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Abstract

This paper concerns the problem of dividing a set of individuals from a target population

into peer-groups based on observed discrete-valued covariates so as to maximize the expected

outcome of the entire set, e.g. allocation of freshmen to dorm rooms to maximize mean GPA.

The decision is based on the outcome of random grouping of a pilot sample drawn from the tar-

get population. Computationally, the allocation problem reduces to a standard linear program

whose objective function involves a first-step nonparametric estimate of the production function.

I show that either the population problem has a unique solution or all feasible allocations are

optimal which can be tested using a pivotal statistic. Under uniqueness, asymptotic distrib-

utions can be established using Cramer’s theorem for large deviations. Under nonuniqueness

the estimated maximum value has an asymptotically biased non-normal distribution. This bias

can be analytically corrected to produce pretest confidence intervals for the maximum value

with uniformly good coverage. This work complements recent work by Graham et al (2005)

who compare a finite set of allocation rules rather than finding the optimal one. It differs from

the "treatment choice" literature as it concerns the efficient way to simultaneously allocate a

large group of individuals under aggregate resource constraints and focuses on the asymptotic

analysis of estimated optimal solutions for a fixed decision rule. I illustrate the methods using

data from Dartmouth’s random assignment of freshmen to dorm rooms, where Sacerdote (2001)

detected significant contextual peer effects. Segregation by previous academic achievement and

by race are seen to minimize mean enrolment into sororities and maximize mean enrolment into

fraternities. Segregation appears to have no effect on aggregate freshman year GPA.
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1 Introduction

Analysis of peer effects has played an important role in both economic theory and econometrics.

Conceptual issues involved in defining what constitutes "peer effects" and in the identification of

these effects from nonrandomized field data were pioneered by Manski (1995). Subsequent research

has addressed various methods of identifying peer effects from experimental as well as observational

studies and tested the applicability of alternative models of peer interaction. This paper addresses

a complementary question- namely, given the evidence on the magnitude and nature of peer effects,

what is the socially "optimal" way for an outside planner to divide individuals into peer-groups?

Obviously, the optimal grouping depends on what social criterion is to be optimized. But given

a social welfare function, whether alternative grouping can affect aggregate social outcome will

also depend on how peer effects interact with own effect in producing individual outcomes. Here,

by "peer effects", I will mean "contextual effects" in Manski’s terminology- the effect of peers’

background on own outcome, controlling for own background.

To fix ideas, let us begin with the following allocation problem. Suppose that a college authority

wants to improve average (and thus total) freshman year GPA of the incoming class, using dorm

allocation as a policy instrument. The underlying behavioral assumption is that sharing a room

with a "better" peer can potentially improve one’s own outcome, where "better" could mean a

high ability student, a student who is similar to her roommate etc. Scope for improvement exists if

peer effects are nonlinear- i.e. the composite effect of own background and roommate’s background

on own outcome are not additively separable into an effect of own background plus an effect of

roommate’s background. Otherwise, all assignments should yield the same total, and thus average,

outcome.

Assume that every dorm room can accommodate two students and the college can assign in-

dividuals to dorms based on an index of their previous academic achievement, say, SAT scores.

For simplicity, assume that SAT score can take 3 distinct values- low, medium and high abbrevi-

ated by l,m,h. Denote the expected total score of a dorm room with each of 6 types of couples,

denoted by g = (ghh, gmm, gll, ghl, ghm, gml)
0. For instance, gml is the mean per person GPA score

across all rooms which have one m-type and one l-type student. Also, denote the marginal dis-

tribution of SAT score for the current class by π = πl, πm, πh. Then an allocation is a vector

p (π)= (phh, pmm, pll, phl, phm, pml)
0, satisfying pij ≥ 0 and p01 = 1. Here pij (which equals pji by

definition) denotes the fraction of dorm rooms that have one student of type i and one of type j,
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with i, j ∈ {h,m, l}. Then the authority’s problem is defined by the following LP problem.

max
{pij}

[ghhphh + gmmpmm + gllpll + ghlphl + ghmphm + gmlpml]

s.t.

2phh + phl + phm = 2πh

2pmm + phm + pml = 2πm

2pll + phl + pml = 2πl = 2 (1− πh − πm)

pij ≥ 0, i, j ∈ {h,m, l} .

The first set of linear constraints are just stating the budget constraint. For example, the first

linear constraint simply says that the total number of students of h type in the dorm rooms

(in every hh type room there are two h type students and hence the multiplier 2 appear before

phh) should equal the total number of h type students that year. The first of these quantities

is N/2 × (2phh + phl + phm) if there are N students and hence N/2 dorm rooms. The second is

N × πh. Thus one can view the g’s as the preliminary parameters of interest and the solution to

the LP problem and the resulting maximum value as functions of g’s which constitute the ultimate

parameters of interest. Note that the solution (the pij ’s that solve the problem) may not always

be unique but the maximum value is, provided the g’s are bounded.

In general g will be unknown and so the above problem is infeasible. Now suppose, a sample was

drawn from the same population from which the incoming freshmen are drawn (e.g. the freshmen

class in the previous year). Further assume that this "pilot" sample was randomly grouped into

rooms and the planner has access to freshman year GPA data for each member of this sample. Then

the planner can simply calculate mean total score for this sample across dorm rooms, say, with one

h and one l type to estimate ĝhl which will be a good estimate of the unknown ghl if the sample size

is large. This assumes that peer interaction is unaffected by whether allocations are made through

general randomization (as with the pilot sample) or by randomization within covariate categories

(as will be done by the planner). This assumption can fail to hold if, for instance, students are

more antagonistic to roommates who are different from them if they know that this allocation was,

at least partly, a result of conscious choice of the planner.

Replacing unknown g’s by the sample counterparts, the planner now solves

max
p
ĝ0p s.t. Ap = π, p≥ 0
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where

ĝ = (ĝhh, ĝmm, ĝll, ĝhl, ĝhm, ĝml)
0

p = (phh, pmm, pll, phl, phm, pml)
0

A =

⎛⎜⎜⎜⎝
2 0 0 1 1 0

0 2 0 0 1 1

0 0 2 1 0 1

⎞⎟⎟⎟⎠
π = (πh, πm, πl)

0 .

The purpose of this paper is to analyze the population problem and derive statistical properties of

the estimated optimal solutions when the size of the pilot sample is large. The paper establishes

necessary and sufficient conditions for uniqueness of the population solution which are testable.

Further, it shows that asymptotic properties of the estimated solution and maximum value are

completely different when the population solution is nonunique. In particular, the estimated maxi-

mum value is asymptotically zero-mean normal under uniqueness and is both asymptotically biased

and nonnormal under nonuniqueness. The paper combines these findings to propose a valid method

of inference of the pretest type. The key ingredient in the analysis is the fundamental theorem of

linear programming which shows that the optimum of an LP problem can be attained only at a

finite set of points, called the extreme points, within the feasible set. These points can be calculated

a priori and their countable finiteness both makes the computation trivial and the analysis elegant.

Several other problems have similar (though not exactly the same) structure. For instance,

consider a scenario where one observes student outcomes when teachers were randomly assigned to

classes as in the well-known Project Star experiment. If one observes (mean) background charac-

teristics of each class and characteristics of the teacher, one can estimate the mean outcome of each

"type" of match. Using these estimates, one can devise the matching rule between teacher and class

characteristics that should produce the largest expected test-score. The problem reduces mathe-

matically to a finite LP problem where the RHS of the constraints now correspond to marginal

distributions of teacher characteristics and class characteristics, respectively.

