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For a long time measurement was confined to sciences such as geometry, astronomy, 
and physics. It is, therefore, quite natural that the theory of measurement was restricted to 
the special circumstances usually encountered in these sciences, to additive magnitudes such 
as "mass" or "electrical resistance" or Yength.'' In psycho-physics, psychology, or welfare 
economics, on the other hand, additive magnitudes are hardly present. Therefore, new methods 
had to be developed-in psycho-physics, for example, the method of "bisecticm," successfully 
applied by S. S. Stevens and others (e.g., [16,1?]) in obtainhg scales for subjective magnitudes 
such as pitch, loudness, etc., and in econometrics the method of Morgenstern-von Neumann 
for measuring subjective utility. 

Because these methods are not covered by the traditional theory of measurement, it 
was argued (especially in discussions concerning measurement in psycho-physics and psy- 
chology, e.g., [3]), that they do not lead to genuine measurement but ady to something in the 
nature of an ordinal scale. In the field of psychology, especially, this crKticism was  supported 
by the fact that there was no adequate theory as well founded as the theory of measuring addi- 
tive magnitudes. The situation concerning the measurement of utility is quite the opposite of 
course: Here, we have an incontestable theory, developed by Morgenstern and vcm Neumann 
[ll], and it is rather the empirical investigations which are lacking. 

and then its applications to the measurement of utility. 
In the following sections we give a brief outline of a general theory of measurement 

0 u " E  OF A GENERAL THEORY OF MEASUREMENT 

such a way, that-to the greatest possible extent-ccmclusions concerning the relations between 
elements of M can be drawn from corresponding relations between their assigned numbers. A 
trivial example: If a set is ordered, the mapping is performed in such a way that the order- 
relation between the elements of M is reflected by the order-relation of their assigned num- 
bers, or if there is an additive operation defined between each pair of elements of 116, the 
mapping is performed in such a way, that the assigned number of a sum of elements in M 
equals the sum of the assigned numbers of these elements. 

The general aim of "measurement" is to map a set M 0x1 the set of real numbers in 
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We now consider an ordered set M, for which there is defined an operation, called a 

1. Existence Axiom 
"metric" operation, which fulfills the following set of axioms: 

element a o b E M. 
For each pair of elements a,b E M there exists a unique 

< < 
> > 2. Monotonicity Axiom If a - a', then aob - a'ob for all b E M. 

< < 
> > If b - b', then aob - aob' for all a E M. 

The operation aob is continuous for both a and b. 3. Continuity Axiom1 

4. Bisymmetry Axiom (aob) o (cod) - (aoc) o (bod). 

TmOREM 1. An ordered, connected set M, for which a metric operation is defined, 

1. The mapping a - a* is continuous, 

2. The mapping a -, a* is monotone, i.e., a - b implies a* = b*, 

3. The operation "0" is mapped isomorphically on a linear operation: 
(aob)* = pa* + qb* + r .  

can be mapped into the set R of real numbers (a E M, a -, a* E R) in such a way that: 

< < 
> > 

Mappings of this kind are unique up to linear transformations. An exact proof of 
Theorem 1 is given in [13, pp. 49-51]. If one does not insist on ultimate mathematical 
precision, one can assume in advance the possibility of a preliminary mapping a - a' E R 
which is continuous and monotone. Then, by (aob)' = F(a',b') a function is defined which is - 
due to the metric axioms - unique, continuous, monotone and bisymmetric: 

F[F(a',b'), F(:c',d')] = F[F(a',c'), F(b', d')] . 
In [l] Aczdl has proved that functions of this kind can be expressed by a function f(x') in the 
following way: 

F(a',b') := f-'[pf(a') + qf(b') + r] . 
If we put x* = f(x') it follows immediately, that: 

(aob)* = f[F(a',b')] = pf(a') + qf(b') + r = pa* + qb* + r . 
A s  the scale is unique up to linear transformations, the magnitudes p and q are uniquely 
determined by the operation "0." They are invariant under any linear transformation. 
(According to the monotonicity of the metric operation both p and q have to be positive.) In 
the general case p + q f 1, r is not invariant under linear transformations. Therefore? if  the 
origin of the scale is chosen in an appropriate manner, r vanishes, so that (xoy)* = px* + qy*. 

