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ABSTRACT

Difference in differences methods have become very popular in applied work.  This paper provides

a new method for inference in these models when there are a small number of policy changes.  This

situation occurs in many implementations of these estimators.  Identification of the key parameter

typically arises when a group “changes” some particular policy.  The asymptotic approximations that

are typically employed assume that the number of cross sectional groups, N, times the number of

time periods, T, is large.  However, even when N or T is large, the number of actual policy changes

observed in the data is often very small.  In this case, we argue that point estimators of treatment

effects should not be thought of as being consistent and that the standard methods that researchers

use to perform inference in these models are not appropriate.  We develop an alternative approach

to inference under the assumption that there are a finite number of policy changes in the data, using

asymptotic approximations as the number of non-changing groups gets large.  In this situation we

cannot obtain a consistent point estimator for the key treatment effect parameter.  However, we can

consistently estimate the finite-sample distribution of the treatment effect estimator, up to the

unknown parameter itself.  This allows us to perform hypothesis tests and construct confidence

intervals.  For expositional and motivational purposes, we focus on the difference in differences case,

but our approach should be appropriate more generally in treatment effect models which employ a

large number of controls, but a small number of treatments.  We demonstrate the use of the approach

by analyzing the effect of college merit aide programs on college attendance.  We show that in some

cases the standard approach can give misleading results.
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1 Introduction

Difference in differences methods have become very popular in applied work. These models

are typically quite easy to implement and to interpret. However, performing inference with

these models is often difficult. The goal of this paper is to address one particular aspect that

is likely to be very important in many implementations of these estimators. Identification

of the key parameter often arises when a group “changes” some particular policy. We use

the notation N0 to refer to the number of “treatment” groups that change their policy in

the data and N1 to refer to the number of “control” groups who do not change their policy.

The asymptotic approximations that are typically employed assume that the number of both

groups, N0 and N1, are large. However, even when the total number of groups is large, the

number of actual policy changes observed in the data is often very small. In this case, we

argue that point estimators of treatment effects should not be thought of as being consistent

and that the standard methods that researchers use to perform inference in these models

are not appropriate. We develop an alternative approach to inference under the assumption

that N0 is finite, using asymptotic approximations that let N1 grow large. While our point

estimator of the treatment effect parameter is not consistent, we can consistently estimate its

finite-sample distribution up to the true value of the parameter itself. This allows us to test

the hypothesis that this parameter takes on any given value and to construct a confidence

interval for it by ‘inverting’ a test statistic. For expositional and motivational purposes, we

focus on the difference in differences case, but our approach is appropriate more generally in

treatment effect models in which there are a large number of controls, but a small number

of treatments.

Our approach is related to a large body of existing work on difference and difference

models and inference in more general group effect models.1 It is complementary to typical

approaches focusing on situations where the number of treatment and control groups, N0

and N1, are both large (e.g. Moulton, 1990) or both small (e.g. Donald and Lang, 2002).

Our approach is in the spirit of comparisons of changes in treatment groups to control

groups often done by careful applied researchers. Anderson and Meyer (2000) provide a

nice example of the type of question for which our methodology is particularly well suited.

They examine the effect of changes in unemployment insurance payroll in Washington state

1See for example Angrist and Krueger (1999) and Meyer (1995) for overviews of difference in difference
methods. Wooldrige (2003) provides a concise survey of group effect models.
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on a number of outcomes using a difference in differences approach with all other states

representing the control groups. In addition to standard analysis, they compare the change

in the policy in Washington state to the distribution of changes across other states during

the same period in time in order determine whether it is an outlier consistent with a policy

effect. This application of exact inference is very much in the spirit of our approach. Our

approach can also be thought of as a generalization/formalization of other exact inference

type procedures like the ‘placebo laws’ experiments that Bertrand, Duflo, and Mullainathan

(2004) use to obtain critical values for hypotheses testing under a particular null hypothesis

about the distribution of the treatment indicator.2

There are so many examples of difference-in-differences-style empirical work that we do

not attempt to survey them. Bertrand, Duflo, and Mullainathan (2004) provide a nice

overview. However, we will mention a few examples for which our approach seems appro-

priate. As mentioned above, Anderson and Meyer (2000) look at changes in Washington

state using other states as controls. Another example is the effects of merit aid programs

on college attendance. For example, in some of her specifications Dynarski (2004) identifies

the effect using a policy change from a single state (Georgia). Finally, Gruber, Levine, and

Staiger (1999) use comparisons between the five treatment states that legalized abortion

prior to Roe v. Wade versus the remaining states.

One can also find many studies which use a small number of both treatments and controls.

However, if there exist group×time effects, the usual approach for inference is inappropriate.
An alternative sample design is to collect many control groups. One could then use our

methods for appropriate inference. For example Card and Krueger (1994) examine the

impact of the New Jersey minimumwage law change on employment in the fast food industry.

Their sample design includes only one control group (eastern Pennsylvania), but they could

have collected data frommany “control states” to contrast with the available treatment state.

Another famous example is Card (1990) who examines the effect of the Mariel Boatlift on

2Bertrand, Duflo, and Mullainathan (2004) concern themselves primarily with serial correlation and
mostly use a standard asymptotic approach, but at one point also discuss an exact test using a ‘placebo
laws’ experiment. The placebo laws experiment of Bertrand et. al. recovers the exact distribution of a
treatment effect parameter (conditional on state and time fixed effects) for group-time aggregates under
a particular null hypothesis. Our thought experiment is somewhat different as we use the control groups
to obtain a consistent estimate of the distribution of a treatment effect parameter, which is then used to
conduct small sample inference for the treatment group. Our setup allows for a richer set of models in terms
of regressors and unobservable structure; special cases of our setup will result in inference analogous to that
obtained via the Bertrand et. al. simulation.
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the Miami labor market. He uses four comparison cities as controls, but could have used

many additional cites.

The closest analog to our approach to inference in econometrics is work on testing for

structural breaks. In particular, work on testing for end-of-sample stability/structural breaks

such as that by, e.g., Dufor, Ghysels, and Hall (1994) and Andrews (2003) is quite related

to our basic approach. These authors consider the problem of testing for a structural break

over a fixed and perhaps very short interval at the end of a sample, analogous to our N0

observations on policy changers. They develop tests that are asymptotically valid as the

number of observations before the potential break point grows, holding fixed the number of

points after the break point. This is analogous to our taking large N1 limits with fixed N0.

Asymptotically valid critical values for these tests rely on using the time span before the

potential break to get consistent estimates of the distribution of a test statistic formed from

data during the fixed end-of-sample interval. Andrews accomplishes this via a procedure

akin to subsampling and Dufor, Ghysels, and Hall (1994) use semi-nonparametric density

estimators. Again, our method for constructing interval estimates is roughly analogous in

that we use consistent model estimates obtained from the N1 non-changers to characterize

the small-sample distribution of the treatment parameter.

Basic Model and Problem

We consider a case in which we have repeated cross section data3 from different groups (e.g.

U.S. states) and time periods. To give the main intuition for the result consider a simple

version of the model with an individual i, with outcome Yi who is in group j(i), and observed

at time t(i). We model his outcome as

Yi = αdj(i)t(i) + θj(i) + γt(i) + ηj(i)t(i) + εi (1)

where djt is the policy variable of interest.4 The parameter θj is a fixed effect for group

j = 1, ..., N0 + N1 that will be common to group j across time, γt is a time effect that is

common across all groups but varies across time t = 1, ..., T , ηjt is a group×time random
effect that varies across groups and time, and εi is an individual specific error term. We

assume that εi is i.i.d. with E(εi) = 0 and that it is independent of all other terms in the

3Extension of these results to panel data is straight forward. We assume throughout that we are using
cross sectional data to economize already complicated notation.

4We focus on linear models, but extensions to nonlinear models seem feasible combining the approach
here with Athey and Imbens (2002).
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model. Let M(j, t) be the set of individuals observed in group j at time t and |M(j, t)|
denote the number of individuals in this set. We assume throughout this paper that T is

fixed. The primary goal is to estimate the treatment parameter α.

Initial work using this model ignored ηjt which leads to the classic difference in differences

estimator. In this case one can obtain a consistent estimate of α using only two groups and

two time periods. In particular assume that

ηjt ≡ 0 for all j, t (2)

and denote the two groups j = {0, 1} and two time periods t = {0, 1}. Suppose further
that the policy variable is binary, and for group 0, there is no change in the treatment

(d00 = d01 = 0), but for group 1 the treatment is enacted between the periods zero and one

(d10 = 0, d11 = 1). We define the notation Y jt and εjt to denote the averages of Yi and εi

across all the individuals in group j at time t, (i.e. Y jt =
1

|M(j,t)|
P

i∈M(j,t) Yi). The classic

difference in differences estimator is:

bαDD ≡
¡
Y 11 − Y 10

¢
−
¡
Y 01 − Y 00

¢
= (α+ θ1 + γ1 − θ1 − γ0)− (θ0 + γ1 − θ0 − γ0) + (ε11 − ε10)− (ε01 − ε00)

= (α+ γ1 − γ0)− (γ1 − γ0) + (ε11 − ε10)− (ε01 − ε00)

=α+ (ε11 − ε10)− (ε01 − ε00)

p→α.

The group and time effects of course drop out due to the differencing, with large samples

within each group/time the ε terms vanish, and if (2) holds bαDD is a consistent estimator of

α as |M(j, t)| gets large for each group/period.
In the past decade or so, researchers have recognized that (2) is an extremely strong

assumption and they have tried to account for η effects in estimation (see e.g. Moulton,

1990). It is easy to show that two group/two time period differences in difference is not

consistent without assuming (2). In that case

bαDD =α+ (η11 − η10)− (η01 − η00)+

(ε11 − ε10)− (ε01 − ε00)

p→α+ (η11 − η10)− (η01 − η00).

