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Abstract

This paper investigates the size properties of a two-stage test in the linear instru-
mental variables model when in the first stage a Hausman (1978) specification test is
used as a pretest of exogeneity of a regressor. In the second stage, a simple hypothesis
about a component of the structural parameter vector is tested, using a t-statistic
that is based on either the ordinary least squares (OLS) or the two-stage least squares
estimator depending on the outcome of the Hausman pretest. The asymptotic size
of the two-stage test is derived in a model where weak instruments are ruled out by
imposing a lower bound on the strength of the instruments. The asymptotic size is
a function of this lower bound and the pretest and second stage nominal sizes. The
asymptotic size increases as the lower bound and the pretest size decrease and is close
to or equal to 1 for empirically relevant scenarios. As a further result, it is shown
that, asymptotically, the conditional size of the second stage test, conditional on the
pretest not rejecting the null of regressor exogeneity, is 1 or very close to 1 even for
a large lower bound on the strength of the instruments. The size distortion is caused
by a discontinuity of the asymptotic distribution of the test statistic in the correla-
tion parameter between the structural and reduced form error terms. The Hausman
pretest does not have sufficient power against correlations that are local to zero while
the OLS t-statistic takes on large values for such nonzero correlations.
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1 Introduction

This paper is concerned with the asymptotic size properties of a two-stage test
where in the first stage, a Hausman (1978) specification test is used as a pretest.! As
the lead example, the pretest tests exogeneity of a regressor in a linear instrumental
variables (IV) model. In the second stage, a hypothesis about a component of the
structural parameter vector is tested using a t-statistic based on either the ordinary
least squares (OLS) or the two-stage least squares (2SLS) estimator, depending on
the outcome of the pretest. An explicit formula for the asymptotic size of the two-
stage test is derived in a model where weak instruments are ruled out by imposing a
lower bound on the strength of the instruments. The asymptotic size is a function of
the nominal size of the pretest, the nominal size of the second stage test, the number
of instruments, and the lower bound on the strength of the instruments.

It is known that pretesting may impact the size properties of two-stage tests. For
example, Kabaila (1995), Andrews and Guggenberger (2005e, AG henceforth), and
Leeb and Potscher (2005) discuss confidence intervals (Cls) based on an estimator
that can be viewed as a post-model-selection estimator based on a consistent model
selection procedure. They show that the CI has asymptotic confidence size equal to 0.
AG (2005b) considers tests concerning a parameter in a linear regression model after
a “conservative” model selection procedure has been applied to determine whether
another regressor should enter the model. They find that the two-stage test is ex-
tremely size distorted. However, to the best of my knowledge, no results are available
regarding the impact of the Hausman pretest on the size of a two-stage test.

A Monte Carlo study in the linear IV model assesses the finite sample size proper-
ties of the two-stage test that uses the Hausman pretest in the first stage. An array of
empirically relevant parameter choices is used for the concentration parameter p? and
the correlation between structural and reduced form error p. Hansen, Hausman, and
Newey (2004) provide estimates of p? and p from data sets in recently published ap-
plied papers in several top journals. Of the data sets they consider, the first and third
quartiles of the estimated concentration parameter are 13 and 105 and the first and
third quartiles of the estimated correlation are .07 and .47. For sample size n = 1000,
5 instruments, nominal sizes of the pretest and second stage test equal to .05, the
finite sample null rejection probabilities of the two-stage test equal .87, .91, .72, .74,
15, .06 when (u?, p) equals (13,.1), (13,.3), (13,.5), (113,.1), (113,.3), and (113,.5),

!The specification tests proposed in Hausman’s (1978) seminal paper are routinely used as
pretests in applied work, see e.g. Bradford (2003). As of November 2007, www.jstor.org lists about
450 citations of Hausman (1978). This number is likely a lower bound on the number of applied
papers that use Hausman tests as pretests because many applied papers that use a Hausman test do
so, without explicitly citing Hausman (1978) in the references. In the American Economic Review
alone (until 2004) there are at least 75 applied papers that use a Hausman test (about 25 of these
papers were written in the years 2000-2004). Many of these papers did not cite Hausman (1978).

Oftentimes, these specification tests are also referred to as Durbin- Wu-Hausman tests based on
the papers by Durbin (1954), Wu (1973), and Hausman (1978).



respectively. On the other hand, a simple ¢-test based on the 2SLS estimator has null
rejection probabilities equal to .01, .06, .15, .04, .05, and .07 for these cases and thus
virtually uniformly dominates the size distorted two-stage procedure in terms of null
rejection properties.

The paper then develops the theory to confirm the simulation results by deriving
an explicit formula for the asymptotic size of the two-stage test under strong instru-
ments asymptotics.? The asymptotic size of the two-stage test increases as the lower
bound on the instrument strength, denoted by , or the pretest size decrease. It is
equal to 1 or close to 1 for empirically relevant scenarios. For example, for a pretest
and second stage test nominal size of 5% and x = .001 or .1, the asymptotic size of
the symmetric two-sided test equals 1.00 and .95, respectively. For comparison, note
that for the Angrist and Krueger (1991) data the strength of the instruments equals
.017 and .028 for the setup with 3 and 180 instruments, respectively. See below for
further discussion of this example. The result on the asymptotic size of the two-stage
test, denoted by AsySz(6y), immediately implies an upper bound on the asymptotic
confidence size of confidence intervals, obtained by inverting the two-stage test, given
by 1 — AsySz(0y).

As another main result, it is shown that the conditional size of the two-stage test,
conditional on the Hausman pretest not rejecting the null hypothesis of exogeneity,
equals 1 or is close to 1 in empirically relevant scenarios.

Sequences of nuisance parameters are characterized that lead to the highest null
rejection probabilities of the two-stage test asymptotically. For sequences of correla-
tions p that are local to zero of order n~/2, the Hausman pretest statistic converges
to a noncentral chi-squared distribution. The noncentrality parameter is small when
the strength of the instruments is small. In this situation, the Hausman pretest has
low power against local deviations of the pretest null hypothesis and consequently,
with high probability, OLS based inference is done in the second stage. However, the
second stage OLS based t-statistic may take on very large values under such local
deviations. The latter causes size distortion in the two-stage test. If, on the other
hand, p is kept fixed as n goes off to infinity, then the two-stage procedure has good
asymptotic null rejection probabilities: If p is nonzero, the Hausman pretest statis-
tic diverges to infinity, and in the second stage a 2SLS based t-statistic is used. In
this case, the asymptotic null rejection probability of the two-stage test equals the
nominal size. If p equals zero, the Hausman pretest statistic converges to a central
chi-squared distribution and therefore with probability equal to 1 — 5 (where 3 de-
notes the nominal size of the pretest) a t-statistic based on the OLS estimator is
used in the second stage. Because p = 0, the asymptotic null rejection probability

Intuitively, the terminology “strong” can be interpreted as a situation where the reduced form
coefficient matrix is fixed and has full rank. In the scalar situation, it essentially means that the
correlation between the instrument and the included endogenous variable is bounded away from
zero. The precise definition, in the notation of (2.10), is that v, = |[(Q'27/a,|| = (u?/n)'/? is
bounded away from zero, i.e. v > K for some lower bound on the instrument strength x > 0.



of the OLS based t-test equals the nominal size. With probability 3, a t-test based
on the 25LS estimator is used in the second stage whose asymptotic null rejection
probability equals the nominal size. However, this heuristic pointwise justification of
the two-stage procedure does not hold uniformly and the asymptotic size of the test
is 1 for empirically relevant values of k.

Note that in the “strong instrument scenario” considered here, a 2SLS based ¢-
statistic has correct asymptotic size while the two-stage procedure is severely size
distorted in empirically relevant scenarios. If inference on the structural parameter is
the object of interest and the researcher is concerned about the null rejection prob-
ability of the inference procedure, the above findings suggest that it is not prudent
to mechanically implement a Hausman test as a pretest. On the other hand, simply
using a 2SLS based t-statistic is theoretically justified.®* Guggenberger (2007) studies
the asymptotic size properties of the two-stage test when weak instruments are al-
lowed for, i.e. K = 0. When weak instruments are not excluded, the space of nuisance
parameters is larger, and therefore, it is not surprising that the asymptotic size of
the two-stage test equals 1.

Next, the related literature is discussed. This paper is closely related to the
sequence of papers AG (2005a-e). As in these papers, size distortion arises here
because the test statistic has an asymptotic distribution that is discontinuous in
nuisance parameters of the model. The discontinuity in the present case arises when
there is zero correlation between the structural and reduced form error terms.

This paper is related to the papers by Hahn and Hausman (2002) and Hausman,
Stock, and Yogo (2005). The former paper suggests a Hausman-type (pre-)test of
the null hypothesis of instrument validity. The latter paper shows that a second
stage Wald test is equally size distorted unconditionally and conditional on the Hahn
and Hausman (2002) pretest not rejecting the null hypothesis of strong instruments.
Another paper that is concerned with the size effects of pretests is Hall, Rudebusch,
and Wilcox (1996). They investigate by Monte Carlo simulation the conditional and
unconditional null rejection probabilities of a second stage t-test, if in the first stage
the sample correlation between regressors and instruments is used as a pretest for
instrument relevance. They find that the conditional size properties of the t-test,
conditional on the pretest rejecting the null of instrument irrelevance, are not better
than the unconditional size properties. Dhrymes (2003) and papers cited therein
provide modified versions of Hausman pretests.

Next, other common applications of Hausman specification tests as pretests are
discussed. The recent paper by Hausman and White (2006) provides a more detailed

31f, in addition, instruments are potentially weak, that is, the strength of the instruments is not
bounded away from zero, my recommendation is to use any of the robust testing procedures suggested
by Anderson and Rubin (1949), Moreira (2001, 2003), Kleibergen (2002), Guggenberger and Smith
(2005), and Andrews, Moreira, and Stock (2006). In situations, where very weak instruments can be
excluded and many instruments are used, the modified Wald test in Newey and Windmeijer (2004)
can be applied.



overview. The results described above strongly suggest that similar size problems
arise for all these applications. First, Hausman pretests have been suggested to test
for exogeneity of potential instruments. Staiger and Stock (1997) shows size distortion
of the standard Hausman pretest under weakness of instruments and Hahn, Ham, and
Moon (2007) introduces a modified version of the Hausman pretest that is robust to
weak instruments. They do not however investigate the size properties of the two-
stage test which is the focus of this paper. In Guggenberger (2007), it is shown that
the conditional size of the two-stage test, conditional on the pretest not rejecting,
is 1. Second, in a panel data context, under independence of the regressors and
individual specific effects, the random effects estimator is consistent and efficient but
inconsistent otherwise. On the other hand the fixed effect estimator is consistent
even if the independence assumption fails. Third, in a system of linear simultaneous
equations, three-stage least squares is consistent and efficient for estimation of the
first equation under correct specification of all equations, but typically inconsistent
otherwise while 2SLS is consistent if the first equation is correctly specified.

The remainder of the paper is organized as follows. Subsections 2.1 and 2.2
describe the model and test statistic. Subsection 2.3 reports finite sample results
using empirically relevant parameter choices. The remainder of Section 2 derives the
asymptotic size results of the two-stage test when the Hausman pretest is used to
test for exogeneity of a regressor.*

2 The Size of Tests After a Hausman Pretest

This section deals with the asymptotic size of the two-stage test in the linear IV model
where in the first stage the Hausman pretest tests for exogeneity of a regressor.