'For a precise mathematical statement of this Axiom see [13 ,  p. 201. 
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Hence, in the regular case (p + q f l), there exists a natural origin, and the scale is 

In the singular case p + q = 1, even the constant r is invariant under linear transfor- 
unique up to multiplication by a constant. 

mations andtherefore uniquely determined by the metric operation "o." Hence, no natural 
origin is fixed by the metric operation itself in the singular case: additional aspects have to be 
taken into account in order to fix the origin and to achieve a scale unique up to linear transfor- 
mations. (For instance, if M has a smallest element, it is quite natural to require that this 
smallest element shall be assigned the number 0.) 

aoa - a for each a E M. The fact that p + q = 1 in this case follows immediately from relation 
A very important example of the singular case is the reflexive operation, for which 

a* = (aoa)* = pa* + qa* + r = (p + q)a* + r . 
Furthermore, we conclude from this relation that r = 0 for all reflexive operations. 

the same scale is answered by the following,Theorem 2 
The question as to under which circumstances two different metric operations lead to 

THEOREM 2 Two different metric operations "0" and ''0'' lead to scales identical up 
to linear transformations, i f  for each quadruple a, b, c, d E M the following isometry-relation 
holds: (aob) 0 (cod) - (aoc) o (bed). 

For a proof of Theorem 2 see [13, p. 241. The precise meaning of Theorem 2 is the 
following. Each of the operations ''o'' and lrO't leads to a scale, which will be designated by 
a-+a* and ads** respectively 

(aob)* = poa* + sob* + ro ,  

(aob)** = pla** + qlb** + r1 . 
Theorem 2 states that the two scales a* and a** differ only by a linear transformation if the 
two operations are isometric. The parameters po, pl; %, ql; and ro, r1 will, in general, be 
different, of course. If at least one of the two operations is non-singular(e.g., po+%+l), we can 
choose a scale such that ro = 0: (aob)* = poa* + 
then also rl = 0 (aob)** = pla** + qlb**. This means that the natural origins are identical 
for both scales. 

magnitude. From associativity and commutativity, the bisymmetry follows immediately, so that 
each additive operation is a metric operation in the sense defined above. Therefore, according 
to Theorem 1, a continuous and monotone mapping exists, such that (aob)* = pa* + qW + r. 
Furthermore, as the additive operation is associative and commutative, p = q = 1 holds. 
Therefore, the origin of the scale can be chosen such that r = 0, so that we M y  obtain a 
scale, for which (aob)* = a* + b* which corresponds to the traditional result. 

subjective scales of loudness, pitch, etc., seems to be a metric operation. The only relation 
whose validity could be questioned is the bisymmetry. The approach in the experiments was a 
purely empirical one, and there was no precise knowledge as to what conditions the operation 

If the two operations are isometric, 

The general theory outlined above covers, of course, the traditional case of an additive 

Also bisection, widely used by S. S. Stevens and others (e.g., [16, 171) to construct 
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of bisection had to fulfill in order to allow for the construction of a cardinal scale. Therefore, 
no information concerning the validity of the bisymmetry axiom exists. But .there is at least 
an indirect indication that the bisymmetry axiom might be valid. In the case of bisection, 