The term involving (η11 − η10) − (η01 − η00) does not vanish as the number of observed

individuals at each group/time period increases. Our focus is on analogs of this situation
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where a fixed number of groups with policy changes imply that the randomness due to η

cannot be eliminated by cross-group averaging.5

Many empirical economists recognize this problem and augment their ‘natural experi-

ment’ by collecting data from additional groups that do not experience treatment changes

and/or additional time periods. For simplicity, assume that only the first group experiences

a treatment change after period t∗, so the binary treatment indicator for group one can be

written as:

d1t = 1(t > t∗)

(where 1(·) is the indicator function) and for all other groups djt = djτ for all t and τ . Also

to keep the exposition simple, assume that all cell sizes are the same (|M(j, t)| = m). Note

that djt for control group j could be all zeros or all ones. Consider estimating the model

(1) by using fixed effects regression, controlling for group and time effects through dummy

variables. Let bαFE be the regression estimate of α. It is straight forward to show that this

can be written as a difference of differences

bαFE = α+

"
1

T − t∗

TX
t=t∗+1

(η1t + ε1t)−
1

t∗

t∗X
t=1

(η1t + ε1t)

#
(3)

−
Ã

1

(N − 1)

NX
j=2

1

(T − t∗)

TX
t=t∗+1

¡
ηjt + εjt

¢
− 1

(N − 1)

NX
j=2

1

t∗

t∗X
t=1

¡
ηjt + εjt

¢!

The terms involving εjt will all vanish as within-group sample sizes grow (i.e. m → ∞). If
E(ηjt | djt) = 0 then this yields an unbiased estimate of α. However, bαFE is not consistent as

the number of groups grows since the term in brackets approaches
³

1
T−t∗

PT
t=t∗+1 η1t − 1

t∗

Pt∗

t=1 η1t

´
as either m or N get large.

This problem is rarely acknowledged in empirical work and researchers often ignore it

when calculating standard errors. In practice, if the error terms are truly normally distrib-

uted, standard methods will yield the correct standard errors (if degree of freedom correc-

tions are used, see Donald and Lang, 2001). However, if the distribution of ηjt is sufficiently

different from normal, the standard errors may be very misleading.

The example presented in equation (3) considered the case of a single treatment group.

Clearly the same problem holds when the number of treatment groups is small.6 The goal of

5Of course with access to many groups that experience a policy change, averaging across groups can yield
a consistent estimator of α under suitable assumptions about η.

6Clearly the precise sample size that constitutes “small” is an empirical question that is beyond the scope
of this paper.
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this paper is to show that even though one can not obtain consistent estimates of α in these

cases, it is still possible to perform inference. We assume that there are a finite number of

policy changes in the data N0, but approximate the distribution of our estimator of α taking

limits as the number of control groups (N1) gets large.

The remainder of this paper is organized into four sections. In Section 2, we present

regression models for both group and individual-level data. In each case we show how to

perform inference about the parameter α. Extensions to limited dependent variables are

discussed in Section 3. Section 4 of the paper provides an illustrative example application

estimating the effect of merit aid programs upon college attendance. Finally, Section 5 offers

brief conclusions.

2 Models

This section presents two models. In the first, we assume that we have one observation per

group×time cell (e.g. data that is collected at the state×year level). In the second, we allow
multiple observations per group×time. For the second model we focus on approximations in
which the number of individuals in a group×time cell remains fixed, suitable for applications
where at least some of the groups are small.

2.1 Model 1

We start by discussing the analog of equation (1) defined at the group×time level and
allowing for regressors. We assume that

Yjt = αdjt +X 0
jtβ + θj + γt + ηjt. (4)

Note that we no longer restrict djt to be binary.

The crucial assumption for difference in differences is that changes in ηjt are unrelated

to imposition of the treatment. In order to perform inference in our case, we also assume

that (ηj1, ..., ηjT ) is independent and identically distributed across groups. Within a group,

we allow arbitrary correlation over time.

Assumption 1.1
¡¡
Xj1, ηj1

¢
, ...,

¡
XjT , ηjT

¢¢
is independent and identically distributed across

units;
¡
ηj1, ..., ηjT

¢
is independent of (dj1, ..., djT ) and (Xj1, ...,XjT ) and has a bounded den-

sity and bounded support; and all random variables have finite second moments.
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The key problem motivating our approach is that for many groups there is little variation

in djt. Following the notation in the introduction, define N0 as the number of groups for

which djt changes during the sample period and let N1 represent the number of remaining

groups. We will refer to theN0 changers as treatment groups and the remaining non-changing

groups as controls. Without loss of generality, define the index j so that the j = 1, ..., N0

represents the observations for which djt changes at some time t and j = N0+1, ..., N0+N1

represents the observations for which djt is unchanged for the whole sample. Thus if j > N0

then for any t = 1, ..., T, djt = dj1. We treat N0 and T as fixed, taking limits as N1 grows

large. We are assuming throughout that at least one group changes its policy so that N0 ≥ 1.
For any random variable Zjt, define

Zj =
1

T

TX
t=1

Zjt

Zt =
1

N1 +N0

N1+N0X
j=1

Zjt

Z =
1

T

1

N1 +N0

TX
t=1

N1+N0X
j=1

Zjt

fZjt = Zjt − Zj − Zt + Z

The essence of ‘difference in differences’ is that we can rewrite regression model (4) as

eYjt = αedjt + eX 0
jtβ + eηjt. (5)

One can then estimate α by regressing eYjt on edjt and eXjt. Let bα and bβ denote the OLS
estimates of α and β in (5).

We need an assumption to guarantee that after taking out time and fixed effects, eXjt is

not collinear.

Assumption 1.2
1

N1 +N0

N1+N0X
j=1

TX
t=1

eXjt
eX 0
jt

p→ Σx

where Σx is finite and of full rank.

In Proposition 1.1 we show that OLS yields a consistent estimator of β and we derive

the limiting distribution of bα.
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Proposition 1.1 Under Assumptions 1.1-1.2,

bβ p→ β

(bα− α)
p→
PN0

j=1

PT
t=1

¡
djt − dj

¢ ¡
ηjt − ηj

¢PN0
j=1

PT
t=1

¡
djt − dj

¢2
as N1 →∞.

In the expression above,
¡
ηjt − ηj

¢
appears rather than the original residual eηjt. This results

because both ηt and η converge in probability to zero as N1 gets large.

The fact that bα is not consistent does not prevent us from conducting inference about

the true value of α. The difference between bα and α depends on two variables: djt and¡
ηjt − ηj

¢
. The djt are observable and the distribution of

¡
ηjt − ηj

¢
can be estimated from

the control groups, j > N0. Therefore, we can estimate the asymptotic (N1 →∞) conditional
distribution of (bα− α) given djt for the treatment groups. We state this as Proposition 1.2

below. Estimation of the distribution of bα allows hypothesis testing on α and construction

of confidence intervals for (bα− α).

To see how the distribution of
¡
ηjt − ηj

¢
can be estimated, consider estimation of the

residual for a member of the control group (i.e. j > N0),eYjt − eX 0
jtβ̂ = eX 0

jt(β̂ − β) +
¡
ηjt − ηj − ηt + η

¢
p→
¡
ηjt − ηj

¢
hence the distribution of

¡
ηjt − ηj

¢
is trivially identified using residuals for groups j̇ > N0.

From this it is straight forward to show how to estimate the asymptotic distribution ofbα up to α. Let
Γ(a) ≡ plim

N1→∞
Pr((bα− α) < a | {djt, j = 1, .., N0, t = 1, ..., T}).

We will estimate Γ(a) with the analogous empirical distribution of residuals from the control

groups. For the N0=1 case we can estimate Γ(a) using

bΓ (a) ≡ 1

N1

N0+N1X
c=N0+1

1

⎛⎝PT
t=1

¡
d1t − d1

¢ ³eYct − eX 0
ctβ̂
´

PT
t=1

¡
d1t − d1

¢2 < a

⎞⎠ .

More generally

bΓ (a) ≡ µ 1

N1

¶N0 N0+N1X
c1=N0+1

...
N0+N1X

cN0=N0+1

1

⎛⎝PN0
j=1

PT
t=1

¡
djt − dj

¢ ³eYcjt − eX 0
cjt
β̂
´

PN0
j=1

PT
t=1

¡
djt − dj

¢2 < a

⎞⎠ .
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Proposition 1.2 Under Assumptions 1.1 and 1.2, bΓ(a) converges uniformly to Γ(a).

To see the usefulness of this result, first consider testing the null hypothesis

H0 : α = α0

conditioning on the observed sequence djt, j = 1, .., N0, t = 1, ..., T. We could define an ap-

proximate 95% acceptance region by
³ bA1, bA2´ as the maximum value of Alower and minimum

value of Aupper such that

bΓ (Aupper − α0) ≥ 0.975bΓ (Alower − α0) ≤ 0.025.

Then we reject if bα is outside h bA1, bA2i . Under the null hypothesis, the rejection probability
will converge to 5% as N1 → ∞. We define an approximate confidence interval of α as the
set of α0 for which we do not reject the null hypothesis. As N1 →∞,the coverage probability

of this interval will converge to 95%.

2.2 Model 2

Now we augment the model to allow for individual data. Since difference-in-differences meth-

ods are most commonly used with repeated cross-section data, we let i index an individual

who is observed within a single group at a single time period. As in the introduction, we

use the notation j(i) to represent the group to which individual i belongs, and t(i) to repre-

sent the time period in which we observe individual i. We also continue to assume that the

data come from repeated cross sections so that we only observe individual i during one time

period. We see no reason why extension to panel data would be problematic. Our model is

analogous to (1) with the addition of regressors:

Yi = αdj(i)t(i) +X 0
iβ + θj(i) + γt(i) + ηj(i)t(i) + εi. (6)

Given that the model is defined somewhat differently than in the previous section, we need

to modify the assumptions slightly:

Assumption 2.1
©
ηjt, {Xi : i ∈M(j, t)}

ªT
t=1
is i.i.d. across groups Xi is i.i.d. within group

for all j and t,and all second moments exist. Furthermore the distribution of
¡
ηj1, ..., ηjT

¢
is

independent of (dj1, ..., djT ) and {Xi : i ∈M(j, t)}Tt=1 and has a bounded density and bounded
support.
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We add the additional assumption that

Assumption 2.2 εi is i.i.d. across individuals and is independent of (djt,Xi, ηjt) and

E(εi) = 0.

We use notation analogous to the above for Model 1. First, we modify the notation for

averages across time within a group. For a generic variable Zi define

Zj =

PT
t=1

P
i∈M(j,t) ZiPT

t=1 |M(j, t)|
.

