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Abstract

This paper develops a semiparametric method for estimation of the censored regres-
sion model when some of the regressors are endogenous (and continuously distributed)
and instrumental variables are available for them. A “distributional exclusion” restric-
tion is imposed on the unobservable errors, whose conditional distribution is assumed
to depend on the regressors and instruments only through a lower-dimensional “control
variable,” here assumed to be the difference between the endogenous regressors and
their conditional expectations given the instruments. This assumption, which implies
a similar exclusion restriction for the conditional quantiles of the censored dependent
variable, is used to motivate a two-stage estimator of the censored regression coeffi-
cients. In the first stage, the conditional quantile of the dependent variable given the
instruments and the regressors is nonparametrically estimated, as are the first-stage
reduced-form residuals to be used as control variables. The second-stage estimator is a
weighted least squares regression of pairwise differences in the estimated quantiles on
the corresponding differences in regressors, using only pairs of observations for which
both estimated quantiles are positive (i.e., in the uncensored region) and the corre-
sponding difference in estimated control variables is small. The paper gives the form of
the asymptotic distribution for the proposed estimator, and discusses how it compares
to similar estimators for alternative models.

JEL: C14, C25, C35, J22.

Key Words: Censored Regression, Endogeneity, Quantile Regression, Control Func-
tion Estimation

Address for correspondence: James L. Powell, Department of Economics, University
of California at Berkeley, Berkeley, CA 94720-3880. email: powell@econ.berkeley.edu

∗University College London, Department of Economics, Gower Street, London, WC1E 6BT and Institute
for Fiscal Studies. r.blundell@ucl.ac.uk

†Department of Economics, University of California, Berkeley, CA 94720-3880. powell@econ.berkeley.edu



1. Introduction1

This paper proposes an extension of quantile-based semiparametric estimation methods

for the coefficients of the censored regression model to models in which some of the regressors

are endogenous. Identification of the regression coefficients is based upon a quantile variant

of the “control function” approach to estimation with endogenous regressors, in which the

error terms are assumed to be independent of the regressors after conditioning upon the

residuals of a first-stage fit of the regressors on some instrumental variables. Use of first-

stage residuals (or some other identified function of the regressors and instruments) to control

for endogeneity of the regressors or sample selectivity is a long-standing tradition in the

estimation of parametric econometric models; examples include Dhrymes (1970), Heckman

(1976, 1979), and Blundell and Smith (1989, 1991). More recently, has been adopted to

identify and estimate semiparametric (Powell 1987, 2001; Ahn and Powell 1993; Chen and

Khan 1999; Honoré and Powell 2004; Das, Newey, Vella 2003; Blundell and Powell 2004)

and nonparametric models (e.g., Newey, Powell, and Vella 1999; Altonji and Matzkin 1997;

Blundell and Powell 2001; Imbens and Newey 2002; Florens, Heckman, Meghir, and Vytlacil

2003).

For models with additive error terms, some of these papers impose a mean exclusion

restriction that the conditional expectation of the errors given the control variable and re-

gressors does not depend upon the latter; for models with non-additive errors, a stronger

distributional exclusion restriction of conditional independence of the errors and regressors

given the control variable is typically assumed. This paper imposes an alternative quantile

exclusion restriction that a particular conditional quantile of the error distribution is in-

dependent of the regressors given the control variable; like the mean exclusion restriction,

this quantile exclusion restriction is implied by the stronger distributional exclusion ver-

sion, but it is more suitable for the censored regression model, in which the error terms are

non-addively but monotonically related to the observable dependent variable.

1Acknowledgements: We are grateful to Hidehiko Ichimura, Guido Imbens, Michael Jansson, Thomas
MaCurdy, Thomas Rothenberg, Paul Ruud, Edward Vytlacil, and seminar participants at Berkeley and
Stanford for their helpful comments. Blundell gratefully acknowledges financial support from the Leverhulme
Trust.
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For the censored regression model under the quantile exclusion restriction, a two-stage

estimator of the unknown regression coefficients is proposed. In the first stage, nonpara-

metric estimation methods are used to estimate the control variable (residuals from a non-

parametric regression of the endogenous regressors on the instruments) and the conditional

quantile of the censored dependent variable given the regressors and instruments. The second

stage constructs an estimator of the finite-dimensional regression coefficient vector through a

weighted least squares regression of the differences in the estimated quantiles on differences

in estimated regressors, with weights that are nonzero only when both quantile estimates are

positive (and thus linear in the covariates) and the difference in the control variables is close

to zero. For a given quantile, this estimator of the underlying regression coefficients is shown

to be
√
n-consistent and asymptotically normally distributed under appropriate regularity

conditions.

In the next section, the structural equations for the censored dependent variable and

endogenous regressors are defined, as are the distributional exclusion and implied quantile

exclusion restrictions, which are then used to motivate the definition of the estimator of the

unknown regression coefficients. Section 3 discusses the nonparametric first-stage estimation

methods and their key asymptotic properties, and gives the form of the asymptotic (nor-

mal) distribution of the coefficient estimator. The final section discusses how the proposed

estimation approach can be extended to similar models (including coherent simultaneous

Tobit models, and censored regression with selectivity), relates the estimation approach to

recently-proposed control function estimators for endogenous versions of binary response and

censored selection, and compares the features of the proposed estimation method to alterna-

tive identifying assumptions and estimators for the censored endogenous regression model.

