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ABSTRACT. This paper derives an optimal estimator for the slope coefficient on

highly persistent and predetermined regressors in an otherwise standard linear re-

gression. Optimality pertains to the class of procedures that are median unbiased

irrespectively of the degree of persistence. It holds for a wide class of monotone loss

functions. The optimality statement generalizes to confidence sets. The estimator,

which is based on inversion of the Jansson-Moreira (2004) statistic, dominates cur-

rently available alternatives in terms of expected square losses across the domain of

near nonstationarity. In the empirical application we document encouraging perfor-

mance of the proposed estimator for forecasting asset returns.

1. INTRODUCTION

This paper addresses the problem of optimal estimation of coefficients on highly

persistent and predetermined regressors in an otherwise standard linear regression.

This issue draws economists’ attention for at least two reasons. First, it is well

known that currently available procedures are likely to produce biased estimates

in this setting. Second, this problem is of high empirical relevance because high

persistence and potential endogeneity are widespread across economic time series.

Numerous financial indexes as well as macroeconomic indicators, among them in-

flation, unemployment and gross domestic product, fall into this category.
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Theoretical studies provide a variety of estimators that exhibit some form of effi-

ciency, either in the standard setting of stationary regressors or when regressors are

exactly integrated (for efficient estimators in cointegrating regressions see Johansen

(1988), Phillips and Loretan (1991), Saikkonen (1991), Stock and Watson (1993)).

What this paper concerns, however, is a framework that falls in between – estima-

tion when regressors are not necessarily integrated but nonetheless too persistent

to be usefully described as stationary. In the econometric literature such variables

are often referred to as nearly integrated. In this setting we are aware of only one

procedure with certain efficiency properties, the asymptotically centering estimator

of Jeganathan (1997) (see also Cox and Llatas (1991)).1 It is not entirely satisfactory,

however, since it is subject to a similar lack of robustness as noted by Elliott (1998)

in the context of cointegration methods, as we will discuss further below.

The objective of this paper is to develop an alternative approach, with analyti-

cally demonstrable optimality, that would be robust to the degree of persistence in

a regressor. To this end we exploit a recent development of optimal testing proce-

dures for the slope coefficient on nearly integrated regressors by Jansson and Mor-

eira (2004) in conjunction with the theory of optimal median unbiased estimation

in the presence of nuisance parameters of Pfanzagl (1979). The resulting estimator,

which is based on inversion of the Jansson-Moreira statistic, is optimal in the class of

procedures that are conditionally median unbiased, a restriction made precise later

in the text. This is established under a very general specification of a loss function,

spanning asymmetric, concave or bounded shapes, a particularly attractive feature

given recent evidence on asymmetric losses in macroeconomic forecasting by El-

liott, Komunjer, and Timmermann (2004). The optimality statement is obtained as

a corollary of a stronger result that provides optimal confidence sets in regressions

1We may add that this framework presents no inherent difficulties from the perspective of

Bayesian analysis. The AC estimator is in fact a limit of a sequence of Bayes estimators under proper

priors.
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with highly serially correlated regressors, an issue investigated by Stock and Watson

(1996) and more recently Campbell and Yogo (2003).

Monte Carlo evaluation of the proposed estimator demonstrates that it dominates

currently available procedures across the domain of near nonstationarity, with rel-

ative efficiency gains increasing with the degree of endogeneity. We also evaluate

the robustness of the median unbiased estimator to the choice of a loss function and

find that it retains desirable characteristics under asymmetric losses, in contrast to

some of the alternative procedures.

Turning to empirical applicability we note that the property of median unbiased-

ness characterizes estimators that are as likely to underestimate as to overestimate

the true value, a highly desirable characteristic when any systematic biases affect

the estimation. It is particularly relevant in forecasting, a setting in which median

unbiased estimation results in same frequency of positive and negative forecast er-

rors.2

We illustrate an application of our methodology with an exercise in forecasting

asset returns. Although the question of predictability of asset returns has received

significant attention in the literature, little is known about relative merits of dif-

ferent estimation methods in forecasting. We demonstrate that the optimal median

unbiased estimator performs well relative to the available statistical alternatives and

document robustness of this result with respect to the choice of a loss function.

We begin with the description of the model in the next section. For clarity it takes

a simple form of a predictive regression model. Optimality of the proposed median

unbiased estimator is developed in Section 3 for finite samples and asymptotically

equivalent results are presented in Section 4. Monte Carlo evidence is discussed

in Section 5. Extensions to more general settings as well as feasible inference are

discussed in Section 6 and the empirical application is described in Section 7. Proofs

are collected in an appendix.
2In the class of linear predictions this holds under symmetrically distributed innovations and no

uncertainty about the sign of the most recent realization of the regressor.
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2. PRELIMINARIES

Throughout the paper we employ a setting and notation used earlier by Jansson

and Moreira (2004). We therefore consider a bivariate predictive regression model

where the observed data {(yt, xt) : 1 ≤ t ≤ T} is generated by

yt = α + βxt−1 + ε
y
t (1)

xt = γxt−1 + εx
t (2)

where

A1 : x0 = 0,

A2 : εt =
(
ε

y
t , εx

t
)′ ∼ i.i.d.N (0, Σ) and

Σ =

 σyy σxy

σxy σxx


is a known, positive definite matrix.

These assumptions are relaxed later in the text. In particular, we modify (2) to ac-

commodate x0 6= 0 and replace the Gaussian assumption on the errors with moment

restrictions.

Our choice of the predictive regression model (1), rather than a standard regres-

sion of the form

yt = α + βxt + ε
y
t (3)

is driven in part by expositional simplicity of the former, given results of Jansson

and Moreira (2004) and earlier Jeganathan (1997) who have demonstrated their as-

ymptotic equivalence in the nearly integrated regressors setting considered in this

paper.3 It is therefore important to stress that methods developed in this paper are

3The two models are asymptotically equivalent in a sense that their respective sufficient statistics

have the same asymptotic representation.
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asymptotically valid and applicable in the standard regression setting (3). In addi-

tion, this framework, which plays a prominent role in empirical finance, suits well

a possible application of our procedure to forecasting.

We are concerned with estimators of β treating γ as a nuisance parameter. Al-

though finite sample theory of the median unbiased estimation to be presented in

the next section does not hinge on any further assumptions on the parameter γ,

the motivation for the paper and the asymptotic theory all come from a local-to-

unity parametrization of γ, that is γ = 1 + c/T, where c is a negative constant.

This stipulates that the root of the process {xt} approaches unity, a setting in which

even asymptotically it remains difficult to differentiate between a stationary and an

integrated series. The local-to-unity parametrization has often been employed in

the closely related problem of inference on autoregressive coefficient near one; see,

among other papers, Cavanagh, Elliott, and Stock (1995), Elliott, Rothenberg, and

Stock (1996) and Elliott and Stock (2001).

Before we proceed with the theory of optimal median unbiased estimation of β

we first note that the only alternative estimator with demonstrable optimality that

holds uniformly over the domain of c is the Gaussian maximum likelihood estimator

(GMLE) of β. Following Jeganathan (1995) and earlier statistical texts we call it an

asymptotically centering (AC) estimator, since it is defined as a centering of a local

quadratic approximation to the likelihood function. It takes a simple form of the

OLS estimator with the OLS estimate of γ plugged-in, as detailed in the following

Lemma:

Lemma 1. In the model (1)-(2) the AC estimator takes the form of the OLS estimator from

regressing yt − σ−1
xx σxy (xt − γ̂xt−1) on a constant and xt−1, where γ̂ is the OLS estimator

from regressing xt on xt−1.

Cox and Llatas (1991) and Jeganathan (1997) applied this methodology to the

problem closely related to ours and demonstrated that the AC estimator minimizes
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asymptotic variance in the class of M − estimators, defined in terms of the asymp-

totic score representation as specified in Jeganathan (1995, page 851). As evident

from Lemma 1, however, the AC procedure is sensitive to the first-step error in the

estimation of γ. Under the local-to-unity parametrization this translates to a similar

lack of robustness as noted by Elliott (1998) in the context of efficient cointegrating

regression estimators. Under the infeasible scenario in which we know the value of

c, the GMLE(c) has been considered by Phillips (1991), among others, and is known

to deliver the minimax risk.

