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Abstract

We propose a new class of tests for the stability of parameters. We cover the class
of Hamilton models, where regime changes are driven by an unobservable Markov
chain. We derive a class of information matrix-type tests and show that they are
equivalent to the likelihood ratio test. Hence, our tests are asymptotically optimal.
Moreover these tests are easy to implement as they do not require the estimation of
the model under the alternative. They are also very general. Indeed, the underlying
process driving the regime changes may have a finite or continuous state space, as
long as it is exogenous. The model itself need not be linear. It may be a GARCH
model, for instance.

We use this test to investigate the presence of rational collapsing bubbles in
stock markets. Using US data, we find evidence in favor of nonlinearities, which are
consistent with periodically collapsing bubbles.
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1 Introduction

The aim of the paper is to propose an optimal test for the null hypothesis of parameter
constancy H0 : θt = θ0 against an alternative where the parameters vary according to an
unobservable Markov chain. This testing problem includes testing the parameter stability
in a Markov-switching model (Hamilton, 1989) and in a random coefficient model (for
example a state space model). The model under the null need not be linear, it may be a
GARCH model for instance.

The parameters driving the dynamic of the underlying Markov chain are not identified
under the null hypothesis. As a result, the testing problem is non-standard and the
likelihood ratio test does not converge to a chi-square distribution. Our test is based on
functionals of expressions like

1√
T

∑
t

h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h (1.1)

where lt denotes the conditional log-likelihood for one observation under H0 and h and ρ
are nuisance parameters (h measures the difference between the states, and ρ measures
the autocorrelation of the variations of the parameter θt) . This test is strongly related
to the Information Matrix test introduced by White (1982). It has the advantage of
using the estimation of the model under H0 only. We show that, for fixed values of the
nuisance parameters, our test is equivalent to the likelihood ratio (LR) test. The nuisance
parameters are integrated out to obtain an admissible test.

There are few papers proposing tests for Markov-switching. Garcia (1998) studies
the asymptotic distribution of a sup-type Likelihood ratio test. Hansen (1992) treats
the likelihood as a empirical process indexed by all the parameters (those identified and
those unidentified under the null). His test relies on taking the supremum of LR over the
nuisance parameters. Both papers require estimating the model under the alternatives,
which may be cumbersome. None investigates local powers. Gong and Mariano(1997)
reparametrize their linear model in the frequency domain and construct a test based on
the differences in the spectrum between null and alternative. Although they do not discuss
the asymptotic power of their tests, a closer reading of the paper shows that their test
shares certain features with our test. Some work has been done on testing for independent
mixtures, Chesher (1984), Lee and Chesher (1986), Davidson and MacKinnon (1991), and
recently Cho and White (2003).

It should be emphasized that testing parameter stability against a Markov switching
alternative is much more challenging than testing for Structural change or Threshold.
They have in common that they involve nuisance parameters that are not identified under
the null hypothesis. The latter have been investigated in many papers: Davies (1977,
1987), Andrews (1993), Andrews and Ploberger (1994), Hansen (1996) among others.
There is, however, some difference to the classical situation: the “right” local alternatives
are of order T−1/4. Hence, to study the properties of this test, we need to do expansions
of the likelihood at the fourth order.
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To illustrate the applicability of our test, we use it to detect the presence of rational
collapsing bubbles in stock markets. There is bubble if the stock price is disconnected
from the market fundamental value. We regress the stock price on dividends and use
the residual as proxy for the bubble size. Using US data, we find that the residuals are
stationary, which could be hastily interpreted as evidence against the presence of bubbles.
However, our Markov switching test strongly rejects the linearity, suggesting that at least
two regimes should be used to fit the data. Estimating a three-state Markov switching
model reveals that one regime is near unit root, the other has an explosive root, while
the third one is mean reverting, which is consistent with periodically collapsing bubbles.
It is worth mentioning another application of our test. In a recent paper, Hamilton
(2004) argues that a linear statistical model cannot capture the recurring cyclical pattern
observed in economic aggregates. He applies our test to show that there are nonlinearities
in the unemployment rate over the business cycle and that a Markov switching model is
particularly well designed to capture these nonlinearities.

The outline of the paper is as follows. Section 2 describes the test statistic. Section
3 establishes the admissibility. In Section 4, we describe simulation results. Finally in
Section 5, we use this test to investigate the presence of rational bubbles in stock markets.
In Appendix A, we define the tensor notations used to derive the fourth order expansion
of the likelihood. These notations are interesting in their own as they could be used in
other econometric problems involving higher-order expansions. The proofs are collected
in Appendix B.

2 Assumptions and test statistic

The observations are given by y1, y2, ..., yT . Let ft (.) be the conditional density (with
respect to a dominating measure) of yt given yt−1, ..., y1. Let µT be the dominating measure
for the density of (y1, y2, ..., yT ) . We assume that each ft (.) is indexed by a p-dimensional
vector of parameters, say θt. We are interested in testing the stability of these parameters,
namely we test

H0 : θt = θ0, for some unspecified θ0 (2.1)

against
H1 : θt = θ0 + ηt, (2.2)

where the switching variable ηt is not observable.

Assumption 1. (i) ηt is is stationary and β-mixing with geometric decay. It implies
in particular that there exist 0 < λ < 1 and a measurable non-negative function g such
that

sup
|f |≤1

|E [f (ηt+m) |ηt, ..]− E [f (ηt)]| ≤ λmg (ηt, ....) . (2.3)

and
Eg (ηt, ..) < ∞. (2.4)
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Furthermore we assume that

Eηt = 0, max
t
‖ηt‖ ≤ M < ∞,

ηt does not depend on yt−1, ..., y1.

The assumption Eηt = 0 is not restrictive as the model can always be reparametrized
to ensure this condition. ηt β-mixing is satisfied by e.g. irreducible and aperiodic Markov
chain with finite state space. max

t
‖ηt‖ ≤ M < ∞ will also be satisfied by any finite state

space Markov chain, however it will not be satisfied by an AR(1) process with normal
error. This condition could be relaxed to allow for distributions of ηt with thin tails but
this extension is beyond the scope of the present paper. Although some form of mixing
is necessary for the ηt, one should be able to relax condition (2.3).

Assumption 2. The distribution of ηt may depend on some unknown parameters
β. They are nuisance parameters that are not identified under H0.We assume that β
belongs to a compact set B, and that λ, the constant M, and the function g defined in
Assumption 1 are independent of β.

Assumption 3. yt is stationary under H0 and the following conditions on the con-
ditional log-density of yt given yt−1, ..., y1 (under H0), lt, are satisfied. lt = lt (θ), as a
function of the parameter θ, is at least 5 times differentiable. Moreover, let us denote by
l
(k)
t the k-th derivative of the likelihood with respect to the parameter θ.

sup
t,θ∈N

E

(∥∥∥l
(1)
t (θ)

∥∥∥
24

)
< ∞,

sup
t,θ∈N

E

(∥∥∥l
(2)
t (θ)

∥∥∥
12

)
< ∞,

sup
t,θ∈N

E

(∥∥∥l
(3)
t (θ)

∥∥∥
8
)

< ∞,

sup
t,θ∈N

E
(∥∥∥l

(4)
t (θ)

∥∥∥
)

< ∞,

sup
t,θ∈N

E
(∥∥∥l

(5)
t (θ)

∥∥∥
)

< ∞.

where N is a neighborhood around θ0.
The expectations in the above formulae are to be understood as expectations with

respect to the probability measure corresponding to the parameter θ0.
For the “norm” of the derivatives we can e.g. take the usual L2 norm

∥∥∥l
(`)
t (θ)

∥∥∥ =

√√√√
∑

0≤i1,i2,..≤`,
Pk

j=1 ij=`

(
∂`lt

∂θi1
1 ∂θi2

2 ..∂θik
k

)2

. (2.5)

Usually the first derivatives of the likelihood is associated with the vector of scores and
the second one with the Hessian. This interpretation is sufficient for a statement of the
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results. For the proofs of our theorems, however, we need derivatives of higher order.
Their precise nature will be discussed in Appendix A.

We do not impose restrictions on the moments of yt. For instance yt could be a
stationary IGARCH process. However, we rule out the case where yt is a random walk.
To deal with unit root, we would have to alter the test statistic by proper rescaling and
its asymptotic distribution would be different. We leave this extension for future research.
As in Andrews and Ploberger (1994, Section 4.1.), the vector of observable variables yt

may include exogenous variables.
The test statistic, for a given β, is of the form.

TST (β) = TST

(
β, θ̂

)
= ΓT − 1

2T
ε̂ (β)′ ε̂ (β)

where

ΓT =
1

2

(
1√
T

∑
t

tr
((

l
(2)
t + l

(1)
t l

(1)′
t

)
E (ηtη

′
t)

)
+

2√
T

∑
t>s

tr(l
(1)
t l(1)′

s E (ηtη
′
s))

)
(2.6)

≡ 1

2
√

T

∑
t

µ2,t

(
β, θ̂

)
,

and ε̂ (β) is the residual from the OLS regression of 1
2
µ2,t

(
β, θ̂

)
on l

(1)
t

(
θ̂
)

, and θ̂ is the

maximum likelihood estimator of θ under H0 (i.e. the ML estimator under the assumption
of constant parameters).

As β is unknown and can not be estimated consistently under H0, we use sup-type
tests like in Davies (1987)

supTS = sup
β∈B̄

TST (β)

or exponential-type tests as in Andrews and Ploberger (1994)

expTS =

∫

B̄

exp (TST (β)) dJ (β)

where J is some prior distribution for β with support on B̄ a compact subset of B. We
will establish admissibility for a class of expTS statistics.

The asymptotic distribution of the tests will not be nuisance parameter free in general.
Therefore we have to rely on parametric bootstrap to compute the critical values.

The test statistic TS depends only on the score and derivative of the score under the
null and on the estimator of θ under H0. Therefore it does not require estimating the
model under the alternative. This is a great advantage over competing tests like those of
Garcia (1998), Hansen (1992) because estimating a Markov switching model is particularly
burdensome (Hamilton, 1989) or even intractable if the model is highly nonlinear as in
the GARCH model.
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The test relies on the second Bartlett identity (Bartlett, 1953a,b). It is related to
the Information Matrix test introduced by White (1982). Chesher (1984) shows the
Information Matrix test has power against models with random coefficients. He shows
that a score test of the hypothesis that parameters have zero variance is close to the
Information Matrix test. Davidson and McKinnon (1991) derive information-matrix-type
tests for testing random parameters. The main difference with our setting is that they
assume that the parameters are independent, whereas we assume that the parameters are
serially correlated and we fully exploit this correlation. Recently, Cho and White (2003)
have proposed a test for independent mixture.

The form of our test is insensitive to the dynamic of the latent process ηt. It depends
only on the form of the autocorrelation of ηt.

We assume throughout the paper that the model under the null is correctly specified.
The issue of misspecification is not addressed here.

The main difference with Structural change and threshold testing is that here the local
alternatives are of order T−1/4. This is due to the fact that the regimes ηt are unknown
and one needs to estimate them at each period. It is also linked to the singularity of the
information matrix under the null hypothesis.

Although the optimality results are proved under the general assumptions 1 to 3, the
expression of the test statistic can be simplified under the following extra assumption.

Assumption 4. ηt can be written as chSt where St is a scalar Markov chain with
V (St) = 1, h is a vector specifying the direction of the alternative (for identification h
is normalized so that ‖h‖ = 1), and c is a scalar specifying the amplitude of the change.
Moreover, corr (St, Ss) = ρ|t−s| for some −1 < ρ < 1. In such case, β = (c2, h′, ρ)

′
.

Assumptions 1 and 4 impose some restrictions on the Markov chain St. If St has a
finite state space, then it will be geometric ergodic provided its transition probability
matrix satisfies some restrictions described e.g. in Cox and Miller (1965, page 124).
More precisely, if St is a two-state Markov chain, which takes the values a and b, and
has transition probabilities p = P (St = a|St−1 = a) and q = P (St = b|St−1 = b), St is
geometric ergodic if 0 < p < 1 and 0 < q < 1. In this example ρ = p + q − 1.

St can also have a continuous state space as long as it is bounded. Consider an
autoregressive model

St = ρSt−1 + εt

where εt is iid U [−1, 1] and−1 < ρ < 1. Then St has bounded support (−1/ (1− |ρ|) , 1/ (1− |ρ|))
and has mean zero. Moreover it is easy to check that St is geometric ergodic using The-
orem 3 page 93 of Doukhan (1994). For this choice of St, yt follows a random coefficient
model under the alternative.

Under Assumption 4, µ2,t (β, θ) can be written as

µ2,t (β, θ) = c2h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

) (
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h, (2.7)
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and B̄ =
{
c2, h, ρ : c2 > 0, ‖h‖ = 1, ρ < ρ < ρ̄

}
and −1 < ρ < ρ̄ < 1.

The maximum of TST (β) with respect to c2 can be computed analytically. As a result,
we get

supTS = sup
{h,ρ:‖h‖=1,ρ<ρ<ρ̄}

1

2

(
max

(
0,

Γ∗T√
ε̂∗′ε̂∗

))2

where Γ∗T is ΓT (β) /c2 and ε̂∗ = ε̂ (β) /(
√

Tc2) so that Γ∗T and ε̂∗ do not depend on c2.

3 Local alternatives and asymptotic optimality

First of all let us discuss some general principles for the construction of admissible tests.
A test is admissible if there is no other test that has uniformly higher (or equal) power.
Consider a general testing problem of testing a null H0 against an alternative H1 and let
µ0 and µ1 be two measures concentrated on H0 and H1, respectively. Furthermore assume
that the probability measures for our models are given by densities fξ, (with respect to a
common dominating measure), where the parameter ξ ∈ H0 ∪H1. Then a test rejecting
when ∫

fξdµ1∫
fξdµ0

> K (3.1)

is admissible (this is an easy generalization of the Neyman-Pearson lemma: For an exact
proof, see Strasser (1995)).

We therefore have a wide latitude in the construction of admissible tests. We will
use our freedom of choice to construct tests which have additional nice properties, like
the ease of implementation. To establish admissibility, it is enough to find a sequence
of alternatives for which our test is equivalent to the Likelihood Ratio test. For these
alternatives, our test will be optimal.

The null hypothesis for a given θ is denoted as

H0 (θ) : θt = θ

and the sequence of local alternatives is given by

H1T (θ) : θt = θ +
ηt

4
√

T
. (3.2)

Let Qβ
T denote the joint distribution of (η1, ..., ηT ), indexed by the unknown parameter

β. Let Pθ,β be the probability measure on y1, y2, ..., yT corresponding to H1T (θ), and Pθ be
the probability measure on y1, y2, ..., yT corresponding to H0 (θ) . The ratio of the densities
under H0 (θ) and H1T (θ) is given by

`β
T (θ) ≡ dPθ,β

dPθ

=

∫ T∏
t=1

ft

(
θ + ηt/T

1/4
)
dQβ

T /

T∏
t=1

ft (θ) .

7



Under Assumptions 1-3, we have under H0 (θ)

`β
T (θ) / exp

(
1

2
√

T

T∑
t=1

µ2,t (β, θ)− 1

8
E

(
µ2,t (β, θ)2)

)
P→ 1. (3.3)

where the convergence in probability is uniform over β and θ ∈ N .
The proof of the theorem is rather complicated, so we give it in Appendix B.
Although Gong and Mariano(1997) never evaluate the asymptotic power of their test,

a closer look at their results shows that it is compatible with our theory. In their paper,
the process representing “our” ηt is of the form α1St, where St is a process taking only
values 0 and 1. They test for α1 = 0 by constructing an LM-test for another parameter
(in their notation) δ = α2

1. Hence their test should have power against alternatives for
which δ = O(1/

√
T ), which implies that α1 = O(1/ 4

√
T ).

We can easily see from (2.6) that µ2,t (β, θ0) is a stationary and ergodic martingale
difference sequence, hence the central limit theorem applies. Moreover, for each sequence

N 3 θT → θ0 ∈ N , (3.4)

the distribution of 1
2
√

T

∑T
t=1 µ2,t (β, θT ) will converge in distribution, under PθT

, to a

Gaussian random variable with expectation 0 and variance 1
4
Eµ2,t (β, θ0)

2 .
For every sequence θT satisfying (3.4) and any β, the PθT ,β are contiguous with respect

to PθT
.

This result follows immediately from the CLT mentioned above and Strasser (1995).
Denote

`T

(
θ0 +

1√
T

d

)
≡

dPθ0+ 1√
T

d

dPθ0

=

∏T
t=1 ft

(
θ0 + d/

√
T

)

∏T
t=1 ft (θ0)

= exp

{
T∑

t=1

(
lt

(
θ0 + d/

√
T

)
− lt (θ0)

)}
.

Using a Taylor expansion around θ0 + 1√
T
d, we obtain the following lemma.

For all θ0 ∈ N , and for all vectors d

`T

(
θ0 +

1√
T

d

)
/ exp

(
− 1√

T

T∑
t=1

d′l(1)
t

(
θ0 +

1√
T

d

)
+

1

2
E

(
d′l(1)

t

(
θ0 +

1√
T

d

))2
)
→ 1

(3.5)
uniformly (in d on all compacts) in probability.

Again, our regularity conditions guarantee the convergence of 1√
T

∑T
t=1 d′l(1)

t (θ0) to

a normal distribution with variance E
(
d′l(1)

t (θ0)
)2

, hence again we can conclude that

Pθ0+ 1√
T

d are contiguous with respect to Pθ0 . Since contiguity is a transitive relationship,

we may conclude that for all vectors d, Pθ0+ 1√
T

d,β is contiguous with respect to Pθ0 . From

dPθT ,β

dPθ0

=
dPθT ,β

dPθT

dPθT

dPθ0
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we can conclude that with

θT = θ0 +
1√
T

d, (3.6)

dPθT ,β

dPθ0

/

{
exp

(
1

2
√

T

T∑
t=1

µ2,t (β, θT )− 1

8
E

(
µ2,t (β, θT )2)

)
exp

(
− 1√

T

T∑
t=1

d′l(1)
t (θT ) +

1

2
E

((
d′l(1)

t (θT )
)2

))}

→ 1

where the convergence is - again - uniform in probability with respect to Pθ0 .
We now can proceed to construct optimal tests of H0 (θ0) against the alternatives

H1T (θT ). Fist assume that we know θ0 ∈ Θ. Then contiguous alternatives to H0 (θ0) are
described by the probability measures

PθT ,β, (3.7)

where θT is given by (3.6). We now want to compare tests with respect to their power
against these alternatives. In particular, we want to characterize tests by optimality
properties. We want to start with a sequence of tests ψT and then show that there does
not exist another sequence of tests ϕT which is asymptotically “better” for the null and
all the contiguous alternatives. So let us formally define “better” tests.

A sequence ϕT of tests is asymptotically better than ψT at θ0 if it is “better” on the
null

lim sup

∫
ϕT dPθ0 ≤ lim inf

∫
ψT dPθ0 (3.8)

and “better” on the alternatives, that is, for all θT and β

lim inf

∫
ϕT dPθT ,β ≥ lim sup

∫
ψT dPθT ,β. (3.9)

This definition is essentially the same as used by Andrews and Ploberger (1994) and
a bit different from the one in Strasser (1995). Although the latter can be very useful
when analyzing the asymptotic behavior of possible power functions for testing problems,
our definition here proved more practical in econometric analysis because it directly deals
with the asymptotic behavior of tests. Our definition here is, however, close enough to
the one in Strasser (1995) so that we can use the standard proofs of optimality.

