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2.1 Introduction

This paper proposes a new way to formulate commodity spaces in microeconomic
theory that is both more specific and more abstract than standard definitions of com-
modity spaces, including those for differentiated commodities, in the existing liter-
ature. I focus on uncertainties inherent in any production technology and aim for
consistency with how commodities are actually purchased. The overall goal is to
demonstrate that one can modify our standard model in microeconomic theory so
that it reflects these concerns yet nevertheless remains tractable for economic analy-
sis. Then the resulting economic properties can be examined and compared to those
of the existing benchmark model of an economy.

* This work was supported by the National Science Foundation through research grants DMI-
9816144 and DMI-0070257. This paper was presented at the Institute of Economics, Uni-
versity of Copenhagen in Fall 2000. As always, Birgit Grodal was an energetic and enthu-
siastic academic host during my month-long visit. I wish to thank Marcus Berliant for a
long, pleasant, and helpful conversation. An anonymous referee read the paper carefully
and provided helpful comments.
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This research is motivated by theoretical models of engineering design and manu-
facture, especially the solid geometric modelling work underpinning computer aided
design (CAD) and computer assisted manufacturing (CAM) tools. For concreteness
and simplicity, I have chosen to focus on geometric forms such as precision metal
parts and dies for plastic molding. This offers the advantage of easy visualization,
but note that the same engineering principles would carry over to other types of
commodities.

An important aspect of any manufacturing procedure is its level of precision —
the closeness of the actual manufactured object to the desired object that is speci-
fied in the design and the reproducibility of the operation with the process remaining
under control without further interference. The subfield of dimensioning and toler-
ancing (D & T) studies this uncertainty, how it can and should be measured, how it
is modelled formally, how its specifications should be standardized (i.e., ANSI 14.5
in the U.S. and ISO 9000 internationally), and how a given level of uncertainty af-
fects production costs and possible time-to-market delays in the introduction of new
products.

Yet, for economics, it is essential that any useful formal model be analytically
tractable and display the potential to yield interesting economic conclusions. Thus
there must be a balance between increased generality and abstraction on the one hand
and the prospects for obtaining interpretable economic results on the other hand.
One fruitful approach is to delineate clearly the comparisons and contrasts between
a benchmark model and the proposed novel approach, while a related research strat-
egy consists of displaying exactly the sense in which one model encompasses the
other. This analysis is performed here for my proposed model versus Mas-Colell’s
(1975) renowned model of abstract commodity differentiation with indivisibilities.
As a bonus, the presence of indivisibilities in the differentiated commodities (geo-
metric objects) here is natural and intuitive.

In economic theory, Debreu (1959) pointed out the necessity of formalizing the
definition of the set of commodities present in an economy. His well-known, well-
exposited, and well-reasoned statement on this matter appears as Chapter 2. There
he argues that a commodity should be described in terms of its complete physical de-
scription, its location, and its date of delivery so that all units of a given single com-
modity would be viewed as completely equivalent by each consumer and each firm in
the economy. This paper focuses on the physical description aspect of the definition
of a commodity and suggests that how economists think about physical descriptions
of goods can be improved. My proposed improvement is consistent with actual (in-
complete) contracts to purchase and sell goods — for instance, defense procurement —
and features contracts that are, in principle, legally enforceable as the basis for defin-
ing commodities. In addition, my framework respects realistic limits on information
with respect to the physical characteristics of products in that economic agents are
not hypothesized to take account of nonverifiable information about the production
process.

Debreu’s (1959) admonishment to pay careful attention to the specification of
the commodity space in economic theory has been followed up by a long list of
researchers — e.g., Bewley (1972) and many others who have examined various
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infinite-dimensional commodity spaces in general equilibrium theory and Prescott
and Townsend (1984), who advocate randomizations as a convexification device
(later utilized for different purposes by Hornstein and Prescott, 1991, and by Cole
and Prescott, 1995). My paper builds on the seminal article by Mas-Colell (1975),
which provides a state-of-the-art model of abstract commodity differentiation.

However, to incorporate engineering considerations of product design and man-
ufacture, it is necessary to add several layers to the Mas-Colell (1975) approach so
that it reflects the specific structure of the commodity space suggested by geometric
design theory and by dimensioning and tolerance analysis. This involves much more
than simply adding uncertainty or randomness.

Yet, for such an approach to have important implications for economic theory, it
must yield the fundamental ingredients for constrained optimization (this is needed
in engineering too!) and for consistency of the resulting economic system, where
consistency of the model means that it has a suitable equilibrium. Suitability means
that one can define well-behaved price systems under reasonable market conditions
such that at least one of these price systems can clear all markets simultaneously,
given that all individual agents optimize taking prices as given. Furthermore, one
wants the resulting allocations corresponding to any equilibrium to be efficient. In
other words, the goal is existence and Pareto optimality of equilibrium allocations
in the model. If there were possibly no equilibria or if an equilibrium could fail to
be efficient in situations which otherwise satisfy appropriate versions of the well-
known conditions that usually suffice to guarantee these properties, then one would
naturally question the reasonableness of the proposed model.

The remainder of this paper is organized as follows: Section 2 explains several
areas of engineering considerations that motivate this paper. With this motivation,
Section 3 presents the proposed set of differentiated products and proves that it has
the mathematical structure of a compact metric space. Section 4 presents the eco-
nomic environment in terms of the new commodity space, preferences, and endow-
ments. Then Section 5 defines competitive equilibrium, establishes its existence, and
demonstrates its efficiency by appealing to a core equivalence result. Section 6 exam-
ines an alternative possible definition of differentiated products in the set Cy of non-
empty closed convex subsets of the closed unit cube in a Euclidean space subject to
production imprecision given by probabilities and explains why this approach is not
adopted here. Continuing in this vein, Section 7 explores the potential re-definition
of geometric objects as equivalence classes under the equivalence relations of trans-
lation or translation and rotation. Section 8 discusses various issues involved in the
extension from pure exchange economies to those with production. Finally, Section 9
contains concluding comments.