aO(a0b) (a0b)ob 
I I 
I 
a I aob 5 

aob is the magnitude mi-y between a and b, ao(aob) the magnitude michvay between a and 
(aob), (aob)ob the magmtde midway between (aob) and b. As the bisection is also com- 
mutative and reflexive, it follows, from bisymmetry, that (aob) should be midway between 
ao(a0b) and (a0b)ob. According to the experiments performed, this relation seems to hold at 
least for the measuremeut of pitch. This is a hint that the bisymmetry axiom holds in the case 
of pitch and that hisectim is therefore a metric operation.2 In this case, according to our 
Theorem 1, a mapping exists, for which (aob)* = pq* + qb* + r. A s  stated above, the bisection 
is reflexive. It is therefore a singular metric operation, and no natural origin is determined 
by the operation itself. The origin can, nevertheless, be assigned in quite a natural way by 
assignins the number zero to the most extreme sensation at the lower bound (the least degree 
of loudness, the deepest pitch, etc.). However, the origin might be fixed arbitrarily; since the 
aperation is singular, this has no influence over r: According to the assumption of reflexivity, 
r = 0 in any case. Together with commutativity, reflexivity yields that p = q = A. Hence,there 

exists a scale, unique up to linear transformations, such that 
2 

1 
2 

(aob)* = - (a* + W) . 

This is exactly the result Stevens assumed to hold. 

measurement of utility, which wi l l  be treated in detail in the next section. 
An additional example of the application of the general theory of measurement is the 

TBE lldlEASURElYLENT OF SWJECTlVE UTILITY ACCORDING 
"0 MORGENSTERN AND von NEUMA" 

In the following remarks it will be shown that the general theory outlined above can be 
applied to the measurement of subjective utility according to the concept of Morgenstern and 
von Neumann. 

Y is interpreted as the set of the situations to be valued. With Morgenstern and von 
Neumann we assume that a complete order is defined for the elements of M, (see [ll, p. 26, 
axiom 3Al). 

Morgenstern and von Neumann is connected and that the operation "aab" fulfills for  each 
ar(0,l) q e  metric axioms. Therefore, the operation signified by Q can be regarded as a 
special case of the metric aperationno.m Furthermore, our isometry-relation (a&) p(cad) - - 

In 113, pp. 53, 541 it is shown that. an ordered set M which fulfills the axioms of 

&w) is fulfiued for any Q, fi E(O, 1). This has the following consequences: 

2On the other hand, experiments reported by Gage [6] suggested thaf the relation m a y  not hold 
for loudness. See also [12]. 
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1. For the construction of a cardinal scale it is sufficient to consider alternatives with 
any fixed probability a which can be chosen at will. It is not necessary to use alternatives 
with differing probabilities. For the special case of alternatives with the subjective proba- 
bility 1 this has already been pointed out in 1926 by Ramsey [14]. As the operation "aa b" is 

reflexive, we get a cardinal scale of utility U(x), for which U(aa b) = pU(a) + (1-p) U(b). This 
scale is unique up to linear transformations. 

probability B fa ,  identical scales (i.e., scales differing only by a linear transformation) of 
utility U(x), but different weights p', (1-p'). Therefore, U(a#3 b) = p'U(a) + (1-p') U(b). 

Our assumptions suggest that the weights p and p' should be interpreted as subjective 
probabilities which are assigned to the objective probabilities Q and 8; respectively, p = s(Q), 

p' = s( 8). The assumption that the operation aab fulfillfi not only the metric axioms but all 
axioms of Morgenstern and von Neumann, implies the identity of the subjective probability 
s( a) with the objective probability a. Axiom 3:Cb Ell, p. 261 states that (aab) pb - aabb. 
This implies s( as) = s( a) ~ ( 0 ) .  Together with s(1- a) = 1-s( a), this leads to the result: 

2 

2. As the isometry-relation is fulfilled we get, on the basis of alternatives with a 

s ( a )  = a!. 
However, it is not absolutely necessary to suppose that the axioms of Morgenstern and 

von Neumann are fulfilled. If our (weaker) metric axioms are fulfilled, this is sufficient for 
the construction of a cardinal scale of utility of the following form: U(aa b) = s( a)  U(a) 
+ (1-s( a)) U@). If, in addition, the isometry-relation is also fulfilled, then the same scale of 
utility is obtained, whatever probability is taken as a base for the alternative aa b. 

These assumptions are weaker than those of the system of axioms of Morgenstern and 
von Neumann. In spite of that, they permit us to derive all relevant results concerning the 
scale of utility, admitting, however, a divergence between subjective and objective probability. 

