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Abstract

We study the identification of linear panel data models with strictly exogenous
regressors and individual-specific coefficients, when the time length of the panel T
is fixed. In addition to common parameters and averages of individual effects, we
show the identification of the variance of the effects under conditional uncorrelatedness
assumptions on error variables. Identification requires the dependence structure of
errors to be restricted, reflecting a trade-off between the number of individual-specific
parameters and error dynamics. Assuming that effects and errors are independent
conditional on regressors, we show the identification of the density of individual effects
in cases where errors follow moving averages or ARMA structures with independent
innovations. We propose method-of moments estimators of the moments of individual
effects and errors, and introduce a simple estimator of the density of the effect of a
binary regressor in a special case. We apply the method to estimate the effect that a
mother smokes during pregnancy on the weight of her child at birth.

JEL cobEe: C23.
KEYWORDS: Panel data, random coefficients, multiple effects, nonparametric identifi-
cation.



1 Introduction

Documenting heterogeneity in behavior and response to interventions is one of the main
goals of modern econometrics. For this purpose, compared to cross-sectional data, panel data
has an important value-added as it allows to observe the same unit (individual, household,
firm...) over time, thereby allowing for the presence of unobserved heterogeneity. The main
goal of this paper is to derive conditions under which the distribution of heterogeneous
components can be consistently estimated in a class of panel data models with multiple
sources of heterogeneity.

Specifically, we focus on models of the form:
Vit = 20,0 + Xy, + v, i=1,.,N, t=1,.,T. (1)

In this model, the parameter vector § is common across individuals, while the vector of
random coefficients =y, is individual-specific.! We assume that the econometrician has data
on Y;, z;; and x;, and that she does not observe =y, or the error terms vj;.

Examples of model (1) are very common in economics. A first example is provided
by random trends models, which are obtained when x},7;, = «; + ;¢ is an individual-
specific slope. These models have been used to describe the dynamics of individual earnings
(Guvenen, 2008).2 A second example is given by firm-level production function models
(Mairesse and Grilliches, 1990, Dobbelaere and Mairesse, 2008). In a production function
approach, it is natural to interpret x;; as inputs, and =, as technology parameters. A
third example arises when x;; is a treatment that has heterogeneous effects on outcomes.
For example, in rational addiction models (Becker et al., 1994), the price coefficient is the
marginal utility of wealth, most likely heterogeneous across individuals (see the discussion
in Arellano, 2003, p.131). As another illustration, when measuring the union wage premium
it makes sense to allow for heterogeneity in the union status variable, if individuals have
different abilities in unionized and non-unionized jobs (Vella and Verbeek, 1998, Lemieux,
1998).

We argue that in all these examples, it is of interest to document the distribution of ;.
For example, in random trends models of earnings dynamics, knowing the distribution of

individual effects (and also of error variables) is necessary if one wants to use the earnings

! Consistently with the panel data literature, we refer to ¢ as “individuals”, and to ¢ as “time periods”.
2See also Lillard and Weiss (1979), Baker (1997), Haider (2001) and Guvenen (2007).



process in a consumption model (Guvenen, 2007). More generally, it is often important to
estimate the effect of a set of covariates x;; at different quantiles (see the gigantic literature
on heterogeneous treatment effects, e.g., Imbens and Angrist, 1994, Heckman and Vytlacil,
2005). In a cross-sectional setting, it is well-known that the distribution of a treatment effect
is not point identified (Heckman et al., 1997). In a panel data context, we show that one
may have point identification of the full distribution of the effect, if x;; exhibits variation
at the individual level. For example, in our application, we will estimate the distribution of
mother-specific effects of smoking during pregnancy on children’s weight at birth, extending
previous work by Abrevaya (2006).

We study the identification of distributional features of 4, under the assumption that the
number of time periods 7 is fixed. Importantly, we make no assumption on the conditional
distribution of individual-specific effects given regressors. Hence, we follow a “fixed-effects”
approach, treating «,, i = 1, ..., N, as random draws from an unknown distribution (Mund-
lak, 1978). In economic applications, unit-specific effects often represent heterogeneity in
preferences or technology, on which economic theory has typically little to say. For this
reason, it is important to adopt this minimal approach that does not restrict the form of
heterogeneity.?

Identification and estimation of common parameters é and average individual-specific pa-
rameters E (v,) in this context has been studied in Chamberlain (1992). The key identifying
assumption is strict exogeneity of regressors, which requires errors to be mean independent
of regressors at all lags: E (v;|x;1, ..., X;7) = 0. Strict exogeneity is an important assumption
that needs to be carefully examined in the context of each empirical application. When
regressors with individual-specific effects are predetermined or endogenous, identification
requires to impose restrictions on the distribution of 4, given regressors.*

We show the identification of the variance-covariance matrix of 4, under conditional
uncorrelatedness assumptions on error variables. We give precise identification conditions
under two types of restrictions: moving averages (MA), and autoregressive/ARMA type

restrictions. In the particular case where errors are i.i.d. homoskedastic, our results coincide

3For example, Cameron and Trivedi (2005, p.777) claim that models with random coefficients of the form
(1), although they “are especially popular in the statistics literature (...) are less used in the econometrics
literature, because of the reluctance to impose structure on the time-invariant individual-specific fixed effect”.

4Chamberlain (1993) and Arellano and Honoré (2001) discuss the lack of identification in the predeter-
mined case. Recently, Murtazashvili and Wooldridge (2008) derive conditions under which identication holds
in the endogenous case, imposing individual effects to be mean independent of detrended regressors (see also
Wooldridge, 2005, for the exogenous case).



with those of Swamy (1970). Importantly, our results show that the variance of individual
effects is not identified if no assumptions are made on the variance-covariance structure
of errors, as in Chamberlain (1992). This defines a clear trade-off, between the amount
of unobserved heterogeneity in the model (the dimension of the parameter vector «,) and
the dynamic structure of errors. Under additional assumptions, we show that higher-order
moments of individual effects and errors, such as skewness and kurtosis, are also identified
for fixed 1. The same trade-off between dynamics and heterogeneity applies there.

Strengthening the uncorrelatedness assumptions on error variables to conditional inde-
pendence assumptions, we are able to show the identification of the full distribution of indi-
vidual effects, and error variables. In particular, this implies the identification of all quantiles
of the distribution of individual-specific effects. We treat the case of MA, or more generally
ARMA, processes with conditionally independent innovations. This result extends previous
work on the identification of factor distributions in independent factor models (Kotlarski,
1967, Székely and Rao, 2000). Importantly, and differently from those papers, we are able to
prove nonparametric identification of the multivariate conditional distribution of individual
effects, without imposing any restrictions on the latter.

Although the main focus of this paper is on identification, we also discuss how to estimate
the moments and densities of effects and errors. We propose method-of-moment estimators
of variances and higher-order moments. We also discuss ways of estimating the densities of
individual effects and errors, emphasizing the connection with the literature on nonparamet-
ric deconvolution (e.g., Dasgupta, 2008, Chapter 33). In the case where x},y, = a; + ;%
with x; scalar binary, and errors are i.i.d., we introduce a simple nonparametric estimator
of the density of 3;, using a methodology recently developed in Mallows (2007). We then
use this estimator in our application to estimate the effect of smoking on birthweights.

This paper shares common features with three strands of the econometric and statistical
literature. Linear panel data models with random coefficients, referred to as mired models,
have been extensively studied in statistics. Recent work has tried to treat the distribution
of individual effects semi or nonparametrically.> Our approach is also connected to the

nonparametric identification and estimation of factor distributions in independent factor

5See Demidenko (2004), for a survey on mixed models. Harville (1977) and Laird and Ware (1982) are
early references. Work using semi and nonparametric approaches can be found in Lesaffre and Verbeke (1996),
Kleinman and Ibrahim (1998), and Davidian and Zhang (2001). Related work includes random-coefficient
models for cross-section data (Beran and Hall, 1992, Hoderlein et al., 2007).



models.® Compared to these two strands of the literature, we take a minimal approach and
leave the conditional distribution of individual effects unrestricted.

The paper is also related to the literature on the estimation of panel data models with
fixed effects. A general solution has recently been proposed that relies on reduction of the
small-T" bias of the maximum likelihood estimator first documented in Neyman and Scott
(1948), see Hahn and Newey (2004) and Arellano and Hahn (2006) for a survey. Here
we show that all marginal effects, including the density of individual-specific effects, are
identified for T' fized in model (1). Hence, our approach leads to full elimination of the bias
on the quantities of interest.

The rest of the paper is as follows. In section 2 we present the framework of analysis.
Section 3 derives the identifying restrictions on the moments of individual effects and error
variables, and in section 4, method-of-moments estimators of these quantities are proposed.
In section 5 we study the nonparametric identification of the densities of effects and errors,
discuss estimation in a general context, and propose an estimator in a special case, that we
apply in section 6 to Abrevaya’s (2006) data on smoking and birth outcomes. Lastly, section

7 concludes.

2 Preliminaries

2.1 Model and assumptions

In most of this paper we consider a model that relates a vector of 7" endogenous variables y; =
(yi1, ---, yir)" to a set of regressors. For convenience we distinguish two types of regressors:
Z;, = (zﬂ...ziT)' is a T x K matrix associated to a vector of K parameters 8, while X; =
(xil---xiT)l is a T" x q matrix associated to a unit specific vector of ¢ parameters 4,. The

linear relationship takes the form:

! -
where v; = (v;1...v57) is a vector of T error terms.
We start by making assumptions on error variables v;, specifying their conditional mean

given both types of regressor to be zero, thereby assuming that Z; and X; are strictly

6See Horowitz and Markatou (1996), Li and Vuong (1998), Hall and Yao (2003), Bonhomme and Robin
(2008b), and the literature on Independent Component Analysis surveyed in Hyvérinen et al. (2001).



exogenous:’'8

Endogenous Z;’s could be dealt with if one had enough instruments to identify/estimate 8.
However, strict exogeneity of X; is essential. We will discuss the strict exogeneity assumption
at the end of this section.

Strict exogeneity alone will typically allow to identify the vector of common parameters §
and the mean of individual-specific parameters E («;). In order to achieve the identification
of other distributional characteristics of «,, such as variance or quantiles, we will restrict
further the distribution of error variables. In the identification analysis of sections 3 and
5, these restrictions will take the form of conditional uncorrelatedness and independence
assumptions.

Importantly, we do not specify the conditional distribution of individual effects. This is
a distinctive feature of our approach compared to random and mixed-effects models which
specify both the distribution of y; given Z;, X; and ~,, and the distribution of ~, given
regressors. We adopt a “fixed-effect” approach, which we understand as meaning that =,
are random draws from a population, along with y;;, z;; and x;, but leave their conditional
distribution given regressors unspecified. See Mundlak (1978), and Wooldridge (2002), p.252,
for a similar view of the “fixed-effect” perspective in microeconometric applications. In
particular, we leave the correlation between individual effects and regressors unrestricted.

The strict exogeneity assumption (3) needs to be interpreted in view of the lack of re-
strictions on individual effects. Strict exogeneity requires that regressors X; are uncorrelated
with errors at all periods. However, regressors are allowed to be correlated with -, in an
unrestrictive manner. In Deschénes and Greenstone (2007) regressors are weather indica-
tors, while the dependent variable is agricultural profit, measured at the county level. There,
strict exogeneity is a reasonable assumption only when one accounts for county effects, if
only because land quality is likely to be correlated with the weather and to vary from an area
to the next while being quite persistent over time. In the case of the union wage premium,
endogenous job mobility can invalidate the strict exogeneity asumption (Vella and Verbeek,
1998). Lemieux (1998) exploits plant closing as an indicator of involuntary job mobility to

circumvent this problem. In Abrevaya’s (2006) study of smoking effects on birthweight, the

TAll (in)equalities conditional on Z; and/or X; are understood to hold with probability one.
8 Throughout the paper, the moments that we use are assumed well-defined (i.e., finite).



assumption fails if women react to a low birthweight by quitting smoking. We will come
back to this issue in our use of Abrevaya’s data in section 6.
In the course of the analysis, we will also maintain another assumption that requires

regressors X; not to be collinear within each individual sequence of observations, formally:
rank(X;) = q. (4)

In particular, (4) imposes that 7" > ¢. This condition is necessary in our approach, as
one needs to identify ¢ parameters from a 7T-dimensional vector of data, for each individual
unit. In effect, because of the presence of common parameters, we will need strictly more
time periods than individual-specific parameters. This requirement shows that the panel
dimension is crucial in our setting. The situation is very different from one where restrictions
on -; are imposed, such as independence between ~y; and regressors X,. There, cross-sectional
data may be enough for identification (see, e.g., Beran and Hall, 1992, and Hoderlein et al.,
2007).

