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Abstract

We consider the estimation of sample selection (type II Tobit) models that exhibit
spatial error dependence or spatial autoregressive errors (SAE). The method considered
is motivated by a two-step strategy analogous to the popular heckit model. The first
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by Pinkse and Slade (1998) that yields consistent estimates. The consistent estimates
of the selection equation are used to estimate the inverse Mills ratio (IMR) to be
included as a regressor in the estimation of the outcome equation (second step). Since
the appropriate IMR turns out to depend on a parameter from the second step under
SAE, we propose to estimate the two steps jointly within a generalized method of
moments (GMM) framework.
We explore the finite sample properties of the proposed estimator using a Monte

Carlo experiment; discuss the importance of the spatial sample selection model in
applied work, and illustrate the application of our method by estimating the spatial
production within a fishery with data that is censored for reasons of confidentiality.
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1 Introduction

Econometric models taking into account spatial interactions among economic units have

been increasingly used by economists over the last several years.1 The different approaches

for undertaking estimation and inference in linear regression models with spatial effects are

well developed and have been summarized in the work by Anselin (1988, 2001), Anselin and

Bera (1998), and other researchers.

The estimation of nonlinear models that include spatial interactions, in particular limited

dependent variable models, is not as well developed as that of linear models. In fact, only

recently have methods for estimating and conducting statistical inference in spatial models

with limited dependent variables been proposed. This literature has concentrated mainly

on the probit model with spatial effects, as in Beron and Vijverberg (2004), Case (1992),

Fleming (2004), LeSage (2000), McMillen (1992), and Pinkse and Slade (1998). In this paper

we contribute to this literature by introducing a sample selection model with spatial error

dependence (or spatial autoregressive errors, SAE) and proposing a method for its estimation.

The type of sample selection model considered is the widely used heckit model (Heckman,

1976, 1979), also known as the Tobit type II model in the terminology of Amemiya (1985).

Our estimation strategy can be thought of as a two-step procedure analogous to the

popular heckit model that is estimated jointly as a "pseudo" sequential estimator using

generalized method of moments (Newey, 1984). The first step of estimation is based on

a spatial probit model following a methodology by Pinkse and Slade (1998), which yields

consistent, although not fully efficient, estimates of the selection equation. As in the heckit

procedure, the consistent estimates of the selection equation are used to estimate the inverse

Mills ratio (IMR) to be included in the estimation of the outcome equation to correct for

selectivity bias. Since in the presence of spatial error dependence the IMR depends upon

unknown parameters from the outcome equation, we propose to estimate the model jointly

within a generalized method of moments (GMM) framework. In order to identify the spatial

autoregressive error parameters, the moment conditions suggested by Kelejian and Prucha

(1999) are added to the set of moments used in estimation.

The estimation of a probit model with spatial dependence introduces a non-spherical

variance-covariance matrix that renders the simple probit estimator inconsistent. In turn,

to obtain consistent and fully efficient estimates, one has to deal with multidimensional

1Some examples are Case (1991), Fishback, Horrace and Kantor (2006), Topa (2001), among many others.
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integrals. To obtain consistent and efficient parameter estimates of the spatial probit model,

LeSage (2000) and Beron and Vijverberg (2004) employ simulation methods to approximate

these multidimensional integrals. Unfortunately, the simulation of multidimensional integrals

is computationally intensive, restricting estimation to moderate sample sizes. This same

limitation applies to the estimation of sample selection models with spatial dependence

using simulation methods to approximate the multidimensional integrals in the likelihood

function.2

In an attempt to avoid approximating multidimensional integrals but still achieve consis-

tency of the probit estimates (at the expense of efficiency), some authors propose to ignore

the off-diagonal elements of the variance-covariance matrix and focus on the heteroskedas-

ticity induced by the spatial dependence (Case (1992), McMillen (1992), and Pinkse and

Slade (1998)). We use Pinkse and Slade’s estimator in the first step of the sample selection

model for the following reasons. First, it yields consistent estimates of the selection equation

that are necessary to obtain consistent estimates of the parameters in the outcome equation.

Second, it is computationally simpler than both of the other estimators that approximate

multidimensional integrals. Third, it has been developed in the framework of GMM, the

same framework we employ in the joint estimation of our sample selection models.

The consistent estimates obtained in the first step are used to construct the IMR used in

the outcome equation to correct for selectivity bias (Heckman, 1979). In practice, both the

selection and outcome equations are likely to exhibit spatial dependence, and generally the

spatial autoregressive error parameters will be different in each equation. In this case, the

IMR turns out to be a function of the unknown spatial parameter in the outcome equation.

In order to increase the efficiency of the estimator and to obtain its variance-covariance

matrix directly, we propose to estimate all parameters of the model simultaneously. For

this, we employ the sequential estimation framework proposed by Newey (1984) to jointly

estimate the sample selection model with spatial autoregressive errors. Building on Pinkse

and Slade’s (1998) asymptotic results for their spatial probit model and standard GMM

theory, our proposed estimator is consistent, asymptotically normally distributed, and its

covariance matrix can be estimated.

We note that our estimator has lower efficiency compared to a maximum likelihood

estimator that requires computationally-intensive simulation methods for multidimensional

2For an example of a likelihood function for a sample selection model under independent observations see
Heckman (1979) or Maddala (1983).
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integration. However, given the fact that the multidimensional integration is in the order of

the number of observations, the relative computational simplicity of our method is preferable

in many relevant instances when the amount of data available to researchers is large.

To our knowledge, despite the pervasiveness of selection bias in the economics literature

and the serious consequences of spatial dependence in the typical selection models, there

is only one other paper that attempts specifying and estimating a sample selection model

with spatial dependence. McMillen (1995) first specifies a model similar to the heckit model

with spatial effects presented in the present paper and outlines an estimator based on the

EM algorithm. However, this estimator requires knowledge of the true spatial autoregressive

error parameters and it is fairly computationally intensive. As a result, McMillen (1995)

specifies and estimates an extension of the spatial expansion model of Casetti (1972) that

is used in geography. Nevertheless, this model is not explicitly spatial since additional

variables are required to indirectly control for the spatial dependence, and the consistency

of the proposed estimator depends heavily on correctly assuming the functional form of the

underlying heteroskedasticity induced by the spatial dependence. Therefore, compared to

the pioneering work by McMillen (1995), we propose a feasible estimator for the heckit model

that explicitly accounts for and estimates the spatial error dependence parameters.

The paper is organized as follows. Section 2 presents the sample selection model with

spatial autoregressive errors (SAE) and discusses some of the alternative estimators for linear

and non-linear models with spatial dependence to posit our method in context. Section 3

introduces our proposed method of estimation (the "spatial heckit"), states its large-sample

properties, and discusses some aspects of its implementation. Section 4 presents the results

of a Monte Carlo experiment to analyze the finite sample properties of our estimator; while

section 5 discusses the practical importance of the spatial sample selection model and presents

an empirical example to illustrate the application of our technique. Concluding remarks are

provided in the last section of the paper.

2 The Sample Selection Models with Spatial Depen-
dence

Our focus is the estimation of a sample selection (Tobit type II) model with spatial

autoregressive errors (SAE) in both the selection and the outcome equations. The spatial
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autoregressive error (SAE) model specifies spatially autocorrelated disturbances:

y∗1i = α0 + x01iα1 + u1i, u1i = δ
X
j 6=i

ciju1j + ε1i (1)

y∗2i = β0 + x02iβ1 + u2i, u2i = γ
X
j 6=i

ciju2j + ε2i (2)

where y∗1i and y∗2i are latent variables with the following relationship with the observed

variables: y1i = 1 if y∗1i > 0 and y1i = 0 otherwise, and y2i = y∗2i ∗ y1i. Therefore, (1) is
the selection equation while (2) is the outcome equation. Note that each of these equations

exhibit spatial dependence, as u1i and u2i depend on other u1j and u2j through their location

in space, as given by the spatial weights cij and the spatial autoregressive parameters δ and

γ. Typically, the spatial weights are specified by the econometrician based on some function

of contiguity or (economic) distance (Anselin, 1988; Anselin and Bera, 1998). Note also that,

in general, one will specify different spatial autoregressive parameters for the selection and

outcome equations.3 It is assumed that:

Assumption A The errors ε1i and ε2i, i = 1, ...N , are iid N(0,Σ) with

Σ =

∙
σ21 σ12
σ12 σ22

¸
.

The model in (1)-(2) can also be presented in a reduced form:

y∗1i = α0 + x01iα1 +
X
j

ω1ijε1j (3)

y∗2i = β0 + x02iβ1 +
X
j

ω2ijε2j (4)

where the weights ω1ij and ω2ij are the (i, j) elements of the inverse matrices (I − δC)−1 and

(I − γC)−1, respectively, with C the matrix of spatial weights cij. Note that both sets of

weights, ω1ij and ω2ij, depend upon the unknown parameters δ and γ, respectively.

Note that in the absence of any sample selection, equation (2) is just a linear model

with SAE, for which a number of estimation methods exist. We briefly review some of those

methods here. Ordinary least squares (OLS) ignoring the SAE results in consistent but

inefficient estimates, and does not produce an estimate of the SAE parameter. The use of

3Without loss of generality, we specify the same spatial weights in each of the two equations.
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maximum likelihood (ML) to obtain asymptotically efficient estimates, including the SAE

parameter, was suggested by Ord (1975) and rigorously analyzed by Lee (2004). This method

relies on normality and its computational demands increase with the sample size since the

Jacobian of the likelihood function entails obtaining the determinant of a full matrix of

dimension equal to the sample size (Anselin and Bera, 1998; Kelejian and Prucha, 1999).