It should be noted that, on the basis of the general theory of mearmrement, the sub- 
jective probability assigned to a arises quite natudly out of the procedure of measurement. 
It is not necessary to anticipate its existence and other properties in a separate system of 
axioms in addition to the axioms concerning the operation aa b. It would be worthwhile to 
undertake a critical examination of the consequences resulting M m  this fact for the theories 
which-following the example of Ramsey-start from a common axiom system for utility and 
subjective probability, such as those of Savage [15] and Luce [8$ 

from the axioms of Morgenstern and von Neumann. We will now try to check the evidence of 
the metric axioms and of the isometry-relation directly. We shall restrict this undertaking to 
measuring subjective utility with regard to different quantities of an identical c o d t y ,  e.g., 
of money. By this restriction the problem can be treated more precisely and the analp& of 
the necessary assumptions can be carried through more thonmghly. 

In the subsequent analysis the elements x EM therefore stand for different quantities 
of the same commodity. Furthermore, an event is given, the Occurrence of which is uncertain. 
Let us  designate the occurrence of this event by P, its non-occurrence by p. "he wager 
"aPb" with a,b E M means: The individual in question gets puantity a, if P =CUTS, quantity b, 
if occurs. Let {P,%} be an event which can be repeated indefinitely, e.g., a random experi- 
ment. (In principle the repetition could also consist in the fact that a unique event {P,B is 
judged by different persons with identical preference scales.) Let d a b )  be the quanW 
which has the same subjective utility as the wager "aPb". As is ahown even by every-day 
experience, the quantity m(aPb) is not uniquely determined without further canventians. 

Until now, the validity of the metric axioms and of the isometry-relatian is derived 



288 J. PFANZAGL 

In order to determine this quantity uniquely the following method is used (see [lo]). Let 
w(x,y) be the probability that the individual prefers x, if  faced with the alternatives x and y. 

1 m(aPb) is then defined by w(m(aPb), aPb) := -. Of course, any deviation of m(aPb) from the 
2 

objective expected value (in the sense of the probability calculus) of the wager aPb is possible. 

of our metric axioms. 

This merely assumes that the above outlined definition of m(aPb) is meaningful. 

since we have confined the definition of m(aPb) to a,b being different quantities of the same 
commodity. 

to different quantities of the same commodity. 

two different events. Then certainly (aPb) Q(cPd) = (aQc) P(bQd). For, whichever of the 
combinations PQ,-W, PQ, PQ is realized, the result will always be the same for both 
(aPb) Q(cPd) and (aQc) P(bQd), namely: --a, m-b, PG -c, P&d. In view of this fact, we 
have used the symbol of identity 1 ' ~ 1 '  in order to distinguish this relation from the equivalence 
"-" defined in terms of utility. The decisive assumption is that uPv - m(uPv) and xPy - m(xPy) 
implies (uPv) Q(xPy) -m(uPv) Qm(xPy). By means of this relation we can deduce from the 
identity stated above that m(aPb) Qm(cPd) -m(aQc) Pm(bQd). Furthermore, we must assume 

m(cPd)] = m[ m(aQc) Pm(bQd)]. This is the isometry-relation which guarantees that the events 
{ P, F} and { Q, G} lead to the same scale of utility. To obtain the bisymmetry axiom we need 
only assume that {Q, G} is a repetition of the experiment {P, P), independent of the result 
which this experiment has yielded. Then im(xQy) = m(xPy), and thus m[m(aPb) Pm(cPd)] 
= m[m(aPc) Pm(bPd)]. 

certainty to the result a. 

priori as a consequence of the designation we are using here. 

still needs a critical empirical verification. The possibility does not seem to be excluded that 
e.g., experiments with wagers xP*y with a subjective probability 

= P aaax(x,y) + (1-p) Min(x,y); p being any number between 0 and 1. For p # the bisymmetry 

axiom isnot fulfilled; in this case, the corwtruction of a metric-scale of utility on the basis of 
the wagers xP*y would therefore be impossible. In spite of that, the behavior of the person in 
question could not be called irrational. 