2.1 Model and Definitions

Consider the linear IV model

1 = Y20 + X( + u,
Yo = I+ X + v, (2.1)

where 11,y € R", X € R™" for k; > 0 is a matrix of exogenous variables, Z € R"**2
for ky > 1is a matrix of IVs, and (0, (', ¢/, 1)’ € RV>k1>F1xk2 are unknown parameters.

4 A Supplementary Appendix, Guggenberger (2007), discusses several additional results. It shows
that, for a given bound on the instrument strength, the size correction methods of Andrews and
Guggenberger (2005b) could be applied to size-correct the two-stage test. It shows that, if one
allows for weak instruments, the asymptotic size of the two-stage test is 1 and size-correction is
not possible. It discusses subsampling versions of the test. It shows that the same size problems
of two-stage tests arise in other applications of a Hausman pretest, for example, when it is used to
test for instrument exogeneity. Finally, additional Monte Carlo results are given, including power
results for the simulations in Section 2.3.



Let Z = [X:Z] and k = k; + ko. For j = 1,2, denote by y;;, u;, vi, X;, Z;, and Z; the
i-th rows of y;, u, v, X, Z, and Z, respectively, written as column vectors (or scalars).

The observed data are y;, y2, X, and Z. The data (u;,v;, Z;), i = 1,...,n, are i.i.d.
The paper investigates the asymptotic size of a two-stage test of the null hypothesis

Hg 10 = 80 (22)

where in the first stage a Hausman (1978) test is undertaken as a pretest. One- and
two-sided alternatives are considered.

The Hausman pretest tests exogeneity of the variable ys;.° If the pretest rejects
the exogeneity hypothesis, then, in the second stage, Hy : 6 = 0, is tested by using
a t-test based on the 2SLS estimator. If the pretest does not reject the exogeneity
hypothesis, a t-test based on the OLS estimator is used in the second stage.

Denote by « and 3 the nominal sizes of the second stage and first stage test. To my
knowledge, it has not been discussed in the literature what the resulting asymptotic
null rejection probability of the two-stage test is as a function of  and 3, even under
the assumption of strong identification and fixed p (in particular, p = 0), let alone its
asymptotic size. To derive the resulting asymptotic null rejection probability under
these assumptions is not hard and only requires deriving the joint distribution of the
pretest statistic and the possible second stage statistics. In this section, a formula
for the asymptotic size of the two-stage test is derived. By definition, the asymptotic
size of a test of the null hypothesis Hy : 6§ = 6, in the presence of nuisance parameters
v € I' equals

AsySz(6y) = limsupExSz,(6), (2.3)

n—oo

where

ExSz,(00) = sup RP,(60,7), RP,(00,7) = Pyy~(T0(60) > c1-a), (2.4)

vyel

T,(0) is the test statistic, c¢;_, the critical value of the test, and Fp,(-) denotes
probability when the true parameters are (6,+). The test statistics T,,(6), critical
values ¢1_,, and parameter space I" for the present application are defined in the next
subsections. The parameter space is modelled as a function of the strength of the
instruments in subsection 2.4.

See AG (2005a) and Section 2 in AG (2005d) for a detailed discussion of uniformity
and the important distinction between pointwise null rejection probability and size.
Uniformity over v € T" which is built into the definition of AsySz(6y) is crucial for
the asymptotic size to give a good approximation for the finite sample size.

®Hillier (1987) and Moreira (2001, p.7 of the July 2005 revision of the paper) provide an interesting
discussion of the connection between structural parameter tests and exogeneity tests.



2.2 Test Statistics and Critical Values

In this subsection the two-stage test statistic T,,(6o) for the hypothesis test Hy : 0 = 6y
is defined. Denote by I, the n-dimensional identity matrix. For a matrix W with n
rows, define Py = W(W'W)=*W', My, = I, — Py, and W+ = MxW and, if no X
appears in (2.1), set W+ = W.

The Hausman pretest is defined as

n(b\2SLS - EOLS)2

H, = , (2.5)

Vasrs — Vors

where

§ZSLS = Yo Py /(Yo Pz1y2),

EOLS = yéMXyl/(yéMXyz);

Vasrs = (Y Pyiya/n) 162 (Bas1s),

Vous = (sMxys/n) '3, (BoLs), and

G2 (0) = n 7yt — v 00) (i — v3 ) (2.6)

for | = OLS and 2SLS. Other definitions of H, are possible, that replace 52(foLs)
by 72(62515) or vice versa. The results on the asymptotic size do not depend on
which definition is used, see (2.18) below. If s is exogenous and the instruments are

strong then H,, —4 X} as n — oo under assumptions given in Hausman (1978).
Define the ¢-test statistic

Ty (6) = n'*(6: - 6)/V;" (2.7)
for | = OLS and 2SLS. The standard definition of the two-stage test statistic is
T7(00) = T515(00) I(H, < xi(1 = B)) + T3s15(00) I (H, > x5 (1 — B)), (2.8)

where, again, 3 is the nominal size of the pretest, I is the indicator function, and
X3(1—0) the 1—3 quantile of a chi-square random variable with one degree of freedom.
Define the two-stage test statistic 7,,(0) as £7,5(0o) or |T*(0y)| depending on whether
the test is a lower /upper one-sided or a symmetric two-sided test, respectively.

The nominal 1 — « standard fixed critical value (FCV) test rejects Hy if

Th(00) > co(l — ), (2.9)

where ¢oo(1 — &) = 21-4, 21—, and 21_q/2 for the upper one-sided, lower one-sided,
and symmetric two-sided test, respectively and z;_,, is the 1—«a quantile of a standard
normal distribution.



2.3 Finite Sample Evidence

Next, the finite sample size properties of the two-stage test are investigated in a
simulation study based on parameter choices for the concentration parameter p? =
nt'EZ; Z!m /Ev? and the correlation p = Corr(u;,v;) that were estimated from data
sets in applied papers published in the last five years in the American Economic
Review (AER), Journal of Political Economy (JPE), and the Quarterly Journal of
Economics (QJE), see Hansen, Hausman, and Newey (2004).° Their Table 7 is re-
produced here; it reports several percentiles Q10, ..., Q90 for the concentration and
correlation parameters in these data sets:

Hansen, Hausman, and Newey (2004), Table 7
Five years of AER, JPE, and QJE

# of papers Q10 @25 @50 Q75 Q90

12 28 895 12.7 23.6 105 588

P 22 022 .0735 .279 .466 .555

In the simulations, the nominal sizes of the pretest and the second stage test are
a = 3 = .05. Furthermore, EZ;Z! = I}, and Ev? = 1. This implies ||7|| = \/u2n~"/2.
The vector 7 is chosen to have all components equal, 7 = mo(1,...,1)" € R* for
mo € R. The vector (u;,v;, Z;) is chosen as i.i.d. normal with zero mean and unit
variances and Z; is independent of u; and v;. The asymptotic results do not depend
on ky, the number of included exogenous variables, and therefore k; = 0 in the
simulations.

Two Monte Carlo experiments based on the information in Table 7 of Hansen,
Hausman, and Newey (2004) are implemented.

In the first experiment, the values of u? and p are fixed at the estimated median
values over the data sets, namely p? = 23.6 and p = .279. Empirical null rejection
probabilities of the two-stage test are reported for various values of the sample size n
and the number of instruments ks, namely n € {100, 1000, 10000} and k2 = {1,5,20}.
In Table Ia below, columns 4 and 5 with headings “Upper” and “Sym” report these
finite sample null rejection probabilities for upper and symmetric two-stage tests.
Column 6 with heading “HPre” reports null rejection probabilities of the Hausman
pretest. Finally, columns 7 and 8 with headings “CondlUpper” and “CondISym”
report conditional probabilities of rejecting the null hypothesis of the second stage
test, conditional on the Hausman pretest not rejecting the pretest null hypothesis.

For all configurations, the two-stage test overrejects severely, with null rejection
probabilities in the range [.62,.85]. The pretest null hypothesis is only rejected with
probabilities ranging roughly between 10% and 20% even though p = .279. However,
conditional on not rejecting the pretest null hypothesis and thus using an OLS based

®The concentration parameter u? equals nt’ EZ; Z!m/Ev? when there are no included exogenous
variables. In general, the concentration parameter is defined as ny3 where 7, is defined in (2.10).



t-statistic in the second stage, the null rejection probabilities equal 100% in most
scenarios. The OLS based t-statistic takes on very large values under the failure of
the pretest null hypothesis while the Hausman pretest does not.

Insert Table Ia about here

In the second experiment, the sample size and the number of instruments are
fixed at n = 1000, k; = 5 and various values of the concentration parameter u?
and p are considered that cover the whole range of values reported in Hansen,
Hausman, and Newey (2004), namely p? € {0,13,50,113,200, 313,450,613} and
p € {0,.05,.1,.2,.3,.4,.5,.6}. Therefore, the results cover all the cases of combi-
nations of 42 and p that were found in the applied papers in the last five years in
AER, JPE, and QJE considered in the table above. For each such combination, Table
Ib below reports null rejection probabilities of the symmetric two-stage test and of
the symmetric ¢-test based on the 2SLS estimator. The results strongly suggest that
in terms of null rejection probabilities, simply using the one-stage t-test, is the better
of the two methods. In situations, where the two-stage test has good null rejection
probabilities (the cases where p = 0 or (p > .3 and p® > 200)), the same is true
for the one-stage t-test. However, in all other situations the two-stage test overre-
jects, oftentimes severely, while the one-stage test has relatively good size properties
(except when p > .5 and p? < 13). For example, for the cases (.1 < p < .4 and
p? < 13) the null rejection probabilities of the two-stage test fall into the interval
[.84,1.00] while the corresponding interval for the one-stage test is [0,.1]. For p = .1
the null rejection probability of the two-stage test is .87 when p = 13 and .38 when
1 = 613 while for the one-stage test, the corresponding probabilities are .01 and .05.

Insert Table Ib about here

In the next subsections, the theoretical evidence is provided to support the results
of the finite sample simulations. The next subsection defines the space of nuisance
parameters. Finally, the asymptotic size of the two-stage test is derived.

2.4 Parameter Space

In this subsection, the parameter space I' of the nuisance parameter vector v is de-
fined. Following AG (2005a), the parameter + has three components: v = (7v;, 74, V3)-
The points of discontinuity of the asymptotic distribution of the test statistic of in-
terest are determined by the first component, v,. The parameter space of v, is I';.
The second component, 7,, of v also affects the limit distribution of the test statistic,
but does not affect the distance of the parameter v to the point of discontinuity.
The parameter space of v, is I's. The third component, 74, of v does not affect the
limit distribution of the test statistic. The parameter space for 75 is I's(7;, 75), which
generally may depend on 7y, and 7,.



The “strength of the instruments”, ||(QY?71/c,||, affects the limit distribution of
the test statistics discontinuously at the point 0 of no identification, see Guggenberger
(2007, Section 6). Because the data evidence in Hansen, Hausman, and Newey (2004)
suggests that extremely weak identification is rather the exception, a lower bound on
the strength of the instruments ||(Q2Y27/0,|| > & is imposed for some x > 0. Weak
instruments as in Staiger and Stock (1997), that would correspond to k = 0, are
therefore ruled out. By imposing a lower bound, ||(2'/?7/0,|| no longer affects the
limit distribution discontinuously, but continuously, see below.