Randomized trials are becoming more prevalent in the study of economic phenomena (see, ...).

The methods presented in this paper shed light on how to use the results of these trials to design

effective policies. Although we present a simple (but probably the most relevant) case where the

objective of the policy-maker is to maximize the mean value of the outcome, this analysis can be
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extended to other kinds of objectives like minimizing dispersion or maximizing quantiles.1

The plan of the paper is as follows. Section 2 discusses related papers and how they relate to

the current work. Section 3 sets out the general problem and discusses characterizations and tests

of uniqueness. Section 4 discusses asymptotic properties of the estimators under the assumption

of uniqueness. Section 5 discusses the asymptotic behavior under nonuniqueness and proposes a

pretest type method of inference. Section 6 applies these methods to data from Dartmouth College

and discusses the findings. Section 7 concludes.

2 Relation to existing literature

The work presented here complements recent work by Graham, Imbens and Ridder (2005) who

compare a fixed set of assignment rules (like positive and negative assortative matching) to see

which one yields the higher expected pay-off. They are not concerned with calculating the optimal

allocation. Having a method for calculating the optima, as presented in the current paper, also

enables one to compute the efficiency of a given allocation rule by comparing it to the maximum

attainable. This is discussed in the remarks at the end of section 4 of this paper. In contrast

to Graham et al (2005), however, this paper is concerned exclusively with discrete covariates.

Since most real-life allocation problems will concern discrete covariates, continuous ones can be

easily converted into discrete ones and even the truly continuous cases will have to be "solved" by

discrete approximations, this is not a large sacrifice in generality.2

Previous work on peer effects like Sacerdote (2001) in the experimental context and Cooley

(2006) in a nonexperimental one have also considered comparing a set of specific allocations in terms

of their expected outcome rather than trying to find the optimal one. Hoxby et al (2006) differs in

focus in that they try to find evidence for and against alternative models of peer interaction. The

current paper is different from these works in two fundamental ways. First, it develops methods for

finding the (most) optimal allocation corresponding to any pre-specified social objective. Second,

by utilizing the experimental set-up, it solves the relevant policy question without any behavioral

assumption on what the agents actually do or any assumption about the structure of the "production

function". The analysis, in other words, is completely nonparametric. However, unlike e.g. Cooley

(2006), it does not attempt to recover the structural relationship between individual responses

1The present author is currently working on extending the analysis to quantiles.
2The nonstochastic version of optimization in the continuous case can be related to the Monge-Kantorovich mass

transportation problem which is well-known to be analytically extremely difficult.
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and that of one’s peers. In that sense, the analysis is "reduced form" but provides the optimal

policy prescription which is free from the classic Lucas Critique owing to the underlying randomized

set-up. Note however that I continue to assume that nature of peer interaction is unaffected by

whether allocations are made through general randomization or by randomization within covariate

categories (as will be done by the planner). I am not aware of any experimental or other evidence

suggesting that this assumption must fail in practice. Who the roommate is seems to be a far more

important issue to a student than the precise method of roommate allocation that led to it.

The work presented here is also somewhat similar in spirit to the relatively new literature on

treatment choice for heterogeneous populations , e.g. Manski (2004), Dahejia (2003) and Hirano

and Porter (2005)- in that it concerns designing optimal policies based on results of a random

experiment. However, there are several substantive differences between the current paper and the

ones cited above. First, the current problem involves optimal matching between individuals rather

than optimal assignment of individuals to treatments and is concerned with the outcome of both the

assigned and the assignee. Two, resource constraints play an important role in the current paper.

In our example above, not every student can potentially stay with a high type because the aggregate

proportion of high types is fixed. The constraints make the current problem applicable to a different

set of situations where a large number of individuals have to be allocated simultaneously and not

everyone can be assigned what is the "first best" for them. Third, presence of the constraints

makes the problem analytically different and ties in the solution to a stochastic version of linear

programming problems. Fourth, this paper shows that Cramer type theorems for large deviations

can be fruitfully used in such scenarios to derive the asymptotic distribution of the sample-based

optimal allocation and the optimal values, for a given choice of conditioning covariates. This is in

sharp contrast to Manski (2004) who is concerned with finding the relationship between the sample

size and the choice of which covariates to condition on for minimizing maximum regret. Manski’s

analysis is based on derivation of bounds on the finite sample expected values of the criterion

function. The main reason for this approach was that "the treatment selection probabilities are

probabilities that one sample average exceeds another. Such probabilities generically do not have

closed form expressions and are difficult to compute numerically" (Manski, 2004, page 1233, first

paragraph). The analysis presented in section 4.3 of this paper shows that one can analyze the

asymptotic behavior of such probabilities using Cramer type results under the assumption that all

moments of the outcome variable are finite. When the outcome has a bounded support, as assumed

in Manski (2004) for using Hoeffding’s probability bounds, and relevant in many situations including
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the applications studied in this paper, this assumption will hold trivially. To summarize, this paper

differs substantively from Manski (2004) in that it analyzes a constrained choice problem and is

concerned with asymptotic properties of a specific sample-based decision rule for a given choice

of covariates, rather than a finite sample-based analysis of finding the optimal rule.3 However, in

section 4 below, I provide a brief discussion on the choice of covariates that link it with Manski

(2004).

3 The general problem and uniqueness

I first state the general form of the problem. Assume that there areM possible points of support of

the covariate of interest and therefore a total of K =M(M +1)/2 possible types of room, indexed

by the pair (j, k), j = 1, ..M, k = j, ...M . Let the vector of conditional mean of GPA obtained

from a random assignment of the entire population be denoted by g = (gjk)j=1,..M,k=j,...M . Let

the proportion of incoming individuals (who are to be assigned to rooms)- called the "target" from

now on- with value of covariate equal to m be denoted by πm, m = 1, ...M . Then the planner’s

problem, if she knew g, is referred to as the "population" problem and is given by

max
p=(pjk)j=1,..M,k=j,...M

p0g

s.t.

2pmm +
m−1X
j=1

pjm +
MX

k=m+1

pmk = 2πm, m = 1, ...M (1)

pjk ≥ 0, j = 1, ..M, k = j, ...M .

The constraint set will be denoted by P. Typically, the π’s will be known and g’s will not be

known. A random sample is assumed to have been drawn from the same population from which

the target comes and one observes the outcomes resulting from random assignment of this sample

to rooms. Conditional means calculated on the basis of this sample are denoted by ĝ = (ĝjk),

j = 1, ..M, k = j, ...M . The planner solves the problem in the previous display with g replaced by

ĝ, which I will call the "sample problem". Whether this is the "optimal" action by the planner in

the decision theoretic sense is an interesting and relevant question but is outside the scope of the

current paper, which focusses on the asymptotic properties of a specific but "natural" action. For

the asymptotic analysis of the decision theoretic optima in the treatment choice case see Hirano and

3Manski also restricts attention to "conditional empirical success" (CES) rules but considers the problem of

choosing the set of covariates on which CES is conditioned as the decision problem.
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Porter (2005). Note in passing that in my formulation, the constraint set for the sample problem

is identical to that of the population problem.

The rest of this section presents results about uniqueness of solution to the population problem.