After these preliminary remarks we shall now proceed to an examination of the evidence 

1. Existence axiom: To the two elements a,b E M we assign the element m(aPb) E M. 

2. Monotonicity axiom: The validity of the monotonicity axiom seems to be evident 

3. Continuity &om Also this axiom seems evident in consequence of the restriction 

4. Bisymmetry axiom: m[m(aPb) Pm(cPd)] = m[m(aPc) Pm(bPd)]. Let P and Q be 

- -- 

that uPv -xQy (i.e., w(uPv, xQy) = -) 1 implies m(uPv) = m(xQy). Then we get m[m(aPb) Q 
2 

5. Reflexivity axiom: m(aPa) = a seems evident, as the wager aPa leads with 

The relation m(aPb) = m(b%) does not involve an additional assumption; it holds a 

Summing up, we can say that the validity of the metric-axioms, plausible as they are, 

1 will show that m(xPFy) = 
1 

THE CONSISTENCY AXIOM 

assumption concerning the evaluation of wager s  
The following section considers the meaning and the implications of an additional 

Consistency axiom: m[(a + c) P(b + c)] = m(aPb) + c. 
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The axioms dealt with above were exclusively concerned with the evaluation of alter- 
native events. In the case of the consistency axiom the evaluation of conjunctive events is 
considered. We designate the conjunctive connection of two events x,y by "x&y" (both x and 
y). Then certainly (a + c) P(b + c) = (aPb) & c. The right-hand side of the equation means: 
the amount c is paid in any case, and, in addition, the amount a is paid in the case of P, and 
the amount b in the case of p. This is identical with paying the amount (a + c) in the case of 
P, the amount (b + c) in the case of 5. If one assumes that aPb - m(aPb) implies 
(aPb) & c - m (aPb) & c, then one gets: (a + c) P(b + c) - m(aPc) & c = m(aPc) + c. This 
means by definition: m[(a + c) P(b + c)] = m(aPc) + c, as stated by the consistency axiom. 

Though the consistency axiom was up to now not stated explicitly anywhere, it can be 
shown that several authors are really tacitly assuming it. In the following, we will show this 
has  been so in the case of Friedman and Savage 151, Mosteller and Nogee [lo], and von Neumann 
and Morgenstern [ll]. 

[5, p. 2901 reads: "If m(a'a b') is greater than x, the consumer unit (purchaser) prefers this 
particular risk (namely, the participation in the lottery a' a b') to a certain income of the same 
actuarial value and would be willing to pay a maximum of [m(a'ab') - x] for the privilege of 
'gambling'.'' This statement by Friedman and Savage is confined to the case where x is the 
actuarial value of the lottery (a'ab'). But this argument, if valid for the actuarial value, is 
obviously valid for any value x, so that we get the equivalent statement: "If m(a'ab') is 
greater than x, the purchaser prefers this particular risk (namely, the participation in the 
lottery a'a b') to a certain income of the value x and would be willing to pay a maximum of 
[m(a' a b') - x] for the privilege of 'gambling'.'' 

actually faces the chances of getting the amount [a' - m(a'a b') + x] with probability a and 
[b' - m(a'ab') + x] with probability (1-a). The utility of this risk is-according to the quota- 
tion above-equal to the utility of the amount x The purchaser is willing to pay [m(a'a b') - x] 
for the lottery ticket; therefore: U ([a' - m(a'a b') + x] a [b' - m(a'a b') + XI) 2 U(x). But the 
purchaser is not willing to pay more than [m(a'ab') - x]. Therefore: U ([a' - m(a'ab') + X] 