2.2 Real world considerations
Geometric objects must be closed and bounded subsets of some finite-dimensional

Euclidean space. Obviously, the main cases of interest are subsets of the plane and
especially three-space, but R™ is specified in this paper because this level of added
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generality does not increase the difficulty. Fix a positive integer n and let Sy denote
the set of nonempty compact subsets of R™. Elements of Sy will be called geomet-
ric objects. [Where confusion with the notion of object classes in computer science
could occur, the literature uses the terms geometric solid (for three-dimensional sub-
sets) or, more generally, artifacts, although the later terminology can be applied to
virtually anything that is designed or manufactured.] Determination of the subsets of
Sp which can be considered the natural domains of geometric objects is postponed
to Subsection 2.3, after a topological structure on Sy has been introduced.

2.2.1 Approximations

Two distinct notions of approximation of a subset in R™ by a sequence (or net) of
subsets in R™ are commonly found in the literature: the one based on the generalized
volume or n-dimensional Lebesgue measure of the symmetric difference of two sets
and that based on the Hausdorff metric (or, more generally, closed convergence of
sets). The second choice is more natural for engineering applications and, in fact, has
appeared in the engineering design literature, as discussed below.

To see the difference between the two approximation concepts, consider the prob-
lem of approximating a x cm by y cm rectangle in the plane, where 0 < z < 100 and
0 <y <100, by a rectangle with integer-valued length and width (i.e., by a £ cm by
§ cm rectangle, where & € {0,1,...,100} and § € {0,1,...,100}). Let A be our
desired set or nominal object (the x cm by y cm rectangle) and let B denote the set
(the £ cm by ¢ cm rectangle) that we actually obtain as described above. Note that
A and B are compact. Then the error measure based on the Hausdorff metric can be
written as 6(A, B) = max{maxbeB minge 4 || la — bH , MaXqec 4 MiNye B H |a — bl H}
where, for z = (21,22) € R?, [||2|]| = max{|ay|, |z2|} instead of the famil-
iar Euclidean norm ||z| = +/x% + 23 (which gives an equivalent but not identi-
cal distance between the sets A and B). The alternative area-based error measure,
Area(AAB) = Area((A U B)\(A N B)) instructs one to find the volume (or area
in the plane) of the symmetric difference between the sets. It’s easy to check that
0(A,B) = max{|z — Z|,|y — 9|} and Area(AAB) = |z — &| max{y, g} + |y —
gl max{x,z} — |x — &| - |y — y|. In this example, the (A, B) error measure tends
to be independent of the approximate magnitudes of x and y; taking z = y = 99.5
and x = y = 0.5 both give minimum errors of 0.5. On the contrary, the area of the
symmetric distance necessarily goes to zero as x and y become close to zero even
though the relative errors (under either error measure) explode.

Yet another useful way to understand the differences between these two error
measures is to constrast them for the following sequence of sets: the ideal desired
set A is fixed and equals the square with vertices (0, 0), (0,50), (50, 50) and (50, 0)
while for each k, the set that we actually obtain is By, where By is the union of
A and the rectangle with vertices (0,50), (0,100), (1/k,100), (1/k,50) so that
each By, equals A plus a vertical spike of width 1/k. For all k, §(A, Bi) = 50
but Area(AABy) = 50/k — 0 as k — oo. This example indicates that the error
measure 0 is likely to perform better for certain engineering design problems than
the error measure given by the volume of the symmetric difference.
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2.2.2 The Hausdorff metric

The Hausdorff distance is defined for every pair of nonempty subsets of R".

First, define (open) e-neighborhoods of nonempty subsets of R™ by B.(A) =
{z € R™ | there exists y € A with ||z — y[| < ¢} where A # (), A C R", and € > 0.
For every two nonempty subsets F and F' of R™, define the (extended) Hausdorff dis-
tance 6(E, F) by §(E, F) = inf{e € (0,00] | E C B.(F) and F C B.(E)}. [Say
that an extended distance function, extended semimetric, or extended metric is a dis-
tance function, semimetric or metric that may assume the value of co.] Let F denote
the set of subsets of R™ and let F{ denote the set of nonempty subsets of R™. Then
the function ¢: Fy x Fy — [0, o0] is an extended semimetric on Fo; 6(E, F) = 0
whenever E = F,0(E,F) =0(F,F),and6(E, F) < §(E, G)+I(G, F). However,
J fails to be an extended metric on Fy because §(E, F') = 0 does not imply E = F;
indeed §(E, F') = 0 whenever cl(E) = cl(F), where cl(A) denotes the closure of
A. This can be “fixed” by considering equivalence classes of sets in Fy, where two
sets are equivalent if they have the same closure. A natural representative of each
equivalence class is the (unique) closed subset which equals the closure of every set
contained in the given equivalence class. Of course, it simplifies the discussion to
work directly with the set of nonempty closed subsets of R".

The Hausdorff metric was defined by Hausdorff (1962). A convenient reference
is Hildenbrand (1974, pp. 15-21), while Nadler (1978) discusses convergence of sets
in greater generality. Note that the Hausdorff metric topology is closely related to
the concept of closed convergence of sets; see, for instance Hildenbrand (1974). The
topology induced by the Hausdorff metric has been used extensively in economic
theory.

Let G denote the set of closed subsets of R™ and let Gy denote the set of non-
empty closed subsets of R™. Then 6: Gy x Gy — [0, o] is an extended metric (since
O0(E,F) = 0if and only if E = F whenever E € Gy and F' € Gy) and (G, 9) is
an extended metric space. Note that the topology on Gy induced by the (extended)
Hausdorff metric is not determined by the topology of R™ but rather can depend
on the metric used on R™ in the sense that two metrics d’ and d” can define the
same topology on R™ but induce different topologies on Gy unless d’ and d” are uni-
formly equivalent (i.e., if they yield exactly the same class of uniformly continuous
real-valued functions on R™). This is why the above discussion specified the metric
derived from the Euclidean norm on R™.