In this paper we choose to search for an estimator in the class of median unbi-

ased procedures, that is such that are equally likely to fall above or below the true

parameter value. Median unbiasedness is a very desirable property. Possibly its

most noteworthy characteristic is the robustness to the choice of a loss function. The

optimal estimator we will derive in the next section will minimize risk for any loss

function that is non-decreasing as we move away from the true value, a class that

spans asymmetric or bounded shapes. We make the following definition:

Definition 1. Let Lβ denote the class of monotone (also referred to as quasiconvex) loss

functions L (·, β) : R → [0, ∞), where β ∈ R, such that: (i) L(β, β) = 0 and (ii) L (·, β) ≤
L̄, where L̄ ∈ R+, is a convex set.

On the theoretical front Pfanzagl (1985) demonstrated that if we rank estimators

according to risk under monotone loss then only estimators with the same median

bias are comparable under this criterion.4 It naturally leads to considering median

unbiased estimators, which he further shows are always admissible in this setting.

Our attention, therefore, turns to procedures mT (y, x) that will

min
mT

EY,X
β,γ (L (mT (y, x) , β)) (4)

4To see this consider two loss functions of the form L1 (b, β) = 1− 1 [b ≤ β] and L2 (b, β) = 1−

1 [b ≥ β], where 1[·] is the indicator function. Note that these are members ofLβ. Corresponding risks

equal probabilities of the estimator falling on each side of the true parameter value, necessitating

equal median bias.
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subject to:

PY,X
β,γ {mT (y, x) ≤ β} = PY,X

β,γ {mT (y, x) ≥ β} =
1
2

(5)

where L ∈ Lβ and (Y, X) are the random variables described by the system (1)-

(2). PY,X
β,γ specifies the probability measure generated by (Y, X) over the class of

Borel sets in the Euclidean space, endowed with a Lebesgue measure µ. Expectation

is with respect to PY,X
β,γ . The side condition (5) specifies that the estimator must be

median unbiased in the family PY,X
β,γ .

It turns out, unfortunately, that there is no optimal member in the class of esti-

mators restricted only by (5). This observation (which is implicit in the proof to

Theorem 1, see the next section) is related to the work of Shaffer (1991), who shows

in the setting of standard linear regression with random regressors that the Gauss-

Markov theorem does not necessarily apply in the class of unconditionally mean

unbiased estimators, whereas it always holds in the restricted class of conditionally

mean unbiased procedures. In our quest for an optimal procedure we proceed along

similar lines and restrict the class of estimators to those which are median unbiased

conditionally on statistics that summarize variability of a regressor. Since distribu-

tion of such statistics is, for any fixed value of γ, independent of the parameter of

interest β, they are the specific ancillaries.

There is an ongoing debate in the statistical literature about the validity and ap-

propriateness of inference conditional on ancillaries. Many advocated conditioning

on ancillaries, which appears to had been widely accepted until sound conditional

procedures were shown to be unconditionally inadmissible by Brown (1990). (This

become known as Brown ancillarity paradox, see Brown’s paper and discussions in

a special issue of the Annals of Statistics, 1990). As many discussants of Brown argue

(see particularly Berger), this understanding should not divert our attention from

conditional inference since, for the analysis of the sample at hand, we would of-

ten not like good performance of our estimator to come from the distribution of the

ancillary at the expense of possibly terrible conditional characteristics. Given that
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conditioning provides means to eliminate nuisance parameters and enough simplic-

ity to derive an optimal estimator we proceed in the conditional framework. In the

next section we work out the finite sample solution to this problem.

3. FINITE SAMPLE THEORY

We start with the description of the likelihood and sufficient statistics in the model

(1)-(2). Let σyy.x = σyy − σ2
xyσ−1

xx . Under assumptions A1 − A2 Y × X induce the

family of distributions dPY,X
β,γ (y, x), indexed by (β, γ) ∈ R2, that takes the form

(2π)−T (
σyy.xσxx

)−T/2 exp

{
−1

2
σ−1

yy.x

T

∑
t=1

[
yt − α− βxt−1 − σ−1

xx σxy (xt − γxt−1)
]2

−1
2

σ−1
xx

T

∑
t=1

(xt − γxt−1)
2

}
dµ (y, x) , (6)

or, concentrating with respect to α (this is equivalent to the density of the maximal

invariant with respect to transformations (yt, xt) → (yt + a, xt) , a ∈ R),

CΣh (y, x) exp
[

βSβ + γSγ −
1
2

(
β− σ−1

xx σxyγ
)2

Sββ −
1
2

γ2Sγγ

]
dµ,

which we recognize as a curved exponential family with sufficient statistics:

Sβ = σ−1
yy.x

T

∑
t=1

x̃t−1

(
yt − σ−1

xx σxyxt

)
,

Sγ = σ−1
xx

T

∑
t=1

xt−1xt − σ−1
xx σxySβ,

Sββ = σ−1
yy.x

T

∑
t=1

x̃2
t−1,

Sγγ = σ−1
xx

T

∑
t=1

x2
t−1.
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Here x̃t−1 = xt−1− T−1 ∑T
s=1 xs−1, CΣ = (2π)−1

(
σyyσxx − σ2

xy

)−1/2
is a normalizing

constant and

h (y, x) = exp

{
−1

2

[
σ−1

yy.x

T

∑
t=1

(
ỹt − σ−1

xx σxy x̃t

)2
+ σ−1

xx

T

∑
t=1

x2
t

]}
is independent of β, γ (ỹt denotes deviation of yt from the average). Let

S =
(
Sβ, Sγ, Sββ, Sγγ

)
and the subset we will use for conditioning SC =

(
Sγ, Sββ, Sγγ

)
.

Note that SC is sufficient for γ. We denote by PS
β,γ and PSC

β,γ the probability measures

induced by S and SC, respectively. Absorbing the CΣh (y, x) factor into the measure

µ we can write the distribution of the family PS
β,γ, where notation makes clear that

we operate now on the family of sufficient statistics (which we justify in the proof

of Theorem 1) as

dPS
β,γ (s) = exp

(
βsβ + γsγ −

1
2

(
β− σ−1

xx σxyγ
)2

sββ −
1
2

γ2sγγ

)
dµ (s) ,

where s =
(
sβ, sγ, sββ, sγγ

)
∈ R4. From Lemma 2.7.8 in Lehmann (1997) there exist

measures ξ and νsC , such that the marginal and conditional probability measures are

described by

dPSC
β,γ (sC) = exp

(
γsγ −

1
2

(
β− σ−1

xx σxyγ
)2

sββ −
1
2

γ2sγγ

)
dξ (sC) , (7)

dP
Sβ|sC
β

(
sβ

)
= exp

(
βsβ

)
dνsC

(
sβ

)
. (8)

Note that the conditional distribution is independent of γ. The proposed estimator

is based on an inverted median of the dP
Sβ|sC
β

(
sβ

)
distribution, derived earlier by

Jansson and Moreira (2004) for testing point hypothesis on β. Specifically, let

F
Sβ|sC
β (u) = P

Sβ|sC
β

{
sβ ≤ u

}
=

∫ u

−∞
exp

(
βsβ

)
dνsC

(
sβ

)
denote the corresponding cumulative distribution function. Its continuity in β and

sβ, necessary for existence and uniqueness of the inverse function, is verified in the

appendix. Since F
Sβ|sC
β (u) is increasing and continuous in u for every β ∈ R and

SC = sC, there exists a median function medT (β, sC) , such that F
Sβ|sC
β (medT (β, sC)) =
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0.5. Since the family admits a monotone likelihood ratio, medT (β, sC) is increasing

in β (see Lehmann (1997, Thm. 3.3.2 (ii))). Therefore the inverse function m∗
T (·, sC)

exists (m∗
T (medT (β, sC) , sC) = β) and sβ → m∗

T
(
sβ, sC

)
defines the estimator on the

partition SC = sC. Integrating over the support of SC we obtain the unconditional

representation of the estimator

s → m∗
T (s) . (9)

Since Gaussian densities are absolutely continuous, we may restrict attention to non-

randomized estimators.