a [b' - m(a'ab') + XI) 5 U(x). It follows: U ([a' - m(a'ab') + x] a [b' - m(a'o!b') + x]) = 
= U(x). This means: x = m (La' - m(a'ab') + x] a [b' - m(a'a b') + XI). By putting m(a'o! b') - x = 
= c we obtain: m(a'a b') - c = m[(a'-c) a (b'-c)]. If we put further a' = a + c, b' = b + c, we 
obtain: m[(a + c) a (b + c)] = m(ao!b) + c. Therefore the validity of the argument used by 
Friedman and Savage implies the validity of the consistency axiom. (As a and b are  incomes 
in the case discussed by Friedman and Savage, we have assumed in the derivation given above, 
that there is no other amount of money to be taken into account. But this was only for sake of 
brevity. The same argument holds i f  one regards s + a'-m(a' ab') + x, s + b'm(a' o! b') + x and 
s + x instead of a'-m(a'ab') + x, b'-m(a'ab') + x and x respectively. 

experiment, consider also the "effect of the amount of money in front of the subject upon his 
decisions'' to take part in the gamble or not. One of their statements is this: "One possible 
criticism could be that the subject changes his utility curve with these changes in capital, 80 

that each decision he makes depends on the amount of money he has on hand at that particular 
moment." It seems remarkable that Mosteller and Nogee are thinking only of the possibility 

Using the designation adopted in this paper,3 a statement by Friedman and Savage in 

If the purchaser pays an amount [m(a'ab') - x] for the lottery ticket (a'@ b'), he 

Mosteller and Nogee [lo, p. 3991, in discussing the results and conditions of their 

3The translation in the designation i s :  I l + a 8 ,  12+b',  I*--rm(a'ab'), 1-x. 
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that the available amount of money could change the utility function of the player. They do not 
consider the possibility that the willingness to accept a particular game could depend on the 
amount of money held by the individual, even i f  his utility function were unchanged. And they 
are only thinking of "the amount of money in front of the subject"-not of the amount in his 
pocket. This becomes especially clear when they are talking (in a different connection, p. 403) 
of one of the participants, who became unemployed during the course of the study. It appears 
that these authors had neglected the possibility that this might have changed his behavior con- 
cerning the participation in these games., If this were true, they would have assumed that the 
utility of a special game is independent of the money held by the individual (perhaps with an 
exception regarding the money immediately involved in playing). This assumption, however , 
is equivalent to the consistency axiom. 

$10 with probability (Y and an amount of $1 with probability 1- (Y . If an individual is willing to 
pay $2 for a ticket of this lottery (and not more than $2), this does not necessarily mean that, 
for this individual, $10 a $1 is equivalent to $2, i.e., m(10 a 1) = 2. It actually means that the 
status quo has the same utility as a lottery, which leads to the status "quo + $8" with proba- 
bility CY and status 'fquo - $1" with probability 1- a. (We must insert $8 and - $1 as net out- 
comes of the lottery, since we have to deduct the $2 spent for the lottery ticket from the gross 
prices of $10 and $1, respectively.) If we assume that for this purpose the status quo can be 
described essentially by stating the amount of money s held by the individual, then the willing- 
ness to pay at most $2 for the lottery tieket really means that m[(s + 8) CY (s-l)] = s, not 
m(10 a 1) = 2, as stated above. Both statements are  equivalent only i f  the consistency axiom 
holds. 

like those performed by Mosteller and blogee [lo], or by the Applied Mathematics and Statis- 
tics Laboratory of Stanford University (e.g., [41 or [181), could be, if the consistency axiom 
were not fulfilled. 

Finally, the consistency axiom is also used in the theory of games. A good example 
is von Neumann-Morgenstern's introduction of the concept of "strategic equivalence" in [ l l ,  
P. 245 ff]. My attention was drawn by Oskar Morgenstern and Harlan D. Mills to the results 
obtained by Kemeny, DeLeeuw, Snell, and Thompson [7]. According to a quotation in [9, p. 721, 
in examining the restrictions imposed on the utility function by the concept of strategic 
equivalence these authors have shown in "71 that the utility €unction-assuming strict mono- 
tonicity and differentiability must be one of the types stated in Theorem 3. 

