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1 A MOTIVATING EXAMPLE

1 A motivating example

• Economists have largely debated on the causes of health care cost increases, and a vast literature

discusses the major drivers of this expenditure and the most effective policies for controlling it.

• Unfortunately, much less is known concerning the productivity of such expenditure, namely the “value

for money” or what we gain in terms of improved health for each euro spent.

• Having a better knowledge of the productivity levels in the health sector is particularly important when

policy makers and health care managers adopt measures aimed at controlling costs or at rationalizing

the access to health care services by patients.

• Increasing the efficiency of health systems is the most promising response to pressures to contain costs

while improving performance.

• Spending more is not necessarily a problem if the added benefits exceed the extra costs (OECD, 2004)

• Unfortunately, policy evaluation remains a critical issue!
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1 A MOTIVATING EXAMPLE

The data

• Our data is based on administrative registries maintained by the Pharmaceutical Service Department

of the Local Health Authority (LHA) of Treviso, a province in the North-East of Italy.

• The data has been obtained by merging three different registries containing information about daily

access to public health care services by the whole local population:

— The drug prescription database.

— The hospitalization registry.

— The death and transfer registry.

• We concentrate our analysis on hypertensive patients, born between 1910 and 1960, who were regularly

prescribed drugs in the ACE-inhibitor class during the period 1997—2002 .

The policy changes

• Our data span three major policy changes.

• Two of them regard drug co-payment, and took place in January 2001 (abolition - Policy 1) and March

2002 (reintroduction - Policy 3) respectively.

• The other, which took place in September 30th, 2001, regards the maximum number of packages that

can be purchased with a single prescription (reduction from 6 to 3 of the maximum number of packages

for each prescription - Policy 2).

• These policy changes represent three “natural experiments”, whose effects on medical compliance and

health outcomes can be evaluated using a difference-in-difference (DiD) specification.
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1 A MOTIVATING EXAMPLE

Figure 1: Observed and fitted hospitalization and mortality rates by gender and compliance level.
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1 A MOTIVATING EXAMPLE

Figure 2: Average quarterly compliance for high and low compliants.
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1 A MOTIVATING EXAMPLE

Caveats of DiD analysis

• Although interesting from the point of view of the problem investigated, a major limit of the DiD is

that it focuses on the average effect.

• This can be misleading in that we ignore, say, the possibility of substantial benefits for some, little

benefits for many and harm for a few.

• In other words, we are only allowed to know that treatment is “good” or “bad” on average, but we

miss information on single patient responses. This is a critical point, especially for the design and

evaluation of an efficient policy.
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1 A MOTIVATING EXAMPLE

Figure 3: Quantiles of compliance by period.
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1 A MOTIVATING EXAMPLE

Figure 4: Quantiles of differences in compliance and difference of quantiles of compliance by period.
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2 THE STATISTICAL PROBLEM

2 The statistical problem

Consider a population where, at time τ , someone receives a treatment but someone does not. Let D be the

treatment indicator and write the observed outcome in period t as

Yt = (1−D)Y 0
t +DY 1

t , (1)

where Y 0
t and Y 1

t are latent rv’s representing the two “potential outcomes ” of not receiving and receiving

the treatment. Although these potential outcomes are well defined for anyone in the population, only one

is ever observed. Because they are never both observed, the individual treatment effect Zt = Y 1
t − Y 0

t is

unobservable.

The statistical problem is how to use data on pre- and post-treatment outcomes to estimate the differential

impact of the treatment on a heterogeneous population. In general terms, this amounts to estimating the

distribution of Zt, or some parameter of this distribution. Two commonly studied parameters are:

• the average treatment effect in the population E Zt,

• the average treatment effect in the subpopulation of the treated E(Zt |D = 1), or average treatment

on the treated effect.
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3 DIFFERENCES-IN-DIFFERENCES

3 Differences-in-differences

The difference-in-difference (DiD) approach is a popular way of estimating the average treatment on the

treated effect without the need of relying on instrumental variables (IV) or specifying a fully structural

choice model.

Suppose that one has available a balanced panel data covering the treatment date τ . Represent counterfactual

outcomes for the ith population unit at time t as

Y d
it = αdt + Ud

it, d = 0, 1, i = 1, . . . , n, (2)

where the Ud
it = Y d

it − αdt are regression errors with zero mean. In principle, αt may depend on a vector of

exogenous variables Xi, but we ignore this to simplify the presentation.