I state and prove three propositions. The first proposition says that either there is a unique solution

to the population problem or all feasible solutions are optimal (i.e. the entire parameter space is the

"identified set") with no other intermediate possibilities. In other words, we cannot have nontrivial

"set-identified" situations. The second proposition states a necessary and sufficient condition for

nonuniqueness which can be tested. The third proposition sets out the asymptotic distribution

theory for the statistic used to test nonuniqueness. Together, these three propositions completely

characterize uniqueness of the population solution and a consistent test for detecting it.

I start by showing that we cannot have a situation where the population maxima (minima) is

nonunique but the maximum (minimum) value is different from the minimum (maximum) value.

Proposition 1 If all gj > 0, then either minp∈P (g0p) = maxp∈P (g0p) or {p∗ : p∗0g = minp∈P (g0p)}

and {p∗ : p∗0g = maxp∈P (g0p)} are singletons.

Proof. Suppose there exist p 6= q 6= r ∈ P such that p, q ∈ {p∗ : p∗0g = maxp∈P (g0p)} and

g0p = g0q > g0r. Then

R = {λp+ (1− λ) q : λ ∈ [0, 1]} ⊂
½
p∗ : p∗0g = max

p∈P

¡
g0p
¢¾

and r /∈ R.

Choose r1, ...rm, rm+1 ∈ R, where m = M (M + 1) /2 = dim (g). Define sj = rj − r. Then the

matrix S with columns s1, ...sm+1 has rank at most m and at least 1 since r /∈ R. So there exist

constants c1, ...cm+1 such that
Pm+1

j=1 cjsj > 0m×1. To see this, note that since the rank of S is

at least 1, there will always exist at least one solution to the equation Sm×(m+1)c(m+1)×1 = am×1

where all entries of a are nonnegative and at least one is strictly positive since this represents m+1

equations inm unknowns. In particular, if rank of S ism, then choose a = 1m×1, if rank of S equals

k < m, arrange the rows of S such that the first k rows are independent and choose a =
¡
10k, 0

0
m−k

¢
.

This implies that t = q +
Pm+1

j=1 cjsj satisfies that g0t = g0q + g0
Pm+1

j=1 cjsj > g0q since all gj > 0.

Moreover, t ∈ P since At = π and t ≥ 0m×1. This violates that q ∈ {p∗ : p∗0g = maxp∈P (g0p)}

since t is feasible, not equal to q and gives a larger value of the objective function. An exactly

analogous proof will work for the minimum.

Nonuniqueness of the type discussed above comes from what might be called "additivity" of

peer effects. Additive peer effects means that for some functions γ1 (.) and γ2 (.),

E (Score|OB,RB) = γ1 (OB) + γ2 (RB) (2)
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where score is one’s own outcome, OB and RB are one’s own background covariate value and

one’s roommate’s covariate value respectively. Additivity implies that all allocations would yield

the same average effect overall and so the population version of problem (1) will not have a unique

solution. However, the maximum (or minimum) value will still be unique. In other words, if our

parameter of interest is the maximum value, then that parameter is a well-defined (many-to-one

or one-to-one) functional of g (given A,π) in that for every g, the mapping gives one number.

However, the solution, i.e, the argmax or the argmin is not a well-defined function of g for every g

in that it is a one-to-many mapping.

A natural statistic for testing additivity would be the difference between the sample maximum

and the sample minimum. But the asymptotic distribution of these quantities is far from obvious

under the null of additivity. I will return to the distribution theory under nonuniqueness in section

5 of the paper where I will show that these distributions are not asymptotically centered at the

population values. The following proposition shows that it is possible to bypass these complications

altogether by establishing that additivity is equivalent to an easily testable condition. It also

establishes an interesting equivalence result which fully characterizes uniqueness of the population

solution.

Proposition 2 Let A
M×M(M+1)

2

be the matrix of constraints with M = rank (A) and let B0 =µ
gM(M+1)

2
×1 A0M(M+1)

2
×M

¶
. Then the following statements are equivalent (i) (2) holds, (ii)

rank (B) =M and (iii) minp∈P (g0p) = maxp∈P (g0p).

Proof. Let wlog, let the points of support of the covariate be 1, 2, ...M with aggregate proba-

bilities π1, ...πM . Then

g1 = E (Score|OB = 1, RB = 1) = 2 (γ1 (1) + γ2 (1))

g2 = E (Score|OB = 1, RB = 2) = (γ1 (1) + γ2 (2) + γ1 (2) + γ2 (1))

....

gM = E (Score|OB = 1, RB =M) = (γ1 (1) + γ2 (M) + γ1 (M) + γ2 (1))

.....

gM(M+1)
2

= E (Score|OB =M,RB =M) = 2 (γ1 (M) + γ2 (M)) .
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Then for any p1, ...pM(M+1)
2

, it can be seen by writing out that

g1p1 + g2p2 + ...+ gM(M+1)
2

pM(M+1)
2

= (γ1 (1) + γ2 (1))× 2π1 + (γ1 (2) + γ2 (2))× 2π2 + ... (γ1 (M) + γ2 (M))× 2πM

which does not depend on p1, ...pM(M+1)
2

. This shows that (i)=⇒(iii). Moreover, since the rows

of A sum to 2π1, ...2πM respectively, it also follows that g is a linear combination of the rows of

A and hence (i)=⇒(ii). Now, (ii) implies that g is a linear combination of the rows of A, say,

g =
PM

j=1 βjaj where a1, ...aM are the rows of A. Thus

g1 = g (1, 1) = 2β1,

g2 = g (1, 2) = β1 + β2,

...

gM = g (1,M) = β1 + βM

and so on. Therefore, g (i, j) = βi+βj which shows that (ii) implies (i) (equate βi with γ1 (i)+γ2 (i)

in the previous notation). Next, we show that (ii)⇔(iii). (ii) implies that g =
PM

j=1 βjaj ; so g
0p =PM

j=1 βja
0
jp =

PM
j=1 βjπj which does not depend on p, implying (iii). To show that (iii) implies (ii),

we will show that "not (ii)" implies "not (iii)". Letm =M (M + 1) /2. (ii) implies that there exists

δ such that Aδ = 0 and g0δ 6= 0. Let p ∈ P . We will construct a q ∈ P such that g0q 6= g0p. Now,

for some c 6= 0, we will have q = p+ cδ > 0 (in particular, choose c ≥ max {−p1/δ1, ...− pm/δm}.

For this c, we have that q > 0, Aq = Ap+ cAδ = π and g0q = g0p+ cg0δ 6= g0p since g0δ 6= 0. This

contradicts (iii). This last proof assumes that P is not a singleton, which is easy to check.

Thus, one can test for linear separability or uniqueness by testing whether rank (B) =M . This

is what is described now. Previous research on testing rank of a matrix exists (see e.g. Cragg and

Donald (1997)). The current situation is a little different from those discussed in previous research

in that the matrix B has only one row- the first one corresponding to g- which is unknown and

estimated. Our test is based on the following statistic

Tn = n×min
b

¡
ĝ −A0b

¢
Σ̂−1

¡
ĝ −A0b

¢
,

where Σ̂ is a consistent estimate of Σ.