A test ψT is said to be admissible if there exists no asymptotically better test.
Let ϕT be some test statistics that has asymptotic level α (i.e. lim

∫
ϕT dPθ0 = α)

and asymptotic power function (i.e. lim
∫

ϕT dPθT ,β exists). Let K ≥ 0 be an arbitrary
constant, and ν be an arbitrary, but finite measure concentrated on a compact subset of
B ×Rk. Without limitation of generality we can assume that ν

(
B ×Rk

)
= 1. Then let

us define the loss function

L (ϕT ) = K

∫
ϕT dPθ0 −

∫ (∫
ϕT dPθ0+d/

√
T ,β

)
dν(β, d). (3.10)
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By Fubini’s theorem, we have

L (ϕT ) =

∫
(K − dPθ0+d/

√
T ,β

dPθ0

)ϕT dPθ0dν(β, d) = (3.11)

∫
(K −

{∫
dPθ0+d/

√
T ,β

dPθ0

dν(β, d)

}
)ϕT dPθ0 (3.12)

From (3.11) we can easily see that, for fixed K, L(ϕT ) is minimized by the tests ψT , which
satisfy

ψT =





1 if
{∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d)

}
> K

0 if
{∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d)

}
< K



 . (3.13)

So the minimal loss only depends on the distributions of the
{∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d)

}
.

We can easily see that the measures
∫

Pθ0+d/
√

T ,βdν(β, d) are contiguous with respect to
Pθ0 , too. Hence the minimal loss equals

−
∫

(

{∫
dPθ0+d/

√
T ,β

dPθ0

dν(β, d)

}
−K)(+)dPθ0, (3.14)

where, for an arbitrary real number x, x (+) denotes the positive part of x.
Let us now assume that we have a competing sequence of tests ϕT . Note that (3.13)

does not uniquely determine a test: We do not care about the behavior of the test on the

event
[{∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d)

}
= K

]
. Hence the following definition will be useful:

The tests ϕT and ϕ′T are asymptotically equivalent (with respect to our loss function
L) if and only if for all ε > 0

lim Eθ0 |ϕT − ϕ′T | I
[∣∣∣∣

{∫
dPθ0+d/

√
T ,β

dPθ0

dν(β, d)

}
−K

∣∣∣∣ > ε

]
= 0. (3.15)

So, heuristically speaking, ϕT and ϕ′T give us the same decision provided the test

statistic
∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d) is different from the critical value K. Moreover, we have the

following result.
Suppose ϕT and ψT are asymptotically equivalent, where ψT is defined by (3.13). Then

lim (L(ψT )− L (ϕT )) = 0. (3.16)

If ϕT and ψT are not asymptotically equivalent (in the above sense), then

lim inf (L(ψT )− L (ϕT )) < 0. (3.17)

Hence (3.16) implies that ψT and ϕT are asymptotically equivalent.
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We can easily see that L(ψT )−L (ϕT ) =
∫

(K−
{∫ dPθ0+d/

√
T,β

dPθ0
dν(β, d)

}
) (ψT − ϕT ) dPθ0 .

The construction of ψT and the fact that 0 ≤ ϕT ≤ 1 imply that the integrand is nonpos-
itive. Let ε > 0 be arbitrary. Let us define

r = (K −
{∫

dPθ0+d/
√

T ,β

dPθ0

dν(β, d)

}
). (3.18)

Then

L(ψT )− L (ϕT ) =

∫
rI [|r| > ε] (ψT − ϕT ) dPθ0 +

∫
rI [|r| ≤ ε] (ψT − ϕT ) dPθ0 . (3.19)

Since |ψT − ϕT | ≤ 1, we have

∣∣∣∣
∫

rI [|r| ≤ ε] (ψT − ϕT ) dPθ0

∣∣∣∣ ≤ ε. (3.20)

For asymptotically equivalent tests,
∫

rI [|r| > ε] (ψT − ϕT ) dPθ0 → 0, which proves (3.16).
For (3.17), observe that if ϕT and ψT are not asymptotically equivalent, then there exists
an η > 0 so that

lim sup Eθ0 |ϕT − ψT | I
[∣∣∣∣

{∫
dPθ0+d/

√
T ,β

dPθ0

dν(β, d)

}
−K

∣∣∣∣ > η

]
> 0 (3.21)

The construction of ψT guarantees that r (ψT − ϕT ) ≤ 0. Hence − |ϕT − ψT | rI [|r| > ε] =
rI [|r| > ε] (ψT − ϕT ) ≤ rI [|r| > η] (ψT − ϕT ) if η ≥ ε, hence for all ε small enough lim inf∫

rI [|r| > ε] (ψT − ϕT ) dPθ0 < − lim sup Eθ0 |ϕT − ψT | I
[∣∣∣

{∫ dPθ0+d/
√

T,β

dPθ0
dν(β, d)

}
−K

∣∣∣ > η
]
,

and together with (3.20) this proves our theorem.
We now can conclude from the above theorem that the tests ψT and all asymptotically

equivalent sequences of tests are admissible. Any tests with genuine better power functions
would have smaller loss, which is impossible. Hence we have to show that the our test is
asymptotically equivalent to tests ψT .

For this purpose, let us first observe that the processes

ZT (β, θ) =
1

2
√

T

T∑
t=1

µ2,t (β, θ)− 1

8
E

(
µ2,t (β, θ)2)− 1√

T

T∑
t=1

d′l(1)
t (θ)+

1

2
E

((
d′l(1)

t (θ)
)2

)
,

(3.22)
are, for all θ so that ‖θ − θ0‖ = O(1)/

√
T (and hence in particular the θT defined by

(3.6)), uniformly tight in the space C (B), the space of continuous functions on B. Indeed,
since the µ2,t (β, θT ) are stationary martingale differences, we can apply a central limit
theorem and conclude that the ZT (β) converges in distribution (with respect to PθT

) to
a Gaussian process with a.s. continuous trajectories. Since the PθT

are contiguous to Pθ0 ,
the limiting process(es) under Pθ0 must have continuous trajectories too, and we have
uniform tightness of the distributions with respect to Pθ0 .
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We now want to show that the tests ψT and the tests based on
∫

exp(ZT (β, θT ))dν(β, d) (3.23)

are asymptotically equivalent. We can easily see that a sufficient condition for asymptotic
equivalence would be

∫
exp(ZT (β, θT ))dν(β, d)/

∫
dPθ0+d/

√
T ,β

dPθ0

dν(β, d) → 1. (3.24)

We know that for all finite sets βi, di

exp(ZT (βi, θ0 + di/
√

T ))/
dPθ0+di/

√
T ,βi

dPθ0

→ 1. (3.25)

So suppose that for all ε > 0 and η > 0 we could find a partition S1, ..., SK so that with

probability greater than 1−ε for all i, (β, d) , (γ, e) ∈ Si

∣∣∣ZT (β, θ0 + d/
√

T )− ZT

(
γ, θ0 + e/

√
T

)∣∣∣ <

η,
∣∣∣dPθ0+d/

√
T,β

dPθ0
− dPθ0+e/

√
T,γ

dPθ0

∣∣∣ < η: Then (3.24) will be an easy consequence of (3.25).

The existence of such a partition for the ZT is an immediate consequence of the uniform
tightness of the distribution of ZT . According to our assumptions, the difference between

the ZT and the log of the densities
dPθ0+di/

√
T,βi

dPθ0
converges to zero uniformly in probability.

Hence the density process is uniformly tight, too, which immediately guarantees the
existence of the partition.

Let the tests φT reject when
∫

exp(ZT (β, θT ))dν(β, d) > K and accept when∫
exp(ZT (β, θT ))dν(β, d) < K. Then these tests are asymptotically equivalent to the

tests ψT . Consequently, we have the following result:
Let ϕT be a sequence of tests that is asymptotically better (in the sense of definition

3) than φT . Then ϕT is asymptotically equivalent to φT .
We just have shown that the φT are equivalent to the ψT , hence

lim (L(φT )− L(ψT )) = 0. (3.26)

Since ψT are the tests with minimal loss function, we also have

lim inf (L(ϕT )− L(φT )) ≥ 0. (3.27)

If δ is an arbitrary, finite measure and hn measurable functions with |hn| ≤ M for some
M , then it is an easy consequence of Fatou’s lemma that

∫
lim inf hndδ ≤ lim inf

∫
hndδ.

The definition 3 guarantees that lim inf
(∫

ϕT dPθT ,β −
∫

φT dPθT ,β

) ≥ 0 and
lim sup

(∫
ϕT dPθ0 −

∫
φT dPθ0

) ≤ 0. Since L(ϕT )− L(φT ) =

K
(∫

ϕT dPθ0 −
∫

φT dPθ0

)−∫ ((∫
ϕT dPθ0+d/

√
T ,β

)
−

(∫
φT dPθ0+d/

√
T ,β

))
dν(β, d), we

can conclude that
lim sup (L(ϕT )− L(φT )) ≤ 0. (3.28)

12



(3.27) and (3.28) allow us to conclude that lim (L(ϕT )− L(φT )) = 0, hence (3.26) also
implies that lim (L(ϕT )− L(ψT )) = 0. Then theorem 3 implies that ϕT and ψT are
asymptotically equivalent. Since we did show that the φT are equivalent to the ψT , we
have proved the theorem.

We now are able to construct asymptotically optimal tests for each parameter θ0. The
problem, however, is that we do not know θ0. Hence we will try to find for each θ0 a
measure νθ0 so that the corresponding test statistic

∫
exp(ZT (β, d))dνθ0(β, d) (3.29)

does not depend on θ0. For this purpose, define

d (β) = d(β, θ0) = (I (θ0))
−1 cov

(
1

2
µ2,t (β, θ0) , l

(1)
t (θ0)

)
(3.30)

where I (θ0) denote the information matrix. Then we have the following result:
Assume that J is a measure with mass 1 concentrated on a compact subset of B. Let

d be as in (3.30) , then define

ST (θ) =

∫ (
exp(ZT (β, θ + d(β, θ)/

√
T ))

)
dJ (β) . (3.31)

Let θ̂ be the maximum likelihood estimator for θ under H0,i.e.

θ̂ = arg max
∑

lt(θ). (3.32)

Then
expTS− ST (θ0) → 0 (3.33)

in probability under Pθ0 ,where

expTS =

∫ (
exp(TST (β, θ̂))

)
dJ (β) , (3.34)

and

TST (β, θ̂) =
1

2
√

T

∑
µ2,t

(
β, θ̂

)
− 1

2T
ε̂ (β)′ ε̂ (β) , (3.35)

where ε̂ (β) is the residual from the OLS regression of 1
2
µ2,t

(
β, θ̂

)
on l

(1)
t

(
θ̂
)

.

Let Pbθ be the probability measure corresponding to the value of the maximum likeli-
hood estimator. (We can understand our parametric family as a mapping, which attaches
to every θ a measure Pθ. Then the measure Pbθ results from an evaluation of this mapping

at θ̂: It is a random measure). Let K(θ̂) be real numbers so that

Pbθ ([
expTS < K(θ̂)

])
≤ 1− α (3.36)

13



Pbθ ([
expTS > K(θ̂)

])
≤ α (3.37)

and assume K(θ̂) → K. Then the tests ϕT , which reject if expTS > K(θ̂), and accept

if expTS < K(θ̂), are for all θ0 asymptotically equivalent under Pθ0 to tests rejecting if
ST (θ0) > K, and accepting if ST (θ0) < K. Moreover, we have

Pθ0 ([ST (θ0 ) < K]) ≤ 1− α (3.38)

and
Pθ0 ([ST (θ0 ) > K]) ≤ α (3.39)

Hence any sequence of tests better than ϕT is asymptotically equivalent to ϕT with respect
to the probability measures Pθ0 for all θ0 ∈ Θ.

The distribution of the TST (β, θ̂) itself is of considerable interest, too. We are inter-

ested in functionals of TST (β, θ̂), so we have to consider the limiting behavior of the whole
function depending on the parameter β. Again, we restrict ourselves to compact subsets
of B. Hence the appropriate limiting theory to consider is the convergence of distribution
of random elements with values in the space of continuous functions defined on a compact
subset of B.

Assume Assumptions 1 to 4 hold. Under H0 and H1T , we have

TST (β, θ̂)−
(

1√
T

T∑
t=1

(
µ2,t (β, θ0)

2
− d (β)′ l(1)

t (θ0)

)
− 1

2
Eθ0

((
µ2,t (β, θ0)

2
− d (β)′ l(1)

t (θ0)

)2
))

→ 0

(3.40)
uniformly on all compact sets. Moreover under H0, we have

TST (β, θ̂)
D⇒ G(β),

where
D⇒ denotes the convergence in distribution of a sequence of stochastic processes

and G(β) is a Gaussian process with mean -1
2
Eθ0

((
µ2,t(β,θ0)

2
− d (β)′ l(1)

t (θ0)
)2

)
and co-

variance

Cov(G(β1), G(β2)) = Eθ0

((
µ2,t (β1, θ0)

2
− d (β1)

′ l(1)
t (θ0)

)(
µ2,t (β2, θ0)

2
− d (β2)

′ l(1)
t (θ0)

))

≡ k (β1, β2) .

Under H1T , TST (β, θ̂) converges to a Gaussian process with mean k (β, β0)− 1
2
k (β, β) and

variance k (β1, β2), where β0 is the true value of the parameter β under the alternative.
The last statement follows from Le Cam’s third lemma (see van der Vaart, 1998) and

from the fact that the joint distribution of the TST (β, θ̂) and the logarithms of the densities
of the local alternatives converges to a joint normal, and these two Gaussian random
variables are correlated.. With the help of this lemma, we can conclude that our test has

nontrivial power against local alternatives if Eθ0

((
µ2,t(β,θ0)

2
− d (β)′ l(1)

t (θ0)
)2

)
> 0.
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It is, however, also possible that

Eθ0

((
µ2,t (β, θ0)

2
− d (β)′ l(1)

t (θ0)

)2
)

= 0. (3.41)

This case is not that implausible. Indeed we have

Eθ0

((µ2,t

2
− d′l(1)

t

)2
)

= Eθ0

((µ2,t

2

)2
)
− 2d′Eθ0

(
l
(1)
t

µ2,t

2

)
+ d′ (I (θ0))

−1 d

= Eθ0

((µ2,t

2

)2
)
− Eθ0

(
l
(1)
t

µ2,t

2

)′ (
Eθ0

(
l
(1)
t l

(1)′
t

))−1

Eθ0

(
l
(1)
t

µ2,t

2

)

using (3.30). Hence (3.41) is satisfied if and only if µ2,t belongs to the linear span of the

components of l
(1)
t . Assume for a moment that ρ = 0 and all the other prerequisites of

Assumptions 3 and 4 are fulfilled. Then µ2,t is a linear functional of the second-order

derivatives of the log-likelihood, namely h′
(

∂2lt
∂θ∂θ′ +

(
∂lt
∂θ

) (
∂lt
∂θ

)′)
h. Then (3.41) means

that the second order derivatives can be written as a linear combination of the scores.
This is a geometric condition, which has profound statistical implications: E.g. in Murray
and Rice (1993), p. 16 it is used to characterize linear exponential families. A typical
example would be the normal distribution. We have two parameters, mean and variance,
and we can easily see that if we take h = (1, 0)′ (our first parameter should be the mean)
(3.41) is fulfilled. This corresponds to testing for independent mixture of two normals
with different unknown means and same unknown variance. This same effect was noticed
in Gong and Mariano(1997): They remark that their test does not work in this situation.

If (3.41) is fulfilled, then it is impossible to construct a test with nontrivial power

against these specific local alternatives. The TST (β, θ̂) are consistent approximations of
the log-density of one measure under the null (corresponding to θ0 and to θ0 + d/

√
T

, β, respectively). If the density between these two measures converges to 1, then any
reasonable distance like e.g. total variation converges to zero. So in this kind of situation
null and alternative are not distinct probability measures, which makes it impossible to
construct consistent tests. Any test will have trivial local power for an alternative in T−1/4.
However our test may have non trivial power against a local alternative of order T−1/6

for instance. This means that our test may still have power against a fixed alternative.
Moreover, under Assumption 3, this phenomenon is the exception rather than the rule.

The following proposition characterizes the set of alternatives against which our test does
not have local power.

Suppose Assumptions 1 to 4 hold. Assume furthermore that for all t, s, h′
(

∂lt
∂θ

) (
∂ls
∂θ

)′
h

can not be represented as a linear combination of components of
(

∂lt
∂θ

)
. Then for each h,

there exist at most finitely many ρ so that (3.41) is fulfilled.
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First of all let us observe that

µ2,t (β, θ) = c2h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h

Let us assume that for one h there exist infinitely many values of ρ so that (3.41) is fulfilled.
We can easily see that µ2,t (β, θ), and hence d, are analytic functions of ρ. Therefore

Eθ0

((
µ2,T (β,θ0)

2
− d′l(1)

t (θ0)
)2

)
must be an analytic function too. We did assume that

this function has infinitely many zeros in a finite interval, hence it must be identically
zero. Hence

c2h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h = d (c, h, ρ)′

(
∂lt
∂θ

)

for all ρ. Since both sides of the equation are analytic functions, their derivatives (with
respect to ρ) must be also equal. Hence

2c2h′
(

∂lt
∂θ

)(
∂ls
∂θ

)′
h = d′t−s

(
∂lt
∂θ

)
,

where d′t−s is the coefficient of ρ(t−s−1) in the derivative of d(., ., .) with respect to ρ. In
the case where c2 6= 0, this contradicts our assumption.

First of all let us observe that

µ2,t (β, θ) = c2h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h (3.42)

Let us assume that for one h there exist infinitely many values of ρ so that (3.41) is
fulfilled. We can easily see that µ2,t (β, θ), and hence d, too are analytic functions of

ρ. Therefore Eθ0

((
µ2,T (β, θ0)− l

(1)
t (d)

)2
)

must be an analytic function two. We did

assume that this function has infinitely many zeros in a finite interval, hence it must be
identically zero. Hence

c2h′
[(

∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)

(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h = d (c, h, ρ)′

(
∂lt
∂θ

)

(3.43)
for allρ. Since both sides of the equation are analytic functions, their derivatives must

be equal, too. Hence

2c2h′
(

∂lt
∂θ

)(
∂ls
∂θ

)′
h = d′t−s

(
∂lt
∂θ

)
, (3.44)

where d′t−s is the partial derivative with respect to ρ of ordert − s of d(., ., .). In case
c2 6= 0, this contradicts our assumption.
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The restriction to prior measures with compact support might be a bit restrictive. In
most cases, we should be able to approximate prior measures with noncompact support by
ones with compact support. In cases where (3.41) is fulfilled, we will, however, encounter a

difficulty. For our test statistic, we have to compute expTS=
∫ (

exp(TST (β, θ̂))
)

dJ (β).

For the values of β where (3.41) holds the corresponding TST (β, θ̂) will converge to zero.
It is, however, difficult to get uniform convergence. Hence we will not derive theorems for
these measures here.

The admissibility of the sup test could be proved using a similar approach to Andrews
and Ploberger (1995).

4 Monte Carlo study

We start with a very simple model with switching intercept and an uncorrelated and
homoscedastic noise component,

yt = α0 + α1St + ω0εt

where

P (St = 1 | St = 1) = p

P (St = −1 | St = −1) = q

and εt ∼ iidN (0, 1). We compare our test with Garcia’s (1998) likelihood ratio test.
Garcia’s test requires the estimation of the model under the null and the alternative and
the problem of local maxima arises under the alternative (see Hamilton (1989) and Garcia
and Perron (1996)). As a result, 1, 000 replications will only produce a fraction of positive
log likelihood ratios, and among these a lot of values close to zero. Garcia circumvents
this problem by using 12 sets of starting values for the optimization and by taking the
maximum over the values obtained. We apply this method, which turns out to be quite
successful.