Another approach to obtain consistent estimates of all parameters in the linear SAE model

is the three-step FGLS procedure of Kelejian and Prucha (1998) that we refer to as KP-SAE.

First, residuals are obtained using OLS, which are used to estimate the SAE parameter using

the "generalized moments" estimator in Kelejian and Prucha (1999); finally, OLS is applied

to a model transformed with a Cochrane-Orcutt type procedure.4 Compared to ML, KP-

SAE is asymptotically less efficient, although has been found to be "virtually as efficient"

in simulations (Kelejian and Prucha, 1999), while being computationally simpler and not

relying on normality.

Note also that equation (1) is a probit model with spatial autoregressive errors. In this

case, SAE introduces a fully non-spherical variance-covariance matrix that renders the simple

probit estimator inconsistent. As a result, to obtain ML estimates that are consistent and

asymptotically efficient (relying on normality), multidimensional integration on the order of

the sample size is necessary. This is possible using simulation algorithms (LeSage, 2000;

Beron and Vijverberg, 2004), but becomes infeasible even for moderate-size sample sizes.

Alternatively, less efficient methods that obtain consistent estimates of the parameters in

equation (1) that account for the induced heteroskedasticity while ignoring the off-diagonal

elements of the variance-covariance matrix have been proposed. For instance, Case (1992)

transforms a particular model structure to obtain homoskedastic errors;5 McMillen (1992)

uses the EM algorithm to account for the heteroskedasticity induced by the SAE process;

while Pinkse and Slade (1998) propose a GMM estimator that also takes into account the

heteroskedasticity induced by the SAE process. In our method below, we use Pinkse and

Slade’s (1998) estimator, which allows us to obtain consistent estimates of all parameters in

equation (1) including the SAE parameter, is computationally simple, and allows us to use

the GMM framework of estimation when we consider estimation of the full model in (1)-(2).

4Note that the original procedure in Kelejian and Prucha (1998) is more general since it allows for spatial
lag dependence as well. For a related approach based on GMM for this linear model with SAE, see Lee
(2001).

5Unfortunately, Case’s (1992) method is constrained to situations in which the population can be parti-
tioned into groups (e.g. "districts") whose errors can be assumed independent.
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Before introducing our estimator in the next section, we finally note that in the absence

of SAE the model in (1)-(2) reduces to the standard Heckman’s (1979) sample selection

model. This model can be estimated with a two-step procedure (heckit) or a ML method,

which are asymptotically equivalent under standard conditions. In the presence of spatial

error dependence, however, neither of these two methods result in consistent estimates of

the parameters since (1)-(2) is a limited-dependent variable model and will be affected by

the same problems discussed in the context of the probit model. As a result, consistent

and fully efficient estimates can only be obtained with methods that account for the full

structure of the non-spherical variance-covariance matrix, such as ML with multidimensional

integrals that are on the order of the sample size. Unfortunately, just as with the probit

model, the available simulation methods to approximate multidimensional integrals become

infeasible when the sample size at hand is relatively large. Therefore, we propose below a

feasible estimator for relatively large samples that achieves consistency by accounting for the

heteroskedasticity induced by the spatial error dependence while sacrificing efficiency, as the

off-diagonal elements of the variance-covariance matrix are ignored.

3 Estimation of the Sample SelectionModels with Spa-
tial Dependence

We now describe our proposed estimation method for the sample selection model with

spatial dependence presented in the previous section. We follow a two-step procedure in

the spirit of Heckman (1976, 1979) that is estimated jointly in a GMM framework. The

selection equation is estimated using Pinkse and Slade’s (1998) GMM estimator for the

spatial probit model, while the outcome equation is estimated with the spatial methods for

linear models developed by Kelejian and Prucha (1998), although other methods can be

employed as well. An estimate of the inverse Mills ratio is included in the outcome equation

to correct for selectivity bias. To estimate these two parts simultaneously, the corresponding

moment conditions are stacked, and a GMM criterion function is minimized with respect to

all parameters in the model.

To motivate the estimation of the SAE model in (1)-(2), we start with the following

6



calculations (McMillen, 1995):

var(u1i) = σ21
X
j

(ω1ij)
2 (5)

var(u2i) = σ22
X
j

(ω2ij)
2 (6)

E(u1i, u2i) = σ12
X
j

ω1ijω
2
ij. (7)

In the typical heckit model, a probit model is employed in the first step to estimate the

probability of each observation being included in the observed sample. The presence of SAE

errors, however, induces heteroskedasticity in the error terms in (5), resulting in inconsistent

probit estimates. Pinkse and Slade (1998) propose a consistent estimator for this spatial

probit model by taking into account the known form of the induced heteroskedasticity.

Define θ1 = {α0, α01, δ} as the parameters to be estimated in the spatial probit model,
and ψi(θ1) =

α0+x01iα1√
var(u1i)

the index function of the probit model weighted by the standard

deviation of the residual. The corresponding "generalized residuals" of this model are:

ũ1i(θ1) = {y1i − Φ [ψi(θ1)]} ·
φ [ψi(θ1)]

Φ [ψi(θ1)] {1− Φ [ψi(θ1)]}
. (8)

The GMM estimates for θ1 can be obtained as follows:

θ̂1,GMM = argmin
θ1∈Θ1

SN(θ1)
0MNSN(θ1) (9)

where SN(θ1) = 1
N
z0N ũ1N(θ1), zN is a data matrix of regressors plus at least one instrument

(to identify the extra parameter δ),6 ũ1N(θ1) is the vector of generalized residuals with

elements as shown in (8), and MN is a positive definite matrix such that MN
p→M . Pinkse

and Slade (1998) show that this estimator is consistent and asymptotically normal.

The consistent estimates of θ1 will be used in the construction of the inverse Mills ratio

(IMR) to correct for sample selection bias. Note that the conditional regression function for

6The original formulation of Pinkse and Slade’s (1998) estimator uses an instrument to identify δ. In our
estimator below we do not require such an instrument since we use specific moment conditions to estimate
δ.
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the outcome equation (2) has the following form (McMillen, 1995):

E[y2i|y1i > 0] = β0 + x02iβ1 +E[u2i|u1i > −(α0 + x01iα1)]

= β0 + x02iβ1 +
E(u1i, u2i)p
var(u1i)

· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}

= β0 + x02iβ1 +

σ12
P
j

ω1ijω
2
ijr

σ21
P
j

(ω1ij)
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}

= β0 + x02iβ1 +
σ12
σ1
·

P
j

ω1ijω
2
ijrP

j

(ω1ij)
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}
.

Therefore, the selectivity correction implies the following "adjusted" IMR:

λi ≡

P
j

ω1ijω
2
ijrP

j

[ω1ij]
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}
. (10)

Once estimated (λ̂i), the "adjusted" IMR may be included as an additional regressor in

the outcome equation, which in turn could be estimated with any of the spatial methods

developed for this linear equation, such as those described in the last section. We illustrate

our estimator in this section by employing KP-SAE to estimate the augmented outcome

equation: y2i = β0 + x02iβ1 + µbλi + v2i.

However, note that the "adjusted" IMR in (10) depends on a parameter that is not

estimated in the first step: γ, which is included in the weights ω2ij. In order to increase the

efficiency of the estimator and directly obtain its variance-covariance matrix, we propose

using GMM to estimate simultaneously all parameters of the sample selection model by

rewriting it as a sequential estimator (Newey, 1984) composed of the Pinkse and Slade

(1998) and KP-SAE estimators. More specifically, we stack their corresponding moment

conditions:

g(zN , θ) = [s(z1N , θ)
0,m(z2N , θ)

0]
0 , θ = {α0, α01, δ, β0, β01, µ, γ}

with

s(z1N , θ) = z01N ũ1N(θ), ũ1N(θ) as in (8),

m(z2N , θ) = [y1N · z2N ]0ũ2N(θ), ũ2N(θ) = y2N − β0 − x02Nβ1 − µbλN(δ, γ)
8



where the subscript N denotes the corresponding vector or matrix of data, we have let z0N =

(z01N , [y1N · z2N ]0)0, z1N includes the regressors of the selection equation, and z2N includes the
regressors of the outcome equation plus the estimated "adjusted" IMR, which is represented

as bλN(δ, γ) to make explicit its dependence on both SAE parameters.7
Defining ũN(θ) = (ũ01N(θ), ũ

0
2N(θ))

0 then all parameters of the SAE sample selection model

can be estimated as:

θ̂GMM = argmin
θ∈Θ

gN(θ)
0MNgN(θ) (11)

where gN(θ) = 1
N
z0N ũN(θ), for a conformable positive definite MN such that MN

p→M . We

call θ̂GMM the "spatial heckit" estimator for the sample selection model with SAE.

Denote g(θ) ≡ lim
N→∞

E[gN(θ)] and let θ0 be the true parameter vector. Under condi-

tions similar to those in Pinkse and Slade (1998), θ̂GMM is consistent (θ̂GMM
p→ θ0) and

asymptotically normal:8

√
N(θ̂GMM − θ0)

d→ N(0, [Ψ2(θ0)]
−1[∂g0(θ0)/∂θ]MΨ1(θ0)M [∂g(θ0)/∂θ

0][Ψ2(θ0)]
−1)

where Ψ1(θ0) = lim
N→∞

E{NgN(θ0)gN(θ0)
0}, and Ψ2(θ0) = [∂g

0(θ0)/∂θ]M [∂g(θ0)/∂θ
0].