Under the null that rank of B isM , the value of Tn will be close to 0 and under the alternative of

B being full-rank, its value should diverge to infinity. The next proposition describes the asymptotic

distribution of Tn.
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Proposition 3 Assume that
√
n (ĝ − g)

d→ N (0,Σ).4 Then under the null hypothesis that rank (B) =

M , Tn
d→ κ2 with df = M(M+1)

2 −M . Under the alternative, i.e. rank (B) = M + 1, Tn
P→ +∞.

So the test is consistent.

Proof. By usual first order conditions, it is easy to check that

argmin
b

¡
ĝ −A0b

¢
Σ̂−1

¡
ĝ −A0b

¢
=
h
AΣ̂−1A0

i−1
AΣ̂−1ĝ

whence

Tn = n× ĝ0
∙
Σ̂−1 − Σ̂−1A0

h
AΣ̂−1A0

i−1
AΣ̂−1

¸
ĝ = nĝ0V̂ ĝ

where

V̂ =

∙
Σ̂−1 − Σ̂−1A0

h
AΣ̂−1A0

i−1
AΣ̂−1

¸
.

Let

V =
h
Σ−1 − Σ−1A0

£
AΣ−1A0

¤−1
AΣ−1

i
.

Observe that we can rewrite

Tn = n (ĝ − g)0 V (ĝ − g) + 2ng0V̂ ĝ − ng0V̂ g

+n (ĝ − g)0
³
V̂ − V

´
(ĝ − g) . (3)

Under the null, g = A0δ for some δ and hence

g0V̂ = δ0A

∙
Σ̂−1 − Σ̂−1A0

h
AΣ̂−1A0

i−1
AΣ̂−1

¸
= δ0

∙
AΣ̂−1 −AΣ̂−1A0

h
AΣ̂−1A0

i−1
AΣ̂−1

¸
= 0.

Further, since V̂ − V
P→ 0 and

√
n (ĝ − g) = Op (1), it follows that

n (ĝ − g)0
³
V̂ − V

´
(ĝ − g) = op (1) ,

whence

Tn = n (ĝ − g)0 V (ĝ − g) + op (1) .

Using the breakup Σ−1 = P 0P with PP 0 = I, we have that under the null,

Tn =
¡√

nP (ĝ − g)
¢0 ³h

I − PA0
£
AP 0PA0

¤−1
AP 0

i´√
nP (ĝ − g) .

4Sufficient conditions for this are that the random variable Score has finite second moments and that the probability

of each type of room is bounded away from zero- discussed in greater details in the following section.
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Since
√
nP (ĝ − g)

d→ N
³
0, IM(M+1)

2

´
and

h
I − PA0 [AP 0PA0]−1AP 0

i
is idempotent, we have by

standard arguments that Tn
d→ κ2 with df equal to

trace
h
I − PA0

£
AP 0PA0

¤−1
AP 0

i
=

M(M + 1)

2
− tr

³
PA0

£
AP 0PA0

¤−1
AP 0

´
=

M(M + 1)

2
− tr

³
PA0

£
AP 0PA0

¤−1
AP 0

´
=

M(M + 1)

2
− tr

³£
AP 0PA0

¤−1
AP 0PA0

´
=

M(M + 1)

2
− tr (IM) =

M(M + 1)

2
−M .

Under the alternative,

g0V̂ g = min
b

¡
g −A0b

¢0
Σ̂−1

¡
g −A0b

¢
> 0

w.p. 1. So under the alternative, continuing from (3),

Tn = n (ĝ − g)0 V (ĝ − g) + 2
√
ng0V̂

√
n (ĝ − g) + ng0V̂ g

+n (ĝ − g)0
³
V̂ − V

´
(ĝ − g) ,

which, for large enough n, will be dominated by ng0V̂ g → +∞, since √n (ĝ − g) = Op (1),

n (ĝ − g)0
³
V̂ − V

´
(ĝ − g) = op (1) and n (ĝ − g)0 V (ĝ − g) = Op (1).

4 Properties of the estimator under uniqueness

I now consider properties of the estimator, i.e. solution to the sample problem corresponding to

(1) above, under the assumption that the population problem (1) has a unique solution. Recall

that the constraint set P, defined by (1), is a convex polytope with extreme points corresponding

to the set of basic solutions (e.g. Luenberger (1984) page 19). These extreme points or basic

solutions are obtained by taking the independent columns of the constraint matrix and inverting

the resultant matrix. Corresponding to the M ×M(M + 1)/2 constraint matrix defined in (1),

there are at most

⎛⎝ M(M + 1)/2

M

⎞⎠ feasible basic solutions. Call the set of basic solutions S with

12



|S| ≤

⎛⎝ M(M + 1)/2

M

⎞⎠ with |S|
n → 0 as n→∞. Let S =

©
z1, ...z|S|

ª
. Rewrite

ĝj =
1
n

Pn
i=1Dijscorei
1
n

Pn
i=1Dij

≡ ȳj
d̄j
and gj =

E (ȳj)

E
¡
d̄j
¢ = µj

δj
,

wij = Dijscorei − µj −
µj
δj
× (Dij − δj), ωj = E (w.j)

where Dij is a dummy which equals 1 if the ith sampled individual is in room type j, i = 1, ...n and

j = 1, ... |S|. The expectation terms in the above display correspond to the combined experiment

of drawing one random sample and making one random allocation of this drawn sample.

It should be obvious that the solutions to both the sample problem p̂ (π) and the population

problem p (π) (with ĝ replaced by the true g above) will be members of S.

4.1 Consistency

Proposition 4 Assume that (i) score1, ...scoren and D1j , ...Dnj for each j are i.i.d. with finite

mean, (ii) The population problem (1) has a unique solution. Then the solution to the sample

problem, p̂ (π) converges in probability to the solution of the population problem p (π) as n→∞.

Proof. Suppose that for a given π, p̂ (π) , p0 (π) solve the problem under ĝ and g respectively.

We want to show that for that fixed π, p limn→∞ (p̂ (π)− p0 (π)) = 0. From now on, we drop the

qualifier π from our notation.

Suppose p limn→∞ (p̂− p0) 6= 0. Then, we must have

p lim
n→∞

(p̂− p0)
0 g < 0. (4)

Observe that since p0 solves the problem uniquely for g, we cannot have p limn→∞ (p̂− p0)
0 g =

(p limn→∞ p̂− p0)
0 g = 0 Otherwise, p limn→∞ p̂ 6= p0 will be another solution because p limn→∞ p̂

will belong to the parameter space (note that for each n, p̂ satisfies the constraints of (1)). Also,

since by definition of p0, g0p0 > g0p̂ for all n, we cannot have p limn→∞ (p̂− p0)
0 g > 0. Now,

(p̂− p0)
0 ĝ = (p̂− p0)

0 g + (p̂− p0)
0 (ĝ − g) . (5)

For n large enough, (p̂− p0)
0 (ĝ − g) can be made arbitrarily close to 0 since the entries of p̂, p0 lie

within the unit cube and ĝ is consistent for g (which follows from assumption (i) by WLLN and the

continuous mapping theorem). In view of this and (4), for large enough n, the LHS of (5) can be

made strictly negative. But then for this n, we have that p̂0ĝ < p00ĝ which contradicts the definition

of p̂ since p belongs to the parameter space and gives a strictly larger objective function.

13



Corollary 1 The optimal sample value p̂0ĝ converges in probability to p00g as n→∞.