Substituting into the definition of Yt and rearranging gives the random coefficient model

Yit = Y 0
t + (Y

1
t − Y 0

t )D = α0t + ZitDi + U0it, (3)

where the rv

Zit = Y 1
it − Y 0

it = (α
1
t − α0t ) + (U

1
it − U0it)

is the individual treatment effect (ITE).
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3 DIFFERENCES-IN-DIFFERENCES

The OLS estimator

The average treatment effect (ATE) is

βt = E Zit = α1t − α0t .

Substituting in (3) gives

Yit = α0t + βtDi + Vit,

where

Vit = U0it +Di(U
1
it − U0it).

There is selection on unobservables if Di is correlated with Vit, that is, with U0it or U
1
it.

If there is no selection on unobservables, then βt is consistently estimated by the slope coefficient β̂t from an

OLS regression of Yit on a constant and Di. This estimator corresponds to the difference Ȳ 1
t − Ȳ 0

t between

the sample means of Yit for the two treatment groups.

If there is selection on unobservables, then

β̂t
p→ βt +E(U

1
t |D = 1)− E(U0t |D = 0),

and so the OLS estimator β̂t is inconsistent for βt.
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3 DIFFERENCES-IN-DIFFERENCES

The DiD estimator

Consider the following set of assumptions:

A.1. U0it = φi + θt + it (3-error compoentn structure of Ud
it).

A.2. it is mean independent of Di.

A.3. Y 0
t = Y 1

t = Yt for t < τ (outcomes in the pre-treatment periods t < τ are independent of treatment).

From (3)

E(Yit |Di) = α0t +E(ZitDi |Di) + E(U
0
it |Di),

where, under A.1—A.2,

E(U0it |Di) = E(φi |Di) + θt.

Therefore, under A.1—A.3,

μ0t = E(Yit |Di = 0) = α0t +E(φi |Di = 0) + θt,

for all t, while

μ1t = E(Yit |Di = 1) =

½
α0t + δt +E(φi |Di = 1) + θt, if t ≥ τ ,
α0t +E(φi |Di = 1) + θt, if t < τ ,

where δt = E(Zit |Di = 1) is the average treatment on the treated effect (TTE).

Thus, for any t0 < τ < t1, we have

δt1 = (μ
1
t1 − μ0t1)− (μ

1
t0 − μ0t0) = (μ

1
t1 − μ1t0)− (μ

0
t1 − μ0t0).

A consistent estimator of δt1 is therefore the DiD estimator

δ̂t1 = (Ȳ
1
t1 − Ȳ 0

t1)− (Ȳ
1
t0 − Ȳ 0

t0) = (Ȳ
1
t1 − Ȳ 1

t0)− (Ȳ
0
t1 − Ȳ 0

t0),

which is also the slope coefficient in an OLS regression of ∆Yi = Yit1 − Yit0 on a constant and Di.

In fact, constructing δ̂t−1 does not require panel data but only two repeated cross-sections, one before and

one after τ . In this case, however, we must rule out systematic composition changes within each group.
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3 DIFFERENCES-IN-DIFFERENCES

Failures of A.1—A.3 may cause inconsistency of the DiD estimator:

• A.1 may fail if time-effects have a differential impact on the two treatment groups (Bell, Blundell, Van

Reenen 1999).

• A.2 may fail if unobserved temporary and individual-specific effects influence the participation decision

(Ashenfelter 1978). In this case,

δ̂t1
p→ δt1 +E( it1 − it0 |Di = 1)− E( it1 − it0 |Di = 0).

• A.3 may fail if the treatment is anticipated.

How can we use our knowledge of the TTE parameter? Suppose that we know {(μ0t , μ1t )} and π = Pr{Di = 1},

and assume that:

• social welfare Wt is the average of individual welfare levels,

• the welfare level of individual i at time t is equal to Yit.

Then social welfare at time t is Wt = (1− π)μ0t + πμ1t , and the welfare difference between t0 and t1 is

Wt1 −Wt0 = (μ
0
t1 − μ0t0) + π[(μ1t1 − μ1t0)− (μ

0
t1 − μ0t0)] = (μ

0
t1 − μ0t0) + π δt1 ,

where π δt1 measures the change in welfare due purely to treatment.
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4 TROUBLES WITH AVERAGES

4 Troubles with averages

First, sample means and estimated OLS coefficients may be non-robust. Second, the DiD coefficient only

tells us whether a treatment is effective relative to the alternative of no-treatment. Whether the treatment

is also desirable is a completely different story.

Example 1 Suppose that μ1t1 > μ1t0 ≥ μ0t0 = μ0t0 . In this case, δt1 = μ1t1 − μ1t0 > 0. Although the treatment

would be Pareto improving, between-group variance in the outcome would be higher after the treatment. If

there is no change in within-group variance, total variance in the population would be higher. Would this

be acceptable to a decision maker?