Furthermore, the asymptotic variance of θ̂GMM can be estimated:

Ψ1N(θ̂GMM)
p→ Ψ1(θ0) and Ψ2N(θ̂GMM)

p→ Ψ2(θ0), where

Ψ1N(θ̂GMM) = NE{gN(θ̂GMM)gN(θ̂GMM)
0} and

Ψ2N(θ̂GMM) = [∂g0N(θ̂GMM)/∂θ]MN [∂gN(θ̂GMM)/∂θ
0].

The efficient θ̂GMM within the class of GMM estimators is obtained when the optimal

GMM weighting matrix is used. That is, if MN = [Ψ1N(θ̂GMM)]
−1 is chosen, such that

MN
p→ [Ψ1(θ0)]

−1, then the asymptotic distribution of the optimal θ̂GMM simplifies to:

√
N(θ̂GMM − θ0)

d→ N(0, [Ψ2(θ0)]
−1).

We also point out that the SAE sample selection model can also be estimated using a

two-step procedure. In the first step of this procedure, consistent estimates of the parameters
7For the estimation of the SAE parameters (δ and γ) we use the "generalized moments" procedure of

Kelejian and Prucha (1999) that employs the following three moment conditions based on second-order
moments of the residuals: E[ε0rεr] = Nσ2r; E[ε

0
rC

0Cεr] = σ2rtr(C
0C); and E[ε0rCεr] = 0; where r = 1, 2

refers to each equation in the model. In practice, these moment conditions are included in both s(z1N , θ)
and m(z2N , θ), avoiding the need of an instrument; although they are not explicitly shown here to simplify
the exposition. We discuss in more detail the implementation of our estimator below.

8An appendix with the derivation of the formal asymptotic properties of θ̂GMM under "high-level" as-
sumptions similar to those in Pinkse and Slade (1998) is available upon request from the authors.

9



in θ1 are obtained from (9). In the second step, nonlinear least squares (NLLS) is employed

to estimate the parameters in y2i = β0 + x02iβ1 + µbλi + v2i, in which the parameter γ enters

nonlinearly in the "adjusted" IMR (bλi). This procedure is attractive since it preserves the
two-step intuition of the heckit model, however, to estimate the correct standard errors for

the second-step estimates one must adjust for the fact that the parameters in θ1 are estimated

in a first step, and also employ a heteroskedasticity-consistent variance-covariance estimator

for NLLS since v2i is non-spherical. We avoid the extra steps to obtain correct standard

errors by employing the sequential GMM estimator in (11).

We now discuss other aspects of the implementation of the spatial heckit estimator.

Recall that the original spatial probit estimator by Pinkse and Slade (1998) makes use of an

instrumental variable (IV) to identify the SAE parameter δ. In this context, where the IV is

needed to identify a parameter related to the spatial error dependence and not to instrument

for an endogenous variable, it stands to reason that such IV should be correlated with the

underlying spatial process. A practical difficulty in general IV estimation is finding relevant

IVs. However, in the case of spatial dependence, there are two related sets of available

instruments that have been proposed in the context of a linear spatial autoregressive lag

(SAL) model in which the dependent variable is spatially lagged and used as a regressor

(thus becoming endogenous). The two sets of instruments are optimal in the sense that

they approximate the expected value of the endogenous variables. Even though these sets of

IVs are for a different model than the SAE, they are related to the spatial process and are

exogenous; making them reasonable candidates for use in the present context.

An alternative to the use of IVs to identify the SAE parameter δ is to apply the set of

moment conditions proposed in Kelejian and Prucha (1999) to the generalized residuals (8).

Recall that these moments are employed in the estimation of γ in the outcome equation

using KP-SAE. Given that these moment conditions explicitly involve the SAE parameters,

it seems more desirable to employ them over the use of IVs to identify δ and γ. Consequently,

one version of the spatial heckit estimator employs such moment conditions and no additional

instrumental variables to identify δ and γ.

Noting that the instrumental variables suggested in the context of the SAL model are

exogenous, related to the spatial process, and always available, there is the possibility that

they can be used to construct additional moment conditions to attain higher asymptotic effi-

ciency. This could be the case if additional useful information is contained in those moment
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conditions. An open question, of course, is whether the use of such additional instruments

results in finite sample improvements in the estimator, given that there may be a tradeoff

between the smaller variance that can be achieved and the finite sample bias introduced if the

additional instruments are not strong. We explore this issue in the Monte Carlo experiment

below by computing two additional versions of the spatial heckit estimator with different

sets of instruments: the Kelejian and Prucha (1998) and the Lee (2003) instruments.

The two sets of instruments are motivated as follows. In the context of the SAL model,

Kelejian and Prucha (1998) show that the optimal instruments depend on the unknown

spatial autoregressive parameter, and thus they propose to approximate them with the lin-

early independent columns of [x,Cx,C2x, ...], where x is the set of exogenous independent

variables and C is the spatial weighting matrix. Alternatively, Lee (2003) proposes to use

the estimated optimal instruments, which, in the context of the selection equation, are given

by (I − bδC)x. Kelejian et al. (2004) present simulation evidence about the finite sample
performance of these two sets of IVs in the context of the SAL model, concluding that their

performance is similar.9 In our present context, however, it is uncertain which of the two

sets of IVs could perform better.

4 Monte Carlo Experiment

We conduct a Monte Carlo experiment to explore the finite-sample performance of the

spatial heckit estimator for the sample selection model with spatially autoregressive errors

(SAE). The spatial heckit estimator is compared to three other estimators: the Kelejian

and Prucha (1998) estimator for the SAE model that ignores sample selection but accounts

for spatial dependence (KP-SAE); the traditional heckit estimator that accounts for sample

selection but ignores spatial dependence (heckit); and finally the ordinary least squares

(OLS) estimator that ignores both sample selection and spatial dependence. We compare

these estimators in terms of their finite sample bias and root-mean square error.

Given that we combine features of a sample selection model with a spatial dependence

specification, we pay close attention to previous simulation studies in specifying each of

the two features of our models, such as Cosslett (1991) and Leung and Yu (1996) for the

sample selection model, and Beron and Vijverberg (2004) and Kelejian and Prucha (1999)

9Kelejian et al. (2004) also introduce series-type IVs in the context of the SAL model, which we do not
consider here.
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for spatially dependent models.

Our data generating process (DGP) is as follows :

y∗1i = α0 + α1x1i + α2x2i + u1i, u1i = δ
X
j 6=i

ciju1j + ε1i (12)

y∗2i = β0 + β1x3i + β2x1i + u2i, u2i = γ
X
j 6=i

ciju2j + ε2i. (13)

Each of our models consists of three independent exogenous variables, one of which is

common to both equations, as in Cosslett’s (1991) experimental design. These exogenous

variables are generated as xk ∼ U(0, 1), k = 1, 2, 3. The innovations ε1i and ε2i are generated

bivariate normal as follows: ∙
ε1i
ε2i

¸
v N

µ∙
0
0

¸
,

∙
1 ρ
ρ 1

¸¶
(14)

where we set ρ = 0.5 for the correlation between the innovations in each of the two equa-

tions.10 The parameters of the model that are not related to the spatial dependence feature

are set at α1 = α2 = β1 = β2 = 1 and β0 = 0. The parameter α0 is used to control the

amount of sample selection, for which we consider two cases: 25% censoring (α0 = −0.3)
and 40% censoring (α0 = −.77). We consider in the experiment three different sample sizes:
N = 100, 225, and 400 observations. Importantly, these sample sizes refer to the uncensored

sample, therefore, the average number of observations available for estimation of the outcome

equation is 75, 168, and 300, respectively, for the case of 25% sample selection; and 60, 135,

and 240, respectively, for the case of 40% sample selection.

Regarding the spatial autoregressive parameter, we consider four different values: 0,

0.25, 0.5, and 0.75. We gauge the relative performance of three versions of the spatial heckit

estimator that differ in the IVs employed: no additional instruments ("No-Inst"), Kelejian

and Prucha (1998) instruments ("KP-Inst"),11 and Lee (2003) instruments ("Lee-Inst");

while the three versions employ the moment conditions from Kelejian and Prucha (1999) to

identify the SAE parameters. For the models with N = 100 and with N = 225 we undertake

1, 000 replications, whereas 500 replications are undertaken for the models with N = 400.

10The single choice of ρ = 0.5 is admitedly arbitrary, but it allows focusing on other important features of
the experiment while keeping it manageable. In our design, the coefficient on the (adjusted) IMR is equal
to ρ, and if ρ = 0 sample selection will not have any consequence, thus we want to avoid this choice of ρ.
In a similar model to the sample selection model without SAE, Hartman (1991) found no effect of ρ on the
performance of a similar two-step procedure.
11More specifically, in the simulations we use the independent columns of [x,Cx,C2x].
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The matrix of spatial weights has to be specified. For this, we create three grids of 10

by 10, 15 by 15 and 20 by 20 for the observation matrices of 100, 225 and 400, respectively.

Each grid is assigned an X-Y coordinate centered on the grid such that the bottom left

corner of the grid had a value of (0.5, 0.5). We use these grids to create a weighting matrix

that is based on the square of the inverse Euclidean distance between any two points. After

creating the location specific weights for each grid, the matrix is row standardized so that

the diagonal elements of the weighting matrix are all zeros and the sum of any one row

is equal to 1. Finally, a band is used to determine the number of observations that may

influence a centered observation. Such band is set with a lower bound of 0 and an upper

bound equal to
√
5.12 This way of specifying the spatial weighting matrix is widely used

within the literature, see, for instance, Anselin (1988).

