is equal to 1 . In the case of infinite wandering
within the cube, the functional is equal to some Q , O_S'le 1l , depending on the
realization of the process. The game is called the game of wandering. The strategies

-are those described above, and the mathematical expectation of the functional deter-

mined above is called the payoff under the given strategies. The following theorem

is proved:
THEOREM 1: If ‘A = [a(i,3)]| consists of vectors, having for fixed 1i,j either

non-positive, or non-negative components, but not all being equal to zero, then

the. value of the game of wandering exists and does nof.depend on - Q.
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The value of the game is equal to a unique root of the equation

f(x) = Val [|£(x + a(i,4)l| , where Val denotes the operator of taking the value
. 0 xeRj
1
of the game with the matrix indicated previously, and f(x) = {
1 erb-K

The proof of this theorem is similar to the proof of the theorem for the
univariate case [2]. Since the solution of this functional equation by the method
of successive approximations represents a difficult problem, we consider the limit
behavior of the Vélue of the game of wandering, where the elements of the matrix

converge to zero.

THEOREM 2: Let A

0 be a root of the equation

o(r) = Val flag (1,5)+. - 4a (1,5) + Ma (1,30 4 (1,301 ] = o,

.where @A) <O for N> XO ,

e(A) >0 for )‘<'7‘o .

If the conditions of the preceding theorem are satisfied, then in the game

of wandering with matrix A, = It « a(i, i)l as t -0, the value of

i i Fooot + A +oo4x ) <
the game converges to O _1n.the domain Xl Xm . O(xm+l xn ) 1

and to 1 in the domain X, +...+x + Ko(x ot Xn)'> m + xo(n_m_l) .

1 mtl T

The proof of this theorem is based on the fact that

. Mxy oot x o+ (%b + €) (xm+ oot xn)]

1

- N
is the solution of the functional equation for some M .
‘We will apply the results of theorem 2 to the game of exhaustion\tj]. By the
game of exhaustion we mean the following subclass of the game of wandering: the

elements of matrix A "possess the following properties;
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TTERATION METHODS IN THE SOLUTION OF BIMATRIX GAMES

E. B. Yanovskaya

Trudi VI Veesoyuznogo Soveshchaniya
po Teorii Veroyatnostd,

i Metematicheskoy Statistiks, 1962, p. 371.

SUMMARY

Iteration methods are applied to the solution.of bimatrix games. These are
similar to the Brown-Robinson method for the solution of matrix games. .
T W2,

The convergence has an order which is equal at least to o(t ),

where m and n denote the corresponding number of the rows and columns in the

matrix games.

(Translated by Kiyoshi Takeuchi) °
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SEVERAL . APPLICATIONS OF LINEAR PROGRAMMING

'METHODS TO THE THEQRY OF COOPERATIVE GAMES

0. N. Bondareva

Nekotoriye priméneniya metodov lineynogo programmirovaniya
k teorii Kooperativnikh igr

Problemi Kibernetiki
Moscow, 1963. Tenth Issue pp. 119-139.

This article is devoted to the appli;ation of a theorem on linear inequalities
to the existence problem concerning solutions of n-person cooperative games.

In the first section of the paper we shall introduce the concept of coverings,
which chargcterize a game's coalition structure, and shall study their properties.
- In the sécond section we shall investigate the core, a set which is always

contained in the solution and, when it exists, in a certain. sense replaces the
solution. Necessary and sufficient conditions for the core's existence (éxpressed
in\terms of coverings) will be set forth.

In the third section, quota games will be studied with the aid of the same
methods used in the second section.

In the fourth section we will investigate the link betwéen the core and the
solution. We shall point out some necessary conditions that must be present in
order for the core to coincide with the solution.. Several sufficient conditions

will also be indicated.

In the last. section. we shall present some examples.



§1.  Basic Concepts. Definitions and Notations

A cooperative game I' , given in the form of a characteristic function

(see [1] and [2]) is a pair, consisting of:

1) A set I, = {1,2,...,n}, called the set of players, and
2) A real function v(S), defined on the subsets S of this set and having

the properties:
v(A) = 0

v(In) = M,
- where M 1is some positive number;

0 < wv(B) <M for any SCIn.

The subsets S of the set In .are called coaslitions, and the function +v(S)

is called a characteristic. function.

If M=1 and v({i}). =0, i=1,...,n, i.e. the characteristic function
.receives the value zero on single-element. sets, then we say that the game is

given in. (0O-1l)-reduced form.

In what follows, we shall, unless otherwise stafed, assume that the games
under discussion.are given in (0-1)-reduced form.

Consider the systems of real numbers

a = (al,...,an), where a, > v({i}) = 0O . and Z a, =1.

We shall call any such system an imputation. Denote the set of all such
systems - the set of all imputations - by the letter A . We shall, from here on,
loock upon © as an n-dimensional vector, and on . A as a subset of n-dimensional

Euclidean space.
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We shall now define a dominance relation on the set A . We shall say that
the imputation o = (al,...,an) dominates the imputation B = (bl,...,bn)

(this is written a B) , if:

1) There exists a set S ( I, such that b4 a; <v(8) (The set .S 1is
1les -
then called effective for o ),

2) a, >»b, for all. ieS .
1 1 .

Occasionally, in order that if be clear with respect to which set the dominance

takes place, we shall write « >. B -

S ,
Note that any such p wmust fulfill the condition . & -bi <v(s), i.e.,
’ ieS
dominance may take place only with respect to those sets..S for which = bi < v(s).

1eS
We shall call the set 8 essential for o, if:

1) .8 is effective for «, i.e. £ a,  <v(8);
ieS .

2) There exists no set T (:S, T + S , effective for « ; i.e. for any set
T CS,T+%$S

Z a, >v(T) .
. i
ieT

Note 1: It is easy to show (see, for example, [2]), that the dominance
relation may take place only with respect to sets which are essential for the
dominating’imputation.

The dominance relation does not constitute a partial ordering; in fact, every
logically conceivable possibility may take place between two imputations (it is

possible for example that,with respect to non-intersecting sets, . both . « > B

and BY» @ are realized).
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Let PCA . We shall denote by dom.P the set of all imputations in A
that are dominated by some imputation in P .
The set U .= A\dom A 1is called the core.
The set V is a solution, if V = A\dom V , i.e., a solution is a set of

imputations such that

1) No two imputations in V dominate one another.

2) For every v é V, there exists an imputation .@ € V +that dominates it,
a)-u (see [1] and [2]).

Obviously U( :V, since the core consists of all iﬁputations not dominated by
any imputation.in A (U-=-A\dom.A). Simple examples show that the solution. is in
general not unique (see, for example, [1]).

LEMMA 1.1: If a sdlution coincides. with the core, then the solution is unique.

The  lemma is trivial; we formulated it so that it may be easily referred
to further. on.
For any .set 8 (C In’ we denote thée number of elements in. S by [SI.
We denote by aq = {Sl,...,Sm} the system consisting of all Sj(: In for

which either v(SJ,) >0, or, if v(sj ). = 0, then ]sjl =1.

LEMMA 1.2: In order for an imputation. ¢ = (al,...,an) to belong to the
core U , it.is necessary and sufficient that the inequality

Z oa, > v(S)

. L -

ieS

be satisfied for all Sé‘?l .

PROOF': Necessity. Let o € U and suppose that the condition of the lemma is

not valid, i.e., that there exists an . 8§

o> such that I a, <v(S) . Consider

ieB8p
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B = (bl,...,bn), . vhere

We stipulate that

V(So)'zaj_
€ = 1e80
EN
Z b o= 1- v (8y)
i¢So
Such a vector exists, since l—v(So) >0 . Bince bi 20, i=1,...,n, and

E b, o] o
.2 b, = % a, + |8 ; +1-v(S,) = 1,
=1 1 aesy to 0 [Sol ©

then B € A . But since ﬁ)-a ; @ € dom A . However, by supposition

‘¢ € U= A\dom A . We have then proven the necessity of the condition by way of

contradiction.