To compare the power performances between the two tests, we use 1000 replications
and 100 observations. We generate exactly the same data for both cases. Under H0, α0 =
α1 = 0, ω0 = 1. Under H1, α0 = 0, α1 = c/ 4

√
T , p = q = 0.75 and ω0 = 1. We use our

supTS test discussed in Section 2. We maximize over h and ρ with ρ ∈ (−0.7, 0.7). Our
test statistic is asymptotically equivalent to Garcia’s in the sense that both are some kind
of likelihood ratio tests and hence they are expected to have similar powers.

Figure 1 plots the size-corrected powers for various values of c. As expected, the
patterns for both tests are similar. Our power is slightly higher than Garcia’s in general,
but is a tiny bit smaller for c = 4. Our test has the great advantage that it only requires
estimating the parameters under the null. As a consequence, it is easy to program and
execute. Moreover, we find that, the size-corrected power does not change much when
maximizing our supTS over h and ρ by generating h uniformly over the unit sphere and
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ρ selected from an equispaced grid. But it greatly saves time (about 1/4 time for above
model).

Then we apply the supTS test to more general models. To find the maximum over h
and ρ, we generate h uniformly over the unit sphere and ρ is selected from an uniformly
spaced grid of (−0.7, 0.7) . The number of values for h is 30 and that of ρ is 60. We obtain
the empirical critical values with 1000 iterations and sample size is taken to be 100. Then
we plot the size-corrected power with the same number of iterations and same sample
sizes.

Linear model with an intercept term:

yt = x′t

(
β +

Cηt

4
√

T

)
+ εt

εt ∼ iidN (0, 1)

β = (1, 1)′, C = (c1, c2)
′ . xt = (1, x1t)

′ with x1t ∼iidN (3, 400). ηt is a two-State Markov
chain that takes the values 1 and −1 with transition probabilities P (ηt = 1|ηt−1 = 1) =
0.75 and P (ηt = −1|ηt−1 = −1) = 0.75.

In the simulations, we set c1 = c2 = c and vary them. The size-corrected power as a
function of c is plotted in Figure 2.

ARCH(1) model:

yt = σtεt

σ2
t = (

1

4
+

c1ηt

4
√

T
) + (

1

4
+

c2ηt

4
√

T
)y2

t−1

εt ∼ iidN (0, 1)

ηt is a two-State Markov chain that takes the values 1 and −1 with transition probabilities
P (ηt = 1|ηt−1 = 1) = 0.75 and P (ηt = −1|ηt−1 = −1) = 0.75. The size-corrected power
is shown in Figure 3 as a function of c = c1 = c2.

IGARCH(1,1):
The model is as follows:

yt = σtεt

σ2
t = (

1

2
+

c1ηt

4
√

T
) + (

1

2
+

c2ηt

4
√

T
)σ2

t−1 + (
1

2
+

c3ηt

4
√

T
)y2

t−1

εt ∼ iidN (0, 1)

Note that α1+β1 = 1. Here, we let ηt take the values 0 and −1 with transition probabilities
P (ηt = 0|ηt−1 = 0) = 0.75 and P (ηt = −1|ηt−1 = −1) = 0.75. c1, c2, and c3 are taken to
be equal. See size-corrected power in Figure 4.

This simulation study shows that our test has satisfactory power in small samples.
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5 A Markov-switching model for explosive bubbles

Let Pt and Dt be the stock price and dividend at time t. 0 < (1 + r)−1 < 1 is the
discount rate (assumed constant). The size of a bubble is the difference between Pt and
the market fundamental price solution, Ft, (which equals the expected present value of
future dividends)

Bt = Pt − Ft.

Rational expectation predicts that

Bt = (1 + r)−1 EtBt+1.

Evans (1991) argues that an interesting class of rational bubbles have the property to
collapse with probability one. He proposes an example of such a bubble:

Bt+1 = (1 + r) Btut+1 if Bt ≤ α, (5.1)

Bt+1 =

[
δ +

(1 + r)

π
θt+1

(
Bt +

δ

1 + r

)]
ut+1 if Bt > α,

where ut+1 is exogenous iid with Etut+1 = 1 and θt+1 is exogenous, iid B (1, π) , 0 < π ≤ 1.
The dynamic of Bt in (5.1) is partly threshold, partly mixture. This model was meant
by Evans as illustrative only. However, it is interesting because it suggests that the price
deviations from the fundamental variable may explode and shrink periodically while being
consistent with the rational expectation assumption. To test this idea, we proceed in two
steps.

First we estimate the following cointegration relationship between ln (Pt) and ln (Dt)

ln (Pt) = â0 + â1 ln (Dt) + yt (5.2)

by ordinary least-squares. As Dt plays the role of fundamentals (in the spirit of Lucas,
1978), we expect the residual yt to behave as a periodically collapsing bubble. Then we
fit on yt the Markov-switching model:

∆yt =
∑
st

αst +
∑
st

βstyt−1 +
l∑

i=1

∑
st

φsti∆yt−i + εt (5.3)

where εt ∼ iidN (0, σ2). St is an exogenous three-state Markov chain that takes the
values 1,2, and 3 and has for transition probabilities 0 < pij < 1. Because the labels
of the regimes are interchangeable, we set β1 ≥ β2 ≥ β3. The parameter of interest is
θ = (α1, α2, α3, β1, β2, β3, φ1i, φ2i, φ3i : i = 1, .., l, pij : i, j = 1, 2, 3)′ .

We know from Yao and Attali (2000) that {yt} may be stationary even if there is an
explosive root in one of the regimes. Therefore testing the stationarity of {yt} alone does
not permit to conclude against the presence of bubbles.

Assume ln (Dt) is strictly exogenous for εt, in the sense that εt is uncorrelated with
ln (D1) , ln (D2) , .., ln (DT ). The MLE estimates of (a0, a1, θ) coincide with the estimators
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obtained from a two-step procedure consisting in estimating (a0, a1)
′ by OLS in (5.2) first

and then applying MLE on (5.3). Moreover the resulting θ̂ are independent of (â0, â1)
implying that the first step does not affect the second step.

Data
We use monthly US data from 1871-01 to 2002-06 (T =1578) for real stock prices and

real dividends. All prices are in January 2000 dollars. These data are taken from Shiller’s
web site http://www.econ.yale.edu/˜shiller and described in Shiller (2000).

Results
Applying a BIC criterion on an autoregressive model reveals that 2 lags are best, hence

we set l = 1 in Model (5.3). The augmented Dickey Fuller test rejects the null of a unit
root on yt at a 1% level. We apply the supTS test (described in Section 2) where the
maximum over h and ρ is obtained by drawing h uniformly over the unit sphere (30 values
used) and by taking the values of ρ in an equally spaced grid over (−0.7, 0.7) (60 values
used).

Empirical critical values are computed from 1000 iterations for a sample size of 1576.
The values of the parameters used to simulate the series are those obtained when estimat-
ing the model under H0. The critical values are 5.6577635, 4.2483499, 3.7680360 at 1%,
5% and 10% respectively. The test statistic for our data is 22.938546. Hence our linear-
ity test rejects strongly the null of a linear model versus a Markov-switching alternative,
suggesting that at least two regimes should be used to fit the data. We estimate model
(5.3) by maximum likelihood using the EM algorithm described in Hamilton (1989). We
use 12 sets of starting values and select the one corresponding to the largest value of the
likelihood.

estimate standard error
α1 −0.100 0.019
β1 0.038 0.038
φ1 −0.195 0.204
α2 0.002 0.001
β2 −.010 0.004
φ2 0.321 0.033
α3 0.057 0.039
β3 −0.216 0.057
φ3 1.431 0.115
σ 0.001 6.9e-5

The estimated transition matrix P with elements pij = P (St+1 = i|St = j) is given by

P =




0.253 0.023 0.146
0.232 0.973 0.735
0.515 0.004 0.119




and the estimated stationary distribution is P (St = 1) = 0.034, P (St = 2) = 0.942, and
P (St = 3) = 0.024.
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All the coefficients are significantly different from 0. Regime 1 (St = 1) corresponds
to an explosive root with negative drift. In this regime, the trend (-0.1) dominates cor-
responding to declines of 10%. The second regime (St = 2) corresponds a near unit-root
with a slight positive drift. In this regime the process is stationary because the null
hypothesis H0 : β2 = 0 is rejected. 94% of the data lies in this regime, which is very
persistent. Finally Regime 3 (St = 3) corresponds to a strong mean-reverting process.
By filtering, we compute the probabilities to be in Regime 1 conditional on the data:
P (St = 1|y1, ..., yT ) . When P (St = 1|y1, ..., yT ) > 0.5, it is considered that the process at
date t is in Regime 1. The following months lie in Regime 1:

1873 (9-11), 1880 (4), 1893 (5-7), 1907 (3,8,10,11), 1917 (11), 1929 (10, 12), 1930
(5,6,10,12), 1931 (9,10,12), 1932 (4-6,10), 1933 (2), 1934 (5), 1937 (4,6,9,10), 1939 (4),
1940 (5), 1946 (9), 1950 (7), 1962 (5), 1970 (5), 1973 (11), 1974 (7,9), 1980 (3), 1981 (9),
1987 (10).

We recognize the big crashes such as October 1929 and October 1987. We can compare
our results with those of Pagan and Sossounov (2003) on bull and bear markets. We see
that Regime 1 identifies the month just preceding a trough of the US stock market cycles
as reported in Pagan and Sossounov (1962/6, 1970/6, 1974/9, and 1987/11). It means
that the periods of negative drift correspond to a crash (in other words, the burst of
a bubble). The process spends most of the time in the near unit-root regime. This
asymmetric pattern exhibiting slow increases and quick decreases is consistent with the
presence of periodically collapsing bubbles.

Related literature
Diba and Grossman (1988) apply Dickey-Fuller test on the price and dividends both

in level and first difference. They also test whether Pt and Dt are cointegrated. As they
found that Pt and Dt are both integrated of order 1 and mutually cointegrated, they
conclude that there is no bubble. Evans (1991) shows that Diba and Grossman just
tested for the presence of a specific (linear) type of bubble. Since Evans (1991) pointed
out the shortcomings of traditional unit-root tests to establish the presence of bubbles,
there have been only a few attempts to devise a test. Van Norden and Schaffer (1993) and
van Norden and Vigfusson (1996) use a mixture model where the probability of belonging
to one regime depends on the lagged value of yt. Hall, Psaradakis, and Sola (1999)
use a Markov-switching model to model the consumer price index and exchange rate in
Argentina (1983 to 1989) and find a bubble in the exchange rate in 1984-1985. Psaradakis,
Sola, and Spagnolo (2001) apply a test of stochastic unit root on German hyperinflation
data. Chirinko and Schaller (2001) apply an orthogonality test (GMM type) to show that
there has been a bubble in Japanese equity market in the eighties.

Our data have been previously investigated for bubbles by Taylor and Peel (1998) and
Bohl (2001). Both papers reject the presence of periodically collapsing bubbles. Taylor
and Peel use a new test that is robust to the presence of skewness and kurtosis in the
data. Bohl uses a MTAR model. The MTAR is a Threshold model where the change
of regimes is triggered by the lagged value of ∆yt. From an economic point of view, the
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change of regime should be triggered by the lagged value of yt and not ∆yt. This may be
the reason why Bohl’s test fails to support the bubble hypothesis.

6 Appendix A: Notations

6.1 Multilinear Forms

Central to the proofs in this paper are Taylor series expansions to the fourth order. We will
have to organize and manipulate expressions involving multivariate derivatives of higher
orders. We therefore will be careful with our notation. Clearly it would be possible to use
partial derivatives, but then our expressions will get really complicated. Hence we will
adopt some elements from multilinear algebra, which will facilitate our computations.

Key to our analysis is the concept of a multilinear form. Consider vector spaces V , F .
Then a multilinear form (or - simply - ”form” ) of order p from V into F is a mapping
M from V × .. × V (where we take the product p times) to F which is linear in each of
the arguments. So

λM(x(1), x(2), ..., x
(i)
1 , ..., x(p)) + µM(x(1), x(2), ..., x

(i)
2 , ...., x(p)) (6.1)

= M(x(1), x(2), ..., λx
(i)
1 + µx

(i)
2 , ..., x(p)). (6.2)

The first important concept we need to discuss is the definition of a derivative. Es-
sentially, we will follow the differential calculus outlined in Lang (1993), p. 331 ff. Let f
be a function defined on an open set O of the finite-dimensional vector space V into the
finite dimensional space F . Then f is said to be differentiable if for all x ∈ O there exists
a linear mapping Df = Df(x) from V to F so that

lim
r→0

sup
‖h‖=r

‖f(x + h)− f(x)−Df(x)(h)‖ /r → 0. (6.3)

The above expression should not be misinterpreted. Df(x) attaches to each x ∈ O a
linear mapping, so Df(x)(h) is for each h ∈ V an element of F . Df(x) is called a
Frechet-derivative. It is in a way a formalization of the well known “differential” in
elementary calculus. So Df(x) is a linear mapping between V and F . It is an elementary
task to show that the space of all linear mappings between V and F , denoted by L(V, F )
is a finite dimensional vector space again. Hence we can consider the mapping

x → Df(x), (6.4)

which maps O into L(V, F ), so we may use the concept of Frechet-differentiability again
and differentiate Df . We then get the second derivative D2f(x). This second derivative
at a point is a linear mapping from V to L(V, F ) (an element from L(V, L(V, F ))). That
means that, for each h ∈ V, D2f(x)(h) is an element of L(V, F ), so for k ∈ V D2f(x)(h)(k)
is an element of F . Moreover, we can easily see that - by construction - the expression
D2f(x)(h)(k) is linear in h and k. Hence D2f(x) maps each pair (h, k) into F and is
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linear in each of the arguments, so we can think of D2f(x) as a bilinear form from V ×V
into F .

It is easily seen that, in case f has enough “derivatives”, we can iterate this process
and define the n-th derivative Dnf as derivative of Dn−1f,

Dnf = D(Dn−1f). (6.5)

Again we can interpret Dnf as an element of L(V, L(V, ...L(V, F )))) or - again - as a
multilinear mapping from V ×V ×V ×V..×V into F . This means that Dnf (x) attaches
to each n-tupel (x1, ...., xn) of elements of V an element of F , in such a way that the
mapping is linear in each of its arguments.

Most importantly, we have again a Taylor formula

f(x + h) = f(x) + Df(x)(h) +
1

2
D2f(x)(h, h) + .... +

1

n!
Dnf(x)(h, ..h) + Rn (6.6)

with

Rn =
1

n!

∫ 1

0

(1− t)nDn+1f(x + th)(h, ..., h)dt, (6.7)

if f is at least n + 1 times continuously differentiable.
Furthermore it is relatively easy to verify that f being n times continuously differen-

tiable
Dnf is symmetric (6.8)

i.e.
Dnf(x)(h1, ..., hn) = Dnf(x)(hπ(1), ..., hπ(n)) (6.9)

for every permutation π.
Moreover, let us consider for fixed x, h the function g(t) = f(x + ht) for t in a neigh-

borhood of 0, and let g(n) be the n-th derivative of g. Then

g(n)(0) = Dnf(x)(h, ..., h). (6.10)

It is now an elementary, but tedious, exercise to show that due to the symmetry (6.9)
the multilinear form Dnf(x) is uniquely defined by its values Dnf(x)(h, ..., h). (As an
example, it might be instructive to consider the case of a scalar bilinear form B: We can
easily see that

B(h, k) + B(k, h) =
1

4
(B(h + k, h + k)−B((h− k, h− k)). (6.11)

Symmetry implies that the left hand side of the above equation equals 2B(h, k) =
2B(k, h).)

This result allows us to “translate” all the well-known results from elementary calculus
to our formalism. Clearly the derivative is linear, we have a product rule - if f and g are
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scalar functions, then D(fg) = f ·Dg + (Df) · g, and more importantly we have a chain
rule: If we compose functions f, g we have

D(f ◦ g) = Df(Dg). (6.12)

The algebra of multilinear forms is often treated as a special case of tensor algebra.
Although this branch of mathematics is well developed, it is rarely used in econometrics.
Furthermore, many of the advanced concepts are of no use to us. Hence we will stay with
multilinear forms, and only define the operations and concepts we need. The experts will
see that they are special cases of tensor algebra. Our key simplification will be that we
fix our reference space and the coordinate system once and for all - we simply forbid the
use of other coordinate systems and spaces.

We are in a rather advantageous position:

• We are mostly interested in manipulating the derivatives of a scalar function, namely
the logarithm of the likelihood function.

• Working independently of a coordinate system is not a priority for us (contrary to
theoretical physics, where gauge invariance plays a major role).

• We are analyzing derivatives, so must of our multilinear forms are symmetric.

Assume that our reference, finite dimensional vector space V is k−dimensional and
that b1, ..bk is a basis for this space. Although the basis is arbitrary, we will from now
on assume this basis to be fixed. It is essential for our approach that we fix the
underlying vector space and the basis, since all of our definitions relate in one way
or another to our chosen basis. It should be noted that we follow this approach not out of
necessity - coordinate independent definitions of tensors are commonplace in differential
geometry and mathematical physics, but purely out of convenience. E.g. we do not need
to distinguish between co- and contravariant tensors - so we do not have to distinguish
between “upper” and “lower” indices.

With the help of our basis, any vector x can uniquely be written as

x =
k∑

i=1

xibi. (6.13)

We will now mainly work with scalar multilinear forms (i.e. the values of the form are
real numbers). Hence we will assume - except when explicitly stated otherwise - that a
multilinear form to be scalar. Let now M be such a multilinear form Then, using linearity,
we have

M(x(1), x(2), ..., x(p)) =
∑

M(bi1 , ..., bip)x
(1)
i1

x
(2)
i2

..x
(p)
ip

, (6.14)

where the sum symbol corresponds to p sums extending over all values of i1, ..., ip between
1 and k. So we can easily see that there is a one-to-one correspondence between the kp

numbers M(bi1 , ..., bip) and the multilinear forms. For each set of numbers we define a
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uniquely determined multilinear form, and for each multilinear form we can find coeffi-
cients. Hence, having fixed the coordinate system, we can identify the multilinear form
M with its coordinates M(bi1 , ..., bip). Multilinear forms (with the usual operations) of
order p form a finite dimensional vector space. The only difference to a ”usual” vector
space is the enumeration of the coordinates. We do not index them by the numbers of
1, ..., K, but our index set consists of the p-tuples (1, ..., 1) , (2, 1, ...),...(k, k, .., k)

This way we can work with multilinear forms and related mathematical objects without
having to discuss tensor algebra. We can easily see that bilinear forms (forms of order
two) are k × k−matrices.

1. We can easily see that multilinear forms form a vector space, and the mapping
attaching each multilinear form its coordinates is an isomorphism. Hence we do
not need to distinguish between multilinear forms and kp numbers indexed by a
multiindex (i1, ..., ip).

2. Let us call a multilinear form C defined by coordinates
(
ci1,...,ip

)
symmetrical if

and only for all (i1, ..., ip) and all permutations π of numbers between 1 and k

ci1,...,ip = cπ(i1),...,π(ip). (6.15)

We can easily see that this property is equivalent to our definition above, (6.9)).
For a form C defined by coordinates

(
ci1,...,ip

)
define its symmetrization C(S) by

(
C(S)

)
i1,...,ip

=
1

k!

∑

all permutation π of {1,..,k}
cπ(i1),...,π(ip).

Then C(S) is symmetrical. Moreover, for all h ∈ V

C(h, ...h) = C(S)(h, ..., h), (6.16)

and, for any form C, C(S) is the only symmetrical form with the property (6.16).