The decisive question seems to be this: $10 (Y $1 is a lottery, offering an amount of 

It would require a thorough investigation as to what the real meaning of experiments 

THEOREM 3. If utility is measurable by a cardinal scale such that U (m(aPb) ) = pV(a) 
+ (1-p) U(b), i f  furthermore the consistency axiom holds, and i f  the utility function is assumed 
to be continuous and strictly monotone, then the function is of one of the following types: 

U,(X) = A X  + B A > 0 ,  

u l ( x ) = A h X + B  A > o , A > ~  or A < O , O < A < I .  
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If U(x) is standardized such that U(0) = O,U(l) = 1, we obtain: 

UO(X) = x 

1- AX U1(X) = -. 
1- h 

In U,(x) we must distinguish between the case h. > 1 and 0 < X < 1. In both cases Ul(x) is 
monotone increasing; however, the marginal utility U'(x) decreases only in the case 0 < h < 1 
with increasing x. In this case 

1 lim ul(x) = -. 
X - 0 0  1 - A  

These statements concerning the shape of the scale of utility cannot be verified imme- 
diately. They can, however, be put in a way which allows an experimental proof or  disproof. 
The whole theory of the measurement of utility depends on the fact that the magnitude m(aPb) 
can be clearly determined by means of experiments. This, however, permits us to transform 
the statements concerning the shape of the scale of utility into statements concerning directly 
observable magnitudes: It follows from the two solutions Uo(x), Ul(x), that m(aPb) must be a 
function of one of the following types: 

mo(aPb) = pa + (1-p)b 

ml(aPb) = logh [PAa + (1-P) * b 1 - 
Both functions fulfill, as can be easily verified, the metric-axioms and the consistency axiom. 
Furthermore the isometry-relation is fulfilled if  A is independent of the special event {P,F]. 
Given the subjective probability p, the behavior of the individual can be described by only one 
parameter, A.  

together we obtain the functional equation: 
Proof of theorem 3: From U(m(xPy))=pU(x) +(l-p)U(y) and m[(x+z)P(y+z)]= m(xPy) + z  

pU(x + 2) + (1-p)U(y + 2) = u{U-l~u(x)  + (1-p)U(y)] + z} , 0 < p < 1 . 
We are considering continuous and strictly monotone solutions of this functional equation. 

By adding these two equations and using the functional equation stated above again, we obtain: 
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If we introduce the following: 

P[U(X) - U(O)l= 5 

(1-P) - U(0)I = 9 

U(u-1 [ 5 i- U(O)] + z} - U(z) = f ( 5 , z) , 

then it follows from (1) that 

f ( 5  + 9,z) = f (5  ,z )  + f(9, 4 . 
f ( 5  , z) is for each z a continuous and strictly monotone function of 5 . 

U(x) - U(0) = *(x) and obtain: *{*- ( {  ) + z} = 5 q(z) + 9 (z). For  5 = *(x) it follows: 
Hence: f ( c  ,z) = [ q(z), i.e. U{U-'[g + U(O)] + z> - U(z) = 5 cp(z). We designate: i 

( 2) *(x + z) = *(x) q(z) + *(z) . 
A s  *(x + z) = *(z + x), we obtain: 

*(XI q(z) + *(z) = *(z) cp(X) + *(XI * 

A s  U(x) is strictly monotone, *(x) 

c p ( 4  - 1 
*(4 

This result introduced in (2) gives: 

f 0 for x f 0, hence: 

* (x + z) =: c * (x) * (z) + * (x) + * (z) . 
This is a functional equation of the type 9(x + z) = F[* (x), q(z)]. The continuous and strictly 
monotone solutions of such a functional equation are essentially unique: If *,(x) is a con- 
tinuous and strictly monotone solution, then all functions *o(ax) are  solutions and only these 
(cf. Aczdl [2, p. 120, 1211). We have to distinguish between two cases: 

c = 0: general solution: *,(x) = ax 

c t 0: general solution: *l(x) = 1 (xX - 1) . 
C 

From *(x) = U(x) - U(0) we obtain the theorem to be proved. 