<

- Sufficiency. If for some ¢ = (a ,...,a ) the condition of the lemma is
L n

S
then (by definition of dominance) « ¢ dom A, i.e. a € A\dom A.

fulfilled, i.e. that X a; > v(s) forall. sC In,:(for S ¢ 72 , B a; > 0 = v(8)),
S 2z ;

COROLLARY:  The core constitutes a closed, bounded, convex subset of n-dimensional

space with a finite number of extreme . points. (This is because it consists of the
n . .
intersection between the hyperplane igl a; = 1 and the convex polyhedral region

L .a, >v(S,), S, € .
8, %12 (85), 8, n)
We correspond to each SJ. € ’n and to In the vectors Sj > J=1,...,n,

, wWhere s'(jl-)== { 0, if i¢ Sy

and I . Here, :
(1
— 5..F (S( ):"':Sgn)j) , and
J J 1, if 1 e 8y

I, = (1,...,1)
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We denote the zero vector by 0.
We define a (g-@)-covering of the set In to be a system of non-negative
real numbers (xl,...,xm), such that
m . .
& xN, 8, =1
=1d 4 2
Here g is the number of kj's such that Kj >0, and 6 is the system of
subsets corresponding to these A.'s, § = (8; ,o.., 8. : N, >0 ]-
J Jl’ 4 Jq J&
We shall say that a (g-8)-covering (xl,...,Xm) is reduced, if for any.other

(g-8)-covering (ki,.‘.,Xé) the equation A} = Ap holds for all 4 .

LEMMA 1.3: A necessary and sufficient condition for a (9-6)-covering

to be a reduced (qfe)-covering is that the system 6 consists of linearly

indepenaent vectors.

PROCF : We may assuﬁe, with no loss in generality, that Kl >0 ,...,Xq >0,

Kq+l = -+ =A =0; then 6 consists of the véctors Sl yeer, S
Consider the corresponding system of equations

q .

SR CO R ,  i=1,2,...,n . (1.1)

The system is feagible;: for xl,...,xq; constitutes its solution. The

requirement that the (q-8)-covering (Kl,-

the requirement that this solution be unique. When the lemms is formulated in

..,hm) be reduced is equivalent to

this way, it is seen to be trivial.

COROLLARY 1.l1: A necessary and sufficient condition for a (a-8)-covering

(Kl,...{Km) to be reduced is that the rank of the matrix I Sj” Kj > o Pe equal

to q .
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COROLLARY 1.2: For all reduced (g-6) coverings, q <mn .

COROLLARY. 1. 3: The number of reduced coverings is finite.

COROLIARY 1.k4: Let: 1) (xl,...,Km) be a reduced (g-6)-covering; 2) aq be

the number of sets Sj e 6 such that lsjl > 1. (We may assume that these sets

are S$.,-..,8 ); 3) T be the set of components of In "completely covered"

1 ql

by the sets S 5, i.e.

,l.
"1 9 a
. 1 (1)
T = .{(i: i€ In; 2 N8 =1)
. =1 Jd
Then ITI_E qy -
PROOF' : Consider the given (q-e)-covering. Eliminaté all single-element sets

from the system of "covering" sets. The.number of such sets is equal to q-qi ,
each of which takes.part in covering exactly one element; therefbre, n—q+ql
components now remain. "completely covered". The set of these components was
denoted in the conditions of the asse#tion by ng. Hence ,ITI = n-g+q . Since

1
n-q > 0, then JTIqu .

LEMMA 1.4: If a (q- 8)-covering is regarded as a point in n-dimensionsl
Euclidean space, then the set of all (g-8)-coverings, = , is a' closed, bounded,

and convex point set. A member of the set is a reduced _(q-e)-covering if

and only if it is an extreme point of the set.

PROOF : The closedness of the set is trivially true. The boundedness of =
is due to the fact that 0< ki_f 1 . Convexity follows from the linearity of
the conditions defining a covering; the last assertion is true by definition of

reduced covering.
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Thus, the set of all coverings.is described by the set of reduced coverings,

whiéh are finite in number. It follows from Lemma 1.3 and its corollaries that

the reduced coverings can be determined quite easily.

§2. Basic Theorems of Core Theory

In this section. we shall demonstrate necessary and sufficient conditions for
the existence of the core ¥ for n-person cooperative games.

We will first prove a lemma dealing with linear inequalities of a certain type.

IEMMA 2.1: Let Al ey Am be a system of n-dimensional vectors with
non-negative coefficients and let I .= (1,...,1) . Then
1) the system
. AJ _}_(_2 Vj ) J=1,.-.,m ,
-{’ (2.1)
I X =1

has a.solutioh if and dnly if for all systems of real numbers

Kj > 0, J=1,...,m, for which

m .
B A, A, = I , _ (2.2)

. m .
the inequality ‘JE .hj‘v, <1 is fulfilled;

2) the system
X > v, J=1,...,m,

_fi___ J
;{ (2.1%)
L1z x =1

*

Here and further on, when.we speak of the core's existence, we mean the existence
of a non-empty core.
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has a solution if and only if every system of real numbers .hj >0, j=1,...,m,

m
satisfying (2.2), fulfills the inequality 'jgl Xj vj <1l.

PROCF : Let us first note, that in order for (2.1) to be solvable, it is necessary

and sufficient that the system

A, X >,
. l_"‘ 1
{' I X <1 (2.3)

be solvable, or equivalently, that

A, X >,
i Z

{'-Ixz-l'.

The necessity of this condition is trivially true. For proof of sufficiency,

1

note that if for some X  the strict inequality L X <1 is fulfilled, then

. increasing the components of X so that ;EEE: 1, we receive a solution to

{2.1). This is because the inequalities are thus only strengthened, in view of

the non-negativeness of the system's coefficients.

‘ According to a theorem in [3] . dealing with solvability conditions for systems
of linear inequalities, a necessary and sufficient condition for (2.3) to have

a solution is that for any system of real numbers A, Al

N _l,...,hé for which
m
BN A - I =0, (2.47)
the condition T .
jgl hs,vj < ké (2.5")

be fulfilled.
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Note, that if Ké = 0 , then in view of the non-negativeness of the components

of A, > J=l,...,m, and in view of (2.4'), all the remaining Xéys, J=1,...,m,

are also equal to zero, and hence (2.5') is fulfilled trivially. We may therefore

assume that xé‘> O . Dividing both sides of (2.4') and (2.5') by x(') and

substituting: At

A, =';\—}] s 3=l,...m

J 0
we perceive that the fulfillment of (2.4') and (2.5'). is equivalent to the res-

pective conditions:

m

ZOAN A, = I 24

Fohyhy = I (2:4)
and

b A < 1. (2.5)

=1 ¢ _

. In. this manner, the first assertion is Pproven.

‘For proof of the second assertion we first show that in order that the system

AL X > Vs
I X = 1

be solvable, it is necessary. and sufficient that the system

A. X > vj
- — (2.7)
~IX > -1

also be solvable. The sufficiency of the condition is Proven in the same manner

as was done when (2.1) was followed through. . We shall now prove the condition's

necessity. Suppose that X, = (xg,---,xg) is a solution of (2.6) whereby there
: 0 S 3 .0 -
exists an X, > 0, since _E;.EQ. = iél X = 1 . Suppose, further, that
€ < nin ( A, X -v,)
J J



- 89 -

and | 0

Since in view of (2.6) Aj X-vj>0, j=1,...,m, and xgv>0, then € > 0 .

Consider X' = (x]’_,---,xr‘l), where
x o= %, itk
x! = 0 | €
k Tk

By proper choice of € we have AJ_ X'>‘V'J. and I X'<1, ie., X' isa

——

solution of (2.7),  whereupon the necessity of the condition.is proven.

We shall now make use of a theorem in [3], dealing with the solvability of
systems of strict inequalities, in connection with (2.7). We receive that in
order for (2.7) to be solvable,. it is_ necessary and sufficient that for any

arbitrary system A > ,...,A:> 0 for vhich (2.41) is fulfilled, the strict

inequality
'y, < A.(') (2.8)

0
.(2.8) is not fulfilled; this means that ?\.'0 > 0.. Dividing both sides of (2.4')

be also fulfilled. If A! = O , then, as above, ?\.3 =0, J=1,...,m, but then

and (2.8) by }\6 and introducing the same notation as were introduced when (2.1)

was investigated, we receive that for any system of numbers >\.l >0,... ,)\.m > o,
m m

satisfying the condition :Z A, A, = I , the inequality LA, v, <1 must
j=1 J _d o =1 3 'J

be satisfied.

We shall now prove some fundamental theorems.
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THEOREM 2.1: A necessary and sufficient condition for a game TI' to have a
"core . is that for any arbitrary reduced (qg-8)-covering (;1,...,hm), the
inequality m
Z oA v(s) <1 (2.9)

1
be fulfilled.