Optimality of the proposed median unbiased estimator is summarized in the fol-

lowing theorem.

Theorem 1. Estimator s → m∗
T (s) is optimal in the following sense: m∗

T (s) minimizes

risk

EY,X
β,γ [L (·, β)]

among all estimators of β that are median unbiased conditionally on
(
Sββ, Sγγ

)
=

(
sββ, sγγ

)
,

for any loss function L ∈ Lβ and for every (β, γ) ∈ R2.

Note that
(
Sββ, Sγγ

)
, which are specific ancillaries for β, summarize variability

of x and in that sense the estimator m∗
T (s) is optimal in the class of estimators that

are median unbiased irrespectively of the degree of variability in the regressor. A

related result, strengthening the Rao-Blackwell Theorem and constraining the set of

optimal estimators (under convex loss) to functions of complete sufficient statistics

has been obtained by Lehmann and Scheffé (1950). Extension to a broader class of

quasiconvex loss functions, employed in this paper, is discussed in Brown, Cohen,

and Strawderman (1976).

This theorem can actually be stated as a corollary of a stronger result, providing

optimal confidence bounds for parameter β. In this form it is stated and proved in

the appendix. Here, to highlight the critical steps, we discuss the proof briefly, rel-

egating mathematical detail to the appendix. The theorem generalizes the result in
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Lehmann (1997, p.94-95), derived unconditionally under no nuisance parameters,

by specifying the results in Pfanzagl (1979) to a curved exponential family consid-

ered in this paper. The proof consists of the following steps:

(1) Existence and uniqueness of m∗
T (s) is verified by demonstrating continuity

and monotonicity of the relevant conditional probability measure.

(2) Optimality on the partition SC = sC is demonstrated along the lines of Lehmann

(1997). Specifically, because the likelihood conditional on SC = sC is mono-

tone in β, we apply the theory of uniformly most accurate confidence bounds

for β. What this says is that there exist lower
(
ml

T
)

and upper (mu
T) bounds

for β at, respectively, 1− αl and 1− αu confidence levels (we take αl + αu ≤ 1),

such that

P
Sβ|sC
β

{
ml

T ≤ β′
}
≤ P

Sβ|sC
β

{
m̃l

T ≤ β′
}

∀β′ ≤ β,

where m̃l
T is any other lower confidence bound, and similarly

P
Sβ|sC
β

{
mu

T ≥ β′
}
≤ P

Sβ|sC
β

{
m̃u

T ≥ β′
}

∀β′ ≥ β

for the upper bound, where m̃u
T denotes any other upper bound. Lehmann

(1997, Problem 3.21) shows that ml
T will minimize E

Sβ|sC
β [Ll (·, β)] at its level

αl for any function Ll that is nonincreasing in ml
T for ml

T < β and 0 for

ml
T ≥ β. A symmetric argument shows that mu

T will minimize E
Sβ|sC
β [Lu (·, β)]

for any Lu that is nondecreasing in mu
T for mu

T > β and 0 for mu
T ≤ β. It is tak-

ing this argument to the limit of αl = αu = 0.5, which results in a "point"

confidence set that by construction coincides with the median unbiased esti-

mator m∗
T (s) derived above, and minimizes

E
Sβ|sC
β [L (·, β)]

for any function L ∈ Lβ in the class of procedures that are median unbiased

conditionally on SC = sC.
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(3) Next we demonstrate that m∗
T (s) is median unbiased unconditionally, for all

(β, γ) ∈ R2. This follows from measurability of m∗
T (s), since then we can use

conditional unbiasedness to find:

PS
β,γ {m∗

T (s) ≤ β} =
∫

P
Sβ|sC
β

{
m∗

T
(
sβ

)
≤ β

}
dPSC

β,γ (sC) =
1
2

.

(4) Finally, to demonstrate optimality in the class of procedures that are median

unbiased with respect to the family P
S|sββ,sγγ

β,γ , we take any median unbiased

estimator within this class and show that, conditionally on
(
Sββ, Sγγ

)
=(

sββ, sγγ

)
, it is median unbiased on the partition SC = sC (which follows

from completeness of the family P
SC|sββ,sγγ

β,γ ). That means it is inferior on the

partition, and hence, by integration, inferior unconditionally. This argument

goes along the lines of Pfanzagl (1979). More specifically, since conditioning

on all the sufficient statistics leaves any function independent of parameters,

we can rewrite any median unbiased estimator mT (y, x) as a function of suf-

ficient statistics, say mT (s) (see the appendix for a rigorous argument). Next,

we use conditional median unbiasedness together with completeness of the

family dP
S|sββ,sγγ

β,γ (Lehmann, 1997, Thm. 4.3.1.), to arrive at

P
Sβ|sC
β {mT (s) ≤ β} =

1
2

a.e. sγ ∈ Sγ (10)

with
(
sββ, sγγ

)
fixed, which means that mT (s) is median unbiased on the

partition SC = sC for all β ∈ R. But we already know that it is m∗
T (s) that

is optimal on this partition and thus mT (s) is conditionally inferior. It is de-

tailed in the appendix how this statement, through integration with respect

to P
Sγ|sββ,sγγ

β,γ , generalizes to optimality of m∗
T (s) within the specified class.

The property of median unbiasedness, however similar in spirit, nevertheless is

not equivalent to equivariance. There are instances (see Jeganathan (1995)) in which

these can be used interchangeably as side conditions, although in general they are

not equivalent constraints. It turns out, however, that in the setting of this paper
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m∗
T (s) is equivariant with respect to shifts in y of the form specified in the following

Lemma:

Lemma 2. The optimal median unbiased estimator m∗
T (s) is equivariant with respect to

transformations of sufficient statistics induced by

yt → yt + β̄xt−1

for any β̄ ∈ R.

4. ASYMPTOTIC THEORY

In this section we are concerned with asymptotic localization of our procedure

around particular values for parameters (β, γ) , specifically (β0, 1) . Localizing γ

around unity is pertinent to the motivation of the paper to study estimation in the

presence of highly persistent regressors, that may, nevertheless, not be exactly inte-

grated. Zooming at some prespecified β, on the other hand, which we denote by β0

and assume to be in the local neighborhood of the true value of β, exemplifies local

approach to global estimation, well documented in the statistical literature (see par-

ticularly Chapter 4 of Shiryaev and Spokoiny (2000) and Chapter 6 of Le Cam and

Yang (2000)). It is characterized by inference performed on a local quadratic approx-

imation to the likelihood around some preliminary, "pilot" estimate. Specifically, we

assume, following in part notation of Jansson and Moreira (2004), that

β = βT (b) = β0 + δTb,

γ = γT (c) = 1 + T−1c,

where (b, c) ∈ R2 (c need not be negative) and δT = T−1σ−1/2
xx σ1/2

yy.x. The O
(
T−1)

neighborhood is standard in the literature and makes the local experiment not easily

differentiable from that at (β0, 1) , a property referred to as contiguity in the statis-

tical texts cited above. β0, our initial approximation to the true value of β, needs to

fall in the Op
(
T−1) neighborhood of the true value, a condition clearly satisfied by

a super-consistent OLS or GMLE estimators. When viewed from this perspective
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estimation of this section can be thought of as providing a local correction to the

OLS or GMLE estimators, that as argued earlier may be severely (locally) biased.

We keep errors i.i.d. and Gaussian for simplicity of exposition since it has been

shown by Jansson and Moreira (2004) to be a least favorable distributional assump-

tion. In addition, Jeganathan (1997) showed that if extra nuisance parameters de-

scribe the distribution of the errors their likelihood asymptotically separates from

that of (β, γ) and hence does not affect inference on parameters of interest.