CONCLUSIONS 

to problems of utility show that the valuation of wagers with a constant probability is sufficient 
The applications of the results of a general theory of measurement, developed in [13], 



GENERAL THEORY O F  MEASUREMENT-APPLICATIONS TO UTILITY 29 3 

for the construction of a cardinal scale. This cardinal scale allows for a divergence between 
subjective and objective probability. Even this "weak" cardinal scale, together with the con- 
sistency axiom introduced in this paper, restricts the utility functions essentially to a one- 
parameter family. If, on the other hand, the consistency axiom is not valid, a more thorough 
investigation would be needed in order to determine the real meaning of the utility functions 
obtained by experiments with gambling. 

BIBLIOGRAPHY 

[l] Acz61, J., "On Mean Values," Bulletin of the American Mathematical Society, Vol. 54, 

[2] Acz61, J., Grundriss einer allgemeinen Behandlung von einigen Funktional- 

1958, pp. 392-400. 

gleichungstypen, Publicationes Mathematicm, Vol. 3, Debrecen, 1953/54, pp. 119-132. 

[3] British Association for the Advancement of Science: Interim Report of the Committee 
Appointed to Consider and Report upon the Possibility of Quantitative Estimates of Sensory 
Events: Report of the Annual Meeting 1938, pp. 277-334. 

[4] Davidson, D., and P. Suppes, "Experimental Measurement of Utility by Use of a Linear 
Programming Model," Chapter I1 of Decision Making: an Experimental Approach, 
Stanford University Press, 1957. 

[5] Friedmann, M., and L. J. Savage, "The Utility Analysis of Choices Involving Risk," Journal 
of Political Economy, Vol. LVI, 1948, pp. 279-304. 

[6] Gage, F. H., "The Measurability of Auditory Sensations," Proceedings of the Royal 
Society, 116b, 1934, pp. 103-109. 

[7] Kemeny, J. G., K. DeLeeuw, J. L. Snell and G. L. Thompson, "The Effect of Psychological 
Attitudes on the Outcome of Games," in Dartmouth Mathematics Project Progress Report 
No. 1, 1955. 

[8] Luce, D., "A Probabilistic Theory of Utility," Econometrica, Vol. 26, 1958, pp. 193-224. 

[9] Luce, D., and H. Raiffa, Games and Decisions, John Wiley and Sons, New York, 1957. 

[lo] Mosteller, F., and P. Nogee, "An Experimental Measurement of Utility," Journal of 

[ll] von Neumann, J., and 0. Morgenstern, Theory of Games and Economic Behavior, 
Princeton University Press, 1944, cited according to the 3rd edition (1953). 

[12] Newman, E. B., J. Volkmann and S. S. Stevens, "On the Method of Bisection and its 

Political Economy, Vol. LIX, 1951, pp. 371-404. 

Relation to a Loudness Scale," American Journal of Psychology, Vol. 49, 1937, pp. 134- 
137. 

[13] Pfanzagl, J., Die Axiomatischen Grundlaben einer allgemeinen Theorie des Messens, 
Wurzburg, Physica-Verlag, 19 59. 



294 ;r. PFANZAGL 

[14] Ramsey, F. P., The Foundations of Mathematics and other Logical Essays, London, 1931, 

[15] Savage, L. J., The Foundations of Statistics, John Wiley and Sons, New York, 1954. 

[16] Stevens, S. S., "A Scale for the Measurement of a Psychological Magnitude: Loudness," 

especially pp. 178-179. 

Psychological Review, Vol. 43, 1936, pp. 405-416. 

[17] Stevens, S. S. and J. Volkmann, "The Relation of Pitch to Frequency; A Revised Scale," 

1181 Suppes, P., and K. Walsh, "A Nonlinear Model for the Experimental Measurement of 

The American Journal of Psychology, - Vol. 53, 1940, pp. 329-353. 

Utility," Stanford University, Applied Mathematics and Statistics Laboratory, Technical 
Report No. 11, 1957, to be published in The American Journal of Psychology. 