- PROOF': By lemma 1.2 the core is equal to the set of solutions «a of the system

a8, > vs,), 85, eN
{ - - J (2.10)
o I = 1
2
-This system satisfies the conditions of lemms 2.1, when Aj = Sj and vy o= v(Sj)

Applying this lemma,.we receive that (2.10) has a solution if and only if any

arbitrary system of real numbers, A 5

n
ZQ“U%ZO’ for which Z.A, .8,

1 =195 " 5

_J
satisfies the inequality ’jgl Kj,v(Sj)..f 1, .i.e. inequality (2.9) must be
fulfilled for every  (q-9)-covering- But since the left hand side of (2.9) is a
linear function. of (hl,...,hm) » and since th set of all coverings is convex
(see lemma 1.5), it is therefore sufficient to require the fulfillment of (2.9)

for every reduced (q-8)-covering.

THEOREM. 2.2: In order that a game I’ have a core of maximum dimension
.(i.e. of dimension n-1, the dimension of the set'of all imputations A)

-1t is necessary and sufficient that the inequality

m
ZA, v(S,) < 1
j=14 dJ

A) .

be fulfilled for any arbitrary reduced (g-@)-covering (xl,..., -
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PROCF: As was stated above, the core consists of the set of solutions to the

a S. V S.. S_ € )a
( J) ? J

1

v

I_IL\

Q

H<|u
1l

This is a convex polyhedral region within the hyperplane « in = 1 . In order

for this region to have maximal dimension, i.e. n~l, it is necessary and suffi-

cient that it contain relative interior points of the hyperplane « In =1, i.e.,

there must exist a's for which

By lemma 2.1, in order for such a system to have a solution it is necessary and

hj V(Sj) <1 be fulfilled for any A, > O,...km >0

1

m
sufficient that the inequality jé 1

satisfying the condition

m

» A, 8, =1 . (2.11)
. J Jd n .
J=1 ——— ——

As in the proof of theorem.2.l, note that (Al,...,Km) is a. (g-B)-covering and that
it is sufficient to require the fulfillment of the conditions of the lemma for

reduced (q-€)-covering.

Note: Consider the linear-programming problem consisting of the determinatibn

of the numbers A, > o,...,xmv:z» 0 , satisfying the system (2.11)of constraints

1
m

and minimizing the linear form jgl Xj V(Sj). Then the reduced coverings constitute

admissible basic solutions. If (Ag,...,kg) is an optimal solution, then for

theorems 2.1 and 2.2 to be valid, it is necessary and sufficient to require that

¥ X0 $. a0 ;
21 xj v(Sj) <1 and jél J.,v(S,j), <1, respectively.
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The problem of directly verifying the existence of the core may be regarded,
as well, as a linear-programming problem; the problem of finding the "maximal®
covéring then turns out to be a dual problem.

This analogy can, evidently, be extended.

This interrelationship allows us to use numerical methods of linear programming
to determine whether a given game has a.core. Note, however, that in view of the
specific character of the problems appearing here, these methods may possibly lend
themselves to modification.

From the fundamental theorems Just proven, the following assertions ensue.

COROLLARY 2.1: 1In order that a game I' not have a core, it is necessary and

sufficient that there exist g reduced (g-8)-covering (Xg,-..;Kg) such.that
o0

Z AL v(s,) >1.
j=1 dJ dJd.

THEOREM 2. 3: In order that the dimension of the core be less than n-1, it is

necessary and sufficient that fhere exist a reduced (g-8) core (kg

0
,...,hm) for
m ;
which jélkg v(Sj) = 1 , the dimension T of the core then obeys the inequality

T < n-q.

<

PROOF: The first part of the assertion follows directly from theorem 2.1 and 2.2.
We shall prove the validity of the evaluation for 7T . First let us note that
by corollary 1.2 g <n . By definition of covering

m
Z AN.S.a = I a=1.
J=1 3 _J _n

Forany @ e U, ?j,a > v(Sj) , therefore

m ‘
1l = Z A, S,a =_Z A, S, a> % _ A, v(S.) = 1,
=173 7 )7'j> 0 'J 3 7\J->O J J
i.e. Sj a = v(Sj) for all j for which hj >0 . This means that g linearly

indepeEEent constraints (the covering is reduced)of the form .Sj>a = v(Sj) are
imposed on @ . Since the constraint Iﬁ a = igl a; = 1 is a consequence of the

former constraints (= Xj Sj =I ), them T < n-q .
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Ags. examples we shall point out conditions under which the dimension of the

core is n-2 or n-3.

COROLLARY 2.2: If the core is of dimension =n-2, +then there exist +two sets

5

S, and Sj such that

s uUs, =TI , S N8 = A, and v(s,) +v(S.) = 1.
n.. - Jd1 - 32 _Jl J2

COROLLARY 2.3: If the core is of dimension n-3, then one of the following

conditions is fulfilled:

1) There exist sets S'j , 8. ,ij > such that

1 Jo I3
5 + 8, + 8 = I
and
v, ) + v(8,) + v(8.) = 1
J Jo Iz
2) There exist sets S, , 8., S, such that
30 T3 i
S. + B, + 8, = 21
J1 do I3 n
and
v(s, ) + v(8,) + v(s,) = 2
3y Jo i3
3) There exists sets §, , S. 9, 5, , 8, such that
3 Ty i Ty
é + é- = :_[n 3 é. + é, = :-[
Jq Jo Iz Jy n
. and
v(s., ) + v(s,) = 1 , vis, ) + v(5,) = 1
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These assertions are proven by direct use of theorem 2.3.
‘We shall demonstrate a simple sufficiency condition for the existence of the

core.

THEOREM 2.4: In order for a game I’ to have a core it is sufficient that v(8)

fulfill the condition

Is, |
V(SJ) S -—-n—- P Sj € ¢n .

| s,
PROOF: Consider the imputation .o = (_1]':1" . .,%) ; since SJ_ a = ——nJ—.Z v(SJ.) ’

then .t ¢ U, 1i.e. U+ A", wvhich is what had to be proven.

- It turns out that for a certain class of games this condition is also necessary.

We recall the a symmetric game is a game whose characteristic function satisfies

the condition v(8) = o(|s]) .

THEOREM 2.5: A necessary and sufficient condition for a symmetric game to

have a core is that

v(sS) _<_ % for any S CIn

PROCF : The sufficiency of the condition follows from Theorem 2.4. We shall prove

necessity. Let |[S| =+t . Consider t in ; we may "cover" it with n vectors
- = in .
1" n . - ; =z =
of "length" +t Let these vectors be Sl’ ’Sn 5 then o= S, : In .and

1 1 — T -

consequently (-J-G-, P 0,...,0) is a covering (possibly even a reduced covering).

But by Theorem 2.2, the condition

must necessarily be fulfilled for any arbitrary (g-8)-covering, and since

. ' n Is‘jl
v(s,) = v(sp), if -lsj] = ls%l then -ng(sj) < 1, or v(Sj) < = .
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§ 3. Quota Games

We shall now consider the so called quota game and shall make use of the
methods developed in the preceding section as tools for their investigation.

We recall that a quota game is a game for which there exists a system of real

numbers ml,...,(nn (not necessarily positive) such that a)l+...+u)n = 1, and
such that v(S) = I, for any § C I, for vhich |s| = 2 . This definition

was given by Shapley in [4] (see also [5]1); +he concept was extended by Kalish
(see [5]) in the following mamnner: a game is called an A-quota game, if there
exists a system of real numbers a)l,- . -,qan such that a)i+_. . .+wn =1 and

v(s) = = @, for any S (C In for v}hich IS[ = 4.
ieS ; "
We shall now investigate the question of the existence of an 'E—quota (resting

on the case of games with Shapely quotas, where 1= 2).

THEOREM 5.1: In order that a game have an *f’,-quota, it is necessary and

sufficient that the equation

be fulfilled for any arbitrary (gq- @-covering (%.1, .o -,?\m) » consisting

only of £-element sets.