3. Another special case of multilinear forms are our derivatives of scalar functions
defined on open subsets of our space V . We can easily see that the coordinates Dnf
can be calculated in the following way. Define the function g by

g((x1, ..., xp) = f(
∑

xibi), (6.17)

where the bi are our fixed basis vectors. Then the corresponding coordinates of the

derivative are given by
(

∂ng
∂xi1∂xi2....∂xin

)
(i1,...,in)

.

4. There is also another technique for computing Dnf , which we will use below. Define
for fixed x and h ∈ V, the function

gh(t) = f(x + th). (6.18)
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Then - following (6.10) - we can conclude that Dnf(h, h, ..h) = g
(n)
h (0), where g

(n)
h

is the usual n-th derivative. Now suppose we can find a form C so that for all h

C(h, ..., h) = g
(n)
h (0). (6.19)

Then - due to (6.16) and symmetry of the derivative - we can conclude that Dnf =
C(S).

5. Apart from the usual operations, we also can define the tensor product between
multilinear forms. Let A and B be forms of order p and q with coordinates

(
a(i1,...,ip)

)
and

(
b(i1,...,iq)

)
, respectively. Then the tensor product A ⊗ B is a multilinear form

of order p + q with coordinates

a(i1,...,ip)b(ip+1,...,ip+q). (6.20)

Although the definition of the tensor product looks similar to the Kronecker product,
these two concepts should not be confused. A Kronecker product of two matrices
is again a matrix. In contrast, the tensor product of two forms of order two is a
form of order four. It is interesting to consider the properties of the corresponding
multilinear forms:

(A⊗B) (h1, .., hp+q) = A(h1, ...hp)B(hp+1, ..., hp+q). (6.21)

The tensor product of symmetric forms, however, in general is not symmetric.

6. We can define the scalar product 〈., .〉 in the usual way. Let us assume that T
represents a form with coordinates

(
ti1,...,ip

)
, C is a form with coordinates

(
ci1,...,ip

)
we have

〈T,C〉 =
∑

ti1,...,ipci1,...,ip . (6.22)

7. This scalar product is useful in computing expectation of multilinear forms with
random arguments. First of all let us observe that each vector h ∈ V has exactly k
coordinates. Since (6.14) defines for each set of coordinates a form, we can identify h
with an 1-form (i.e. a linear form with one argument). We will use the same symbol
h for this form. Now let h1, ...hp ∈ V. Then we can use (6.20) to define h1 ⊗ ..⊗ hp

Now suppose we we want to compute the value of the multilinear form T (h1, ...hp).
Then we can see from (6.14),(6.22) that T (h1, ...hp) equals 〈T, h1 ⊗ ..⊗ hp〉. Let
H1, ..., Hp be random variables with values in our reference space V, and T be a
multilinear form, which is fixed or exogenous. Suppose we want to compute the
expectation of

T (H1, ..., Hp). (6.23)

Since T (H1, ..., Hp) = 〈T, H1 ⊗ ...⊗Hp〉, and since T is independent of the Hi, we
can easily see that

ET (H1 ⊗ ...⊗Hp) = 〈T, E(H1 ⊗ ...⊗Hp)〉 , (6.24)
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provided the expectations exist (a sufficient condition is e.g. E ‖H1‖ .. ‖Hp‖ < ∞:
H1 ⊗ ... ⊗Hp is a multilinear form, and, as already mentioned above, the forms of
order p form a vector space. Hence we should not have any conceptual difficulties
with expectations). Moreover, we can easily see that (6.24) is valid for conditional
expectations, too. Moreover, we can easily see that we have an analogous result if T
and the H1, ..., Hp are independent. In the sequel, we will use this type of identities
rather freely.

8. Most of the proof of our theorem will be an evaluation of some kind of expectations
multilinear forms representing derivatives. The notation using the bracket 〈., .〉
would be rather clumsy. So we propose to use a more suggestive notation: Instead
of

〈T, C〉 (6.25)

we will use
T (C) , (6.26)

i.e. we use the form C as an argument. With this notation, we can write (6.24) as

E (T (H1 ⊗ ...⊗Hp)) = T (E(H1 ⊗ ...⊗Hp)) . (6.27)

Furthermore, when evaluating these kinds of expressions, we will use the usual
linearity properties of scalar products without further notice.

9. If A is symmetrical then we can easily see the for every T ,

T (A) = T (S)(A). (6.28)

In particular, if we have an arbitrary random vector H (with a sufficient number
of moments) then E(H ⊗ ...⊗H) is symmetrical, hence (6.28) implies that, for all
forms T ,

T (E(H ⊗ ...⊗H)) = T (S)(E(H ⊗ ...⊗H)) (6.29)

.

10. As we already stated, the multilinear forms form a finite dimensional vector space.
Hence all norms are equivalent, in the sense that the ratio between two norms is
(for all elements of the reference space with the exception of 0) bounded from above
and bounded from below with a bound strictly bigger than zero. Hence convergence
properties of sequences are the same for different norms, and we do not need to
care which norm we use. Of particular interest, however, is the norm

‖T‖ =
√∑

t2i1,...,ip
, (6.30)

where the ti1,...,ip are the coordinates of T . Cauchy-Schwartz inequality and (6.22)
imply that for all T,C :

|T (C)| ≤ ‖T‖ ‖C‖ . (6.31)

Estimates for the norms of tensor products are more difficult - we will discuss them
later on when they appear.
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6.2 Other notations

Definition. Ht,T is defined as the σ-algebra generated by (ηt, ηt−1, ...η1, yT , .., y1).Then
H0,T is the σ-algebra generated by the data (yT , .., y1) only.

The sample is split in the following way:
t = 1, 2, ..., T1︸ ︷︷ ︸

1st block

, T1 + 1, ..., T2︸ ︷︷ ︸
2d block

, ..., Ti−1 + 1, ...., Ti︸ ︷︷ ︸
ith block

, ..., TBN−1 + 1, ..., TBN︸ ︷︷ ︸
BN th block

There are BN blocks and each block has BL or BL − 1 elements. i is the index for
the block i = 1, ..., BN . We use the convention T0 = 0 and TBN

= T. In the sequel we will
decompose the sum as follows:

T∑
t=1

=

BN∑
i=1

Ti∑
t=Ti−1+1

.

In the proofs, we choose BL so that some terms become negligeable.
Our analysis is based on the derivatives of the logarithm of the likelihood function.

We did denote the conditional parametric densities by ft = ft(θT ), and the conditional
log-likelihood functions by lt. We did define

Dklt = l
(k)
t (6.32)

First we need to derive the tensorized forms of well-known Bartlett identities (Bartlett,
1953a,b). Let us define for an arbitrary, but fixed h the function

`t(u) = log ft (θT + uh) (6.33)

Let f = ft(θT ) and f ′, f (2), .. denote the derivatives of ft (θT + uh) with respect to u.
When differentiating `t , one obtains:

1st derivative: `
(1)
t =

f ′

f
.

2nd derivative: `
(2)
t =

f (2)

f
− f ′

f 2
f ′.

3rd derivative: `
(3)
t =

f (3)

f
− f (2)

f 2
f ′ − 2f ′f (2)

f 2
+ 2

f ′2

f 3
f ′.

4th derivative: `
(4)
t =

f (4)

f
− f (3)

f 2
f ′− 3f (3)f ′ + 3f (2)f (2)

f 2
+6

f (2)f ′

f 3
f ′+6

f ′2

f 3
f (2)−6

f ′3

f 4
f ′.

According to the formalism outlined previously, we can conclude that `
(k)
t = l

(k)
t (h, ..h)

and that f (k) = Dkf(h, ..., h). Taking into account our characterization of the tensor
product (6.21), and the techniques described above, we can conclude that
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l
(1)
t = (1/ft)Dft,

1

ft

D2ft = l
(2)
t + l

(1)
t ⊗ l

(1)
t , (6.34)

1

ft

D3ft =
(
l
(3)
t + 3l

(2)
t ⊗ l

(1)
t + l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t

)(S)

,

1

ft

D4ft =
(
l
(4)
t + 6l

(2)
t ⊗ l

(1)
t ⊗ l

(1)
t + 4l

(3)
t ⊗ l

(1)
t + 3l

(2)
t ⊗ l

(2)
t + l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t

)(S)

.

We can easily see that we do not need to symmetrize (6.34), since the form on the right
hand side is symmetrical. Let us now denote by Ft the σ-algebra generated by the data
yt, yt−1, ... Note that Ft = H0,t. Then one can easily see that for k ≤ 4, we have for
arbitrary h E( 1

ft
Dkft (h, ..h)) /Ft−1) =

∫
1
ft

Dkft(h, ..h)ftdµ(yt) =
∫

Dkft(h, ..h)dµ(yt),
where µ is the dominating measure defined in Section 2. Since we assumed ft to be at
least 5 times differentiable (and the 5th derivative to be uniformly integrable), we can
easily see (Bartle, 1966, Corollary 5.9) that we can interchange integral and differentiation,
and conclude that

∫
Dkft(h, ..., h)dµ(yt) = Dk(

∫
ftdµ(yt))(h, ..., h) = 0, since all the ft as

conditional densities integrate to one.
Let us define

m2,t =
(
l
(2)
t + l

(1)
t ⊗ l

(1)
t + 2l

(1)
t ⊗ Lt−1

)(S)

m3,t =
(
l
(3)
t + 3l

(2)
t ⊗ l

(1)
t + l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t

)(S)

m4,t =
(
l
(4)
t + 6l

(2)
t ⊗ l

(1)
t ⊗ l

(1)
t + 4l

(3)
t ⊗ l

(1)
t + 3l

(2)
t ⊗ l

(2)
t + l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t ⊗ l

(1)
t

)(S)

where Lt =
∑t

s=Ti−1+1 l
(1)
s , and furthermore

Mj =

Ti∑
t=Ti−1+1

mj,t, j = 2, 3, 4.

It follows that l
(1)
t , m2,t, m3,t, m4,t are martingale difference sequences with respect to the

Ft. Furthermore, the mj,t,j = 2, 3, 4 are defined as symmetrizations of the multilinear

form on the rhs of the above equations. Finally, we denote L1 =
∑Ti

t=Ti−1+1 l
(1)
t .

In the sequel, we will heavily rely on (6.28), both for the evaluation of the mj,t,j =
2, 3, 4 and the derivatives as well. Note that when we evaluate forms with symmetrical
arguments, it is irrelevant whether we use the forms themselves or the nonsymmetrical
expressions used in the above definitions.

29



7 Appendix B: Proofs

The first theorem we want to prove is 3. The statement of the theorem involves some
uniform convergence in probability of a parametrized family of random variables. First
assume the theorem would not be true. There would exist a compact subset K ⊆ Θ×B
so that we do not have uniform convergence in probability on K. Then there exists a
sequence (θT , βT ) ∈ K and an ε > 0 so that

PθT

([∣∣∣∣∣`
βT

T (θT ) / exp

(
1

2
√

T

T∑
t=1

µ2,t (θT , βT )− 1

8
E

(
µ2,t (θT , βT )2)

)
− 1

∣∣∣∣∣ ≥ ε

])
≥ ε.

(7.1)
Since the (θT , βT ) are elements of a compact subset, there is a convergent subsequence.
Hence to prove theorem 3, it is sufficient to show that for every (θT , βT ) → (θ0, β0)

PθT

([∣∣∣∣∣`
βT

T (θT ) / exp

(
1

2
√

T

T∑
t=1

µ2,t (θT , βT )− 1

8
E

(
µ2,t (θT , βT )2)

)
− 1

∣∣∣∣∣ ≥ ε

])
→ 0.

(7.2)
or

`βT

T (θT ) / exp

(
1

2
√

T

T∑
t=1

µ2,t (θT , βT )− 1

8
E

(
µ2,t (θT , βT )2)

)
→ 1 in probability with respect to PθT

.

(7.3)
In the sequel, we will prove this relationship. To simplify our notation, however, we will
suppress the parameters (θT , βT ) and (θ0, β0). When analyzing expressions related to a
sample of length T , we simply write E and P instead of EθT

and PθT
. Moreover, we also

will drop the argument from expression like lt (θT ) , ... and simply use lt, ... The proper
argument should be evident from the context. This simplification of notation brings
significant advantages for our calculations of derivatives: When we are using arguments
in connection with derivatives then they are meant to be arguments of the corresponding
multilinear form. As an example, the expression l

(2)
t denotes the second derivative of lt

at θT , which is a bilinear form and l
(2)
t (h, k) is the evaluation of this bilinear form with

the arguments h and k. In the sequel,
∑

t =
∑Ti

t=Ti−1+1 and
∑

i =
∑BN

i=1 where BN is the
number of blocks as defined in Appendix A.

The following lemmas are used in the proof of Theorem 3.
Assume that for any ε > 0, we can find 1 − ε ≤ fT

f∗T
≤ 1 + ε on some set Aε

T so

that lim
T→∞

sup P (Aε
T ) = 1 where Aε

T is H0,T -measurable and independent of β. Then

sup
β

E(fT |H0,T )

sup
β

E(f ∗T |H0,T )

P→ 1.

Note that a sufficient condition for Lemma 7 is
∣∣∣∣
fT

f ∗T

∣∣∣∣ ≤ 1 + CT
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where CT is H0,T -measurable and independent of β and CT
P→ 0.

Let xi be HTi,T measurable random variables and let ∆i,T = E
(
xi|HTi−1,T

)
. Assume

there are bounds CT and DT → 0 H0,T -measurable and independent of β such that

sup
β

∣∣∣∣∣
BN∑
i=1

∆i,T

∣∣∣∣∣ ≤ CT (7.4)

and

sup
β

BN∑
i=1

∆2
i,T ≤ DT . (7.5)

Then

sup
β

E

[
BN∏
i=1

(1 + xi) |H0,T

]
P→ 1. (7.6)

Let ∆i,T = E
(
xi|HTi−1,T

)
. Assume there is an H0,T−measurable set AT so that

‖xi‖ ≤ 1/2 on AT and P (AT ) → 1. Moreover, assume that ∆i,T is a martingale with
respect to the data and

sup
β

BN∑
i=1

E∆2
i,T → 0

and BNλBL → 0. Then (7.6) is satisfied.
Let a1, a2, ..., aN be a sequence of numbers for some integer N ≥ 1. Then

(
N∑

i=1

|ai|
)l

≤ N l−1

N∑
i=1

|ai|l , l = 1, 2, ...

A sufficient condition for Conditions (7.4) and (7.5) is
∑

i

E |∆i| → 0. (7.7)

The following lemma gives a result for the product of 4 arbitrary terms xij. The index
is denoted j = 1, 2, 3, 4 for convenience.

Let xij =
∑

t x̃ijt/T
αj . Assume that

E




∣∣∣∣∣
∑

t

x̃ijt

∣∣∣∣∣

4

 ≤ Bm

L (7.8)

for some m ≥ 1 and all j = 1, 2, 3, 4. Let k ≤ 4 and D={d1, ..., dk} be any k−partition
of the integers 1, 2, 3, 4. Assume that

∑
j∈D

αj > 1, (7.9)
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and let BL be such that
Bm−1

L

T
P

j∈D αj−1
= o (1) .

Then, Conditions (7.4) and (7.5) are satisfied for ∆i,T = E
(∏

j∈D xij|HTi−1,T

)
.

Assume Assumption 4 holds. Let const denotes a constant independent of β, we have

E
(‖x̃i1‖4) ≡ E

(‖L1‖4) ≤ constB4
L

E
(‖x̃i2‖4) ≡ E

(‖M2‖4) ≤ constB8
L,

E
(‖x̃i3‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)
t m2,t

∥∥∥∥∥

4

 ≤ constB8

L,

E
(‖x̃i4‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)2
t m2,t

∥∥∥∥∥

4

 ≤ constB8

L,

E
(‖x̃i5‖4) ≡ E

(‖M3‖4) ≤ constB4
L,

E
(‖x̃i6‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)
t m3,t

∥∥∥∥∥

4

 ≤ constB4

L,

E
(‖x̃i7‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)
t L2

t−1

∥∥∥∥∥

4

 ≤ constB12

L ,

E
(‖x̃i8‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)2
t L2

t−1

∥∥∥∥∥

4

 ≤ constB12

L ,

E
(‖x̃i9‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)
t L3

t−1

∥∥∥∥∥

4

 ≤ constB16

L ,

E
(‖x̃i10‖4) ≡ E




∥∥∥∥∥
∑

t

l
(1)
t Lt−1m2,t

∥∥∥∥∥

4

 ≤ constB16

L ,

Proof of Lemma 7. Let η be an arbitrary positive number and 0 < ε < η.

sup
β

E(fT |H0,T ) = sup
β

E(
fT

f ∗T
f ∗T |H0,T )

= IAε
T

sup
β

E(
fT

f ∗T
f ∗T |H0,T ) + I(Aε

T )
c sup

β
E(

fT

f ∗T
f ∗T |H0,T ) .
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Under the assumptions of the lemma:

IAε
T

(1− ε) sup
β

E(f ∗T |H0,T ) + I(Aε
T )

c sup
β

E(fT |H0,T )

≤ sup
β

E(fT |H0,T )

≤ IAε
T

(1 + ε) sup
β

E(f ∗T |H0,T ) + I(Aε
T )

c sup
β

E(fT |H0,T ).

To simplify the notation, we denote

sup
β

E(fT |H0,T )

sup
β

E(f ∗T |H0,T )
by XT , then we get

IAε
T

(1− ε) + I(Aε
T )

c XT ≤ XT ≤ IAε
T

(1 + ε) + I(Aε
T )

c XT .

We have

P [|XT − 1| < η]

= P [1− η < XT < 1 + η]

≥ P
[{

IAε
T

(1 + ε) + I(Aε
T )

cXT < 1 + η
}
∩

{
IAε

T
(1− ε) + I(Aε

T )
cXT > 1− η

}]

= P (Aε
T ) + P ((Aε

T )c) P [1− η < XT < 1 + η]

≥ P (Aε
T ) → 1

where the last equality follows from the law of total probability. Hence XT
P→ 1.

Proof of Lemma 7. Using a Taylor expansion, we see that Conditions (7.4) and
(7.5) imply that

BN∑
i=1

ln (1 + ∆i,T ) =

BN∑
i=1

∆i,T −
∑BN

i=1 ∆2
i,T

2
+ o

(
BN∑
i=1

∆2
i,T

)
P→ 0

uniformly in β, or more precisely

1− ε ≤
BN∏
i=1

(1 + ∆i,T ) ≤ 1 + ε

for any ε > 0 on a set Aε
T H0,T -measurable and independent of β such that P (Aε

T ) → 1.
Using iterated expectations and the definition of ∆i,T , we obtain

E

[ ∏BN

i=1 (1 + xi)∏BN

i=1 (1 + ∆i,T )
|H0,T

]
= 1.

Hence on Aε
T , we have

1

1 + ε
sup

β
E

[
BN∏
i=1

(1 + xi) |H0,T

]
≤ 1 ≤ 1

1− ε
sup

β
E

[
BN∏
i=1

(1 + xi) |H0,T

]
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or equivalently

1− ε ≤ sup
β

E

[
BN∏
i=1

(1 + xi) |H0,T

]
≤ 1 + ε.

As P (Aε
T ) → 1, it follows that sup

β
E

[∏BN

i=1 (1 + xi) |H0,T

]
P→ 1.