For condition (4) to be satisfied in practice, the sample of observations will often need
to be selected. This will be the case in an unbalanced panel where individuals ¢+ with T; < ¢
observations will need to be dropped from the sample. Another instance is when X; takes
discrete values. For example, in a model with a constant and a binary regressor x;, both
having heterogeneous effects on the dependent variable, sequences with 1" zeros, or T ones,
will be kept out of the analysis. So, the characteristics of interest will typically be identified
on a subpopulation of individuals whose x’s change over time. Hence, in the application
to birthweight data in section 6, we will focus on women who changed smoking status
between pregnancies. Non-identification of effects on subpopulations of individuals is in
common with the Instrumental Variables setting, local treatment effects being identifed on
the subpopulation of compliers only (Imbens and Angrist, 1994).

In the case where X; takes a continuum of values, at first sight the multicollinearity
problem does not arise. Indeed, if the determinant |X}X;| is non zero with probability one
condition (4) will be satisfied. This will often be the case on an a finite sample of observations.
However, this view may be seriously misleading in practice. The reason is that if |X!X;| is
too close to zero the corresponding individual-specific parameters will be badly estimated,
contaminating estimates of distributional characteristics. It may then make sense to keep

only observations for which |X.X;| is larger than an empirically determined bandwidth hy



that shrinks with the sample size. More discussion of this issue is found in Graham and

Powell (2008).

2.2 Within and between transformations

To motivate the identification analysis below, we start by providing an intuition for our
approach. Given a vector of comon parameters §, one can estimate each -, by least squares,
yielding:

¥i= (XiXi) " X (yi = Z:9). (5)

Then, for every g-dimensional parameter vector v, we can write:
Yi — Zi6 — Xiy; = [yi — Z:6 — Xi;| + [ X (7, — 74)] - (6)

The first and second terms on the right-hand side of (6) are within-group and between-group
terms, respectively. In the simple case where § is zero and X; is a vector of ones, (6) is
simply: yi = (vit — ¥;) +¥;, where j, = T~! Zthl Yi is the individual mean of y’s.

Under normality and classical errors there are strong statistical arguments to consider
the within-group and between-group likelihoods separately. Indeed, suppose that v; follows
a normal distribution independent of (Z;, X;, ;) with variance-covariance matrix o?Ir (with
Ir the T-by-T identity matrix). In this case the log-likelihood of the data is the sum of
the within-group and between-group log-likelihoods. So it is possible to base the estimation
of & and o2 on the within-group likelihood alone, a method sometimes called restricted
maximum likelihood (Patterson and Thompson, 1971). Alternatively, one can show that
the within-group likelihood is proportional to the weighted likelihood in which individual-
specific parameters have been integrated out with respect to a “non-informative” uniform
prior (Harville, 1974). At an intuitive level, the between-group likelihood is not informative
about & and o? if the conditional distribution of «; given the regressors is unrestricted.
Arellano (2003, p.26) makes this remark in the context of a model with an heterogeneous
intercept.

The previous discussion motivates looking at the following two equations:

Qi(yi—Zi0) = Qv (within-group), (7)

:?i - = H’LVZ (between-gl“oup)a (8)



where Q; (T-by-T') and H; (¢-by-T') are the within-group and least-squares operators, namely:
Q = Ir—X;(XjX,) ' X],
H, = (X!X;) 'X.

Equations (7) and (8) are readily obtained by left-multiplying (2) by Q; and H;, re-
spectively. While (8) expresses the difference between the least-squares estimate of ~, (for
known §) and its true value, (7) shows the link between the residuals in the individual-specific
least-squares regressions and the population errors. Note that these equations do not require
either normality or independence of the v’s to hold. We will start from these equations to
study the identification of common parameters, the error structure and the distribution of
individual effects.

Two preliminary remarks are in order. First, it is intuitive that errors must be re-
stricted in some way for identification to hold. Moreover, allowing for more parameters to
be individual-specific will require a larger number of restrictions on v;. Formally, the within
transformation matrix Q; has rank 7'—q (e.g., Wooldridge, 2002, p.319), so in order to invert
(7) one will need to impose a larger number of restrictions on v; the larger ¢ is. The second
remark concerns the fact that 4, is a noisy estimate of -,. Likewise, any distributional
characteristic of 4, (mean, variance, quantiles) will be a noisy estimate of the same feature
of «,, the identification of which we are after. Importantly, this noise does not vanish when
N tends to infinity for fixed 7. For example, in the model with no common parameter and
an heterogeneous constant, one has: y; — 7, = v;, which is a sample mean of T" observations,
the variance of which is of the order of magnitude of 1/7. For this reason, unit-by-unit

estimates of v, are not directly informative on the distribution of the underlying effects.

2.3 Extensions and discussion

Although we discuss identification of the linear model (2), the approach of this paper can be

easily generalized to other settings. A more general formulation is (Chamberlain, 1992):
yi = a(X;;0) + B(Xi; 0)7; + v (9)

where @ are common parameters and enter nonlinearly functions a (which is T-by-1) and B

(T-by-g).
The identification analysis of (9) follows very closely that of the linear model (2). We will

indicate the differences in the course of the exposition. It is instructive to consider examples



of (9). A simple version is the one-factor model:
Yir = 230 + [1,7; + Vi, (10)

where py, ..., pi are time-varying parameters and v, is scalar (e.g., Holtz-Eakin et al., 1988).
In a wage regression, 7y, could be workers’ unobserved skills on the labor market, and p,
their time-varying price. Multiple-equations versions of (10), where y;; is multi-dimensional,
could also be considered. Moreover, the model can be generalized to allow for time-varying
unobservable individual effects which follow a factor structure (Bai, 2006, Ahn et al., 2007).

A second special case of (9) arises when one wants to limit the number of heterogeneous

parameters in a model. For example, instead of:
Yir = 230 + i + X8, + vir,
one may consider a restricted alternative with two individual-specific effects:
Yir = 20 + & + B, (x},8) + vir. (11)

In practice, having fewer individual-specific parameters could result in more precise esti-
mates. Moreover, in some applications the time dimension may be too small to allow for ¢
effects, but enough to allow for a more parsimonious specification.

As another interesting special case of (9) we mention models where the regressors include

lags or leads of the dependent variable. For example, a first-order autoregressive model:
Yit = OYip—1 + XyY; +vie,  [0] < 1. (12)
That (12) is a special case of (9) is seen by writing the reduced-form:

Yit = (Xit +0Xip—1 + ... F 5t_1Xi1)l Y; + 6" yio + vir + i1+ ...+ 6w,

which is of the form (9) with the (g + 1)-by-1 vector of individual effects: 7; = (v}, yi0)'-
Likewise one could add a lead y; 41 in (12), as in the rational addiction model of Becker et al.
(1994). The reduced-form would then have a ¢ + 2-dimensional vector of individual-specific
effects, composed of «;, of the initial value of y;; (vi0), and of its final value (y;r41).

Before ending this preliminary section, it is useful to mention a case where the distribu-

tional quantities of interest are not identified. This happens whenever one of the components



of x;; is predetermined or endogenous, as opposed to strictly exogenous. Chamberlain (1993)

and Arellano and Honoré (2001) provide examples. Here we consider the simple model
Vi = i + Bimit + 2448 + var, (13)

where E (vi¢|zi, Zit—1, ..., Z;) = 0. In other words, z;; is predetermined while z;; are strictly
exogenous. We focus on the case where z;; € {0,1} is binary, and assume 7" = 3. This
corresponds to our application, if the smoking status of a mother is predetermined, see
section 6 below.

Following Arellano and Honoré (2001) it is easy to see that, unless the dependence of 5,
on Z; is restricted, the vector of common parameters é is not identified, let alone the mean
E(5;). Moreover, even if § is zero, not all of the conditional means of 3, given the sequences
of z’s are identified. See the appendix for a justification. Hence, in our unrestricted random
effects approach, a model with predetermined x’s is unidentified. As a final remark, note
that if one is ready to assume that (3, is mean independent of X; and Z;, then identification

can be obtained, see section 6.

3 Moment restrictions

In this section we derive moment restrictions on model (2), and study the identification of

characteristics of interest. We discuss mean, variance and higher-order moments in turn.

3.1 Common parameters and averages of individual effects

We start with a proposition which shows the identification of  and E («,). All proofs (most

of them elementary) are in the appendix.
Proposition 1 Suppose that (3) and (4) hold. We have:
E (Qi (yi — Z:9) |Z;,X;) =0 (14)

and

E (7|2, X;) = E (7,12, X;) - (15)

So E (vy;) is identified. Moreover, § is identified if E (Z)Q;Z;) has rank K, the number of

common pammeters.

10



Proposition 1 shows that § can be interpreted as a generalized within-group estimand.

In the model with only an heterogeneous intercept (and g = 1), § satisfies:
E (yi — U; — (zae — %) 6|2;,X;) = 0.

Likewise, E (4,) can be understood as a mean-group estimand. In the model with an het-

erogeneous intercept:
E(v,) =E (7 — Z9).
Applied researchers often find it useful to regress individual effects estimates 4, on strictly
exogenous regressors F;, see MaCurdy (1981) for an early application. An interesting corol-

lary of Proposition 1 is that the population projection coefficients in the regression of 4, on

F, and in the regression of «,; on F; are equal.

Corollary 1 Let the assumptions in proposition 1 hold. Let also F; be a random vector such

that E (vit|ZZ~, Xz’; Fz) = 0. Then:

[Var (F;)]”" Cov (F;,v;) = [Var (F;)]”" Cov (F;,7;). (16)

Similar results can be obtained for the more general formulation (9). The next corollary

derives moment conditions satified by common parameters .

Corollary 2 Consider model (9), and suppose that E (v|X;) = 0 and that matriz B(X;; 0)

has rank q. Then @ satisfies the following moment conditions:
E[Qi (0) (yi —a(X;0)) [Xi] =0, (17)

where

Q: (8) = Ir — B(X;;0) [B(X;;0)'B(X;;0)] ' B(X;;0)". (18)

Corollary 2 provides moment restrictions that may or may not be sufficient to identify
0. Simple cases where they are not sufficient are the one-factor model (10) where there are
no regressors (8 = 0), or the AR(1) model with fixed effects (12) where only the constant is
individual-specific and there are no common regressors. Then, identification will require to
restrict the variance-covariance matrix of errors and to exploit covariance restrictions, see 3.4

below (Holtz-Eakin et al., 1988, Arellano and Bond, 1991). Chamberlain (1992) considers the

11



identification content of model (9) when no uncorrelatedness assumptions are made on error
variables, in which case models with no exogenous regressors are fundamentally unidentified.

Remark that, once 6 is identified, there is no essential difference between model (2) and
model (9). Indeed, one can relabel ¥; = y; — a(X;; 0) as the dependent variable and X; =
B(X;;0) as the set of regressors, and use the identification results obtained for model (2).
In particular, the overall and conditional means of individual effects are trivially identified.

A last remark concerns the fact that the moment restrictions on & in Proposition 1, and
on 0 in Corollary 2, are not unique. For example, in Proposition 1 we could use, for any

positive definite T-by-T" matrix W; possibly dependent on (Z;, X;):
QY =W - WK (XIWIX) T XW (19)
in place of Q; in equation (14). This choice may have efficiency consequences when turning

to estimation, as we will explain in section 4.