PROCF' : If a quota exists, it must satisfy the conditions
I w, >v(S,) for all S, such that s.] = 4
ieS - 1 - dJ dJ dJd
J
{ . (3.1)
Za)i = 1
and =1
% o, <v(S,) forall S, such that |5.| = 4
iGSj 1= J dJ ) J .
{". , (3-2)
oo, = 1

i=1 -
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By lemma 2.1 system (3.1)is solvable if and only if the condition jgl kj'v(sj)i 1

. . Py 3 m — 3
Cis fulflllgd for any non—pﬁgatlve }1{"'Jhm ﬁor{vhl;h jElXJ Sj, = In . We derive

analogously that (5.2) is solvable if and only if the condition

Eavisy) >
Ftg V) 21

is fulfilled for any system of non-negative numbers xl,...;xm for which

m o e ’ m

L A, 8,= 1 Hence, for any such system of numbers, the equation .Z.A, v(S.,) =1
Z M5 . ; y y ) q sEhy V(S,)

must therefore be fulfilled. Noting that all such systems of numbers constitute co-

verings consisting of L-element sets, ~we .obtaein: the desired result.
THEOREM 3.2: If an {nquota exists, 1t is unique.

PROOE : By definition, an {Fquota must satisfy the equation Zcbi = v(8) for all S
4 igS
such that tsl =4 . It is therefore sufficient to prove that among the vectors §

for which ISI = £ there exist n linearly independent ones. We shall point out

n such vectors.

Sl = (1:"':1 0, ;O) >
1
82 = (O:\l\;""';/l 0, ,O)
2
én—l = l}“:'}l) O}"‘)O}l)l)
2.3
8 = (1,"':1; 0,.-.,0, 1)

n AN
— 41
THEOREM 3.3: The quota belongs to the set of imputations if and only if

m
Z A, v(S.,) =1 for all reduced (q-8)-coverings (\.,-
=1 d J . 1

sl =2 or [s|] =1 for s ¢ 6.

..,hm) such that
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PROCE : Note that aside from the conditions imposed on the guota by systems (3.1)
and (3.2), the inequality o, >0, i=l,...,n, must, in this case, also hold.

Applying, as above, lemma 2.1, we receive what was required.

Note: Theorem 1 in [4] is equivalent to theorem 3.1 for games with 4 = 2.
It is easy to prove conditions analogous to those given in [4], for {uquota

games.

THEOREM 3.4: . A necessary and sufficient condition for a game to have an

Lauota is that Ev(s,) = Jerll.-(a-t+1)
! (1)

taken over the Sj's for which ISJI~= L,

, Wwhere the summation is

PROCF : Consider the sets Sj for which >ISJI = {,(including those sets for which
V(Sj) = 0. We shéll assume that they are numbered 1,2,...,N. The total number

of such sets is: L n!

Let us construct a covering from just those sets. Each member of In will in
(n-1)... (-4 + 1)

this manner be “covered" exactly CAm) = a times, i.e.
N‘ l - .. ' (-]—-,..a,i, O,l!-,o>'-
jEl 2 SJ =1 and consequently, \2 a; is a (g-6 )

covering (as a rule, not reduced). By the conditions for an {~quota's existence

ve have:

which is equivalent to the assertion of the theorem.
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§&4. The Relation Between the Core and the Von-Neumann-Morgenstern Solution.

Existence Theorems

We consider the conditions under which the core is a solution. By lemms 1.1

the solution is in this case unique.

THEOREM 4.1: If the core is a solution then it intersects each of the
hyperplanes a, =0, i=1,2,...,n (i.e. the core has "enough" points lying

on the border of the set .A of all imputations).

PROCOF: Suppose, on the contrary, that there exists a hyperplane ajO = 0 such

that a; >0 forall @deU. Set a*¥ = min 'ai ; the minimum is attained,
0 o 0 ael 0
because the core is a closed set. Denote by a¥* = (a{,...,ag) an imputation
for which the minimum a¥* is attained. Let 0 < e <a¥ . Consider the
o o *0 0 o)
imputation . a° = (ai,...,an), where
O .
= g¥ .
a; af + e
0 . . R
a, = a¥* for 1 % i, and i + iy 3
1 i
ag = a¥ - €.
0 0

2 0 . 0
Since a, < mina, , « é U; this means that there exists an S.€ c77 (if
i ael o 0

there exist. many such sets we may pick any one of them arbitrarily, and label

it 8, ) for which X a? < v(so) . Suppose So does not contain iy - Then
ieS
[6]
5 .
L oa, > X a¥ >v(S.).
ieS. T ~ deg.* — O
(o) 0

It follows from this and from the preceding inequality that i.eS
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In order that an impﬁtation B € U dominate ao 5 it is necessary that the

i b, = v(S be fulfilled.
equation ié‘.s i ( O)

0
In fact, RN > _v(SO) for all B € U, but dominance may take place only
0
with respect to an effective set, i.e. only when i}és bi < v(SO) . But a¥ e U.
0 - .
*
Hence i?;;SOai > v(SO) and
0
b, = < .Z, a¥= a¥ . o B
ieSy 1 V(SO) - 1eSO &3 alo * 1%’8\1% %1
Taking into account that bi > a¥ , we receive:
0 10 :
. 0
b < I aj
1680\1o . }eSO\; .
This means that for some ‘il ) bi < aci’ "« Hence no imputation B in U may
1 1

dominate ao

- with respect to So . Since SO was arbitrarily chosen from the
sets with respect to which dominance could take place, U therefore is not a

solution.

COROLLARY 4.1: A core of dimension O cannot be a solution.

PROOF: Since the core is a convex set, a core of dimension O necessarily
cc;nsists of one imputation. By theorem 4.1, this imputation can only equal the
vector (0,...,0). This vector, however, does not belong to the set of imputations.
Let us examine the sets S;'j = In\sj , where lsj[ > 1 . Denote the system
of all such sets by en' . Certain subsets of In may now be regarded as members
of the system ?l or of the system "72/ L. . Extend the
characteristic function v(S) onto the system (n' of subsets of I , setting

v(SB) =1 - V(Sj) .
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Denote by ‘n% .the system of sets ‘7% = {57?, SS] (83 € 77', i.e.
v(SB) = 1 - v(Sj)), and consider the (q-Qj)-coverings (hl,--',Km,v j) of
the system of sets Gj C Gn% ( \3 corresponds to Ss). We_shall call such
a covering a (q-ej)—quasi-covering;.we shall also occasionally refer to it simply
as a covering, since a covering is a special case of a Quasi-covering, i.e. a quasi-
covering becomes a covering when %4= 0

Since in manyAquestions‘concerning the solution, single-element sets play a
special role (they take no part in dominance ), it would be.convenient in the dis-
cussions that lie ahead, to single out the components of coverings corresponding
to these sets. We shall therefore denote quasi-coverings, and thus coverings as

well, by (Xi,...,kk,u T vj) vhere Xk +n = m and Hy is the component

n
corresponding to the single-element set consisting of the element p .- We shall

assume that the sets. Sj are denumerated so that Sk+P = ©0,...,0, 1, 0,...,0) .

Quasi-coverings may, just as coverings, -be reduced in form. Lemma 3.1 and

its corollaries are valid for quasi-coverings. ZLemma 1.4 takes the form:

IEMMA L4.1: For any fixed J, 0<j<k, the (q-ej)-quasi—coverings
when regarded as points of m + l-dimensional Euclidean space, form a
closed, bounded, convex set; the extremal points of this set, and only they,

all constitute reduced quasi-coverings.

THEOREM 4.2: A sufficient condition.for a game I' to have a unique solution
is that the inequality

k
‘ j)
RN IR AR W) vy <1, (1)
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where u(J> = max M, be fulfilled for any arbitrary (g-6.)-quasi-
1e8, : J '

covering (kl,...,%k, ul,---;un, vj) .

PROOF : We shall prove that under these conditions there exists a solution which

coincides with the core; then, by lemma 1.1, the solution is unique.

Since the core is always included within the solution, it is sufficient to
prove that when the pre-conditions of the theorem are fulfilled, the solution is
included within the core, i.e., that for any 7 € A \ U there exists some a € U,

such that o % y . Let a = (al,---,an), and y = (c ,---,cn) e A\U .