Heckman, Smith and Clements (1997) argue that “using the mean impact to evaluate a program rests

on two key assumptions: (a) that increases in total output increases welfare; and (b) that undesirable

distributional aspects of programmes are either unimportant or are offset by transfers governed by a social

welfare function [...] Both of these assumptions are strong. Many programmes produce output that cannot

easily be redistributed [...] Programme outputs cannot always be valued and summed to produce a measure of

total welfare. Appeal to a mythical social welfare function begs fundamental questions of political economy.”

They also argue that “many interesting evaluation questions require knowledge of feature of the distribution

of programme gains other than the mean.” Besides the mean of Zt, they list:

• the proportion of people taking the program who benefit from it, Pr{Zt > 0 |D = 1};

• the proportion of the population benefiting from the program, Pr{Zt > 0 |D = 1) Pr{D = 1};

• selected quantiles of the impact distribution, infz{z : Ft(z |D = 1) > p}, where Ft is the df of Zt;

• the distribution of gains at selected base state values, Pr{Zt ≤ z |D = 1, Y 0
t = y0}.
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5 VARIETIES OF QUANTILE TREATMENT EFFECTS

5 Varieties of quantile treatment effects

Abadie, Angrist and Imbens (2002)

Abadie, Angrist and Imbens (2002) advocate the use of quantile treatment effects in order to properly take

into account “the effects of policy variables on distributional outcomes beyond simple averages”.

They define the quantile-treatment effect (QTE) as the difference in the quantiles of Y 1 and Y 0 for the

subpopulation of “compliers”, namely those whose potential outcomes are independent of treatment status.

Specifically, write the treatment indicator as

D = (1−W )D0 +WD1,

where the latent binary indicators D1 and D0 are two potential treatment states, corresponding respectively

to applying or not applying the binary 0-1 instrument W . The “compliers” are those for whom D1 > D0

(those whose treatment status can be manipulated by the instrument).

Let QD(p |D1 > D0) denote the pth quantile of observed outcome conditional on D for “compliers”. Their

key assumption is that

QD(p |D1 > D0) = αpD + βpX.

This assumption simply defines the QTE as the difference

QTE(p) = Q1(p |D1 > D0)−Q0(p |D1 > D0) = αp.

If we could identify the subpopulation of “compliers”, then an estimator of (αp, βp) may be obtained by

standard asymmetric LAD. Although the “compliers” are not identifiable, they show that a
√
n-consistent

and asymptotically normal estimator of (αp, βp) may be obtained by a weighted asymmetric LAD problem,

with weights that must be estimated in a preliminary step.
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5 VARIETIES OF QUANTILE TREATMENT EFFECTS

Chernozhukov and Hansen (2005)

They define QTE, more directly, as QTE(p) = Q1(p)−Q0(p), where Qd is the quantile function of potential

outcome Y d, d = 0, 1. The link with ATE is immediate for, if Z has finite mean, then

E Z = E Y 1 − E Y 0 =

Z 1

0

[Q1(p)−Q0(p)] dp =

Z 1

0

QTE(p) dp.

In the absence of selection, their definition and that in Abadie, Angrist and Imbens (2002) coincide.

The origin of this definition is Doksum (1974). He considers a rv X, with a continuous df F , and a treatment

that shifts X by a random amount to a new rv Y , with df G. He shows that this shift may be characterized

through the “shift function”

∆(x) = G−1(F (x))− x = QY (F (x))−QX(F (x)),

where QY = G−1 and QX = F−1 are the quantile functions of Y and X respectively. Thus ∆(x) is just the

QTE at the quantile p = F (x). This relates the QTE to the concept of stochastic dominance, for QTE(p) > 0

for all p if G first-order stochastically dominates F .

Chernozhukov and Hansen (2005) provide conditions under which the quantiles of potential outcomes can

be identified and estimated through the contional moment restriction

0 = p− Pr{Y ≤ QD(p) |W} = p− E 1{Y ≤ QD(p) |W},

where W is an instrument that affects D but is independent of Y d.

Their paper makes extensive use of the representation of a rv as the quantile-transform of a uniform rv

Y d = Qd(Ud), Ud ∼ U(0, 1).

They refer to Ud as the “rank variable”, as it determines the relative ranking in terms of potential outcomes.