3.2 Variances

To recover the variance of individual effects, we make two additional assumptions on model
(2). First, we assume that individual effects and errors are uncorrelated given regressors,
that is:

Cov (v, vil|Z;, X;) = 0. (20)

Condition (20) is satisfied if one assumes that individual effects are strictly exogenous in (2),

a natural assumption in a fixed-effect approach (made, e.g., in Chamberlain, 1992):

Second, we impose restrictions on the variance-covariance matrix of errors. For exposi-
tion, we start with the case where Q; = Var (v;|Z;, X;) is known. The following theorem
shows that the variance of individual effects is identified under those conditions. The proof
is immediate using (8).

Theorem 1 Suppose that (3), (4) and (20) hold. Then we have:
Var (v;|Z;,X;) = Var (5,|Z;, X;) — H;QH; (22)

1

and, unconditionally:

Var (v;) = Var (3,) - E (H,QH). (23)

12



Theorem 1 shows that the variance-covariance matrix of individual effects is identified

given that of error variables. In the special case where €2; = %Iz, (23) yields:
Var (v,) = Var (7,) — o°E [(X;X,-)*l} . (24)

A familiar expression is obtained in the case where only the constant is heterogeneous, in
which case: Var (v;) = Var (y; — z.6) — 0?/T (Arellano, 2003, p.33).
More generally, (23) may be written

Var (¥;) = Var (v;) + E (H:Q2.H;), (25)

which expresses the variance of individual effects estimates as the sum of a between-group
and a within-group variance. The between-group term is equal to the variance of individual
effects in the population, because 7, has mean «,. The within-group variance tends to zero
when T tends to infinity. This clearly decomposes the total variance of 4; into two sources:
the true cross-sectional variation of individual effects, and the noise due to 7" being fixed.
It is to be noted that the linearity of the model (with respect to the individual effects) is
crucial for this result to hold.

We now turn to the identification of ;. The within-group equation (7) yields:
Q:E [(yi — Z:6) (vi — Z:9)' |Z;, X;] Q) = Qi%:Q;. (26)

As Q; has rank T — ¢, we cannot invert (26) and recover £2; unless we impose restrictions.
To start with, we restrict a set of pairs of error variables to be conditionally uncorrelated
given regressors. A particular example is a moving average (MA) process of order r, the
covariances between v;; and v;+,,1 being zero given Z;, X;. Formally, we assume that there
exists a vector of m parameters w;, possibly dependent on Z;, X;, and a known (selection)
matrix So such that:

vec (Qz) = Szwi. (27)

Condition (27) contains the case where all errors are conditionally uncorrelated, in which
case m =T and S, is a selection matrix that has zeros everywhere except at position (1, 1),
(T +2,2),..., (T?,T). More generally, the assumption contains moving-average processes of
the form

Vit = Wi + OrUlip—1 + oo + Oppttip—p, t=1,...,7T, (28)

13



where 611, ...,0,7 are unrestricted parameters (possibly dependent on regressors, although
we ommit the ¢ subindex for clarity), and w;;_,..., u;7 are mutually uncorrelated given
regressors. In the MA(r) case, m=T+4+T -1+ ...+ T —-r=(r+1)(T —1/2).

Now, taking the vector form of (26) yields, using (27):

(Qi® Q) E[(yi — Z:8) ® (yi — Z:0) |2, Xi] = (Qi® Q) vec () (29)
= (Qi ® Qi) Sow. (30)

We thus have the following identification theorem.

Theorem 2 Suppose that (3), (4) and (27) hold. Suppose also that
rank [(Q; ® Q;) Se] = m. (31)

Then matriz Q; is identified from (7) alone.

In the particular case where errors are i.i.d. homoskedastic (and so m = 0) we also have

the following corollary.

Corollary 3 If errors are i.i.d. independent of (Z;, X;) with variance o? we have

9 1

U:T—_q

E [(yi — Z:6)' Qi (y; — Z;0)] -

When S, selects all (T + 1)/2 non-redundant elements of vec (£2;), the left-hand side
of (31) becomes: (T — q)(T — ¢+ 1)/2, see Lemma 1 part 7) in the appendix. So, the order
condition associated with the rank condition (31) is: (T'—¢)(T'—¢+1)/2 > m. In particular,
in the MA(r) case we need that

(T-q)(T-q+1)
2

> (r+1) (T—g). (32)

The left-hand-side in (32) is decreasing in ¢, while the right-hand side is increasing in r. So
this equation emphasizes a trade-off between the number of individual-specific effects and
the order of the moving-average process.

Autoregressive errors are very popular in applied work, and are not covered by assumption
(27) because errors are correlated at all lags. Nevertheless, a similar approach can be adopted

to study identification. To see how, consider the following model:
Vig = PryVip 1 e F PpVip p F U, t=p+1,..,7T, (33)
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where p ., ..., ppp are unrestricted parameters and u;py1, ..., Ui satisfy assumption (27).
In the case where u; is MA(r), v; given by (33) follows an ARMA(p,r) process.
Let u; = (Wip41, ..., wir)’, and let R be the (7" — p)-by-T" matrix:

“Pppt1 “Pp_iptl - TPlpti 1 0 .. 0
0 _pp,p_|_2 cee _p27p+2 _pl,p+2 1 cee e aee cee O
0 0 .o 0 O O _pp,T—l _pp—l,T—l ves ].
0 0 0 0 0 .. 0 —Pyr e —P1T

We have: Rv; = u;, so:

Variance restrictions on model (34) imply that
(Q:® Q) E[(Ry; — RZ:8) ® (Ry; - RZ:6) [, X = (Qi®Q)Swi,  (35)

where we have denoted: vec (Var (w;|Z;, X;)) = Syw;, where w; is m-by-1, and:
Q; =I,_, — RX; (X'R'RX;)”' X'R’.

Note that, by multiplying by R we have lost p dimensions, as QZ has rank 7"— p — ¢ while
Q; has rank T — g. These additional restrictions on the variance-covariance matrix of errors
are intuitive, as there are p extra individual-specific parameters to difference out, the initial
shocks v 1_p, ..., Vjo. Multiplying by R permits to eliminate these p individual effect. Then,
multiplication by (31 allows to eliminate the ¢ remaining ones.

It follows from (35) that, for the variances of w;p1, ..., uir and parameters p, , 1, ..., Ppr

to be identified from equation (30) the following rank condition needs to be satisfied:
rank ([QZ ® QZ} SQ> =m. (36)

In particular, we need that: (T —p —¢q)(T—p— ¢+ 1)/2 > m. So the maximal ¢ that can
be allowed for is inversely related to p. In the case where u; is MA(r), ¢ is inversely related
to both p and r.

Remark that, contrary to the moving average case, (36) is not strictly sufficient for
identification to hold. Indeed, we also need parameters p; .1, ..., p,r to be identified from
(35). Also, the analysis in this section focuses on non-stationary ARMA models. Under
stationarity, additional identifying restrictions could be obtained, although non-linear in the

autoregressive parameters.
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3.3 Higher-order moments

In applications, it may be of interest to document the skewness and kurtosis of individual
effects in addition to mean and variance. It turns out that the model’s linearity makes it
easy to generalize the previous analysis to higher-order moments.

To proceed, we need some notation. Let U = (Uy,...,U,)" be a n-dimensional random
vector with zero mean and well-defined moments to the fourth-order. We define its cumulant
vector of order 3 as the n®-dimensional vector k3(U) whose elements x5 (U), for (i, j, k) €

{1,...,n}3, are arranged in lexicographic order and are such that
kg H(U) = B (UU;U), (i, 5,k) € {1,...n}".
Likewise, we define k4(U) whose n* elements are

kPRNU) = B(UUUU,) — E(UU;) E (UU,)
—E (U;U) E (U,;U,) — E (U;U) E (U;UR),  (i,5,k,€) € {1,...,n}*

The skewness of U; (i € {1,...,n}) and its kurtosis are given by: x3’7(U)/ Var(U,)*? and
KPPI(U) Var(U;)? + 3, respectively. We may similarly define conditional cumulants by
replacing the expectations in these formulas by conditional expectations.

Cumulants satisfy a multilinearity property, and can be interpreted as tensors (Kofidis

and Regalia, 2000). Namely, for any s-by-n matrix A we have:

k3(AU) = (A® A® A)k3(U),
ki (AU) = (A@A®AQA)KU).

Moreover, cumulants of the sums of independent random variables satisfy: &3(U + V) =
k3(U) + k3(V), and: k4(U + V) = k4(U) + k4(V). Because of these properties, it will
be more convenient to work with cumulants than with moments, although there exists a
mapping between the two.

Here we have only defined cumulants of order 3 and 4. We could easily generalize the
results in this subsection to cumulants of order 5 or higher. The first-order cumulant is
simply the mean, and the cumulant of order 2 is the variance.

To recover the higher-moments of individual effects we impose a conditional independence

restriction on individual effects and errors given regressors:
~,; and v; are independent given (Z;, X;). (37)
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The conditional independence restriction (37) is in the nature of a fixed-effect approach,
where -, represent individual-specific parameters such as preferences or technology. Full
independence (37) will not be needed to derive the identification results in this subsection.
For this purpose, the assumption that -y, and v; have zero cross-cumulants of order 3 and 4
will be sufficient. However, full independence will be needed to recover the distribution of
individual effects in section 5. Conditional independence restrictions are commonly made in
the literature on nonparametric identification and estimation (e.g., Hu and Schennach, 2008,
and references therein).

Using (8) together with (37) we obtain that:

k3 (72, Xi) = K3 (7:|Zi, X;) — k3 (Hivi|Z;, X5)
= k3 (7|2, Xs) — (H; @ H; @ Hy) k3 (vilZs, Xi) (38)

and, similarly:
ke (7,12, X)) = ke (7124, X)) — (H; @ H; @ H; @ H;) k4 (vi]Z;, X)) (39)

It follows that the conditional cumulants of individual effects given regressors are identified if
those of error variables are. In the particular case where only the constant is heterogeneous

and errors are i.i.d. we obtain:

K3 (vit)
T2
(Vi)
T3 -

ks (7i1Zi) = ks (U — 20|Z;) —

K
ko (Vi|Zi) = ka(G; — Z0|Z;) — —

Remark that, as conditional moments can be recovered from conditional cumulants (Smith,
1995), it follows from these results that conditional and thus unconditional moments of
individual effects are also identified.

Interestingly, (38) and (39) show that the bias on the cumulant of individual effects
estimates ¥, is of the order of magnitude of 1/7? or 1/T3, while from (22) the bias on the
variance is of order 1/7. It follows that, while fixed effects estimates have larger variance
than individual effects in the population, we expect that their skewness and kurtosis will be
biased away from zero, at least for reasonably large values of 7T'.

Turning to the identification of error cumulants, using (7) together with (37) yields:

k3 (Qi(yi—Zi0) 2, X;) = (Qi® Qi ® Qi) ks (vilZ;, X)), (40)
ke (Qi(yi — Zi0)Z;,X;) = (Qi®Qi®Q;® Q) ks (vilZ;, X,). (41)
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As in the case of variances, these systems of equations are singular unless we impose
restrictions on the structure of error variables. We adopt a similar approach as in (27)
and assume that k3 (v;|Z;, X;) = Ssws;, and k4 (v4|Z;, X;) = Sqwy;, where S3 and S, are
selection matrices and ws; and wy; are vectors of mz and m,4 parameters, respectively, possibly
dependent on Z;,X;. Under these assumptions, identification of error cumulants can be
shown if rank conditions analog to (31) are satisfied.

To motivate these restrictions, let us consider a model of the form (28), where innova-
tions w;1_r, ..., u;7 are now assumed mutually independent given regressors. Errors are thus
modelled as linear combinations of independent underlying shocks. This modelling has been
introduced by Rao (1969) and has recently been popularized by the literature on Independent
Component Analysis (ICA) (e.g., Hyvérinen et al., 2001). Because of linearity and indepen-
dence, it follows that for any time periods ¢ and ¢ such that v;; and v;y are independent,
the cumulants of 5" (v;|Z;, X;) and k5% (v;|Z;, X;) are zero for all s, s' (see Lemma 1 in
Bonhomme and Robin, 2008a). In an independent moving average model, v is independent
of v; 44r41 for all . Simple combinatorics then shows that third and fourth-order cumulants

depend on m3(r) and my(r) free parameters, respectively, where:
my(r) = T+2(T=1)+..+(r+1)(T-r),
2
my(r) = T+ ( g ) (T—-1)+...+ ( T—; ) (T —r).