With the specified parametrization we find, building on (6), that the probability

distribution of (Y, X) is

dPY,X
βT(b),γT(c) = exp

(
bRβ + cRγ −

1
2

(b− λc)2 Rββ −
1
2

c2Rγγ

)
dPY,X

β0,1 , (11)

where dPY,X
β0,1 corresponds here to (6) evaluated at (β0, 1) , λ = σxy

(
σxxσyy.x

)−1/2 and

R =
(

Rβ, Rγ, Rββ, Rγγ

)
is a set of asymptotically sufficient statistics

Rβ = σ−1/2
xx σ−1/2

yy.x T−1
T

∑
t=1

x̃t−1

(
yt − β0xt−1 − σ−1

xx σxy∆xt

)
,

Rγ = σ−1
xx T−1

T

∑
t=1

xt−1∆xt − λRβ,

Rββ = σ−1
xx T−2

T

∑
t=1

x̃2
t−1,

Rγγ = σ−1
xx T−2

T

∑
t=1

x2
t−1.

Lemmas 3 and 4 in Jansson and Moreira (2004) provide weak limits as well as

a joint distribution of R under the assumption of fixed (b, c) . Limiting processes

R (b, c)≡
(
Rβ (b, c) ,Rγ (b, c) ,Rββ (c) ,Rγγ (c)

)
are functionals of independent Wiener

and Ornstein-Uhlenbeck processes. Their limiting distribution is a member of a

curved exponential family and in this sense replicates the properties of S, its finite

sample equivalent.

Form of the asymptotic distribution (11) puts it in the locally asymptotically qua-

dratic (LAQ) family, described thoroughly in Le Cam and Yang (2000). Applications
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to time series are discussed in Jeganathan (1995, 1997) and more recently Ploberger

(2004). In short, this concept applies to situations in which log-likelihood ratios be-

come asymptotically quadratic and can be seen to be closely related to the Bernstein-

von Mises phenomenon of Bayesian analysis of posterior distributions becoming

approximately normal (that is, quadratic) around the true value under quite general

conditions.

The particular model we are concerned with here actually falls into a subclass of

the LAQ family defined by Jeganathan (1995) as locally asymptotically Brownian

functional (LABF). It is this observation that gives the asymptotically centering es-

timator of Jeganathan (1997) its asymptotic efficiency in the class of M− estimators.

Specifying a fixed value for c, on the other hand, puts the model in yet another sub-

class of the LAQ family known as a locally asymptotically mixed normal (LAMN)

family (this gives the infeasible AC estimator its minimax optimality).

To facilitate analysis of weak conditional convergence we follow the approach of

Jansson and Moreira (2004) and define asymptotic conditional median unbiasedness

of a sequence of arbitrary estimators {mT (·)} as

lim
T→∞

EY,X
βT(b),γT(c)

[
(1 {mT (R) ≤ β} − 0.5) f

(
Rββ, Rγγ

)]
= 0 ∀ f ∈ Cb

(
R2

)
(12)

where Cb
(
R2) is a class of continuous, bounded and real-valued functions on R2

and the expectation refers to PY,X
βT(b),γT(c).

The analysis of this section may suggest that, given β0 in the neighborhood of the

true β, we may adapt the techniques of the previous section and arrive at the con-

ditionally asymptotically optimal median unbiased estimator of b, the local compo-

nent of β. It will, in analogy with the finite sample theory, be based on an inverted

median of the distribution of Rβ (b, c) | (RC (b, c) = rC), where rC =
(
rγ, rββ, rγγ

)
is a realization of RC (b, c) =

(
Rγ (b, c) ,Rββ (c) ,Rγγ (c)

)
. Note that both R and

its realization r depend implicitly on β0. We denote the corresponding asymptotic

median function by medA (b, rC) . Its continuity and monotonicity is verified in the

appendix. The asymptotic counterpart of the estimator of last section, m∗
L (r) ("L"



OPTIMAL MEDIAN UNBIASED ESTIMATION 16

stands for Local) then solves

rβ = medA (m∗
L (r) , rC) (13)

on the partition RC (b, c) = rC. Integrating with respect to RC (b, c) yields an un-

conditional representation r → m∗
L (r, β0) where we add β0 to the list of arguments

to acknowledge that m∗
L estimates only a local component of β around β0. It seems

natural, then, to use

m∗ (r, β0) = β0 + δTm∗
L (r, β0) (14)

as a global estimator of β. It turns out that substituting a discretized preliminary

T−1 − consistent estimator for β0 is asymptotically innocuous and the optimality of

the median unbiased estimator generalizes to the asymptotic setting as made precise

in the following Theorem:

Theorem 2. Assume there exists a preliminary estimator m0
T such that:

(a) T
(
m0

T − β
)

= Op (1), where β is the true value;

(b) m0
T takes values on a prespecified discretized subset of the parameter space.

Then the estimator m∗ (
r, m0

T
)

as defined in (13)-(14) is optimal in the following

sense:

limT→∞EY,X
βT(b),γT(c) [L (mT (R) , β)] ≥ lim

T→∞
EY,X

βT(b),γT(c)

[
L

(
m∗

(
R, m0

T

)
, β

)]
= ERb,c [L (m∗ (R (b, c) , β0) , β)]

among all sequences of asymptotically median unbiased estimators {mT (·)} of β in

the sense of (12) and for every (b, c) ∈ R2 and L ∈ Lβ with at most countably

many discontinuities.
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Discretization of the preliminary estimator m0
T guarantees uniform convergence

to experiments with β0 fixed in the vicinity of β. It also guards the preliminary es-

timator from seeking peculiarities in the likelihood, an aspect that can make con-

struction of global estimates invalid, see Le Cam and Yang (2000) for a detailed

discussion.

Conditions (a) and (b) are satisfied by a discretized OLS estimator. One possi-

bility is to compute the OLS estimator up to an approximation of order T−1, that

is replacing mOLS
T (y, x) by

[
TmOLS

T (y, x)
]

/T, where [·] denotes the greatest lesser

integer function.

5. MONTE CARLO RESULTS

In this section we subject the optimal median unbiased estimator (OMUB) to a

Monte Carlo evaluation. We measure its performance across the relevant local-

to-unity domain of γ = {1 + c/T : −20 ≤ c ≤ 0} in terms of mean square losses,

L (m, β) = (m− β)2 . We generate artificial data from the model (1)-(2) under as-

sumptions A1− A2 and the degree of correlation between innovations, ρ = σxy×(
σyyσxx

)−1/2 , set at 0.5 or 0.9 (the latter is calibrated to our empirical exercise, in

which the long-run correlations fall between 0.9 and 1).

Performance of the median unbiased estimator derived in previous sections is

contrasted with that of some of the alternatives: the OLS, the GMLE(c = 0) and the

AC estimator, discussed in Section 2. Such comparison is interesting since these are

the available alternatives that do not belong to the class of median unbiased esti-

mators and therefore are not covered by the optimality statements of Theorems 1

and 3. It thus remains an open question how these estimators perform in relation to

each other. Theoretical considerations would advocate use of ordinary (or general-

ized) least squares on stationary regressors (setting approximated by large negative

values of c) and the GMLE(c = 0) for exactly integrated variables. The OMUB is,

on the other hand, designed to work well irrespectively of the value of c, as is the

AC estimator. The last alternative we are looking at is based on pretesting for the
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unit root (using the point optimal unit root test of Elliott, Rothenberg, and Stock

(1996) with size 0.05) and employing a procedure designed for either the stationary

or the integrated specification, whichever is favored by the data. As discussed in

Stock and Watson (1996), whether the size is fixed or tending to zero, this method

selects between two incorrect models, introducing biases inherent in the respective

procedures.