Proof of Lemma 7.

ln E

[
BN∏
i=1

(1 + xi) |H0,T

]

=

BN∑

l=1

{
ln E

[
l∏

i=1

(1 + xi) |H0,T

]
− ln E

[
l−1∏
i=1

(1 + xi) |H0,T

]}

=

BN∑

l=1

{ln (ul + hl)− ln (ul)}

where

ul = E

[
l−1∏
i=1

(1 + xi) |H0,T

]
,

hl = E

[
l∏

i=1

(1 + xi) |H0,T

]
− E

[
l−1∏
i=1

(1 + xi) |H0,T

]

= E

[
xl

l−1∏
i=1

(1 + xi) |H0,T

]

= E

[
E

(
xl|HTl−1,T

) l−1∏
i=1

(1 + xi) |H0,T

]

= E

[
∆l,T

l−1∏
i=1

(1 + xi) |H0,T

]
.

Using a Taylor expansion, we have

∣∣∣∣∣
BN∑

l=1

{
ln (ul + hl)− ln (ul)− hl

ul

}∣∣∣∣∣ ≤
BN∑

l=1

h2
l

2
(|ul|2 − |hl|2

)

=
1

2

BN∑

l=1

(
hl

ul

)2
1

1−
(

hl

ul

)2

≤ 1

2

BN∑

l=1

(
hl

ul

)2
1

1−∑BN

l=1

(
hl

ul

)2 . (7.10)
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Let δl = hl/ul. If we are able to show that

BN∑

l=1

δl
P→ 0, (7.11)

BN∑

l=1

δ2
l

P→ 0, (7.12)

then we have ∣∣∣∣∣
BN∑

l=1

{ln (ul + hl)− ln (ul)}
∣∣∣∣∣

P→ 0,

which itself implies

E

[
BN∏
i=1

(1 + xi) |H0,T

]
P→ 1.

(7.11) will follow from (7.12) and the fact that δl is a martingale as ∆l,T is itself a
martingale. Now we want to show that

BN∑

l=1

E
(
∆2

l

) → 0 ⇒
BN∑

l=1

E
(
δ2
l

) → 0 ⇒
BN∑

l=1

δ2
l

P→ 0. (7.13)

We have

δl =
E

[
∆l

∏l−1
i=1 (1 + xi) |H0,T

]

E
[∏l−1

i=1 (1 + xi) |H0,T

]

=
E

[
∆l

∏l−2
i=1 (1 + xi) (1 + xl−1) |H0,T

]

E
[∏l−2

i=1 (1 + xi) (1 + xl−1) |H0,T

]

≤
3E

[
|∆l,T |

∏l−2
i=1 (1 + xi) |H0,T

]

E
[∏l−2

i=1 (1 + xi) |H0,T

]

because ‖xl−1‖ ≤ 1/2 by assumption. Note that E
(
∆l,T |HTl−2,T

) ≤ E
(|∆l,T | |HTl−2,T

)
and it follows from the geometric ergodicity of ηt that

∣∣E (|∆l,T | |HTl−2,T

)− E (|∆l,T | |H0,T )
∣∣ ≤ λBLg

(HTl−2,T

)

where g is some positive integrable function of HTl−2,T . Hence

E
(|∆l,T | |HTl−2,T

) ≤
∣∣E (|∆l,T | |HTl−2,T

)− E (|∆l,T | |H0,T )
∣∣ + |E (|∆l,T | |H0,T )|

≤ λBLg
(HTl−2,T

)
+ |E (|∆l,T | |H0,T )| .
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δl ≤
3E

[
E

(|∆l,T | |HTl−2,T

) ∏l−2
i=1 (1 + xi) |H0,T

]

E
[∏l−2

i=1 (1 + xi) |H0,T

]

≤ 3λBL

E
[
g

(HTl−2,T

) ∏l−2
i=1 (1 + xi) |H0,T

]

E
[∏l−2

i=1 (1 + xi) |H0,T

] + 3E (|∆l| |H0,T ) ,

δ2
l ≤ O

(
λBL

)
+ 9E

(|∆l,T |2 |H0,T

)
.

We get
BN∑

l=1

E
(
δ2
l

) ≤ O
(
BNλBL

)
+ 9

BN∑

l=1

E
(|∆l,T |2

)
.

This proves the first implication of (7.13). The second implication follows from Markov’s
inequality.

Proof of Lemma 7. Let pi = |ai| /
∑N

i=1 |ai|. The problem consists in solving

min
pi

N∑
i=1

pl
i

subject to
∑N

i=1 pi = 1. The solution is
∑N

i=1 pl
i = 1/N l−1.

Proof of Lemma 7 (a) (7.7) implies
∑

i |∆i| P→ 0 by Markov’s theorem. Hence

as |∑i ∆i| ≤
∑

i |∆i|, Condition (7.4) follows, (b)
∑

i |∆i| P→ 0 means that for T large
enough, |∆i| < 1, and hence |∆i|2 ≤ |∆i|, therefore Condition (7.5) follows.

Proof of Lemma 7. By the geometric-arithmetic mean inequality, we have

E

(
k∏

j=1

|xij|
)

= E

(
k

√
|xi1|k ... |xik|k

)
≤ 1

k

k∑
j=1

E
(
|xij|k

)

≤ Bm
L

T
Pk

j=1 αj

.

Hence
∑

i

E

(
k∏

j=1

|xij|
)
≤ T

BL

Bm
L

T
Pk

j=1 αj

=
Bm−1

L

T
Pk

j=1 αj−1
= o (1) .

The last statement of the lemma follows from E |∆i| ≤ E
[∣∣∣E

(∏k
j=1 xij|HTi−1,T

)∣∣∣
]
≤

E
[
E

(∣∣∣∏k
j=1 xij

∣∣∣ |HTi−1,T

)]
= E

(∣∣∣∏k
j=1 xij

∣∣∣
)

.

Proof of Lemma 7. Term x̃i1 :

E |L1|4 ≤ B3
L

Ti∑
t=Ti−1+1

E
∥∥∥l

(1)
t

∥∥∥
4

≤ B4
L sup

t
E

∥∥∥l
(1)
t

∥∥∥
4
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by Lemma 7.
Term x̃i2 :

E
(|M2|4

) ≤ B3
L

∑
t

E
(|m2,t|4

)

≤ B3
L

∑
t

E

(∥∥∥l
(2)
t

∥∥∥
4

+
∥∥∥l

(1)
t

∥∥∥
8

+ 24
∥∥∥l

(1)
t

∥∥∥
4

‖Lt−1‖4

)

≤ B3
L

∑
t

(
E

∥∥∥l
(2)
t

∥∥∥
4

+ E
∥∥∥l

(1)
t

∥∥∥
8

+ 24

(
E

(∥∥∥l
(1)
t

∥∥∥
8
)

E
(‖Lt−1‖8)

)1/2
)

≤ constB8
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
8

< ∞ and sup E
∥∥∥l

(2)
t

∥∥∥
4

< ∞, which is true by Assumption 3.

Term x̃i3 :

E




∣∣∣∣∣
∑

t

l
(1)
t m2,t

∣∣∣∣∣

4



= E




∣∣∣∣∣
∑

t

l
(1)
t l

(2)
t + l

(1)3
t + 2l

(1)2
t Lt−1

∣∣∣∣∣

4



≤ B3
L

∑
t

E

(∥∥∥l
(1)
t l

(2)
t

∥∥∥
4

+
∥∥∥l

(1)
t

∥∥∥
12

+ 24
∥∥∥l

(1)2
t Lt−1

∥∥∥
4
)

≤ B3
L

∑
t

(
E

∥∥∥l
(1)
t

∥∥∥
8

E
∥∥∥l

(2)
t

∥∥∥
8
)1/2

+ E
∥∥∥l

(1)
t

∥∥∥
12

+ 24

(
E

∥∥∥l
(1)
t

∥∥∥
8

E
(‖Lt−1‖8)

)1/2

≤ constB8
L

provided that sup E
∥∥∥l

(1)
t

∥∥∥
12

< ∞ and sup E
∥∥∥l

(2)
t

∥∥∥
8

< ∞.

Term x̃i4 :

37



E




∣∣∣∣∣
∑

t

l
(1)2
t m2,t

∣∣∣∣∣

4



= E




∣∣∣∣∣
∑

t

l
(1)2
t l

(2)
t + l

(1)4
t + 2l

(1)3
t Lt−1

∣∣∣∣∣

4



≤ B3
L

∑
t

E

(∥∥∥l
(1)2
t l

(2)
t

∥∥∥
4

+
∥∥∥l

(1)
t

∥∥∥
16

+ 24
∥∥∥l

(1)3
t Lt−1

∥∥∥
4
)

≤ B3
L

∑
t

(
E

∥∥∥l
(1)
t

∥∥∥
16

E
∥∥∥l

(2)
t

∥∥∥
8
)1/2

+ E
∥∥∥l

(1)
t

∥∥∥
16

+ 24

(
E

∥∥∥l
(1)
t

∥∥∥
24

E
(‖Lt−1‖8)

)1/2

≤ constB8
L

provided that sup E
∥∥∥l

(1)
t

∥∥∥
24

< ∞ and sup E
∥∥∥l

(2)
t

∥∥∥
8

< ∞.

Term x̃i5 :

E |M3|4 ≤ B3
L

∑
t

E

(∥∥∥l
(3)
t

∥∥∥
4

+
∥∥∥l

(2)
t l

(1)
t

∥∥∥
4

+
∥∥∥l

(1)3
t

∥∥∥
4
)

≤ B3
L

∑
t

E
∥∥∥l

(3)
t

∥∥∥
4

+

(
E

∥∥∥l
(2)
t

∥∥∥
8

E
∥∥∥l

(1)
t

∥∥∥
8
)1/2

+ E
∥∥∥l

(1)
t

∥∥∥
12

≤ constB4
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
12

< ∞, sup E
∥∥∥l

(2)
t

∥∥∥
8

< ∞, and sup E
∥∥∥l

(3)
t

∥∥∥
4

< ∞.

Term x̃i6 :

E




∣∣∣∣∣
Ti+1∑

t=Ti+1

m3,tl
(1)
t

∣∣∣∣∣

4

 ≤ B3

L

∑
t

E
∣∣∣m3,tl

(1)
t

∣∣∣
4

≤ B3
L

∑
t

E

(∥∥∥l
(3)
t l

(1)
t

∥∥∥
4

+
∥∥∥l

(2)
t l

(1)2
t

∥∥∥
4

+
∥∥∥l

(1)4
t

∥∥∥
4
)

≤ constB4
L

provided that sup E
∥∥∥l

(1)
t

∥∥∥
16

< ∞, sup E
∥∥∥l

(2)
t

∥∥∥
8

< ∞ and sup E
∥∥∥l

(3)
t

∥∥∥
8

< ∞.
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Term x̃i7 :

E




∣∣∣∣∣
∑

t

l
(1)
t L2

t−1

∣∣∣∣∣

4

 ≤ B3

L

∑
t

E
∣∣∣l(1)

t L2
t−1

∣∣∣
4

≤ B3
L

∑
t

(
E

∥∥∥l
(1)
t

∥∥∥
8

E ‖Lt−1‖16

)1/2

≤ constB12
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
16

< ∞.

Term x̃i8 :

E




∣∣∣∣∣
∑

t

l
(1)2
t L2

t−1

∣∣∣∣∣

4

 ≤ B3

L

∑
t

E
∣∣∣l(1)2

t L2
t−1

∣∣∣
4

≤ B3
L

∑
t

(
E

∥∥∥l
(1)
t

∥∥∥
16

E ‖Lt−1‖16

)1/2

≤ constB12
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
16

< ∞.

Term x̃i9 :

E




∣∣∣∣∣
∑

t

l
(1)
t L3

t−1

∣∣∣∣∣

4

 ≤ B3

L

∑
t

E
∣∣∣l(1)

t L3
t−1

∣∣∣
4

≤ B3
L

∑
t

(
E

∥∥∥l
(1)
t

∥∥∥
8

E ‖Lt−1‖24

)1/2

≤ constB16
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
24

< ∞.

Term x̃i10 :
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E




∣∣∣∣∣
∑

t

l
(1)
t Lt−1m2,t

∣∣∣∣∣

4

 = E

∣∣∣∣∣
∑

t

l
(1)
t l

(2)
t Lt−1 + l

(1)3
t Lt−1 + 2l

(1)2
t L2

t−1

∣∣∣∣∣

4

≤ B3
L

∑
t

E
∣∣∣l(1)

t l
(2)
t Lt−1

∣∣∣
4

+ E
∣∣∣l(1)3

t Lt−1

∣∣∣
4

+ 24E
∣∣∣l(1)2

t L2
t−1

∣∣∣
4

≤ B3
L

∑
t

{
E

∥∥∥l
(1)
t

∥∥∥
12

+ E
∥∥∥l

(2)
t

∥∥∥
12

+ E ‖Lt−1‖12

+

(
E

∥∥∥l
(1)
t

∥∥∥
24

E ‖Lt−1‖8

)1/2

+ 24

(
E

∥∥∥l
(1)
t

∥∥∥
16

E ‖Lt−1‖16

)1/2
}

≤ constB16
L

provided sup E
∥∥∥l

(1)
t

∥∥∥
24

< ∞ and sup E
∥∥∥l

(2)
t

∥∥∥
12

< ∞.

Proof of Theorem 3
Denote TET the Taylor expansion of

∑
t

(
lt

(
θT + ηt/T

1/4
)− lt (θT )

)
around θT :

TET =
T∑

t=1

[
1

4
√

T
l
(1)
t (ηt) +

1

2
√

T
l
(2)
t (ηt, ηt) +

1

6
4
√

T 3
l
(3)
t (ηt, ηt, ηt) +

1

24T
l
(4)
t (ηt, ηt, ηt, ηt)

]
(7.14)

≡
T∑

t=1

TEt, (7.15)

where l
(1)
t , ..., l

(4)
t are function of θT . The proof is in three steps.

Denote

T̃ ST (β, θ) =
1

2

1√
T

∑
t

µ2,t (β, θ)− 1

8

1

T

∑
t

[µ2,t (β, θ)]2 .

Step 1. Using Lemma 7, we show that

`β
T (θ)

E [exp (TET ) |H0,T ]

P→ 1

uniformly in β.
Step 2. Using Lemma 7, we show that

E [exp (TET ) |H0,T ]

E
[
exp

(
T̃ ST +

∑BN

i=1

∑J
j=1 ln (1 + xij)

)
|H0,T

] P→ 1

uniformly in β for some xij.
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Step 3. Using Lemma 7, we prove that

E
[
exp

(
T̃ ST +

∑BN

i=1

∑J
j=1 ln (1 + xij)

)
|H0,T

]

exp
(
T̃ ST

) P→ 1

uniformly in β.
Then, result (3.3) follows from

`β
T (θ)

exp
(
T̃ ST

) =

`β
T (θ)

E [exp (TET ) |H0,T ]

E [exp (TET ) |H0,T ]

E
[
exp

(
T̃ ST +

∑BN

i=1

∑J
j=1 ln (1 + xij)

)
|H0,T

]

×
E

[
exp

(
T̃ ST +

∑BN

i=1

∑J
j=1 ln (1 + xij)

)
|H0,T

]

exp
(
T̃ ST

) .

Step 1. Using a Taylor expansion, we obtain

∣∣∣∣∣
T∑

t=1

(
lt

(
θT + ηt/T

1/4
)− lt (θT )

)−
T∑

t=1

TEt

∣∣∣∣∣

≤
T∑

t=1

∥∥∥l
(5)
t (θT )

∥∥∥ ·M5 · 1

T 4
√

T

≤ sup
t,θ∈N

∥∥∥l
(5)
t (θ)

∥∥∥ M5 1
4
√

T

≤ constM5 1
4
√

T

= o (1)

by Assumption 4. The result follows from Lemma 7.1.
In the sequel, we will use sup instead of supt,θ∈N to simplify notation.

Step 2.
Let TET =

∑BN

i=1

∑Ti

t=Ti−1+1 TEit, T̃ ST =
∑BN

i=1

∑Ti

t=Ti−1+1 T̃ Sit.

TET − T̃ ST =

BN∑
i=1

Ti∑
t=Ti−1+1

(
TEit − T̃ Sit

)

=

BN∑
i=1

Ti∑
t=Ti−1+1

(
TEit − T̂ Sit

)
+

BN∑
i=1

Ti∑
t=Ti−1+1

(
T̂ Sit − T̃ Sit

)
(7.16)
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where

T̂ Sit =
1

2
√

T
E

(
m2,t|HTi−1,T

)− 1

8T

[
E

(
m2,t|HTi−1,T

)]2
.

In the sequel ηt is split in the following manner

ηt = ξt + αt,

ξt = ηt − E(ηt|HTi−1,T ),

αt = E(ηt|HTi−1,T ).

∑
t T̂ Sit can be decomposed as follows:

Ti∑
t=Ti−1+1

T̂ Sit =

Ti∑
t=Ti−1+1

T̂ Sit (ξ) +

Ti∑
t=Ti−1+1

T̂ Sit (α) ,

Ti∑
t=Ti−1+1

T̂ Sit (ξ) =
1

2
√

T

Ti∑
t=Ti−1+1

E
(
m2,t (ξ) |HTi−1,T

)− 1

8T

[
E

(
m2,t (ξ) |HTi−1,T

)]2
,

Ti∑
t=Ti−1+1

T̂ Sit (α) =
1

2
√

T

Ti∑
t=Ti−1+1

E
(
m2,t (α) |HTi−1,T

)− 1

8T

[
E

(
m2,t (α) |HTi−1,T

)]2
.

The mixed terms vanish because

E
(
αt ⊗ ξt | HTi−1,T

)
= 0.

Similarly, the Taylor Expansion in (7.14) can be rewritten as the sum of three parts,
namely, the pure part w.r.t. ξt, the pure part w.r.t. αt and the mixed part. That is,

TEit (ξt) =
1

4
√

T
l
(1)
t (ξt) +

1

2
√

T
l
(2)
t (ξt, ξt) +

1

6
4
√

T 3
l
(3)
t (ξt, ξt, ξt) +

1

24T
l
(4)
t (ξt, ξt, ξt, ξt),

TEit (αt) =
1

4
√

T
l
(1)
t (αt) +

1

2
√

T
l
(2)
t (αt, αt) +

1

6
4
√

T 3
l
(3)
t (αt, αt, αt) +

1

24T
l
(4)
t (αt, αt, αt, αt)

and

TEit (ξt, αt) =
1

2
√

T
l
(2)
t (ξt, αt)︸ ︷︷ ︸

2 permutations

+
1

6
4
√

T 3
l
(3)
t (ξt, ξt, αt)︸ ︷︷ ︸
3 permutations

+
1

6
4
√

T 3
l
(3)
t (ξt, αt, αt)︸ ︷︷ ︸
3 permutations

+
1

24T
l
(4)
t (ξt, ξt, ξt, αt)︸ ︷︷ ︸

4 permutations

+
1

24T
l
(4)
t (ξt, ξt, αt, αt)︸ ︷︷ ︸

6 permutations

+
1

24T
l
(4)
t (ξt, αt, αt, αt)︸ ︷︷ ︸

4 permutations

Remark that for any linear function g and using the convention αt = 0 for t > T, we can
write

BN∑
i=1

Ti∑
t=Ti−1+1

(g (ηt)) =

BN∑
i=1




Ti∑
t=Ti−1+1

g (ξt) +

Ti+1∑
t=Ti+1

g (αt)



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using E (ηt|H0,T ) = E (ηt) = 0 with ξt = ηt − E(ηt|HTi−1,T ) and αt = E(ηt|HTi,T ).
To summarize, we have the following decomposition

BN∑
i=1

Ti∑
t=Ti−1+1

(
TEit − T̂ Sit

)
=

BN∑
i=1

Ti∑
t=Ti−1+1

(
TEit (ξt)− T̂ Sit (ξt)

)

+

BN∑
i=1

Ti+1∑
t=Ti+1

(
TEit (αt)− T̂ Sit (αt)

)

+

BN∑
i=1

Ti∑
t=Ti−1+1

TEit (ξt, αt) .