Assume that {(u;,v;, X;, Z;) : i < n} are ii.d. with distribution F. Define the
vector of nuisance parameters v = (7y;, V9, V3), by

=0, Y2 = (27 /0,||, and 73 = (F,7,(, ¢), where

2 2 2 2 _
o, = Eru;, o, = Epv;, p= CO?“TF(Ui,Ui),

Q=Qzz — QzxQxxQxz, and Q = { g;}; g)z(ZZ } = EF7i7;7 (2.10)

and ||-|| denotes Euclidean norm. The parameter v, measures the degree of endogene-
ity of y».” The parameter -, measures the strength of the instruments. It is related
to the concentration parameter 2 (defined above for the particular case k; = 0) by
vy =n"Y2u. Let

Iy = [_17 1]7 Iy = [/{aﬁ] (211)
for some 0 < k < R < 0o. The technical details of the definition of I's = I'3(yy,72)
are given in the Appendix, see (3.1). Finally, define the parameter space I' of v as

I'={v= 17273 71 €T1,72 € Ta,73 € [s(71,72) }- (2.12)

2.5 Asymptotic Distributions and Size

In this subsection, the asymptotic distribution of the test statistic is derived under
certain parameter sequences {7, ,} defined below. Then the asymptotic size of the

test is determined.
Let R, = RU {£o00}. Define

H = {h = (hhh?) < Rio = {’Yn - (7n,177n,277n,3) cel:in> 1}
such that n1/27n71 — hy and 7,5 — ha}. (2.13)

It follows that
H = H, X Hy = Ry, X [K,R]|. (2.14)

"Note that in AG (2005a-e) the specification for « has always been chosen such that when ~, times
n” diverges to infinity, the “standard FCV” asymptotic distribution is obtained. In this example,
when n'/2|y,| — 00, o is not exogenous. Instead, the “standard” Hausman (1978) result H,, —q x5
is obtained under n'/2|y;| — 0 and additional assumptions.



Two cases are dealt with separately. Case I has |hi| < oo while Case II has || = oc.
In Case I, p — 0 and thus var(uv;)/(c20?) — 1, see (3.2). In Case I, y, is only

“weakly endogenous” while in Case II it is “strongly endogenous”.

Definition of {v,,} : For h = (h,hs) € H, let {7, ;,} C I' denote a sequence

. _ /
of parameters with components Yn,h,1 Vn,h,20 and Yn,h,3» Vnh1l = (’Yn,h,p Yn,h,2 %,h,a) )
where

Yona = Corrp, (W, v3), Yone = |[(Q°mn/(ER,07)"?|, for
Q, = Ep, Z;Z, — Ep, Z;X,(Ep, X; X)) 'Er, X 7|, s.t.

n1/27n,h,1 - hl? Tnh2 h27 and Tnh,3 = (Fn7 T, <n7 ¢n) S P3(7n,h,17 ’Yn,h,Q)'
(2.15)

As Theorem 1 below shows, the highest asymptotic null rejection probability of the
test is realized along some sequence of the type {7, }. It is therefore enough to study
the asymptotic rejection rates along sequences {7, ;}. Under any sequence {7, ,} for
which Corrg, (u;,v;) — p, the following convergence result holds

o B T
(n—lZJ_/zJ.)—l/Qn—l/zzL’U/Jv —d @Dv,p
n~Y2(u'v — Ep,u'v)/(0,0,) Vuvp
Vp ® [kz 0 = 1 P
N(O, < o 1+ p2 ) for ‘{0 - p 1 ’ (216)

where 1, ,, ¥, , € R, 1, , € R. See AG (2005¢, eq. (2.15)) for similar statements.®

Next the limit distribution of the test statistic 7)¥(6y) is derived under sequences
Ypn- To do so, (2.16) and derivations from AG (2005c, Sections 2.3 and 4.1.2) are
used. For Case I and &), = (§;,,...,&45), b = (h1, ha)'

”_1/2yéPZlu/(0uav) h2522¢u,0
n_1/2yéMXu/(UUUU) h28§qgwu,0 + 7%1;,0 + hl

o B i e
n~tyb Mxys/o? h3+1
where s;, € R* is an arbitrary vector with ||s,|| = 1. Therefore,
T2*SLS<90) 322@/’%0
TH15(00) (1+ h%)_1/252,h
_ —any = | (L4 h3)[s, 00— ha(l+h3)716,, 2 | (2.18)
a2 (0 2 1
0, (O2s15)/ 0,
5. (0oLs) /o 1

8Condition (3.2) in the definition of I'3(vyy, ) ensures that we get the zero entries in the covari-
ance matrix of the asymptotic distribution of (Tﬂ;,p, w;, p»Vuv,p) and also that the right lower entry
(0,20, ?)var(u;v;) in the covariance matrix equals 1 + p2.
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for nj, = (1, -, n5,).” Case Il is dealt with in the Appendix. In Case II, the pretest
statistic goes off to infinity, H, —, oo, and thus w.p.a.1, T3¢, (o) is used in the
second stage. Because Tyg;4(60) —a N(0,1), there is no size-distortion under the
strong endogeneity of Case II.

We have
T, (00) —a J;, (2.19)

where J;, by definition, is the distribution of

M = Mo (s < X3 = B)) +nupl(ng) > X3 (1= 5)). (2.20)

The distribution J; depends on the nominal size 3 of the pretest. For notational sim-
plicity, this dependence is suppressed. The derivations above imply that Assumption
B in AG (2005a) holds with r = 1/2.

Next some motivation is given for the size distortion of the two-stage tests. In the
extreme case hy = 0 in Case I in (2.18), i.e. the unidentified case not allowed for in
the above setup, the formulas in (2.18) read

5s15(00) — a5k, Vw0
T5rs(0o) — a Yuwo + h1, and

Hy — a(sh,%u0)® ~ X*(1). (2.21)

It follows that in this situation, the Hausman pretest rejects with probability equal
to 8. When the Hausman test does not reject the pretest hypothesis (which happens
with probability 1 — ) and thus the OLS based t-statistic is used in the second stage,
the maximal asymptotic rejection probability for the null Hy : 6 = 64 equals 1. The
latter is seen by picking h; very large or very negative depending on the type of
test.!? Picking a large nominal size 3 of the pretest, does not solve this problem.
While picking a large 8 reduces the probability at which OLS based inference is
performed in the second stage, it does not lower the conditional size of the second
stage test, conditional on not rejecting the pretest null hypothesis. The potentially
more powerful OLS based inference in the second stage comes at the price of extreme
size distortion. If, for example, a = S = .05, then the unconditional asymptotic
size for the upper two-stage FCV test is at least 97.5%: With probability 1 — /3, a
t-statistic based on OLS is used and always rejects the null (for h; large enough)
and with probability 3, a t-statistic based on 2SLS is used which rejects the null

9Because N3,n = (1—|—h2) [%Jv% 0 hgi/)w O hzhl} and Sk21/}u 0 hgwuu 0 —hohy ~ ( hohy, 1+
h3), the limit distribution of H, is Xl(hzlﬂ(h2 +1)71). Therefore, H,, —4 x? if hy = 0, that is under
exogeneity and strong instruments, we obtain Hausman’s (1978) result as a subcase. If hohy # 0
the Hausman test has nonzero local power.

10Consider, for example, the case of an upper one-sided test. For every ¢ > 0 there exists a
h1 = hi(g) such that P(wu,w + h1 > z1_4) > 1 — €. Therefore, under the sequence p,, = n~1/2h,,
asymptotically, conditional null rejection probabilities no smaller than 1 — ¢ are obtained.
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with probability 1/2. Intuitively, the pretest does not pick up the local invalidity of
the exogeneity assumption, p = n~/2hy. On the other hand, the mean of the limit
distribution of the OLS based t-statistic is affected which leads to overrejection. By
continuity, the same intuition applies for small values for hs rather than hy = 0. This
is confirmed by the results below.

The next theorem gives an explicit formula for the asymptotic size AsySz(6y) of
the two-stage test of Hy : 8 = 0y based on T),(0y). The results apply to upper, lower
one-sided, and symmetric two-sided versions of the test with 7, defined as 1}, —n;,
and |7}, respectively.

Theorem 1 For upper, lower, and symmetric FCV tests based on T, (0y) of nominal
size «, the AsySz(0y) equals supycpy P(n), > coo(l — @)).

The proof follows from Theorem 1(a) in AG (2005a). Note that the asymptotic
sizes depend on the pretest size 5 and on «. For notational simplicity, this dependence
is suppressed. Note that the results do not depend on k.

Table ITa contains information on the asymptotic size of the two-stage test when
k2 = 5 and «a = .05 for various values of x and 3, namely £ € {.001,.1,.5,1,2,10}
and 3 € {.05,.1,.2,.5}.1" Here and in the tables below, only results on upper and
symmetric tests are reported. Results for lower (and equal-tailed) tests are virtually
identical to the upper (and symmetric) ones. Note that a one-stage t-test based on
the 2SLS estimator has asymptotic size equal to 5% whenever x > 0.

Insert Table IIa about here

Naturally, AsySz(p) is decreasing in both x and 3. Table ITa shows that AsySz(6y)
by far exceeds the nominal size o for small numbers of x and 5. For example, when
k = .1 and # = .05 then the asymptotic size equals .93 and .95 for upper and sym-
metric tests, respectively. On the other hand, when x = 10 and g = .05 then the
asymptotic size equals .06 and .05 for upper and symmetric tests, respectively, and
therefore basically equals the nominal size of the test. For = .05 the symmetric
test has asymptotic size equal to 1 for small lower bounds on the strength of the
instrument.

To gain further insight, the asymptotic probability of the event “pretest does not
reject the pretest null hypothesis” and the conditional probability of the event “test
rejects the null hypothesis” conditional on the pretest not rejecting the pretest null
hypothesis, are investigated. Table IIb contains the results for the case where h; = 5.
For k < 1, this conditional rejection probability is very close to or equal to 1 for

"Tn the simulations, & = 1000. Hansen, Newey, and Hausman (2004, Table 1) reports estimated
concentration parameters u? for the Angrist and Krueger (1991) data for two different setups with
number of instruments equal to 3 and 180, respectively. The estimated concentration parameters
are p? = 95.6 and 257, respectively. For the sample size n = 329,509 this implies v, = .017 and
.028, respectively.
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both upper and symmetric tests for all nominal sizes 3 considered. Picking a large (5
decreases the asymptotic size of the two-stage test by more often using 2SLS based
inference in the second stage, but it does not decrease the size problems of the test
if OLS based inference is used in the second stage. The pretest does not detect a
violation of the pretest null hypothesis, however the second stage t-statistic based on
the OLS estimator takes on very large values. The probability P(H,, < x3(1 — f3))
is of course decreasing in § and k < 1. For § = .05 and k = .1, it equals .92. The
AsySz(fy) is large because, the pretest null hypothesis is not rejected with a large
probability and conditional on this to happen, the second stage t-test based on OLS
almost certainly rejects the null.