Tables 1 through 3 present simulation results for the outcome equation of the sample

selection SAE model for samples of size 100, 225 and 400, respectively. In addition to

presenting simulation results for OLS, heckit and Kelejian and Prucha’s (1998) estimator for

the SAE model (KP-SAE), these tables also show simulation results for the three different

versions of our spatial heckit estimator: Spheck No-Inst, Spheck KP-Inst, and Spheck Lee-

Inst.13 The first column in each table indicates the extent of sample selection (sel) and

spatial dependence (δ = γ) for the models considered. For each of these models, up to four

parameters of interest are reported, which are listed in the second column of each table. The

remaining columns in the table are arranged in two blocks that correspond to the average

bias (BIAS) and the root-mean squared error (RMSE) of the different estimators.

The first estimator reported is OLS, which ignores both features of the data: sample

selection and spatial dependence. As a result, OLS is inconsistent, which is reflected in

the fact that it has large bias and RMSE, both of which typically increase as the amount

of sample selection or spatial dependence increases. In addition, the bias of OLS does not

decrease as the sample size increases. In general, though, OLS is able to estimate β1 (the

coefficient on the variable that does not appear in the selection equation) with relatively

small bias compared to the other coefficients. This is due to the fact that the variables xk
12The number of neighbors varies between 10 and 12, depending on the sample size.We note that Kelejian

and Prucha (1999) find that controlling or not for the number of neighbors per unit when specifying a
weighting matrix does not lead to significantly different results in their simulation study.
13The spatial heckit estimators require starting values. Both in the simulations and in the empirical

illustration below, we employ starting values that are available in practice. In particular, the staring values
employed for all parameters except δ and γ are the heckit parameter estimates. The starting values employed
for δ and γ are equal to the KP-SAE estimate of γ.
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(k = 1, 2, 3) are generated independently, and thus there is little effect of the sample selection

on the coefficient on x3 (β1).

The second estimator reported is the heckit estimator, which accounts for sample selection

but ignores spatial dependence. The consequence of spatial dependence on this estimator is

inconsistency, as explained above, since the probit model that is estimated in the first step

is heteroskedastic due to the spatial dependence. The only exceptions are the two models

without spatial dependence (δ = γ = 0), for which heckit is in fact the correct estimator and

it is expected to perform best. Therefore, we expect that the bias and RMSE of the heckit

estimator will increase as the amount of spatial dependence increases. This is typically the

case with the RMSE of heckit for all three sample sizes. With respect to the bias of heckit,

it does not always increase with the amount of spatial dependence in the sample sizes of 100

and 225. However, it typically does increase in the sample size of 400 (Table 3). In addition,

the bias also frequently increases as the amount of sample selection increases for all three

sample sizes.

Compared to OLS, the heckit estimator shows a great improvement, even though it is

also inconsistent in theory (except when δ = γ = 0). While the average bias and RMSE of

β1 is very small and fairly comparable to that of OLS, the other two coefficients (β0 and β2)

have smaller bias: in the case of β2, the bias has the interpretation of percentage and ranges

from 0.5 to 9, 1.8 to 4.4 and 1.3 to 3.2 percent for sample sizes 100, 225 and 400, respectively.

In the case of β0 the bias (not interpreted as percentage) ranges from -0.08 to 0.09, -0.076

to 0.028 and -0.019 to 0.088 for sample sizes 100, 225 and 400, respectively. Thus, the range

of the bias on β2 decreases while that of β0 initially decreases but then appears to increase

across model specifications as the sample size increases. Interestingly, the bias of these two

coefficients is of opposite sign compared to the bias in OLS, with only a few exceptions when

spatial dependence is highest. Finally, the RMSE of the heckit estimator for the coefficients

β0 and β2 is larger than that of OLS (even when δ = γ = 0), except in the models with the

largest sample size. This is expected as the non-linear heckit model is a more demanding

estimation technique. This will also be true of the spatial heckit estimator below.

The third estimator reported is KP-SAE that accounts for spatial dependence but ignores

the sample selection feature of the data, which results in inconsistent parameter estimates in

all model specifications. In agreement with this notion, the bias and RMSE increase as the

amount of sample selection increases, but they also increase substantially as the amount of
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spatial dependence increases. This perhaps reflects that spatial dependence is not entirely

accounted for in KP-SAE due to sample selection. Compared to the previous two estimators,

KP-SAE shows a bias in all of the coefficients that is slightly higher than that of the OLS

estimator, which is significantly larger than that of the heckit estimator (with the exception

of the bias on β1). With respect to RMSE, KP-SAE is fairly comparable to OLS when

spatial dependence is 0 or 0.25. However, the RMSE of KP-SAE deteriorates substantially

when spatial dependence increases to 0.5 and 0.75. As a result, compared to the RMSE of

heckit, the RMSE of KP-SAE is typically smaller in the two cases of low spatial dependence

(except when N = 400), but larger in the two cases of high spatial dependence.

KP-SAE is the first estimator that produces an estimate of the SAE parameter γ. The

bias of γ in KP-SAE typically decreases in absolute terms with the amount of spatial depen-

dence and sample selection (except when N = 100); while the RMSE tends to decrease with

the level of spatial dependence and no clear pattern emerges with respect to the amount of

sample selection. In relative terms, the bias of γ ranges from 16.2 to 76.8 percent of the true

γ in the models with sample size of 100 (average of -0.135 in the models with δ = γ = 0),

while in the models with sample size of 225 and 400 the bias ranges from 0.93 to 33.2 (average

of -0.93 in the models with δ = γ = 0) and 2 to 19.6 (average of -0.45 in the models with

δ = γ = 0) percent of the true γ, respectively. Therefore, the bias in the KP-SAE estimate of

γ appears to decrease as the sample size increases. Finally, the RMSE of γ becomes smaller

as more observations are available, as it ranges from 0.252 to 0.414, 0.141 to 0.327 and 0.118

to 0.251 for sample sizes 100, 225 and 400 respectively. Similar patterns are also found for

γ in the spatial heckit estimators below.

The last three estimators in Tables 1 through 3 are the versions of the spatial heckit

estimator we consider: Spheck No-Inst, Spheck KP-Inst and Spheck Lee-Inst, which are

consistent for all parameters across model specifications. Reporting these three different

versions allows the comparison of spatial heckit estimators using different sets of moment

conditions (instruments), which were discussed in Section 3.

We start by analyzing the smallest sample size (N = 100) shown in Table 1. All three

Spheck estimators for the parameters β0, β1 and β2 possess significantly smaller bias than

OLS and KP-SAE, but typically larger bias than heckit;14 although the bias of the Spheck

estimators is fairly similar to that of heckit in the models with the highest spatial dependence

14Recall that the heckit estimator is the correct model under no spatial dependence (δ = γ = 0).
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(0.75). In terms of the RMSE of β0 and β2, however, all three Spheck estimators typically

have the highest among all estimators across all models. Recall, however, that just as was

pointed out for heckit, Spheck is a more demanding estimation technique, and in Table 1,

even though N = 100, only about 75 (25% selection) or 60 (40% selection) observations are

available to estimate the outcome equation. This small number of observations likely causes

the Spheck estimators to have higher variance compared to the other estimators. Finally,

in terms of β1, the Spheck estimators have low bias and RMSE, comparable to that of other

estimators.

Comparing the KP-SAE estimate of γ with that of the three Spheck estimators, the

latter estimators have smaller bias and RMSE than the former in all models, except in those

with no spatial dependence (γ = 0), in which their RMSE is only slightly larger. Finally,

comparing the three versions of Spheck using N = 100, there is no clear favorite in terms

of bias as the three are very similar in this regard. In terms of RMSE, however, Spheck

KP-Inst typically dominates the other two, albeit by a slight margin.

As the sample size is increased to 225 observations in Table 2, the performance of the

Spheck estimates of β0 and β2 improve in terms of bias, as expected, possessing smaller bias

than OLS and KP-SAE and comparable bias to that of heckit, especially in models with low

sample selection and high spatial dependence, although in some of the other models the bias

of the Spheck estimators can be substantially larger than that of heckit (especially when

δ = γ = 0). At the same time, the bias on β1 of the Spheck estimators is typically smaller

than that of the other estimators. In terms of RMSE of β0 and β2, the Spheck estimators

experience a great improvement over the smaller sample size, now having more comparable

RMSE to the other estimators, especially when spatial dependence is an important feature

of the model; however, in a few instances the RMSE of the Spheck estimators is still sizable.

Regarding the estimate of γ in this intermediate sample size, both the KP-SAE and

Spheck estimators show similar bias and RMSE although, as we discussed above, the Spheck

estimators outperform KP-SAE with respect to the bias and RMSE on all other coefficient

estimates. Finally, the results using N = 225 suggest that Spheck Lee-Inst performs slightly

better than the other two Spheck estimators in terms of both bias and RMSE, followed by

Spheck KP-Inst. The trend in terms of RMSE may not be surprising since, as discussed in

Section 3, both Spheck Lee-Inst and Spheck KP-Inst use potentially useful information in

the form of instruments that can result in smaller (asymptotic) variance. In any case, the
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results of the three estimators are typically very close to each other.