Statements of regularity conditions and derivations of the theoretical results are given in a

mathematical appendix.

2



2. The Model and Estimation Approach

We consider the censored regression model, specifically, the linear regression model with

left-censoring at zero,

yi = max{0,x0iβ0 + ui}, (2.1)

where the scalar dependent variable yi and the vector xi of explanatory variables are assumed

to be jointly i.i.d. for i = 1, ..., n, with β0 a conformable vector of unknown regression

coefficients and ui an unobservable scalar error term,. Variants of this model, e.g., right-

censoring at an observable censoring variable ci,

yi = min{x0iβ0 + u, ci}, (2.2)

can be easily accommodated, provided the censoring threshold is observable for all data

points and satisfies similar conditions to those imposed on the regressors.

When the regressors are assumed to be exogenous — that is, when the error term ui, or

some feature of its conditional distribution, is assumed independent of the regressors xi —

a number of root-n-consistent estimators for β0 have been proposed in the semiparametric

literature (see Powell 1994, Section 3.3, for a dated survey). When some components x(e)i of

xi are endogenous, standard practice is to posit the existence of a vector zi of “instrumental

variables” which are exogenous in an appropriate sense. For censored data, such a model

may arise if the latent (uncensored) dependent variable

y∗i ≡ x0iβ0 + ui (2.3)

is the single equation of interest in a simultaneous-equations system in which the L-dimensional

subvector of endogenous regressors x(e)i is generated by the reduced form

x
(e)
i = π(zi) + vi, (2.4)

with π some (possibly nonparametric) function of the instruments zi and vi the correspond-

ing error term.

In this setting, an assumption of independence between the error terms (ui,vi) and the

instruments zi would generate a number of weaker exclusion restrictions which might be
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used to try to identify β0 in the system (2.1) and (2.4). One such weaker restriction would

impose only independence of ui and zi, which would sidestep the specification of (2.4) and

the associated “control variable” vi; however, as Hong and Tamer (200?) demonstrate,

identification of β0 under this weaker restriction involves strong conditions on the regressors

and instruments (e.g., existence of a set of instrument values, with positive probability, such

that Pr{x0iβ0 > 0|zi} = 1). An alternative condition implied by independence of (ui, vi) and
zi is the distributional exclusion restriction

Fu(q|xi, zi) ≡ Pr{ui ≤ q|xi, zi}
= Pr{ui ≤ q|vi} ≡ Fu(q|vi) w.p.1, q ∈ R. (2.5)

This assumption is also weaker than independence of all errors and the instruments, since

it does not require independence of vi and zi, which may fail in practice when π(·) in
(2.4) is estimated using nonparametric mean regression. Nevertheless, it does require a

complete specification of the list of the relevant instrumental variables zi in (2.4), along

with a stochastic restriction on the first-stage residuals vi (e.g., E[vi|zi] = 0) which permits
consistent estimation of π.

The distributional exclusion restriction (2.5) is equivalent to a restriction that all of

the conditional quantiles of ui given xi and zi are functions only of the control variable

vi ≡ xi − π(zi):

Qα[ui|xi, zi] = Qα[ui|vi] w.p.1, α ∈ (0, 1), (2.6)

where the conditional αth quantile Qα of ui given xi and zi is defined as

Qα[ui|xi, zi] ≡ F−1u|x,z(α|xi, zi)
≡ inf {q : Pr{u ≤ q|xi, zi} ≥ α} (2.7)

= argmin
q
E [ρα (u− q) |xi, zi] , (2.8)

where α ∈ (0, 1) and ρα is the “check function”

ρα(u) = |u| · |α− 1{u ≤ 0}|. (2.9)
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Of course, a weaker restriction would impose (2.6) only for a particular value of α (e.g.,

α = .5, a median restriction). Such a quantile restriction on the errors is useful for models

in which the dependent variable is monotonically related to the error term, as for the cen-

sored regression model here. Since quantiles are equivariant with respect to nondecreasing

transformations, the restriction (2.6) yields a corresponding restriction on the conditional

quantile of the censored dependent variable yi given the regressors xi and instruments zi :

qi ≡ Qα[yi|xi, zi] ≡ qi(α)
= Qα[max{0,x0iβ0 + ui}|xi, zi]
= max{0,x0iβ0 +Qα[ui|xi, zi]}
= max{0,x0iβ0 + λα(vi)}, (2.10)

where

λα(vi) ≡ Qα[ui|vi]. (2.11)

When all components of xi are exogenous (with xi = zi), the “control function” λα(vi) is a

constant for each α, a result that forms the basis for the large literature on quantile estima-

tion of censored regression, a literature which includes Powell (1984, 1986), Nawata (1992),

Buchinsky and Hahn (1998), Khan and Powell (2001), Chen and Khan (2001), Chernozhukov

and Hong (2002), and Hong and Tamer (2003), among others. When the regressors are en-

dogenous and (2.6) applies, the conditional quantile of yi becomes a left-censored version

of a partially-linear regression function. Ss discussed below, estimation of this semilinear

censored regression model was considered by Chen and Khan (2001), under the assumption

that the control variable vi is known; the modifications of their approach in this paper are

made to accommodate nonparametric estimation of the control variable.