As mentioned above, in the context of geometric design one is concerned with
closed and bounded sets. In R"™, the closed and bounded sets are the compact sets.
To set notation, let S be the set of compact subsets of R™ and let Sy be the set of
nonempty compact subsets of R™. Note that (Sp,d) is a metric space; J is a metric
rather than an extended metric on Sy because the Hausdorff distance between any
two nonempty compact sets is finite.

By a result of Aubin (1977, p. 164, Theorem 1), § is a complete extended metric
on Go. This says that if {Sx} is a Cauchy sequence of sets in Gy, then there exists
S € Go such that limy_,, S, = S.If, in fact, Sy, € Sy for all k and §(Sk, S) — 0,
then .S must be compact also because §(1”,7") = oo whenever 1" is compact and
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T" is unbounded (closed but noncompact). This proves that (Sy, d) is a complete
metric space.

In geometric design, one frequently works with closed sets that are contained
in a given compact set because such uniform boundedness captures the notion that
a maximum size initial material is available or that a given machine or manufac-
turing process is constrained by an overall feasible size limitation. Without loss of
generality, let K denote the closed unit cube in R” (K = {x € R" | 0 < 2; <
lforall: = 1,2,...,n}). Let K denote the set of closed subsets of K and let Xy
denote the set of nonempty closed subsets of K so that o = {S C R" | S #
(), Sisclosed,and S C K}. Then (Ko, d) is a compact metric space. (See Hilden-
brand (1974 Theorem 1, p. 17).) This property constitutes a major advantage of using
the topology induced by the Hausdorff metric.

In geometric design theory, the Hausdorff topology is also applied to the bound-
aries of geometric solids. Implicitly, this yields another extended metric space
(Go\{R"},6?) and metric spaces (Sy,d?) and (Ko, d?). For G,H € Go\{R"},
G,H € Sy, or G, H € Ko, 6°(G,H) = 6§(0G,0H), where 9S = cl(S)\ int(S)
denotes the boundary of the set S. By definition, the boundary of any set in Sy be-
longs to Sp and the boundary of any set in [y is a nonempty closed subset of the
compact set K and hence belongs to Ky. [To see that the boundary of any set in Sy
or Ko must be nonempty, recall that a set is both open and closed if and only if its
boundary is empty; the only subsets of the connected space R™ which are both open
and closed are the empty set and R" itself.] Note that there are sets in Ky that are
not the boundary of any set in R™ (for instance, K itself). Note also that 9 is not
defined on all of Gy because OR™ = ().

Observe that (Kg, ) and (Ko, 69) are distinct topological spaces, although both
are metric spaces. Convergence in the § metric is not equivalent to convergence in
the 69 metric. To see this, for k = 3,4,5,..., let S, = K\By/(1/2,...,1/2),
where Be(z) = {y € R" | |lz — y|| < €} denotes the open e-ball in R™ cen-

tered at # € R (for ¢ > 0). Then S, > K but Sy 20 K\{(1/2,...,1/2)}
where K\{(1/2,...,1/2)} fails to be a closed subset of K but its boundary
OK U{(1/2,...,1/2)} is closed. This example illustrates that the §°-limit of a se-
quence of compact sets need not be a closed set. Hence (K, §?) is not closed.

2.2.3 The domain of geometric objects

The previous subsection stated that (1o, d) is a compact metric space when endowed
with the topology induced by the Hausdorff metric. Recall that Ky denotes the set
of nonempty closed (and automatically bounded, and therefore compact) subsets of
the closed unit cube K in R™. Yet not all sets in [y serve as appropriate geometric
objects. Hence, the domain D of geometric objects must be a proper subset of K.
Of course, compactness of D is highly desirable for mathematical tractability.

A natural restriction on geometric objects is the requirement that they be con-
nected sets. Indeed, if a potential geometric object is not connected, it should be
considered as two or more separate geometric objects, where each one of the rede-
fined individual geometric objects consists of a single connected component of the
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originally proposed geometric object. This insistence on connectedness reflects man-
ufacturing processes and practices, in that each connected component could equally
well be produced at a different facility. From an economics viewpoint, the connected
components could be viewed as extreme complements in consumption if the specifics
of the situation render this true for some or all consumers and, in addition, firms could
consider selling the various connected components as a bundled commodity. For a
familiar example, think of left gloves and right gloves.

In this paper, I proceed beyond connectedness to the stronger condition of con-
vexity. Let Cyp denote the set of nonempty closed (and hence compact) convex sub-
sets of K, so that Cyp = {S € Ky | Sis convex}. Then (Cp,d) is a compact met-
ric space and, in fact, Cy is itself a convex set under the operations of taking the
(Minkowski) sum of sets and scalar multiplication; i.e., if S, T € Sy and A € R,
define S+ T ={s+t|se€ Sandt € T} and A\S = {As | s € S}. See Allen
(1999c) for an explicit proof.

Here 1 follow the research strategy of focusing on Cy as the domain of geo-
metric objects because of not only the desirability of convex sets but also some
problems with the interpretation of the Hausdorff metric topology when it is ap-
plied to nonconvex sets. To see an explicit example of the difficulty, define a se-
quence {Sk} of nonempty compact subsets of K, where S; = Sy = K and for
each k = 3,4,5,..., S, = K\By,,(1/2,...,1/2), where B.(x) denotes the open
ball of radius ¢ > 0 centered at  in R™. Then, as £k — oo, S, — K but each
S}, fails to be contractable and “would not hold water” because it has a hole. An-
other example is provided by setting each S equal to the (finite) subsets of K
defined by points with coordinates expressed as decimals with (at most) &k digits,
so that in R, Sy = {(0,0),(0,1),(1,0),(1,1)}, S1 = {(s1,82) € K | 51 =
0,1/10,2/10,...1,and s = 0,1/10,...,1}. Then, as k — oo, S — K even
though S N K does not contain an open set for any k. Clearly K and the Sj could
not be viewed as close substitutes for most purposes.