1
Since ¥ & U , the conditions of ‘lemma 1.2 are not fulfilled; this means

there exists some S, - for which ié ci'< v(S. ). In order that ¢« >— y , it

Jo SJO Jo
is necessary and sufficient that for at least one such Sj , the system of
' -0
inequalities
o éj > v(sj) s 3=l,...,m; (4.2)
.o 8. < wv(s. ) ; (4.2v)
—J_ - Jo

8, > ey ieS, (h2m)

Jo

be satisfied. The fulfillment of (4.2) is equivalent, by lemme 1.2, to the
condition that « ¢ U . The fulfillment of (4.2') and (4.2") is equivalent to

the condition that « >'7 with respect to Sj .
: 0

Because of this, in order that the solution be included within the core

and that U Dbe consequently a solution, it is sufficient to require that for any

y € AN\U , the system of inequalities (4.2 - 4.2") have a solution for any Sj
, : 0]

such that _X c. <v(s, ).
iesS. i Jo

Jo'
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t .
. Making use of the relation..a@:j * §j ) = aI_ = 1, let us rewrite
0 0
(4.2 ) in the form « _Eg'j > 1—v(sj ) . Note that the requirement that the system
0o~ 0
of inequalities be fulfilled for any 7y in .A\U and for every Sj caorresponding
o)

to 7y such that iés c. <v(s 3 ) may be replaced by the equivalent requirement
0

Jo
that the system of inequalities be fulfilled for each ’Sj’ J=1,...,m, and for

every 7 corresponding to S, such that X, ¢, <v(S. ). It is clear that this
J 1eSJ. i~ Jo

does not weaken (nor does it strengthen) the rgquirement.

Thus, in order that U be a solution it is sufficient that for all Sj € C}?
0 N

and for every imputation B = (b,,...,b_) such that .5, b, <v(S, ) the system
1 n iesS 3 1i- Jo
0

SJ aZV(Sj), j:l,...,k}

a; >0, 1€I\S, ;

0
aiZbi,‘ 1eSJ, 5 (%.3)
K 0]
S, a>1-v(s, );
_Jo Jo
Ia = 1
n

(4.3) satisfies the conditions of lemma 2.1. A solution to (4.3) exists, according

to this lemma, if for all systems of numbers Xlz-o"""}\kz o, “12 O,...,unzo, Vg >0,

(0]
for which k h , ,
SN 8, + = pu 8 + v, 8, = 1I (4.4)
g=1 J 4 p=1 P _KiP Jo do 2
. the condition
k
PN by v, ) = E A V()4 2 ou_ b+ v, (I-v(S, )) <1 (4.5)
g =1 4 9 pes, PP o J0

Jo
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be fulfilled. Note, that (4.L4) obvicusly implies that the system

A

( A k) p'l)'

yeees .y, V. ) forma (q-8. ) quasi-covering. Inasmuch as (4.3)

1 n’Jg Jo

must be fulfilled for all Sj and for every system of numbers bpﬂz 0 satisfying
0

the condition

pes,
Jdo

we must therefore investigate the behavior of the function @(Mu, Vj ) on the

0
set of all (q-ejt)—quasi—coverings. Since this set is convex (see lemma 4.1) and
0
since the function is linear, then in order for the inequality @(A,K, %').5 1
’ ' 0]

to be fulfilled it is sufficient that it be fulfilled for the extremal points of

the set of (g-6. )-quasi -coverings, i.e. for the reduced quasi-coverings.

h¢) s )
If we substitute u(JO) = max ¥_ for every u_ appearing in (4.5), then,
PeSjo P ‘
bearing in mind that ‘ES bi < V(Sj ), we obtain the conditions of the theorem.
ieS; -
Jo 0

Note: Condition (4.1) can often be weakened. For example, if there exists

an 5., (s, N T , where, as always, T = {i: u, = O }, then condition (4.1)
Jl Jo 1

takes the form k _ (3) o
z kJ_ v(sj) Y, (1 V(SJ-‘ )RR TS (V(S.Jo) v(sJ ))<1.

3=1 0 0 1
In fact, in(4.5) (3)
Eop b= E wb <wdz b
PeS L pc-:S..\']?p P pts.s.'\fl?:p
- Jo Jo Jo

But since dominance can be considered only with respect to essential sets
see § 1 and S, S, then . %, b_>v(S, ); therefore
( ) ch Jo’ peS, P = (Jl’

‘ g
z b < v(S. - v(S, because S, T .
p S V8, ) - v(s, ), 3, C

peSj \T 0 1
0
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. Simpler though more restrictive conditions, whose fulfillment is sufficient
for the existence of a unique solution, may be expressed in the form of an evalua-

tion for v(8). Let us first introduce some new notations. Denote by D  the

matrix formed by the vectors sl,..., 5 and In , i.e.
(1) (1) (1)
sl So PPN sk 1 ‘
D = 4 L . .
(n) _(n) (n)
Sl S5 cesens sk 1

Denote by r <the rank of this matrix.

THEOREM 4.3: In order that a game I' have a unique solution it is sufficient

that . v(8) <

Rl

, sC 1,

PROCF : It is sufficient to prove that if .v(Sj)_f

sl

, J=l,...,k, then the
condition of theorem 4.2 is fulfilled, i.e. that for any arbitrary,(q-ej)—quasi-
covering (hl,...,%k, Hyseeeshs 3), the condition (4.1), or (4.5), is satisfied.

In other words, it is enough to prove that

k (s
- (3)
P(N,n, vj) = ﬁl },\j v(sp) + Vj(l—v(SJ,)) + utd V(Sj) <1,
or
k
P ks v,) =,f;1h$“&@ o v-v(s)) ﬁ%jppbpf]_.

1. Let us first consider the case where v = 0; assume that the numbers
_ J

are so denumerated, that A, > 0,... hi'> 0, A

p1g T 0t TN =0 end

1

>0,... >0
1 ’ 2Hnr LS, R h =0 (r' + n' = q ). Then the condition
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(4.1) becomes

r! . .
cpl(%.,u, ‘3) = {’f—l Ap, v(S/&) + u(‘]) v‘(Sj)_g 1.

There are two possibilities:

a) r' & r ; we then receive the following evaluation.for wl(h,u, %):

rl‘

r' 1
< —_— - .
P Ak, vj)_ %7:1 .v‘(s{) + v(SJ,) < 7+ 3 <1
This is becsuse %{hf 1 and u(J).f 1.
b) r' =r . In this case consider the vectors,,sl,..., §r . They are

linearly independent (the covering is reduced). But since the rank of D is

equal to r , In is a linear combination of the vectors, i.e.

T
z Ty .8 = I
4 =1 i a
By definition of (g-g)-covering
r . n' ~ -
—_ 1 _
’&fl K{,S& + pfl gp Sk+P = In R r+n = q
) r
Substituting for,:In the .expression £Z, n{/s{’ we receive:
r n' g g
L5 o) Sy BHy Sep = 0

but Sl e e, Sr’ Sk+l se s Sk+n are linearly independent, since the covering

is reduced; hence

Ag_TL&: O, ’&: 1,...,1‘, and “-P‘:OJ P=l:"'5nl >

and since, aside from this, = .v.0 = =0, it follows that

Hn' +1 n

p. =0, p=1,...,n, and

e
r

(Pl(K,L-L,vJ_) = ’él h/ﬁV(S‘E/) . f .. r =1 .
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2. Let us now assume that 13 >0 .

We shall examine the corresponding (q-ej)-quasi—covering

(Al,...,hk, pl,...,un, 13) . We shall assume the sets to be renumbered so that
)\l>0,...,>\.,r_l >0, }\T .=}\.n=0, |.Ll=...=ui-1=0,|_11-1+1>O,...,}.Ln>0.
Since by assumption »3 + o,
n-n +%-1+1 = nan + T= g
Since, furthermore, 9 <n, then n> T .
Let us write the vectorial equation with the new numbering:
T-1 n . )
z N{ S& + L B S + v. 8t = I
=1 . pemsl P EP b3 =
(we recall that Sk+p = (0,...,0, 1,.0,...,0)). Expressed by coordinates:
b
this reads: 1 ) (1) ]
% }",P/S + Vv, s! =1, i=l,2:---;n
=1 Jd J :
(4.6)

Loy (1) -
x K&g + vV, SS + U 1, i=n+l,..., n.

Since the vectors corresponding to the non-zero components of the covering are
. linearly independent and since the equations whose indices exceed n are
n-h=gqg-7 in number, this means that among tﬁe first n there exist T
linearly independent ones. Hence, the set of covering components appearing
within them comprises a unique solution (see lemma 1.3). Consider the system
consisting of these equations. The system may be split up into two parts:

' -1 (1)

2 N{ sé i) (ieS.) and S OA sp 0+

; L3 =1 (iésj)- (4+.7)

v-
J
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Let us evaluate, in this case, the function
Tl

? (M1, vj) = 4“51 aMpvi(sp) + peg- boby * vj(l-.V(Sj)) .
: 3

T-.1 :
Split the asumma.'t;a’.on,&E.l klhy(s{) into two parts: Let X' K{'V(S{) be taken-

over those Sk’“ which are included within..sj, and let X" %E v(ﬁa) be taken

over those Sk‘ for whieh .S/&ﬂ(In\ Sj) + A . (In the first case h,ﬁdoes

not appear together with v in a single equation in (4.7), since v is a coeffi-

cient for I \S ; in the second case each .Au&appears together with v, in at
. n - J
least one equation in (4.7).