The random variable qi in (2.10), being the conditional quantile for observable random

variables, is identified; sufficient conditions for identification of β0 can then be derived from

a similar “pairwise differencing” argument to that used by Powell (1987, 2001) for identifi-

cation of the regression coefficients in a censored selection model. Specifically, for a pair of

observations with both conditional quantiles being positive, the difference in the quantiles

is the difference in the regression functions plus the difference in the control functions. By
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restricting attention to pairs of observations with identical control variables vi, differences

in the quantiles only involve differences in the regression function, which identifies β0 if the

regressors are sufficiently variable conditional on the control variable. Algebraically, for a

pair of observations i and j with

qi > 0, qj > 0, and vi = vj, (2.12)

it follows that

qi − qj = (xi − xj)0β0, (2.13)

which identifies β0 if the regressors are sufficiently variable given the condition (2.12). When

vi is defined by the additive reduced form (2.4), the relation (2.13) is equivalent to

qi − qj = (π(zi)− π(zj))0β0, (2.14)

so identification of β0 follows if the first-stage fitted values π(zi) have a full rank distribution

given (2.12).

Again following Powell (1987, 2001) and Ahn and Powell (1993), this identification strat-

egy suggests a two-stage approach to estimation of β0. In the first stage, nonparametric esti-

mates of the conditional quantile qi ≡ Qα[yi|xi, zi] and the control variable vi ≡ x(e)i −π(zi)
are obtained using suitable methods. The second stage estimates β0 using a weighted least-

squares regression of all pairs of differences q̂i−q̂j in estimated quantiles on the corresponding
differences xi − xj in regressors, using weights which are nonzero only if the quantile esti-
mates are positive, the nonparametric estimates are sufficiently precise, and the estimated

control variables are sufficiently close to each other. That is, the estimator β̂ of β0 is defined

as

β̂ =

"X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
t̂it̂j(xi − xj)(xi − xj)0

#−1
·
X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
t̂it̂j(xi − xj)(q̂i − q̂j), (2.15)

whereKv(·) is a kernel function (which integrates to one, vanishes outside a compact set, and
satisfies other regularity conditions), hn is a sequence of scalar bandwidth terms which tend
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to zero with the sample size at an appropriate rate, and t̂i is a “trimming” term, constructed

so that t̂i = 0 unless the estimated quantiles q̂i > 0 and xi and vi fall in some compact set S

(within which the first-stage nonparametric estimators are uniformly consistent at a suitable

rate), i.e.,

t̂i = ω(q̂i) · 1{(xi, zi) ∈ S}, (2.16)

where ω(q) is chosen so that ω(q) = 0 unless q > ε for some ε > 0. The trimming term t̂i

serves two purposes: restricting the regressors to the (known) set S ensures that the first-

stage estimator q̂i is uniformly consistent for all terms appearing in the double summation,

while the weighting term ω(q̂) asymptotically eliminates observations for which the true

value of q = Qα[yi|xi, zi] equals the censoring value, zero, rather than x0iβ0 + λα(vi).

The estimator β̂ is a variant of the estimator proposed by Ahn and Powell (1993) for

the censored selection model; it differs only in the control variable used (first-stage residuals

rather than the conditional probability of selection), form of the trimming term t̂i, and, most

importantly, replacement of the dependent variable yi with its estimated conditional quantile

q̂i.

3. Large Sample Properties

To derive the asymptotic distribution of the estimator β̂, we use a combination of regu-

larity conditions and derivations taken from Ahn and Powell (1993), Khan and Powell (2001),

and Chen and Khan (2001); the statement of these conditions are given in a mathematical

appendix. Primitive conditions on the components of the model include the assumption

that the conditional c.d.f of the error terms ui given the control variable vi is smooth, with

conditional density function bounded away from zero when xi and zi are in the compact set

S, ensuring uniqueness of the conditional quantile λα(vi) = Qα[ui|vi] = Qα[ui|xi, zi]. Model
regularity also involves assumptions which ensure that (i) the differences in regressors xi−xj
have full-dimensional support given positivity of qi and qj and equality of vi and vj, (ii) the

conditional quantile qi is continously distributed (possibly with zero density) in a neighbor-

hood of zero, the censoring value, (iii) the conditional expectation function π(zi) ≡ E[x(e)i |zi]
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is a smooth function of any continuously-distributed components of zi, and (iv) the control

variable vi is continuously distributed on the compact set V ≡ {v = x− π(z) : (x, z) ∈ S}.
The restrictions on the joint support of xi and vi are somewhat weaker than imposed by

Blundell and Powell (2001) for nonparametric identification of the average structural function

(ASF), due to the assumed “single-index” structure of the underlying regression function for

the censored latent variable.