One solution to this problem may be to modify or strengthen the Hausdorff topol-
ogy so that it distinguishes between a set and the same set after a tiny piece has been
removed. Berliant has proposed a modified Hausdorff metric for this purpose; see
Berliant and Dunz (1995) and Berliant and ten Raa (1988, 1992) but note that these
references alter the metric further to reflect a given set of utility functions. Current
research is addressing these issues.

2.2.4 Dimensioning and tolerancing

To think about dimensioning and tolerancing (D & T), consider the goal of drilling a
hole in a cube of homogeneous metal. [The hole is an example of a feature (see Shah
and Maintyld, 1995).] Three distinct criteria are involved:

(1) Size tolerance, which means that the radius of the hole — and its depth if it does
not extend completely through the piece of metal — must be within an accept-
able range, which would usually take the form of a requirement that the hole’s
circumference must stay entirely within an annulus defined by two concentric
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circles having radii equal to the minimum value and the maximum value in the
acceptable range,

(2) Form tolerance, which means that the hole is sufficiently circular, rather than
polyhedral or oval-shaped [regardless of its size], which again is typically verified
by checking that the circumference lies within an annular region, and

(3) Position tolerance, which requires the hole to be in approximately the correct
location relative to the edges of the cube of metal or relative to the locations of
other features.

The three tolerancing constraints would be tested independently and the metal would
be reworked or discarded if any criterion is not satisfied. This defines a tolerance zone
or set of acceptable geometric objects. In the literature, axioms for tolerance zones
have been provided. One important aspect is that exact form cannot be required; each
criterion must have some “wiggle room”, which need not be symmetric.

Note that this discussion focuses on D & T standards for a single geometric object
and not statistical tolerancing, in which deviations with respect to some criteria can
be offset by enhanced precision in terms of other criteria. Also, statistical quality
control, in which random items from a batch are inspected and then a decision is
made to accept or reject the entire batch, is not considered here.

The Hausdorff metric topology has been advocated in the engineering litera-
ture (i.e., Boyer and Stewart, 1991, 1992; Requicha, 1993; Requicha and Rossignac,
1992; Stewart, 1993) as a first step toward capturing D & T standards in a mathemat-
ical model. In brief, a tolerance zone is basically defined as a (relatively) open subset
of geometric objects or an open ball, in the Hausdorff metric topology, around the
nominal (desired) geometric object (see also Srinivasin, 1998).

2.2.5 Some remarks on the literature

The approach taken in this paper starts from the framework of general design the-
ory, as developed by Yoshikawa (1981), who studies topologies and filters on ab-
stract spaces associated with engineering design. Boyer and Stewart (1991, 1992)
and Stewart (1993) introduce a topology (specified by the 67 metric defined in an
earlier subsection) that is related to the one studied here. Requicha (1993) and Re-
quicha and Rossignac (1992) discuss the Boyer and Stewart metric; see also the
related papers by Requicha (1980, 1983), Tilove (1980) and Tilove and Requicha
(1980) that focus on regular subsets in the context of dimensioning and tolerancing.
(Recall that by definition, a set is regular if it equals the closure of its interior.) My
paper does not focus on regular sets; this research strategy was chosen because of the
difficulties associated with using the Hausdorff metric on the space of regular sets —
lack of closure and the corresponding loss of compact subsets of geometric objects —
that are pointed out in Allen (1999b). Peters, Rosen, and Shapiro (1994) and Rosen
and Peters (1992, 1996) propose a quite different feature-based metric space topol-
ogy for spaces of regular geometric designs. [See Shah and Mintyld (1995) for an
overview of features in engineering design.] A recent article by Allen (1999a) uses
the Hausdorff topology and argues that, to characterize the sets of geometric objects
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that are manufacturable by some process or processes, one must take limits (and this
involves a convergence concept or a topology). Mathematical properties of various
subspaces of geometric objects are examined in Allen (1999c), based also on the
topology induced by the Hausdorff metric.

2.3 Differentiated products

Section 2 argued that, as a first approach, one could take Cy to be the domain of
geometric objects. For reasons of intuition, consistency with dimensioning and toler-
ancing standards, and technical tractability, Cy is endowed with its topology induced
by the Hausdorff metric so that (Cy, §) becomes a convex compact metric space.

Thus, subsets of Cy become the basic differentiated products. Notice that the
statement reads “subsets of Cy” rather than “subsets in Cy” because a commodity is
some geometric object that belongs to a specified set of geometric objects.

Let Dy denote the set of nonempty closed subsets of Cy, and give D, the Haus-
dorff metric topology derived from the Hausdorff metric topology on Cy. Note that
Dy is not a subset of Cy but rather is a collection of subsets of Cy so that Dy is a
set of sets. Note also that the Hausdorff distance is invoked twice in the definition of
Dy, first in the definition of Cy and then in a second layer involving the convergence
of nonempty closed sets of nonempty convex compact subsets of R™. Write (Do, J)
where no confusion can occur.

Proposition 3.1 Dy is a compact metric space.

Proof.. This follows from Theorem 1 in Hildenbrand (1974, p. 17), since (Cp, d) is a
compact metric space. 0O

However, the discussion in Section 2.4 suggests that not all elements of Dy are
appropriate differentiated products. For example, a set consisting of a single geo-
metric object (a set containing just one closed convex subset of K) is obviously
nonempty and closed, but it violates the principle that exact form cannot be required
in dimensioning and tolerancing.