Since in general, the number of individuals varies across (j, t) cells, derivation of the

difference in differences operator requires additional notation. We need to formally define

the full set of indicators for groups {gci}N0+N1c=1 and time periods, {pτi}T−1τ=1 so that

gci ≡ 1(c = j(i)) (7)

pτi ≡ 1(τ = t(i)). (8)

Further define Gi and Pi as the vectors of these dummy variables,

Gi ≡
£
g1i g2i . . . gNo+N1,i

¤0
(9)

Pi ≡
£
p1i p2i . . . pT−1,i

¤0
. (10)

Then for any individual-specific random variable Zi, let eZi be the residual from a linear

regression of Zi on {gci}N0+N1c=1 and {pτi}T−1τ=1 . That is

eZi ≡ Zi −
∙
Gi

Pi

¸0⎛⎝N0+N1X
j=1

TX
t=1

X
h∈M(j,t)

∙
Gh

Ph

¸ ∙
Gh

Ph

¸0⎞⎠−1⎛⎝N0+N1X
j=1

TX
t=1

X
h∈M(j,t)

∙
Gh

Ph

¸
Zh

⎞⎠ .

We need a regularity condition to guarantee enough degrees of freedom that regressions

upon time and group indicators can be run.

Assumption 2.3PN0+N1
j=1

PT
t=1

P
i∈M(j,t) PiP

0
iPN0

j=1

PT
t=1 |M(j, t)|

−

PN0+N1
j=1

PT
t=1

P
i∈M(j,t) PiG

0
i

³PN0+N1
j=1

PT
t=1

P
i∈M(j,t)GiG

0
i

´−1PN0+N1
j=1

PT
t=1

P
i∈M(j,t)GiP

0
iPN0

j=1

PT
t=1 |M(j, t)|

p→ Ω

where Ω is of full rank.
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Under this condition, we can rewrite the model as:

eYi = αedj(i)t(i) + eX 0
iβ + eηj(i)t(i) +eεi. (11)

We estimate α and β in equation (11) by OLS, letting bα and bβ denote the corresponding
estimators. This requires the usual OLS rank condition stated as

Assumption 2.4 PN1+N0
j=1

PT
t=1

P
i∈M(j,t)

eXi
eX 0
iPN1+N0

j=1

PT
t=1 |M(j, t)|

p→ Σx

where Σx is finite and of full rank.

When each (j, t) cell has a large sample, inference in model (11) can be conducted in

essentially the same manner as for Model 1 since averaging within time×group cells effectively
eliminates eεi. For the sake of completeness, in the Appendix, we present a consistency result
for bβ and the distribution of bα, when |M(j, t)| and N1 grow.

However, we focus on the fixed-|M(j, t)| case because we anticipate that it will be more
appropriate for a majority of applications. This is because large |M(j, t)| approximations
must work in all group/time period cells-not just on average—in order for the resulting

approximation for the distribution of (bα − α) to perform well. There will routinely be

substantial heterogeneity in |M(j, t)| across groups, e.g. states, with the smallest |M(j, t)|
perhaps best considered a small rather than large sample. For example, in our illustrative

example application using states as groups, |M(j, t)| ranges from 383 to 15. We characterize
the fixed |M(j, t)| case in the following manner:

Assumption 2.5 For each j = 1, .., N0 + N1, |M(j, t)| for t = 1, ..., T is fixed and finite.

In addition, (|M(j, t)| , t = 1, ..., T ) is independent and identically distributed across j for
j > N0 and jointly independent of η and ε.

Note that we have assumed that |M(j, t)| is i.i.d. for j > N0, but we allow the distribution

of |M(j, t)| for j ≤ N0 to differ from the distribution of |M(j, t)| for j > N0. For example, if

larger states were likely to implement policy changes earlier, the distribution of |M(j, t)| for
j ≤ N0 would stochastically dominate the distribution of |M(j, t)| for j > N0.

Proposition 2.1 provides a statement of consistency for bβ as N1 grows large and the asymp-

totic distribution of (bα− α).
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Proposition 2.1 Under Assumptions 2.1-2.5,

bβ p→ β

(bα− α)
p→
PN0

j=1

PT
t=1

³P
i∈M(j,t)

¡
djt − dj

¢
(ηjt − ηj + εi − εj)

´
PN0

j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
as N1 →∞.

Analogous to model 1, the expression for (bα−α) involves (ηjt−ηj+ εjt− εj) rather than¡eηj(i)t(i) +eεi¢ . To see why, consider the regression of ηj(i)t(i)+εi on group and time indicators.
The coefficient on each group indicator converges to

¡
ηj + εj

¢
while the coefficients on the

time indicators converge to zero since these random variables both have expectation zero.

A number of different options are available for estimating the distribution of (bα − α).

In principle, with enough groups, one could simply estimate the distribution of residuals

conditional on the values of |M(j, t)| for the treatment states. We suspect that this procedure
would not work well in most applications since the number of control groups is likely not

large enough for this to be a useful approximation. Instead we take advantage of our model’s

structure to estimate the distribution of components of (ηjt − ηj + εjt − εj).

More specifically define

vi ≡ Yi −X 0
iβ (12)

=
£
αdj(i)t(i) + γt(i) + θj(i) + ηj(i)t(i)

¤
+ εi

≡ η∗j(i)t(i) + εi.

Note that since we are using control groups only, the term in brackets is constant across

individuals within the same time and group and is independent of εi. Our goal is to simulate

the distribution of (ηjt − ηj) and (εi − εj) . Note that since
¡
αdj(i)t(i) + θj(i)

¢
does not vary

across time within a group and γt does not vary across groups, knowledge of the joint

distribution of η∗jt is sufficient for knowledge of (ηjt − ηj). If we have a consistent estimate

of the distribution of εi, we can consistently estimate the distribution of (εi − εj) .

Thus our goal is to obtain consistent estimates of the distribution of η∗jt and the dis-

tribution of εi. This is a standard deconvolution problem. We will first show that these

distributions are identified making use of a well known result. We report Theorem 2.1.1 in

Prakasa Rao (1992) which he attributes to Kotlarski (1967) as Theorem 2.2.

12



Theorem 2.2 (Kotlarski, Prakasa Rao) Suppose that X1,X2,and X3 are independent

real valued random variables. Define

Z1 = X1 −X3

Z2 = X2 −X3

if the characteristic function of (Z1, Z2) does not vanish then the joint distribution of (Z1, Z2)

determines the distributions of (X1,X2, X3) up to a change of the location.

To apply the theorem we need one additional assumption.

Assumption 2.6 The characteristic functions of εi and η∗jt do not vanish.

Given that, we can show identification of the distribution of bα .
Proposition 2.3 Under Assumptions 2.1-2.6, the distribution of (bα− α) is identified from

knowledge of djt and |M(j, t)| from the treatment groups and the joint distribution of vi for

the control groups.

Many options are available to estimate the distributions of εi and η∗jt. In this section

we present one possible estimator which is perhaps the most common way to estimate this

type of mixture model in economics. We derive a sieve estimator assuming that (η∗j1, ..., η
∗
jT )

has finite support. This approach is most commonly associated with Heckman and Singer

(1984). We propose to estimate the model in two steps. First we run the fixed effects model

(11). We can construct the residual for each individual in the control set

bvi ≡ Yi −X 0
i
bβ (13)

= X 0
i

³
β − bβ´+ η∗j(i)t(i) + εi.

Our goal is to separately estimate the distribution of εi from η∗jt.We parameterize η
∗
jt to take

on K1 values with each value taking the value η(κ1) with probability P
(κ1)
1 for κ1 = 1, ..,K1.

We let ε be a mixture of normals that take on K2 values with mean and standard deviation

(µ(κ2), σ) with probability P (κ2)
2 for κ2 = 1, ...,K2. The objective function is

N0+N1X
j=N0+1

log

⎛⎝ K1X
κ1=1

TY
t=1

Y
i∈M(j,t)

K2X
κ2=1

φ

Ãbvi − η
(κ1)
t − µ(κ2)

σ

!
P
(κ1)
1 P

(κ2)
2

⎞⎠ (14)

13



where σ is prespecified. Asymptotically we allow K1 and K2 to grow with the sample size

which is why we interpret this model as a sieve model. Showing consistency of this estimator

is a straightforward application of sieve methodology, but involves introducing much new

notation. Since this is only one of numerous estimation options and to avoid introducing

this notation in the text, we leave the details of the estimation to the Appendix Section

A.7 where we show this provides a consistent estimator of the two distribution functions.

With consistent estimates of distributions of ε and the η∗jt in hand, we can simulate the

distribution of (bα− α) for any hypothesized value of α.

3 Empirical Example: The Effect of Merit-Aid Pro-
grams on Schooling Decisions

3.1 Merit-Aid Programs

In the last fifteen years a number of states have adopted merit-based aid programs. These

programs are run at the state level and provide subsidies for tuition and fees to students

who meet certain merit-based criteria. The largest and probably the best known program is

the Georgia HOPE (Helping Outstanding Pupils Educationally) scholarship which started

in 1993. This program provides full tuition as well as some fees to eligible students who

attend in-state public colleges.7 Eligibility for the program requires maintaining a 3.0 grade

point average during high school. A number of previous papers have examined the effect of

HOPE and other merit based aid programs.8 Given the large amount of previous work on

this subject, we leave full discussion of the details of these programs to these other papers

and focus on our methodological contribution.

Our work most closely relates to Dynarski (2004) by focusing on the effects of HOPE

and other merit aid programs on college enrollment of 18 and 19 year olds using the October

CPS from 1989-2000. However, our analysis differs from hers in several ways. Perhaps most

importantly, we use all states as controls while she just uses those from the South. Of course

her paper is a more complete empirical analysis while our primary goal is to demonstrate

the use of our method.