One intermediate result following from these regularity conditions is that, if the nonpara-

metric estimators q̂i and v̂i were replaced by their true values qi and vi (and analogously for

the trimming terms t̂l in (2.16)), the corresponding estimator

eβ =

"X
ι<j

Kv

µ
vi − vj
hn

¶
titj(xi − xj)(xi − xj)0

#−1
·
X
ι<j

Kv

µ
vi − vj
hn

¶
titj(xi − xj)(qi − qj) (3.1)

would converge to the true value β0 at a rate faster than the square root of the sample size,

i.e.,

√
n(eβ−β0) = op(1). (3.2)

Thus, the asymptotic variance of the limiting (normal) distribution of
√
n(β̂ − β0) will

depend exclusively on the large-sample behavior of the first-stage nonparametric estimators

of qi and vi. For the preliminary nonparametric estimator of the conditional quantile qi, we

adopt the “local polynomial quantile regression” estimator proposed by Chaudhuri (1991a,b).

The implementation of this estimator is as described in, say, Khan and Powell (2001); in

short, this estimator is the intercept term q̂i in the for the minimization problemµ
q̂i
γ̂i

¶
= argmin

q,γ

nX
l=1

Kw

µ
wi −wl

δn

¶
ρα(yl − q − g (wi −wl; p,γ)), (3.3)

where wi is the r-dimensional vector of distinct components of xi and zi, Kw(·) is an r-
dimensional product kernel of Uniform(−1/2, 1/2) densities (i.e., an indicator for inclusion
in the unit hypercube centered at zero), δn is a bandwidth sequence which converges to zero

as n → ∞ at a particular rate, ρα(·) is the check function defined in (2.9), and g(w;p,γ)
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is a pth-order multivariate polynomial in the vector argument w, with zero intercept and

remaining coefficients γ. Heuristically, this estimator q̂i is the fitted value at observation i

of a polynomial quantile regression estimator of y on w, using only those observations l for

which wl is within δn/2 of wi (component-by-component).

Under the conditions imposed in the appendix, the quantile estimator q̂i is uniformly

consistent for qi for the untrimmed observations (using the true value ti ≡ ω(q̂i) ·1{(xi, zi) ∈
S} of the trimming term):

max
i
ti|q̂i − qi| = op(n−3/8). (3.4)

Furthermore, the difference between the estimator and its true value has an asymptotically

linear representation

q̂i − qi = 1

NδsN

nX
l=1

Kw

µ
wi −wl

δn

¶
[fw(wi)]

−1 · ψl +Rin, (3.5)

where fw is the joint (discrete and continuous) density ofwi, ψl is the usual influence function

term

ψl ≡
£
fy|x.z(ql)

¤−1 · (1{yl ≤ ql}− α) (3.6)

for quantile regression, and the remainder termRin is negligible in its effect on the asymptotic

distribution of the second-step estimator β̂. (More precisely, when expression (3.5) is inserted

into the definition of β̂, the terms involving Rin will converge to zero when normalized by
√
n.) By construction, the influence function term ψl has conditional expectation zero given

xi and zi; it is the source of the contribution to the asymptotic variance of β̂ due to the

preliminary nonparametric estimation of the conditional quantile ql.

The other contribution to the asymptotic variance of the coefficient estimator β̂ comes

from the preliminary nonparametric estimation of the control variable vi. Rather than impose

a particular form of the estimator — e.g., kernel versus local polynomial regression — we

instead impose a “high level” assumption on the estimator v̂i, requiring it to have analogous

properties to the local quantile regression estimator q̂i. Specifically, we assume it is also

uniformly consistent for the untrimmed observations,

max
i
ti||v̂i − vi|| = op(n−3/8), (3.7)
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and has a similar asymptotic linear representation

v̂i − vi = 1

NbkN

nX
l=1

Kz

µ
zi − zl
bN

¶
[fz(zi)]

−1 · ζl + rin, (3.8)

where ζj ≡ ζ(xj, zj) is an influence function with conditional mean zero given zj, fz is the

(mixed discrete and continuous) density of zi,Kz(·) is a suitable kernel function, and riN is
remainder term which is negligible in the asymptotic distribution of β̂. These conditions

will hold if vi is defined as vi ≡ xi − E[xi|zi] and π(zi) ≡ E[xi|zi] is estimated either
by kernel regression (with a higher-order bias-reducing kernel for Kz) or local polynomial

(mean) regression (with polynomial order p sufficiently large), but the condition (3.8) might

also be shown hold for nonparametric estimators of the alternative versions of the control

variable vi discussed in the following section.

Substitution of the asymptotic linear representations (3.5) and (3.8) into expression (2.15)

for the estimator β̂, along with the usual projection arguments for the resulting second-order

U-statistic, yields an asymptotic linear representation for β̂ of the form

β̂ − β0 = Σ−1xx ·
1

n

nX
ι=1

tifv(vi)

½
ψi +

∂λα(vi)

∂v0
ζi

¾
[τ ixi − µi] + op(n−1/2), (3.9)

where

ti ≡ ω(qi) · 1{(xi, zi) ∈ S}, (3.10)

τ i ≡ E[ti|vi], (3.11)

µi ≡ E[tixi|vi], (3.12)

and

Σxx ≡ E [tifv(vi)(τ ixi − µi)(τ ixi − µi)0] . (3.13)

Thus β̂ will be asymptotically normal,

√
n(β̂ − β0) d→ N(0,Σ−1xxΩΣ

−1
xx ), (3.14)

for

Ω ≡ V ar
·
tifv(vi)

½
ψi +

∂λ(vi)

∂v0
ζi

¾
[τ ixi − µi]

¸
. (3.15)
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4. Alternative Models and Estimation Methods

As noted above, the estimation approach adopted here is very similar to that proposed

by Chen and Khan (2003) for the partially-linear censored regression model, i.e., the model

yi = max{0,x0iβ0 + λ(vi) + εi}, (4.1)

where the regressors vi in the nonparametric component λ(vi) are assumed known for all

i, the nonparametric function λ(·) is smooth, and the error terms εi have conditional αth

quantile equal to zero given xi and vi and have uniformly positive conditional densities at this

quantile. Since the “control variable” vi needs not be estimated in their setup, they sidestep

the need for a “kernel matching” term Kv (h
−1
n (vi − vj)) , instead using local polynomial

quantile regression of yi on xi and vi to “difference off” the nonparametric components.