Table 3 presents simulation results for a sample size of N = 400. In terms of bias of β0
and β2, the Spheck estimators outperform OLS and KP-SAE by far, plus they become fairly

comparable to the heckit estimator, outperforming it in many cases. Similarly, in terms of

RMSE, and in contrast to the simulations with smaller sample sizes, the Speck estimators

now have similar RMSE to the other estimators considered for all three parameters β0, β1,

and β2; even performing best in this respect in a few cases. This improvement in the Spheck

estimators may be attributed to the larger sample size (N = 400), which indicates that in

this case the finite sample properties of the spatial heckit estimator are reasonably good for

a sample as small as 400 observations, even when only 75 or 60 percent of those observations

are available to estimate the outcome equation.

In terms of the spatial autoregressive parameter γ, the Spheck and KP-SAE estimates

show again very similar bias and RMSE, with typically slightly higher values for the Spheck

estimators. Finally, comparing the performance of the three Spheck estimators in the models

with N = 400 corroborates the previously noted trend that the three estimators perform

fairly similarly in terms of bias and RMSE. If at all, there is only a slight improvement in

bias from using Spheck No-Inst, and a slight improvement in RMSE from using either Spheck

KP-Inst or Spheck Lee-Inst.

Table 4 presents simulation results for the selection equation. This equation is only

estimated in the heckit (using a probit model) and the three versions of Spheck. However,

given their similar performance and to save space, only the results for Spheck KP-Inst are

presented.15 Even though we present results for the two cases of 25% and 40% censoring,

the same number of observations are employed in each case since it is the selection equation.

Nonetheless, the value of the constant term is different in each case.

It is evident from Table 4 that the heckit estimator typically outperforms the Spheck

KP-Inst estimator in terms of both bias and RMSE. However, the RMSE of the Spheck

KP-Inst estimator is comparable to that of the heckit model even in a sample as small

as 225 observations, and even in the models with no spatial dependence, where the heckit

estimator is the correct model. For the sample of N = 400, the performance in terms of

both bias and RMSE becomes very similar between Spheck KP-Inst and heckit. In addition,

15The results for the selection equation for the Spheck No-Inst and Spheck Lee-Inst estimators are available
upon request. In summary, Spheck KP-Inst outperforms the other two estimators, albeit by a small margin;
however, the relatively better performance by Spheck KP-Inst erodes as the sample size increases. For
N = 400, the performance of the three Spheck estimators is almost identical in the selection equation.
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the improvement of the Spheck KP-Inst estimator as the sample size increases is larger than

the one observed in the heckit model. Finally, it should be noted that the estimate of the

spatial parameter δ by the Spheck KP-Inst estimator is estimated with relatively low bias

and RMSE across model specifications, especially in the models with sample size 225 and

400, and when there is substantial spatial dependence.

In summary, we regard the simulation results as encouraging with respect to the finite

sample properties of the three versions of the spatial heckit estimator we consider here.

In particular, the fact that the advantages of our estimator are evident in the simulations

despite using relatively small sample sizes is worth pointing out. Finally, the simulations also

show that the three versions considered of the spatial heckit estimator yield similar results

with only slight improvements in RMSE in the parameters that correspond to the outcome

equation when using additional instruments (Spheck KP-Inst or Spheck Lee-Inst); while for

the parameters in the selection equation the difference among the three estimators becomes

negligible as the sample size increases from 100 to 400.

5 The Sample Selection Models with Spatial Depen-
dence in Practice

In this section we discuss the empirical importance of taking into account sample se-

lection bias when estimating models that exhibit spatial error dependence. Furthermore,

we illustrate the application of the spatial heckit estimator for the sample selection model

with SAE dependence using a data set from a fishery, which is censored for confidentiality

reasons.

McMillen (1995) motivates the pervasiveness of sample selection problems in spatial data,

in particular in urban economics and regional science. His main example deals with data on

land use and values in the city of Chicago during the 1920s (see references in McMillen, 1995).

In this case, unobserved variables that make a parcel more likely to receive residential zoning

may increase the value of residential land (McMillen, 1995). Other applications of sample

selection models with spatial data discussed in McMillen (1995) include models of housing

prices, rent and tenure choice (Goodman, 1988), office rents and lease provisions (Benjamin

et al., 1992), and home improvement choice (Montgomery, 1992) in urban economics; the

choice between central city and suburban employment (McMillen, 1993), and analysis of

earnings and migration (Borjas et al., 1992) in labor economics. In fact, the increasing
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availability of geo-coded data makes even more relevant the availability of methods to deal

with sample selection when spatial error dependence is present.

Our application in this section is in the area of natural resource economics, in particular

fisheries economics. We employ a sample selection model with SAE dependence to estimate

spatial production within a fishery, using a data set from the Pacific cod fishery within the

Eastern Bering Sea that is censored for reasons of confidentiality. As in the previous section,

we compare the performance of the spatial heckit estimator for the SAE with OLS, the

traditional heckit model and Kelejian and Prucha’s SAE estimator.

Within fisheries management there has been a strong push to expand the suite of man-

agement regimes implemented and economic models used to evaluate them, to incorporate

the spatial and temporal structure of the bioeconomic model. This has even lead some to

draw the conclusion that future spatial management regimes will be defined not only over

time, technology and location but also over depth and degree of implementation (Wilen,

2004). Therefore, the challenge for fisheries economists is to expand their models, both em-

pirical and theoretical, to reflect this frontier in fisheries management. An initial interest

is to investigate the production process within fisheries over the spatial region defined by

the distribution of the metapopulation harvested. The catch-per-unit-effort (CPUE) has

been traditionally implemented to analyze the productivity and efficiency of the production

process within fisheries, where CPUE is defined as the catch per a "haul" executed. A "haul"

represents the technology used such as a trawl device, pot vessel, hook-and-line, jig, etc.

Previous empirical work has been focused on investigating non-spatially defined produc-

tion within a fishery in an effort to determine the factors that explain deviations from the

production frontier (Kirkley et al. 1995, 1998; Squires and Kirkley 1999; Pascoe and Coglan

2002). Applying the results of the previous investigations to the current front line of spa-

tial fisheries management would be inappropriate because the spatial processes present are

not incorporated into the model. For instance, should a managing body decide to close a

given spatial region within the fishery with a low level of spatial technical efficiency this

will displace fishing effort into the surrounding areas. If these areas possess a higher level

of spatial technical efficiency, it will force them to more exhaustively push the frontier of

their production capabilities to capture the same amount of the target species. This will

invariably yield a higher cost of harvesting and lower rents for the fishermen, more so than if

a high efficiency area is closed instead. Estimating spatial efficiency is beyond the scope of
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this application, but investigating spatial production is a necessary first step in the process

of facilitating fisheries policy.

Determining the spatial rates of production requires a very fine spatial resolution of data.

Often times this data is screened for confidentiality reasons to preserve the privacy of the

fishermen within the fleet. The current publicly available data set on fishing effort within

the Eastern Bering Sea of Alaska is compiled from the observer and log-book data collected

by the National Marine Fisheries Service (NMFS). This data set is censored by not reporting

the CPUE within a location unless 4 or more vessels, possessing similar characteristics, fish

within that region. Therefore, the use of this data by researchers is limited unless they

employ an empirical method that can control for this censorship, which justifies the use of

the spatial sample selection model developed within this paper. Within our data set, there

are 320 observations, of which we observe 207, which equates to a sample selection rate of

35%.

Although the data set does not contain vessel identifiers, it is still possible to determine

the overall level of the fleet’s spatial production using this data set. Should one decide to

refine the analysis by focusing on inter and intra vessel differences in the spatial distribution

of production, vessel specific data would be necessary. This ultimately may appear to be a

more interesting question. However, given that a researcher will invest a substantial amount

of time and effort prior to obtaining this information, it may be beneficial to investigate the

fleet performance to test for spatial heterogeneity in the fleets’ spatial rate of production

before investigating the vessel specific model.

Our analysis is conducted on the Pacific cod fishery within the Eastern Bering Sea of

Alaska for the year 1997 using the NMFS data. Pacific cod is targeted in the Alaskan

groundfish fishery. Estimating the fleets’ spatial production with regard to this species

is beneficial due to its broad distribution within the Eastern Bering Sea which makes it

susceptible to recent regulations targeted to protect the Stellar sea lion rookeries and the

even more recent concerns of essential fish habitat (EFH) management.

To conduct the spatial production estimation, the spatial resolution of what is deemed

a "location" must be defined. The spatial resolution utilized are the Alaska Department

of Fish and Game’s (ADF&G) statistical reporting units. This unit of measure divides the

Eastern Bering Sea into a grid with each cell being one-half degree latitude by one degree

longitude. For the year analyzed this divides the fishery into 90 spatially different locations
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within the fishery.