Insert Table IIb about here
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3 Appendix

Definition of the set I';5(7,7,) : Define
F3(71772) = {(F7 , <7 ¢) :

Eru; = Epv; =0, Epu? =02, Epvl =0 EFZZ_Q:[gXX gxz}’
zx Wzz

for some 02,02 >0, pd Q € R***, & 7 € R* that satisfy

Corrp(ug, v;) = 71, ||Ql/27r/<7v|| =7, for Q@ =Qzz — szQ}&sz;

(0 € R* EpuZ; = EpviZ; = 0; Ep(ul, 02, uiv) ZiZ, = (02,02, 040,p)Q;
Er(ulviZ;) = Er(uwiZ;) = 0; var(uv;)/(0202) = 1+ ~3;

Noin( B Z: 7)) > M~ ‘EF (Jui /o2, Josfou >, yum/(auav)\m)’H <M, &

— — — /
|Br (1Zsusf ol 242, 1Ziviforo 2, 11Z4]12+9)

< M) (3.1)

for some constants 6 > 0 and M < oo, where “pd” denotes “positive definite.” The
restrictions in I'3(7y;, v,) are similar to those in AG (2005¢) and comprise exogeneity
restrictions on Z, moment restrictions that ensure the validity of central limit the-
orems and, for simplicity, conditional homoskedasticity is assumed. The additional
conditions

Er(uiviZ;) = Er(uviZ;) = 0 and var(uv;)/(0202) = 1+ p?, (3.2)

where p = Corrg(u;, v;), ensure that under exogenelty and strong instruments 02 SLS—
90LS is asymptotically uncorrelated with 90LS Hausman (1978) exploits the latter
property when deriving the asymptotic variance of 925 s — 90 s when showing that
H —,; x? under strong instruments and exogeneity of y,. Sufficient conditions for
(3.2) are, for example, independence of (u;,v;) and Z; and joint normality of (u;, v;)
with zero mean.

Limit distribution of test statistic in Case II: Under sequences {7, } for
which Corrg, (u;,v;) — p and h = (hy, he)" with |h;| = co the following holds jointly

/ n~V2yb Pyiu/(04,0,) a8}, Y,
n! Q[yéMXu - EFnu/U]/<O-UO-”U) h2822¢u P + ¢uv P
n 'y Priys/o Zdan = h3 (3:3)
n~tysMxys /o h3+1
and
TZ*SLS(HO) 5221%,;)
TéLS(e(J) hq
G, (0as1s) /0% 1
52(Oors) /02 1—p?/(h3 +1)
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TABLE Ia
Finite Sample Null Rejection Probabilities (in %) of Two-stage Test

ki =0, a=p3=.05||r|| = v23.6n"2, p = .279; based on 50,000 repetitions

n ko 7o | Upper Sym HPre CondlUpper CondlSym
100 1 49| 69.6 624 154 82.2 73.0

1000 1 15| 789 794 21.1 100 100

10000 1 .05| 786 79.1 215 100 100
100 5 22| 709 632 14.0 82.4 73.0

1000 5 .07 | &80.7 &1.0 19.3 100 100

10000 5 .02 | 80.3 &80.7 19.7 100 100
100 20 .11 74.3 66.2 10.3 82.5 73.4

1000 20 .03 | 8.3 854 148 100 100

10000 20 .01 | &84.2 84.3 159 100 100

TABLE Ib

Finite Sample Null Rejection Probabilities (in %) of Symmetric
Two-stage Test and 2SLS Based t-Test!?
k1 =0, a = = .05, n =1000, ks = 5; based on 50,000 repetitions
W\o| 0 05 1 2 3 4 5 6

0 |5.100 34900 88501 99.9:0.4 99.9:2.4 99.9:85 99.9:22.2 99.9;42.6
13 | 6.7:0.7 35.2:0.8 86.8;1.3 95.4:3.1 91.0;5.9 83.8:10.0 71.6:14.9 53.8;20.6
50 | 7.8:3.4 34535 81.4:3.6 77.1;4.2 50.0;5.3 21.2:6.7 8.0:84  7.7:10.2
113 | 7.8:4.4 32.3:44 74.0/4.4 51.64.7 15351 5557  57:6.6  6.3:7.5
200 | 7.4:4.8 29.7:4.7 65.1;4.8 29.2.49 5850 5254 5358 5764
313 | 7.1;:4.9 27.1;4.9 55.4;49 15149 5151 5153 5355  5.45.9
450 | 6.8:5.0 24.6;5.0 46.3:4.9 885.0 5151 5152 5254  53:5.6
613 | 6.5:5.0 22.2:;5.0 38.4:5.0 6.55.0 5.1;5.1 5152 5253  5.2:54

12For each entry in the table, the first component is the finite sample null rejection probability of
the two-stage test and the second component is the null rejection probability of the ¢-test based on
2SLS.
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Table IIa'?

AsySz(6y) (in %) of Two-stage FCV Test for ky, =5 and o = .05

Upper Symmetric
k\B | .05 Nl 2 5] .05 1 2 )
.001 [ 974 94.8 84.9 554 | 100 94.9 85.0 55.6
1 193.0 884 80.3 51.5|95.2 89.9 80.1 51.0
b 624 529 40.6 23.1|58.6 50.0 389 21.4
1 1300 24.2 185 10.5|27.0 204 158 9.9
2 13.5 11.1 88 6.5 |10.7 93 7.7 6.2
10 | 59 56 54 52|53 53 52 52
Table IIb

Asymptotic Rejection Probabilities (in %) of Two-stage Test Conditional
on Pretest Not Rejecting for ky =5, o = .05, h; =5

Upper Symmetric P(H, <x3(1-75))
k\B | .05 d 2 ) .05 d 2 ) .05 d 2 )
.001 | 100 100 100 100 {99.9 99.9 99.9 99.9|949 89.8 79.8 50.3
1 | 100 100 100 100 {99.9 99.9 99.9 99.9|91.9 85.7 747 452
D 1997 998 99.8 99.8 1994 994 995 99.5|39.1 275 169 5.7
1 1975 974 973 969|945 948 952 948 | 57 29 11 0.2
2 | 717 712 714 745160.8 59.8 603 614| 05 02 0.1 0
10 | 13.0 148 148 143| 85 100 9.0 86 | 0.1 0 0 0

I3The results in Tables ITa and IIb are based on R = 50, 000 simulation repetitions. If conditional
events occur less than 100 times, the number of repetitions is increased.
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Supplementary Appendix

Section 4 discusses power results of the two-stage test and a simple ¢-test based
on 2SLS for the second experiment in Section 2.3. Section 5 discusses plug-in size-
correction of the two-stage test for the application in Section 2 in the case where
there is a positive lower bound on the strength of the instruments. The size-corrected
version of the two-stage test is obtained by increasing the critical value of the test
appropriately. The size-corrected critical value depends on the estimated strength
of the instruments, using the plug-in methods introduced in AG (2005b). Section
6 derives the asymptotic size properties of the two-stage test for the application
in Section 2 in a situation where weak instruments are allowed for. It is shown
that then the asymptotic size equals 1 and that size-correction is no longer possible.
Section 7 contains additional Monte Carlo evidence. Section 8 contains theoretical
results on subsampling, hybrid (see AG (2005b)), and equal-tailed two-stage tests
where a Hausman pretest is used in the first stage. It is shown that the subsampling
versions of the two-stage test have asymptotic size equal to 1 and no size-correction
is possible. Section 9 contains theoretical treatments of additional applications of
Hausman pretests. In particular, in Subsection 9.1 the asymptotic size properties
of a two-stage test are investigated when the second stage test-statistic is robust
to weak instruments in the case when the Hausman pretest rejects the pretest null
hypothesis of regressor exogeneity. The asymptotic size of this modified two-stage test
is shown to equal 1. In Subsection 9.2, a Hausman pretest of instrument exogeneity
is considered as in Hahn, Ham, and Moon (2007). Severe size-problems occur.

4 Power results

Table Ic, reports power results for the second experiment in Section 2.3. The null
hypothesis is Hy : 8 = 6y = 0. The true value is # = .1 in the first chart of the table
and # = .2 in the second chart of the table. The power of the two tests is virtually
identical for the cases (p > .3 and pu? > 113). If identification and endogeneity are
large enough, the Hausman pretest rejects the pretest null hypothesis of exogeneity
of the regressor, and in the second stage, inference based on 2SLS is used. The power
gains of the two-stage procedure over the one-stage test for all other cases where p > 0
come at the price of size distortion of the two-stage test as documented above. If
p = 0, the two-stage test is by far superior in terms of power and is not size-distorted
in this case. Unfortunately, the researcher does not know whether p = 0 or whether
p > 0 — this is why the pretest is implemented in the first place. But if p > 0, the
two-stage procedure is often extremely size-distorted.
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5 Plug-in Size Correction

In Section 2.5 it was shown that the two-stage test is size-distorted. The test can
be size-corrected by increasing the critical value coo(1 — «) in (2.9) appropriately.
In this section, following the work in AG (2005b), I discuss plug-in size-correction
methods for the two-stage test that employ a consistent estimator 7, , of the nuisance

parameter 7, , = (% *7,,/(Ep,v2)~1/2||. The idea is to use different critical values
for different values of 7, ,, rather than to use a critical value that is sufficiently large
to work uniformly for all v, € T'y. This yields a more powerful test. Define the
estimator

Vo = Q70 /G| for
/ﬂ\_n _ (Zlel)—lzlly;7
Q, =n'ZY7Z" and

az,n = n—1<y§_ . ZJJ/TFn)/(yé_ . ZJJ%n)/. (55)
Under the technical assumption 02 = o(n) it is easy to show that the estimator

satisfies Assumption N of AG (2005b), namely, 7, 5 — 7,2 — 0 under all sequences

{’771 = (771,17771,27771,3) S I':n Z 1}
Denote by ¢, (1 — ) the (1 — a)-quantile of the distribution J; in (2.19). Define

CUpy (1 — @) = sup ¢y ny) (1 — ). (5.6)
hi€H1
The plug-in size-corrected (PSC)-FCV two-stage test, rejects the null hypothesis if
(2.9) holds with c.(1 — @) replaced by cvs, (1 —«a).
The following theorem follows from Theorem 2 in AG (2005b).

Theorem 2 Ifx > 0 and 0% = o(n) then the PSC-FCV test satisfies AsySz(0y) = a.

6 The Weak IV Case

In this section, the asymptotic size properties of the two-stage test are discussed in a
situation where weak instruments are no longer excluded. The weak instrument setup
is interesting in the sense that there are several distinct sources of discontinuities in
the limit distribution of the two-stage test. The first source is the correlation of
the regressor and the structural error term, the second one is the potential weakness
of the instruments, and the third one is an interaction term between the two. In
all examples considered in AG (2005a-¢) there is only one source of discontinuity.
The asymptotic size of the two-stage test is 1. If instruments are potentially weak,
size-correction of the two-stage test using the plug-in method is not possible.
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6.1 Parameter Space

When the strength of the instruments, |[(Q2Y%7/0,||, is not bounded away from
zero, the nuisance parameter space I' is much more complex. Assume again that
{(us,vi, X3, Z;) : i < n} are i.i.d. with distribution F. Define the vector of nuisance

parameters v = (V1,Y2,V3): 71 = (V11> V12> V13)» Y2 = (Va1 V22) DY

V1= (||(Ql/27r/gv||,p, T1712) € B%, 75 = (711, 712) € R,
a‘nd /73 - (F77T7 Cv ¢>7 Where

2 _ 2 2 2 _
o, = Eru;, o, = Epv;, p= COTTF(Ui,Ui)>

Q=Qzz — QzxQ%xQxz, and Q = [ Qxx Qxz } = EFZZQ (6.7)
Qzx Qzz

and || - || denotes Euclidean norm. The first component of v, measures the strength
of the instruments and the second component the degree of endogeneity of y,.1* The
third component is the product of the first two. If n'/2y,; — oo, [n'/2y,,| — oo,
and v, - (0,0) then n'/2y,,7v,, — limn'/2v,, is pinned down. On the other hand, if
nt/2y,, — oo, |nY?y,] — 0o, and v, — (0,0), the limit of n'/?y,,v,, could be any
number in sgn(y,49) R+ . In that case, as shown in (6.25), the limit distribution of
the Hausman statistic depends on the limit of n/2y,,7,,.