That is, for the model (4.1), for a pair of observations i and j, if the conditional quantile

function of yi given xi = x and vi = v are evaluated at the two different x values but the

same v value, and if

Qα[y|xi,vi] > 0, Qα[y|xj,vi] > 0, (4.2)

then since Qα[y|x,v] = x0β0 + λ(v) when Qα[y|x,v] > 0, it follows that

Qα[y|xi,vi]−Qα[y|xj,vi] = (xi − xj)0β0 (4.3)

when condition (4.2) is satisfied. As argued above, this implies that β0 will be identified if

xi − xj is sufficiently variable given vi = vj. In the first stage of their two-step procedure,
Chen and Khan use a variant of the local polynomial quantile regression estimator defined in

(3.3) (which substitutes vi for zi and exploiting the linearity of the conditional quantile as a

function of x) to construct estimators Q̂ii and Q̂ji ofQα[y|xi, vi] andQα[y|xj, vi], respectively;
their second step obtains a

√
n-consistent estimator of β0 from a least squares regression of

the differences Q̂ii − Q̂ji on (xi − xj) across all pairs of observations,

β̃ ≡ argmin
β

X
i,j

t̂ij

³
Q̂ii − Q̂ji − (xi − xj)0β

´2
, (4.4)
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where the “trimming terms” t̂ij equal zero unless Q̂ii > 0, Q̂ij > 0, and xi, xj, and vi are

in a compact set. The asymptotic distribution of this estimator has a similar form to the

estimator β̂ proposed above, except for the absence of the ζi component (since no first-stage

estimation of vi is needed), and a similar absence of the density function term fv(vi) of the

control variable (which arises for β̂ because of the kernel termKv (h
−1
n (vi − vj))). To extend

Chen and Khan’s approach to the present context, the Chaudhuri’s (1991a,b) large-sample

results for the local polynomial quantile regression estimator would have to be extended to

accommodate preliminary nonparametric estimation of the conditioning variables v̂i, which

seems a daunting theoretical challenge. In contrast, the estimation approach proposed here,

though it requires nonparametric estimation of a higher-dimensional function (that is, the

conditional quantile of yi given xi and zi rather than given vi and a linear form in xi), can

use Chaudhuri’s results “off the shelf” in deriving the form of the second-stage estimator of

β0.

Another closely-related estimation approach is the pairwise-differencing estimator of the

partially-linear censored regression model proposed by Honoré and Powell (2004). Under

the distributional exclusion restriction (2.5), it is possible to construct functions of pairs of

observations and the unknown regression coefficients that have conditional mean zero given

vi = vj and the regressors xi and xj when evaluated at the true parameter value β0, but

have nonzero conditional mean otherwise. The form of this function was given by Honoré

(1992) for estimation of censored regression models with panel data and fixed effects; in the

present setting, for the model (2.1) under the distributional exclusion restriction, if vi = vj

for a pair of observations i and j, and if

εij(β) ≡ max{yi − x0iβ,−x0jβ}, (4.5)

then

εij(β0) = max{ui,−x0iβ0,−x0jβ0}

has the same conditional distribution as

εji(β0) = max{uj,−x0iβ0,−x0jβ0}, (4.6)
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so the difference εij(β0) − εji(β0) is symmetrically distributed around zero given vi = vj

and xi, xj, zi, and zj. This generates conditional moment restrictions of the form

E[m (εij(β0)− εji(β0)) |vi= vj,xi,xj, zi, zj] = 0 (4.7)

if m(·) is an odd function of its argument (and this expectation exists). To exploit this
moment condition, Honoré and Powell propose estimation of β0 by

β̃ = argmin
β

X
ι<j

Kv

µ
v̂i−v̂j
hn

¶
s(yi, yj, (xi−xj)0β), (4.8)

where s(·) is the criterion function from Honoré’s (1992) panel-data censored regression

estimator, Kv(·) is a kernel (integrating to one), and v̂i is a consistent estimator of the
control variable estimator of vi. Honoré and Powell assume this latter estimator is linear in

a
√
n-consistent estimator, i.e., v̂i = xi − Π̂zi with Π̂ = Π0 + Op(n

−1/2) for some Π0, but

extension of the analysis to permit a nonparametric first-stage estimation method should

be feasible, following Ahn and Powell’s (1993) similar extension of the censored selection

estimator proposed by Powell (1987, 2001). This estimation approach would avoid the

preliminary nonparametric estimation of the conditional quantile qi of yi given xi and zi,

but, unlike either the Chen and Khan (2003) estimator or the approach proposed in this

paper, the second-step estimator β̃ in (4.8) is not in “closed form,” requiring minimization

of a non-quadratic objective, which may make it more computationally burdensome for large

sample sizes.