To solve this problem, Dy will be restricted further and a proper subset of Dy will
be taken to be the space of differentiated products. A consequence of its definition is
compactness, so that tractability is not lost. Fix ¢ > 0 and let D, be the subset of D
such that every element of D, contains an open e-ball.

Proposition 3.2 For any sufficiently small € > 0, D, is a nonempty proper compact
subset of (Dy, 9).

Proof.. If Sy, — S'in (Dy, §) and each Sy, is a compact set containing an open e-ball
for the given fixed € > 0, then so also does .S contain an open e-ball. The set D, is a
proper subset of Dy whenever € > 0 because, for instance, singletons belong to D
but not to D.. The set D, is nonempty whenever ¢ is sufficiently small relative to the
size of K. O
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Notice that D, is not simply the collection of closed e-balls, but rather contains all
subsets that contain e-balls. The mapping {¢} x Cy — D defined by (¢, S) — B(S)
maps onto some proper subset of Dy. However, note that (for ¢ > 0 and € sufficiently
small) the map [e, & x Cy — Dy (defined as above by (¢, .S) — B(9)) is continuous
for the product topology derived from the topologies on R and (Cy, 4) and the “two
layer” Hausdorff metric topology on (Do, §).

2.4 The economic environment

This section lays out the economic model. It features the set D, (for some sufficiently
small € > 0) of differentiated products defined in the previous section, where Dy D
D. was endowed with a topology.

2.4.1 The commodity space

One aspect of the economic model which has not yet been emphasized is the hy-
pothesis that commodities in Dy or D, are indivisible. Differentiated products are
assumed to be available only in integer amounts. This is a natural assumption for
geometric objects, as fraction amounts — as well as irrational quantities — are difficult
to interpret in an economic context.

These indivisibilities imply that, in order to enable equilibria possibly to exist,
the presence of at least one perfectly divisible good is needed. This phenomenon
would arise even if D, were a finite set — the effects are unrelated to the fact that the
model features infinitely many distinct commodities. Desirability assumptions for
the divisible good are imposed in Subsection 4.3 below (for a further discussion, see
Mas-Colell, 1975, 1977).

Accordingly, let i denote the perfectly divisible (homogeneous) good. For sim-
plicity, only one divisible good is postulated; the extension to ¢ divisible goods that
are priced in equilibrium simultaneously with the pricing of the differentiated com-
modities is a technical exercise. See Allen (1986b) for a discussion of the mathe-
matical difficulties and an explicit proof in the context of a more complicated model
with differentiated information that can be traded on markets.

Then the set of commodities is D, U {h}, for some fixed sufficiently small € > 0.
The commodity space is taken to be the set of ordered pairs of bounded integer-
valued Borel (signed) measures a on D, such that |a(D.)| < oo [i.e., finite sums and
differences of Dirac measures on D.] and scalars b € R, where, for d € D, a(d)
denotes the number of units of good d in the commodity bundle, for each d € D,
and b € R denotes the quantity of the perfectly divisible good h. Write ¢ = (a,b) €
M°(D,) x R where M°(D,) denotes the set of finite integer-valued Borel measures
aonD..

Let MM(D,) = {a € M°(D.) | |a(D.)| < M} and let MY (D.) = {a €
MM(D,) | a(d) > 0foralld € D.}. Then the consumption set for each trader in
the economy is taken to be MY (D,) x Ry for some fixed € > 0 and some fixed
positive finite M € R ..
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Endow M°(D,) with its weak* topology or the topology of weak convergence
of measures on D, C Dy. This is the topology of pointwise convergence on the set
C(D.) of continuous real-valued functions on D,; i.e., ap — a if for every f: D, —
R which is continuous (and bounded because D is compact when endowed with
the Hausdorff topology), [ f(d) da,(d) — [ f(d ). Then MM (D,) becomes
a compact metric space because the weak* topology 1s compact and metrizable on
bounded subsets. Let d, denote a metric for M (D,).

2.4.2 Initial endowments

Recall that ¢ = (a, b) € MY (D.) xR is acommodity bundle. Designate individual
endowments by the subscript zero and write ¢y = (ag, bg) € Ml‘f (D) x Ry for
an initial endowment.

To set notation, define the set of all finite integer-valued nonnegative Borel mea-
sures on D, by M3 (D.) = J{MEY (D.) | M is a finite integer}. The difference
between these sets is that M4/ (D,) is uniformly bounded by M (i.e., |a(D.)| < M
forall a € MY (D,)), while M3 (D.) consists of measures that are bounded but not
uniformly so.

Where no confusion can result, the notation ¢ = (a, b) or ¢cg = (ao, bo) is used to
designate either individual allocations and individual endowments or economy-wide
allocations and economy-wide endowments, where “economy-wide” does not mean
total or aggregate. When needed, explicit arguments are appended to c or ¢y so that
c(-) = (a(-),b(-)) and co(-) = (ao(-),bo(-)) denote economy-wide allocations and
endowments while, for instance, c(i) = (a(i), b(i)) and co(i) = (ao(i), bo(i)) refer
to the allocations and endowments of some particular individual agent ¢ € I.

2.4.3 Preferences

In this economy, a preference relation < is a complete preorder on M%/ (D) x R+
[i.e., the graph Gr(=) of < is a subset of (M (D,) x R) x (MM( ) X Ry
satisfying the following conditions:

(a) X is closed (continuity of preferences),

(b) If ¢ = (a/, V') and ¢’ = (a”,b") are such that ¢’ > ¢/ and b > V', then ¢” >~ ¢
(monotonicity with strict desirability of the perfectly divisible commodity),

©) Ifc = (a’,b') and " = (a”,b") are such that b’ > 0 and " = 0, then ¢’ = ¢
(any allocation with none of the perfectly divisible good is strictly dominated by
any allocation with a positive amount of the perfectly divisible good),

(d) For any ¢ = (a, V'), there is ¢ = (a”,b") with o’ = 0 such that ¢’ > ¢’ (yet
another desirability condition for the perfectly divisible good),

(e) There is ¢ € R such that if ¢ = (a/,V’) and ¢’ = (a”, ") are such that &’ =
b" and d(a’,a”) < 1/¢ (where d denotes a metric for the weak™ topology on
MM(D,)), then (a’,b' + ¢) = (a”,b").