In order for the rank conditions analog to (31) to be satisfied, the necessary order conditions

are:

(T—§+2)2m3(r) . and (T_Z+3)2m4(7‘). (42)

Hence, again, an apparent trade-off between the number of individual-specific effects and
the order of the MA process. Interestingly, the order conditions for higher-order cumulants
are less stringent than for the variance, compare (42) with (32).

It is also possible to show identification of higher-order moments in autoregressive models
of the form (33), if the underlying shocks u; follow an independent moving average model.

For that, a possibility is to compute cumulants in the equation in quasi-differences (35).

3.4 Additional identifying restrictions

So far, the identification analysis has relied on a common strategy: identify common pa-

rameters and error moments from the within-group equation (7), and recover the moments
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of individual effects from the between-group equation (8). While this strategy has intuitive
appeal because it clearly separates the identification of common parameters from that of the
individual-specific effects, it may actually lead to a loss of information.

Let us consider the identification of error variances. Instead of working with the variance-
covariance matrix of quasi-differenced data as in (26) we can work directly with the variance-

covariance matrix of y;, that is:
Var (yi|Z;, X;) = X; Var (v,|Z;, X;) X; + Q.. (43)
In vector form, this yields:
vec [Var (y;|Z;, X;)] = (X; ® X;) vec [Var (v,|Z;, X;)] + vec (€2;) . (44)

The first term on the right-hand side of (44) is unrestricted, as the variance of individual
effects is left unspecified. Let us define the projection matrix on X;: P; = X (X;X,-)f1 X!,
and the projection matrix on the orthogonal of P; ® P;:

M; =12 — |P; (PjP;)” PQ} ® [Pi (PP;) " Py (45)
Left-multiplying (44) by M; yields
M, vec [Var (y;|Z;, X;)] = M; vec (€;) . (46)
Using (14) and (27) we can write (46) as:
ME [(yi — Z:6) ® (yi — Z:9) |Z;, Xi] = M,;Sow;. (47)
Now, suppose that (3), (4) and (27) hold. Suppose also that
rank (M;S,) = m. (48)

It then follows from (47) that matrix €2; is identified. It is important to notice that condition
(48) is less restrictive than (31). Indeed, appying Lemma 1 part i7) in the appendix one
can show that, when S, selects all non-redundant elements of vec (€2;), the left-hand side in
(48) is now: T(T'+1)/2 —q(¢+1)/2. The necessary order condition for (48) to hold is thus:
T(T+1)/2—=4q(qg+1)/2 > m, or, in the MA(r) case:

T(T2+ 1) _ <1(q;L Dyt (T - g) , (49)
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Interestingly, the left-hand side in (49) corresponds to the mazimum value of m for which
identification may hold under those assumptions. Indeed, covariance restrictions (43) involve
T(T + 1)/2 data covariances, and ¢(¢ + 1)/2 + m unrestricted covariances of the individual
effects and error variables.

To illustrate the additional moment restrictions that appear in (46), consider a simple
model with 7" = 2, ¢ = 1, only an heterogeneous intercept, no common regressors and
uncorrelated errors. The within-group equation (7) yields only one covariance restriction,

namely:

Var (Yo — yi1) = Var (vie — vi1)
= Var (v;;) + Var (vs2) .

In contrast, (46) yields two equations:®

Var (yi1) — Cov (vi1, yi2) = Var(vi1)

Var (yi2) — Cov (yi1, yiz) = Var(vig).

So, while (7) allows to identify the sum of the two variances, (46) allows to recover both
variances. This argument also applies to higher-order moments. For example, even if errors
are i.i.d., the skewness of v;; is not identified from the within-group equation, because first
differences necessarily follow a symmetric distribution (Horowitz and Markatou, 1996). In
contrast, using a higher-order version of (46) shows that the skewness is identified if indepen-
dence between the individual effect and each of the error variables is assumed. Indeed, under
that condition the full distribution of individual effects and errors is identified (Kotlarski,
1967). See the discussion in section 5 below.

It may come as a surprise that (7) does not contain all the information about error
moments. The reason is that we have made restrictions to achieve the identification of the
moments of individual effects. In the case of variances, (20) imposes that individual effects
and errors are uncorrelated, while (27) restricts the variance-covariance matrix of errors.
Given these restrictions, it is not true that the between-group likelihood is uninformative

about error moments.

9Remark that: .
-1 1 2

[(M;S5)' M;S;] ~ (M;S2)' M; = ( 0 1

2
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It is interesting to compare the two identification strategies. Using the within-group
equation (7), the individual effects are differenced out. In contrast, in the second strategy
the moments of individual effects are removed. In both cases removing the effects yields a
standard problem where individual effects do not appear. The discussion in this subsection
shows that the second strategy may allow to relax the requirements for identification. When
turning to estimation, this will translate into more efficient estimates. Moreover, this second
strategy may be applicable to nonlinear models, when differencing out the effects is not

possible but one can difference out their distribution, see the conclusion.

4 Estimation, inference and testing

In this section we discuss estimation of parameters and moments of interest, using a i.i.d.

sample {y;, Z;, X;},i=1,...,N.

4.1 Common parameters and average effects

We start by discussing the estimation of common parameters and mean effects. From (14)

0 can be estimated as:

N
5= (Saara) Saars,
i=1 i=1

where Q¢ is defined by (19). When W; = Iy, 8 is the OLS estimator of & in (7). When
W, = ;, the variance-covariance matrix of error variables, 3 coincides with the infeasible
GLS estimator of 4, see the appendix for a proof. The asymptotic distribution of § is normal
with an asymptotic variance given by the standard White-type formula (e.g. Wooldridge,
2002, p.320-321).

Chamberlain (1992) shows that, for the choice W; = €, 3 reaches the semi-parametric
efficiency bound for § when (21) is assumed. There are two ways of constructing a semi-
parametrically efficient feasible version of 5. The first way makes use of the GLS inter-
pretation of the estimator (e.g., Amemiya, 1985, p.186). The second way uses a result of
Chamberlain (1992, Proposition 2, p.584) who shows that €2; can be replaced by a positive-
definite matrix such that: €; = Var (vilZi, X;) — X;V,; X}, where V; is any positive-definite
g-by-¢ matrix, with no effect on the efficiency of 3. Note that, in order to compute this

second estimator, one needs to estimate the conditional variance Var (y;|Z;, X;).
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Likewise, from (15) a consistent method-of moments estimator of v = E(«,) is the

weighted mean-group estimator:
1N
~ -l Y L xrwel (. 78
7_N§Hj (XpW;iXs) " XW (v - Z49) (51)

When W; = I, ¥ is the mean-group estimator of 4 (e.g., Hsiao and Pesaran, 2006). Cham-
berlain (1992) shows that 4 reaches the semi-parametric efficiency bound for - if one chooses
W, =Q;,,or W, = ﬁ, which has a feasible counterpart. Estimation in that case requires to
estimate the conditional variance Var (y;|Z;, X;).

It is instructive to compare the mean-group estimator of - given by (51) with the pooled

OLS estimator

N - N

¥y = (Z Xng‘) Z X; (Yi - Zzg) :

i=1 i=1
Consistency of 4 requires lack of correlation between X; and (X;(v; — «) + v;). This is true
if the individual effects 4, are independent of X,;, but not with correlated effects in general.
In contrast, the mean-group estimator 7 is still consistent when effects and regressors are
correlated.

A similar approach may be adopted to deal with model (9). A method-of-moment esti-
mator of @ based on (17) will be consistent. A particular choice for the matrix Q; (6) yields
semi-parametric efficiency, see Chamberlain (1992). In this case, 4 may be estimated in a
second step, or jointly with 6.

Chamberlain (1992) emphasizes an important difference between models (2) and (9).
Indeed, in the linear model (2) the estimator 8 coincides with the joint fixed effects estimator
of § and 4, ..., vy, see Cornwell and Schmidt (1987). In the nonlinear model (9), the fixed
effects estimator of 0 is inconsistent in general. In contrast, a method-of-moments estimator
based on (17) yields consistent estimates of 6.

Turning to projection coefficients, Corollary 1 shows that the coefficients estimates ob-

tained when regressing fixed effects estimates:
3= (X[X;) "' X] (y,- - ZZ-S) ,

on a set of strictly exogenous regressors F;, yields consistent estimates for the coefficients
of the projection on the individual effects in the population «; on F;. However, because

common parameters 3 have been estimated beforehand, the standard errors of the estimates
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of the projection coefficients need to be corrected. This clearly also applies to the mean-
group estimator of the unconditional mean, given by (51). We provide corrected formulas in
the appendix.

Interestingly, the regression-provided R? in the regression of 5, on F; is inconsistent for
the population R? in the regression of 7, on F;, with a downward bias. The reason is that
its denominator is the variance of individual effects, which is overestimated by the variance
of 7;, see (23). Correcting the R? requires to consistently estimate the variance of v,, which

we discuss next.

4.2 Variance and higher-order moments

We now turn to estimation of variances under the conditions of Theorem 2, that is under
MA-type restrictions on the variance-covariance matrix of errors. The extension to autore-
gressive or ARMA structures is immediate and will not be detailed here. Let A~ denote any
generalized inverse of a matrix A with full column rank, e.g. A~ = (A’A)"" A’ It follows

from (30) that the variance-covariance matrix of errors can be consistently estimated by:
N
vee (Var (v)) = +3°8:(Q 0 Q)S:] (%9 (52)
i N £ 2 % % 2 i 1)

where we have denoted: v; = Q; (yi — ZZS) Remark that one gets an alternative expression

if the additional restrictions (46) are used, yielding:

N
vec (Va\r (vz)) = %Z_Zl Sy (M;S2)” M; [(yZ — Zzg) ® (yi — Zzg)] , (53)
where M; is given by (45).

Var (v;) given by (52) will be consistent as long as (27) is satisfied. In the particular
case where arrors are i.i.d. with variance o2, Corollary 5 motivates estimating o2 as:

5 = m i (Yi - Zig), Qi (Yi — Zzg)

i=1
N
1 N
= V,V;. 54
N(T -q) ; 59

The first-order asymptotic distributions of (52) and (54) are straightforward to derive.
Standard arguments show that it coincides with the distribution treating common parame-
ters & as known (e.g., Goldberger, 1991, p.103). Interestingly, while 5> is non-negative by

construction, Var (v;) in (52) is not necessarily non-negative definite.
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Turning to estimation of the variance of individual effects, a consistent estimator based

n (23) and (30) is

_ 1 & "
vec(Var(’yZ> = NZ ¥ =)
=1
iiﬂ@ﬂ (Qi®Q)S,] ¥ 9]
NZZI 2 % % 2 % i) -

(55)

In the case where errors are i.i.d. but not necessarily homoskedastic, an alternative

estimator is:

N N
Var (v;) = N Y FE-NFE-A) - NT—q) D ViV (XiX)
1=1 i=1

(56)

Lastly, if in addition errors are assumed homoskedastic then we can estimate the variance

of v, by:
1 1 _
Var(v,) = + > & -7 -7 D (XX (57)
i=1 i=1

where 5° is given by (54). The estimator given by (57) was introduced by Swamy (1970).
Note that it is inconsistent in general if v;; is conditionally heteroskedastic. In addition, both
estimators given by (56) and (57) will be inconsistent if errors are not mutually uncorrelated
given regressors. Moreover, none of the three estimators of the variance of individual effects
is non-negative definite by construction.

In practice, it may be important to empirically determine the order of the MA process of
error variables. This is of special importance in order to estimate the variance of individual
effects, as mispecifying the form of the variance-covariance matrix of errors would result
in inconsistent estimates. We suggest a simple strategy for this purpose. For example, in
order to test for the presence of independent errors, we propose to estimate Var (v;) in (52)
assuming an MA(1) structure, by choosing the appropriate selection matrix S,. Then, one
can use a Wald test of nullity of the the coefficients of the first off-diagonal of the variance-
covariance matrix. This strategy is analogous to the one followed by Arellano and Bond
(1991) in models with an heterogeneous intercept.