During the 1989-2000 time period, ten different states initiated merit-aid programs. We

7A subsidy for private colleges is also part of the program.
8Examples include Dynarski (2000, 2004), Cornwell, Mustard, and Sridhar (2003), Cornwell, Lee,

and Mustard, (2003), Cornwell, Leidner, and Mustard (2003), Bugler, Henry, and Rubenstein (1999),
Berker(2001), Bugler and Henry (1997,1998), Henry and Rubenstein (2002).
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use two specifications with the first focusing on the HOPE program alone. In this case,

we ignore data from the other nine “treatment” states and use 41 controls (40 states plus

the district of Columbia). In the second case, we study the effect of merit-based programs

together and use all 51 units.9 The dependent variable in our model is a dummy variable

representing whether the individual is currently enrolled in college. Given that we obtain

multiple observations of individuals in the same state at the same time, Model 2 is appro-

priate. However, since our dependent variable is binary we modify our approach somewhat

to deal with binary dependent variables. We discuss this approach in section 3.2. For esti-

mation we assume that the number of individuals in a state×year is large and present these
results in section 3.3. In section 3.4 we treat group size as fixed. We control for race and

gender throughout.

3.2 Limited Dependent Variable Models

Since our college attendance dependent variable is discrete, the analysis above can not be

applied directly. In this Subsection, we discuss an extension of Model 2 to handle limited

dependent variables.

We redefine the model letting the regression equation define a latent variable Y ∗i and

where the researcher observes only an indicator of its sign: Yi.

Y ∗i = αdj(i)t(i) +X 0
iβ + θj(i) + γt(i) + ηj(i)t(i) + εi (15)

Yi = 1(Y ∗i > 0). (16)

For computational simplicity, we assume that the distribution of εi is known with logistic

distribution Λ. We first discuss the natural extension to the case in which |M(j, t)| → ∞.

We then turn to the discussion of the more difficult case where |M(j, t)| is finite.
Consider the case in which |M(j, t)|→∞. As in section 2.2, define

η∗jt = αdjt + θj + γt + ηjt,

so that it incorporates all of the group×time variation. Then we can write

Pr(Yi = 1 | Xi, j(i), t(i)) = Λ(X 0
iβ + η∗jt).

9Note that these merit programs are quite heterogeneous. This exercise does not necessarily mean that
we are assuming that the impact of all of these programs is the same. One could interpret this as estimation
of a weighted average of the treatment effects. Alternatively, we can think of this as a test of the joint null
hypothesis that all of the effects are zero. Our methods could be extended to incorporate heterogeneous
effects in which case one could look at complicated joint tests of the effects of the programs.
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Since |M(j, t)|→∞, this is a standard discrete choice model and we can obtain consistent

estimates of β and η∗jt for each j and t by maximum likelihood where η
∗
jt can be estimated as

the coefficient on group×time dummy variables (a strategy analogous to that in Amemiya,
1978). Alternatively, we could relax the assumption that εi is logistic and use a semiparamet-

ric estimator. Having obtained consistent estimates of η∗jt we are essentially in the conditions

of Model 1 and can apply the methodology in that Section using η∗jt as the dependent vari-

able.

When |M(j, t)| is assumed fixed, we can no longer obtain consistent estimates of η∗jt in
this model and thus can not use the Model 1 methodology. To complicate things further,

the fixed effects θj cannot be differenced out in this nonlinear model. Typical solutions to

the presence of fixed effects like Chamberlain’s (1980) conditional logit model or the fixed

effects maximum score estimator (Manski, 1987) could be used to estimate β, but this is not

enough to perform hypothesis tests on α which essentially require estimation of the joint

distribution of
¡
ηj1, ..., ηjT

¢
.

Thus, in order to obtain estimates of the distribution of the error term we use somewhat

stronger assumptions. We have defined η∗jt so that

Y ∗i = X 0
iβ + η∗j(i)t(i) + εi, (17)

and we assume that for the control groups, η∗j(i)t(i) is independent of Xi.10 As long as the

support ofX 0
iβ is sufficiently large we can identify the joint distribution of (η

∗
j1+ε, ..., η

∗
jT+ε)

up to scale. Given that this joint distribution is identified for various values of |M(j, t)| ,
one can use an argument analogous to that in the proof of proposition 2.5 to show how to

identify the marginal distribution of εi and the joint distribution of (η∗j1, ..., η
∗
jT ).

11

Given knowledge of Xi, and the distribution of η∗j and εi, for any α, we can simulate the

conditional distribution of Yi given Xi and dj(i)t(i). This allows us to identify the distribution

of any test statistic that is a function of observed variables, up to the parameter α. Thus,

we can obtain interval estimates by ‘inverting’ a test statistic. First, we must choose a test

statistic that depends on (Yi,Xi, dj(i)t(i)). Since we have estimated a model that gives us the

10Note that αdjt is part of η∗jt so that it seems as if we are assuming that djt is independent of Xi. In our
example this is not the case because djt = 0 for all of the control states (in all time periods). In other cases,
one may want to modify this assumption to allow for dependence.
11Cameron and Taber (1998) discuss identification of panel data logit models with unobserved heterogene-

ity. This model is more complicated in that η is a vector, but this does not substantially complicate the
analysis.
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distribution of Yi conditional on Xi, djt, and α; we can simulate the distribution of the test

statistic under any null hypothesis α = α0.

The question then becomes which test statistic we should use. A natural choice would

be the difference-in-difference parameter from a linear probability model. That is we can

estimate the linear regression model

Yi = adj(i)t(i) +X 0
ib+G0

j(i)c+ P 0
t(i)f + ei (18)

which has group effects and time effects. Here we use different notation than in the models

above because the “true” structural model is (17) while (18) represents a “reduced form”

regression equation for which the parameters are defined by the linear projection. We can

then use the estimated value of a (call it ba) as the test statistic itself. Given our estimated
model and a null hypothesis on α, we can simulate the distribution of ba.While the estimator
is not a standard fixed effect estimator, it still embodies the central idea behind difference

in differences; we would reject the null hypothesis that α = 0 when the difference between

the pretreatment and posttreatment outcomes is substantially different than what one might

predict based on variation from the control sample.

A number of different options exist for estimation of (18). For our application the most

convenient was to first run the regression model using only the control states to produce

consistent estimates of b and f (call these estimates bb and bf ). We then estimate α by

running a (state) fixed effect regression of
³
Yi −X 0

i
bb− P 0

t(i)
bf´ on dj(i)t(i). The advantage of

this approach is that when we simulate the distribution of the test statistic we only need to

simulate the error distribution for the treatments which is all that we need in the second

stage of this procedure.

3.3 Confidence Interval Estimation under Standard Approach and
Large Group Sizes

We compare three estimation approaches in this subsection: linear probability estimators

with both population weighting across groups and equal weighting across groups, and a logit

estimator. For each estimator, we compare interval estimates for the treatment parameter

using our methods to those obtained under the typical approaches allowing clustering by

group and group-by-time.

To obtain population-weighted estimates, we estimate equation (5) via OLS using all

34,902 observations. These results are presented in the first column of Table 1. The de-
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pendent variable is a dummy variable for college enrollment and the sample only includes

individuals aged 18 and 19. The point estimates suggests that the HOPE scholarship in-

creased schooling enrollment of students who live in Georgia by about seven percentage

points. Interval estimates of the HOPE effect are presented in the second panel of the table.

The first clusters by state and year, allowing the error terms of individuals within the same

state and year to be arbitrarily correlated with each other. One can see that the coefficient is

highly significant. We next cluster by state which allows for serial correlation in ηjt. Bertrand

et. al (2004) discuss a case in which accounting for serial correlation can lead to standard

errors to increase, but in our case we find the opposite. The standard errors fall substantially

when one clusters by state. Clearly one should be worried about the asymptotic assump-

tions underlying these routine confidence interval estimates. The key assumption justifying

them is that the number of states that change status is large, but only one state (Georgia)

contributes to the estimate of the treatment effect.

The estimated confidence intervals using our method are presented in the last row of

Column 1. These confidence intervals are formed by inverting the test statistic (α̂ − α0)

using our large-sample approximation for its distribution. (For details see Appendix Section

A.4). These confidence intervals are substantially different from those obtained with typical

methods. The confidence interval increases by a factor of about 3 and the coefficient is not

significant. To see why, in Figure 1 we display the estimated distribution of (bα − α) under

the null hypothesis that the true value of α is zero (after using a kernel smoother). This

distribution is estimated from the other 41 states. It appears very different from normal so

it is not surprising that the asymptotic approximation is very different.

In the second column we present linear probability estimates resulting from a commonly

used two-step approach (Amemiya 1978). In the first stage we regress schooling on the

individual X’s and on the full interacted state×year dummies. In a second stage we regress
the predicted state×year dummies on the HOPE indicator controlling for state dummies
and year dummies (separately). These results are presented in the second column and are

remarkably close to the first. The difference between these estimates and those in the first

column is that the states are equally weighted while in the first column they are population-

weighted.

Finally we present a logit version of the model. The estimates in the third column were

obtained in exactly the same manner as in the second column, except that in the first stage
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we run a logit model of the school dummy on our X 0s and state×year dummy variables.
In the second stage we once again regress the state×year dummies on the hope indicator
controlling for state dummies and year dummies (separately). Thus the predicted parameter

has the interpretation of a logit index. The pattern is very similar. In all three cases the

HOPE variable becomes marginally insignificant when we use our approach even though

the variable is highly significant using standard methods. To display the magnitude of the

program impact we calculate a 95% confidence interval for changes in college attendance

probability for a particular individual. We consider an individual (without the treatment)

whose logit index puts his probability of college attendance at the sample unconditional

average attendance probability of 45% (i.e. an individual with a logit index of -.20). The

bracketed intervals reported in column three are 95% confidence intervals for the change in

attendance probability for our reference individual.12

In Table 2 we present results estimating the effect of merit aid using all ten states who

added programs during this time period. The format of the table is identical to Table 1.

There are a few notable features of the table. First, the weighting matters substantially as

the effect is much smaller when we weight all the states equally as opposed to the population

weighted estimates. Second, in contrast to Table 1, the confidence intervals are quite similar

when we cluster by state compared to clustering by state×year. Most importantly our

approach changes the confidence intervals substantially, but less dramatically than in Table

1.