Conditions (d) and (e) may be replaced by the condition (f), which is easier to un-
derstand.
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(f) There exists ¢ > 0 such that (0,b + ¢) > (a,b) forall ¢ = (a,b) € MY (D) x
R, .

Endow the space P of complete continuous preference preorders with the topology of
closed convergence and let d< be a metric for it (see Hildenbrand, 1974, for details).

The interpretation of continuity of preferences may be troublesome here, given
the earlier arguments about “acceptable” sets of geometric objects and D&T notions.
However, upper semicontinuity is all that is really needed, which allows for situ-
ations in which slight perturbation of a set of geometric objects results in a much
worse set of geometric objects. (For example, imagine that the perturbed set contains
geometric objects which must undergo costly reworking before they can be installed
in an assembly line operation.)

Observe that convexity of preferences could be defined because convexity makes
sense in the space D, although convex combinations of sets in D, are not the same as
convex combinations of measures in M3 (D, ) or M2 (D,). In any event, convexity
is not required for the results in this paper, since a continuum of agents is needed to
deal with the nonconvexities that inherently arise from the presence of indivisibili-
ties.

2.4.4 The economy

This paper deals exclusively with large economies — those having an atomless con-
tinuum of agents. An economy then is defined to be a probability (joint) distribution
on the space of preferences and endowments.

Definition 4.1 An economy is a Borel probability measure v on (P x M (D.) x
Riy, B(P x MY (D.) x Ry)), for some € > 0 sufficiently small, such that the
following conditions hold: v has compact support, supp( [ ao(-) dv(+)) = D, and
condition (e) in the definition of preferences holds uniformly for < in the support
of the marginal distribution of v on P [i.e., there is { > 0 such that for all =, if
d = (d,V)and ¢’ = (a”,V") are such that ¥’ = b"” and de(a’,a”) < 1/, then
(@' b +¢) = (a",b").

Remark 4.2 1If, in the definition of P, conditions (d) and (e) are replaced by condition
(f), then the last requirement in Definition 4.1 can be replaced as follows: there is
¢ > 0 such that for every < in the support and every ¢ = (a,b) € MY (D.) x Ry,
(a,b+ ¢) > (a,b). This is just a uniform version of condition (f).

Remark 4.3 For the existence of competitive equilibrium result in Section 5, the last
condition in Definition 4.1 can be dropped whenever each trader is hypothesized to
own at most one total unit of all indivisible commodities (in D) in his or her initial
endowment.

Remark 4.4 Observe that the initial endowments of the perfectly divisible good are
assumed to lie in some compact interval [by, by in R for almost all consumers,
where b, > 0 and by < oo.

Remark 4.5 The condition that supp ([ ao(-) dv(-)) = D, in Definition 4.1 says
that all differentiated products in D, (for the given €) are actually available in the
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economy. All results remain valid if D, is replaced by some smaller compact subset
of D.. In this case, all allocations involve only differentiated products on the smaller
set and only goods in the smaller set can be priced in equilibrium.

2.5 Equilibrium

As usual, an equilibrium is defined to be a price system and a feasible allocation such
that each consumer’s allocation is maximal (with respect to his or her preferences)
on the budget set defined by the initial endowment and the price system. In this
model, price systems must first be defined because the presence of infinitely many
commodities usually means that, in principle, more than one candidate is available
for the price space.

Accordingly, let P = {(p,p) € C(D;) xR | p(-) > Oandp, > 0} =
C*(D.) xR, define the set of price systems. This means that the price of each good
is nonnegative, the price of the perfectly divisible good is strictly positive, and prices
depend continuously on differentiated commodities in (D, d). Some zero prices for
differentiated products could well arise in equilibrium because large sets in D, may
not be very attractive to consumers.

Definition 5.1 A Borel probability measure 7 on (P x MY (D.) x Ry} x
MY(D.) x Ry, B(P x MY (D.) x Ryy x MY (D) x Ry)) is an equilibrium
distribution for the economy v if there is p* € P = C*(D,) x R, such that:

(i) 71,2,3 = v, where 7 2 3 denotes the (joint) marginal distribution of 7 restricted
to its first three components (the set P x Mf (Do) x Ry,

(11) fCO( dI/2 3 fC d7’4 5 and

(i) ({(=, co, ¢ ) ePx MM( ) >< Ryt x MY (D) xRy | p*c* < p*co and if
¢ is such that p*¢’ < p*co, then ¢ < ¢*}) = 1.

Condition (i) says that 7 is a distribution corresponding to the given economy v and
condition (ii) is aggregate feasibility of the equilibrium allocation ¢*(-). Condition
(iii) requires that almost all agents maximize their preferences over their budget sets
defined by p*.

Theorem 5.2 Any economy satisfying the assumptions in this paper has an equilib-
rium distribution.

Proof.. All of the assumptions in Mas-Colell (1975) are satisfied. The proof tech-
nique involves first approximating D, by an increasing sequence of finite sets (in the
topology of D,) and obtaining a corresponding sequence of equilibrium prices and
equilibrium allocations for the finite restrictions. This involves checking that indi-
vidual demands are upper hemicontinuous correspondences and that the aggregate
demand, for the finite restrictions, is a convex-valued upper hemicontinuous corre-
spondence, so that Kakutani’s fixed point theorem applies. Along the sequence of
finite approximations, a subsequence of equilibrium distributions converges weakly
(by compactness) to a distribution which one can verify is an equilibrium distribution
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for the original economy v with respect to the subsequential limit of the restricted
equilibrium price systems. See Allen (1986a, b) for additional details. O

Remark 5.3 The technique of examining finite approximations and taking suitable
(subsequential) limits is originally due to Bewley (1972) and permeates the literature
on existence of competitive equilibrium with infinitely many commodities.