Note that |[(Q?7/0,|| and p appear in both vectors v, and <y, because they
influence the asymptotic distribution of 7;,(6y) “continuously” and “discontinuously”.
Let T = {71 € R% {711,712} € [0,F] X [=1,1],713 = 711712} for some & < c0.'” For

14 Note that in AG (2005a-¢) the specification for v has always been chosen such that when the
components of v times n” diverge to infinity, we obtain the “standard FCV” asymptotic distribution.
In this example, when n'/2|y;,| — 00, ys is not exogenous. Instead, the “standard” Hausman (1978)
result H,, —4 X3 is obtained under n'/?|y,,| — 0 and additional assumptions.

5Note that an upper bound % is imposed on the component v;; = 7,; to avoid sequences vy,
that diverge to infinity. Allowing for such sequences would cause unnecessary complications in the
asymptotic theory below. Removing the bound on %, the same asymptotic size results are obtained:
The asymptotic size equals 1 with a bound on % and therefore still equals 1 in the larger model
where K is unbounded.
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given v, € I'y, define T's(7;) = {(711,712)}- Define

F3(’71) = {(F77T>C>¢> :
Eru; = Erv; =0, Epul2 = Ui, Epvi2 = 012}, EFZLZ; =Q = Qxx Qxz , &
Qzx Qzz
Eruv;/(0,0,) = p for some 02,62 >0, pd Q € R** & m € R* that
satisfy ’|Ql/277/‘7vH =7y for @ =Qzz — QZXQ;(%XQXZy P = V12;
¢, ¢ € Rkl? Eru;Z; = Epv;Z; = 0; EF(UzQa %2, uivi)iiig = (Uiv 037 0u0uP)Q;

EF(u?UZ-Z-) = Ep(ulvf7z) = 0; var(uivi)/(aiaz) =1+ p%

)\min(EFEiZ;) > M_l; ’EF (|ui/0u|2+67 |Uz'/0v|2+5, |uivi/(0uav)|2+5)/ <M, &

— — — /
| (1Zisf ol B2, 1 Ziws 249, W1Z4]12+)

< M} (6.8)

for some constants 6 > 0 and M < oo, where “pd” denotes “positive definite.” The
restrictions in I's(y;) are similar to those in AG (2005c) and comprise exogeneity
restrictions on Z, moment restrictions that ensure the validity of central limit the-
orems and, for simplicity, conditional homoskedasticity is assumed. The additional
conditions

Er(uiviZ;) = Er(uiviZ;) = 0 and var(uv;)/(0202) = 1 + p? (6.9)
ensure that under exogeneity and strong instruments 52 SLS — 50 Ls 1s asymptotically
uncorrelated with 0prs. Hausman (1978) exploits the latter property when deriving
the asymptotic variance of 525“ — 50 s when showing that H —4 x? under strong
instruments and exogeneity of y,. Sufficient conditions for (6.9) are, for example,
independence of (u;,v;) and Z; and joint normality of (u;,v;) with zero mean.

Finally, define the parameter space I' as

D ={v= 1773 71 €173 € Ta(71), 73 € Ts(71) }- (6.10)

Unlike the definition of I" in AG (2005a, eq. (5.1)), I" does not have a product
structure I'; x Iy in the first two components (7, 7,) because the third component
in 7, depends on the first two and I'y = I'y(y;) depends on ;.

6.2 Test Statistics and Critical Values

We use slightly different notation than before. Define the partially studentized ¢-test
statistic N N R
T7 (0) = Gu(@)n'* (0 - 0)/V;? (6.11)

for | = OLS and 2SLS. Writing the test as in (6.11) using a partially studen-
tized statistic, simplifies the asymptotic theory in situations where @, converges to 0.
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Also, for subsampling tests, studentizing is not necessary, see AG (2005¢) for further
discussion. Define the two-stage test statistic

T3 (00) = ToLs(00) I (Hy < Xi(1 = B)) + Tygps(00) I (Hy > xi(1 = B)),  (6.12)

where, again,  is the nominal level of the pretest, I is the indicator function, and
X3(1—0) the 1—3 quantile of a chi-square random variable with one degree of freedom.
Define the two-stage test statistic 7,,(0) as £7,5(0y) or |T*(0y)| depending on whether
the test is a lower /upper one-sided or a symmetric two-sided test, respectively.

The nominal 1 — « standard fixed critical value (FCV) test rejects Hy if

Tn(00) > co(l — )T, where
Gu=Gu(Oors)[(H, < x2(1 = B)) + Gu(Bass) [(H, > X2(1 — B)), (6.13)

Coo(l — @) = 21_a, #1-a, and 21,/ for the upper one-sided, lower one-sided, and
symmetric two-sided test, respectively and z;_, is the 1 — a quantile of a standard
normal distribution.

6.3 Asymptotic Distributions and Size

The tests above are equivalent to analogous tests defined with 7;*(6y) and &, replaced
by
17" (00) =1 (60) /0w, and 7, /0y, (6.14)

respectively, where again [ = OLS or 25LS. Note that this also rescales 7,5 (6)
to T**(0y) = T7(0y)/0.. The reason for equivalence is that for all the tests above
1/0, scales both the test statistic and the critical value equally. In this subsection,
the asymptotic distribution of the statistics written as in (6.14) are derived. This
simplifies certain expressions in the asymptotic distributions that arise. Let R, o =

{r € Ryx >0} U{+o0} and R, = RU {£o0}. Let

H = {h = <h17h2) € Rij2 .= {771 = (771,17771,27771,3) el:n> 1}
such that n1/27n71 — hy and 7,5 — ha}. (6.15)

Next an exact characterization of the set H is given. With hy = (hi1, hia, hi3) and
h2 = (hgl, h22> it follows that

H — {h — (h'17 hQ), (h117h12) - R—i—,oo X R007 h2 € HQ(h'1>7 h13 S H13((h117 h’127 h2))}’
(6.16)
where Hy(hq) = Hai(hy1) X Hao(hi2),

{0} for |hya| < o0
N Hgg(hlg) = [0, ]_} for hlg = OO s (617)
[—1,0] for hjp = —00

{O} for hi1 < o0

O,E} for hll = O

23



and

{0} for hy; < oo and |hya| < 00
{h12h21} for hy; = oo and |hya| < oo
Hy3((hi1, hia, ho)) = {h11haa} for hy; < oo and |hya| = oo (6.18)
Sgn(hlg)R_hoo fOI‘ hn = |h12| = OO7h21 = h22 =0
{h12} for hyy = |hia] = 00, (ha1 # 0 or hgy # 0).

Note that except for the case hy; = |hia| = 00, (hay # 0 or hay # 0) the vector
(h11, h12, ha1, ho2) uniquely pins down hiz and Hy3((hi1, hi2, he)) is a singleton. Only
in Case II, when hy; = hgs = 0, hy3 is not uniquely pinned down and can take on any
value in the set sgn(hiz) R+ co-

Let hy = (hi1, hia, hiz) and hg = (hag, hog). There are four different cases. Case I
has hi; = oo and |hi2| < oo (and consequently his = hishs), Case II has hyj; = oo
and |h12| = 00, Case III has h;; < oo and |h12| = o0 (and thus h13 = h11h22),
and Case IV has hy; < oo and |hys| < oo (and thus ki3 = 0). In Case II, when
hop = hog = 0, hq3 is not determined by the other components in h; in all other cases
hi3 is determined by the other components in h. In Cases I and IV, hoy = 0 and thus
in the limit var(w;v;)/(0202) = 1. In Cases III and IV hy; = 0. In Cases I and II, the
instruments are strong while in Cases III and IV they are weak. In Cases I and IV
Y2 is (essentially) exogenous while in Cases I and III it is endogenous.

Definition of {7, ,} : For h = (h1,h2) € H, let {7, ,} C I denote a sequence

. _ /
of parameters with components Yokt Yrh2s and Yh3s Vbl = (’yn,h’l, VYnoh2s ”yn’h?g) ,
where

VYnp1 = (|’(Q;/2Wn/<Eani2)il/2H7 COTan (ui7 Ui)? 7n,h,17n,h,2)7
Q, = Ep, Z; 7, — Ep, 2;X\(Er, X;X]) ' Er, X, 7],

Yn,h2 = Vnhls n1/27n,h,1 - hlv Vnp2 h27 and
7n,h,3 = (FTM Tn, Cna d)n) € F3(7n,h,1)' (619)

As Theorem 3 below shows, the highest asymptotic null rejection probability of the
test is realized along some sequence {7, ,}. It is therefore enough to study the asymp-
totic rejection rates along sequences {7, , }. Under any sequence {7, }, the following
convergence result holds

(n—lZJJZJ-)—l/2n_1/2ZJ‘/u/O'u 77Z)u,hzz
(n—lZJ_/ZJ.)—l/Qn_l/2ZJ‘/U/O'v —d wv,hzg
n—1/2 (UIU _ E’Fnulv)/(a'ua'v> wuv,hzz
Vh22 ® [k2 0 . 1 h/22
N(0, ( 0’ 1+ h3, ) for Vi, = hasy 1 ’ (6.20)

where 1, o Ve € B yyp,, € R. See AG (2005¢, eq. (2.15)) for similar
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statements.'©

Next the limit distribution of the test statistic 7*(6y) is derived under sequences
Y- To do so, (6.20), (6.21), and derivations from AG (2005c, Sections 2.3 and 4.1.2)
are used.

To derive the asymptotic theory, (6.20) and the following convergence results that
hold jointly with (6.20), are used:

n T W'u)o? v o uv ) (040,)) —p (1,1, has), 0 Z fuw] —, 0,

Q27 =, Ly, (Bp, X X)) ' ' X'X) —, I, &

n'X'Z - Ep, X;Z! —, 0, (6.21)
see AG (2005c, (2.15) and (4.1)). The IV results of the following results are given in
AG (2005c¢, (2.16)-(2.18)).

Straightforward but lengthy calculations using (6.20) and (6.21) below yield the

following results for Case I; see AG (2005¢) for similar statements. For §, = (§14, -, €4)',
h = (00, h12, highat, ho1,0)

n~YV2yb Pyiu/(040,) o184, V0
Tfl/QyéMXU/(Uu%) ho18p, Y00 + Yuvo + P2

— ~ ’ ’ , 6.22
n~lyyPyiip/o & h3, ( )
n~yyMxys /o h3 +1

where sy, € R* is an arbitrary vector with [|s,|| = 1. Therefore, for n, =
(771,h7 ey s, n)
T53%1.5(00) 31:277/’
T57s(00) (1+h3)~ 1/2€2h
R Hy —a My = | (L4 h3))[s), V0o — har (14 h3)) 1, )7 (6.23)
a2 (0 2 1
0,(02s15)/ %
72(00Ls)/ 02 1

by using (6.26).17
In Case II, jointly under {vn’h} for h = (00, h12, his, hat, hoz)' with |his| = 00

1/2n_1/2y2PZJ‘u/(O’uav) hzls.;czwu,hgg
n- [yéMXu - EFnu U]/(UUUU) _ thS;le/}u hao + wuv hos
= ' g . (6.24
n~'yyPyiya/os t & h3; ( )
n~tybMxys/o? h3, +1

16 Condition (6.9) in the definition of I'3(y;) ensures that we get the zero entries in the covari-
ance matrix of the asymptotic distribution of (4}, ..+ %% hyes Yuv hy,) and also that the (3,3) entry
(020, 2)var(u;v;) in the matrix equals 1 + h3,.