4.2 Rate of convergence

Proposition 5 In addition to the assumptions of proposition 4 above, assume that (iii) δj =

E
¡
d̄j
¢
> m > 0 for all j, (iv) for each j, E

¡
etw1j

¢
<∞ for all t ∈ R. Then, Pr (p̂ 6= p0) = O (e−ρn)

as n→∞ for some ρ > 0.

Proof. We first show that if z01g < z02g, then Pr (z
0
1ĝ > z02ĝ) = O (e−n). So assume that

z01g < z02g.

Then

Pr
¡
z01ĝ > z02ĝ

¢
= Pr

£
(z1 − z2)

0 (ĝ − g) ≥ (z2 − z1)
0 g
¤

= Pr

⎡⎣ |S|X
j=1

(z1j − z2j) (ĝj − gj) ≥ (z2 − z1)
0 g

⎤⎦
= Pr

⎡⎣ |S|X
j=1

(z1j − z2j)

Ã
ȳj −E (ȳj)

d̄j
−

E (ȳj)×
¡
d̄j −E

¡
d̄j
¢¢

d̄jE
¡
d̄j
¢ !

≥ (z2 − z1)
0 g

⎤⎦
≤ Pr

⎡⎣ |S|X
j=1

1

d̄j
(z1j − z2j) (w̄j − ωj) ≥ (z2 − z1)

0 g, d̄1 > m, ...d̄|S| > m

⎤⎦
+1− Pr

£
d̄1 > m, ...d̄|S| > m

¤
≤ Pr

∙µ
∪|S|j=1

½
1

d̄j
(z1j − z2j) (w̄j − ωj) ≥

(z2 − z1)
0 g

|S|

¾¶
∩
¡
d̄1 > m, ...d̄|S| > m

¢¸
+1− Pr

£
d̄1 > m, ...d̄|S| > m

¤

= Pr

∙
∪|S|j=1

µ½
1

d̄j
(z1j − z2j) (w̄j − ωj) ≥

(z2 − z1)
0 g

|S|

¾
∩
¡
d̄1 > m, ...d̄|S| > m

¢¶¸
+1− Pr

£
d̄1 > m, ...d̄|S| > m

¤
≤

|S|X
j=1

Pr

∙½
1

d̄j
(z1j − z2j) (w̄j − ωj) ≥

(z2 − z1)
0 g

|S|

¾
∩
¡
d̄1 > m, ...d̄|S| > m

¢¸
+1− Pr

£
d̄1 > m, ...d̄|S| > m

¤
≤

|S|X
j=1

Pr

∙
(z1j − z2j) (w̄j − ωj) ≥

m (z2 − z1)
0 g

|S|

¸
+ 1− Pr

£
d̄1 > m, ...d̄|S| > m

¤
=

|S|X
j=1

Pr

"
1

n

nX
i=1

(z1j − z2j) (wij − ωj) ≥
m (z2 − z1)

0 g

|S|

#
+ 1− Pr

£
d̄1 > m, ...d̄|S| > m

¤

14



We now invoke the principle of large deviations. By condition (v) and Cramer’s theorem (see, e.g.

Hollander (2000), page 5) the first probability

Pr

"
1

n

nX
i=1

(z1j − z2j) (wij − ωj) ≥
m (z2 − z1)

0 g

|S|

#

is O (e−ρ1n) for some ρ1 > 0 since (z2 − z1)
0 g > 0. The random variables Dij are binary and so

will satisfy Cramer’s condition trivially. Therefore,

1− Pr
£
d̄1 > m, ...d̄|S| > m

¤
= Pr

h
∪|S|j=1

¡
d̄j < m

¢i
≤

|S|X
j=1

Pr
¡
d̄j < m

¢
=

|S|X
j=1

Pr
¡
d̄j − δj < m− δj

¢
is O (e−ρ2n) for some ρ2 > 0 by Cramer’s theorem since m − δj < 0 for all j by condition (iii).

Thus, we have shown that if z01g < z02g, then Pr (z
0
1ĝ > z02ĝ) = O (e−ρn) for some ρ > 0.

Now, if p0 = z1, i.e. z01g > z0jg for all j = 2, ... |S|, then Pr
³
z01ĝ > z0j ĝ

´
= 1−O (e−ρn) for any

j = 2, ... |S|. This implies that

Pr (p̂ = z1) = Pr
³
z01ĝ > z02ĝ, z

0
1ĝ > z03ĝ, ...z

0
1ĝ > z0|S|ĝ

´
= 1− Pr

³
∪|S|j=1

©
z01ĝ < z0j ĝ

ª´
≥ 1−

|S|X
j=1

Pr
¡
z01ĝ < z0j ĝ

¢
= 1−O

¡
|S| e−ρn

¢
= 1−O

¡
e−ρn

¢
.

Analogously, if p0 = zj , then Pr (p̂ = zj) = 1−O (e−ρn) for all j = 1, 2, ... |S|.

From the analysis above, it is clear that if true problem has a unique solution zj , then for any

finite n, p̂ corresponding to the sample problem will have a discrete distribution with Pr (p̂ = zj) =

1 − O (e−ρn) and Pr (p̂ = zk) = O (e−ρn) for all k 6= j. Consequently, e−nρ/2 (p̂− p0) will have a

finite asymptotic variance where the constant ρ will be related to the rate function in Cramer’s

theorem.

4.3 Optimal value

Consistency of the optimal value is corollary 1. To see the rate of convergence of the sample optimal

value, notice that
√
n
¡
ĝ0p̂− g0p0

¢
=
√
n (ĝ − g)0 p̂+

√
n (p̂− p0)

0 g. (6)
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Since the second term is op (1) under the assumptions of the previous subsection, the asymp-

totic distribution of the sample optimal value will be normal with asymptotic variance given by

p00Avar (ĝ) p0. The asymptotic variance of ĝj (note that assumption (iv) in proposition 2 implies

that ĝj has finite variance for all j) by standard delta method arguments (and condition (iii) of

proposition 2) equals the asymptotic variance of

1

n

nX
i=1

"
Dijscorei − µj

δj
−

µj

δ2j
(Dij − δj)

#

which can be consistently estimated by replacing µj and δj by ȳj , d̄j respectively while p0 is

consistently estimated by the solution vector p̂. From now on, we will use the notation Σ to denote

Avar (ĝ). These observations are collected into a proposition for easy reference later.

Proposition 6 Under the assumptions of proposition 5

√
n
¡
ĝ0p̂− g0p0

¢ d→ N
¡
0, p00Σp0

¢
where Σ is diagonal. A consistent estimate of the (j, k)th element of Σ is given by 1

n

Pn
i=1 sijsik

where

sij =
Dijscorei
1
n

Pn
i=1Dij

−
1
n

Pn
i=1Dijscorei¡

1
n

Pn
i=1Dij

¢2 ×Dij

The fact that the optimal solution converges much faster than the optimal value is interesting

and can be "intuitively" explained as follows. Consider an oversimplified version of the above

problem.

max ĝ1p1 + ĝ2p2

s.t.

p1 + p2 = 1

p1 ≥ 0, p2 ≥ 0.

The extreme points are (1, 0) and (0, 1). Whenever ĝ1/ĝ2 > 1, the solution is at (1, 0) (and whenever

ĝ1/ĝ2 < 1, the solution is at (0, 1)). Observe that at this point, the optimal value is ĝ1. Even if

ĝ1, ĝ2 vary a lot from one sample to another, as long as ĝ1/ĝ2 > 1, the solution continues to be

(1, 0) but the maximum value ĝ1 varies a lot. In other words, the optimal solution is affected much

less by the variation in ĝ1, ĝ2 relative to the optimal value.
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4.4 Which covariates?