3.4 Confidence Interval Estimation assuming Small Group Sizes

We next turn to the case in which |M(j, t)| is fixed. Given that we have 34,902 observations
one may wonder why we are worried about the number of individuals in the sample not being

substantially high. The problem is for the asymptotic approximation in Model 2 to work

well we need that the asymptotic approximation works well in all states×time periods not
just on average. The largest is California in 1991 with 383 people while the smallest is New

Hampshire in 1992 with 15 people. One very well might expect that individual components

contribute a substantial amount to the variance of the state component for the smaller states.

This would lead the variance of the effect to be substantially larger for the smaller states

12These confidence intervals for changes in attendance probabilities are calculated directly from the 95% CI
for α. Specifically, when the CI for α is [c1, c2], we report an interval for the change in predicted probability
for our reference individual of: (Λ(−.2 + c1)− 45%) to (Λ(−.2 + c2)− 45%).
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than the larger ones invalidating the previous exercise.

The deconvolution we discuss in Section 2 required that ε be independent of η. This is

not possible in a linear probability model since the dependent variable must be one or zero.

We instead use logit model (15)-(16).

We perform inference in this model in three stages. First we obtain consistent estimates of

β using Chamberlain’s (1986) fixed effect logit model using state×year fixed effects. Second
we estimate the joint distribution of eηj up to a location normalization. Finally, after choosing
a test statistic, we simulate the distribution of the test statistic from the estimated model.

The first stage is straightforward, so we now describe the second. We use a Heckman and

Singer (1994) style nonparametric maximum likelihood method analogous to that in (14).

The Log-likelihood takes the form

N0+N1X
j=N0+1

log

⎛⎝ LX
c=1

TY
t=1

Y
i∈I(j,t)

Λ(X 0
i
bβ + ηct)

Yi
³
1− Λ(X 0

i
bβ + ηct)

´1−Yi
µc

⎞⎠ .

We maximize this likelihood in terms of the ηct and µc parameters. In practice we use L=13

and we have 12 years of data.13 That yields 168 parameters.14 Naturally, local optima are a

problem in these cases so we randomly selected many different starting values to search for

a global optima.15 Given the number of parameters and their limited interpretation we do

not report these numbers.

The next goal is to obtain a confidence interval for α. We argue in section 3.2 that

a natural choice for a test statistic is the coefficient in the difference in difference model.

Following the discussion there, we can write the test statistic as

τ =

PT
t=1

PN0
j=1

P
k∈M(j,t)

edj(k)t(k) ³Yi −X 0
i
bb− P 0

t(i)
bf´PT

t=1

PN0
j=1

P
k∈M(j,t)

ed2j(k)t(k) .

We first estimate τ using the actual data.

Once we have estimated the data generation model, we can use it simulate the distribution

of τ under the null hypothesis α = α0. Note that τ will vary in these simulations both because

of heterogeneity in η and because |M(j, t)| is finite. We reject the null hypothesis if τ is less
than the 0.025 quantile or greater than the 0.975 quantile of this simulated distribution. The

confidence intervals is the set of parameters for which the null hypothesis is not rejected.
13We experimented with alternative values, and the results are not sensitive to the choice.
14That is 13×12 ηct parameters, and 12 µc parameters (since probabilities must add to one).
15Many in this case was 5000. We found that this procedure ran surprisingly fast taking only about two

days to complete all 5000 optimizations on a linux machine.
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In Table 3 we present confidence intervals constructed using this approach. The results

are similar, but not identical to those in Tables 1 and 2. The confidence interval for the

HOPE program is slightly bigger than those in the third column of Table 1. The interval for

all merit programs is similar in size but skewed slightly to the left of that in Table 2. For

this treatment effect, a one sided test probably is perhaps most interesting. At the 5% level

a one-sided test rejects the null hypothesis of no effect.

One may worry that the model we have estimated is too stylized or too flexible to ap-

proximate the data well. To examine this, we tried the following experiment somewhat like

the placebo law used in Bertrand, Duflo, and Mullainathan. We use all 41 of our control

states and construct the test statistic that we used for Georgia for testing the null hypothesis

that α = 0. That is, for each of the 41 control states in turn, we act as if the HOPE program

were operating in the state after 1993 and used the remaining 40 states as controls. For

each alternate pretend treatment state we calculate the p-value for the test that α = 0 using

our method. Since this null hypothesis is true by construction, these p-values should have

a uniform [0,1] distribution. We plot the distribution of p-values in Figure 2. We present

a histogram of the values and along the horizontal axis plot the actual p-values. The fit

of the model looks surprisingly strong in the sense that the p-values are spread throughout

the distribution. This logit approach with this test statistic is not the only way to obtain

confidence intervals for α, and is almost certainly not the most efficient, but it appears to

work well.

4 Conclusions

The main goal of this paper is to construct a method to perform inference for difference-

in-differences models when the number of policy changes observed in the data is small. We

argue that point estimates of treatment effects should not be thought of as being consistent

and that the standard methods that researchers use to perform inference in these models

are not appropriate. The main contribution of our work is to show how to perform inference

under the assumption that there are a finite number of policy changes in the data, using

asymptotic approximations as the number of control groups gets large. In this case, we

cannot obtain a consistent point estimator for the key parameter but are able to consistently

estimate its distribution, up to the unknown parameter itself. This allows us to perform

inference on the key parameter and construct confidence intervals.
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We develop this methodology in a number of different cases. Model 1 considers a regres-

sion model in which one observes group×time level data. Model 2 extend the idea to cases
in which we observe individual level data. Within Model 2 we focus on the case in which

the number of observations in a group/time cell is fixed.

We demonstrate the methodology by applying it the study of the effects of merit-aid pro-

grams on schooling. We think this application is a good example of a situation with a few

treatment groups changing policy and many controls with unchanged policies. To accom-

modate our particular example, we extend the methodology to a logit model. Our empirical

results suggest that conventional methods understate the magnitude of the standard errors

considerably. However, we still find evidence of a positive effect of merit aid programs.

We think our combination of large and small sample inference will be appropriate in many

other situations as well. For example, in applications studying the effect of a law change in

a small number of states using other states as controls. While we have focused on difference

in differences estimators, our approach is more general and is straightforward to extend to

any type of regression model in which there are a large number of control observations, but

only a small number of treatments.
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Technical Appendix

A.1 Proof of Proposition 1.1
First a standard application of the partitioned inverse theorem makes it straight forward to
show that

bβ = β +

⎛⎝PN1+N0
j=1

PT
t=1

eXjt
eX 0
jt

N1 +N0
−

hPN1+N0
j=1

PT
t=1
edjt eXjt

i hPN1+N0
j=1

PT
t=1
edjt eX 0

jt

i
(N1 +N0)

PN1+N0
j=1

PT
t=1
fdjt2

⎞⎠−1(A-1)
×

⎛⎝PN1+N0
j=1

PT
t=1

eXjteηjt
N1 +N0

−

hPN1+N0
j=1

PT
t=1
edjt eXjt

i hPN1+N0
j=1

PT
t=1
edjtηjti

(N1 +N0)
PN1+N0

j=1

PT
t=1
fdjt2

⎞⎠ .

Now consider each piece in turn.
First Assumption 1.2 states that

1

N1 +N0

N1+N0X
j=1

TX
t=1

eXjt
eX 0
jt

p→ ΣX <∞.

The i.i.d. sampling and conditional independence components of Assumption 1.1 imply that:

1

N1 +N0

N1+N0X
j=1

TX
t=1

eXjteηjt p→ E

"
TX
t=1

eXjteηjt
#
= 0.

For control groups j > N0, the treatment does not vary over time so djt = dj. Therefore,

N1+N0X
j=1

TX
t=1

ed2jt = N0X
j=1

TX
t=1

¡
djt − dj − dt + d

¢2
+

N0+N1X
j=N0+1

TX
t=1

¡
d− dt

¢2
where

N0+N1X
j=N0+1

TX
t=1

¡
d− dt

¢2
= N1

TX
t=1

¡
d− dt

¢2
= N1

TX
t=1

Ã
1

N0 +N1

N0+N1X
c=1

"Ã
1

T

TX
τ=1

dcτ

!
− dct

#!2

=
N1

(N0 +N1)
2

TX
t=1

Ã
N0X
c=1

"Ã
1

T

TX
τ=1

dcτ

!
− dct

#!2
p→ 0.

Now consider the other term

N0X
j=1

TX
t=1

¡
djt − dj − dt + d

¢2 p→
N0X
j=1

TX
t=1

¡
djt − dj

¢2
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since dt and d both have the same limit due to the finite number of groups with intertemporal
variation in treatments. Thus

N1+N0X
j=1

TX
t=1

fdjt2 p→
N0X
j=1

TX
t=1

¡
djt − dj

¢2
> 0

since N0 ≥ 1.
Now consider

1√
N1 +N0

N1+N0X
j=1

TX
t=1

edjt eXjt =
1√

N1 +N0

N0X
j=1

TX
t=1

¡
djt − dj

¢ eXjt

+
1√

N1 +N0

N0+N1X
j=1

TX
t=1

¡
d− dt

¢ eXjt

=
1√

N1 +N0

N0X
j=1

TX
t=1

¡
djt − dj

¢ eXjt

+
TX
t=1

¡
d− dt

¢ 1√
N1 +N0

N0+N1X
j=1

eXjt

p→0 as N1 →∞.

This result follows because the first term involves a sum of a finite number of Op(1) random
variables normalized by an O(N

−1/2
1 ) term and the second term is identically zero due to

differencing:

N1+N0X
j=1

eXjt =
N0+N1X
j=1

¡
Xjt −Xj −Xt +X

¢
= (N0 +N1)

¡
Xt −X −Xt +X

¢
= 0.

Likewise

N1+N0X
j=1

TX
t=1

edjteηjt = N0X
j=1

TX
t=1

¡
djt − dj

¢eηjt + TX
t=1

¡
d− dt

¢N0+N1X
j=1

eηjt
=

N0X
j=1

TX
t=1

¡
djt − dj

¢ ¡
ηjt − ηj − ηt + η

¢
which is Op(1), thus

1√
N1 +N0

N1+N0X
j=1

TX
t=1

edjteηjt p→0.