""Because 13, = (1 + h3;) 7" [s}, V0 — h21¥y, o — ha1hi2]? and s, w — h21¥yu 0 h21h12

N(—ha1hi2,1+ h3;), the limit dlstrlbutlon of Hy, is x3(h3,h3, (h3, + 1) ) Therefore, H,, —4 X3
if h1o = 0, that is under exogeneity and strong instruments, we obtain Hausman’s (1978) result as
a subcase. If hoihis # 0 the Hausman test has local power.
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Therefore, as shown below, for 7, = (1,4, ...,75 )", we have

éks*Ls(eO) S;cgwu,hgz
T&75(60) R1s
)~ , —aln = | (Sh¥uo — s)? (6.25)
7, (02s15) /0%, 1
o2(0ors) /o> 1 —h3,/(h3; + 1)

and again Tprs(0o) goes off to plus or minus infinity.

Note that if hy3 = oo then H, goes off to infinity and asymptotically 7*(6y) =
T2SLS(6’0) with probability 1. On the other hand, if h = (00,00,0,0,0)" it follows
that 2(AoLs)/02 —, 1, 72 (6as1s)/02 —, 1, and H, —q (Shy®u0)® ~ x*(1). In
particular, the pretest rejects with probablllty 6 If it does not reject, which happens
with probability 1 — 3, the second stage test (for the upper and symmetric case)
rejects with probability 1 because T ¢(0y) — oo (and analogously for lower type
tests by looking at the case h = (00, —00,0,0,0)"). If the pretest rejects, then the
second stage test rejects with probability 50% for upper and lower tests and with
100% for a symmetric test.

To see that H, —q (s,%, 0 — h13)® in (6.25), note that from

O'_(yQPZLu _ ysMxu )2

yoPy1y2  ysMxy2

H, = —= =~ = —, (6.26)

Uu(GZSLS) o] _ au(eoLS) o]

0% yyPuiye 0% yhMxy2
it follows that up to lower order terms
~1/2 2 —172
I o— n[ Py 1215k Vuhes — Ynnze(ha +1)7
! Y. —(1— #)%
nyh,271 h3,+1/ hZ +1
/ 1/2 2 ~172

- [skgwu,hzz -n / 7n,h,2,17n,h72,2(h’21 + 1) ] (6 27)

(hgl +1)72(1 + h%l + h%lh%2> ’

where 7, j, ,; denotes the i-th element of v, ,, 5 for ¢ = 1,2. The denominator in the
second line of (6.27) is always a positive number. If hy # 0 or hgy # 0 (which implies
]nl/zyn’thfymh,Q’Q] — 00) then H,, —4 oo follows. If hy; = hoy = 0, then up to lower
order terms H, = (3221%,0 - ”1/27n,h,2,ﬂn,h,2,2)2-

In Case III, we have jointly under {7, ,} for b = (hi1, hi2, hi1ho2, 0, hao)" with
’h12| =0

yéPZLu/(UUUU) (wv,hgg _'_ hllst),wu,hzz
n_l/Q[yéMXu - EFnu/U]/(Ouav) —g 5 _ ¢uv,h22
yéPZlyQ/U?) 4 (¢v,h22 + hllskz)/(wv,hzg + h115k2)
nyyMxys /o) 1

(6.28)
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and therefore,

T31.5(00) Eun/Esh
T(*}*Ls(90> h12
SR Hy ) —dh = ((€1n/Esn) — h22)2/(€5,h/§32,h) ) . (6.29)
Uzé(HA%’LS)/Uu (1- h22f1,h/§3,h)2 +(1— h%2)€1,h/€3,h
G.(0ors)/o%, 1 —h3,
In this case, 7557 ¢(0o) goes off to plus or minus infinity. Note that v, ,,, ~ N(0,1+
h3s)-
In Case IV, we have jointly under {, ,} for h = (hi1, h12,0,0,0),
y;QPZLu/(O-UO-U) (wv,o + hllSkQ)/q/]u,O
n 12y Mxu/(o,0,) hia + V00
uav - w, . (6.30
Yo Pr1ya/ 0 i th (o0 + ha15ky) (¥ 0 + Parsi,) (6.50)
n~ 'y, Mxys/ o 1
where sy, is any vector in R*? with ||s,|| = 1. Therefore, we have
T331.5(60) 0
155.5(00) hia + Yy 0
i s | @a)/ Galen | (63D
Uu(9A2SLS)/0u 1+ ff,h/fg,h
7u(0ors) /o 1

Note that asymptotically the OLS-components of H,, are dominated by the 2SLS-
components and do not appear in the asymptotic distribution of H,,.

In all Cases I-IV we then have
177 (00) —a Jy" (6.32)
where J;*, by definition, is the distribution of

N, = WQ,hI(U3,h < X?(l —f)) + 771,hI(773,h > X%(l —f)) (6.33)

and
Ef\u/O'u —d th, (634)

where J,, j,, by definition, is the distribution of
— /21 < 21— L2y 2(1 = 6.35
Nup = Mspn L (N3 < X7(1 = B)) + 0,513, > xi(1 = B)). (6.35)

The distribution J,, ;, depends on the pretest nominal size 3. For notational simplicity,
this dependence is suppressed. The derivations above imply that Assumption B in

AG (2005a) holds with r = 1/2.
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The motivation for the size distortion of the two-stage tests is fully analogous to
the discussion in Subsection 2.5. The next theorem gives an explicit formula for the
asymptotic size AsySz(6y) of the two-stage test of Hy : 0 = 6y based on T,,(6y) and
FCV. The results apply to upper, lower one-sided, and symmetric two-sided versions
of the test with 7, defined as n}*, —n;*, and |n;*|, respectively.

Theorem 3 For upper, lower, and symmetric FCV tests based on T,(0y) of nominal
size a, the AsySz(0o) equals sup,cg P(n;, > 1, 1Co0(1 — ).

Proof. A straightforward modification of Theorem 3 in AG (2005d) from the
asymptotic confidence size of confidence intervals to the asymptotic size of tests gives
the desired result, noting that Assumptions A0 and B0 in AG (2005d) hold. Note
that Theorem 1 in AG (2005a) can not be applied here because the parameter space
does not have a product structure. Assumption A0 holds trivially and Assumption
B0 holds because the result (6.32) that has been verified under sequences {v,, ,} also
holds under subsequences w,, of n. [

Note that the asymptotic sizes depend on the pretest size 5. For notational sim-
plicity, this dependence is suppressed. Note that the results do not depend on k;.
For a = 8 = .05 and ky = 5, evaluation of the formulas imply that AsySz = 1 for all
versions of the two-stage tests considered. As argued above, the conditional size of
the tests, conditional on the Hausman pretest not rejecting, is 1.

Table Ilc contains information on the asymptotic size of the above tests when
ke = 5 and a = 8 = .05. Here and in the tables below, only results on upper and
symmetric tests are reported. Results for lower and equal-tailed tests are virtually
identical to the upper and symmetric ones, respectively. Table Ilc also contains results
on the maximum asymptotic null rejection probabilities of the two-stage test when
the maximum is only taken over h values that conform with the restrictions imposed
by Cases I-IV. Table Ilc shows that asymptotic null rejection probabilities equal to 1
occur in a wide array of parameter combinations that include the cases of weak and
strong instruments and the case of weak and strong endogeneity of the regressor ys.

Table IIc'®
Maximal Null Rejection Probabilities of Two-stage FCV Test for Cases I-IV and
AsySz(0y) for ko =5 and a = f = .05
Type\Case 1 11 I IV AsySz(6o)
Upper 97.4 97.5 100 99.9 100
Symmetric 100 100 100 100 100

18The results in this table are based on R = 50,000 simulation repetitions. In columns 2-5, the
maximum null rejection probabilities are given for upper and symmetric tests, where the maximum
is taken over a fine grid of h vectors that satisfy the restrictions imposed by the particular Case
considered. For example, Case I has h1; = co and his finite. The maximum is taken over a fine grid
of his € R and hgy € [0,R] values. The constant % is taken as 1000.

28



7 Finite Sample Results

In this section, the results of a small Monte Carlo study are reported that reflect the
asymptotic results from Sections 2 and 6. The study shows that size distortion of
the two-stage test occurs for a wide array of parameter combinations by modelling
sequences of parameter values that fall into each of the four cases, Case j for j €
{I,..., IV}, considered above.

The model considered is intentionally simple. The asymptotic results do not
depend on kq, the number of included exogenous variables, and therefore I take k1 = 0.
I also take only one instrument k5 = 1. The nominal sizes of the pretest and the second
stage test are « = 3 = .05. The vector (u;, v;, Z;) is i.i.d. normal with zero mean and
unit variances and Z; is independent of u; and v;.

The parameters Corr(u;,v;) = p and m are modelled as functions of the sample
size n. More precisely, for Case I, let p = 10n~%2; 7 = n~'/4. For Case II, consider
p=n""%4%1r =n"Y4 for Case III, let p = n~Y* 7 = 10n" "2, and for Case IV, let
p=10n""2; 7 = 10n"'/2. Two additional cases, Case I’ and Case II’ will be defined
below. Various values of n are considered, namely n € {100, 1000, 10000, 100000}.

Table Id provides finite sample null rejection probabilities of the two-stage test,
rejection probabilities of the pretest, and conditional rejection probabilities of the
two-stage test conditional on the pretest not rejecting the pretest null hypothesis.
Only results for upper and symmetric tests are reported because the lower and equal-
tailed results are fully analogous. The same column headings as in Table Id are used,
namely “Upper” and “Sym” for the finite sample null rejection probabilities for upper
and symmetric two-stage tests, “HPre” for the pretest null rejection probabilities,
and “CondlUpper” and “CondlSym” for the conditional rejection probabilities. The
charts I-IV, I’, and IV’ state the results for Cases I-IV described above and Cases I’
and II” described below.

Insert Table Id about here

The simulation results reflect well the asymptotic findings and show that extreme
size distortion of the two-stage test is a common situation that covers situations in
which the instrument is weak or strong and endogeneity is weak or strong. The
conditional results seem to indicate that the main cause of size distortion is the
failure of the Hausman pretest to reject the pretest null hypothesis in situations
where the pretest null is “locally” violated. In these situations, the resulting second
stage t-statistic based on the OLS estimator rejects with very high probabilities.
Actually, the conditional rejection probability equals 100% for all cases considered
with n > 1000.

If the Case II setup is modelled as p = n~1/3% and 7 = n~'/35 (instead of p = n
and 7 = n~Y 1), a case not reported in Table Id, then h;3 = 0 and the discussion
below (6.25) predicts that the problem of overrejection becomes more severe. Indeed,
for n = 100000, p = .04, and m = .04 the simulated null rejection probabilities for the
upper and symmetric two-stage tests are 94.0% and 96.4%, respectively.