Obviously, including more covariates or refining the support of a given covariate leads to higher

maxima and lower minima in both the population (i.e. with known g’s) and in the sample (with

estimated ĝ’s). To see this, consider the following simple example. First consider the case with no

covariate and let mean outcome equal µ̂. Now consider a binary covariate called X which takes

two values H and L. Let the proportion of those be πH and πL respectively and let the random

assignment produce f1, f2 and f3 fractions of room types HH, HL and LL respectively with ĝ1, ĝ2, ĝ3

be the respective categorical means of the outcome. Then by definition, we have

µ̂ = f1ĝ1 + f2ĝ2 + f3ĝ3

2f1 + f2 = 2πH

f2 + 2f3 = 2πL.

Now, with these categories, the optimality problem solves

max
p
[p1ĝ1 + p2ĝ2 + p3ĝ3]

s.t.

2p1 + p2 = 2πH

p2 + 2p3 = 2πL.

Clearly, (f1, f2, f3) is feasible for the above problem and so the maximum for the above problem

must be at least µ̂.

So when one knows average outcome for every potential combination of all covariates, using

all covariates will yield the largest maximum mean outcome- which we will call g0p0- obtained as

the optimal value for the problem displayed above with the ĝ replaced by g. When no covariates

are used, the sample value is µ̂ whose mean (and plim) for large n is π2Hg1 + 2πhπlg2 + π2Lg3. In

terms of being closer to g0p0 in plim, we have shown above that p lim ĝ0p̂ = g0p0. So for large n, it

is advisable to use all covariates. Also, for large n, E (g0p0 − ĝ0p̂)2 → 0 if the outcomes have finite

variance.5So the same conclusion holds if one wants to minimize a MSE type functional.

For small n, these approximations are poor and one needs to calculate E (g0p0 − µ̂)2 and

E (g0p0 − ĝ0p̂)2 or simply g0p0 − E (µ̂) and g0p0 − E (ĝ0p̂), where E (.) denotes the exact finite

5 since, E (ĝ0p̂− g0p)
2 ≤ E kĝ − gk2 +mE kp̂− pk2 + 2m E kĝ − gk2 E kp̂− pk2 1/2

and E kĝ − gk2 → 0 if out-

comes have finite variance.
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sample expectation, to see when it is better not to condition on covariates. This is the approach

taken in Manski (2004) in the treatment choice context6. Intuitively, finer categorization implies

smaller precision in the estimation of ĝ’s making it more likely that E (µ̂− g0p0)
2 ≤ E (ĝ0p̂− g0p0)

2.

Remark 1 Virtually the same argument can be used to justify that solution to the LP problem

provides asymptotically a higher (not lower) expected mean than any other allocation mechanism-

like positive assortative (PA) and negative assortative (NA) matching or random assignment, con-

sidered in Graham et al (2005). This is because all these other allocations have to be feasible and

the LP one maximizes the mean among all feasible allocations.

Remark 2 One can compare relative efficiency of a given allocation, say PA matching, relative

to optimal matching. In the above example, positive assortative matching is the outcome with

p2 = 0, p1 = πH and p3 = πL. The value of the outcome is πH ĝ1 + πLĝ3
P→ πHg1 + πLg3.

Thus one can estimate the relative efficiency of PA matching by (πH ĝ1 + πLĝ3) /ĝ
0p̂, that of NA by

(πH −min {πH , πL}) ĝ1 + min {πH , πL} ĝ2 + (πL −min {πH , πL}) ĝ3/ĝ0p̂ and of random allocation

by µ̂/ĝ0p̂. Using the usual delta method and the asymptotic distributions derived above, one can

also form confidence intervals for these relative efficiencies.

5 Nonuniqueness and pretest CI

It turns out that the asymptotic distribution of the estimated optimal value is quite different if the

population solution is nonunique. To see this, reconsider the maximization problem described in

(1) and recall the definition of S =
©
z1, ...z|S|

ª
, the set of feasible extreme points defined in section

4. Let p̂ denote the sample solution and let v̂ = p̂0ĝ. Observe that the fundamental theorem of

linear programming implies that one can alternatively define

v̂ = max
n
z01ĝ, ...z

0
|S|ĝ
o
.

The asymptotic distribution of the sample maximum value under nonunique population solution is

described in the following proposition.

6Manski’s approach actually considers the suprema of these differences over all possible values of g’s. The asymp-

totic performance of one specific "decision rule" , the main subject of this paper, is valid for all possible values of g’s

except ones which lead to a nonunique solution to the population problem- discussed in the following section.
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Proposition 7 Assume that
√
n (ĝ − g)

d→ W ≡ N (0,Σ). If minp∈P (g0p) = maxp∈P (g0p) = v,

then plimn→∞v̂ = v and

√
n (v̂ − v)

d→Wmax = max
©
W1, ...W|S|

ª
where Wj = z0jW for j = 1, ... |S|. Wmax is not Gaussian in general.

Proof. Under nonuniqueness we have v = z01g = ... = z0|S| and continue to have that for all

finite n,

v̂ = sup
p∈P

p0ĝ = max
n
z01ĝ, ...z

0
|S|ĝ
o
.

Since plimn→∞ĝ = g, max
n
z01ĝ, ...z

0
|S|ĝ
o

P→ max
n
z01g, ...z

0
|S|g
o
= v, by the continuous mapping

theorem. So v̂ is consistent for v. Moreover,

√
n (v̂ − v) = max

n√
n
¡
z01ĝ − v

¢
, ...
√
n
³
z0|S|ĝ − v

´o
= max

n
z01
√
n (ĝ − g) , ...z0|S|

√
n (ĝ − g)

o
,

whence the conclusion follows by the continuous mapping theorem.

Although Wmax does not have a pivotal distribution, its distribution can be simulated by first

drawing a w from the (estimated) asymptotic distribution of
√
n (ĝ − g), i.e. N

³
0, Σ̂

´
, calculate

the extreme points of the constraints set, viz. S and then calculate max
n
z01w, ...z

0
|S|w

o
. Repeating

this a large number of times should simulate the distribution of Wmax. However, this process can

be very time-consuming if M is moderately large, implying that |S| is very large. The following

trick helps us reduce computation significantly. Solve problem (1) after replacing g by a draw from

the (estimated) asymptotic distribution of
√
n (ĝ − g), i.e. N

³
0, Σ̂

´
. Repeat this a large number of

times. Since the maxima will continue to be one of the extreme points, we will end up with the

distribution of Wmax.

However, E (Wmax) = θ0 6= 0, in general and therefore a bias corrected estimate of v will be

given by v̂BC = v̂ − n−1/2θ̃0, where θ̃0 equals the mean of the simulated distribution of Wmax.

To see why this bias arises, assume for simplicity that |S| = 2, z1 = (1, 1) , z2 = (−1,−1). Let
√
n (ĝ − g)

d→ (X1,X2) ' N2 (0, I). Then max {z01
√
n (ĝ − g) , z02

√
n (ĝ − g)} d→ |X1 +X2|. But

X1 +X2 is a mean zero normal, so its absolute value has a strictly positive mean.