Their result depends crucially on a condition that, in its simplest form requires Ud = U for all d. This “rank

invariance” condition implies that a single unobserved factor U determines the ranking of an individual

across all treatment states: “people who are strong (highly ranked) earners without a training program,

remain strong earners having done the training”.
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5 VARIETIES OF QUANTILE TREATMENT EFFECTS

Firpo (2006)

The setup is the same as in Chernozhukov and Hansen( 2005), but selection is assumed to depend only on

exogeneous covariates X (exogeneous selection).

He argues that, although the covariates X are important in order to control for selection, interest is typically

on unconditional quantities. For mean like objects, such as ATE, this is not a problem because

ATE =

Z
ATE(x) dH(x),

where ATE(x) is the ATE conditional on X = x and H is the df of X. Unfortunately, integrating over the

distribution of covariates, does not recover the marginal QTE from the conditional QTE.

He shows how to directly estimate the marginal QTE, and the marginal quantile treatment effect on the

treated (QTT)

QTT(p) = Q1(p |D = 1)−Q0(p |D = 1),

without estimating the corresponding conditional quantiles.
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5 VARIETIES OF QUANTILE TREATMENT EFFECTS

Differences of quantiles or quantiles of differences?

Are the above sensible ways of evaluating the effect of a treatment?

Abadie, Angrist and Imbens (2002) argue that quantiles of Z = Y 1 − Y 0 may also be of interest, but

“we focus on the marginal distributions of potential outcomes because identification of the distribution of

Y1−Y0 [Y 1−Y 0 in our notation] requires much stronger assumptions and because economists making social

welfare comparisons typically use differences in distributions and not the distribution of differences for this

purposes”.

The second argument is not very convincing. For example, Cowell (2000) argues that if one is unable to

observe pre- and post-treatment outcomes for the same individual, then the best that one can do is simply to

compare distributions before and after the treatment. This may no longer be true if panel data are available.

As for the first argument, Heckman, Smith and Clements (1997) state that “from the two marginal distri-

butions for participants and nonparticipants, it generally not possible to estimate the joint distribution of

outcomes and so it is generally not possible to estimate the distribution of impacts or its median”.

Drop the t suffix for simplicity, and assume that the df F of Z is continuous and strictly increasing. Then,

the pth quantile of Z, with 0 < p < 1, is the unique root Q(p) of the equation F (z) = p. If Z has finite

mean, then E Z =
R 1
0
Q(p) dp.

In general, ∆(q) = Q1(p)−Q0(p) 6= Q(p) although, if Y 0 and Y 1 both have finite mean, thenZ 1

0

∆(p) dp =

Z 1

0

Q(p) dp,

Under what conditions do we have that ∆(p) = Q(p) or, at least, ∆(p) > 0 implies Q(p) > 0?
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5 VARIETIES OF QUANTILE TREATMENT EFFECTS

Example 2 Supppose that

Y 1 = μ+ σY 0, 0 < σ <∞.

Then

∆(p) = μ+ (σ − 1)Q0(p) = Q(p).

This condition is very strong, for it implies a deterministic relationship between Y 1 and Y 0.

Special cases:

• if σ = 1, that is Y 1 = μ+ Y 0 (homogeneous treatment effects model), then Q(p) = μ for all p;

• if μ = 0, that is Y 1 = σY 0 (increasing treatment effects model or homogeneous treatment effects model

on the log scale), then Q(p) = (σ − 1)Q0(p).

Example 3 If we confine attention to medians, then another example is the general bivariate normal dis-

tribution. Because the difference Y 1 − Y 0 is also normal, we have that ∆(.5) = Q(.5). This result does not

carry over to quantiles different from the median. ¤
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6 A CHARACTERIZATION

6 A characterization

Lee (2000) provides necessary and sufficient conditions.

Consider the following two properties:

M0: The difference of the medians is equal to the median of the difference.

M1: A positive difference in the medians implies that the median of the difference is positive.

Let ξd = Qd(.5) be the median of Y d (d = 0, 1), let W d = Y d − ξd be the deviation of Y d from its median,

and let ∆ = ξ1 − ξ0 be the difference of the two medians.

Theorem 1 Suppose that the joint density of (W 0,W 1) is continuous, and is positive in an open neighbor-

hood of the origin. Then:

(a) Property M0 holds if and only if “equal probability of octants” holds, that is,

Pr{W 0 < W 1 < 0} = Pr{0 < W 1 < W 0}

or, equivalently,

Pr{W 1 < W 0 < 0} = Pr{0 < W 0 < W 1}.