1/3.5 —1/4
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There are however situations where the overrejection of the two-stage test is not
as severe or where there is no overrejection at all. For example, in a Case I situation,
where p = 10n"Y2? and 7 = 1 identification is strong and endogeneity is weak.
Because H,, —4 x3(h3,h3,(h3, + 1)7') in this situation, the Hausman pretest has
power against the local alternative and with high percentage a t-statistic based on
2SLS is used in the second stage. See chart I’ in Table Id. Also, in a Case II situation
where p = .2 and m = 1, it follows that hi3 = co and H,, — oo. Thus, asymptotically
in the second stage a t-statistic based on the 2SLS is used with probability 1 that
rejects with probability «. Chart II’ in Table Id shows that the finite sample null
rejection probabilities are very close to 5% in this situation. In the setup of charts
I’ and IT’, where the two-stage procedure has correct null rejection probabilities, a
one-stage procedure based on a 2SLS t-statistic would of course also have correct null
rejection probabilities. In addition, the one-stage procedure would have correct null
rejection probabilities in charts I and II, whereas the two-stage procedure is extremely
size distorted.

8 Subsampling, Hybrid, and Equal-Tailed Tests

This section contains theoretical results on subsampling, hybrid (see AG (2005b)), and
equal-tailed two-stage tests where a Hausman pretest is used in the first stage in the
case where weak instruments are allowed for. The asymptotic size of the subsampling
versions of the two-stage test is 1. A priori, it is not clear that subsampling versions of
the two-stage test have asymptotic size equal to 1 in weak instrument scenarios. Note
that, for example, in the linear IV model a two-sided symmetric confidence interval
based on inverting a t-statistic using normal FCVs has asymptotic confidence size
equal to zero, but has virtually correct asymptotic confidence size for subsampling
critical values, see Dufour (1997) and AG (2005c¢) for details.

In this section, subsampling and hybrid critical values are defined. The latter are
introduced and discussed in AG (2005b). Also, critical values for equal-tailed FCV,
subsampling, and hybrid tests are discussed.

For subsampling and hybrid tests, let b denote the subsample size, which de-
pends on n. The number of different subsamples of size b is denoted by ¢,. With
i.i.d. observations, there are ¢, = n!/((n — b)!b!) different subsamples of size b. Let
{T54;(00) : 5 = 1,...,q,} be subsample statistics that are defined exactly as T} ()
in (6.12) is defined, but are based on subsamples of the data of size b rather than
the full sample. Define {7}, ;(0y) : 7 =1, ..., ¢, } in the obvious way. The blocksize b
satisfies b — oo and b/n — 0. The empirical distribution of {7},4;(6o) : 7 =1, ...,qn}

1S
an

Unp(@) =g, > U(Topi(0o) < ). (8.36)

j=1

The nominal 1 — o upper and lower one-sided and symmetric two-sided subsample
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tests reject Hy if T,(60) > ¢np(1 — @), where ¢,;,(1 — a) is the 1 — a quantile of
Umb(ib).lg
The nominal 1 — « hybrid test is defined to reject Hy if

Tn(00) > max{c,p(1 — ), coo(l — )Ty} (8.37)

Finally, equal-tailed tests are defined. A nominal level o (€ (0,1/2)) equal-tailed
t-test rejects Hy when

Tn(eo) > Cl—q/2 or Tn<90) < Ca/2; (838)

where ¢;_ = coo(1 — @) for FCV tests, ¢1_o = ¢,5(1 — ) for subsampling tests and
C1—a/2 = Max{c,p(1 — a/2), coo(1 — /2)} and cq 2 = min{c, p(a/2), coo(r/2)} for the
hybrid test. The exact size, ExSz,(6p), of the equal-tailed ¢-test is

ExSz,(0) = suIF) (Pgm(Tn(Ho) > C1—qa/2) + Poony(Tn(bo) < Ca/g)) ) (8.39)
ve

The asymptotic size of the test is then again AsySz(6y) = limsup,,_, ., ExSz,(0y).
Similar to AG (2005d), define

Definition of {v,, ,, :n > 1}: For g = (g1,92) € R3,, and h = (h1,hs) € R,
with g2 = hg, let {/ywngh = (/ywmg,h 13 Ywn,g,h,23 Twn,g,h, 3) tnoz ]‘} denote a sequence
of parameters in I' for which wy/> Yam.gha — N1, bzlu/fyw ahl = 1 Y gho — Do, if

such a sequence exists.

By definition, a sequence {v,, ,, : 7 > 1} also is of the form {v,, ,:n >1}.
The index set of the asymptotic distributions of T, (o) and T, 5, ;(6o) under
sequences {7,, ,,:n > 1} is denoted by GH. By definition,

GH = {(g,h) € R°, x R®, : 3 a subsequence {w,} and
a sequence {v,, ,,:n > 1}}. (8.40)

Note that the set GH may depend on the relative size of b with respect to n. In fact,
it does here, see below.

Let ¢,(1 — «) be the 1 — o quantile of Jj,, where Jj, is defined as J;* * and
|J;*|, respectively, and J;* is defined on top of 6.33. The next theorem glves formulas
for the asymptotic sizes of subsampling and hybrid two-stage tests of Hy : 0 = 0.

"The subsample statistics are evaluated at the null value 6y and, hence, satisfy Assumption Sub2
of AG (2005a). Evaluating them at 9 is generally not recommended because 0 is not a consistent
estimator of §y when the IVs are weak. See Guggenberger and Wolf (2004). Under Assumption
Sub2, Assumption G2 in AG (2005a) holds trivially.
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Theorem 4 For upper, lower, and symmetric tests based on T,(6y) of nominal size
«, the subsampling and hybrid test have asymptotic sizes AsySz(6y) equal to

sup [1— J(cy(1 — )],
(g,h)EGH

sup  P(n, > max{cy(1 — a)aﬁu,hcoo(l —a)}),
(g,h)EGH

respectively. The asymptotic sizes AsySz(0y) for subsampling, FCV, and hybrid equal-
tailed test equal

sup [ — Ji(cg(1 — @/2)) + Jn(cg(a/2))],

(9,h)eGH

sup Py, > Ny 5Coo(1 — /2) or my, < 1, 5Coo(@/2)),
S

5w Pl > max{ey(1 = a/2), nupee(l = a/2)} or iy < min{ep(0/2),uscon(@/2))
g,h)e

Again for notational simplicity, the possible dependence on [ is suppressed in the
notation. The proof of the above theorem follows as a straightforward modification
of Theorem 3 in AG (2005d).

The set GH can be written as Uje;GH; for j € {I,11,111,1V}, where GH; is
the subset of elements (g, h) in GH for which h satisfies the restriction of Case j. For
Jj=1, hjy = 00, |hy2| < 00, and

GH[ = {(OO, hlg, hlghgl, hgl, O) X (OO, O, 0, hgl, O), h12 cR& h21 € (O,E]}
U{(OO, hlg, 0,0, 0) X (h117 0,0,0, 0), his € R & hi1 € R_:,_po}. (841)
The characterization of G H;; depends on the relative sizes of b and n. For example,
let w}/?fywmg,m — hy = (00,00, h13) for 0 < hiz3 < oo and h = (hy,(0,0)). In
particular, w}zﬂ'ywn7g7h71’1’ywmg’h,172 — hy3, which implies that Yawmog b1 OF Veon,g.h1.2 is
at most of order wy, /*. If b,, = ws/® then for (¢, h) € GH with hy = (00,00, hy3) it
is possible that (g11, g12) = (00, 00); on the other hand, if b,,, = wy/® then necessarily,
one component of (gi1, g12) equals 0. One could characterize GH for various choices
of b but this is not necessary here. For the purpose here, it is enough to find a subset
of GHy; whose definition is not affected by the particular choice of b, and on which
the size of the two-stage test is 1. The set

é\fffn = {(00, h12, h1a, ha1, h22)2§ |h1a| = 00, hor € (0,F], & hoy € sgn(hi2)(0,1]}

U{ (00, h12, hi2, ha1, 0) X (00, g12, G12ho1, a1, 0); |h1a| = 00, ha1r € (0,R], & g12 € sgn(hi2) Ry o0}

U{(00, Rz, hi2, 0, has) X (g11, ha2, g11h22, 0, hao); [hia] = 00, hay € sgn(hi12)(0,1], & g11 € Ry oo}
(8.42)

is always contained in G Hy;.
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For j = III, hy; < 00, |hia| = 0o, and

GHirr = {(h11, ha2, h11haa, 0, hag) % (0, hi2,0,0, hag); hi1 > 0 & hay € sgn(hi2)(0, 1]}
U{(hn, hlg, O, 0, 0) X (0, g12, 0, 0, O), hu >0 & g12 € Sgn(hlg)R+7oo}. (843)

For j = IV, hy; < 00, |h12| < o0, and
GHpy = (R, x R x {0}®) x {0}°. (8.44)

Table IId contains information on the asymptotic size of the above tests when
ky =5 and a = 3 = .05. Only results on subsampling upper and symmetric tests are
reported. Results for lower and equal-tailed tests are virtually identical to the upper
and symmetric ones, respectively, and FCV results have been reported earlier already.
The asymptotic size of all tests equals 1. Note that the results do not depend on k;.

In the rows, “Case 1”,...,“Case IV”, the maximal null rejection probabilities are
reported over the sets GH;, GHr, GHy;, and GHpy, respectively. For each column,
the quantity AsySz(0y) is bounded from below by the maximum of the entries in this
column in the rows above. Table IId shows that asymptotic null rejection probabilities
equal to 1 occur in a wide array of parameter combinations that include the cases
of weak and strong instruments and the case of weak and strong endogeneity of the
regressor 1s. A priori, it is not clear that subsampling versions of the two-stage test
have asymptotic size equal to 1. Note that, for example, in the linear IV model a two-
sided symmetric confidence interval based on inverting a t-statistic has asymptotic
confidence size equal to zero when based on normal critical values but has virtually
correct asymptotic confidence size for subsampling critical values, see Dufour (1997)
and AG (2005c) for details.

Table I1d*°
Maximal Null Rejection Probabilities of Subsampling Two-stage Test for Cases I-IV
and AsySz(6y) for ks =5 and a = = .05
Type\Case 1 I III IV AsySz(6)
Upper 97.4 100 100 99.9 100
Symmetric 99.7 100 100 100 100

The results for subsampling tests immediately yield analogous results for m out of
n bootstrap tests under the condition that m?/n — 0, where n and m are the sample
size and the bootstrap blocksize, see AG (2005a) for a more detailed discussion of
this point.

20The results in this table are based on R = 50,000 simulation repetitions.
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9 Additional Applications

The asymptotic size properties of a two-stage test are investigated when the second
stage test-statistic is robust to weak instruments in the case when the Hausman
pretest rejects the pretest null hypothesis of regressor exogeneity. The asymptotic
size of this modified two-stage test is shown to equal 1. In Subsection 9.2, a Hausman
pretest of instrument exogeneity is considered as in Hahn, Ham, and Moon (2007).
Severe size-problems occur.