The CPUE for the Pacific cod fishery is defined as the metric tons of fish caught during

the year within the ADF&G statistical reporting regions.16 This measure is the average of

all vessels that fished within this region of like vessel characteristics. Vessels were grouped

according to the size of vessel, gear utilized and type of vessel (catcher-processor vs. catcher-

vessel). Therefore, each observation represents a relatively homogeneous micro-fleet within

the Pacific cod fishery that fished within the ADF&G region. Given that these observations

are spatially defined, it is plausible that they are spatially correlated, and therefore a spa-

tial econometric method must be utilized to obtain appropriate estimates of their spatial

production. Indeed, the Moran-I test statistic using the OLS residuals soundly rejects the

null hypothesis of zero spatial autocorrelation on the data with a value of 16.1 (p-value of

0.00).17

To allow comparison among the four estimators employed in the Monte Carlo experiment

in the previous section, the spatial production model is estimated with each of them. We

note that given the documented spatial error dependence and the sample selection in the

data, a sample selection estimator with SAE dependence is likely more appropriate than

the other estimators. The OLS and SAE models are estimated using only the observations

that are not censored, while the heckit model accounts for the sample selection in the data

but ignores the spatial dependence. These features most likely render the estimates of these

three models inconsistent. The sample selection model with spatial dependence in (1)-(2) is

estimated with y2 as the natural logarithm of CPUE and x2 containing the log-transformed

bathymetric measurements corresponding with the maximum and minimum depth within

a ADF&G statistical reporting area, the stock assessment data resulting from the NMFS

annual biomass trawl survey, and dummy variables for the following vessel characteristics

that determine the homogenized unit observed: catcher-vessel (CV), hook-and-line gear

(HAL), non-pelagic trawl gear (NPT), and vessel at least 125 feet long (Large). As for the

selection equation, x1 contains the same variables as x2 along with an additional variable,

a one-year lagged biomass trawl survey observation, under the assumption that this lagged

variable influences the probability that four or more vessels will fish in a given statistical

16For simplicity, we concentrate on the catch of Pacific cod only and ignore all other species caught.
17We also computed a Moran I test statistic using the heckit residuals following Kelejian and Prucha

(2001). Surprisingly, in this case the null hypothesis of zero spatial autocorrelation cannot be rejected with
a p-value of 0.9. On the contrary, a Moran I test statistic using the probit residuals (selection equation)
strongly rejects the null of zero spatial autocorrelation with a p-value of 0.001.
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reporting location but not the amount of "hauls" that will be conducted.

In order to determine the spatial weighting matrix, we use the following common spec-

ification (also used in the previous section) to assign spatial weights among the statistical

reporting units we use as locations: cij = 1

dfij
, where cij is the spatial weight assigned to the

distance between location i and location j, dij is the Euclidian distance between locations i

and j, and f is a "friction" parameter.18 To control the number of neighbors per statistical

reporting unit a band is chosen. Finally, the spatial weights, cij, are row standardized such

that the diagonal elements of the spatial weighting matrix are all zero and the sum of any

one row is one. We use a band of 7 and a friction parameter of 2 in the estimations below.

The results from all estimators for the outcome equation are presented in Table 5.19

The estimated coefficients from each of the models are somewhat similar in sign and

magnitude, although there are a number of important differences. First, the OLS and KP-

SAE estimators often differ in magnitude, sign and statistical significance compared to the

estimates yield by the Spheck estimators. Second, the Spheck estimators and heckit agree

to some extent in the magnitude of the estimates in most coefficients, although not always

in their statistical significance. Third, the three Spheck estimators (No-Inst, KP-Inst, and

Lee-Inst) are very similar in the magnitude of their estimated coefficients and for the most

part in their statistical significance; although in general Spheck KP-Inst and Spheck Lee-

Inst seem to achieve smaller standard errors than Spheck No-Inst. Fourth, the estimate of

the SAE parameter (γ) is high and agrees across the KP-SAE and Spheck estimators. All

estimates of γ are statistically significant but more so the Spheck estimates. Importantly, all

these features of the outcome equation are largely in agreement with the simulation results

described in the previous section.

Interestingly, despite the relatively high amount of selection in the sample (35%), the IMR

is not statistically significant in all but one of the estimators (Spheck KP-Inst), although

it is estimated to be positive in all four estimators; and is of about the same magnitude in

the Spheck estimators but considerably larger in heckit. Comparing some of the Spheck and

heckit estimates, even though they are similar in magnitude, the statistical significance of

18The spatial weighting matrix was constructed by superimposing the ADF&G on to the X−Y coordinate
plane.
19We note that the numerical optimizations needed to estimate the spatial heckit make it computationally

intensive relative to the other three estimators. In the currrent application, it takes about 35 minutes to
compute the spatial heckit estimators in a computer with a Pentium M processor at 1.6 GHz with 496 MB
of RAM.
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some of the Spheck coefficients relative to heckit agrees with expectations for these data.

For instance, in the case of "Max. Depth", it is expected that vessels fishing in deeper areas

would obtain a larger CPUE. Similarly, it is also expected that areas with high "Biomass"

signal would attain more productivity per haul executed, if such signal is accurate. Finally,

"Dum HAL" is one of the more productive technologies (per haul executed) used to harvest

Pacific cod in the Bering Sea (in 1997). Summarizing the results for the outcome equation

in this empirical illustration, the Spheck estimators yield more sensible results than OLS,

heckit, and KP-SAE; while at the same time they achieve smaller standard errors, especially

Spheck KP-Inst and Spheck Lee-Inst.

Table 6 presents the estimated coefficients for the selection equation using the heckit and

the spatial heckit estimators. Once again, the estimators yield somewhat similar parameter

estimates albeit with some important differences. For instance, the estimated coefficient

on "Max. Depth" in heckit is smaller than that of the Spheck estimators and is marginally

statistically significant; while the estimated coefficient on "Min. Depth" is smaller in absolute

value in the Spheck estimators and marginally statistically significant in one instance (Spheck

KP-Inst) compared to heckit. Similarly, the coefficient on "DumHAL" is larger in the Spheck

estimators while being statistically significant in both Spheck (except No-Inst) and heckit.

Comparing the Spheck estimators in the selection equation, all three yield very similar

results, except in a couple of coefficients in which Spheck No-Inst comes up with relatively

high standard errors that result in statistically insignificant coefficients: "Dum CV" and

"Dum HAL", although the magnitude is always similar. This may suggest that, in practice,

using extra instruments may be more important for the precision of the estimated coeffi-

cients in the selection equation. Finally, all three Spheck estimators yield values of the SAE

parameter (δ) that are high (0.82 to 0.91) and highly statistically significant, as expected.

Although a more complete analysis would be required before any concrete policy recom-

mendations are made from this exercise, they do suggest that there exists some degree of

heterogeneity in the spatial production rates within the Pacific cod fishery. This may be

attributed to a number of different factors such as climatic conditions, skipper ability, and

interactions with other fisheries (to name a few).

In summary, the results from this empirical illustration of our methodology are indica-

tive of the potential benefits of accounting simultaneously for both sample selection and

spatial dependence. Failing to account simultaneously for both of these features can result
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in inaccurate inferences and thus potentially misleading policy recommendations.

6 Conclusion

This paper proposes a method of estimation for a sample selection model with spatial

autoregressive errors (SAE). The method of estimation is analogous to the popular heckit

model (and thus we call our estimator the "spatial heckit"), in which consistent estimates

of the probability of observing a particular unit (selection equation) are estimated using a

modification of the probit model (Pinkse and Slade, 1998). Then, the odds of observing

each unit are calculated (the inverse Mills ratio) and used as an additional regressor that

controls for the selection bias in the equation of interest (outcome equation). Importantly,

the appropriate inverse Mills ratio depends on the SAE parameter of the outcome equation.

Therefore, to increase efficiency of the resulting estimator and to obtain directly its variance-

covariance matrix, we propose to estimate the model jointly by nesting the two equations into

a sequential GMM framework (Newey, 1984). It is also noted the availability of instrumental

variables that can be used to develop additional moment conditions that can potentially

result in higher efficiency of the spatial heckit estimator.

We explore the properties of the spatial heckit for the model with SAE dependence by

stating its asymptotic properties, conducting simulations, and applying it to actual data.

The estimator is consistent and asymptotically normally distributed. The simulations show

the potential biases incurred by other estimators that ignore sample selection, spatial depen-

dence, or both, and also show that our estimator is valuable when the data exhibits both of

these characteristics. Importantly, the finite sample properties of our estimator are shown to

be acceptable even for relatively small sample sizes. Finally, the empirical application sec-

tion illustrates that sample selection is a common occurrence in spatial data sets typically

available to researchers, and shows that our estimator is both feasible and valuable to use in

practice.

To our knowledge, the proposed estimator is among the first to account for sample se-

lection and spatial dependence simultaneously. Nevertheless, some shortcomings are worth

mentioning. First, our estimator relies on a distributional assumption (joint normality) of

the error terms in selection and outcome equations, just as the heckit estimator does. This

shortcoming indicates an area for future research. Second, is the relatively greater com-

putational intensity of our estimator compared to the available methods for linear spatial
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models without sample selection. However, our estimator still compares favorably in this

respect with other estimation methods for spatial sample selection models that would require

approximation of multidimensional integrals.
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(sel, δ=γ) OLS Heckit KP-SAE Spheck 
No-Inst

Spheck 
KP-Inst

Spheck 
Lee-Inst OLS Heckit KP-SAE Spheck 

No-Inst
Spheck  
KP-Inst

Spheck 
Lee-Inst

0.324 -0.042 0.321 -0.167 -0.194 -0.148 0.459 1.155 0.467 3.080 2.984 2.989
0.034 -0.003 0.034 -0.005 -0.001 -0.004 0.398 0.401 0.408 0.432 0.428 0.432
-0.264 0.026 -0.258 0.123 0.147 0.123 0.493 0.921 0.514 2.296 2.187 2.257

-0.136 -0.161 -0.159 -0.164 0.395 0.462 0.458 0.464
0.315 -0.057 0.308 -0.145 -0.119 -0.095 0.461 1.041 0.492 3.016 2.741 2.886
0.040 0.002 0.046 0.002 0.004 0.002 0.395 0.396 0.440 0.422 0.419 0.421
-0.253 0.043 -0.245 0.127 0.107 0.093 0.491 0.895 0.562 2.037 1.837 1.852