We compute the median unbiased estimator by simulating 20000 draws of the suf-

ficient statistics R in the neighborhood of the true parameter value and use, follow-

ing Polk, Thompson, and Vuolteenaho (2004), the nonparametric nearest neighbor

technique to estimate the conditional median. Specifically, we search the parameter

space for β0 (that enters R) such that the realized value of Rβ coincides with the

conditional median of Rβ at β0, given
(

Rββ, Rγγ
)

. We estimate the latter with the

median of 5 percent of draws for which the conditioning statistics fall closest (in the

sup norm) to their respective conditioning values.5 Results of the simulation are

summarized in Figure 1. We notice that the median unbiased estimator dominates

available alternatives across the domain of near nonstationary, with little exception

of the Gaussian MLE that, by construction, performs marginally better at c = 0. It

seems to be the most versatile of all the procedures, performing very well on inte-

grated regressors but at the same time guarding against heavy losses as we move

5See Polk, Thompson, and Vuolteenaho (2004) for further details on the nearest neighbor tech-

nique and an alternative neural network procedure.
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FIGURE 1. Mean Square Losses for ρ = 0.5 (A) and ρ = 0.9 (B). Scaled

by T.

away from the unit root.6 By comparing two panels of the figure we notice that rel-

ative efficiency gains attained by the median unbiased estimator increase with the

degree of endogeneity.

6Bayesian procedures are represented in this comparison by the AC estimator, which, as noted

earlier, is the limit of a sequence of Bayes estimators under proper priors that flatten out. An alterna-

tive approach, advocated in the literature, would involve imposing Jeffrey prior on the parameter γ

and searching for the mean of the marginal posterior of β. This, however, is sensitive to the sample
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To verify the theoretical robustness of the median unbiased estimator to the choice

of a loss function we present a second set of results for two asymmetric loss func-

tions that put different weight on positive and negative absolute deviations. Specif-

ically, we choose:

L (m, β; a) = {a− 3× 1 [m < β]} (m− β) (15)

with a = {1, 2}. We expect the median unbiased estimator to perform similarly well

irrespectively of which of the specifications is used, in contrast to the other estima-

tors which are likely to be sensitive to any asymmetries in the penalty imposed on

positive and negative errors. This is in fact the case, as documented in Figure 2.

6. FEASIBLE INFERENCE

In this section we extend the basic framework employed earlier for demonstra-

tional purposes and indicate how the proposed estimator can be applied empiri-

cally. We follow Jansson and Moreira (2004) who show, in the context of the model

of this paper, that the Gaussian assumption on the errors is least favorable in a

sense that the model retains the same asymptotic structure under more general,

non-parametric specification of the errors, and hence the same risk can be achieved.

They also demonstrate that substituting consistent estimators for quantities specify-

ing long-run behavior of the {εt} process, assumed known in the preceding analy-

sis, does not alter asymptotic reasoning. We reproduce some of their results for easy

reference. Specifically, we modify the description of the {xt} process as follows:

xt = µx + χt,

χt = γχt−1 + ϕ (l) εx
t ,

where

size as the prior on γ remains fixed and does not concentrate around 1, which results in large losses

when T is large.
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FIGURE 2. Mean Asymmetric Losses (specification (15)) with a = 1

(A) and a = 2 (B). ρ = 0.9, scaled by T.

A1∗ : χ0 = 0,

A2∗ : ϕ (l) = 1 + ∑∞
i=1 ϕili admits ϕ (1) 6= 0 and ∑∞

i=1 i |ϕi| < ∞,

A3∗ : E (εt|εt−1, εt−2, ...) = 0, E (εtε
′
t|εt−1, εt−2, ...) = Σ, where Σ is some positive

definite matrix and supt E
[
‖εt‖2+ρ

]
< ∞ for some ρ > 0, where εt =

(
ε

y
t , εx

t
)′

.
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Jansson and Moreira (2004) show that under this assumption appropriately mod-

ified sufficient statistics, with no unknown nuisance parameters, converge to the

same limit as obtained in the Gaussian setting of Section 4. This, in part, has also

been noted by Jeganathan (1997), who shows that the likelihood representation of

(β, γ) will asymptotically separate from that of the errors. Let the long-run variance

of
(
ε

y
t , ϕ (l) εx

t
)

be specified as

Ω =

 ωyy ωyx

ωxy ωxx

 = lim
T→∞

T−1
T

∑
t=1

T

∑
s=1

E

 ε
y
t

ϕ (l) εx
t

  ε
y
s

ϕ (l) εx
s

′
with Ω̂ its consistent estimator, partitioned accordingly. Let ω̂yy.x = ω̂yy − ω̂−1

xx ω̂2
xy,

λ̂ = ω̂xy
(
ω̂xxω̂yy.x

)−1/2 , x0 = x1 and define χ̂t = xt − x1. Then Jansson and Moreira

(2004) prove (in Theorem 6) that the statistics

R̂β = ω̂−1/2
xx ω̂−1/2

yy.x T−1
T

∑
t=1

x̃t−1 (yt − β0xt−1)

− λ̂

[
1
2

(
ω̂−1

xx T−1χ̂2
T − 1

)
− ω̂−1

xx T−2χ̂T

T

∑
t=1

χ̂t−1

]
,

R̂γ =
1
2

(
ω̂−1

xx T−1χ̂2
T − 1

)
− λ̂R̂β,

R̂ββ = ω̂−1
xx T−2

T

∑
t=1

x̃2
t−1,

R̂γγ = ω̂−1
xx T−2

T

∑
t=1

χ̂2
t−1,

jointly converge to R, the limit of R specified in Section 4. Consequently, we have

the following theorem:

Theorem 3. Let R̂ =
(

R̂β, R̂γ, R̂ββ, R̂γγ

)
. Then under assumptions A1∗ − A3∗, with any

Ω̂ →p Ω, we have

lim
T→∞

EY,X
βT(b),γT(c)

[
L

(
m∗ (

R̂, β0
)

, β
)]

= ERb,c [L (m∗ (R (b, c) , β0) , β)]

for every (b, c) ∈ R2, where L ∈ Lβ with at most countably many discontinuities.
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What this says is that, asymptotically, the median unbiased estimator based on

the feasible counterpart of R achieves optimality as specified in Theorem 2.

Finally we note that Jansson and Moreira (2004) provide integral representation

of the joint distribution of R (b, c) in their Lemma 4 and Theorem 7. In principle it

can be used to obtain precise estimates of the median function, however numerical

integration procedures are not yet stable enough to produce robust estimates away

from β0.7 In the empirical application, to be discussed next, we will therefore use

the nearest neighbor technique for conditioning, as described in the last section.8

7. EMPIRICAL APPLICATION

As noted in the introduction, the optimal median unbiased estimator proposed

in this paper is particularly attractive in forecasting macroeconomic or financial

indexes. Assumptions of our model well describe the observed characteristics of

the common and successful explanatory variables, such as dividend-price ratio or

earnings-price ratio in financial applications or various macroeconomic fundamen-

tals (measures of output or inflation) employed more broadly. Importantly, any

changes in these variables are very persistent and are likely not to be exogenous

with respect to the series of interest.

In this section we consider one possible application, in which we employ the

OMUB estimator to forecast excess asset returns with the earnings-price ratio, shown

to carry forecasting power by Campbell and Yogo (2003). Although this problem has

been extensively studied in the past (see Campbell and Yogo (2003), Polk, Thomp-

son, and Vuolteenaho (2004), Torous, Valkanov, and Yan (2001), Lanne (2002) and

references therein) all theoretical and empirical investigations we are familiar with

almost exclusively concern testing predictability of asset returns, rather than an ar-

guably equally relevant task of point (or interval) forecasting. The following appli-

cation is not meant as a comprehensive study of this very interesting subject but as

7I thank Michael Jansson for sharing the numerical routines that perform the integration.
8Matlab routine that computes the OMUB estimator is available from the author upon request.
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an illustration of the possible and appealing use of the methods developed in this

paper.

Data we use come from the recent study by Campbell and Yogo (2003) and span

1952-2002.9 Returns are value-weighted monthly indexes from NYSE/AMEX mar-

kets provided by the Center for Research in Security Prices (CRSP). Excess returns

are computed in logs over the riskfree return, taken to be the 1-month T-bill rate.

The predictive variable is the log earnings-price ratio, computed by Campbell and

Yogo (2003) as a moving average of earnings of the S&P 500 over the past ten years

divided by the current price. As evident from Figure 3, excess returns demonstrate

1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002
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−0.1

0

0.1

0.2
(A)
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(B)

FIGURE 3. Excess asset returns (A) and Earnings-price ratio (B)

high volatility whereas our chosen predictor, the earnings-price ratio appears to be

9I thank John Campbell and Motohiro Yogo for providing access to the data set.
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highly persistent. In fact, Campbell and Yogo (2003) estimate its confidence inter-

val for the autoregressive coefficient c to be [−6.95, 3.86] , containing the exact unit

root. Also, by construction, shocks to earnings-price ratio are highly negatively cor-

related with the return shocks; over the entire sample the long-run correlation is

being estimated at −0.96.