In specific cases, variance restrictions may be used to estimate common parameters @ in

model (9). Examples are the one-factor model (10), and the AR(1) model with heterogeneous
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regressors (12). Conditional mean restrictions (17) can be complemented by the covariance

restrictions:

Qi (0)E [(y; — a(X;0)) (v: — a(X;0)) |X;] Q; (8)' = Q; (6) %,Q, (0)', (58)

where Q; (0) is given by (18). (58) will be uninformative about 6 if the variance-covariance
matrix of errors €2; is unrestricted. In that case, (17) may be enough for identification.
However, the variance-covariance matrix of errors being unrestricted, the variance of indi-
vidual effects will not be identified. In this context, restricting the covariance structure of
errors may have two appealing features: it permits to learn about the variance of effects and
the rest of their distribution, and it allows to use more restrictions to estimate @, namely
equation (58), putting less burden on the regressors. A simple case when expoiting (58)
is necessary is when Z;, X; are constant. The estimators of Holtz-Eakin et al. (1988) and
Arellano and Bond (1991) can be viewed as exploiting those covariance restrictions.

A similar approach can be used to estimate higher-order moments. Using (38) together
with the independent MA restriction with selection matrix Ss, the vector of third-order

cumulants of error variables can be estimated as:
N
N 1 N
K3 (v;) = N Z S;[(Qi®Qi®Q;)Ss] [VidV, ®Vy. (59)
i=1

Third-order cumulants of individual effects can be estimated by:

~

1SN
Rs(v) = 5 F-NeF-PeH -7
1=1
N
—% Y (HoH,eH)S;[(Qi®QeQ)S:| F:eviev]. (60)
=1

Estimating fourth-order cumulants of errors and effects is more complicated. The reason
is that conditional cumulants involve products of conditional expectations, to which the law

of iterated expectations does not apply. For example, in the scalar case (where E(v|z) = 0):

E[ki(v|x)] = [E (v4|x) - 3E (v2|x) 2]

E
E (v*) — 3E [E (vz\x)Q] .
When regressors are discrete and take a small number of values, conditional versions of the

fourth-order analogs to (59) and (60) can be estimated for all the values of the regressors,
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recovering conditional moments and hence unconditional ones by aggregation. When re-
gressors take many values, however, nonparametric estimation of conditional expectation
functions of the type E (v%|z) will be necessary.

We end this section by noting that the whole analysis so far has been conditional on the
form of heterogeneity in the model: ¢ was assumed known, as well as which regressors have
an heterogeneous impact across individuals. In practice it may be of interest to test for the
presence of heterogeneity. Bonhomme (2008), generalizing a result by Orme and Yamagata
(2006), shows that the critical values of a standard F-test of the null hypothesis that some of
the regressors have commmon impacts across individuals remain valid under non-normality
of the errors when N tends to infinity, for fixed 7". Importantly, to apply this test one must
make assumptions on the variance-covariance structure of error variables. It is not possible
to test for the presence of heterogeneity under arbitrary correlation of the errors, because
heterogeneous models are typically equivalent to homogeneous models with serial correlation

(see Arellano, 2003, p.58).

5 Distributions
5.1 Identification

As in the case of the variance and higher-order moments, we impose two types of restrictions
on model (2). First, we assume full independence between individual effects and errors given
regressors, see (37). Second, we will restrict the dependence between error variables in a
similar way as in section 4.

To derive the identification results, it will be very convenient to work with characteristic
functions. Let (Y,X) be a pair of random vectors, Y € RL, and let j be a square root of

—1.19 The conditional characteristic function of Y given X, given X = x, is defined as:
Ty x(t]x) = E (exp(jt'Y)[x), teR"

The following properties of characteristic functions will be useful (e.g., Lindgren, 1993,
p.128-131). First, there exists a mapping between the (conditional) characteristic function

and the (conditional) density, the so-called inverse Fourier transform:

1 .
fyx(y[x) = W/exp (—jt'y) Uy x (t|x)dt. (61)
0We work with the notation j2 = —1 instead of i> = —1 to avoid confusion with the index of individual

units.
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This means that all the information about a random variable is contained in its characteristic

function. Second, if Y; and Y, are independent given X then:

Py, v, x (%) = Uy x (b]x) Uy, x (B]x). (62)

Lastly, cumulants (when they exist) can be obtained from the successive derivatives of the
logarithm of the characteristic function (also called cumulant generating function) evaluated
att =0.

The following theorem shows that, if the distribution of error variables is known, then

the characteristic function, and hence the distribution, of individual effects is identified.

Theorem 3 Suppose that (4) and (37) hold. Suppose also that the characteristic function

of v; given Z;, X; is nonvanishing on RT. Then we have, for all T € R:

\I!:?i‘zi,xi (T|Zi> XZ)

and, unconditionally:
exp (J7'9;)
U,y =E . 64
e (‘I’v”zi,xi(H;T‘Zi, XZ) ( )

The assumption that the characteristic function of errors has no real zeros is very com-
mon in the literature on nonparametric deconvolution; see Schennach (2004) and references
therein. For example, the characteristic function of the normal distribution has no (real or
complex) zeros.

We immediately obtain the following corollary, which shows that the logarithm of the

characteristic function of «; given regressors is identified under similar conditions.

Corollary 4 Suppose in addition to the assumptions of Theorem 3 that the characteristic
function of v, given X; and Z; is almost everywhere nonvanishing on R. Then we have,

for all T € RY:

log ‘11’71'|Ziaxi (T‘Zia XZ) = log \Ij’%\zi,xi (T|Zia X,) — log ‘Ilvi\zi,xi (H;T|Zia XZ) (65)

Corollary (5) shows that the identification result for the distribution of effects is a gen-
eralization of the result for the first moments. Indeed, taking second-order derivatives in
(65) at 7 = 0 yields (22). Taking third and fourth-order derivatives yield (38) and (39),
respectively.

Applying the inverse Fourier transform (61) we obtain the following corollary.
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Corollary 5 Under the assumptions of theorem 3 we have, for all g-dimensional vector ~y:

V5,2, x,(T|Zi, X;)
\Ilvi\zi,xi (H;T|Zia XZ)

1 .
f7z|zl;xz(’7|zlaxz) = (27r)q/exp(_]7-l7)

dr (66)

and, unconditionally:

o y exp(iT')
) = Gy / e"p(‘”’”E(wvizi,x,.(ﬂmz,-,xn)d"' (67)

Corollary 5 shows the identification of the conditional and unconditional densities of

individual effects. To interpret this result, we use a large-T approximation, which relies on
the fact that the distribution of H;v; is approximately normal for large 7. We obtain (see

the appendix for a derivation):

f'7i|ziyxi (7|Z17 XZ) = f’7¢|Zi,Xz‘ (7|Z17 Xz)

1 a2f’\.z,x.(’y|z~ X) 1
—=Tr [ H;QQ;H, VilZi X vt —
2 r< ' 00y’ )_%OP<TQ>’

(68)

where Tr() is the trace operator. In the simple case where there are no common regressors,
only the constant is heterogeneous, and v;; is i.i.d. with variance o2, this yields:
2 2f
) = B -5 o (1), (69)
Equation (68) allows a natural interpretation of the bias correction: in regions of high
curvature (such as the mode of the distribution), the density of estimated effects understates
the density of true effects. We shall illustrate this intuition in the application below.
We now consider the identification of the distribution of error variables. We define (minus
one times) the vector of second derivatives of the log characteristic function of Y given X

as:

otot’
Ky|x is well-defined if the variance of Y given X exists (e.g., Székely and Rao, 2000).

2log U t
ky|x (t|x) = —vec (8 og Py x( ‘X)>

Moreover:

Ky|x (0|x) = vec (Var (Y |X)).

Using (7) and (37), we obtain, assuming that the characteristic function of errors is

non-vanishing on R7:

KQi(yi-2:6)Z:.x; (8Zi, Xi) = (Qi ® Q) Kv,jz x, (Qit]Z:,X;), teRT. (70)
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We study identification under the assumption that errors follow an independent mov-
ing average process of the form (28), where w;;_,,...,u;r are mutually independent given
regressors. Extensions to autoregressive and ARMA processes with independent underlying
innovations is immediate. Lemma 2 in the appendix shows that, in an independent MA
model, the partial derivatives of the log characteristic function of error variables are zero
for all indices ¢ and t' such that v;; and v;y are independent. It follows that there exists a
m-dimensional vector of functions w;(t) (t € RT), possibly dependent on regressors, such
that:

Ky, z:%; (t|Zi, X;) = Saw;(t), te€R’. (71)

The selection matrix Sy is the same that appeared in the covariance restrictions (27). Indeed,
(71) evaluated at t = 0 yields (27). Moreover, m = (r + 1)(T — r/2).

Let us denote as Q;1, ..., Qi the columns of matrix Q,. Clearly, (71) implies that Ky, z, x;
is identified on the vector space spanned by Q;1, ..., Q;r. In order for identification to hold

everywhere we need to make another assumption on the structure of Q;.

Assumption 1 Let (t1,t5) € {1,...,T}2. Every square submatriz of Q; whose indices (s, s')

are such that v;s and vy are neither independent of vy, nor of vy, is non-singular.

Let mi(t1, t2) be the number of elements s € {1, ..., T} such that v;, is neither independent
of vy, nor of vy,. Let also m = max {m(t1, t2), (t1,t2)}. In particular, Assumption 1 requires
that: rank (Q;) > m. For an independent MA(r) process, the maximum m(ty, t5) is attained
for t; = to = T/2, possibly rounded to an integer value, in which case: m = 2r + 1. The
order condition associated with Assumption 1 is thus: 7" — ¢ > 2r + 1.

Combining (70) with (71) and using Assumption 1 we obtain the folowing identification

theorem.

Theorem 4 Suppose that (3), (4), (31), (71) and Assumption 1 hold. Suppose also that the
characteristic function of errors gien regressors, Wy, z, x,, is non-vanishing on R™. Then

Uy, 1z;,x; 1s identified from (7) alone.
The identification of ¥y, z, x, comes from the fact that its second derivatives are identified,

and that both the log-characteristic function and its first derivatives are zero at t = 0. This

last part is because the first derivative of the log-characteristic function at the origin is the
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mean of the random variable, which is zero by (3). Hence also the identification of the
density of error variables, using inverse Fourier transform as in Corollary 5.

To summarize the results so far, we have obtained the nonparametric identification of the
distributions of individual effects and errors under two main conditions: the independence
of effects and error variables, and conditional independence restrictions on errors that are
sufficiently spaced. These results extend the ones in Kotlarski (1967) and Székely and Rao
(2000) to cases where fully unrestricted individual effects, as well as conditioning regressors,
are present.

To end the discussion of identification, we remark that within-group and between-group
equations could be combined in a similar way as in subsection 3.4, differencing out the
distribution of individual effects instead of the individual effects themselves. Using (37) it is
easy to show that, if the characteristic functions of errors and individual effects have no real

zeros, the following equation holds:
Mih"}’i_ziﬂziaxi (t‘zia XZ) = Minvilziyxi (t|Zi’ Xz) , te RT; (72)

where M, is given by (45). Evaluating (72) at t = 0 yields (46). As in the case of variances,
there are more identifying restrictions in (72) than in (70), which was derived from the within-
group equation (7) alone. In particular, the rank and order conditions for identification can
be relaxed when working with these equations. Namely, it can be shown that (31) is sufficient

for the distribution of error variables to be identified from (72).

5.2 Estimation

Although the main focus of this paper is on identification, in this subsection we discuss ways
to estimate the densities of individual effects and errors. We start with error variables. A
natural possibility is to assume a flexible parametric family for errors, for example using
normal mixtures, possibly allowing for conditional heteroskedasticity of a restricted form
with respect to the regressors. Ghosal and Van der Vaart (2001, 2007) provide results on
the ability of normal mixtures to approximate unknown densities. Imposing a parametric
structure should not be seen as a severe limitation if the conditions of the identification
theorems are satisfied, as their conclusions refer to the nonparametric identification of the

distributions. Note that it is easy to implement maximum likelihood estimation when work-
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ing with the within-group equations (7) Following this approach, however, it does not

seem straightforward to use the information contained in the additional moment restrictions
(72).