Thus a bias-corrected C.I. for v can be formed as follows. Choose dL, dH such that 1 − α =

Pr (dL ≤Wmax ≤ dH). A level (1− α) confidence interval for v is then given by

CInon−unique =

∙
v̂ − dH√

n
, v̂ − dL√

n

¸
=

"
v̂BC −

dH − θ̃0√
n

, v̂BC +
θ̃0 − dL√

n

#
.
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Typically, dL < θ0 < dH implying that CInon−unique will be "centred around" v̂BC (and not

v̂).

Since the asymptotic distribution of the maximum value is completely different depending on

whether the population solution is unique, one can adopt a pretest type method for calculating

confidence intervals. One first tests for additivity. Upon rejection of it, one calculates the optimal

solutions (p̂) and level (1− α) confidence intervals as

CIunique =

"
ĝ0p̂− p̂0Σ̂p̂√

n
zα/2, ĝ

0p̂+
p̂0Σ̂p̂√

n
zα/2

#
where zα/2 is the upper α/2 percentile point of the standard normal. Upon failure to reject the

null of nonuniqueness, one calculates the confidence interval CInon−unique. The overall confidence

interval is thus

Î = 1 (Tn ≥ c)CIunique + 1 (Tn < c)CInon−unique,

where c is the critical value used in the Tn-based test of uniqueness, described in proposition 3. The

estimator of the maximum value is simply θ̂ = ĝ0p̂, no matter whether the null of nonuniqueness

is rejected or not. This is the approach followed in the application. The following proposition

describes the probability that Î covers the maximum value v ≡ v (g), where the notation v (g)

makes it clear that the maximum value depends on g.

Proposition 8 Under the assumptions of propositions 3, 6 and 7, for all g,

Pr
³
v (g) ∈ Î

´
≥ 1− α− α0,

where α0 is the size of the test described in proposition 3.

Proof. For values of g such that g /∈ R (A), i.e.rank (B) =M + 1, we have

Pr
³
v (g) ∈ Î|g /∈ R (A)

´
= Pr

Ã
Tn ≥ c, ĝ0p̂− p̂0Σ̂p̂√

n
zα/2 ≤ v ≤ ĝ0p̂+

p̂0Σ̂p̂√
n
zα/2|g /∈ R (A)

!

+Pr

µ
Tn < c,v̂ − dH√

n
≤ v ≤ v̂ − dL√

n
|g /∈ R (A)

¶
. (7)

The second term is dominated by Pr (Tn < c|g /∈ R (A)) which converges to 0 as n→∞ since the

test based on Tn is consistent. This implies that the second term converges to 0. Observe that for

any two events A1, A2, Pr (A1 ∪A2) ≤ 1 implying

Pr (A1 ∩A2) ≥ Pr (A1) + Pr (A2)− 1. (8)
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So the first term in (7) is at least

Pr (Tn ≥ c|g /∈ R (A))− 1

+Pr

Ã
ĝ0p̂− p̂0Σ̂p̂√

n
zα/2 ≤ v ≤ ĝ0p̂+

p̂0Σ̂p̂√
n
zα/2|g /∈ R (A)

!

which converges to (1− α) as n→∞ since the test based on Tn is consistent. So

Pr
³
v (g) ∈ Î|g /∈ R (A)

´
≥ 1− α (9)

and so Î is at worst too conservative.

For values of g such that rank (B) =M , i.e. g ∈ R (A), we have

Pr
³
v (g) ∈ Î|g ∈ R (A)

´
= Pr

Ã
Tn ≥ c, ĝ0p̂− p̂0Σ̂p̂√

n
zα/2 ≤ v ≤ ĝ0p̂+

p̂0Σ̂p̂√
n
zα/2|g ∈ R (A)

!

+Pr

µ
Tn < c, v̂ − dH√

n
≤ v ≤ v̂ − dL√

n
|g ∈ R (A)

¶
.

Using (8), the second probability is at least

Pr (Tn < c|g ∈ R (A)) + Pr
µ
v̂ − dH√

n
≤ v ≤ v̂ − dL√

n
|g ∈ R (A)

¶
− 1

→
n→∞

¡
1− α0

¢
+ (1− α)− 1

= 1− α− α0,

where α0 is the size of the test of the null g ∈ R (A) using Tn. Therefore,

Pr
³
v (g) ∈ Î|g ∈ R (A)

´
≥ 1− α− α0. (10)

From (9) and (10), the conclusion follows.

The above proof shows the natural trade-off between the power of the test of uniqueness based

on Tn and the uniform coverage probability of the pretest confidence interval. The larger is α0, the

smaller the coverage probability and higher is the power and conversely.

Clearly, one can think of alternative pretest estimators and confidence intervals. If additivity

cannot be rejected, one can simply pick any p̌ ∈ P, calculate ĝ0p̌ and propose that as an estimate of

the (common) maximum value. This makes the overall estimator another pretest type estimator,

given by

θ̌ = 1 (Tn ≥ c) ĝ0p̂+ 1 (Tn < c) ĝ0p̌.
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The corresponding confidence interval is given by

1 (Tn ≥ c)× CIunique + 1 (Tn < c)×
"
ĝ0p̌− p̌0Σ̂p̌√

n
zα/2, ĝ

0p̌+
p̌0Σ̂p̌√

n
zα/2

#
.

The decision theoretic comparison of these alternative estimators in terms of their risk and confi-

dence intervals in terms of their (uniform) coverage probabilities, the "optimal" choice of α, α0 etc.

are outside the scope of the current paper and is reserved for future research.

6 Application

I now apply these methods to calculate optimal allocation of freshmen to dorm rooms based on

observed outcomes of a random assignment process at Dartmouth College. The two outcomes I

will consider are (i) freshman year GPA and (ii) eventual enrolment into a fraternity or sorority.

The two separate covariates that I will use to design the optimal matching rule will be (i) an

academic index, called ACA in this paper henceforth, which is a weighted sum of the student’s

high school GPA, high school class rank and SAT score and (ii) race classified as white and others.

I will use the observed marginal distribution of covariates in the sample as a benchmark marginal

distribution. But I emphasize that I still adhere to the theoretical set up which assumes that this

marginal distribution is known exactly to the planner and an optimal matching rule maps each fixed

marginal to an optimal joint distribution. The analysis will be done separately for men and women

and will be restricted to individuals who were assigned to double rooms. Table 0 contains summary

statistics for variables used. For all other details about the background and the assignment process,

please see Sacerdote (2001).

First consider the case where the policy covariate is ACA. This variable assumes values between

151 and 231 in the data. I impose discreteness by dividing the sample into several ranges of ACA

and show results for 2, 4, and 6 categories. Finer categorization yields larger maxima and smaller

minimum values at the optima but leads to lesser precision since finer categories imply less precise

estimates of the conditional means ĝ within each category. The results are shown in table 1

separately for men and women when the outcome of interest is mean freshman year GPA and in

table 2A, 2B for the outcome "joining a fraternity/sorority in junior year".

The second column in each table reports the value of the test statistic Tn and the 90% and

95% critical points of the corresponding κ2 distribution (df=1, 6 and 15 for 2, 4 and 6 categories

respectively). When I cannot reject the null of additive effects, I report the maximum value calcu-

lated from the sample, the bias corrected one next to it, a 95% confidence interval corresponding
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to CInon−unique in the text, and the difference between the sample max and the sample min values.