We compute the median unbiased estimator as described in the preceding sec-

tions, employing discretized OLS (as a pilot estimate) and a long-run covariance

matrix estimated using a Quadratic Spectral kernel with automatic bandwidth se-

lection, as specified in Andrews (1991). The alternative procedures that we consider

are OLS, GMLE(c=0) and AC estimators and the Bayes estimator with the Jeffrey

prior on γ.10

We present our results in the form of rolling estimates of the slope coefficient over

1980-2002 in Figure 4. At every date estimation results are obtained using observa-
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FIGURE 4. Estimates of β coefficient

tions from the beginning of sample up until the specified date. We notice that the

10Jeffrey prior is proportional to 1/
√

1− γ2 and hence favors values of γ close to 1.
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median unbiased estimates are in general small in magnitude, of similar order as the

GMLE(c=0) and AC estimates, but in contrast appear to be more versatile, accom-

modating to the changing economic environment. In particular, they are the only

estimates that oscillate around zero in the regime-switching years at the beginning

of the 80’s and at the end of 90’s.

Next, we compute the average losses from rolling pseudo out-of-sample forecasts

over this period and detail the results in Table 1. Columns of this table summa-

rize efficiency of estimators when measured with squared deviations (SD), absolute

deviations (AD) or linear-asymmetric loss specification (15) with a = 1 or a = 2,

respectively.

SD AD a = 1 a = 2

OLS 2.74 39.79 47.52 71.84

GMLE(c=0) 1.92 32.83 49.71 48.77

AC 1.93 32.94 49.63 49.18

Bayes 2.40 38.36 63.02 52.06

OMUB 1.93 32.87 49.33 49.28

TABLE 1. Average loss in rolling forecasts over 1980-2002 measured

with: square deviations (SD), absolute deviations (AD) and linear-

asymmetric formulation (15) with a = 1 or a = 2. Scaled by 103.

Our results indicate that the OMUB estimator performs consistently well, either

producing the lowest average loss or falling within a very small margin of the re-

spective most efficient procedure. Results in the last two columns, corresponding to

asymmetric losses (different costs of positive and negative errors), are very interest-

ing in view of our earlier theoretical finding of robustness of the median unbiased

procedure to the choice of a loss function. Although estimation errors only partly

contribute to the observed forecast errors we would nevertheless expect to see some

evidence of robustness in the empirical results. This is in fact the case; average losses
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under two asymmetric specifications are almost equal (similar observation holds for

the GMLE(c=0) and AC procedures), in contrast to the OLS and Bayes estimators.

Qualitatively similar results are obtained when dividend-price ratio is used as an

explanatory variable or if the sample period is extended back to the end of 1926,

when available data starts.

8. SUMMARY AND CONCLUDING REMARKS

In this paper we have investigated optimal estimation procedures for the slope co-

efficient in regressions with a highly persistent and predetermined regressor. In this

empirically relevant framework we have designed an optimal estimator in the class

of conditionally median unbiased procedures. Importantly, the optimality state-

ment extends to interval estimation and holds under a very general specification of

the loss function.

Although simple, the theoretical framework employed in this paper yields itself

to some interesting empirical applications. The preliminary results on forecasting

asset returns call for further work in the area. It would be particularly interesting

to see if any improvements in forecasting individual stocks at higher frequencies

can be attained. In macroeconomics, on the other hand, one issue that has recently

received a lot of attention and that can easily be investigated using the techniques

developed in this paper concerns the effect of the level of inflation on the frequency

of price adjustments.

There are important extensions of this work that merit further inquiry. First, the

method should be modified to apply to a multivariate regression. This has already

been resolved by Polk, Thompson, and Vuolteenaho (2004) for the testing problem

considered by Jansson and Moreira (2004); their analysis can be adapted to the set-

ting of this paper. On another front, we may expect the median unbiased estimator

to perform well under heavy-tailed distributions (see Thompson (2003) for a recent

study), but this remains to be established.
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Last but not least, it seems that the general strategy of constructing optimal me-

dian unbiased estimators presented in this paper can be applied to other economet-

ric models, whenever curvature of the likelihood can be circumvented by condition-

ing on sufficient statistics for the nuisance parameters.

9. APPENDIX: PROOFS

Proof of Lemma 1. Note that the local representation of the probability distri-

bution (11), dPY,X
βT(b),γT(c), (which by construction is invariant to shifts of the form

(yt, xt) → (yt + a, xt) , a ∈ R) can alternatively be written as

exp
[

θ′WT (θ0)−
1
2

θ′KTθ

]
dPY,X

β0,1

with θ = (b, c)′ , θ0 = (β0, 1)′ , WT =
(

Rβ, Rγ

)′ and

KT =

 Rββ −λRββ

−λRββ λ2Rββ + Rγγ

 .

Since KT is necessarily positive definite and the sequences of probability measures{
PY,X

βT(b),γT(c)

}
and

{
PY,X

β0,1

}
are contiguous (see Jeganathan (1997), Theorem 1), the

structure falls into the LAQ family (see Le Cam and Yang (2000, Definition 6.1) for

a precise statement and conditions). The AC estimator (see Le Cam and Yang (2000,

Section 6.3) or Jeganathan (1995)), defined as maximizing local approximation to the

likelihood, is specified as

mAC
T (y, x) = θ̂T + δTK−1

T WT
(
θ̂T

)
,

where θ̂T denotes any preliminary estimator satisfying conditions (a)-(b) of Theorem

2. It is a straightforward algebra to show that mAC
T (y, x) equals the OLS estimator

from regressing yt − σ−1
xx σxy (xt − γ̂xt−1) on a constant and xt−1, where γ̂ is the OLS

estimator from regressing xt on xt−1. �

Proof of Theorem 1. Theorem 1 is a corollary of the following, more general

result:
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Theorem 4. Let ml
T and mu

T denote lower and upper confidence bounds for β, such that

FS|sC
β (ml

T) = αl, (16)

FS|sC
β (mu

T) = 1− αu, (17)

where αl + αu ≤ 1. Then ml
T and mu

T are uniformly most accurate unbiased confidence

bounds for β in a sense that the interval C∗
T =

(
ml

T, mu
T
)

minimizes

EY,X
β,γ [LCI (·, β)]

among all intervals that are conditionally unbiased at level 1− αl − αu, where conditioning

refers to
(
Sββ, Sγγ

)
=

(
sββ, sγγ

)
. The loss function is specified as

LCI (C∗
T, β) = Ll(ml

T, β) + Lu (mu
T, β) ,

where Ll is nonincreasing in ml
T for ml

T < β and 0 otherwise and Lu is nondecreasing in

mu
T for mu

T > β and 0 otherwise.

Theorem 1 follows on setting αl = αu = 0.5. This results in m∗
T = ml

T = mu
T by

continuity of FS|sC
β (·) (see proof to Theorem 4 below). Also note that any LCI ∈

Lβ. �

Proof of Lemma 2. In the space of sufficient statistics the specified transformation

reads

sβ → sβ + β̄sββ,

sγ → sγ − σ−1
xx σxy β̄sββ,

sββ → sββ,

sγγ → sγγ.