Instead of postulating a parametric model for error variables, it may be possible to esti-
mate their densities nonparametrically using characteristic-function based methods that have
been proposed in the literature. Horowitz and Markatou (1996) estimate the distribution
of error variables from within-group equations in a simple model with an individual-specific
intercept and symmetric errors. Delaigle et al. (2008) have studied an alternative estimator
for that model. Hall and Yao (2003) and Li and Vuong (1998) have proposed other esti-
mators for the same model, the second one being generalized to independent multi-factor
models by Bonhomme and Robin (2008b). We are not aware of extensions of these methods
to deal with the presence of conditioning variables.

Once the density of errors (or their characteristic function) has been estimated, there re-
mains to estimate the density of individual effects. The identifying equation (67) of Corollary
5 suggests that one could use kernel deconvolution techniques, replacing the expectation by a
sample mean and trimming the integral to ensure convergence. There has been considerable
work on nonparametric deconvolution in the statistics literature. In standard settings, many
estimators are now available: standard Fourier inversion with kernel (Carroll and Hall, 1988,
among many other references), wavelets (Fan and Koo, 2002) and recently the Tikhonov-
regularization technique of Carrasco and Florens (2007). These estimators have typically low
convergence rates, especially if the errors in the regression have smoother distributions than
the one of the variable to be estimated (Fan, 1991). The smoothness of a distribution refers
to the thinness of the tails of its characteristic function: the thinner the tails, the smoother
the characteristic function. In cases where errors follow a “supersmooth” distribution such
as the normal, asymptotic convergence rates may be as slow as logarithmic. Despite these
slow theretical rates, existing simulation evidence is rather encouraging, especially if the
bandwidth or trimming parameters that these estimators require are well chosen (Delaigle
and Gijbels, 2004).

In the case of model (2), implementing a deconvolution approach to estimate =y, is com-

plicated by the presence of the conditioning regressors. A natural estimator based on (67)

UTn practice, it can be useful to transform (7) into a system of T' — ¢ equations, instead of T equations.
To do that, left-multiply (7) by the (T — g)-by-T Cholesky root of Q;, say A;, that satisfies Q; = AjA,.
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1s:

/ exp(—j1'v)= xXp(ITi) Ky(r)dT, (73)

~ 1
Ry = %
W) =y T, 20 x, (HLT| 24, X

1
= (2m)?
where (I}v,-\ z:X; is an estimate of the characteristic function of errors, and Ky(7) is a kernel,
depending on the sample size N, whose values go to zero when || tends to infinity. Ky(7) is
typically zero outside a cube [T, Ty]?, where T diverges to infinity with N (see Delaigle
and Gijbels, 2004, for examples of kernels).

A potential problem with (73) is that, even if we expect ﬁyz to converge to the density of
individual effects when N gets large, its convergence rate will be governed by the smoothest
of all the distributions of H;v; given Z;, X;, 7 =1, ..., N. So the estimator could behave badly
in the presence of strong heteroskedastocity (see Delaigle and Meister, 2008, for a related
argument). Modifying and studying nonparametric deconvolution estimators to estimate the
distribution of individual effects in model (2) is definitely outside of the scope of this paper.
However, in simple cases and under more restrictive assumptions, existing estimators can be
used for estimation. This is what we do in the next subsection.

To end this discussion of estimations, remark that the proposed strategy is sequential,
starting with the density of error variables and then recovering the density of individual
effects by deconvolution. An alternative is to estimate errors and effects jointly. A natural
candidate would be to use sieve maximum likelihood (Ai and Chen, 2003, Hu and Schennach,
2008). The main difficulty with this approach is that one should account for the conditioning

on possibly continuous Z;, X;.

5.3 A special case

We now discuss a special case of model (2), where X; has two components: a constant, and

a single binary regressor x;, where z;; € {0,1}. The model is:
Yit = 0 + BTy + 2,0 + vy (74)

We study identification and estimation of the distribution of §; in this model. In several
applications it is of interest to know the distribution of the effect of a binary “treatment”.
In the application, z;; will a smoking/non smoking indicator.

We asume that § is identified, and work with y; = y;; — z,,0. Consider a sequence

! . . .
x; = (T4, ..., Z;7) . Given a sequence of T zeros, or T ones, «; and 3, are unidentified. We
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thus focus on the subpopulation of individual units whose x’s change over time. We assume
that T is at least 3. So for a given sequence x; there exist at least three indices 1, t9, t3 such

that: x;, = %u,, and 4, 7# T4,. Hence:

Yit, — Yity = Vity — Vity (75)

@;t;; - gitl = (:rit;; - xitl) ﬁz + Uita - v’itl . (76)

We assume that, for every sequence of x’s, errors are i.i.d. It is possible to relax this
assumption, by imposing conditional homoskedasticity of the errors instead of restrictions
on their dynamics, the approach being very similar. In the i.i.d. case, vy, —vi, and vy, — vy,
have the same distribution. Moreover, x;;, — z, is either 1 or —1. So one can interpret (76)
as a simple deconvolution equation, where the left-hand side is the sum of the unobserved
B;, and the independent error v;;, — v;;,. Moreover, the distribution of the latter is also that
of Yit, — Yit,, and could be estimated by a simple kernel density estimator.

Having reformulated the estimation of the distribution of §; in (74) as a simple decon-
volution problem, it is now possible to use any existing deconvolution technique to estimate
its density nonparametrically. In the application, we will use a method due to Mallows
(2007). The method is based on simulation, and does not require to select a bandwidth.
In addition, it is very simple to implement and hence could be of interest to practition-
ers. Lastly, our experiments show very good behavior in simulations, compared to standard
kernel deconvolution.

Starting with two vectors A and C, sorted in ascending order, Mallows’ algorithm aims
at finding a vector B such that the sum of random draws from B and C' yields a random

draw from A. The algorithm works as follows, starting with a guess B for B:
1. Permute the vector By randomly, this yields B,.
2. Let A; be the permutation of A sorted according to B, +C.
3. Set By = Avl — C. Iterate.

In our experiments, the algorithm always converged to a stationary chain after a short

“burn-in” period, less than 10 initial iterations for a total of 1000.2

2Note that, for this algorithm to work, A and C' must have the same size. If this is not the case, one
may replace them by m bootstrap draws with replication from A and C, respectively, where m is the desired
common size. In this way, we can use all the restrictions of the type (75) and (76) in one single algorithm.
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6 Application
6.1 Model and data

Following Abrevaya (2006), we study the effect of smoking during pregnancy on birth out-
comes. Abrevaya uses the Natality Data Sets for the US for the years 1990 and 1998. As
there are no unique identifyers in these data, he develops a method to match mothers to
children, in particular focusing on pairs of states of birth (for mother and child) that have
a small number of observation. Abrevaya carefully documents the possible errors caused
by this matching strategy. We will use the “matched panel #3”, which is likely to be less
contaminated by matching error.

This results in a panel dataset, where children (denoted by the index j) are matched to

mothers (7). We estimate the following model:
Yij = i + Bixi; + 250 + vy, j=1,...,Ji (77)

In this equation, the dependent variable y;; is the weight at birth of child j of mother . x;; is
the smoking status of mother ¢ when she was pregnant of child j, z;; = 1 indicating that the
mother was smoking. z;; gathers other determinants of birthweights that present between-
children variation: the gender of the child, the age of the mother at the time of birth, dummy
variables indicating the existence of prenatal visits, and the value of the “Kessner” index of
the quality of prenatal care (see Abrevaya, 2006, p.496).

a; and B, in model (77) are mother-specific effects. They partly represent genetic en-
dowments of the mother. A possible interpretation of (77) is as a production function, the
“output” being the child and the “producer” being the mother. The “production technology”
is then represented by the characteristics of the mother, o; and ;. These characteristics are
supposed to stay constant between births. In addition, they may be correlated with smoking
status. In particular, a mother could decide not to smoke if she knows that her children will
suffer from it (i.e., if she has a very negative ;). However, strict exogeneity (3) requires that
mothers will not stop smoking because one of their children had a low birthweight, i.e that
the shocks v;; are uncorrelated to the sequence of smoking statuses. This assumption will
fail to hold if for example mothers do not know their «; and /3, before they have had a child,
and learning takes place over time. This is a common concern when estimating any type of
production function, where there can be feed-back effects on the choice of inputs. We will

try to relax the strict exogeneity assumption at the end of this section.
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Abrevaya (2006) estimates a restricted version of (77), where 3; is homogeneous among
individuals. To allow for heterogeneity, identification requires that J; > 3. For this reason
we focus on mothers who had at least 3 children during the period (1989-1998). In the
dataset, J; is exactly equal to 3 for all ¢. In addition, we need z;; to vary for every mother.
So we only consider mothers who changed smoking status between the three births. The

final sample contains 1445 mothers.'3

6.2 Results

We first check if there actually #s heterogeneity of mother’s responses to smoking in the
data. An F-test of the null hypothesis that the 3,, 7 = 1,..., N, are all equal, has a p-value
of 0 (the F-statistic has a value of 1.32 for (1444, 1437) degrees of freedom). Recall that the
test is asymptotically valid when N tends to infinity for fixed 7', even under non-normality
(Bonhomme, 2008). This indicates the presence of heterogeneous 3’s in the sample we study.

Next, we estimate common parameters d in (77). For this, we use the generalized within-
group estimator (50), with the identity as weighting matrix. The results are shown in Table
1. Although they have the expected signs, the variables indicating the number of prenetal
visits and the quality of prenatal care are never significant. The only significant covariate is

the gender of the child, boys having higher weigth at birth.

Table 1: Estimates of common parameters 6

Variable Estimate Standard error
Male 130 22.8
Age 39.0 32.0
Age-sq -.638 D77
Kessner=2 -82.0 52.7
Kessner=3 -159 81.9
No visit -18.0 124
Visit=2 83.2 53.9
Visit=3 136 99.2

Note: Estimates of & using (50) with W; = Iy. The data is the “Matched panel data #3” in
Abrevaya (2006). The sample only includes mothers who had three children and changed smoking
status between births.

13Descriptive statistics show that this subsample is intermediate between the subsamples of women who
always smoked, or never smoked. For example, women who smoke more are younger on average, and their
children have lower weight at birth.
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To interpret the mother-specific effects, we regress them on a set of covariates: the
education of the mother, her married status, and the mean of the smoking indicators over
the three births. Results are given in Table 2. Standard errors were corrected as explained
in 4.1. Black mothers have children with lower birthweight, however, they seem to be less
sensitive to smoking. Also, the children of mothers who smoke more have on average lower
birthweights. The R? in the regressions are .113 and .021 for o; and 3;, respectively. This
shows that observed covariates explain little of the variation in 3;, and justifies the fact of
treating this effect as unobserved mother heterogeneity. Remark that the R? need to be
corrected, see 4.1. For this, it is necessary to estimate the variance of the effects, which are
the results that we present next. For comparison, the uncorrected R? are .055 and .005 for

o; and 3, respectively.

Table 2: Regression of o; and 3; on mother-specific characteristics

Variable Estimate Standard error
Q;
High-school 15.1 42.7
Some college 38.5 55.3
College graduate 58.7 72.1
Married 3.51 34.6
Black -364 54.0
Mean smoking -161 83.9
Constant 2879 419
R?= .113
Bi
High-school -15.9 42.8
Some college -15.9 42.8
College graduate 64.5 63.8
Married 31.9 41.8
Black 132 60.6
Mean smoking -49.8 101
Constant -172 67.1
R?= .021

Note: Estimates of projection coefficients of of a; and ; on mother-specific characteristics. The
data is the “Matched panel data #3” in Abrevaya (2006). The sample only includes mothers who
had three children and changed smoking status between births.

Table 3 shows the estimates of the moments of a; and ;. The mean smoking effect of
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—161 grams, computed by (51), is close to the fixed-effect estimate (i.e., imposing homo-
geneity of the ’s in model 77) of —144 g found by Abrevaya (2006, Table IV).