Let us first evaluaté the function=

(Mu,v,) = EP A w(S + Z pb
v Riey) o V&) "p "p
PES ,
d
Since Sq(: Sj’ then by the essentiality of Sj (see §1), it follows that

£ b, >v(S ); therefore
. i~ q
1eSq
Y(A,p, v.) < Z* A Z b, + Z KD
= qieSql peSj'Pp

Reducing similar terms, we notice that hq is a coefficient of bi if 1 eS8 _;

therefore

W(K,u,vj) = 2 b, ( Z N s(i) + u.) + Z

Kb
a q L PP
3 (S S.\S
4 q pe J q

where the sél)'s are the coordinates of Sq, i.e.

0, if i&Sq,
1)
q
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(According to Gillies' formulation v(S) <%).

Theorem 4.3 turns out to be a proof of the following known fact.

COROLIARY 4.4: The set of n-person games having a (unigue ) solution has the same

dimension as the set of all n-person games.

For this reason, the probability that an arbitrarily chosen n-person game
have a solution is positive.
§ 5. Examples

In the way of example let us first consider a game with a core of dimension. 1.

THEOREM 5.1: A game may have a core of dimension. 1l +that also turns out

to be a solution only if the following conditions are fulfilled.

1) There exist sets

M = {1,2,...,k} C I M4 A
N = {k+l,...,4} C s N4
and numbers K
a. > 0,...,a >0, Y a. =1
1 . k j=1 1
{
by > 0,000, bp >0, X b, = 1,
i=1

such ‘that v(Sj) < min ( x a.; =X b.) ;

s.nM + s.ny *
J Jd

2) for any O <i <4 there exist at least two sets Sii, S5 C MUN
- 2

such that ieS, NS, and v(S )=v(S )=a, if i<k, and
i i i 1 i -
1 2 1 2
v(s.)=v(si)=bi,,if i>k .

1 2
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Since -1
bM s(l))\ + H, < Es(l)k + M. <1 and g <1, +therefore
a:S CS a q i- a=1 a q i - o
e
Y(hp, v,) < Z b, + LB = 3 b, <v(s,)
J 1eUs PSS e, J
Thus

(p(}\.,p.,vj) SOOI Apv(sy + V<Sj) + vj(l-..V(S-J.)) =

it

h K&v(s,ﬂ) + v + (l-Vj)V(SJ.);

where I" as formerly stated, is a summation over the 4's for which A 2 appears

in at least ome equation of (4.7) containing vy and hence ?»1,,/.5 1- vy Since
the number of different k{(’s does not exceed T-1 and since V.(S{,’) f—i{ R
then 1
LI Ap v (S < (1-v,) =" v(Sp) < (1-v.)

£v(8g) < (v, (5p) < ( 3 %

Thus, - -V, (1-v, )t
q)(}\ M V') < (l'—v: ) —T—]'- + v + = :J L= - Jd + v
TRy = J r  J, r B r d’

T
and since = < 1 and 1- \i]_>0 , ‘therefore @(\,u, \3)5 l—_vj + v;j =1 .

COROLLARY 4.2: If the number Xk of coalitions S , for which v(S) > 0 , 1s

less than n , +then a sufficient condition for the existence of a unique solution

is the fulfillment of the inequality

=l

v(s) <

From Theorem 4.3 and the inequality r < n the following corollary ensues.

COROLLARY 4. 3: (Gillies' theorem, see [2] ). 1In order that a geme I have a

2
=

unigue solution (coinciding with the core) it is sufficient that v(s) <
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The proof is carried through with the aid of Theorem 4.1, Since no
difficulties present themselves when this procedure is performed, and since the

theorem itself is of no particular importance, the proof will be omitted.

THEOREM 5.2: In order that a game I' have a core of dimension 1 that is

also a solution, it is sufficient that there exist sets M, N(C In of a
min (Lsn M Lw ;lﬁ.ﬂ.N.J)

single cardinality k , such that v(8) <

M - - . - |- k
and v(s) = 2B ] 8nM [;{ lsnNi) , for ISI _—
1 1 ‘ (o...ol...—l\o....
PROOF: Since the imputations & = (£,.-., =, 0,...,0) and B = ’\K_/’K’_\ ki’
faddieinlild k k
Vk k k

are contained in the core, the core therefore exists and is of dimension T > 1.
We shall now show that when the conditions of the theorem are fulfilled the . coré is
of dimension 1 and turns out to be a solution.

We construct the following chain of two-member sets:

5, = (1, k+1), s, = (k#1, 2}, 85 = (2, k#2},.v0, By 4 = {k-1,2k]}
Spy = {2x,1} .
Let o 1

kj='§, if 0<j<2k;

N if [s.| =1, jeI \(MuN)

J' b4 .j 2 n - 3

0 -

)\.j = Q for all remaining Sj .

Then . (?\i,-- -,2\;) is an (n-8)-covering. Since X 7\.3 v(Sj) = 1 and since the
number of linearly independent vectors in the system 6 is egual to n-1, then

T <n-n-1= 1. This, together with the previously derived inequality T > 1 gives
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Let us examine the conditions imposed on the imputations in the core by the

existence of the covering 2. Let 7 = (cl""’cn)eU’“ Then
cl t e = -% s
ot =
Coks1 T %n T 0.

Denote Ck+l by t ; then

i
c; =t i=k+l,..., 2k;
ey = 0, i=:2k+l,...,n0n
It is easy to show that
U= (u(t) = Ci - t,;:% - 5 t,.l.c.,t, 0,...50), 0.<t <%}

1

xS

is the core. We will show that U is a solution. In fact, let & = (dl""’dn)'

If for all S_,...,S zd =v(s;) = l, then & e U. If, however, for some
P 2k i 4 k
Sp
S/ﬂ'
0 5 o4, =4, + 4 < v(s,) .= =
s i iy i t, T Kk
1 o) 0

then there exists a t' such that

d 1
ipg < .- t!
o k

dJ{J/ < !
0

1
for example, t' =4, + € vhere e <= - 4 -d, ), i.e. B u(t?) .
( ple, “34 p) & 1’F40 3 ,&0 P) s;f,o* /

The theorem is thus progen.
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Example. Symmetric Shapley market games.-

A symmetric market game (see [6]) is a game with the characteristic

function
v(s) = min (|snu|, [snx]) .

where MUN = I The game is not normal, and V(In) = min (|M[, IN])- Let ]M]_S ||
and ]Ml = k; then v(In) =k . In (0-1) reduced form

V(S) = min (ISM[, lanI)
k

The game has a non-empty core, since

1 1
(’E:"')'EJ 0,..-,0) €U
e
.k
If IMI = IN' = k , +then by theorem 5;2 the game has a core of dimension

1, which is also a solution; this core was investigated by Shapley also. If

]Ml < ]N] ; then by examination of the coveriﬁgs conéisting of two-member sets, we
immediately receive that the core is of'dimension O . In this case, as shown
in [6], a solution exists but is necessarily not unique. Hence, the following

assertion is valid: The solution of a symmetric bargaining game is unique if and

only if it coincides with the core. It is Possible that an analogous assertion is

true in more general cases as well.

As an application of the general theory let us consider four-person games.

Example: Investigation of four-person games.
Let In = {1,2,3,4}. We shall denote the coalitions by Si’ Sij’ Sijk’
vhere the lower index is the -enumeration of the coalition's members; for this

reason 1i,j,k,f shall henceforth always be different.
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Using corollary 1.4, we enumerate all reduced (4-6)~coverings:

oL sy ék% = EI}_’ {i,3,k,2} = in
II. % G105 * ‘sm + 5'15” + 8234) = _Ii
III. %(Sij +S£+Sj,ﬁk+_s‘£-) =_1-I-1_
. -lj(sij + Sik +.8 ) + %S,Jk/ﬂ = I
v %(S“ijk * o v o8yl = b

These are all the reduced (g-6)-coverings with the exception of the "trivial"
ones (the coverings that yield trivial evaluations of the characteristic function.