(b) Property M1 holds if and only if “weak monotonicity” holds, that is,

Pr{W 0 −∆ < W 1 < 0} > Pr{0 < W 1 < W 0 −∆}

or, equivalently,

Pr{W 1 < W 0 −∆, W 0 < 0} > Pr{0 < W 0, W 0 −∆ < W 1}.

Example 4 In addition to the homogeneous and the increasing treatment effects models, three other ex-

amples when properties M0 and M1 hold are:

• Pr{Z ≥ 0} = 1 (monotone treatment effects model, Manski 1997),

• the joint density of W 0 and W 1 is symmetric, that is, f(w0, w1) = f(−w0,−w1);

• W 0 and W 1 are exchangeable, that is, f(w0, w1) = f(w1, w0). ¤
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6 A CHARACTERIZATION

Now consider, more generally, the following two properties:

Q0: ∆(q) = Q(p) or, equivalently, Pr{Z > 0} ≤ 1− p.

Q1: ∆(p) > 0 implies Q(p) > 0 or equivalently Pr{Z > 0} > 1− p.

Theorem 2 Let W d
p = Y d −Qd(p), d = 0, 1, 0 < p < 1, and suppose that the joint density of (W 0

p ,W
1
p ) is

continuous, and is positive in an open neighborhood of the origin. Then

(a) Property Q0 holds if and only if

Pr{W 0
p < W 1

p < 0} = Pr{0 < W 1
p < W 0

p }

or, equivalently,

Pr{W 1
p < W 0

p < 0} = Pr{0 < W 0
p < W 1

p }+ 2p− 1.

(b) Property Q1 holds if and only if

Pr{W 0
p −∆(p) < W 1

p < 0} > Pr{0 < W 1
p < W 0

p −∆(p)}

or, equivalently,

Pr{W 1
p < W 0

p −∆(p), W 0
p < 0} < Pr{0 < W 0

p , W
0
p −∆(p) < W 1

p }+ 2p− 1.

(c) ∆(p) = 0 implies Q(1− p) = 0 if and only if

Pr{W 1
p < W 0

p < 0} = Pr{0 < W 0
p < W 1

p }.

(d) ∆(p) > 0 implies Q(1− p) < 0 if and only if

Pr{W 1
p < W 0

p −∆(p), W 0
p < 0} > Pr{0 < W 0

p , W
0
p −∆(p) < W 1

p }.

These conditions are not easy to interpret. Lee (2000) adds a third result, with the bivariate distribution

centered at the bivariate median (ξ0, ξ1) instead of (Q0(p), Q1(p)), but concludes that it “does not seem to

be easier to interpret than theorem 2 is”.
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7 CONCLUSIONS

7 Conclusions

• Evaluating programs using only mean impacts may be misleading.

• Comparisons of marginal distributions of program gains may also be misleading.

• If panel data are available, one should focus on quantiles (or distribution functions) of differences.

21



7 CONCLUSIONS

References
Abadie A., Angrist J., Imbens G. (2002), “Instrumental variables estimates of the effect of subsidized training on

the quantiles of trainee earnings”, Econometrica, 70, 91—117.

Angrist J.D. (2004), “Treatment effect heterogeneity in theory and practice”, Economic Journal, 114: C52—C83.

Ashenfelter O. (1978), “Estimating the effects of training programs on earnings”, Review of Economics and Statistics,
60: 47—57.

Bell B., Blundell R., Van Reenen J. (1999), “Getting the unemployed back to work: An evaluation of the New Deal
proposals”, International Tax and Public Finance, 6: 339—360.

Blundell R., Costa Dias M. (2002), “Alternative approaches to evaluation in empirical microeconomics”, CEMMAP
Working Paper CWP 10/02.

Chernozhukov V., Hansen C. (2005), “An IV model of quantile treatment effects”, Econometrica, 73: 245—261.

Cowell F. (2000), “Measurement of inequality”, in A.B. Atkinson and F. Bourguignon (eds.), Handbook of Income
Distribution, Elsevier, North Holland, 87—166.

Doksum, K. (1974), “Empirical probability plots and statistical inference for nonlinear models in the two sample
case”, The Annals of Statistics, 2: 267—277.

Firpo S. (2006), “Efficient semiparametric estimation of quantile treatment effects”, Econometrica, fortcoming.

Heckman J., Smith J., Clements N. (1997), Making the most out of programme evaluations and social experiments:
Accounting for heterogeneity in programme impacts, Review of Economic Studies, 64: 487—535.

Lee M. (2000), “Median treatment effect in randomized trials”, Journal of the Royal Statistical Society, Series B,
62: 595—604.

Manski (1997), “Monotone treatment response”, Econometrica, 65: 1311—1334.

22