Now we examine successively the two terms of (7.16).

1) Term
∑Ti

t=Ti−1+1

(
T̂ Sit − T̃ Sit

)
:

Noting that µ2,t = E (m2,t|H0,T ), we have

Ti∑
t=Ti−1+1

(
T̂ Sit − T̃ Sit

)
=

1

2
√

T

Ti∑
t=Ti−1+1

[
E

(
m2,t|HTi−1,T

)− E (m2,t|H0,T )
]

(T1)

− 1

8T

Ti∑
t=Ti−1+1

{[
E

(
m2,t|HTi−1,T

)]2 − [E (m2,t|H0,T )]2
}

(7.17)

We establish that (a) the term (7.17) converges to 0 uniformly in probability. (b)∑BN

i=1

∑Ti+1

t=Ti+1

(
E

(
m2,t|HTi−1,T

)− E (m2,t|H0,T )− ln(1 + x11 (ξ))
) P→ 0 uniformly in β with

x11 (ξ) = 1
2
√

T
[E (m2,t (ξ) |HTi,T )− E (m2,t (ξ) |H0,T )] . Then, from

∑
i

Ti∑
t=Ti−1+1

(
T̂ Sit − T̃ Sit

)
=

1

2
√

T

∑
i

Ti∑
t=Ti−1+1

[
E

(
m2,t|HTi−1,T

)− E (m2,t|H0,T )
]
+ op (1)

=
1

2
√

T

∑
i

Ti+1∑
t=Ti+1

[E (m2,t|HTi,T )− E (m2,t|H0,T )] + op (1) ,

it follows that
∑BN

i=1

∑Ti+1

t=Ti+1

(
T̂ Sit (ξ)− T̃ Sit (ξ)− ln(1 + x11 (ξ))

)
P→ 0 uniformly in β.

The same is true for the term in α.
(a) First, we show that (7.17) converges to 0. Note that

‖m2,t‖ ≤ const ·
(∥∥∥l

(1)
t

∥∥∥ +
∥∥∥l

(2)
t

∥∥∥
2

+ 2
∥∥∥l

(1)
t

∥∥∥ ‖Lt−1‖
)

and
‖Lt−1‖ ≤ (t− Ti−1) ·

∥∥∥l
(1)
t

∥∥∥ . (7.18)
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Hence,
∥∥∥∥∥∥

1

8T

Ti∑
t=Ti−1+1

{[
E

(
m2,t|HTi−1,T

)]2 − [E (m2,t|H0,T )]2
}

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

8T

Ti∑
t=Ti−1+1

{
E

(
m2,t|HTi−1,T

)− E (m2,t|H0,T )
} {

E
(
m2,t|HTi−1,T

)
+ E (m2,t|H0,T )

}
∥∥∥∥∥∥

≤ const

8T

Ti∑
t=Ti−1+1

∥∥E
(
m2,t|HTi−1,T

)− E (m2,t|H0,T )
∥∥ (const + ‖Lt−1‖)

≤ const

T

Ti∑
t=Ti−1+1

(t− Ti−1) λt−Ti−1

≤ const

T

by the β-mixing property of ηt. Hence this term is negligeable.
(b) (T1) can be decomposed into a pure term in αt and a pure term in ξt. Consider

first the term in ξt. Using |x− log(1 + x)| ≤ x2 and Assumption 1, we have

E
1

T





Ti∑
t=Ti−1+1

m2,t

[
E(ξt ⊗ ξt)− E(ξt ⊗ ξt | HTi−1,T )

]




2

≤ E
1

T





Ti∑
t=Ti−1+1

‖m2,t‖ · λt−Ti−1





2

= E
1

T





Ti∑
t=Ti−1+1

‖m2,t‖ ·
√

λ
t−Ti−1 ·

√
λ

t−Ti−1





2

≤ E
1

T




Ti∑
t=Ti−1+1

‖m2,t‖2 · λt−Ti−1


 · 1

1− λ

Moreover by

‖m2,t‖2 ≤ const ·
(∥∥∥l

(1)
t

∥∥∥
4

+
∥∥∥l

(2)
t

∥∥∥
2

+
∥∥∥l

(1)
t

∥∥∥
2

· ‖Lt−1‖2

)

and (7.18), we have

E
1

T




Ti∑
t=Ti−1+1

‖m2,t‖2 · λt−Ti−1


 ≤ 1

T

Ti∑
t=Ti−1+1

(const + const · (t− Ti−1)
2)λt−Ti−1
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Hence, for the sum over all blocks, we have

BN∑
i=1

1

T




Ti∑
t=Ti−1+1

m2,t

[
E(ξt ⊗ ξt)− E(ξt ⊗ ξt|HTi−1,T )

]



2

≤ T

BL

1

T

(
1

1− λ
+

Ti−Ti−1∑
j=1

j2λj

)

= O(
1

BL

) = o(1)

Terms in αt?

2) Term TEit − T̂ Sit :
We analyze successively (a) the pure terms w.r.t. ξt, (b) the pure terms w.r.t. αt, and

(c) the mixed terms.
(a) For simplicity, we drop ξt in the expressions. Using the notation described in

Subsection 6, the pure terms
∑

t TEit (ξt) can be rewritten as follows

1
4
√

T
L1 − 1

2
√

T
L2

1 +
1

3
4
√

T 3
L3

1 −
1

4T
L4

1P1 (7.19)

+
1

2
√

T
M2 − 1

8T

∑
t

m2
2,tP2 (7.20)

− 1

2
4
√

T 3

∑
t

l
(1)
t m2,tP3 (7.21)

+
1

2T

∑
t

l
(1)2
t m2,tP4 (7.22)

+
1

6
4
√

T 3
M3P5 (7.23)

− 1

6T

∑
t

m3,tl
(1)
t P6 (7.24)

− 1
4
√

T 3

∑
t

l
(1)
t L2

t−1P7 (7.25)

+
1

T

∑
t

l
(1)2
t L2

t−1P8 (7.26)

+
1

T

∑
t

l
(1)
t L3

t−1P9 (7.27)

+
1

2T

∑
t

l
(1)
t Lt−1m2,tP10 (7.28)

+
1

24T
M4. (7.29)
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And we add to (P2) the term −∑
t T̂ Sit (ξt) :

− 1

2
√

T

∑
t

E(m2,t|HTi−1,T ) +
1

8T

∑
t

[
E(m2,t|HTi−1,T )

]2
(7.30)

Let xi1 = x̃i1/T
1/4, xi2 = x̃i2/

√
T , xi3 = x̃i3/T

3/4, xi4 = x̃i4/T , xi5 = x̃i5/T
3/4, xi6 =

x̃i6/T , xi7 = x̃i7/T
3/4, xij = x̃ij/T , j = 8, 9, 10, where x̃ij have been introduced in Lemma

7. Now we show that each term (P1) to (P10) can be approximated by a term of the form
ln (1 + xij) (with j = 1, 2..., 10) provided

BL = o
(
T 1/16

)
. (B1)

We also show that the sum over the blocks of (P11) goes to zero and therefore can be
neglected.

(P1): We want to show that |∑i (P1i − ln (1 + xi1))| → 0 in probability uniformly in β
where P1i is (P1) for the ith block. By the triangular inequality, |∑i (P1i − ln (1 + xi1))| ≤∑

i |P1i − ln (1 + xi1)| . Using a Taylor expansion we have

∣∣∣∣(P1)− ln(1 +
1

4
√

T
L1)

∣∣∣∣ ≤ const · 1

T 4
√

T
‖L1‖5

Now we analyze the moment conditions needed.

E

(∥∥∥∑
t l

(1)
t

∥∥∥
5
)

=

[
5

√
E

(∥∥∥∑
t l

(1)
t

∥∥∥
5
)]5

≤
[
∑

t
5

√
E

∥∥∥l
(1)
t

∥∥∥
5
]5

= B5
L·

[
1

BL

∑
t

5

√
E

∥∥∥l
(1)
t

∥∥∥
5
]5

by the triangular inequality. This term is O (B5
L) provided sup E

∥∥∥l
(1)
t

∥∥∥
5

< ∞. Using the

fact that if XT > 0, EXT → 0 implies that XT
P→ 0, the sum over all blocks goes to zero

if the following condition holds:

T

BL

· 1

T 4
√

T
·B5

L = o(1),

which is satisfied provided (B1) holds.

Consider term (P2)+(7.30):

(P2)+(7.30) =
1

2
√

T

(
M2 −

∑
t

E(m2,t|HTi−1,T )

)
− 1

8T

∑
t

(
m2

2,t −
∑

t

[
E(m2,t|HTi−1,T )

]2

)

We want to show that (P2)+(7.30) can be approximated by

log(1 +
M2 − E(M2|HTi−1,T )

2
√

T
+

K

T
)
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where

K =
1

8

{
[
M2 − E(M2|HTi−1,T )

]2 −
∑

t

[
m2

2,t −
[
E(m2,t|HTi−1,T )

]2
]}

For arbitrary A and B, a Taylor expansion gives:

∣∣∣∣∣log

(
1 +

A√
T

+
A2

2T
− B

T

)
−

(
A√
T

+
A2

2T
− B

T

)
+

1

2

(
A√
T

+
A2

2T
− B

T

)2
∣∣∣∣∣

≤ 1

3

∣∣∣∣
A√
T

+
A2

2T
− B

T

∣∣∣∣
3

Denote C = A2

2
−B, then we have

∣∣∣∣log(1 +
A√
T

+
C

T
)− (

A√
T
− B

T
)

∣∣∣∣

≤
∣∣∣∣−

A2

2T
+

1

2
(

A√
T

+
C

T
)2

∣∣∣∣ +
1

3

∣∣∣∣
A√
T

+
C

T

∣∣∣∣
3

(7.31)

=

∣∣∣∣
1

2

C

T 2

2

+
AC

T
√

T

∣∣∣∣ +
1

3

∣∣∣∣
A√
T

+
C

T

∣∣∣∣
3

(7.32)

≤ const ·
(
‖C‖2

T 2
+

∥∥∥∥
A√
T

∥∥∥∥ ·
‖C‖
T

+
‖A‖3

T
√

T
+
‖C‖3

T 3

)
(7.33)

We apply this result to A =
(
M2 − E(M2|HTi−1,T )

)
/2, B =

∑
t

(
m2

2,t −
∑

t

[
E(m2,t|HTi−1,T )

]2
)

/8

and C = K. We want to establish that the expectation of the sum over the blocks of the
r.h.s. of (7.33) goes to zero uniformly.

First we analyze ‖A‖3 .

∥∥∥∥
A√
T

∥∥∥∥
3

≤ const ·
[

1

T 3/2
‖M2‖3 +

1

T 3/2
E3(‖M2‖ | HTi−1,T )

]

≤ const ·
[

1

T 3/2
‖M2‖3 +

1

T 3/2
E(‖M2‖3 | HTi−1,T )

]

where the first inequality follows from Lemma 7 and the second inequality comes from
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Jensen’s Inequality as the function f(x) = x3 is convex in R+. Then

E

∥∥∥∥
A√
T

∥∥∥∥
3

≤ const · 1

T 3/2
E ‖M2‖3 ≤ const · 1

T 3/2
E

(∑
t

‖m2,t‖
)3

≤ const · 1

T 3/2
B2

L · E
(∑

t

‖m2,t‖3

)

≤ const · 1

T 3/2
B2

L · E
∑

t

(∥∥∥l
(2)
t

∥∥∥
3

+
∥∥∥l

(1)
t

∥∥∥
6

+
∥∥∥l

(1)
t

∥∥∥
3

· ‖Lt−1‖3

)

= O

(
B6

L

T 3/2

)

where the third equality follows from Lemma 7 and the equality holds by Assumption 3.
Hence ∑

i

E

∥∥∥∥
A√
T

∥∥∥∥
3

= O

(
T

BL

B6
L

T 3/2

)
= O

(
B5

L

T 1/2

)
= o (1) .

Now we analyze the term ‖C‖3.

C =
A2

2
−B =

A2

2
− 1

8

∑
t

[
m2

2,t −
[
E(m2,t|HTi−1,T )

]2
]

and

‖A‖2 ≤ const · [‖M2‖2 + E2(‖M2‖ | HTi−1,T )
]

≤ const · [‖M2‖2 + E(‖M2‖2 | HTi−1,T )
]

Again, the second inequality comes from Jensen’s Inequality. Then we have

‖C‖3 ≤ const ·
(
‖M2‖2 + E(‖M2‖2 |HTi−1,T ) +

∑
t

[
‖m2,t‖2 +

[
E(‖m2,t‖ |HTi−1,T )

]2
])3

≤ const ·
(

(
∑

t

‖m2,t‖)2 + E((
∑

t

‖m2,t‖)2 | HTi−1,T ) +
∑

t

[‖m2,t‖2 + E(‖m2,t‖2 |HTi−1,T )
]
)3

≤ const · (BL + 1)3

(∑
t

[‖m2,t‖2 + E(‖m2,t‖2 |HTi−1,T )
]
)3

≤ const · (BL + 1)3 ·B2
L

∑
t

[‖m2,t‖6 + E(‖m2,t‖6 |HTi−1,T )
]

Therefore,

E ‖C‖3 ≤ const (BL + 1)3B2
L

∑
t

E ‖m2,t‖6

≤ const
(BL + 1)3

T 3
B2

L

∑
t

E

(∥∥∥l
(2)
t

∥∥∥
6

+
∥∥∥l

(1)
t

∥∥∥
12

+
∥∥∥l

(1)
t

∥∥∥
6

· ‖Lt−1‖6

)

= O
(
B12

L

)
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because sup E
∥∥∥l

(2)
t

∥∥∥
6

< ∞ and sup E
∥∥∥l

(1)
t

∥∥∥
12

< ∞ by Assumption 3. Hence

∑
i

E ‖C‖3

T 3
= O

(
T

BL

1

T 3
B12

L

)
= o(1)

by (B1). Moreover by Holder’s inequality

E ‖C‖2 ≤ (
E ‖C‖3)2/3

= O
(
B8

L

)
.

Hence ∑
i

E ‖C‖2

T 2
= O

(
T

BL

B8
L

T 2

)
= O

(
B7

L

T

)
= o (1) .

Now we analyze term
∥∥∥ A√

T

∥∥∥ ·
∥∥C

T

∥∥ . Note that by Holder’s inequality,

E

∥∥∥∥
A√
T

∥∥∥∥
2

≤
[
E

(∥∥∥∥
A√
T

∥∥∥∥
3
)]2/3

= O

(
B4

L

T

)
.

By Cauchy-Schwartz inequality,

E

(∥∥∥∥
A√
T

∥∥∥∥ ·
‖C‖
T

)
≤

√
E

∥∥∥∥
A√
T

∥∥∥∥
2

· E ‖C‖
2

T 2
= O

(
B6

L

T 3/2

)
.

Hence ∑
i

E

(∥∥∥∥
A√
T

∥∥∥∥ ·
‖C‖
T

)
= O

(
B5

L

T 1/2

)
= o (1) .

Now we consider the terms (P3) to (P10). Remark that (P3) to (P10) correspond to
x̃i3 to x̃i10 in Lemma 7. From the Taylor expansion, we have

|x− log(1 + x)| ≤ const · x2

We need to show that the sum over the blocks of E ‖x2‖ converges to zero uniformly in
β. To do so, we use the bounds given by Lemma 7. By Holder’s inequality, E

(‖x‖2) ≤
E

(‖x‖4)2/4
.

Term (P3):

E
(‖P3‖2) =

1

T 3/2
E

(‖x̃i3‖2) ≤ 1

T 3/2

(
B8

L

)1/2
=

B4
L

T 3/2
,

∑
i

E
(‖P3‖2) ≤ T

BL

B4
L

T 3/2
=

B3
L

T 1/2
= o (1) .
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Term (P4):

E
(‖P4‖2) ≤ 1

T 2

(
B8

L

)1/2
=

B4
L

T 2
,

∑
i

E
(‖P4‖2) ≤ T

BL

B4
L

T 2
=

B3
L

T
= o (1) .

Term (P5):

E
(‖P5‖2) ≤ 1

T 3/2

(
B4

L

)1/2
=

B2
L

T 3/2
,

∑
i

E
(‖P5‖2) ≤ BL

T 1/2
= o (1) .

Term (P6):

E
(‖P6‖2) ≤ 1

T 2

(
B8

L

)1/2
=

B4
L

T 2
,

∑
i

E
(‖P6‖2) ≤ B3

L

T
= o (1) .

Term (P7):

E
(‖P7‖2) ≤ 1

T 3/2

(
B12

L

)1/2
=

B6
L

T 3/2
,

∑
i

E
(‖P7‖2) ≤ B5

L

T 1/2
= o (1) .

Term (P8):

E
(‖P8‖2) ≤ 1

T 2

(
B12

L

)1/2
=

B6
L

T 2
,

∑
i

E
(‖P8‖2) ≤ B5

L

T
= o (1) .

Term (P9):

E
(‖P9‖2) ≤ 1

T 2

(
B16

L

)1/2
=

B8
L

T 2
,

∑
i

E
(‖P9‖2) ≤ B7

L

T
= o (1) .
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Term (P10):

E
(‖P10‖2) ≤ 1

T 2

(
B16

L

)1/2
=

B8
L

T 2
,

∑
i

E
(‖P10‖2) ≤ B7

L

T
= o (1) .

Term (P11): ∥∥∥∥∥
1

T

T∑
t=1

m4,t (ξt, ξt, ξt, ξt)

∥∥∥∥∥ ≤
∥∥∥∥∥

1

T

T∑
t=1

m4,t

∥∥∥∥∥ M4

because ‖ξt‖ ≤ M.

E ‖m4,t‖ ≤ E
∥∥∥l

(4)
t + 6l

(2)
t ⊗ l

(1)2
t + 4l

(3)
t ⊗ l

(1)
t + 3l

(2)
t ⊗ l

(2)
t + l

(1)4
t

∥∥∥

≤ E

(∥∥∥l
(4)
t

∥∥∥ + 6
∥∥∥l

(2)
t

∥∥∥
∥∥∥l

(1)2
t

∥∥∥ + 4
∥∥∥l

(3)
t

∥∥∥
∥∥∥l

(1)
t

∥∥∥ + 3
∥∥∥l

(2)
t

∥∥∥
2

+
∥∥∥l

(1)4
t

∥∥∥
)

< ∞

provided sup E
∥∥∥l

(4)
t

∥∥∥ < ∞, sup E
∥∥∥l

(3)
t

∥∥∥
2

< ∞, sup E
∥∥∥l

(2)
t

∥∥∥
2

< ∞, sup E
∥∥∥l

(1)
t

∥∥∥
4

< ∞. As

m4,t is a martingale, 1
T

∑
m4,t = op (1) and hence

1

T
‖M4‖ = op (1)

uniformly in β. Therefore this term can be neglected.