We may recall that the estimator m∗
T (s) is defined as sβ = medT (m∗

T, sC) . To prove

equivariance we need to show that m̄∗
T, which solves this equation under specified

transformations, that is

sβ + β̄sββ = medT

[
m̄∗

T,
(

sγ − σ−1
xx σxy β̄sββ, sββ, sγγ

)]
, (18)
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equals m̄∗
T = m∗

T + β̄ for any β̄ ∈ R. After substituting for sβ condition (18) becomes:

medT

[
m̄∗

T,
(

sγ − σ−1
xx σxy β̄sββ, sββ, sγγ

)]
−medT

[
m∗

T,
(
sγ, sββ, sγγ

)]
= β̄sββ. (19)

Rewriting the conditional median function and the sufficient statistics explicitly

in terms of the underlying random variables yields:

medT (m∗
T, sC)

= med

{(
m∗

T − σ−1
xx σxyγ

)
σ−1

yy.x

T

∑
t=1

x̃2
t−1 + σ−1

yy.x

T

∑
t=1

x̃t−1εt

∣∣∣∣∣
σ−1

xx ∑T
t=1 xt−1xt − σ−1

xx σxyσ−1
yy.x

[(
m∗

T − σ−1
xx σxyγ

)
∑T

t=1 x̃2
t−1 + ∑T

t=1 x̃t−1εt

]
= sγ,

σ−1
yy.x ∑T

t=1 x̃2
t−1 = sββ, σ−1

xx ∑T
t=1 x2

t−1 = sγγ


=

(
m∗

T − σ−1
xx σxyγ

)
sββ + med

[
σ−1

yy.x

T

∑
t=1

x̃t−1εt

∣∣∣∣∣
σ−1

yy.x ∑T
t=1 x̃t−1εt = −σxxσ−1

xy

(
sγ − σ−1

xx ∑T
t=1 xt−1xt

)
−

(
m∗

T − σ−1
xx σxyγ

)
sββ,

σ−1
yy.x ∑T

t=1 x̃2
t−1 = sββ, σ−1

xx ∑T
t=1 x2

t−1 = sγγ


and similar expression obtains for medT

[
m̄∗

T,
(
sγ − σ−1

xx σxy β̄sββ, sββ, sγγ

)]
. Clearly,

then

medT

[
m̄∗

T,
(

sγ − σ−1
xx σxy β̄sββ, sββ, sγγ

)]
−medT (m∗

T, sC) = (m̄∗
T −m∗

T) sββ + q (m∗
T, m̄∗

T, sC)

(20)

where

q (m∗
T, m̄∗

T, sC) = med

σ−1
yy.x

T

∑
t=1

x̃t−1εt

∣∣∣∣∣∣ σ−1
yy.x ∑T

t=1 x̃t−1εt =
(

β̄− m̄∗
T
)

sββ − Q,

σ−1
yy.x ∑T

t=1 x̃2
t−1 = sββ, σ−1

xx ∑T
t=1 x2

t−1 = sγγ


−med

σ−1
yy.x

T

∑
t=1

x̃t−1εt

∣∣∣∣∣∣ σ−1
yy.x ∑T

t=1 x̃t−1εt = −m∗
Tsββ − Q,

σ−1
yy.x ∑T

t=1 x̃2
t−1 = sββ, σ−1

xx ∑T
t=1 x2

t−1 = sγγ


and Q = σxxσ−1

xy

(
sγ − σ−1

xx ∑T
t=1 xt−1xt

)
+ σ−1

xx σxyγsββ. The two conditioning sets in

the last display will coincide if and only if m̄∗
T = m∗

T + β̄, that is,

q
(
m∗

T, m∗
T + β̄, sC

)
= 0.
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We further note that

q (m∗
T, m̄∗

T, sC) > 0 f or m̄∗
T < m∗

T + β̄, (21)

q (m∗
T, m̄∗

T, sC) < 0 f or m̄∗
T > m∗

T + β̄. (22)

From (19) and (20) we find that the sufficient condition for equivariance is(
m̄∗

T −m∗
T − β̄

)
sββ + q (m∗

T, m̄∗
T, sC) = 0

for any β̄ ∈ R, γ ∈ R and SC = sC. This, by (21)-(22), is uniquely solved by

m̄∗
T = m∗

T + β̄.

�

Proof of Theorem 2. Throughout this proof let (b, c) ∈ R2 be fixed. Denote by B

an arbitrarily large bounded interval around βT (b) . Let PR
βT(b),γT(c) and P̃R

βT(b),γT(c)

denote probability measures generated by R with fixed and estimated β0, respec-

tively, and satisfying conditions (a) and (b) of Theorem 2. Then, from Proposition

6.3.3 and Remark 6.3.5 in Le Cam and Yang (2000), we learn that L1 − norms

sup
B
||PR

βT(b),γT(c) − P̃R
βT(b),γT(c)||

will tend to zero uniformly over B. That means that experiments with an estimated

β0 are asymptotically equivalent to those with fixed β0 in the vicinity of the true β,

and hence we take β0 as fixed in what follows (see Shiryaev and Spokoiny (2000,

Chapter 4) for a detailed treatment).

Existence, uniqueness and continuity in b of the median function medA (b, rC) of

the distribution of Rβ (b, c) | (RC (b, c) = rC) follows from Lemma 4(b) in Jansson

and Moreira (2004), who establish exponential representation of this distribution,

and arguments of Theorem 4 of this paper (that use Theorem 2.7.9 (i) in Lehmann

(1997)). Its continuity in conditioning arguments rC follows from Lemma 4(a) and

Lemma 11(a) of Jansson and Moreira (2004). These authors prove continuity of

critical functions of Rβ (0, 0) | (RC (0, 0) = rC) that extends to the domain of (b, c)
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through exponential representation of the familyR (b, c) established in their Lemma

4(a). This result, Lemma 3 in Jansson and Moreira (2004) and continuous mapping

theorem (CMT) yield

medA (b, RC) →d medA (b,RC)

and similarly for its inverse function

m∗
L (R) →d m∗

L (R) (23)

Next we go along the lines of proof of Theorem 5 in Jansson and Moreira (2004).

Define ML (β0) to be the class of locally asymptotically median unbiased estimators

mL (·, β0) satisfying

EY,X
β0,1

[
(1 {mL (R, β0) ≤ β} − 0.5) f

(
Rββ,Rγγ

)
eΛ(b,c)

]
= 0 ∀ f ∈ Cb

(
R2

)
,

where Λ (b, c) denotes the weak limit of the likelihood ratio dPY,X
βT(b),γT(c)/dPY,X

β0,1 . By

construction m∗
L (·, β0) ∈ ML (β0) . Applying arguments of Theorem 4 in the present

context we have

EY,X
β0,1 [L (m∗

L (R, β0) , β) Λ (b, c)] ≤ EY,X
β0,1 [L (mL (R, β0) , β) Λ (b, c)] ∀mL ∈ ML.

From (23), Le Cam’s third lemma (for convergence of the likelihood ratio) and Billings-

ley (1999, Theorem 3.5) we find that m∗
L (·, β0) satisfies (12) and

lim
T→∞

EY,X
βT(b),γT(c) [L (m∗

L (R, β0) , β)] = EY,X
β0,1 [L (m∗

L (R, β0) , β) Λ (b, c)] .

Also, from Proof to Theorem 5 in Jansson and Moreira (2004) (their arguments

apply here since mT (·) = Op (1) and L (·, β) has at most countably many disconti-

nuities) we know that for any {mT (·)} satisfying (12) there exists an mL ∈ ML such

that

limT→∞EY,X
βT(b),γT(c) [L (mT (R) , β)] = EY,X

β0,1 [L (mL (R) , β) Λ (b, c)] .

Since β0 is fixed these local arguments generalize to the global estimator m∗ (·, β0) .