Yet another related estimation approach was proposed by Das, Newey, and Vella (2003)

for the censored selection model with endogenous regressors. For this model, the latent

dependent variable y∗i = g(xi)+ui is observed only if some other latent variable d
∗
i = τ(zi)+εi

is positive, and the regressors xi satisfy the same reduced form relation (2.4); the system of

equations generating the observable variables yi, di, and xi from the instruments zi and the

unobservable errors thus takes the triangular form

yi = di · (g(xi) + ui) ,
di = 1{τ(zi) + εi ≥ 0},
xi = π(zi) + vi, (4.9)
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with di and xi first determined by zi and the error terms εi and vi, and yi then determined by

di, xi, and the remaining error term ui. This model clearly includes the censored regression

model as a special case, taking g(xi) to have a linear form g(xi) = x0iβ0, with τ (zi) ≡ π(zi)
0β0

and εi = ui+v
0
iβ0. For their general model, Das, Newey, and Vella note that the assumption

that the errors (ui, εi,vi) are independent of the instruments zi yields an additive form for

the conditional mean of the uncensored values of the dependent variable yi :

E[yi|di = 1,xi, zi] = g(xi) + λ(pi,vi), (4.10)

where pi = p(zi) = Pr{di = 1|zi} is the propensity score,

pi = p(zi) ≡ E[di|zi]. (4.11)

Indeed, the additive form in (4.10) would follow from a weaker distributional exclusion

restriction for the error terms ui and εi given the first-stage error vi,

Pr[ui ≤ u, εi ≤ e|vi, zi] = E[ui ≤ u, εi ≤ e|vi], (4.12)

which would permit, say, conditional heteroskedasticity of vi given zi but still yield the mean

exclusion restriction

E[ui|d = 1,xi, zi] = λ(pi,vi) (4.13)

for the errors ui in the equation of interest.

While it is tempting to adopt this estimation approach for the special case of the censored

selection model considered in this paper — specifically, replacing the nonparametric regression

function g(xi) in (4.10) with the linear form x0iβ0 and fitting that equation via a least squares

procedure — the relation (4.10) will not suffice to identify the entire β0 vector for the censored

regression model (2.1) with reduced form (2.4) if the error terms ui and vi are assumed

independent of zi (with invertible c.d.f.). As Robinson (1988) notes, a requirement for

identification of β0 for estimation of the semilinear model (4.10) would be that the deviation

of the regressors xi from their conditional expectations given the control variables pi and vi,

i.e.,

x∗i ≡ xi −E[xi|pi,vi], (4.14)

14



have a full dimensional distribution, so that, say, E[x∗ix
∗0
i ] would have full rank. However,

since vi = xi − π(zi) from the reduced form,

x∗i ≡ π(zi)−E[π(zi)|pi,vi]; (4.15)

furthermore, for the censored regression model

pi = Pr{x0iβ0 + ui > 0|zi}
= Pr{π(zi)0β0 + ui + v0iβ0 > 0|zi}
= γ(π(zi)

0β0) (4.16)

for an invertible function γ(·) if the composite error terms ui+v0iβ0 is independent of zi. This
would imply that the deviations x∗i would have a singular distribution with V ar(x

∗0
i β0) = 0.

Thus β0 would at best be identified up to a normalization unless ui+v
0
iβ0 is assumed not to

be independent of zi, requiring non-independence of vi and zi if the distributional exclusion

restriction (2.5) is imposed, and ruling out the leading case of independence of errors and

instruments.

For similar reasons, the estimation approach for the endogenous censored regression

model considered in the previous sections could not easily be generalized to permit the

regressors xi to be observed only when the censored dependent variable yi is positive, i.e., if

the reduced form specification (2.4) is replaced with

xi = 1{yi > 0} · (π(zi) + vi) (4.17)

(as in the “Type 3 Tobit” model, in Amemiya’s (1984) terminology). Estimation of the

reduced-form regression function π(zi) (and thus the control variable vi) is problematic

when the errors are independent of the instruments, since the propensity score (needed to

control for selection in (4.17) would be a function of a linear combination of the same π(zi)

that is the object of estimation, yielding a multicollinearity problem for the conditional mean

of the uncensored xi terms. Thus, identification of β0 when the regressors are only observed

when yi > 0 may require alternative assumptions to the distributional exclusion restrictions

imposed here, e.g., joint symmetry of ui and vi around zero given zi, as imposed by Honoré,

Kyriazidou, and Udry (1997) for semiparametric estimation of the Type 3 Tobit model.
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Though conditioning on positivity of the censored dependent variable yi causes difficulties

for the censored regression model considered here, the present estimation approach can be

adapted to permit yi and xi to be subject to additional sample selection. Following Das,

Newey, and Vella (2003), if

yi = di ·max{0,x0iβ0 + ui},
xi = di · (π(zi) + vi),
di = 1{τ(zi) + εi ≥ 0}, (4.18)

and the error terms are independent of zi, then the conditional quantile of yi given xi, zi,

and di = 1 will take the form

Qα[yi|di = 1,xi, zi] = max{0,x0iβ0 + λα(pi,vi)}, (4.19)

and a generalization of the estimator in (2.15) would treat both the propensity score pi

and the first-stage errors vi as control variables, with a kernel weight depending upon both.