Turning to variances, rows numbered (1) in Table 3 show the estimates of the Swamy
formula, see (57). Both «; and f; show substantial dispersion. In particular, the standard
deviation of 3, is 313 g. This can be compared to the standard deviation of 628 g of the least
squares estimates B\z So in this example, removing the sample noise due to the very small
number of observations per mother (3 children) leads to a drastic decrease in the variance.
In addition, the Swamy formula yields a correlation of —.47 between «; and 3,. So, mothers
who have better (genetic) characteristic and have children with higher weight at birth (higher
«;) are more affected by smoking when they smoke (lower f3;).

Having 3 observations per mother requires to impose strong restrictions on the variance-
covariance matrix of error variables. Indeed, (7) is a system of rank 1 (=T — ¢), making it
necessary to suppose that errors are i.i.d. Using the additional covariance restrictions (46)
one can slighty relax the i.i.d. assumption. Rows numbered (2) in Table 3 show variance
estimates when one permits the variances of errors for the first, second and third children
to be different. It is easy to check that one cannot leave those three variances unrestricted,
however. In rows numbered (2) we impose that the variance of errors for the jth child is
a + bj, where a and b are scalars that we estimate from an empirical counterpart of (46).
The results show that the variances of o; and [, are not much affected. For example, the
standard deviation of 3, is now 292 g. We also tried to allow for limited correlation between
errors, using (46), and found similar results. This suggests that the i.i.d. assumption is not
rejected on these data.

We now comment the results for higher-order moments. Rows numbered (3) in Table 3
show the result of the estimation of skewness and kurtosis under the i.i.d. assumption, using
the within-group equations (7). Clearly, the skewness of error variables is not identified from
these equations. To estimate the moments of individual effects, we assume that errors are
symmetrically distributed. The results show that «; is negatively skewed and kurtotic, while
the skewness and kurtosis of 5, are not significant from the ones of the normal distribution
(0 and 3, respectively).!* Now, as explained in (3.4), the within-group equations do not
contain all the information about error moments. Indeed, using first differences (75) and

(76) it is easy to compute consistent estimates of the skewness and kurtosis of 3, that do

1n order to estimate the asymptotic standard errors of higher-order moments we have used the nonpara-
metric bootstrap clustered at the mother level (500 replications).
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not depend on errors to be symmetric. We show these estimates in (4) in Table 3. In that

case also, the skewness and kurtosis are not significant from those of the normal.

Table 3: Moments of «; and §;

Moment Estimate Standard error
Gy
Mean 2782 435
Variance (1) 127647 15161
Variance (2) 120423 24155
Skewness  (3)  -1.67 428
Kurtosis (3) 7.12 2.28
Bi
Mean -161 17.0
Variance (1) 98239 21674
Variance (2) 85673 34550
Skewness  (3)  -1.29 .909
Skewness  (4)  -1.06 1.25
Kurtosis (3) -.34 7.84
Kurtosis (4) 7.50 7.10
i, B;
Covariance (1) -52661 14375
Covariance (2)  -45437 24165

Note: Estimates of moments of a; and ;. The data is the “Matched panel data #3” in Abrevaya
(2006). The sample only includes mothers who had three children and changed smoking status
between births. (1) refers to the Swamy variance (57), (2) uses the additional restrictions (46) and
allows for unconditional heteroskedasticity, (3) restricts the skewness of error variables to be zero,
(4) corresponds to estimation in first differences.

We then use the strategy outlined in 5.3, based on Mallows’ (2007) algorithm, to estimate
the density of 3; nonparametrically. The results are shown in Figure 1, where we also plot
the estimated density of the least-square estimates BZ for comparison (in light print). The
bottom graph in Figure 1 shows the quantile estimates of 3, and /BZ Correcting for sample
noise in the estimation of the density of the smoking effect leads to a strikingly different
picture. The density of 3; has much lower variance than that of Ei, and a much higher
mode, consistently with (68). Comparison with the normal (not shown) shows some evidence
of “peakedness” of ;. In addition, our method allows to estimate the smoking effects at

different quantiles. When corrected for the presence of sample noise, the effect is mostly
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Figure 1: Density and quantiles of §; (dark) and BZ (light)
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Note: Density estimate obtained using Mallows’ (2007) simulation algorithm (for 3;), and standard
kernel (for 8;). Quantile estimates obtained using inversion of the cumulative distribution function.

negative (up to percentile 75), and reaches very negative values for some mothers (around

500 g at percentile 20).

6.3 Predeterminedness of smoking behavior

The previous results have been derived under the assumption that the smoking status is
strictly exogenous. To relax the strict exogeneity assumption, we need to make assump-
tions on the correlation between individual effects and regressors in order to perserve point
identification of the moments, see subsection 2.3.

We consider model (77) and assume that 3; is independent of regressors z;;, z;; and errors

v;5, but make no assumption on ;. Taking first differences yields:
Ayij = ﬂzA.’EZJ + Azij’é + AUU, (78)

where Ayi; = Yi; — Yij-1-

Predeterminedness of x;; means that: E (vj|xi;, i j_1, ..., Z;) = 0. Under this condition,
we show in the appendix that consistent estimates of § = E (3;) and § can be computed using
an Instrumental Variables (IV) regression of Ay;; on Az;; and Az;;, using as instruments
Tij—1,--, ;. We call the coefficient estimates B and 4. Next, assuming that v;; is independent

of z;;_1,...,Z; (which is a stronger assumption than predeterminedness) we show that the
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variance of 3, can be consistently estimated by an IV regression of <Ayij — EAxij — Az;jg) i
on (Aa;,-j)2 and a constant, using as instruments z; j_1, ..., Z;.

We then apply this approach to Abrevaya’s (2006) dataset. It is not possible to test for
the strict exogeneity of the smoking indicator in the model with two mother-specific effects,
because mothers have at most three children in the data. However, a simple regression
of birthweight on current and future smoking status with mother-specific effects, with no
regressors, yields a coefficient of —35.9 with a standard error of 25.3 for smoking status during
the next pregnancy (i.e., ; j+1). This provides some evidence of predeterminedness, although
the coefficient is not significant at 10%. Accounting for smoking to be predetermined, we
then estimate the mean of 3; to be —158 with a standard error of 27.4. This is very close to
the mean effect reported in Table 3. The variance is estimated to be 293239 with a standard
error of 187448. This corresponds to a standard deviation of 541 g, and is quite higher
than the one reported in Table 3. However, the two variances are not statistically different.
Despite the limitation of this exercise, due to the small number of children per mother and
the relatively small sample size, this confirms that there is considerable heterogeneity in the

effect of smoking during pregnancy on birthweight.

7 Conclusion

We have derived conditions under which the distribution of heterogeneous components can be
consistently estimated in a class of panel data models with multiple sources of heterogeneity.
For our identification results to apply, three main conditions must be met: the model must be
linear in the individual effects, regressors with individual-specific coefficients must be strictly
exogenous, and the dependence structure of error variables must be restricted. Under these
conditions, we prove the nonparametric identification of the full distribution of the effect of
a covariate, and of that of error variables. Crucial for this result to hold is the panel data
setting, which allows to observe the same individual with various values of the covariate.

We have proposed a nonparametric estimator of the density of individual-specific effects
in a special case. Extending this approach to more general settings where x;; is continuous
and errors are not i.i.d. is not immediate, as the available statistical methods should be
extended to account for the conditioning on regressors. There seems to be interesting work
to do in that direction.

Relaxing the model assumptions also seems important. In a companion paper, we study
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a method to deal with nonlinear panel data models with continuous dependent variables.
The main insight comes from subsection 3.4 above: even if it is not possible to difference
the individual effects out in a nonlinear setting, it may be possible to difference out their
distribution. This approach should be applicable to a class of models with predetermined
regressors.

Lastly, in models where the dependent variable is not continuous, one is very likely to loose
fixed-T identification. A fixed-T approach would then consist in characterizing the identified
bounds of the distributional features of interest (Honoré and Tamer, 2006), requiring a very

different analysis.
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APPENDIX

Non-identification in the predetermined case. Here we emphasize the lack of identifi-
cation of § and E (;) in model (13). The two identifying equations for these quantities are:

E (Ayis|zin, Tiz, Zi) = E(B;Azi|wa, T, Z;) + Azi3d
P (Aziz = 1|mi1, Ti2, Zi) E (8| Amiz = 1, 41, Ti2, Z;)
—P (Aziz = —1|zi1, Tio, Zi) B (B;]Aniz = =1, 241, 240, Z;) + Azj30,
and:
E (Ayiolzir, Zi) = E(B;Azil|zir, Zi) + Az
= P (Azj = 1z, Zi) E (B;|Aziz = 1,741, Z)
—P (Azpp = —1|zi1, Z;) B (B;|Azio = —1, 31, Z;) + Azjyd.
Clearly, 6 and E (3;) are not identified unless one imposes restrictions on the conditional mean of
B; given X; and Z;.
Proof of Proposition 1. Assumption (4) implies that H; and Q; exist. We have, using (3):
E (Qi(yi — Z:i9)|Zi,Xi) = E(QivilZi, Xy)
Likewise, again using assumption (3):

E (Hi(y; — 2:0)|Z;,X;) = E(v;+Hvi|Z, X;) = E (v,|Z, X;) -

Proof of Corollary 1. Using that E(v;|Z;,X;,F;) = 0 it is immediate to see that:
E (7;12;, X, F;) = E(v; + Hivi|Z;, X, Fi) = E (7,]Zi, X, Fy) .
By the law of iterated expectations we obtain:
E(F7;) = E(Fiv).
Lastly, (15) implies that E (7;) = E (v;), so:
Cov (Fi,7;) = E (Fiv}) - E(F) E (v;) = E (F¥;) — E(F)) E (7;) = Cov (F;,7,) .

The conclusion follows.

Proof of Corollary 2. Clearly:
Qi (0) (yi —a(X;,0)) = Qi(0)v;.

The conclusion comes from: E (v;|X;) = 0.

Proof of Theorem 1.
Var (¥,|Z;,X;) = Var (v, + Hyvi|Z, X;)
= Var(v;|Z;, X;) + Var (H;vi|Z;, X;)
= Var(v;|Z;, X;) + H;QH]
where we have used (20) in the second equality. Hence (22). Unconditionally we have:
Var (v;) = E(Var(vZ;,X;)) + Var (E (v,]Z;, X;))
= E[Var (3;|Z;, X;) — HiH]] + Var (E (v,|Z;, X))
= Var (:)’\Z) —E (H,QZH;) .
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Proof of Corollary 3. In the particular case where errors are i.i.d. independent of (Z;, X;)
with variance o2 a solution is obtained by applying the trace operator to:

E((yi — Z:6) (yi — Z:0)') = 0’E(Q;Q}) = 0°E(Qy).
As Tr(Q;) =T — ¢, and Tr ((yi — Zi6) (yi — Zib)") = (yi — Zi0)' (yi — Z;6), this yields:
o_ 1 o s o
o = T—qE((yZ Zz‘s) (YZ Zz‘s))'
A lemma for section 3.

Lemma 1 Let P be a symmetric idempotent n-by-n matriz with rank p. Let D,, be the n-by-
n(n + 1)/2 duplication matriz that transforms vech (A) into vec (A), for any n-by-n matriz A
(Magnus and Neudecker, 1988, p.49). Then:

) n—p)(n—p+1
i) rank {[(I, — P) ® (I, — P)] D, } = (n=p)o—ptl),
i1) rank [(I,: —P @ P)D,] = @ _ P(p2+1)_

Proof. Part 7). Because of idempotence: rank (I, —P) = n —p. Let vq,...,v, be a basis of
the vector space spanned by the columns of I, — P. Clearly, {v; ® v, (i,5) € {1,...,p}?} forms
a linearly independent family. So does {v; ® v, (4,7) € {1,...,p}%,i < j}. As this family has
(n—p)(n —p+ 1)/2 elements, the conclusion follows.

Part 4i). The proof uses results from Magnus and Neudecker (1988, MN hereafter). From MN’s
Theorem 13 p.49-50 we have:

(I, -P®P)D, = D,D,(I,:-PoP)D,
= D, (Lugsn =Dy (POP) D),
2
where D, = (D, D,,) ' D/, denotes the Moore-Penrose generalized inverse of D,.