�
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Proof of Theorem 3. Convergence result R̂ →d R follows from Theorem 6 in

Jansson and Moreira (2004). Then Theorem 3 follows from continuity of L (except

for sets of measure zero) and m∗
L (·, β0) (which holds by continuity of its inverse,

medA (b, ·)) and CMT. �

Proof of Theorem 4. We first note that, in addition to probability measures ξ and

νsC specified in the text (in (7) and (8)), we learn from Lemma 2.7.8 in Lehmann

(1997) that there exist measures ζ and υsββ,sγγ , such that

dP
Sββ,Sγγ

β,γ

(
sββ, sγγ

)
= exp

[
−1

2

(
β− σ−1

xx σxyγ
)2

sββ −
1
2

γ2sγγ

]
dζ

(
sββ, sγγ

)
,

dP
SC|sββ,sγγ

β,γ (sγ) = exp (γsγ) dυsββ,sγγ (sγ) . (24)

For later use we note that dνsC (t) ,that enters (8), denotes exp
(
−β0sβ

)
dPS|sC

β0,γ0

(
sβ

)
,

where (β0, γ0) ∈ R2. Also, for any measurable functions f1 and f2, we have:

PSC
β,γ { f1 (sC) ∈ A} =

∫
P

SC|sββ,sγγ

β,γ { f1 (sC) ∈ A} dP
Sββ,Sγγ

β,γ (sγγ) , (25)

PS
β,γ { f2 (s) ∈ A} =

∫
PS|sC

β { f2 (s) ∈ A} dPSC
β,γ (sC) , (26)

where A is any Borel set on the real line. We first verify continuity of the cumulative

distribution function

FS|sC
β (u) =

∫ u

−∞
exp

(
βsβ

)
dνsC

(
sβ

)
.

Continuity in β, for any fixed u and γ, follows from Theorem 2.7.9 (i) in Lehmann

(1997). With β fixed, on the other hand, we have:

lim
u2↓u1

∫ u2

u1

exp
(

βsβ

)
dνsC

(
sβ

)
= 0

since density νsC , which is a conditional density in the joint exponential family as

specified above, is uniformly bounded. Continuity in u follows.

From Corollary 3.5.3 (ii) in Lehmann (1997) we learn that (because of continuity

and monotonicity) there exist lower
(
ml

T
)

and upper (mu
T) uniformly most accurate
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unbiased confidence bounds for β at, respectively, 1− αl and 1− αu confidence levels

(we take αl + αu ≤ 1). That is:

PS|sC
β

{
ml

T ≤ β′
}
≤ PS|sC

β

{
m̃l

T ≤ β′
}

∀β′ ≤ β,

where m̃l
T is any other lower confidence bound, and similarly:

PS|sC
β

{
mu

T ≥ β′
}
≤ PS|sC

β

{
m̃u

T ≥ β′
}

∀β′ ≥ β

for the uniformly most accurate upper bound, where m̃u
T denotes any other upper

bound. Consider the lower bound for a moment. Lehmann (1997, Problem 3.21)

shows that ml
T will minimize ES|sC

β

[
Ll

(
ml

T, β
)]

at its level αl for any function Ll that

is nonincreasing in ml
T for ml

T < β and 0 for ml
T ≥ β. The argument goes as follows.

First, define two cumulative distribution functions F† and F‡ by:

F† (u) =
PS|sC

β

{
ml

T ≤ u
}

PS|sC
β

{
m̃l

T ≤ β
} , F‡ (u) =

PS|sC
β

{
m̃l

T ≤ u
}

PS|sC
β

{
m̃l

T ≤ β
} , u < β

and F† (u) = F‡ (u) = 1 for u ≥ β. Then clearly F† (u) ≤ F‡ (u) , ∀u and hence

E†
β [ f (U)] ≤ E‡

β [ f (U)] for any nonincreasing function f , where notation of the ex-

pectation operators relates to the corresponding cdfs. In particular, we have:

ES|sC
β

[
Ll

(
ml

T, β
)]

= PS|sC
β

{
m̃l

T ≤ β
} ∫

Ll (u, β) dF† (u)

≤ PS|sC
β

{
m̃l

T ≤ β
} ∫

Ll (u, β) dF‡ (u) = ES|sC
β

[
Ll

(
m̃l

T, β
)]

.

Similar argument shows that mu
T will minimize ES|sC

β [Lu (mu
T, β)] for any Lu that

is nondecreasing in mu
T for mu

T > β and 0 for mu
T ≤ β.

Until now we have considered confidence intervals constructed conditionally on

SC = sC. Note, however, that by measurability of FS|sC
β (·) over the Borel sets in-

duced by S we can fuse (26) and (16)-(17) to find:

FS
β (ml

T) =
∫

PS|sC
β {ml

T ≤ β}dPSC
β,γ (sC) = αl,

FS
β (mu

T) =
∫

PS|sC
β {mu

T ≤ β} dPSC
β,γ (sC) = 1− αu,
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for all β ∈ R. Hence C∗
T =

(
ml

T, mu
T
)

retains its nominal level unconditionally.

In what follows we extend the conditional optimality statement to the class of

confidence intervals that are conditionally unbiased at level 1− αl − αu, where con-

ditioning refers to
(
Sββ, Sγγ

)
=

(
sββ, sγγ

)
. First, for any

(
Sββ, Sγγ

)
=

(
sββ, sγγ

)
, we

take an arbitrary confidence set CT of the specified level and show that it retains

its level on the partition SC = sC and hence, because of conditional optimality of

C∗
T, is inferior on that partition. Optimality follows by integration with respect to

P
SC|sββ,sγγ

β,γ .

First, for any confidence set CT (y, x) of level 1− αl − αu we have:

PY,X
β,γ {β ∈ CT (y, x)} = 1− αl − αu ∀ (β, γ) ∈ R2. (27)

Since conditioning on sufficient statistics leaves the resulting function indepen-

dent of parameters, we can rewrite this random interval as a function of sufficient

statistics, say CT (s) . Specifically, if we define 1A (z) = 1 if z ∈ A and 0 otherwise,

we have:

PY,X
β,γ {β ∈ CT (y, x)} =

∫
PY,X|s {β ∈ CT (y, x)} dPS

β,γ (s)

=
∫

1{β∈CT(y,x)} (y, x) dPS
β,γ (s)

= PS
β,γ {β ∈ CT (y, x)} ,

where the first transformation is based on the law of iterated expectations, in the

spirit of (25) and (26), and the second comes from the fact that the conditional prob-

ability inside the integral is independent of either γ or β. Finally, since dPS
β,γ is gener-

ated by S, we can rewrite the arbitrary set CT (y, x) as a function of s, CT (s) , without

altering the probability statement. Hence the property (27) can alternatively be rep-

resented in the space of sufficient statistics as

PS
β,γ {β ∈ CT (s)} = 1− αl − αu ∀ (β, γ) ∈ R2.
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Using (25) and (26) we can write:

∫ [∫
PS|sC

β {β ∈ CT (s)} dP
SC|sββ,sγγ

β,γ (sγ)
]

dP
Sββ,Sγγ

β,γ

(
sββ, sγγ

)
= PS

β,γ {β ∈ CT (s)} .

Since we are conditioning on
(
Sββ, Sγγ

)
=

(
sββ, sγγ

)
, we must have:

∫
PS|sC

β {β ∈ CT (s)} dP
SC|sββ,sγγ

β,γ (sγ) = 1− αl − αu ∀ (β, γ) ∈ R2,

which, by completeness of the family P
SC|sββ,sγγ

β,γ (which follows from (24) and Lehmann

(1997, Thm. 4.3.1.)), further reduces to:

PS|sC
β {β ∈ CT (s)} = 1− αl − αu a.e. sγ ∈ R,

with
(
sββ, sγγ

)
fixed, which means that CT (s) is unbiased at level 1− αl − αu on the

partition SC = sC, for all β ∈ R. Let Nβ denote the exceptional null set in the last

display, and N = ∪ Nβ. Then for any sC such that sγ /∈ N and for any β ∈ R we

have:

PS|sC
β {β ∈ C∗

T (s)} = PS|sC
β {β ∈ CT (s)}

since both have level 1− αl − αu on the partition SC = sC. But we know it is C∗
T (s)

that is optimal on this partition, in a sense that:

ES|sC
β [LCI (C∗

T (s) , β)] ≤ ES|sC
β [LCI (CT (s) , β)] .

This argument, we may recall, rests on C∗
T being the uniformly most accurate unbi-

ased confidence interval for any β ∈ R. Since N is a PSC
β,γ − null set we can integrate

this inequality with respect to P
SC|sββ,sγγ

β,γ and use (25)-(26) to conclude

E
S|sββ,sγγ

β,γ [LCI (C∗
T (s) , β)] ≤ E

S|sββ,sγγ

β,γ [LCI (CT (s) , β)] ,

which is equivalent to the statement of the theorem. �
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