Estimation of the control variable vi using the selected observations on the endogenous

variable xi is the nonparametric censored selection problem treated by Das, Newey, and

Vella.

The estimation approach considered here can also be extended to other structural forms

for the control variable vi. For example, a special case of the “coherent simultaneous Tobit”

model considered by Blundell and Smith (1989, 1994) has a pair of scalar dependent variables

y1 and y2 determined by

y1 = max{0,α0y1 + γ0y2 + z
0
1β0 + u}

y2 = δ0y1 + z
0
2π0 + v, (4.20)

which requires the parametric restriction

α0 + γ0δ0 = 0

for the model to be coherent, i.e., the model is assumed to take the form

y1 = max{0, γ0(y2 − δ0y1) + z
0
1β0 + u}

y2 = δ0y1 + z
0
2π0 + v. (4.21)

16



For this model, the control variable vi would be the difference of a linear combination y2−δ0y1
from its conditional mean given the instruments zi, and instrumental variables estimation

methods would be needed to estimate δ0 and π0 (and thus vi) in the first stage. Another

example of an alternative control variable comes from the “nonadditive triangular model”

setup of Imbens and Newey (2002), in which a single component x1i of the regressors xi is

assumed to be endogenous, with a nonseparable reduced form

x1i=g(zi,vi) (4.22)

which is assumed invertible in vi for all zi (but otherwise unknown). Imbens and Newey

show how g can be normalized so that vi is a “generalized propensity score,”

vi = Fx1|z(x1i|zi), (4.23)

where Fx1|z is the conditional c.d.f. of x1i given zi; thus the first-stage estimation of the

control variable vi would involve nonparametric estimation of the conditional cumulative

distribution function of the endogenous regressor given the instruments zi.

Finally, though the estimator β̂ ≡ β̂α was defined in (2.15) only for a particular choice of

α, the distributional exclusion restriction (2.5) implies that estimators based upon different

α values will be jointly
√
n-consistent and asymptotically normal for the same vector β0 of

slope coefficients, so the distributional exclusion restriction can be tested using contrasts of

β̂α estimates across different values of α ∈ (0, 1). Also, under the distributional exclusion re-
striction, a more efficient estimator of β0 can be obtained from an optimal linear combination

of β̂α estimators across different values of α.

5. Appendix: Regularity Conditions

The following regularity conditions on the model and estimation procedure are sufficient (but

by no means necessary) for the derivation of the asymptotically normal distribution of β̂.

Assumption M (Random Sampling and Model): The random vectors {(ui,x0i, z0i)} are
independently and identically distributed, and yi is generated from the censored regression

model (2.1).

17



Assumption R (Distribution of Regressors): The vector wi of distinct components

of xi and zi is composed of two subvectors w
(d)
i and w(c)

i , where the the subvector w
(d)
i of

discrete components has finite support (with marginal density fd(w(d))) and the continuous

components w(c)
i have a conditional density function fc(w(c)|w(d)) that is absolutely contin-

uous and bounded away from zero and infinity on a known compact subset S of possible

values of wi.

Assumption E (Distribution of Errors): The error terms {ui} satisfy the conditional
quantile restriction (2.6), and for all wi in S, the conditional distribution of ui given wi has

a density function fu|w(u|wi) = fu|v(u|vi) which is uniformly (in vi) positive when evaluated
at its conditional αth quantile λα(vi) ≡ Qα[ui|vi].

Assumption C (Control Variable): The L-dimensional control variable vi = x
(e)
i −

E[x
(e)
i |zi] is continuously distributed with density function fv(v) which is uniformly pos-

itive.

Assumption S (Smoothness): For all wi in S, the conditional densities g and f and

the conditional quantile function λα defined in assumptions R and E, as well as the density

fv of the control variable vi, are infinitely smooth in their arguments, i.e., continuously

differentiable to arbitrary order.

Assumption QE (Nonparametric Quantile Estimation): The preliminary nonpara-

metric estimator q̂i of the conditional quantile

qi ≡ Qα[yi|xi, zi]
= max{0,x0iβ0 + λα(vi)},

of yi given xi and zi is a local polynomial quantile regression estimator, as defined in (3.3),

with polynomial order p satisfying

p > 3s/2

where s = dim{w(c)
i }, and the first-step bandwidth term δN satisfies

δn = c
∗n−κ
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for some c∗ > 0 and κ ∈ (1/(2p+ s), 1/(4s)).

Assumption CE (Control Variable Estimation): The preliminary nonparametric esti-

mator v̂i of vi ≡ E[xi|zi = z] satisfies

max
i
ti||vi − vi|| = op(n−3/8),

and has the asymptotically linear representation (3.8), with bandwidth bn satisfying

b−1n = o(n1/(4k)),

remainder term rin satisfying

max
i
ti||rin|| = op(n−1/2),

and influence function ζi having E||ζi||2 <∞.