Hence we have shown that
∑BN

i=1

∑Ti

t=Ti−1+1

(
TEit (ξt)− T̂ Sit (ξt)−

∑10
j=1 ln (1 + xijt)

)
P→

0 uniformly in β.

b) Second, we analyze the pure terms w.r.t. αt. We can do the same approximation
as for the terms in ξt using the fact that for Ti+1 ≥ t > Ti

‖αt‖ = ‖E (ηt|HTi,T )‖
≤ λt−Ti

by the β-mixing property of ηt. Note that all the terms in 1/T can be neglected. For
illustration, we treat the case of term (P9). Remark that

‖Lt−1‖3 =

∥∥∥∥∥
t−1∑

t=Ti+1

l(1)
s (αs)

∥∥∥∥∥

3

≤ M3 sup
∥∥∥l

(1)
t

∥∥∥
3

(t− Ti)
3
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∥∥∥∥∥
1

T

Ti+1∑
t=Ti+1

l
(1)
t L3

t−1

∥∥∥∥∥ ≤ M3 sup
∥∥∥l

(1)
t

∥∥∥
4 1

T

Ti+1∑
t=Ti+1

(t− Ti)
3 ‖αt‖

≤ const
1

T

Ti+1∑
t=Ti+1

(t− Ti)
3 λt−Ti

≤ const
1

T
.

Hence ∥∥∥∥∥
1

T

∑
i

Ti+1∑
t=Ti+1

l
(1)
t L3

t−1

∥∥∥∥∥ ≤
T

BL

1

T
→ 0.

Therefore the term (P9) is negligeable. And so are the other terms in 1/T. The remaining
terms in α are (P1), (P2), (P3), (P5) and (P7). We have the same approximation in
ln(1 + x) as for the terms in ξt.

c) The mixed terms are as follows:

1

2
√

T

∑
l
(2)
t (ξt, αt)︸ ︷︷ ︸

2 permutations

+
1

6
4
√

T 3

∑
l
(3)
t (ξt, ξt, αt)︸ ︷︷ ︸

3 permutations

+
1

6
4
√

T 3

∑
l
(3)
t (ξt, αt, αt)︸ ︷︷ ︸
3 permutations

+
1

24T

∑
l
(4)
t (ξt, ξt, ξt, αt)︸ ︷︷ ︸

4 permutations

+
1

24T

∑
l
(4)
t (ξt, ξt, αt, αt)︸ ︷︷ ︸

6 permutations

+
1

24T

∑
l
(4)
t (ξt, αt, αt, αt)︸ ︷︷ ︸

4 permutations

For all the 4th-order terms,

∑
i

E
1

T

Ti+1∑
t=Ti+1

l
(4)
t (·, ·, ·, αt) ≤ T

BL

1

T
sup E

∥∥∥l
(4)
t

∥∥∥ ·M3 · 1

1− λ

which converges to zero uniformly provided

sup E
∥∥∥l

(4)
t

∥∥∥ < ∞.

For the 3rd-order terms, we apply the Bartlett Identity,

M (3)(a, b, c) = l(3)(a, b, c)+l(2)(a, b)l(1)(c)+l(2)(a, c)l(1)(b)+l(2)(b, c)l(1)(a)+l(1)(a)l(1)(b)l(1)(c)
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Hence the mixed-terms can be written as

1

2
√

T

∑ (
l
(2)
t (αt, ξt) + l

(2)
t (ξt, αt)

)
(R1)

+
1

6
4
√

T 3

∑

M

(3)
t (αt, αt, ξt)︸ ︷︷ ︸
3 permutations

+ M
(3)
t (αt, ξt, ξt)︸ ︷︷ ︸

3 permutations


 (R2)

− 1

6
4
√

T 3

∑ (
3l

(2)
t (αt, ξt)l

(1)
t (αt) + 3l

(2)
t (ξt, αt)l

(1)
t (αt) + 3l

(2)
t (αt, αt)l

(1)
t (ξt)

)
(R3)

− 1

6
4
√

T 3

∑ (
3l

(2)
t (αt, ξt)l

(1)
t (ξt) + 3l

(2)
t (ξt, αt)l

(1)
t (ξt)

)
(R4)

− 1

6
4
√

T 3

∑
3l

(1)2
t (αt)l

(1)
t (ξt) (R5)

− 1

6
4
√

T 3

∑ (
3l

(1)2
t (ξt)l

(1)
t (αt) + 3l

(2)
t (ξt, ξt)l

(1)
t (αt)

)
(7.34)

The term (7.34) is rewritten in the following way.

− 1

2
4
√

T 3

∑
l
(1)
t (αt)m2,t(ξt, ξt) (7.35)

+
1

4
√

T 3

∑
l
(1)
t (αt)l

(1)
t (ξt)Lt−1(ξt)R6 (7.36)

Moreover, we have

− 1

2
4
√

T 3

∑
i

Ti∑
t=Ti−1+1

l
(1)
t (αt)m2,t(ξt, ξt)

= − 1

2
4
√

T 3

∑
i

Ti∑
t=Ti−1+1

l
(1)
t (αt)m2,t

[
(ξt, ξt)− E

[
(ξt ⊗ ξt)|HTi−1,T

]]
R7 (7.37)

− 1

2
4
√

T 3

∑
i

Ti+1∑
t=Ti+1

l
(1)
t (αt)m2,t [E [(ξt ⊗ ξt)|HTi,T ]− E [(ξt ⊗ ξt)]] R8 (7.38)

− 1

2
4
√

T 3

∑
i

Ti+1∑
t=Ti+1

l
(1)
t (αt)m2,tE [(ξt ⊗ ξt)] R9 (7.39)

Note that the sum in (R8) and (R9) is over Ti + 1 to Ti+1, this follows from a simple
change of indice (replace i by i+ 1). Each term (R1) to (R9) (denoted x for convenience)
can be approximated by terms ln (1 + x) . The terms E (x2) involve αt and hence their
sums converge to 0 uniformly in β.

Step 3.
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As exp (TST ) is H0,T−measurable, we have

E
[
exp

(
TST +

∑TB

i=1

∑
j ln (1 + xij)

)
|H0,T

]

exp (TST )
= E

[
TB∏
i=1

J∏
j=1

(1 + xij) |H0,T

]

J is equal to 27, because there are 11 pure terms in ξt (corresponding to T1, and P1
to P10), 7 pure terms in αt, and 9 mixed terms. The product can be rewritten as∏J

j=1 (1 + xij) = 1 +
∑J

j=1 xij +
∑

j 6=l xijxil +
∑

j 6=l 6=p xijxilxip + ... +
∏J

j=1 xij where each

xij is of the form 1
T αj

∑
t x̃ijt. Hence

∏J
j=1 (1 + xij) is 1 plus a sum of terms of the

form
∏

j∈d xij, where d is a partition of 1, 2, ..., J. Each of these terms can be treated
individually. We need to compute ∆i,T and check Conditions (7.4) and (7.5) in Lemma 7.

Consider the case
∑

j∈d αj > 1. Note that as soon as there are four terms, we have∑
j∈d αj ≥ 1.5 (d is a partition of 1, 2, ..., J with cardinal 4). By Lemma 7, we have

E




∥∥∥∥∥
∑

t

x̃ijt

∥∥∥∥∥

4

 ≤ constB16

L .

Hence by Lemma 7, we have

Bm−1
L

T
P

αj−1
≤ B15

L

T 1/2
= o (1)

for BL = o
(
T 1/30

)
. For this choice of BL, the conditions (7.4) and (7.5) are satisfied. If

there are more than four terms, the conditions (7.4) and (7.5) are again satisfied. Indeed
by Lemma 7 and Holder’s inequality, we have

E (‖xij‖) ≤ const
B4

L

Tαj
= o (1) .

As ‖αt‖ and ‖ξt‖ are bounded by M , there is an H0,T− measurable set AT , such that
‖xij‖ ≤ 1/2 on AT and P (AT ) → 1. Hence

‖∆i‖ = E

[∥∥∥∥∥
∏

j∈d1

xij

∏

k∈d2

xik

∥∥∥∥∥ |HTi−1,T

]

≤ 1

2
E

[∥∥∥∥∥
∏

j∈d1

xij

∥∥∥∥∥ |HTi−1,T

]

where cardinal of d1 ≤ 4. Hence the result follows from above.
In the case where there are fewer than 4 terms but

∑
j∈d αj > 1, Lemma 7 shows there

exists a BL such that the conditions (7.4) and (7.5) are also satisfied. This takes care of
all the terms for which

∑
j∈d αj > 1. The terms with

∑
j∈d αj ≤ 1 are treated on a case

by case basis below.
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1) Pure terms in ξt

The xij correspond to P1, P2, ..., P10, and T1 :

xi1 =
L1

T 1/4
,

xi2 = xi20 + xi21

xi2a =
M2 − E

(
M2|HTi−1,T

)

2
√

T
,

xi2b =
1

8T

[
M2 − E

(
M2|HTi−1,T

)]2 − 1

8T

[∑
t

m2
2,t −

∑
t

[
E

(
m2,t|HTi−1,T

)]2

]
.

xi3 = − 1

2
4
√

T 3

∑
t

l
(1)
t m2,t,

xi4 =
1

2T

∑
t

l
(1)2
t m2,t,

xi5 =
1

6
4
√

T 3
M3,

xi6 = − 1

6T

∑
t

l
(1)
t m3,t,

xi7 = − 1
4
√

T 3

∑
t

l
(1)
t L2

t−1,

xi8 =
1

T

∑
t

l
(1)2
t L2

t−1,

xi9 =
1

T

∑
t

l
(1)
t L3

t−1,

xi10 =
1

2T

∑
t

l
(1)
t Lt−1m2,t,

xi11 =
1

2
√

T

Ti+1∑
t=Ti+1

[E (m2,t|HTi,T )− E (m2,t|H0,T )]

Note that xi11 is the only term for which the sum is over Ti + 1 to Ti+1.

(a) Terms for which
∑

j αj = 1.
Here is the list of such terms:

xi2b,

xi4 + xi10 + xi1xi3,

xi6 + xi1xi5,

xi8 + xi9 + xi1xi7.
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Terms xi21 :

∆i

= E
(
xi21|HTi−1,T

)

=
1

8T

{
E

(
M2

2 |HTi−1,T

)− E
(
M2|HTi−1,T

)2 −
[∑

t

E
(
m2

2,t|HTi−1,T

)−
∑

t

[
E

(
m2,t|HTi−1,T

)]2

]}

=
1

8T

{∑

t 6=s

E
(
m2,tm2,s|HTi−1,T

)−
∑

t6=s

E
(
m2,t|HTi−1,T

)
E

(
m2,s|HTi−1,T

)
}

.

∆i is a martingale in t for t > s and in s for s > t. It is easy to show that
∑

i E (∆2
i ) → 0.

Term xi4 + xi10 + xi1xi3 :

xi4 + xi10 + xi1xi3

=
1

2T

∑
t

l
(1)2
t m2,t +

1

2T

∑
t

l
(1)
t Lt−1m2,t − 1

2T

∑
t,s

l(1)
s l

(1)
t m2,t

= − 1

2T

∑
t,s>t

l(1)
s l

(1)
t m2,t

∆i = − 1

2T

∑
s,t<s

l(1)
s l

(1)
t m2,tE

(
ξsξ

2
t |HTi−1,T

)

is a martingale in s. Using the fact that ξ2
t ≤ 4M2, we have

E
(
∆2

i

)
=

1

4T 2

∑
s

E


l(1)2

s

(∑
t<s

l
(1)
t m2,t

)2

 E

[
E

(
ξsξ

2
t |HTi−1,T

)2
]

≤ M2

T 2

∑
s


E

(
l(1)4
s

)
E




(∑
t<s

l
(1)
t m2,t

)4






1/2

E
[
E

(
ξs|HTi−1,T

)2
]

≤ const
B2

L

T 2

∑
s

λ2(s−Ti−1).

Hence ∑
i

E
(
∆2

i

) ∼ BL

T
→ 0.

Term xi6 + xi1xi5 :

xi6 + xi1xi5 = − 1

6T

∑
t

l
(1)
t m3,t +

1

6T

∑
t,s

l
(1)
t m3,s

=
1

6T

∑
t>s

l
(1)
t m3,s +

1

6T

∑
t<s

l
(1)
t m3,s.
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We can treat separately the two terms on the r.h.s. They are both martingales. We get
the same rate as for the previous case.

Term xi8 + xi9 + xi1xi7 :

xi8 + xi9 + xi1xi7

=
1

T

∑
t

l
(1)2
t L2

t−1 +
1

T

∑
t

l
(1)
t L3

t−1 −
1

T

∑
t

l
(1)
t L2

t−1

∑
s

l(1)
s

= − 1

T

∑
s

l(1)
s

∑
t<s

l
(1)
t L2

t−1

∆i is again a martingale, we obtain

E
(
∆2

i

) ≤ const
1

T 2

∑
s

E


l(1)2

s

(∑
t<s

l
(1)
t L2

t−1

)2

 λ2(s−Ti−1)

≤ const
1

T 2

∑
s


E

(
l(1)4
s

)
E




(∑
t<s

l
(1)
t L2

t−1

)4






1/2

λ2(s−Ti−1)

≤ const
B6

L

T 2

Hence ∑
i

E
(
∆2

i

) ∼ B5
L

T
→ 0.

(b) Terms for which
∑

j αj < 1.
The list of such terms is

xi1,

xi2a,

xi3 + xi1xi2a,

xi5,

xi7,

xi11.

Term xi1 :

xi1 =
1

4
√

T

Ti∑
t=Ti−1+1

l
(1)
t (ξt) .

∆i = 0.
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Term xi2a :

∆i = E
[
xi2a|HTi−1,T

]
= 0.

Term xi3 + xi1xi2a :

xi3 + xi1xi2a = − 1

2
4
√

T 3

∑
t

l
(1)
t m2,t +

1

2
4
√

T 3

∑
t,s

l
(1)
t

(
m2,s − E

(
m2,s|HTi−1,T

))

=
1

2
4
√

T 3

∑

t 6=s

l
(1)
t

(
m2,s − E

(
m2,s|HTi−1,T

))− 1

2
4
√

T 3

∑
t

l
(1)
t E

(
m2,s|HTi−1,T

)

∆i is a martingale.
Terms xi5 and xi7 :
∆i is again a martingale.
Term xi11 : ∆i = 0.

2) Terms in αt :
We have the terms xi1, xi2, xi3, xi5, xi7, xi11.
Term xi1 :

∆i = E

(
1

4
√

T

Ti+1∑
t=Ti+1

l
(1)
t (αt) |HTi−1,T

)

=
1

4
√

T

Ti+1∑
t=Ti+1

l
(1)
t E

(
αt|HTi−1,T

)

=
1

4
√

T

Ti+1∑
t=Ti+1

l
(1)
t E

(
ηt|HTi−1,T

)

because αt = E (ηt|HTi,T )

‖∆i‖ ≤ 1
4
√

T

Ti+1∑
t=Ti+1

∥∥∥l
(1)
t

∥∥∥
∥∥E

(
ηt|HTi−1,T

)∥∥

E ‖∆i‖ ≤ 1
4
√

T

Ti+1∑
t=Ti+1

(
sup E

∥∥∥l
(1)
t

∥∥∥
)

λt−Ti−1

BN∑
i=1

E ‖∆i‖ ≤ const
4
√

T

BN∑
i=1

λBL

≤ const
4
√

T

T

BL

λBL

= constT 3/4B−k
L

BL
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for any k. Hence
∑BN

i=1 E ‖∆i‖ → 0.
The remaining terms can be treated similarly.

3) Mixed terms:
(R1) We have

∆i =
1√
T

Ti∑
t=Ti−1+1

E
[
l
(2)
t (αt, ξt) |HTi−1,T

]

=
1√
T

Ti∑
t=Ti−1+1

l
(2)
t

(
αt ⊗ E

(
ξt|HTi−1,T

))

= 0

because E
(
ξt|HTi−1,T

)
= 0. Hence, Lemma 7 applies.

Similarly, for (R3), (R5) and (R7), ∆i = 0. (R2) is a martingale and Lemma 7 applies.
For (R9), we can use the fact that E (ξt ⊗ ξt) is constant and E

(
αt|HTi−1,T

)
decays

exponentially. Indeed we have

∆i = − 1

2
4
√

T 3

Ti+1∑
t=Ti+1

l
(1)
t E(αt|HTi−1,T )m2,tE [(ξt ⊗ ξt)]

‖∆i‖ ≤ 1

2
4
√

T 3

Ti+1∑
t=Ti+1

∥∥∥l
(1)
t

∥∥∥ ‖m2,t‖
∥∥E(ηt|HTi−1,T )

∥∥

E ‖∆i‖ ≤ const
1

4
√

T 3

Ti+1∑
t=Ti+1

λt−Ti−1 ≤ λBL

4
√

T 3
.

Hence the conditions of Lemma 7 are satisfied.
Yet, terms (R4), (R6) and (R8) remain and will be taken care of later.
For products of mixed terms such that

∑
αi ≥ 1, it is easy to check that (7.4) and

(7.5) are satisfied, since there is α involved.

4) Cross-products involving αt and ξt :
Since the product has αt involved, as far as

∑
αi ≥ 1, conditions (7.4) and (7.5)

are satisfied. So we only need to concentrate on those terms with
∑

αi < 1. They are,
xi1(ξt)·xi1(αt), xi1(ξt)·xi20(αt), xi1(ξt)·xi11(αt), xi20(ξt)·xi1(αt), xi1(αt)·R1, xi11(ξt)·xi1(αt)
and xi1(ξt) · R1. ∆i is martingale in the first five cases. Hence we can apply Lemma 7.
We treat the first case in details and omit the other cases.

Term xi1(ξt) · xi1(αt) :

xi1 (α) xi1 (ξ) =
1√
T

Ti+1∑
t=Ti+1

l
(1)
t (αt)

Ti∑
s=Ti−1+1

l(1)
s (ξs) .
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The associated ∆i is a martingale. We can apply Lemma 7. Remark that

E
(
αt ⊗ ξs|HTi−1,T

)
= E

[
E (αt|Hs,T )⊗ ξs|HTi−1,T

]

= E
[
E (ηt|Hs,T )⊗ ξs|HTi−1,T

]
,∥∥E

(
αt ⊗ ξs|HTi−1,T

)∥∥ ≤ E
[‖E (ηt|Hs,T )‖ ‖ξs‖ |HTi−1,T

]

≤ constλt−sg
(
ηTi−1

, ...
)

using ‖ξs‖ ≤ 2M. Hence we have
∣∣∣∣∣∣
E


l

(1)
t (αt)

Ti∑
s=Ti−1+1

l(1)
s (ξs) |HTi−1,T




∣∣∣∣∣∣

≤
Ti∑

s=Ti−1+1

∣∣∣l(1)
t l(1)

s

∣∣∣
∣∣E (

αt ⊗ ξs|HTi−1,T

)∣∣

≤ const

Ti∑
s=Ti−1+1

∣∣∣l(1)
t l(1)

s

∣∣∣λt−sg
(
ηTi−1

, ...
)
.

And

E
(
∆2

i

) ≤ 1

T

Ti+1∑
t=Ti+1

E



E


l

(1)
t (αt)

Ti∑
s=Ti−1+1

l(1)
s (ξs) |HTi−1,T




2


≤ const

T

Ti+1∑
t=Ti+1

Ti∑
s=Ti−1+1

λ2(t−s)E

[(
l
(1)
t l(1)

s

)2
]

≤ const

T

(
sup E

∥∥∥l
(1)
t

∥∥∥
4
)2 Ti+1∑

t=Ti+1

Ti−Ti−1∑

s′=0

λ2(s′+t−Ti)

≤ const

T

(
1

1− λ2

)2

.

Therefore ∑
i

E
(
∆2

i

) → 0.