Remark 5.4 Equilibrium price systems necessarily satisfy certain no arbitrage con-
ditions. In equilibrium, the price of a set in D, can never exceed the sum of disjoint
sets with union equal to the original set. However, similar inequalities do not apply
to set-theoretic containment.

The next goal is to obtain the First Welfare Theorem in this model. To avoid the
introduction of much additional technical notation, definition of the standard concept
of an efficient (or Pareto optimal) distribution for a large pure exchange economy is
not included in this version of the paper. Similarly the core is not defined formally
because its introduction requires a standard representation for the economy (see Mas-
Colell, 1975).

Proposition 5.5 A distribution T belongs to the core of an atomless economy v if
and only if T is an equilibrium distribution for v.

Proof.. See Mas-Colell (1975, Theorem 2). O

Corollary 5.6 Any equilibrium distribution T for an economy v is such that the
equilibrium allocation distribution 74 5 is Pareto optimal for v.

Proof.. Core allocations are necessarily Pareto optimal. O

Remark 5.7 A direct proof of Corollary 5.6 should be possible, but one must care-
fully check that local nonsatiation is not violated in this model. This would avoid the
necessity of introducing the mathematical concept of a standard representation.

2.6 An alternate model with probabilities

Despite the arguments in Section 2 that sets of sets are the appropriate commodities
with product differentiation, one may wonder about the potential formulation and
consequences of a model in which the commodities are defined to be probability dis-
tributions over some space of product characteristics or precise physical descriptions.
In the context of this paper, one would replace the sets in D, by probability distrib-
utions on Cy. Note that both sets and probabilities constitute natural generalizations
of singletons, which can equally well be specified by Dirac probability measures.

Let Q(Cp) denote the space of Borel probability measures on the compact met-
ric space Co. Give Q(Cp) the weak* topology of weak convergence of probability
measures. Then it becomes a compact metric space; see Parthasarathy (1967). Thus
9Q(Cp) has the same mathematical properties as Dy.
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However, one problem is that deletion of the Dirac measures or, more generally
the measures with atoms, results in a subset which is not closed. This implies that
the D & T axiom precluding exact form cannot be accommodated easily in a proba-
bilistic framework.

Putting aside this problem, one can proceed to consider M° (Q(Co)) as the space
of probabilistically-specified differentiated commodity bundles, where again I use
convex subsets of K as the domain of geometric objects for specificity. The economic
interpretation is that traders buy and sell known lotteries on geometric objects.

Verification that some random realization of a geometric object was drawn from
the specified probability distribution is problematic. Appealing to reputation or ran-
dom testing of drawings from a given distribution and a given seller would seem to
be necessary in order to justify the implicit supposition that traders know the dis-
tribution or at least have subjective distributions that are consistent and cannot be
contradicted.

This approach would have the advantage of avoiding defining preferences in a de-
rived space such as D, rather than on the space Cy of underlying geometric objects.
Continuity properties of preferences thus become more natural and intuitive. How-
ever, with uncertainty, preference relations should be replaced by cardinal utilities,
as is done in Allen (1986a,b). Continuity of derived ordinal preferences for proba-
bility distributions when traders maximize expected utility should follow when the
distributions are suitably dispersed, which requires more than that they be atomless.

Note that, as earlier in this paper, probability distributions are not needed for
convexification since the model features an atomless continuum of agents. Moreover,
the differentiated commodities defined by probabilities would still be assumed to be
indivisible.

2.7 Equivalence classes of geometric objects

One might wish to refine the definition of geometric objects as differentiated products
so that it reflects affine invariance. Unlike buildings and bridges, the location of a
geometric object — as opposed to its delivery location — is inessential and, similarly,
the orientation of a geometric object when it is delivered generally doesn’t matter.
This suggests that, at least for the case of geometric objects, a basic differentiated
commodity should be an equivalence class (under translation and rotation in R™) of
nonempty compact subsets of R™. This idea is the basis of continuing research.

2.8 Production issues

The examples of geometric objects (precision-machined metal parts and dies for
plastic injection molding) naturally serve as inputs to downstream production proces-
ses more than they would be expected to be purchased as final consumption goods.
When these differentiated commodities are intermediate products, the resulting de-
mand relations must be derived from the behavior of profit-maximizing or cost-
minimizing firms. The requisite upper hemicontinuity should easily follow.
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Deeper production issues are associated with the production of differentiated
commodities in my model. The switch from a pure exchange economy to one with
production requires lower semicontinuous cost functions or, more generally, well-
behaved technology sets. The lower semicontinuity of cost functions when there are
multiple production processes is derived in Allen (2000).

The modern issues of manufacturability, mass customization, dedicated versus
flexible tools, and agility and flexibility require more attention to the specification
of production technologies or cost functions, both for the short run and the long
run. Effective answers to these questions also generally require the definition of a
topology on the set of differentiated products, as is argued in Allen (1999a), where a
simple manufacturability problem is formally posed and analyzed.

A microeconomic model with firms usually permits the possibility of strategic
behavior. Hence, game theory is needed. The customary starting point is to postulate
a static noncooperative game and inspect its Nash equilibria. Here the considerations
of agility and flexibility might demand at least a two-stage game, with commitments
on technology choice before actual production begins. Product selection decisions
are also naturally placed in a game-theoretic model.

2.9 Conclusion

The main lesson of this paper is that, at least for some purposes, economic theorists
should reformulate the basic microeconomic general equilibrium model to capture
the notion that actual economic commodities are subject to manufacturing impre-
cision. In practice, this means that consumers and firms cannot guarantee that they
purchase a product satisfying a complete and exact physical description, but rather
they purchase an item that belongs to some specified set of products, where the set
must permit some nontrivial range of all aspects of the product. The standard model
can be modified and extended to take into account these considerations and neverthe-
less remain useful for economic theory in the sense that major results on the existence
and efficiency of competitive equilibrium stay valid in the proposed reformulation.