-0.123 -0.113 -0.115 -0.115 0.387 0.439 0.435 0.439
0.333 -0.040 0.350 -0.296 -0.280 -0.365 0.500 1.028 0.704 2.653 2.512 3.249
0.035 -0.002 0.041 0.004 0.005 0.003 0.400 0.403 0.670 0.409 0.407 0.409
-0.261 0.023 -0.292 0.234 0.217 0.267 0.519 0.860 0.911 1.957 1.826 2.115

-0.081 -0.047 -0.054 -0.051 0.332 0.365 0.361 0.363
0.401 0.099 0.490 -0.109 -0.162 -0.162 0.660 1.242 1.536 2.941 2.718 3.098
0.030 -0.002 0.031 0.009 0.013 0.012 0.448 0.450 1.826 0.426 0.422 0.425
-0.300 -0.090 -0.448 0.111 0.133 0.144 0.599 0.953 2.185 2.046 1.982 2.127

-0.072 -0.030 -0.038 -0.035 0.252 0.264 0.259 0.261
0.466 -0.075 0.471 -0.202 -0.275 -0.199 0.601 1.389 0.626 3.390 3.766 3.343
0.037 -0.010 0.031 -0.008 -0.006 -0.008 0.450 0.454 0.487 0.484 0.484 0.486
-0.331 0.060 -0.332 0.191 0.232 0.187 0.577 1.086 0.612 2.373 2.505 2.278

-0.135 -0.171 -0.170 -0.171 0.396 0.485 0.481 0.484
0.468 -0.080 0.468 -0.099 -0.045 -0.079 0.606 1.367 0.643 3.229 2.275 3.031
0.037 -0.009 0.038 -0.013 -0.013 -0.012 0.446 0.452 0.504 0.477 0.474 0.477
-0.327 0.061 -0.326 0.100 0.070 0.085 0.578 1.078 0.645 2.106 1.697 1.994

-0.192 -0.190 -0.191 -0.193 0.414 0.477 0.477 0.478
0.482 -0.055 0.494 -0.312 -0.318 -0.322 0.641 1.574 0.792 3.200 3.356 3.295
0.041 -0.006 0.046 -0.003 0.000 -0.002 0.459 0.465 0.661 0.476 0.474 0.476
-0.327 0.054 -0.346 0.278 0.267 0.279 0.596 1.174 0.901 2.400 2.378 2.411

-0.178 -0.142 -0.146 -0.145 0.378 0.416 0.414 0.415
0.549 0.052 0.645 -0.077 -0.103 -0.087 0.798 1.468 1.568 2.772 2.722 2.746
0.030 -0.014 -0.012 0.000 0.005 0.003 0.509 0.516 1.834 0.507 0.502 0.504
-0.312 0.005 -0.430 0.112 0.124 0.121 0.665 1.083 1.930 1.948 1.940 1.976

-0.137 -0.077 -0.085 -0.083 0.306 0.310 0.310 0.311
Note: Simulation results are based on 1000 replications.

Table 1. Simulation Results for N=100
BIAS RMSE
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γ
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(sel, δ=γ) OLS Heckit KP-SAE Spheck 
No-Inst

Spheck 
KP-Inst

Spheck 
Lee-Inst OLS Heckit KP-SAE Spheck 

No-Inst
Spheck 
KP-Inst

Spheck 
Lee-Inst

0.327 -0.052 0.324 -0.083 -0.081 -0.064 0.382 0.549 0.383 0.919 0.862 0.730
0.003 -0.008 0.004 -0.008 -0.008 -0.008 0.257 0.258 0.261 0.275 0.275 0.274
-0.244 0.041 -0.241 0.092 0.090 0.083 0.347 0.469 0.350 0.715 0.697 0.655

-0.102 -0.113 -0.113 -0.113 0.327 0.362 0.360 0.361
0.330 -0.036 0.331 -0.033 -0.027 -0.027 0.390 0.530 0.407 0.586 0.584 0.583
0.002 -0.009 0.005 -0.008 -0.008 -0.008 0.260 0.261 0.300 0.272 0.271 0.271
-0.246 0.028 -0.250 0.061 0.056 0.057 0.352 0.454 0.386 0.546 0.549 0.547

-0.030 -0.021 -0.023 -0.023 0.273 0.292 0.290 0.290
0.347 -0.033 0.370 -0.066 -0.056 -0.033 0.415 0.566 0.563 1.139 1.083 0.812
0.003 -0.008 0.010 -0.002 -0.002 -0.002 0.272 0.274 0.583 0.270 0.269 0.269
-0.250 0.025 -0.293 0.089 0.084 0.070 0.363 0.475 0.626 0.807 0.795 0.661

0.043 0.063 0.058 0.060 0.215 0.230 0.226 0.226
0.404 0.028 0.604 -0.041 -0.035 -0.027 0.518 0.660 1.710 0.932 0.942 0.905
0.001 -0.009 -0.056 0.000 0.000 0.000 0.311 0.311 2.084 0.278 0.279 0.278
-0.261 -0.019 -0.555 0.080 0.074 0.070 0.400 0.486 2.264 0.664 0.672 0.648

0.066 0.095 0.089 0.090 0.141 0.158 0.154 0.154
0.475 -0.066 0.475 -0.173 -0.175 -0.161 0.526 0.729 0.527 1.401 1.495 1.292
0.007 -0.008 0.007 -0.007 -0.007 -0.007 0.287 0.288 0.291 0.307 0.307 0.307
-0.316 0.042 -0.316 0.140 0.140 0.136 0.423 0.537 0.427 1.062 1.079 0.980

-0.084 -0.097 -0.096 -0.097 0.295 0.337 0.335 0.337
0.478 -0.076 0.481 -0.149 -0.119 -0.151 0.534 0.743 0.547 1.269 0.996 1.089
0.010 -0.005 0.016 -0.005 -0.005 -0.005 0.290 0.290 0.327 0.304 0.303 0.304
-0.318 0.044 -0.329 0.125 0.107 0.128 0.429 0.543 0.462 0.929 0.773 0.808

-0.083 -0.074 -0.075 -0.075 0.274 0.299 0.297 0.297
0.492 -0.069 0.516 -0.142 -0.108 -0.104 0.556 0.740 0.672 1.293 1.183 0.946
0.010 -0.004 -0.005 -0.002 -0.003 -0.002 0.299 0.299 0.949 0.302 0.301 0.301
-0.313 0.043 -0.344 0.136 0.111 0.115 0.438 0.549 0.730 0.886 0.792 0.731

-0.044 -0.015 -0.019 -0.018 0.224 0.236 0.234 0.235
0.559 -0.022 0.733 -0.093 -0.114 -0.068 0.666 0.888 1.645 1.399 1.419 1.356
-0.004 -0.018 -0.078 -0.012 -0.015 -0.013 0.338 0.339 1.916 0.310 0.310 0.309
-0.321 0.018 -0.545 0.122 0.131 0.111 0.474 0.601 2.047 0.912 0.918 0.909

0.007 0.050 0.044 0.045 0.151 0.161 0.158 0.159
Note: Simulation results are based on 1000 replications.

Table 2. Simulation Results for N=225
BIAS RMSE
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(sel, δ=γ) OLS Heckit KP-SAE Spheck 
No-Inst

Spheck 
KP-Inst

Spheck 
Lee-Inst OLS Heckit KP-SAE Spheck 

No-Inst
Spheck 
KP-Inst

Spheck 
Lee-Inst

0.318 -0.025 0.316 -0.016 -0.021 -0.018 0.351 0.350 0.351 0.336 0.339 0.340
0.011 0.001 0.012 -0.004 -0.004 -0.004 0.193 0.192 0.196 0.205 0.205 0.205
-0.232 0.018 -0.229 0.037 0.042 0.041 0.299 0.304 0.299 0.318 0.322 0.322

-0.047 -0.050 -0.050 -0.050 0.251 0.259 0.258 0.257
0.328 -0.023 0.329 -0.008 -0.009 -0.012 0.361 0.364 0.371 0.344 0.345 0.347
0.006 -0.004 0.011 -0.002 -0.003 -0.003 0.195 0.195 0.227 0.201 0.201 0.201
-0.242 0.013 -0.246 0.031 0.034 0.036 0.307 0.311 0.325 0.326 0.327 0.328

0.025 0.036 0.034 0.034 0.202 0.210 0.209 0.208
0.346 -0.024 0.380 -0.008 -0.013 -0.009 0.385 0.381 0.517 0.444 0.499 0.447
0.000 -0.009 0.014 -0.007 -0.008 -0.007 0.201 0.201 0.495 0.202 0.202 0.202
-0.241 0.017 -0.309 0.045 0.048 0.045 0.312 0.314 0.521 0.381 0.411 0.387

0.091 0.103 0.104 0.108 0.181 0.191 0.192 0.194
0.393 0.040 0.477 0.015 -0.009 -0.004 0.465 0.468 2.976 0.506 0.554 0.528
-0.002 -0.011 0.079 -0.005 -0.003 -0.004 0.225 0.225 4.399 0.209 0.209 0.209
-0.243 -0.023 -0.422 0.041 0.055 0.053 0.333 0.333 4.694 0.355 0.395 0.377