Hence, because D,, has full column rank, the rank of: (I,» — P ® P)D,, is equal to that of:
B, = I.41 — D, (P ® P)D,,. But, using equations (14) and (15) in MN (Theorem 13 p.50) it
2

is easy to show that B,, is idempotent. So, using MN’s Theorem 21 (p.20): rank (B,) = Tr (B,).
Now:

Tr (D, (P®P)D,) = Tr(D,D, (P®P))

_ %Tr(P(X)P)-I-%Tr(Kn(P‘@P))

p? 1
= L4 MK, (PeP)),

where K, is the commutation matrix (MN, p.47). Let E;; be a n-by-n matrix with zeros everywhere,
except a one at position (z,7). Let also P = [pij](i i)

Tr (K, (P®P)) = zn: zn: vec (E;;)' K, (P ® P) vec (E;;)
i=1 j=1

n n
= Z Z vec (Ej)' vec (PE[;P’)

i=1 j=1

n n
= Zsz’jpﬁ
i=1 j=1

n
= Zpii =D,
i=1
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where the next to last equality comes from idempotence of P. So:

This ends the proof. m

Proof of Equation (50). We have:
Qiyi = QiZid + Qiv;.
Let Q; = A}A;, where A; is (T — ¢)-by-T, with rank T'— ¢q. As Al is full-column rank we have:
Ajyi = AZ;6 + A;v;.
Then Var (szzlzz; Xz) = A.LQZA; So
N -1
6= (Z Z;A; (AiQiA;)il Aizi> Z.AL (AiQiA;)fl Ay;.
i=1

Now: .
Al (AZQ,A;) A, = Q"
To see this, note that letting A; = Aiﬂg /% and X; = Q;l/ 2Xi, the previous equation can be written
as
(]

EyA— - = [t \ =
Al (Az-Ai) A =Ir-X; (XZ-Xi) X..

This is because

- (m;)’ AA 0
- S
0 1 (XiXZ-> X/ X;
AA) A o
B Exxglx (% %)

as A;X; =0, so that:
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Consistent standard errors for the linear projection coefficients. The regression
coefficients in:

Yo =Fime+ &y, £=1,....q (A1)
where F; is such that E(v;|X;, Z;,F;) = 0, are given by

1

m = [E (FiF;)] E Fivg), (A2)

and a root-N-consistent estimator of 7y is

1O T
T = (ﬁ Z FiF;) N Z FiYei, (A3)
i=1 i=1
where, if h), denotes the £th row of matrix H;:
Yo = hy (Yi - Zi;s\) -
We have:

Y = hi (Zi5 + Xy +vi — Zﬁ)

Fime+ &g — hyZi (8 — 8) + hipvi.

Hence, letting ¥y = N1 3N F,F. we have

1 1 - 1
Uy (e — ) = (ﬁ > Fifﬁ) - (N > Fihéezi> (5 - 5) + (N > Fih;zvi> :
=1 =1 =1

Also
R LN -1 LN
6—0= (NZZ;QZZZ> NZZ;Q’LVZ (A4)
i=1 i=1
Combining the two expressions we get
N N
N 1 1 Z.Q;
wem) = (5 2R+ (o RS (HE )
1= 1=

1 < 1 <
= (N > Fz’f@i) teny > Civi
=1 i=1
where
1 Y 1 Y o
Py =— (N ZFihéeZi) (N Z Z;Qizi>
=1 =1
and 61\[ = ( @N I ), and
Z/Q;
Ci= ( L ) .
Z Fihj,

Note that if v; is uncorelated with the effects given the regressors, i.e. if either (20) or (21)
holds given Z;, X;, F;:
E (Fi¢,;viCi) = 0.
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Therefore, the asymptotic variance of VN (7, — m) is
Avar [VN (7 — )| = O3B (€4F.F)) 95" + 95 B (CuiCip) Fp¥5" (A5

where ¥y = E (F;F}), & = ( ® I), and &, = E (F;h/,Z;) [E (Z/Q;Z;)]"".
The term E (é%ZFZF;) cannot be directly estimated because <y, is unobservable. Let us consider
the following estimator that would be produced by a regression routine:

1 & il
N 2 CuFiF; =
=1

> (e - Fi7i,)" FF;
=1

2|~

'~ 2
[6&' + hiyv; — F (7 — m¢) — hjyZ; (5 - 5)] F,F;

I
2| =
WE

K3

1
E ((3,FiF;) + E (hj,Q;hyF;F;) .

1=

Thus,
2
E (¢4FiF}) = E [ (biylys - Zid] - Fim,)" FiF}| - B (DjyhiFiF})
and
Avar [\/N (7ty — 71'3)] = T,'E [(h;z lyi — Z;0] — F,Iiﬂ'g)2 FZF;] A
+;" [BoE (CaftiCly) Ty — B (b FiF)) | 251, (A6)
The conclusion is that ordinary robust standard errors obtained when regressing v, on F; are
inconsistent whith a bias term provided by the second term on the right-hand side of (A6). In the
special case where there is no Z; and all parameters are individual-specific in (2), the bias term is

zero. So the inconsistency is due to the fact that & is estimated.
Lastly, it is easily shown (e.g., Wooldridge, 2002, p.321 for a special case) that a consistent

estimator of Avar [\/N (7ty — ﬂ'g)] is given by:

1 N
oy (3 et 03
=1

where

-1

N N
ai = F; (W, (yi— 2:3) — Fiie) — | Yo Fimiez; | | Y 75Qiz | ZiQi (vi - Z:3).
j=1 j=1
Proof of theorem 3. Let 7 € R?. Using (8) and assumption (37) we obtain:

\IJ’AYHZiaXi (7124, Xi) = \II‘7¢|Z1‘,X¢ (7Z;, Xi)\PHiVHZi,Xz’ (112, X;)
= \P71|Z1,X1(T|ZZ’Xl)qjvﬂzz,xl(H;,T‘ZZ’X’l)
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If Uy, is almost everywhere nonvanishing we obtain (63). Moreover, (64) follows from taking
expectations:

\I!%_('r) = v X (112, X, ))

E (T
_ ( ~:1Z;,X; T‘ZZ’X) )
- VI|Z“X (H/7|Z;, X;)
( (exp (5 7'%;) IZZ,X)>
Uy, 1z;,x; (HiT|Zi, X;)

- ( exp (§7'9;) )
o,z x; (HiT|Zi, X;)

Il
=

Proof of corollary 5. Inverse Fourier transformation yields:

1 .
frizox: (20, Xi) = —)q/eXP(—JT"Y)‘I’7i|zi,xi("’|Zi,Xz‘)dT

(2w
= L/exp(_jT ~) U5, 12:,%: (1%, X3)
(2m)7 U,z x, (HIT|Z;, X;)

The unconditional result is similarly obtained.

Proof of equation (68). Under regularity conditions, we have, for all 7 € R%:

Uy, iz, x;(HiT|2i, X5) = gy, z, x, (712, X5)

1 1
= exp [—57 Var (H;v;|Z;,X;) T + O, (TQ)]

1 1
= exp [—ﬁr'HiQiH;T +Op (ﬁ)] .
So:

U5.12;,x; (7124, X)
Uy, iz:,x; (HiT|Z;, X;)

fr 2%, (¥ Zi, X5) = exp(—j7'7y) dr

xp(— i} 1
€Xp j7l‘7 5.12:,X; T|Z;,X;) exp THQ[—]’7-_|_O dr
’L| (2] 2

Il
b—lgb—t
— — —

. 1 1
exp(—37'7) V5, 2, x,(T|Zi, X;) [1 + —r'H;Q,H! T:| dr + 0, (T?)

1 O f5.12:,x; (V| Zi, X;) 1

where the last equality comes from taking second derivatives in (66).

A lemma for subsection 5.1. Here we extend Lemma 1 in Bonhomme and Robin (2008a).
Consider an independent factor model: Y = AX, where Y = (V1,..,Y7)', X = (X1,...,X1)/,
A is a matrix of L-by-S parameters (possibly dependent on conditioning covariates), and the S
components of the vector X are independent (also possibly conditionally). Note that L can be less
than S. We assume that the variances of X, (and thus also of Y,) are finite.

Lemma 2 Let (i,5) € {1,...,L}? such that Y; and Y; are independent. Then:

0% log Uy (t)

=0, teRE
875,'875_7'
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Proof. We denote the elements of A as \js, ¢ =1,..., L, s =1,..., 5. It follows from independence
that:

82 log Uy (t) 5 0% log U, (fo:l szstzv)
8t,~8tj - Z /\isAjs or?

But by the Darmois theorem (Comon, 1994, p.306), as Y; and Y; are independent it follows that,
for all s, either A;sAj; = 0, or X is Gaussian.

. . 2 log U N7 2 log ¥ . .
When X, is Gaussian: O7log Wxa (3 Aysty) _ 07108 Wx,(0) 4 constant, independent of t. So we

oT2 o2
have:
0% log Uy (t) 5 0?log U x, (0)
P TY N Ao dse [ ——0 ~As \F/
atiat]‘ ; 18rs or?
~ Cov(%,Y)
= 0.
| ]

Proof of theorem 4. Clearly, because of (31), (70) and (71): w; (Q/t), t € RT, is identified.
Moreover, Lemma 2 shows that dlog Uy, (t)/0t; depends only on the indices ¢z such that vy, and
vit, are not independent. Hence, 6% log Uy, (t)/0t10t2 depends only on the indices s such that v;s
and v;;, are not independent, and v;; and v, are not independent. Let us call Z the set of such
indices s. Let w4, 4, (t) be the element of w; (t) corresponding to the cross-derivative with indices
(t1,t2). wit, 1, (t) is only a function of ts, for s in Z. So, wiy, +, (Qjt) is a function of Q},t, for
s in Z. Now, Assumption 1 implies that the submatrix of Q;Q; = Q; with indices in Z is non
singular. Hence wjy, ¢, (t) is identified for all t € R”. Repeating the argument for all ¢;,t, yields
the identification of w; (t) for all t € R™.

It follows that kv, z, x, (t|Z, X;) is identified for all t € R”. By successive integration and
using that, because of (3):

8log \IJVi\Zi,Xi (0|Zi, Xz)
ot

= E (vi|Z;,X;) = 0,
and that, because of the definition of a characteristic function:
log ¥y, z, x; (0|1Z;, X;) =0,
it follows that the characteristic function of errors is identified.
Proof of equation (72). Let t € RT. Using (8) and assumption (37) we obtain:
log Uy, 7.6z, x;(t1Z2:,Xi) = log U,y 7, x,(Xit|Z:, X;) +log Uy, 7, x, (t|Zs, X;).
Taking second derivatives and left-multiplying by M; yields (72).

Predeterminedness, subsection 6.3. Taking conditional expectations in (78) yields:

E (Ay,'j\:vi,j,l, e Zz’) = E (/Bisz'j‘xi,jfla . Zi) + Azij'5
= E (ﬁz) E (A.’Eij‘il,‘i,j_l, “eey Zi) + Azij'é.
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So, consistent estimates of = E (§;) and § are given by an Instrumental Variables (IV) regression
of Ay;; on Az;; and Az, using as instruments x; j_1, ..., 4;. We call the coefficient estimates j3

and 6.
We can proceed similarly to recover the variance of 3;. We have:

Ayij — BAZ;j — Azii'6 = (B; — B) Azyj + Avyj,
so:
E [(Ayij — BAzZ;; — Azij'6)2 |T5j—1,.-yZ;| = Var(f;)E [(Aa:ij)2 |5 5—1, - Zi]
B [(A0iy)’ |31 1, B
where we have used that
E ((8; — B)|Azij, vij, Tij—-1, -, Li) = 0.

Assuming that v;; is independent of z; ;_1,...,Z; (which is a stronger assumption than predeter-
minedness) we obtain:

E [(Ayi]— — BAz;; — Azij'6)2 |Zi i1, s Zi] = Var (5,) E [(Aa:ij)Z |Zi i1, - Zi] +E [(Avij)Q] )

~ ~\ 2
It follows that the variance of 3; can be consistently estimated by regressing (Ayij — BAz;; — Az jé)

2 . .
on (Az;;)” and a constant, using as instruments z; j_1, ..., Z;.
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