By .theorem 4.2, for the core to exist it is necessary and sufficient that:

I. ‘V(Si,j) + V() <1 .

I v(S,5) + V() + V(S g) + v(sy) <3
III. Av(SiJ.) + v(Sik) + v(Sjk/&) < 2.

Iv. V(Sij) + v(Sik) + v(si&) + EV(Sjk/&) < 3.

V. ‘v(si,jk) + V(Sijf&) < 2.

In order to write the necessary conditions for the existence of the solution
it is necessary, for each and every. S to examine 5 , in its second quality,
i.e. with the characteristic function 1-v. (In\S) . We must do this for each of the
conditions I-V.

In view of the large number of such conditions, let us write them for the

special case of a symmetric game. We receive that for any O < € _<_% , any .
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symmetric four-person game with a characteristic function satisfying the conditions

2
) = - €,

1 .
V(Sij) 5 '3' + €3 V( 5

Sis%
has a unique solution (coinciding with the core).
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.

Let us consider a cooperative game, determined by a characteristic function

in O-l-reduced form (see [1]). We shall examine the set of imputations

= 1}

n
A = o= (al,...,an): a; >0, Ai-—);l a;

We shall set in correspondence with each coalition S ( 1, -a vector
S = {Sl,---,sn}, where s, = 1 if ieS and 8; = 0 if iJES .
A g-8 covering of I, is defined as a system of numbers (XJ.; .. .,%.m), 7\.J. >0,
m .y
sueh that jgl }.J s y = __I_n R SJ. C In . Here ¢q is the number of positive A.j's

and - @ 1s the set of corresponding coalitions SJ._ (see (3)). The extremal points

of the set of coverings are called reduced coverings; the number of reduced points

is finite.
A subset Y of the set A 1is called the core, if for any arbitrary Qe U

the condition
Z a, = 8§8+a>v(8) for all SCT
. 1 —_— = n
ieS
is satisfied.
Any partition T of the set In into non-intersecting coalitions is called

a coalition structure.
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Let V¥(t) be a mapping of each T into the set of all coalitions sC I,
such that T ¢ ¥(t) . The pair [2,T] (@ € A). is called V-stable , if the

following conditions are fulfillied:

1) s~ a > v(8) for all S ¢ ¥(T)

0 ( =v({i})), then {i} e T .

il

2). If a,
i

The concept of V-stability, as well as the concept of k-stability, was
introduced by Luce (see, for example, [1], [4].) The well known k-stability theorems,
concerning classes of symmetric games and quota games are also due to him.

In this paper V-stability will be studied with the aid of linear programming

methods.

LEMMA: In order for a system of inequalities of the form

P ——————

S *a > v(8), sek=
I *a = 1
—n
to have a solution (here = 1is some set of coalitioms), it is necessary and

sufficient that for any arbitrary g-8-covering for which 6 = , the inequality

m
Z A, v(s,) < 1
j=1 9 J

be fulfilled. Here, in order for even one of the inequalities to be strict,
m
jgl'xj V(Sj) must be less than .1 for coverings for which, correspondingly

to this inequality, xj=> o .

The proof is based on a theorem (see [2]) about the solvability of systems

of linear inequalities.
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THEOREM 1: TIn order that there exist, for some T , a V¥ stable pair J[a,t],

it is necessary and sufficient that for any arbitrary reduced g- @-covering

m
(kl,...,xm) for which 6 C {¥(7),(1},...,(n}}, the inequality jflkj v(Sj)_S 1
be fulfilled. Here, the inequality must be strict for coverings containing

single-element sets, not included in T .

PROCF : In order for the pair [@,T] to be Y-stable, it is necessary and sufficient

that o be a solution of the system of inequalities

S*a > v(s), Sevy(r) (1st condition)

a; >0, ieSeT and [5|>2 (2nd condition)

a. >0 for the remaining terms

I a = 1

To complete the proof we merely make use of the above formulated lemma.

Let us denote by T a game for which no g-f@-covering (A

.l,...,xm) exists

such that

m
Z A v(S.) < 1.
J=1 J (J)“

COROLLARY 1: In the game T no Y-stable rairs exist for any mapping V(T) whatsoever.
COROLLARY 2: For definite choice of 1V . there exist Y-stable pairs for super-

additive payoff functions.

The assertion is true if, for example, the ma.pping Y(t) is a "subdivision"

of the coalitions in T .

1 - :
COROLLARY 3: In a given game, let (xil,)...,xrﬁ )),...,(xit,)...,xrgt)) be all the
m )
reduced ;- Gi—coverings for which jgl Xgi) v(Sj)_S 1 ; then in order for there to

) +
exist a VY-stable pair [a,T], it is necessary that V¥(7)( U Gi
i=1
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COROLLARY k4: (Theorem 1 in [3]). In order that the game T have a kernel, it is
necessary and sufficient that for any q-8-covering (Kl,...,xm), the inequality

m
A, V(Sj) < 1 ©be satisfied.

=1

The proof follows from the fact that if, for any arbitrary T, ¥(T) constitutes
a mapping onto the set of all coalitions, then any pair [®,T], a being in U s
is VY-stable. Conversely, for any arbitrary.vw-stable pair, a e U .

We shall now consider a function - ¥(T) of a somewhat more special type (see
[1]): We shall assume that V(T) consists of all the coalitions T for which
an S € T exists such that IT\SI + IS \ TI < k (The modulus sign associated
with a set refers to the number of elements in the set). k here is = given integer.

The V-stability present in this case is called k-stability.

We recall that a game is said to be symmetric, if v(S) = v(|s]).

THEOREM 2 (Theorem 1 in [4]): A necessary and sufficient condition for a

symmetric game to have a kernel is that v(8) < -lgl for -JSI = 2,004,k+1 .

PROCF:  Sufficieney. If v(S) satisfies the condition of the Théorem, then the

peir [E,...,2), ({1),...,(n))] 1is k-stable by definition.

Necessity. Lét [@,T] be k-stable and let 7 = (Sl,...St) . We set 7T equal
to some fixed value, 2 <r<k+tl . Consider rIn ={1,...,n, 1,.e.,n,...,1,...,n ).
We redistribute the players in rIn » producing a partition of rIn into sets
Si ,...,S&, such that ISEI o= ajr.(the aj's being integers). The redistribution
,can‘be carried forth in a way such that the smallest negative (positive) remainder

resulting from division by  r- would be added to (subtracted from) each set in T .

Since r < k+l , the remainders. would not exceed k. . This means that the sets
m
,..,. 1 q ,’ - - i 2.8 =
Si’ ,Sm e V(z) They form m-@-coverings, because j=1»§J rzn , or
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. m
% e 8.=1I . By Theorem 1 , it is necessary that .Z i v(8*) < 1 . Since

J.=l r "'J -1 J:l r J —
ISBI =ar, and v(S) is super-additive, we receive v(S:]_) > 2, v(r), j=1,...,m .
Thus,

oo v(r) 2= n

1> Z-;v(S',)Z'.'r L a, =v(r)-l: ,

=1 J =1
i.e., v(r) < = forany r=2,..., k+tl , which is precisely what was necessary
to prove.
COROLLARY: In order for a symmetric game to have a core, it is necessary and

. s]
sufficient that w(8) < -+ for any S C I,
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“XIV

STABTLITY IN m-QUOTA GAMES

0. M. Bondareva

Litovskiy Matematicheskiy Sbornik
1965, Vol. 5, No. 3, pp. 391-395.

Following the terminology used in [1], an n-person cooperative game is a i
pair <N,v>, vhere 1) N = (1,2,...,n) is the set of players, 2) v(B)
is a real characteristic function defined on some system C)? = {B:BC N} of

subsets. (We shall always assume that (i} ¢ CY) ). We shall presuppose that

v(B) is normalized so that

v({i}) = o, ieN,

v(B)_>_O s Bec)?.

If we were to allow further that v(S) =0 for SC N and . 8 é % s then the

given definition would cease to differ from the classical one. ( [3] ) .

Instead of imputations we shall consider vayoff vectors together with a

coalition struecture -‘B

x;B) = (xl...,xn,' Bl""’B‘m):
ByU...WB = W B; NB; = 4, 143 3213 x,j=v(Bi)’ i=1,...,m.
i

We shall refer to the pair (x; @3 ) as a payoff configuration.
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The set PIK; (x; (R)] = U {i]i e B, B, NK+4 A) is called the set of
J
partners in  (x; ‘B) of the set K .