Now we turn our attention to the terms that are not martingales. Consider xi11(ξt) ·
xi1(αt).

xi11 =
1

2
√

T

Ti+1∑
t=Ti+1

[E (m2,t|HTi,T )− E (m2,t|H0,T )]

xi11(ξt) · xi1(αt)

=
1

2
4
√

T 3

Ti+1∑
t=Ti+1

m2,t [E (ξt ⊗ ξt|HTi,T )− E (ξt ⊗ ξt)]

Ti+1∑
s=Ti+1

l(1)
s (αs)
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For t = s, this term cancels out with (R8). For t 6= s, we have a martingale and we can
apply Lemma 7.

Then consider xi1(ξt) ·R1. Using l
(2)
t (αt, ξt) = l

(2)
t (ξt, αt), this term equals

1
4
√

T 3

Ti+1∑
t=Ti+1

l
(2)
t (αt, ξt)

Ti+1∑
s=Ti+1

l(1)
s (ξs)

For s > t, it is a martingale. And we know it causes no trouble as we can apply Lemma
7. So we consider

1
4
√

T 3

∑
t

l
(2)
t (αt, ξt)

∑
s≤t

l(1)
s (ξs)

=
1

4
√

T 3

∑
t

l
(2)
t (αt, ξt)l

(1)
t (ξt) (7.40)

+
1

4
√

T 3

∑
t

l
(2)
t (αt, ξt)

∑
s<t

l(1)
s (ξs) (7.41)

(7.40) cancels out with (R4). (7.41) can be rewritten as

1
4
√

T 3

∑
t

l
(2)
t (αt, ξt)Lt−1(ξ)

=
1

4
√

T 3

∑
t

(
l
(2)
t (αt, ξt) + l

(1)
t (αt)⊗ l

(1)
t (ξt)

)
Lt−1(ξ) (7.42)

− 1
4
√

T 3

∑
t

l
(1)
t (αt)⊗ l

(1)
t (ξt)Lt−1(ξ) (7.43)

(7.42) is again a martingale which causes no problem. Finally, (7.43) cancels out with
(R6).
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Proof of Corollary 3.

By Lemma 4.5 in van der Vaart (1998), contiguity holds if `β
T (θT ) = dPθT ,β/dPθT

d→ U
under PθT

with E (U) = 1. From Theorem 3, we have

dPθT ,β

dPθT

/ exp

(
1

2
√

T

T∑
t=1

µ2,t (β, θT )− 1

8
E

(
µ2,t (β, θT )2)

)
P→ 1

under PθT
. From the CLT for m.d.s, it follows that

1

2
√

T

T∑
t=1

µ2,t (β, θT )
d→ N (β)

under PθT
where N (β) is a Gaussian process with mean 0 and variance E

(
µ2,t (β, θT )2) /4 ≡

c (β, β) /4. Using the expression of the moment generating function of a normal distribu-
tion, we have

E [N (β)] = exp

(
c (β, β)

8

)
exp

(
−c (β, β)

8

)

= 1.

Proof of Theorem 3 and Lemma 3
We have to analyze the difference between

ZT (β, θT ) =
1

2
√

T

T∑
t=1

µ2,t (β, θT )−1

8
E

(
µ2,t (β, θT )2)− 1√

T

T∑
t=1

d′l(1)
t (θT )+

1

2
E

((
d′l(1)

t (θT )
)2

)

(7.44)
where

θT = θ + d/
√

T (7.45)

and d is chosen according to (3.30), and

TST (β, θ̂) =
1

2
√

T

∑
µ2,t

(
β, θ̂

)
− 1

2T
ε̂ (β)′ ε̂ (β) , (7.46)

where ε̂ (β) is the residual from the OLS regression of 1
2
µ2,t

(
β, θ̂

)
on l

(1)
t

(
θ̂
)

.

In the theorem, we are only interested in integrals with respect to the measure J .
Moreover, this measure has compact support. Hence we can assume that the variable β
is restricted to a compact set.

We can easily see that −1
8
E

(
µ2,t (β, θT )2) + 1

2
E

((
d′l(1)

t (θT )
)2

)
are continuous func-

tions of θ, converging uniformly in β to

−1

8
E

(
µ2,t (β, θ0)

2) +
1

2
E

((
d′l(1)

t (θ0)
)2

)
. (7.47)
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Let

d̂ = d̂ (β) =

(
1

T

T∑
t=1

l
(1)
t

(
θ̂
)
⊗ l

(1)
t

(
θ̂
))−1 (

1

2T

T∑
t=1

µ2,t

(
θ̂, β

)
l
(1)
t

(
θ̂
))

.

Denote yt = 1
2
µ2,t

(
θ̂
)
, xt = l

(1)
t

(
θ̂
)

, y = (y1, ..., yT )′ and X = (x1, ..., xT )′ . Using these

notations, d̂ = (X ′X)−1 X ′y and

1

4T

∑
t

[
µ2,t

(
θ̂, β

)]2

− d̂′Î
(
θ̂
)

d̂/T

=
(
y′y − y′X (X ′X)

−1
X ′y

)
/T

= y′
[
I −X (X ′X)

−1
X ′

]
y/T

= y′MXMXy/T

= ε̂ (β)
′
ε̂ (β)/T

where MX = I −X (X ′X)−1 X ′ is idempotent. Obviously our assumptions guarantee the
consistency of the ML estimator. Then it is now an elementary exercise to show that

d̂ (β) → d (β) (7.48)

and consequently

1

2T
ε̂ (β)

′
ε̂ (β) → 1

8
Eµ2,t (θ0, β)2 − 1

2
d′I(θ0)d (7.49)

=
1

2
E

[(
µ2,t (θ0, β)

2
− d′l(1)

t (θ0)

)2
]

(7.50)

by (3.30). Hence it is sufficient for us to show that

1

2
√

T

T∑
t=1

µ2,t (β, θT )− 1√
T

T∑
t=1

d′l(1)
t (θT )− 1

2
√

T

T∑
t=1

µ2,t

(
β, θ̂

)

=
1

2
√

T

T∑
t=1

µ2,t (β, θT )− 1√
T

T∑
t=1

d′l(1)
t (θT )−

(
1

2
√

T

T∑
t=1

µ2,t

(
β, θ̂

)
− 1√

T

T∑
t=1

d′l(1)
t

(
θ̂
))

converges (uniformly in β) to 0. So define the function

YT (β, θ) =
1

2
√

T

T∑
t=1

µ2,t (β, θ)− 1√
T

T∑
t=1

d′l(1)
t (θ) . (7.51)

Observe that our conditions guarantee that the ML estimator is
√

T consistent. Hence it
is sufficient to show that for all M

sup
β,‖θ−θ0‖≤M/

√
T

|YT (β, θ)− YT (β, θ0)| → 0 (7.52)
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Obviously YT is at least twice continuously differentiable as a function of θ, and we can
easily see that its second derivative is O(

√
T ). Hence to show (7.52) it is sufficient to

show that the first derivative is o(
√

T ) or equivalently

∂

∂θ

(
1

2T

T∑
t=1

µ2,t (β, θ)− 1

T

T∑
t=1

d′l(1)
t (θ)

)
→ 0 (7.53)

Here we will use “conventional” calculus for partial derivatives, because the direct
evaluation of the terms appearing in this proof is relatively easy.

Since the second derivative is O(
√

T ), and the range of the arguments is O(1/
√

T ),
the changes in the first derivative are O(1). Hence it is sufficient to show the relationship
(7.53) only for one value of θ.

Moreover, it is easily seen that these results prove the first part of Lemma 3. For the
second part, the CLT, we apply the proposition of Andrews (1994, page 2251). The finite
dimensional convergence follows from the fact that µ2,t (β, θ0) is a martingale difference
sequence and from the moment conditions imposed in Assumption 4, so that the CLT
for m.d.s. applies. The proof of stochastic equicontinuity can be done along the line of
Andrews and Ploberger (1996, Proof of Theorem 1).

Let us first state a lemma. Its proof will be given after the proof of the theorem.
To simplify our notation: All of the subsequent statements about convergence
should be understood as uniform convergence in β.

We have
1

T

∑
t

∂µ2,t

∂θ
= − 1

T

∑
t

µ2,t
∂lt
∂θ

+ oP (1)

To establish (7.53), we have to show that

1

2T

∑
t

∂µ2,t

∂θ
− 1

T

T∑
t=1

d′l(2)
t (θ)

P→ 0. (7.54)

The average of the second derivatives equals the negative Information matrix,

1

T

T∑
t=1

l
(2)
t (θ)

P→ −I(θ) (7.55)

and from Lemma 7, it follows that

1

T

∑
t

∂µ2,t

∂θ

P→ −cov

(
µ2,t,

∂lt
∂θ

)
. (7.56)

Then (7.53) is an easy consequence of the definition of d in (3.30).
We now have shown the first part of the theorem. It remains to prove the second part

of the theorem. Essentially we are establishing some kind of pivotal property of our test
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statistic. TST

(
θ̂, β

)
is a function of the data alone, so its distribution is determined by

the underlying distribution of the data. We did establish that the process TST

(
θ̂, β

)

converges in distribution, hence its probability distributions remain uniformly tight. For
every ε > 0 we can find compact sets of continuous functions so that their probabilities
are at least 1 − ε. The Arzela-Ascoli theorem characterizes the elements of compact
sets to be equicontinuous. Equicontinuity implies that we can approximate the integrals∫

exp(TST (β, θ̂T ))dν(β, d) by finite sums
∑

νi exp(TST (βi, θ̂T )). Hence it is sufficient to

show that the distributions of the finite-dimensional vectors
(
TST (βi, θ̂T ) : 1 ≤ i ≤ N

)

are asymptotically the same for all θ such that ‖θ − θ0‖ ≤ M/
√

T for M arbitrary.
Asymptotically, the density between probabilities corresponding to parameters θ0+h/

√
T ,

θ0 + k/
√

T is lognormal with mean O(‖h− k‖) and variance O(‖h− k‖2). Hence, for
every ε > 0 we can find finitely many parameter values, say h1, ..hj so that for every h with
‖h‖ ≤ M, there is an hi such that the total variation of the difference of the probability
distributions corresponding to parameters θ0 + h/

√
T and θ0 + hi/

√
T is smaller than ε.

Hence it is sufficient to show that the distributions of
(
TST (βi, θ̂T ) : 1 ≤ i ≤ N

)
are the

same when the data are generated by θ0 + hi/
√

T . To show this, we can apply Lemma 3.

Under Pθ0 , the TST (βi, θ̂T ) are normalized sums of martingale-differences (plus constants),
and elementary calculations show that

log
dPθ0+hi/

√
T

dPθ0

− 1√
T

T∑
t=1

hi
′l(1)

t (θT ) +
1

2
E

(
hi
′l(1)

t (θT )
)2

→ 0. (7.57)

Hence it can (from the multivariate CLT) easily be seen that the joint distribution of

TST (βi, θ̂T ) and the logarithm of the densities is a multivariate normal distributions. It is

easily verifiable that our construction of the TST (βi, θ̂T ) implies that asymptotically it is
uncorrelated and hence independent from the logarithm of the densities. Our proposition
is then an easy consequence of this fact.

So it remains to show the lemma:
Proof of Lemma 7. First we are rewriting ∂µ2,t

∂θk
. Here we omit the argument

E (ηt ⊗ ηs) .

µ2,t = l
(2)
t + l

(1)
t ⊗ l

(1)
t + 2

∑
s>0

l
(1)
t ⊗ l

(1)
t−s

∂

∂θk

(l
(2)
t + l

(1)
t ⊗ l

(1)
t ) =

∂

∂θk

(
∂2lt

∂θi∂θj

+
∂lt
∂θi

∂lt
∂θj

)
=

∂3lt
∂θk∂θi∂θj

+
∂2lt

∂θk∂θi

∂lt
∂θj

+
∂lt
∂θi

∂2lt
∂θk∂θj

from the third Bartlett identity,

m3,t =
∂3lt

∂θk∂θi∂θj

+
∂lt
∂θj

∂2lt
∂θk∂θi

+
∂lt
∂θi

∂2lt
∂θk∂θj

+
∂lt
∂θk

∂2lt
∂θi∂θj

+
∂lt
∂θi

∂lt
∂θj

∂lt
∂θk
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is a martingale difference sequence and therefore 1
T

∑T
t=1 m3,t = op (1) .

∂

∂θk

1

T

T∑
t=1

(l
(2)
t + l

(1)
t ⊗ l

(1)
t ) =

1

T

T∑
t=1

m3,t − 1

T

T∑
t=1

[
∂2lt

∂θi∂θj

+
∂lt
∂θi

∂lt
∂θj

]
∂lt
∂θk

= op (1)− 1

T

T∑
t=1

[
∂2lt

∂θi∂θj

+
∂lt
∂θi

∂lt
∂θj

]
∂lt
∂θk

.

∂

∂θk

2

T

T∑
t=1

∑
s>0

∂lt
∂θi

∂lt−s

∂θj

=
2

T

T∑
t=1

∑
s>0

[
∂2lt

∂θk∂θi

∂lt−s

∂θj

+
∂lt
∂θi

∂2lt−s

∂θk∂θj

]

=
2

T

T∑
t=1

∑
s>0

[
∂2lt

∂θk∂θi

+
∂lt
∂θk

∂lt
∂θi

]
∂lt−s

∂θj

+
2

T

T∑
t=1

∑
s>0

∂lt
∂θi

∂2lt−s

∂θk∂θj

− 2

T

T∑
t=1

∑
s>0

∂lt
∂θi

∂lt
∂θj

∂lt−s

∂θk

= op (1)− 2

T

T∑
t=1

∑
s>0

∂lt
∂θi

∂lt
∂θj

∂lt−s

∂θk

because ∂2lt
∂θk∂θi

+ ∂lt
∂θk

∂lt
∂θi

and ∂lt
∂θi

are m.d.s. Therefore, we have

1

T

T∑
t=1

∂µ2,t

∂θk

= − 1

T

T∑
t=1

[
∂2lt

∂θi∂θj

+
∂lt
∂θi

∂lt
∂θj

+
2

T

T∑
t=1

∑
s>0

∂lt
∂θi

∂lt−s

∂θj

]
∂lt
∂θk

+ oP (1)

= −ĉov

(
µ2,t,

∂lt
∂θk

)
+ oP (1)

where ĉov denotes the empirical covariance. It is now an easy exercise to show that

ĉov
(
µ2,t,

∂lt
∂θk

)
→ cov

(
µ2,t,

∂lt
∂θk

)
.

Proof of Proposition 5.
We do the proof for the case where St takes two values only. The generalization to

three regimes is immediate. We use the following notation zt = ln (Pt) and wt = ln (Dt)
and we reparametrize slightly (5.3) so that

zt = a0 + a1wt + yt

yt = αst +
l∑

j=1

γst,jyt−j + εt.
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In the two-step approach, the parameters are such that
∑

ŷt = 0, (7.58)
∑

wtŷt = 0, (7.59)
∑

ε̂i
tP (St = i|ŷt−1, ..., ŷ1) = 0, (7.60)

∑
ŷt−j ε̂

i
tP (St = i|ŷt−1, ..., ŷ1) = 0, j = 1, ..., l, i = 0, 1. (7.61)

The last two equations are obtained using the expression of the score given by Hamilton
(1994, page 692) and the notation

ε̂i
t = ŷt − α̂i −

l∑
j=1

γ̂i,j ŷt−j,

ŷt = zt − â0 − â1wt

= (zt − z)− â1 (wt − w)

Note that there is a potential problem of identification as
∑

ŷt = 0 by construction.
Therefore, we do not estimate a0 when we do global MLE, instead we demean the time
series zt and wt. To compute the global MLE, we use the equation

(
1−

l∑
j=1

γst,jL
j

)
(zt − z) = a1

(
1−

l∑
j=1

γst,jL
j

)
(wt − w) + αst + εt.

Hence the conditional log-likelihood equals

ln f (zt|wt, zt−1, wt−1, .., z1, w1; st)

= − ln
(√

2πσ
)
− 1

2σ2

{(
1−

l∑
j=1

γst,jL
j

)
((zt − z)− a1 (wt − w))− αst

}2

Using Hamilton (1994), the scores can be written as

∂L

∂δ
=

∑
t

∑
st=0,1

∂

∂δ
ln f (zt|wt, zt−1, wt−1, .., z1, w1; st) P (St = st|zt−1, wt−1, ..., z1, w1) .

Hence we have

∂L

∂αi

=
1

σ2

∑
t

ε̂i
tP (St = i|zt−1, wt−1, ..., z1, w1) = 0, i = 0, 1 (7.62)

∂L

∂γi,j

=
1

σ2

∑
t

ŷt−j ε̂
i
tP (St = i|zt−1, wt−1, ..., z1, w1) = 0, j = 1, ..., l, i = 0, 1.(7.63)

As the relevant information (for St) contained in σ (zt−1, wt−1, ..., z1, w1) is the same as
that contained in σ (ŷt−1, ..., ŷ1), (7.62) and (7.63) coincide with (7.60) and (7.61).
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∂L

∂a1

=
1

σ2

∑
t

∑
i=0,1

(
(wt − w)−

∑
j

γ̂i,j (wt−j − w)

)
ε̂i

tP (St = i|zt−1, wt−1, ..., z1, w1) = 0.

(7.64)
Note that γ̂i,j is selected so that (7.62) and (7.63) hold. (7.64) will be guaranteed if

∑
t

∑
i=0,1

(wt − w)

(
ŷt − α̂i −

l∑
j=1

γ̂i,j ŷt−j

)
P (St = i|zt−1, wt−1, ..., z1, w1) = 0(7.65)

∑
t

∑
i=0,1

(wt−j − w) ε̂i
tP (St = i|zt−1, wt−1, ..., z1, w1) = 0

(7.65) holds if
∑

t

(wt − w) ŷt = 0 (7.66)

∑
t

∑
i=0,1

(wt − w)

(
α̂i +

l∑
j=1

γ̂i,j ŷt−j

)
P (St = i|zt−1, wt−1, ..., z1, w1) = 0 (7.67)

j, k = 1, ..., l where ȳ =
∑

t ŷt/T.

(7.66) ⇔
∑

t

wt (ŷt − ȳ) = 0

⇔
∑

t

wt ((zt − z)− â1 (wt − w)) = 0,

corresponds to (7.59). The other equations overidentify the parameters but are satisfied
in large sample as long as wt is strictly exogenous. So far, we have shown that the two-
step estimators coincide asymptotically with the global MLE. Now we turn our attention
toward the independence.

To show the independence, we need to show that the Hessian is block diagonal. We
consider the Hessian for the true values of the parameters.

∂2L

∂a1∂αi

= − 1

σ2

∑
t

(
(wt − w)−

∑
j

γi,j (wt−j − w)

)
P (St = i|zt−1, wt−1, ..., z1, w1)

E

[
∂2L

∂a1∂αi

]
= 0

because

E [(wt−j − w) P (St = 1|zt−1, wt−1, ..., z1, w1)]

= E [(wt−j − w) P (St = 1|yt−1, ..., y1)]

= E [(wt−j − w) St]

= E (wt−j − w) E (St)

= 0, j = 0, 1, ..., l,
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assuming that wt is uncorrelated with yt, ..., yT .

∂2L

∂a1∂γi,j

= − 1

σ2

∑
t

(
(wt − w)−

∑

k

γi,k (wt−k − w)

)
yt−jP (St = i|zt−1, wt−1, ..., z1, w1)

− 1

σ2

∑
t

(wt−j − w) εi
tP (St = i|zt−1, wt−1, ..., z1, w1)

E

[
∂2L

∂a1∂γi,j

]
= 0.

In conclusion, â1 is independent of (α̂i, γ̂i,j) if zt is strictly exogenous.
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Figure 1: Comparison of size-corrected powers

Figure 2: Linear model with intercept
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Figure 3: ARCH(1)

Figure 4: IGARCH(1,1)

73