"95%" within "" marks refers to the idea that with pretesting, the exact coverage probability will

typically differ from the nominal level by at most the size of the test of uniqueness. When the

outcome of interest is freshman year GPA, it is seen from table 1 that we cannot reject the null of

additive effects. The value of the test statistic is always smaller than the 90% critical value. How-

ever, as the number of categories increase, the difference between the maximum and the minimum

calculated on the basis of the sample increases as expected.

In table 2A, the same exercise is repeated for the outcome "joining a Greek organization". It

is seen from table 2A that the test statistic for additivity is large in almost all cases, leading to

rejection of additivity. I report the 95% confidence interval for the minimum value (CIunique above)

together with the maximum and the minimum values. Concentrating on the panel for women, it is

seen that the additivity is rejected for both small (2) and large number (6) of categories but not for

the intermediate one (4). This is a consequence of the fact that one loses precision as the number

of categories rises leading to a decrease in the value of the test statistic but it becomes harder to

"fit" a b to a larger number of ĝ’s as described in the definition of Tn.

Table 2B describes the nature of the optimizing allocations. Columns 3 and 4 of table 2B report

the fractions of rooms with two highest ACA types and two lowest ACA types. For instance, in the

first row (0.51, 0.49) means that the allocation which achieves the maximum probability of fraternity

enrolment is where 51% of the rooms have two high types and 49% of the rooms have two low-types

(implying that no room is mixed). For men, as can be seen from the last two columns of table 2A,

the minimum probability of joining a fraternity is achieved when no room has two students from

the bottom category and, few rooms with two students form the very top category. This happens

because a very low type experiences a larger decline in its propensity to join a Greek house when it

moves in with a high type relative to how much increase the high type experiences when he moves

in with a low ACA type. Overall, this can be interpreted as a recommendation for "more mixed

rooms" for men, if the planner wants to reduce the probability of joining Greek houses.

For women, the picture is exactly the opposite- more segregation in terms of previous academic

achievement seems to produce lower enrollment into Greek houses. The most likely explanation

for this might be that women utilize Greek houses in different ways than men and look to them

for psychological "comfort". When forced to live with someone very different from her, she seeks

a comfort-group outside her room and becomes more likely to join a sorority which contains more

women "like her". For men, peers like oneself reinforce one’s tendencies and this effect dominates.
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Similar exercises with race are reported in tables 3 and 4. The results here are sensitive to the

definition of race. I first consider allocation based on the dichotomous covariate whether the student

belongs to an under-represented minority (Black, Hispanic, Native Indian and Asian Indian) or not.

These results are reported in table 3 when the outcome is joining a Greek house. There seems to be

significant nonadditivity and optimal solutions are very similar to the ones obtained with ACA as

the covariate. The mean probability of joining a sorority is minimum when segregation is maximum

and that of joining a fraternity is minimum when dorms are almost completely mixed with no two

individuals from the minorities staying with one another.

Next I consider the case where race is classified as white and others. There does not seem to

be any evidence of non additivity in race related peer effects with this definition, as is evident from

table 4. Finer categorization of "others" into "blacks" and "others" caused problems in estimation

since the number of rooms with two black men is one- which makes it impossible to estimate the

requisite variance.

In either case, no significant nonadditivites were found corresponding to outcome being freshman

year GPA.

7 Conclusion

... to come
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Table 0: “Population” Characteristics 
----------------------------------------------------------------- 
 
 
 
          Women, N=428 
                

Variable                Mean        SD                 Range                      
                                       Min  Max 

 
ACA                     202.68  12.65        156, 228 
White                0.69    0.46                 0, 1          
Fresh GPA   3.23    0.39        1.56, 4.0 
Soro                       0.47     0.5             0, 1 
 
 
 

          Men, N=436 
                

Variable                  Mean        SD                 Range                      
                                       Min  Max 

 
ACA                      205.55  12.99  151, 231 
White                  0.72    0.45               0, 1          
Fresh GPA    3.15    0.45  1.15, 3.9 
Frat                         0.53     0.5            0, 1 
 
 
 
 
 
 
 
 
 
 



Table 1

Y=Freshman GPA
X=ACA Critical values

Bias Corrected
# Categories test-statistic 90%, 95% Sample Max Max "95%" CI Max-Min

Men (mean=3.15)

2 0.59 2.71, 3.84 3.17 3.16 3.13, 3.19 0.023
4 7.4 10.64, 12.59 3.205 3.17 3.14, 3.20 0.11
6 20.6 22.31,  25.00 3.293 3.25 3.21, 3.27 0.233

Women (mean=3.235)

2 0.01 2.71, 3.84 3.238 3.23 3.21, 3.25 0.004
4 3.98 10.64, 12.59 3.275 3.25 3.22, 3.28 0.15
6 20.23 22.31, 25.00 3.347 3.3 3.27, 3.33 0.189



Table 2A

Y=Prob of joing frat
X=ACA

Critical values

# Categories test-statistic 90%, 95% Sample Min "95%" CI Max-Min

Men (mean=0.53)

2 3.05* 2.71, 3.84 0.487 0.417, 0.557 0.084
4 9.82* 9.64, 12.59 0.463 0.357, 0.571 0.111
6 26.9** 22.31, 25.00 0.411 0.297, 0.524 0.276

Women (mean=0.47)

2 3.65* 2.71, 3.84 0.423 0.355, 0.492 0.09
4 6.7 10.64,12.59 0.399^ 0.335, 0.399 0.106
6 35.9** 22.31, 25 0.322 0.238, 0.407 0.372

^ BC min=0.3674



Table 2B

Y=Prob of joing frat
X=ACA

HH and LL HH and LL
# Categories test-statistic Max Min

Men (mean=0.53)

2 3.05* 0.51, 0.49 0.037, 0.00
4 9.82* 0.01, 0.24 0.00,  0.00
6 26.9** 0.35, 0.002 0.00, 0.00

Women (mean=0.47)

2 3.65* 0.037, 0 0.52, 0.48
4 6.7
6 35.9** 0, 0.016 0.011, 0.22



Table 3A: Race=Non-minorities (L), minorities (H)

Critical values
test-statistic 90%, 95%

Y=Freshman GPA

Men (mean=3.15) 0.253 2.71, 3.84

Women (mean=3.24) 0.104 2.71, 3.84



Table 3B: Race=Non-minorities (L), minorities(H)

Critical values
test-statistic 90%, 95% Sample Min "95%" CI Max-Min

Y=Prob of joining frat

Men (mean=0.53) 3.3* 2.71, 3.84 0.3 0.23, 0.36 0.077

women (mean=0.47) 4.66** 2.71, 3.84 0.09 0.05, 0.13 0.04



Table 3C: Race=Non-minorities (L) , minorities (H)

HH and LL HH and LL
test-statistic Max Min

Y=Prob of joining frat

Men (mean=0.53) 3.3* 0.114, 0.885 0, 0.77

women (mean=0.47) 4.66** 0, 0.78 0.11, 0.89



Table 4: Race=White,Others

Critical values
test-statistic 90%, 95%

Y=Freshman GPA

Men (mean=3.15) 0.28 2.71, 3.84

Women (mean=3.235) 0.33 2.71, 3.84

Y=Prob of joining frat

Men (mean=0.53) 0.26 2.71, 3.84

women (mean=0.47) 1.27 2.71, 3.84