The same principles can be applied to situations in which the underlying basic
differentiated commodities are not restricted to be geometric objects. One simply
requires a compact metric space of base commodities where the metric is compati-
ble not only with consumers’ notions of the substitution possibilities among goods
but also with the relevant dimensioning and tolerancing standards and technological
feasibilities.



2 On the Definition of Differentiated Products in the Real World 25

References

10.
11.

13.
14.
15.
16.
17.

18.

20.

21.
22.

23.

24.

25.

Allen, B.: The demand for (differentiated) information. Review of Economic Studies 53,
311-323 (1986a)

Allen, B.: General equilibrium with information sales. Theory and Design 21, 1-33
(1986b)

Allen, B.: Approximating geometric designs with simple material removal processes and
CAD/CAM tools. Transactions of the North American Manufacturing Research Institu-
tion/Society of Manufacturing Engineers 27, 215-220 (1999a)

Allen, B.: Regular sets and the Hausdorff topology. Mimeo, Department of Economics,
University of Minnesota (1999b)

Allen, B.: A theoretical framework for geometric design. Mimeo, Department of Eco-
nomics, University of Minnesota (1999c)

Allen, B.: A toolkit for decision-based design theory. Engineering Valuation & Cost
Analysis 3, 85-106 (2000)

Aubin, J.-P.: Applied abstract analysis. New York: Wiley 1977

Berliant, M., Dunz, K.: A foundation of location theory: existence of equilibrium, the
welfare theorems and core. Mimeo, Department of Economics, Washington University in
St. Louis (1995)

Berliant, M., ten Raa, T.: A foundation of location theory: consumer preferences and
demand. Journal of Economic Theory 44, 336-353 (1988)

Berliant, M., ten Raa, T.: Corrigendum. Journal of Economic Theory 58, 112-113 (1992)
Bewley, T.: Existence of equilibria in economies with infinitely many commodities. Jour-
nal of Economic Theory 4, 514-540 (1972)

Boyer, M., Stewart, N. F.: Modeling spaces for toleranced objects. International Journal
of Robotics Research 10, 570-582 (1991)

Boyer, M., Stewart, N. F.: Imperfect form tolerancing on manifold objects: a metric ap-
proach. International Journal of Robotics Research 11, 482—490 (1992)

Cole, H. L., Prescott, E. C.: Valuation equilibrium with clubs. Research Department Staff
Report 174, Federal Reserve Bank of Minneapolis (1995)

Debreu, G.: Theory of value. New Heaven, CT: Yale University Press 1959

Hausdorff, F.: Set theory. New York: Chelsea 1962

Hildenbrand, W.: Core and equilibria of a large economy. Princeton, NJ: Princeton Uni-
versity Press 1974

Hornstein, A., Prescott, E. C.: Insurance contracts as commodities: a note. Review of
Economic Studies 58, 917-928 (1991)

Mas-Colell, A.: A model of equilibrium with differentiated commodities. Journal of
Mathematical Economics 2, 263-295 (1975)

Mas-Collel, A.: Indivisible commodities and general equilibrium theory. Journal of Eco-
nomic Theory 16, 443-456 (1977)

Nadler, S. B., Jr.: Hyperspaces of sets. New York: Marcel Dekker 1978

Parthasarathy, K.: Probability measures on metric spaces. New York: Academic Press
1967

Peters, T. J., Rosen, D. W., Shapiro, V.: A topological model of limitations in design for
manufacturing. Research in Engineering Design 6, 223-233 (1994)

Prescott, E. C., Townsend, R. M.: General competitive analysis in an economy with pri-
vate information. International Economic Review 25, 1-20 (1984)

Requicha, A. A. G.: Representations for rigid solids: theory, methods, and systems. ACM
Computing Surveys 12, 437-464 (1980)



26

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

B. Allen

Requicha, A. A. G.: Toward a theory of geometric tolerancing. International Journal of
Robotics Research 2, 45-60 (1983)

Requicha, A. A. G.: Mathematical definition of tolerance specifications. Manufacturing
Review 6, 269-274 (1993)

Requicha, A. A. G., Rossignac, J. R.: Solid modeling and beyond. IEEE Computer Graph-
ics and Applications, pp. 31-44 (1992)

Rockafellar, T.: Convex analysis. Princeton, NJ: Princeton University Press 1970

Rosen, D. W., Peters, T. J.: Topological properties that model feature-based representation
conversions within concurrent engineering. Research in Engineering Design 4, 147-158
(1992)

Rosen, D. W., Peters, T. J.: The role of topology in engineering design research. Research
in Engineering Design 8, 81-98 (1996)

Shah, J., Mintyld, M.: Parametric and feature-based CAD/CAM: concepts, techniques,
and application. New York: Wiley 1995

Srinivasin, V.: Role of statistics in achieving global consistency of tolerances. IBM Re-
search Report, T. J. Watson Research Center (1998)

Stewart, N. F.: Sufficient condition for correct topological form in tolerance specification.
Computer-Aided Design 25, 39-48 (1993)

Tilove, R. B.: Set membership classification: a unified approach to geometric intersection
problems. IEE Transactions on Computing C-29, 874-883 (1980)

Tilove, R. B., Requicha, A. A. G.: Closure of Boolean operations on geometric entities.
Computer-Aided Design 12, 219-220 (1980)

Yoshikawa, H.: General design theory and a CAD system. In: Sata, T., Warman, E. A.
(eds.) Man-machine communication in CAD/CAM: Proceedings of the IFIP W(GS5.2/5.3
Working Conference 1980 (Tokyo), pp. 35-58. Amsterdam: North-Holland 1981