Consistency for bβ follows upon plugging the pieces back into (A-1) and applying Slutsky’s
theorem.
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From the normal equation for bα it is straightforward to show that
bα = PN1+N0

j=1

PT
t=1
fdjt ³eYjt − eX 0

jt
bβ´PN1+N0

j=1

PT
t=1
fdjt2

=

PN1+N0
j=1

PT
t=1
fdjt ³(eYjt − eX 0

jtβ) + ( eX 0
jtβ − eX 0

jt
bβ)´PN1+N0

j=1
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t=1
fdjt2

=

PN1+N0
j=1

PT
t=1
fdjt ³(αfdjt + eηjt) + eX 0

jt(β − bβ)´PN1+N0
j=1

PT
t=1
fdjt2

= α+

PN1+N0
j=1
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t=1
fdjteηjtPN1+N0

j=1

PT
t=1
fdjt2 +

⎡⎣PN1+N0
j=1

PT
t=1
fdjt eX 0

jtPN1+N0
j=1

PT
t=1
fdjt2

⎤⎦ (β − bβ).
Now from above we know that

N1+N0X
j=1

TX
t=1

fdjt2 p→
N0X
j=1

TX
t=1

¡
djt − dj

¢2
N1+N0X
j=1

TX
t=1

edjt eXjt =
N0X
j=1

TX
t=1

¡
djt − dj − dt + d

¢ eXjt

(β − bβ) p→ 0.

Thus ⎡⎣PN1+N0
j=1

PT
t=1
fdjt eX 0

jtPN1+N0
j=1

PT
t=1
fdjt2

⎤⎦ (β − bβ) p→ 0.

We showed above that

N1+N0X
j=1

TX
t=1

edjteηjt = N0X
j=1

TX
t=1

¡
djt − dj

¢ ¡
ηjt − ηj − ηt + η

¢
.

The variables ηt and η both converge to zero in probability as N1 →∞, therefore

N0+N1X
j=N0+1

TX
t=1

¡
djt − dj

¢eηjt p→
N0X
j=1

TX
t=1

¡
djt − dj

¢ ¡
ηjt − ηj

¢
.

This gives the result.

A.2 Proof of Proposition 1.2
Since Γ is defined conditional on djt for j = 1, ...N0, t = 1, ..., T, every probability in this proof
conditions on this set. To simplify the notation, we omit this explicit conditioning. Thus,
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every probability statement and distribution function in this proof should be interpreted as
conditioning on djt for j = 1, ...N0, t = 1, ..., T.
For each j = 1, ..., N0 define the random variable

Wj ≡
PT

t=1

¡
djt − dj

¢ ¡
ηjt − ηj

¢PN0
c=1

PT
t=1

¡
dct − dc

¢2
and let Fj be the distribution of Wj for j = 1, .., N0.
Then note that

Γ (a) = Pr

ÃPN0
j=1

PT
t=1

¡
djt − dj

¢ ¡
ηjt − ηj

¢PN0
j=1

PT
t=1

¡
djt − dj

¢2 < a

!

=

Z
· · ·
Z
1

Ã
N0X
j=1

Wj < a

!
dF1(W1)...dFN0(WN0).

We can also write

bΓ (a) = Z · · ·
Z
1

Ã
N0X
j=1

Wj < a

!
d bF1(W1; bβ)...d bFN0(WN0 ;

bβ),
where bFj(·; bβ) is the empirical c.d.f. one gets from the residuals using the control states only.
That is more generally

bFj(w; b) ≡
1

N1

N1X
m=1

1

⎛⎝PT
t=1

¡
djt − dj

¢ ³eYmt − eX 0
mtb
´

PN0
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¡
dct − dc

¢2 < w

⎞⎠ .

To avoid repeating the expression we define

φj(w, b) ≡ Pr

⎛⎝PT
t=1

¡
djt − dj

¢ ³eYmt − eX 0
mtb
´

PN0
c=1

PT
t=1

¡
dct − dc

¢2 < w

⎞⎠ .

Note that φj(w, β) = Fj (w) . The proof strategy is first to demonstrate that bFj(w; bβ) con-
verges to φj(w, β) uniformly over w.We will then show that bΓ(a) is a consistent estimate of
Γ(a).

First, for each j = 1, ..., N0 consider the difference between bFj(w; bβ) and φj(w, β)
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.

First consider supw
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. Using a standard mean-value expansion of φ, for

some eβ
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³
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³
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³bβ − β
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To see that the derivative ∂φj(w,b)

∂b
is bounded first note that
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where fj is the density associated with Fj. Since fj is bounded andXjt has first moments, this

term is bounded. Thus supw
¯̄̄
φj

³
w, bβ´− φj (w, β)

¯̄̄
converges to zero since bβ is consistent.

Next consider the first term on the right side of (A-2). Note that the function

1

⎛⎝PT
t=1

¡
djt − dj

¢ ³eYmt − eX 0
mtb
´

PN0
c=1

PT
t=1

¡
dct − dc

¢2 < w

⎞⎠
is continuous at each b, w with probability one and its absolute value is bounded by 1, so
applying Lemma 2.4 of Newey and McFadden, 1994, bFj(w; b) converges uniformly to φ (w, b) .
Thus putting the two pieces of (A-2) together,

sup
w
| bF (w; bβ)− φ(w, β)| p→ 0.
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Now to see that bΓ (a) converges to Γ(a) note that we can write¯̄̄bΓ (a)− Γ (a)
¯̄̄
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Since each bFj(w; bβ) converges uniformly to Fj(w), the right hand side of this expression
must converge to zero so bΓ (a) converges to Γ(a).
A.3 Projection Lemma
We use the following lemma in sections A.4 and A.5:
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Lemma A.1 Consider a regression of dj(i)t(i) on group dummies (Gi) and time dummy
variables (Pi) as defined in equations (7)-(10). Let bat be coefficient on the time variable for
time period t = 1, .., T − 1 and baT ≡ 0. Under Assumption 2.3, and either Assumption 2.5
or Assumption A.1,

edj(i)t(i) = dj(i)t(i) − dj(i) −
Ãbat(i) −PT−1

τ=1 |M(j(i), τ |baτPT
τ=1 |M(j(i), τ |

!
and baτ = Op(

1
N1
), τ = 1, ..., T − 1.

Proof. To streamline the notation, let
P

i denote
PN1+N0

j=1

PT
t=1

P
i∈M(j,t) and let

m0 ≡
N0X
j=1

TX
t=1

|M(j, t)|

m1 ≡
N1+N0X
j=N0+1

TX
t=1

|M(j, t)|

m ≡ m0 +m1

Note that m0 is fixed but m1 and m get large as N1 → ∞. We will use this notation in a
number of proofs.
Now consider a regression of dj(i)t(i) on group dummies and time dummies. We will write

this regression equation as
dj(i)t(i) = P 0

iba+G0
i
bb+ edj(i)t(i)

where Pi and Gi are as defined equations (7)-(10).
The first part of our lemma is a standard regression result with dummy variables. Note

that we can rewrite this regression equation as

dj(i)t(i) − bat(i) = G0
i
bb+ edj(i)t(i).

Since edj(i)t(i) is orthogonal to Gi we could construct residuals by regressing dj(i)t(i) − bat(i) on
a full set of group dummies and taking residuals. However, it is well known that this will
lead to taking deviations of the left hand side variable from group means so that

edj(i)t(i) =
¡
dj(i)t(i) − bat(i)¢−PT

τ=1

P
c∈M(j(i),τ)
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¢
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!
.

Next consider the derivation of ba. Using the partitioned inverse theorem,
ba =

1
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⎤⎦ .
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Assumption 2.3 implies that we can rewrite this as

ba = 1

m
(Ω+ op(1))

−1
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i
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i
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0
i

ÃX
i

GiG
0
i

!−1X
i

Gidj(i)t(i)

⎤⎦ .
Now consider the last term,

P
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0
i (
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0
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−1PGidj(i)t(i). It is straightforward to show
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Under Assumption 2.5 this is just a random variable which is Op(1) so since
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Under Assumption A.1 we can write

â =
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As above the last term in brackets is a (T − 1)× 1 vector with a generic element t that can
be written as

N0 +N1

m

N0X
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¡
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PN0
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¢
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¢PT
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which is Op(1).
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A.4 Consistency Result for Large |M(j,t)|
In this Appendix we present a consistency result analogous to Proposition 2.1, but for the
case in which |M(j, t)| can grow with the sample size. We assume that group sizes grow at
the same rate so that no group dominates in the limit. Formally we state this as

Assumption A.1 For each j = 1, ..., N0 +N1, |M(j, t)| grows at the same rate as N1. For
all j and t, defining

φjt ≡ lim
N1→∞

|M(j, t)|PN0
j=1

PT
t=1 |M(j, t)|

,

we assume that where φjt > 0 and bounded from above. For all t,defining

φt ≡ lim
N1→∞

1

N0 +N1

N0+N1X
j=1

|M(j, t)|PN0
j=1

PT
t=1 |M(j, t)|

,

we assume that 0 < φt <∞.

For this case, Proposition A.2 states that bβ is consistent and derives the asymptotic
distribution of bα.
Proposition A.2 Under Assumptions 2.1-2.4, and A.1

bβ p→ β

bα p→ α+

PN0
j=1

PT
t=1 φjt

¡
djt − dj

¢
(ηjt − ηj)PN0

j=1

PT
t=1 φjt

³
djt − d

2

j

´
as N1 →∞.

Proof:
In this proof we make use of the notation defined in the proof of the Lemma A.1 in

Section A.3.
First a standard application of the partitioned inverse theorem makes it straightforward

to show that

bβ = β +

⎛⎝ 1

m

X
i

eXi
eX 0
i −

m0

m

h
1
m0

P
i
edj(i)t(i) eXi

i h
1
m0

P
i
edj(i)t(i) eX 0

i

i
1
m0

P
i
ed2j(i)t(i)

⎞⎠−1

×

⎛⎝ 1

m

X
i

eXi

¡eηj(i)t(i) +eεi¢− m0

m

h
1
m0

P
i
edj(i)t(i) eXi

i h
1
m0

P
i
edj(i)t(i) ¡eηj(i)t(i) + ε̃i

¢i
1
m0

P
i
ed2j(i)t(i)

⎞⎠ .