Assumption K (Second-Step Kernel): The second-step kernel function Kv appearing

in the definition (2.15) of β̂ is an M th-order kernel of the form

Kv(v) =

M/2X
j=1

ajb
L
j ρ(bjv),

where

(i) the (even) integer M has M > 4(L+ 2), where L = dim(vi);

(ii) the function ρ(v) is an infinitely smooth density function (nonnegative and

integrating to one) which is symmetric about zero (i.e., ρ(v) = ρ(||v||) ) and equals zero for
||v|| ≥1;

(iii) the constants b1, ..., bM/2 are positive and distinct (but otherwise arbitrary);

and

(iv) the constants a1, ..., aM/2 are chosen to satisfy the linear restrictionsX
j

aj = 1,X
j

ajb
−2m
j = 0 for m = 1, ..., (M/2)− 1.
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Assumption B2 (Second-Step Bandwidth): The bandwidth sequence hn appearing in

definition (2.15) of β̂ is of the form

hn = cn · n−γ,

with c0 < cn < c−10 for some c0 > 0 and some γ ∈ (1/(2M), (1− 2κs)/(4L+ 8)), where M
is the order of the kernel given in assumption K, κ is the first-step bandwidth rate given in

assumption QE, s = dim{w(c)
i }, and L = dim(vi).

Assumption T (Trimming Function): The weighting function ω(q) used to construct the

trimming variable t̂i in (2.16) is twice continuously differentiable (with bounded derivatives)

and has 0 ≤ ω(q) ≤ 1, with ω(q) = 0 if q < ε for some ε > 0.

Assumption I (Identification): The matrix Σxx defined in (3.13) is positive definite.

Given this lengthy list of regularity conditions, the
√
n-consistency and asymptotic nor-

mality of β̂ indeed follows from the same arguments given in Ahn and Powell (1993) and

Chen and Khan (2001). Rather than duplicate those arguments in detail here, we discuss how

the imposed conditions yield the key steps in the derivation of the asymptotic distribution

of the estimator.

Since the estimator β̂ involves three nonparametrically estimated components — the con-

ditional quantile estimator q̂i for yi given xi and zi, the control variable v̂i, and an implicit

estimator of the control function λα(vi) in the second-step — their rates of convergence inter-

act in the asymptotic behavior of β̂, and the convergence rates for their respective bandwidths

are also interdependent. The strong smoothness assumptions on the unknown distribution

functions imply that the orders of the kernel function and local polynomial can be taken

to be large enough to ensure a fast n−3/8 rate of convergence for all of the nonparametric

estimators even though the corresponding bandwidths converge to zero slowly in n.

This uniform convergence rate is faster than the usual n−1/4 rate in the previous papers.

Writing

β̂ = Σ̂
−1
xxΣ̂xq, (5.1)

20



with

Σ̂xx ≡
µ
n

2

¶−1
h−Ln

X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
t̂it̂j(xi − xj)(xi − xj)0 (5.2)

and

Σ̂xq ≡
µ
n

2

¶−1
h−Ln

X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
t̂it̂j(xi − xj)(q̂i − q̂j), (5.3)

the presence of the term h−Ln = o(n1/8) makes the faster n−3/8 rate (midway between n−1/4

and n−1/2) convenient when showing that any (quadratic) remainder terms are negligible

when multiplied by
√
n.

Consistency of Σ̂xx for Σxx is a straightforward combination of the arguments in Lemma

3 of Chen and Khan (2001) and part (i) of Theorem 3.1 of Ahn and Powell (1993). Then,

decomposing the Σ̂xq term as

Σ̂xq ≡
µ
n

2

¶−1
h−Ln

X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
[t̂it̂j − titj](xi − xj)(q̂i − q̂j)

+

µ
n

2

¶−1
h−Ln

X
ι<j

Kv

µ
v̂i − v̂j
hn

¶
titj(xi − xj)(qi − qj) (5.4)

+

µ
n

2

¶−1
h−Ln

X
ι<j

Kv

µ
vi − vj
hn

¶
titj(xi − xj)((q̂i − qi)− (q̂j − qj))

+rn (5.5)

≡ S1 + S2 + S3 + rn (5.6)

the remainder term rn, which involves quadratic terms in the differences between the non-

parametric estimators and their estimators, is op(n−1/2) for the reasons given in the previous

paragraph. The term S1 can also be shown to be op(n−1/2) using the same argument as in

the proof of condition (A.10) in Chen and Khan (2001). Apart from the possibility that the

dimension L of the vector of control variables vi may exceed one, the term S2 is identical to

the term Ŝzv that appears in the proof of Theorem 3.1 of Ahn and Powell (1993); extension of

those arguments to account for a preliminary L-dimensional nonparametric estimator yields

√
nS2 =

1√
n

nX
ι=1

tifv(vi)

µ
∂λα(vi)

∂v0

¶
ζi [τ ixi − µi] + op(1). (5.7)
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Finally, adaptation of the proof of Lemmae 5 and 6 of Chen and Khan (2001) — replacing

their fixed “selection function” l(vi,vj) with the kernel weight h−Ln Kv (h
−1
n (vi − vj)) , which

depends upon the sample size n — implies that

√
nS3 =

1√
n

nX
ι=1

tifv(vi)ψi [τ ixi − µi] + op(1), (5.8)

where ψi is defined in (3.6). Combining these results yields the asymptotically linear repre-

sentation (3.9) for β̂, from which its asymptotic normal distribution follows.
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