0.123 0.138 0.134 0.133 0.154 0.162 0.158 0.158
0.456 -0.036 0.454 -0.135 -0.119 -0.119 0.484 0.421 0.483 0.573 0.488 0.492
0.017 0.006 0.020 -0.002 -0.003 -0.002 0.214 0.213 0.215 0.218 0.219 0.219
-0.292 0.023 -0.291 0.108 0.096 0.099 0.361 0.341 0.363 0.451 0.395 0.400

-0.043 -0.042 -0.042 -0.042 0.232 0.242 0.240 0.240
0.462 -0.046 0.462 -0.108 -0.104 -0.119 0.491 0.441 0.496 0.491 0.488 0.506
0.012 0.001 0.018 -0.003 -0.003 -0.004 0.215 0.214 0.236 0.221 0.221 0.220
-0.291 0.030 -0.293 0.099 0.096 0.108 0.361 0.345 0.376 0.400 0.397 0.408

-0.048 -0.038 -0.038 -0.038 0.213 0.219 0.219 0.218
0.480 -0.043 0.508 -0.069 -0.067 -0.084 0.513 0.479 0.591 0.492 0.481 0.502
0.010 -0.002 0.017 -0.001 -0.001 -0.001 0.222 0.220 0.403 0.221 0.221 0.222
-0.293 0.029 -0.342 0.086 0.084 0.096 0.366 0.363 0.515 0.394 0.387 0.400

-0.004 0.018 0.015 0.015 0.172 0.177 0.176 0.176
0.527 -0.063 0.789 -0.047 -0.047 -0.056 0.595 0.610 1.829 0.612 0.661 0.661
0.017 0.005 -0.069 0.009 0.009 0.009 0.262 0.260 2.253 0.238 0.238 0.238
-0.293 0.045 -0.667 0.097 0.097 0.104 0.389 0.400 2.196 0.418 0.458 0.455

0.054 0.094 0.089 0.084 0.121 0.144 0.141 0.160
Note: Simulation results are based on 500 replications.

Table 3. Simulation Results for N=400
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(sel, δ=γ) Heckit
Spheck 
KP-Inst Heckit

Spheck 
KP-Inst Heckit

Spheck 
KP-Inst Heckit

Spheck 
KP-Inst Heckit

Spheck 
KP-Inst Heckit

Spheck 
KP-Inst

-0.020 -0.020 0.349 0.419 -0.021 -0.039 0.240 0.282 -0.009 -0.013 0.174 0.199
0.030 0.193 0.561 0.690 0.019 0.192 0.362 0.460 0.004 0.166 0.254 0.342
0.051 0.199 0.523 0.682 0.030 0.198 0.332 0.445 0.013 0.166 0.256 0.331

-0.220 0.533 -0.128 0.394 -0.023 0.267
-0.017 -0.007 0.342 0.417 -0.018 -0.016 0.243 0.282 -0.010 0.002 0.174 0.209
0.022 0.188 0.537 0.660 0.012 0.196 0.368 0.467 0.006 0.181 0.252 0.345
0.045 0.222 0.508 0.673 0.028 0.213 0.327 0.444 0.007 0.189 0.250 0.346

-0.200 0.485 -0.091 0.324 0.002 0.202
-0.013 -0.004 0.361 0.462 -0.008 0.000 0.252 0.310 0.007 0.024 0.188 0.242
-0.012 0.199 0.561 0.706 -0.039 0.196 0.363 0.474 -0.043 0.188 0.248 0.349
0.032 0.256 0.502 0.701 -0.003 0.231 0.320 0.464 -0.032 0.202 0.248 0.369

-0.148 0.383 -0.053 0.230 0.008 0.143
-0.020 -0.075 0.439 0.729 -0.004 -0.059 0.299 0.451 0.011 -0.022 0.236 0.343
-0.109 0.251 0.565 0.914 -0.166 0.200 0.366 0.527 -0.152 0.189 0.285 0.369
-0.042 0.294 0.499 0.887 -0.093 0.251 0.322 0.567 -0.111 0.194 0.264 0.403

-0.124 0.261 -0.042 0.129 -0.010 0.081
-0.034 -0.113 0.337 0.413 -0.022 -0.094 0.227 0.278 -0.010 -0.065 0.169 0.198
0.045 0.174 0.518 0.625 0.016 0.137 0.314 0.378 0.003 0.104 0.237 0.284
0.042 0.163 0.477 0.586 0.022 0.139 0.305 0.378 0.014 0.111 0.227 0.277

-0.279 0.568 -0.152 0.409 -0.084 0.303
-0.019 -0.112 0.343 0.440 -0.012 -0.091 0.234 0.285 0.003 -0.066 0.167 0.204
0.032 0.173 0.518 0.633 0.007 0.149 0.320 0.391 -0.008 0.123 0.237 0.292
0.032 0.197 0.467 0.700 0.010 0.152 0.309 0.390 -0.006 0.127 0.231 0.290

-0.194 0.508 -0.055 0.321 0.014 0.242
0.006 -0.152 0.364 0.531 0.022 -0.117 0.252 0.343 0.027 -0.107 0.182 0.256
-0.008 0.216 0.512 0.675 -0.033 0.196 0.321 0.434 -0.040 0.181 0.237 0.332
0.007 0.259 0.454 0.743 -0.034 0.193 0.307 0.428 -0.033 0.196 0.232 0.340

-0.097 0.381 0.025 0.215 0.076 0.168
0.122 -0.173 0.451 0.831 0.102 -0.177 0.316 0.524 0.098 -0.181 0.251 0.401
-0.116 0.298 0.545 1.102 -0.155 0.239 0.345 0.521 -0.126 0.262 0.259 0.406
-0.092 0.317 0.448 0.870 -0.127 0.239 0.326 0.550 -0.141 0.231 0.270 0.393

-0.072 0.238 0.010 0.106 0.035 0.073
Note: Simulation results are based on 1000 replications for N=100 and N=225, and 500 for N=400.

BIAS RMSE

Table 4. Simulation Results for the Selection Equation
N=100 N=225 N=400

BIAS RMSE BIAS RMSE
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Constant 7.562 *** 5.003 * 7.342 *** 5.421 *** 5.243 *** 5.314 ***
(0.451) (2.592) (0.332) (1.583) (0.969) (1.170)

Max. Depth 0.071 0.316 0.025 0.270 * 0.284 *** 0.268 **
(0.068) (0.284) (0.052) (0.162) (0.107) (0.130)

Min. Depth 0.011 -0.108 -0.058 -0.066 -0.081 -0.042
(0.050) (0.160) (0.044) (0.117) (0.071) (0.075)

Biomass 0.201 *** 0.181 0.202 *** 0.195 ** 0.170 * 0.186 **
(0.055) (0.114) (0.052) (0.088) (0.089) (0.079)

Dum CV 1.316 *** 0.013 2.514 *** 0.014 0.016 0.017
(0.214) (1.244) (0.207) (0.925) (0.248) (0.436)

Dum HAL 0.102 1.074 0.793 1.114 1.309 ** 1.133 **
(0.205) (0.966) (0.179) (0.763) (0.547) (0.561)

Dum NPT -0.542 ** -0.339 0.210 ** -0.180 -0.061 -0.310
(0.237) (0.466) (0.262) (0.461) (0.472) (0.452)

Dum Large 0.600 *** 0.470 0.665 *** 0.480 ** 0.454 * 0.471 **
(0.131) (0.303) (0.165) (0.239) (0.237) (0.231)

IMR 2.909 1.753 1.872 ** 1.113
(2.676) (1.439) (0.912) (0.780)

SAE parameter (γ) 0.912 * 0.900 *** 0.909 *** 0.973 ***
(0.509) (0.163) (0.084) (0.028)

1 The standard errors for KP-SAE are computed following Kelejian and Prucha (2005).

Spheck KP-Inst Spheck Lee-Inst

Table 5. Estimated Coefficients for the Outcome Equation

Notes: Dependent variable is average catch-per-unit-effort (CPUE) for statistical reporting regions in the Eastern Bering Sea. Sample size is 320 
with 35% selection.  Standar errors in parentheses; *, **, *** significant at the 10%, 5%, and 1% level, respectively.

OLS Heckit KP-SAE1 Spheck No-Inst



Constant -0.104 0.037 0.052 -0.070
(0.648) (1.104) (0.776) (0.687)

Max. Depth 0.179 * 0.317 0.240 0.208
(0.092) (0.348) (0.159) (0.130)

Min. Depth -0.093 -0.194 -0.147 * -0.100
(0.068) (0.219) (0.088) (0.068)

Biomass 0.005 0.002 0.008 0.004
(0.078) (0.123) (0.087) (0.077)

Lag Biomass -0.043 -0.074 -0.084 -0.046
(0.080) (0.145) (0.067) (0.067)

Dum CV -0.739 *** -1.252 -0.995 ** -0.912 ***
(0.183) (1.227) (0.441) (0.256)

Dum HAL 0.650 *** 1.069 1.089 ** 0.945 ***
(0.202) (1.103) (0.430) (0.290)

Dum NPT 0.073 0.034 0.257 0.101
(0.261) (0.464) (0.377) (0.340)

Dum Large -0.078 -0.056 -0.094 -0.079
(0.176) (0.290) (0.240) (0.225)

SAE parameter (δ) 0.908 *** 0.866 *** 0.817 ***
(0.211) (0.114) (0.006)

Table 6. Estimated Coefficients for the Selection Equation

Notes: Dependent variable is whether or not CPUE is observed for that unit. Standar errors in 
parentheses; *, **, *** significant at the 10%, 5%, and 1% level, respectively.

Heckit Spheck No-Inst Spheck KP-Inst Spheck Lee-Inst