Now consider each piece in turn.
Assumption 2.4 states that

1

m

X
i

eXi
eX 0
i

p→ Σx.
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,

1

m

X
i

eXi

¡eηj(i)t(i) + ε̃i
¢ p→ 0.

Define bat as in the statement of Lemma A.1 and then define
beajt ≡ Ãbat −PT−1

τ=1 |M(j, τ |baτPT
τ=1 |M(j, τ |

!
.

LemmaA.1 states that edj(i)t(i) = dj(i)t(i)−dj(i)−beaj(i)t(i). Note also that for j > N0, djt−dj = 0.
Thus

1

m0

X
i

ed2j(i)t(i) = 1

m0

N0X
j=1

TX
t=1

|M(j, t)| ed2jt + 1

m0

N0+N1X
j=N0+1

TX
t=1

|M(j, t)| ed2jt
=
1

m0

N0X
j=1

TX
t=1

|M(j, t)|
h¡
djt − dj

¢2 − 2beajt ¡djt − dj
¢
+ bea2jti+ 1

m0

N0+N1X
j=N0+1

TX
t=1

bea2jt |M(j, t)|
p→

N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢2
.
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This result follows because

1

m0

N0+N1X
j=N0+1

TX
t=1

bea2jt |M(j, t)|
=

1

m0

N0+N1X
j=N0+1

⎡⎣ TX
t=1

Ãbat −PT−1
τ=1 |M(j, τ |baτPT
τ=1 |M(j, τ |

!2
|M(j, t)|

⎤⎦
=

N0+N1X
j=N0+1

T−1X
t=1

ba2t |M(j, t)|mo
− 2

N0+N1X
j=N0+1

T−1X
t=1

batPT−1
τ=1 |M(j, τ |baτ

m0

PT
τ=1 |M(j, τ |

+
N0+N1X
j=N0+1

TX
t=1

ÃPT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

!2
|M(j, t)|

m0

=
T−1X
t=1

ba2t N0+N1X
j=N0+1

|M(j, t)|
m0

− 2
T−1X
t=1

T−1X
τ=1

batbaτ N0+N1X
j=N0+1

|M(j, τ)|
m0

PT
s=1 |M(j, s)|

+
T−1X
t=1

T−1X
τ=1

baτbat N0+N1X
j=N0+1

|M(j, τ)| |M(j, t)|
m0

PT
s=1 |M(j, s)|

=
T−1X
t=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, t)|
m0

− 2

m0

T−1X
t=1

T−1X
τ=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, τ)|PT
s=1 |M(j, s)|

+
T−1X
t=1

T−1X
τ=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, τ)| |M(j, t)|
m0

PT
s=1 |M(j, s)|

p→ 0.
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Next consider the object

1

m0

X
i

edj(i)t(i) eXi =
1

m0

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi +
1

m0

N0+N1X
j=1

TX
t=1

X
i∈m(j,t)

beajt eXi

=
1

m0

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi −
1

m0

N0+N1X
j=1

T−1X
t=1

X
i∈m(j,t)

Ãbat −PT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

! eXi

+
1

m0

N0+N1X
j=1

X
i∈m(j,t)

PT−1
τ=1 |M(j, T )|baτPT
τ=1 |M(j, T )|

eXi

=
1

m0

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi −
1

m0

T−1X
t=1

bat N0+N1X
j=1

X
i∈m(j,t)

eXi

+
1

m0

N0+N1X
j=1

PT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

TX
t=1

X
i∈m(j,t)

eXi

=
N0X
j=1

TX
t=1

¡
djt − dj

¢ " |M(j, t)|PN0
j=1

PT
t=1 |M(j, t)|

#⎡⎣ 1

|M(j, t)|
X

i∈m(j,t)

eXi

⎤⎦
p→

N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢
E( eXi | i ∈M(j, t))

= Op(1).

We used the fact that eXi is the residual from a regression on time and state dummies soPN0+N1
j=1

P
i∈m(j,t)

eXi = 0 and
PT

t=1

P
i∈m(j,t)

eXi = 0.
An analogous argument gives

1

m0

X
i

edj(i)t(i) ¡eηj(i)t(i) +eεi¢ = 1

m0

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ ¡eηjt +eεi¢
=

N0X
j=1

TX
t=1

¡
djt − dj

¢ " |M(j, t)|PN0
j=1

PT
t=1 |M(j, t)|

#⎡⎣ 1

|M(j, t)|
X

i∈m(j,t)

¡eηjt +eεi¢
⎤⎦

p→
N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢
E
¡eηjt +eεi | i ∈M(j, t)

¢
=

N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢ ¡
ηjt − ηj

¢
= Op(1).

The last term follows because for any τ = 1, .., T E
¡
ηjτ − ηj

¢
= E(εi − εj | t (i) = τ) = 0.

So for a regression of either
¡
ηjτ − ηj

¢
or (εi − εj) on time dummies, the coefficient on the

dummy variables will converge to zero so eηjt p→
¡
ηjτ − ηj

¢
and eεi p→ (εi − εj) .
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Putting all the objects into the expression for bβ, one can see that bβ is consistent.
Now consider bα. It is straight forward to show that

(bα− α) =
1
m0

P
i
edj(i)t(i) ¡eηj(i)t(i) + eεi¢
1
m0

P
i
ed2j(i)t(i) +

1
m0

P
i
edj(i)t(i) eX 0

j(i)t(i)

³
β − β̂

´
1
m0

P
i
ed2j(i)t(i)

We have shown that

1

m0

X
i

ed2jt p→
N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢2
1

m0

X
i

edj(i)t(i) eX 0
j(i)t(i)

p→
N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢
E( eXi | i ∈M(j, t))

(β − bβ) p→ 0

1

m0

X
i

edj(i)t(i) ¡eηj(i)t(i) +eεi¢ p→
N0X
j=1

TX
t=1

φjt
¡
djt − dj

¢ ¡
ηjt − ηj

¢
.

Thus we are left with:

(bα− α) =

PN0
j=1

PT
t=1 φjt

¡
djt − dj

¢ ¡
ηjt − ηj

¢
+ op(1)PN0

j=1

PT
t=1 φjt

¡
djt − dj

¢2
+ op(1)

+ op(1)

p→
PN0

j=1

PT
t=1 φjt

¡
djt − dj

¢ ¡
ηjt − ηj

¢PN0
j=1

PT
t=1 φjt

¡
djt − dj

¢2 .

This gives the result.

A.5 Proof of Proposition 2.1
We use the notation defined at the beginning of the proof of Lemma A.1 above. This proof
is almost identical to that of Proposition A.2.
First a standard application of the partitioned inverse theorem makes it straightforward

to show that

bβ = β +

⎛⎝ 1

m

X
i

eXi
eX 0
i −

1√
m

hP
i
edj(i)t(i) eXi

i
1√
m

hP
i
edj(i)t(i) eX 0

i

i
P

i
ed2j(i)t(i)

⎞⎠−1

×

⎛⎝ 1

m

X
i

eXi

¡eηj(i)t(i) +eεi¢− 1

m

hP
i
edj(i)t(i) eXi

i hP
i
edj(i)t(i) ¡eηj(i)t(i) + ε̃i

¢i
P

i
ed2j(i)t(i)

⎞⎠ .

Now consider each piece in turn.
Assumption 2.4 states that

1

m

X
i

eXi
eX 0
i

p→ Σx.
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,

1

m

X
i

eXi

¡eηj(i)t(i) + ε̃i
¢ p→ 0.

Define bat as in the statement of Lemma A.1 and then define
beajt ≡ Ãbat −PT−1

τ=1 |M(j, τ |baτPT
τ=1 |M(j, τ |

!
.

In Lemma A.1 it is shown that edj(i)t(i) = dj(i)t(i) − dj(i) − beaj(i)t(i). Note also that for j > N0,

djt − dj = 0. Thus

X
i

ed2j(i)t(i) = N0X
j=1

TX
t=1

|M(j, t)| ed2jt + N0+N1X
j=N0+1

TX
t=1

|M(j, t)| ed2jt
=

N0X
j=1

TX
t=1

|M(j, t)|
h¡
djt − dj

¢2 − 2beajt ¡djt − dj
¢
+ bea2jti+ N0+N1X

j=N0+1

TX
t=1

bea2jt |M(j, t)|
p→

N0X
j=1

TX
t=1

|M(j, t)|
¡
djt − dj

¢2
.
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This result follows because

N0+N1X
j=N0+1

TX
t=1

bea2jt |M(j, t)|
=

N0+N1X
j=N0+1

⎡⎣ TX
t=1

Ãbat −PT−1
τ=1 |M(j, τ |baτPT
τ=1 |M(j, τ |

!2
|M(j, t)|

⎤⎦
=

N0+N1X
j=N0+1

T−1X
t=1

ba2t |M(j, t)|− 2 N0+N1X
j=N0+1

T−1X
t=1

batPT−1
τ=1 |M(j, τ |baτPT
τ=1 |M(j, τ |

+
N0+N1X
j=N0+1

TX
t=1

ÃPT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

!2
|M(j, t)|

=
T−1X
t=1

ba2t N0+N1X
j=N0+1

|M(j, t)|− 2
T−1X
t=1

T−1X
τ=1

batbaτ N0+N1X
j=N0+1

|M(j, τ)|PT
s=1 |M(j, s)|

+
T−1X
t=1

T−1X
τ=1

baτbat N0+N1X
j=N0+1

|M(j, τ)| |M(j, t)|PT
s=1 |M(j, s)|

=
T−1X
t=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, t)|− 2
T−1X
t=1

T−1X
τ=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, τ)|PT
s=1 |M(j, s)|

+
T−1X
t=1

T−1X
τ=1

Op

µ
1

N2
1

¶ N0+N1X
j=N0+1

|M(j, τ)| |M(j, t)|PT
s=1 |M(j, s)|

p→ 0.
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Next consider the object

X
i

edj(i)t(i) eXi =
N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi +
N0+N1X
j=1

TX
t=1

X
i∈m(j,t)

beajt eXi

=
N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi −
N0+N1X
j=1

T−1X
t=1

X
i∈m(j,t)

Ãbat −PT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

! eXi

+
N0+N1X
j=1

X
i∈m(j,t)

PT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

eXi

=
N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi −
T−1X
t=1

bat N0+N1X
j=1

X
i∈m(j,t)

eXi

+
N0+N1X
j=1

PT−1
τ=1 |M(j, τ)|baτPT
τ=1 |M(j, τ)|

TX
t=1

X
i∈m(j,t)

eXi

=
N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ eXi

= Op(1).