A payoff configuration  (x; B ) is called coalitionally rational if = X, > v(B)
ieB

for all B( Bj .

Consider the coalitionally rational payoff configuration . (x; ‘B) and let
KAL = A K, L BJ_; then a threat of K against L is a coalitionally
rational payoff configuration

Ay, 8 ) = (yl:"':yn:' C—l:"':cp)

for which
Lopr K (v; ) = A

yi>xi, iek
y; 2%, iePlK (r; £

a counter-threat of L against X is a coalitionally rational payoff configuration
(Z:Q ) = (zl)"":zni Dl:"':Dq)

such that K(t P[L; (z,8)] and

z; 2% 5 1ePLy (2,0)],

z,>2y; > 1ePL; (9] nek; (v; ©)].

A coalitionally rational payoff configuration (x, 8) in T* is said to be
stable if for any arbitrary threat of some set K against L there exists a
counter threat of L against K . The set M of all stable cdnfigluations is

called the set of agreements; M+ A , since the configuration (0,...,0;{1},...,{n})

is always stable.
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§1. Effective coalitions. A coalition B* is said to be effective if there

exists a payoff vector [xi},i € B¥, such that

Ex, = v(@*); I x, >v(®), B (B¥, Be‘)?
ieB¥ 1B
(xiZ 0, since {i} € cn ).
Let Ihx consist of the following truncation of I : N¥ = B¥ and
v¥@B) =v(B), B(C B¥% i.e. P =B* N N - Ovviously for B¥* to be

effective, it is necessary and sufficient that PB* have a core.

Let Q@ = (Bl""’Bk) . As in [U4] , a covering of set N is defined as
k

a system of real nugbers ()\.l >0,..0, 7\. > 0), such that Z )\.J ]-3J. =N , TWhere
J=1

BJ_ and N are the characteristic functions of the corresponding sets, i.e.,

B, = (8..,...,8_.),5.. = { I OF = (@,...,1).

J 1j nj ij 0, idB

A covering is said to be reduced, if the.vectors {EJ.] corresponding to 7\.3 >0
are linearly independent. The reduced coverings are finite in number. In (4]

it is shown that in order for a game T to have a core it is neceésary and suffi-

cient that the inequality

k
= V() <v)

=1 Y
be fulfilled for any arbitrary reduced covering (7\1, . -,hk) .
THEOREM 1: .In order that B¥* be an effective coalition, it is necessary

and sufficient that for any arbitrarily chosen B C B*,/E- . ,B,&C B¥ such

that the EJ' are linearly independent and such that z N, BJ B*

the inequality % 7\. v(B ) < v(B¥) is satisfied.
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Theorem 3.1 in [1] is a special case of this theorem, since.if every
admissible set Bj C B* has the form B¥*\{i}, then the coverings of B* may be

constructed only in two ways: 1) from the sets B¥\{i}, ieB*

zi__.im

ieB*

B (x =|B¥[) ,

or 2) from the sets B*\{i}, ieB* anda (i} .
BR{ET + T3] = B*;
For coverings of the first type we obtain the condition

L v(E"N{1}) < (k-1) v(B*) ,
ieB¥*

ahd for those of the second type

v(BM\(1)) < v(B¥) , ieB* .

§2.  M-Games. We shall say that a game I' is an M-game if the only permissible
coalitions are those which consist of one, M, or n players.

A system of real numbers o),
if v(B) =i§B®i for all B:IBI_= M ( this definition differs from the corres-

e, @ s défined (in [1]) to be an M-quota

ponding definition of Shapley and Calish in that the requirement that_ 121 o =v(N)
is not present here).

Let us now investigate stable configurations in M-games. Note that in
general ,(xl,...,xn; N) can be stable only if N is effective. The effective-
ness of an arbitrary Bi + N in an M-ggme is trivial sinee only for N do subsets

differing from single-element sets exist.
THEOREM 2: If for any arbitrary By Y],

n
Z v(B,. ) <Mv(),
k=1 Jik7 -~ :

then N is effective in an M-game. For M. = n~1 these conditiocns.are necessary.
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The theorem follows directly from Theorem 1, if we note that any arbitrary
reduced covering containing n = components "covers" each element of N no less
than M times. For coverings containing less than n components, however, the

fulfilment of somewhat weaker conditions is necessary.

THEOREM 3: If an M-game has an M-quota, then it has a stable configuration

of the form

1.

(xl,...,xn;B,{il],...,{ik}) (xil =un x_.k: =0, ‘11_3:" =M) ..

PROCF: Consider the M~quota such that o) > Wy 200> wn . Assume that

B ={1,2,...,M}. Examine the separate cases vhere wMz 0 and Wy <0.

1. u)ME 0, . .i.e. all w; >0, 1eB . We shall show that in this case the
configuration (a)l,...,ah, 0,...,0; B, fM+l},~--,{n]) is stable. Suppose that,
for some KNL =4, KUL C B, K has a threat against L, i.e. there exists a
configuration (yl,...,yn; Gl,...,cp) such that L NP (K; (y, E)] = A (if
we denote by 53 those . Cj's for which- Cj NK 4: A then.we may with greater

facility write uéj instead of P[K; (y; © )1) .

yi><ni, iek

yiza)i, i(—:UCJ_nB,

yi_>0 R ie.UCJ\B,
§ yi =§ (l)i , l.e. ); .. = §y_
o g, uc, * ug,
J J J dJd

Reenumerate the players in U.aj in the following manner. Suppose il’ ... 1peK.
For the remaining players we ha.veU % \Kyi < Z w, ; furthermore a) if all
J J
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yi < w, then reenumerate the players arbitrarily, b) if there exists i: Y3 > Wy
then call it i{+l . For the remaining players we receive _Zyg'< % wi . Repeating

this process we develop a sequence i
a q

Ty, < Z o , r>1 . (*)
k=r Tk k=r 'k

soee,1i , with the following characteristics:
1 q

Let . X .
D = LU [lq} ) [l.q_-l] u...u [lq-flLil+l}

since |L| < M . (LCB uc,), then g- || +21>1 and KD .

We now show that I has a counter threat against K of the form
@ = (e D, {y b0 )
1 n s jkn—m

In fact, in order that ‘(z,fb) be a counterthreat, it is necessary and
sufficient that the conditions

21‘2 yi» ie D\L (D\L = DN U Cj) s

i8p %1 = 1fp 3 .
For this system, in its turn, to be solvable the conditions
Iz ¥ < I o
1eD\L ieD\L *
must be fulfilled. The fulfillment of these conditions follows from (¥) , by
construction of D .
2) @, < O . Suppose @peei,w > 0, @y, <O . Set
M

A= | Zoy| and 5 .= (1,2,...,k} .
i=k+1
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We shall show that the payoff structure

((Pl = EiA:"') mk = GkA, 0,...,9 B, M+1},. .., {n})

k W,
is stable (ei >0 , =z ei =1 eiAS a)i 5 we may take, for example, (—:i = » =
A=1 Z_w,
k i=1 1
Since A< X @, , hence e A<w. ) .
= 4o i - i

We shall prove that no set K(C B can have a threat against any L whatsoever.

In order for ‘K to have a threat against .1 it is necessary that there exist
a configuration . (yl,...,yn; ¢, {ji}""’ {in_M]) such that (by definition of
M-quota M > z2 in our case; therefore all payoff configurations are of this form)
V. > a)i - eiA »

: ie (sNC)NK,

. . - €,A
ylz»a)l €5 ?

ie (SNC)NK
s >0, iecC\s,
. = Z W, .
iec * iec *

In order for these inequalities to be solveble, it is necessary that

= (u)i - eiA) < o, .
sne c *
M
= Z d. > Z D, s

i=x+t1 -~ ¢\ *

Note that -A

since  [oN\s] > M-k (J¢| =M and ,lsi =k), all o > o

1<y,
and ®, <0, 14¢5.
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Therefore

Za)i-A Z e > Za)i-sz 5 ;  F Zwi = I o,
iesnc iesSnC iesnc iesnc ieC\s ¢ *

i.e. the system does not have a solution.

Note that for case 1) the inequalities “ﬁ,z"tf w ~are of no significance.

All that is important is that w; 2 0 for ieB.
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