We used the fact that eXi is the residual from a regression on time and state dummies soPN0+N1
j=1

P
i∈m(j,t)

eXi = 0 and
PT

t=1

P
i∈m(j,t)

eXi = 0.
An analogous argument gives

X
i

edj(i)t(i) ¡eηj(i)t(i) +eεi¢ = N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ ¡eηjt +eεi¢+ N0+N1X
j=1

TX
t=1

X
i∈m(j,t)

beajt ¡eηjt +eεi¢
=

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ ¡eηjt +eεi¢
p→

N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ ¡
ηjt − ηj + εi − εj

¢
= Op(1).

The last term follows because for any τ = 1, .., T E
¡
ηjτ − ηj

¢
= E(εi− εj | t (i) = τ) = 0.So

for a regression of either
¡
ηjτ − ηj

¢
or (εi − εj) on time dummies, the coefficient on the

dummy variables will converge to zero so eηjt p→
¡
ηjτ − ηj

¢
and eεi p→ (εi − εj) .

Putting all the objects into the expression for bβ, one can see that bβ is consistent.
Now consider bα. It is straight forward to show that

(bα− α) =

P
i
edj(i)t(i) ¡eηj(i)t(i) +eεi¢P

i
ed2j(i)t(i) +

P
i
edj(i)t(i) eX 0

j(i)t(i)

³
β − β̂

´
P

i
ed2j(i)t(i) .
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We showed above that X
i

ed2j(i)t(i) p→
N0X
j=1

TX
t=1

|M(j, t)|
¡
djt − dj

¢2
X
i

edj(i)t(i) eX 0
j(i)t(i) = Op(1)

(β − bβ) p→ 0X
i

edj(i)t(i) ¡eηj(i)t(i) +eεi¢ p→
N0X
j=1

TX
t=1

X
i∈m(j,t)

¡
djt − dj

¢ ¡
ηjt − ηj + εi − εj

¢
.

Thus we are left with:

(bα− α) =

PN0
j=1

PT
t=1

P
i∈M(j,t)

¡
djt − dj

¢ ¡
ηjt − ηj + εi − εj

¢
+ op(1)PN0

j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
+ op(1)

+ op(1)

p→
PN0

j=1

PT
t=1

P
i∈M(j,t)

¡
djt − dj

¢ ¡
ηjt − ηj + εi − εj

¢PN0
j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
= Op(1).

This gives the result.

A.6 Proof of Proposition 2.3
As in the text recall that

vi ≡ η∗j(i)t(i) + εi

η∗jt ≡ αdjt + γt + θj + ηjt.

Since vi is the error term from the regression (6) after taking out time effects and observables,
for each i,this is identified. η∗jt is the component of this error term that is group and time-
specific while εi is idiosyncratic.
Define ι1(j, t) and ι2(j, t) as any two different individuals from group j at time t.We can

identify the joint distribution of¡
vι1(j,t), vι2(j,t)

¢
=
¡
η∗jt + ει1(j,t), η

∗
jt + ει2(j,t)

¢
.

Since η∗jt is independent of ε, applying Theorem 2.2, from this joint distribution we can
identify the marginal distributions of ε and η∗jt.
We next need to show that one can identify the joint distribution of η∗j ≡

¡
η∗j1, ..., η

∗
jT

¢
.

Since there is a unique mapping between characteristic functions and distributions, we know
that the characteristic function of ε is identified. Define this to be φε (·) .
Using a similar argument to above, take ι(j, t) to be any individual from group j at time

t, we can identify the joint distribution of

Ψj ≡
¡
vι(j,1), ..., vι(j,T )

¢
=
¡
η∗j1 + ει(j,1), ..., η

∗
jT + ει(j,T )

¢
.
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Let Γ = (γ1, ..., γT )
0 be a T×1 vector. Then since Ψj is identified directly from the residuals

of the regression for the controls, we can identify

E (exp (iΓ0Ψj))
TY
t=1

φε (γt)

=
E
³
exp

³
iΓ0η∗j + i

PT
t=1 γtει(j,t)

´´
TY
t=1

φε (γt)

=

E
¡
exp

¡
iΓ0η∗j

¢¢ TY
t=1

E
¡
iγtει(j,t)

¢
TY
t=1

φε (γt)

= E
¡
exp

¡
iΓ0η∗j

¢¢
which is the characteristic function of eη∗j . Thus the distribution of eη∗j is identified.
From the distribution of eη∗j and εi and with knowledge of djt and |M(j, t)| for the control

states we can identify the distribution ofPN0
j=1

PT
t=1

³P
i∈M(j,t)

¡
djt − dj

¢
(η∗jt − η∗j −E

¡
η∗jt − η∗j

¢
+ εi − εj)

´
PN0

j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
=

PN0
j=1

PT
t=1

³P
i∈M(j,t)

¡
djt − dj

¢
(γt + ηjt − γj − ηjt −

¡
γt − γj

¢
+ εi − εj)

´
PN0

j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
=

PN0
j=1

PT
t=1

³P
i∈M(j,t)

¡
djt − dj

¢
(ηjt − ηjt + εi − εj)

´
PN0

j=1

PT
t=1 |M(j, t)|

¡
djt − dj

¢2
which is the distribution of (bα− α) .

A.7 Consistent Estimation of distribution of
£
η∗j1, ..., η

∗
jT

¤
and ε

Our goal is to show consistency of the Sieve estimator (14). Since the likelihood function is
a continuously differentiable function of β and γ, we ignore the fact that they are estimated
which can be addressed in the standard way. Our goal is to estimate the joint distribution
of
£
η∗j1, ..., η

∗
jT

¤
and also the density of ε from the joint distribution of vi. Call the first

distribution F . We assume that we can write ε as the convolution between a random variable
with distribution G and a normal random variable with mean 0 and standard deviation σ.
In order to keep our underlying sets compact we assume that the support of G and F

are compact. Formally

Assumption A.2 G ∈ G where G is the set of distribution functions with support Ξ which
is a compact subset of <.

Assumption A.3 F ∈ FT where FT is the set of distribution functions with support Θ
which is a compact subset of <T .
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Thus our space of interest is FT × G. We use an L2 norm:

d
³
(F,G) ,

³ eF, eG´´ = Z
Θ

³
F (x)− eF (x)´2 dx+ Z

Ξ

³
G (z)− eG (z)´2 dz.

Our model is a Sieve estimator in that we do not maximize the likelihood function with
respect toG ∈ G and F ∈ FT , but rather maximizes relative to a subset of these distributions
GNand FN

T which restrict the distributions to be step functions. The number of mass points
expand asymptotically in N so that GN ×FN

T becomes dense in G and FT . We denote

FK (x) ≡
K1X
j1=1

1
¡
η(κ1) ≤ x

¢
P
(j1)
1

GK (z) ≡
K2X
j2=1

1
¡
µ(κ1) ≤ z

¢
P
(j2)
2 .

Under these conditions our model is consistent. That is

Proposition A.3 Let the objective function be

L(FK1 , GK2) =
1

N1

N0+N1X
j=N0+1

log

⎛⎝ K1X
j1=1

TY
t=1

Y
i∈M(j,t)

K2X
j2=1

φ

Ã
vi − η

(j1)
t − µ(j2)

σ

!
P
(j1)
1 P

(j2)
2

⎞⎠
where we have parameterized

h
η∗j(i)t(i)

i
to take on K1 values with each value taking the value

η(j1) =
³
η
(j1)
1 , ..., η

(j1)
T

´
with probability P

(j1)
1 for j1 = 1, ..,K1. We let ε be a mixture of

normals that take on K2 values with mean and standard deviation (µ(j2), σ) with probability

P
(j2)
2 for j2 = 1, ..., K2. Let

³ bFK1
T , bGK2

´
denote the maximum of the objective function. Under

Assumptions 2.1-2.6, and A.1−A.3,
³ bFK1

T , bGK2

´
converges in probability to the true values

of (FT , G) as long as K1and K2 →∞ as N1 →∞.

Proof: We will verify the condition of the theorem in Matzkin (1994) section 3.2 which
is a restatement of Theorem 0 in Gallant and Nychka (1987).
The asymptotic limit of the likelihood function is

L (F,G) = E

⎛⎝log
⎛⎝Z TY

t=1

Y
i∈M(j,t)

Z
φ

µ
vi − ηjt − ε

σ

¶
dG(ε)dF

¡
ηj
¢⎞⎠⎞⎠ .

We prove consistency by verifying each of the four conditions that Matzkin (1994) requires.
Condition (iii) the set FT × G is compact relative to the metric d.
Helly’s Selection Theorem guarantees that any sequence of distribution functions will

have a convergent subsequence which is a valid distribution function except that it may not
converge to zero as x → −∞ and may not converge to 1 as x → ∞.The fact that Ξ and
Θ are compact guarantees that the limit of a subsequence in FT × G will be an element of
FT × G,therefore the set is compact.
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Condition (i) The function LN(F,G) converges uniformly over M to a nonrandom con-
tinuous function L :M → <
For this we apply Lemma 2.4 in Newey and McFadden (1994). The likelihood function

is clearly continuous and for any z the log likelihood will be bounded since the support is
compact.
Condition (iv) There exists a sequence of function {gn} ⊂M such that gN ∈MN for all

N = 1, 2, ...and d(gN ,m
∗)→ 0

We can always find a sequence of step functions that converges to the actual CDF. One
obvious way is to do this would be to take the number of support points M = P T where P
is an integer that depends on N. We then divide the support of η into M cubes, take P (κ1)1

to be the probability of lying in each cube, and take P (κ1)
1 to be the median point. This will

converge to FT as M gets large.
Condition (ii) the function m∗ uniquely maximizes L over the set M
We proved that the model is identified in Proposition 2.3. The fact that m∗ uniquely

maximizes the likelihood comes from the standard result that log likelihood function is
maximized at the true distribution (e.g. Lemma 2.2 of Newey and McFadden, 1994).

44