9.1 Robust Second Stage Test Statistic

In order to show that the asymptotic size distortion of the two-stage test in (2.8) is
not solely caused by the potential weakness of the instruments, this subsection studies
the asymptotic size properties of a test based on a modification of the test statistic
in (2.8) for the application in Section 2 that employs a second stage test statistic
that is robust to weak instruments if the exogeneity hypothesis is rejected in the first
stage. Specifically, the member 7 of the class of similar test statistics, introduced in
Moreira’s (2001) Example 2, that is robust to weak instruments, is used. Let

T3(00) = To1s(00) I (Hy < X3(1 = B)) + T*(00) I(H, > x1(1 = B)),
T*(0) = (n 7' ZH 74 ) Y20 n =2 25 (yi — i 6). (9.45)

Define the two-stage test statistic T,,(6y) as £7,5(0y) or |1} (0y)| depending on whether
the test is a lower/upper one-sided or a symmetric two-sided test, respectively.?!
Define a modified estimator for the variance of u as

Gu = 0u(Oors) I (Ha < x2(1— B)) +5u(00)[(Ha > x2(1 — ). (9.46)

As above in (6.14), consider rescaled versions of the test statistic. Instead of 7*(6y)
and 7,(0), 7**(0y) = T*(0y) /0, and 7,(0) /0, are used.

Jointly with the results in (6.23), (6.25), (6.29), and (6.31) we have in Cases I-IV
under the null, 7**(6g) —q },% and (6g)/0? —, 1. In all Cases I-IV, let 1, be

u,ha2

21To avoid additional subindices, the same notation, 17 (y), is used for both statistics in (9.45)
and (2.8). Similarly, in (9.46), the same notation, 7, is used for the modified variance estimator as
was used in (2.9). The same is true for 1, and other quantities.

The second stage test statistic 7*(6) is an infeasible version of the similar statistic 7, in Example
2 in Moreira (2001) with g = 7, because 7 is unknown. The goal here is to establish that a robust
second stage statistic - in the case where the Hausman pretest rejects - does not solve the size
distortion problem of the two stage test. Using ¢ = 7, where 7 is the restricted maximum likelihood
estimator of m when the structural parameter vector is fixed at the null values, or g = e, where e is a
ko vector of ones, provide feasible alternatives. However, it is more difficult to handle the asymptotic
results in these latter cases because the result 7°*(0p) —a },%,, »,, Would no longer hold jointly
with the results in (6.23), (6.25), (6.29), and (6.31): a different “direction” si, would arise in this
case that depends on 7. This would unnecessarily complicate the evaluation by simulation of the
formulas in the asymptotic size results of Theorem 3.
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defined as above with its first component replaced by s),_ 1, 5,, and let £, be defined
as above with the fifth component replaced by 1. With these modifications, the result
T7*(0p) —a Ji* in (6.32) and the results in Theorem 3 still hold.

Table Ile contains information on the maximal null rejection probabilities in Cases
[-IV of the tests in this subsection when k; = 5 and a = g = .05. Only results for
upper and symmetric FCV and subsampling tests are reported because lower and
equal-tailed tests and hybrid tests have essentially the same size properties. Table Ile
shows that AsySz(6y) = 1 for all types of FCV and subsampling tests. The maximal
null rejection probabilities essentially equal 1 on each of the subsets defined by Cases
I-IV. Therefore, use of a robust second stage statistic in the case where the Hausman
pretest rejects the null hypothesis, does not alleviate the problem of size distortion.

Table ITe*

Maximal Null Rejection Probabilities of Two-stage Test in (9.45) for Cases I-IV and

AsySz(0y) for ko =5 and a = § = .05

Upper Symmetric
Sub | FCV | Sub | FCV
Case 1 974 | 974 | 99.9 | 100
Case 11 100 | 97.5 | 100 | 100
Case IIT | 100 | 99.8 | 100 | 100
Case IV | 99.8 | 99.8 | 99.9 | 100
AsySz(0,) | 100 | 99.8 | 100 | 100

9.2 Pretesting Instrument Exogeneity

In this application, the Hausman pretest is used to test for instrument exogeneity.
More precisely, the instruments are decomposed into Z = (W, S), where W has kg
and S has kgs columns and ks = ko + koo. The instruments S are potentially invalid,
that is correlated with u, while the instruments W are assumed to be valid. The
Hausman pretest tests whether S are valid instruments. If the pretest is rejected,
then in the second stage, the hypothesis Hy : 6 = 0, is tested by using a t-statistic
(or alternatively, the similar test statistics 7,; which one of the two is used does
not matter for the results below) based on only the instruments W. Otherwise, a
t-statistic (or similar statistic) is used based on all instruments Z. In an application,
one could think of W and S as weak and strong instruments, respectively.

To test orthogonality of the instruments 5, two different versions of a pretest are
being considered. The first one, denoted again by H,, is the standard Hausman test
and the second one, denoted by H, is the version of the Hausman test introduced in
Hahn, Ham, and Moon (2007) using their notation. In this subsection, for ease of
presentation, there are no included exogenous variables and 6 is again scalar. The

22The results in this table are based on R = 50,000 simulation repetitions.
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formulas are

Hn - (GW 92) 5
VW VZ
Hy = 5,2 — 1202) WIW'W — W ya(ys Prya) s W] W (41 — 1207),
52 = Tfl(yl - yzez)lMZ(yl - y29Z)7 (9-47)

where Oy and Vi are defined analogously to the 2SLS expressions in (2 6), when
the estimators are based only on_ the 1nstruments W likewise, HZ and VZ denote
what was previously denoted by 925Ls and VQSLS in (2 6). Similar straightforward
modifications to the notation are used for other expressions, e.g. 177 (6) and 75*(6o)
are used in place of 75§, 5(0p) when the statistic is based on instruments W or Z,
respectively. As shown by Hahn, Ham, and Moon (2007), H, is asymptotically y?
even when instruments are weak. This is not true for H,,.

For simplicity, assume koo = 1, ES; = 0, and ES;W,; = O,,, where 0, denotes a k-
dimensional vector of zeros. That is, there is only one (potentially) strong instrument,
it has mean zero and is uncorrelated with the other instruments. Simply view S; as
the residual of a strong instrument that is being regressed on the instruments W;.

Denote by {7,,} C I' a sequence of parameters with components ,, , 1,7, 1.2,
and v, j, 5, such that

Yona = ([(Br, Z:2) w0 ) (Br,0}) V2|, Corrp, (us, S)),
Tnh2 = (’Yn,h,l’COTTFn (ui7vi))7 n 12 Tnh1 h17 Ynh2 — h27 and (948)

Vo3 Satisfying similar restrictions to those in (6.8) including E, W;Sju? = Ep, W;S;u?
Oy, and varg, Siu;/(Er, S7 Ep,u?) = 1+ Corry, (S;, v;). With these assumptions, un-
der any sequence {7,,,}, the following convergence result similar to (6.20) holds

(s ) ()

(n'2'2) V2127 o, Vo
]kz,hzz h23[k2 o Ikzl 0
N(O, |: h231k2 [kQ ) fOI‘ Ik2’h22 = 0 1 + h%Q . (949)

For simplicity, it is only shown that conditional on the Hausman pretest (based
on H, or H,) not rejecting the pretest null hypothesis of instrument exogeneity, the
asymptotic size of the two-stage FCV procedure equals 1. It turns out that, to show
this, only requires looking at a particular scenario modelled by

yo =n"VimsS + v
n1/27n,h,1,2 — hy finite (9.50)
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for a fixed nonzero number 7g.?* The coefficients on the weak instruments are mod-
elled as zero while the coefficient on the strong instrument shrinks to zero at rate
n~Y4. The instruments are strong in the sense that the concentration parameter
goes off to infinity. Because n'/ 27n7h7172 — hqg for hy, finite, the instrument is weakly
endogenous. Model (9.50), when viewed as a sequence {7, }, has h = (hy, ho) with
hl - (OO, hlg) and h2 == (0,0, h23).

Using (9.49) it follows that under (9.50) for &, = (£§1,,..-,&6.1)"

n~ Y4y Pyu/(0uos) 75 (Yopg iy + P12)
!
yfigvlfj/?(a“(;vé ¢U7h2,1:k217§bu,h2711k21
noYa FzY2/ 05 TS
2 —q &~ . (9.51
vaPwye/os o Ut g, 1k Vg, Lok (9:51)
52(0,)/0" 1
72 (0w) /o> 1= 2h23&s 5 /Ean + (§a/Ean)?

where 1, .. . denotes the ky-th entry in ¢, ,, and ¥, . ., and ¥, . 5. ko denote the
first ko1 entries of 1
of higher order than the statistics ) 7 and VZ and the latter hence do not matter for
the asymptotic distribution of H,, in model (9.50). Likewise, in H,, W'W is of higher
order than W'y, (y5Pzy2) 94 and the latter term can be neglected for the limit
theory. Finally, 5> /02 —, 1. By (9.51), we therefore have in model (9.50)

vy @0d Y, g respectlvely The statistics 9W and Vi in H, are

T3 (0))  uthe
H, —a My = | §an€an/(Ein — 2haséanlan +820) | - (9.52)
!
Ha w%hmlikmwuﬁmlikﬂ

Let 1, = (1.4, Mon, M3,)"- Note that 7, , and 7, are independent, because ¢, and
§4, only depend on v, 5, 1.4, and ¥, p, 1.4, and by (9.49) those random variables are
independent of v, ;. ,,. Therefore, asymptotically, conditional on the pretest based
on H, not rejecting, T5*(6) is distributed as 1, 5, 1, + h12. Hence, picking hi, large
enough (or small enough for lower one-sided tests), it is clear that the conditional size
of the two-stage test, conditional on the pretest based on H,, not rejecting the pretest
null hypothesis, is 1 asymptotically. The same argument holds for the two-stage test
with the pretest based on H,. The limit distribution of H, is a chi-squared with kq;
degrees of freedom that is independent of v, ;, ., + hi2.

23The result of conditional size equal to 1 asymptotically can be shown by looking at many different
sequences of the nuisance parameters. Here, I pick one particularly simple choice that makes the
analysis easy. Assume, in addition, that 02 = Ep v? and 0% = Ep,S? are nonzero and do not
depend on n.
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TABLE Ic*
Finite Sample Power of Symmetric Two-stage Test and 2SLS Based
t-Test
0=.1;00=0;k =0, a=p=.05 n=1000, ks = 5; based on 50,000 repetitions
w?\p 0 .05 1 2 3 4 5

.6

0 | 88.2;00 99.6;0.1 99.9:04 99.9;1.8 99.9;6.2 99.9;16.0 99.9;32.2
13 | 83.0:2.3 98.2;3.6 97.7:5.0 95.2:8.8 91.0;14.1 83.819.8 71.8;26.0
50 | 88.3;9.9 95.7;11.1 91.8:12.4 76.0;15.2 49.4;18.0 25.6;20.8 21.2:24.0
113 | 89.6;18.5 93.3:19.6 84.5;20.5 50.4;22.7 25.4:24.9 25.5:27.1 27.3;29.1
200 | 91.3;29.6 91.0;30.4 76.3;31.2 36.9:32.7 33.6;34.3 35.0;35.9 36.4;37.5
313 | 93.0;42.7 88.7:43.2 68.8:43.7 44.8;44.8 45.5:45.8 46.5:46.8 47.5:47.8
450 | 94.5:56.0 87.0;56.3 67.5:56.6 57.4;57.2 58.0;57.8 58.5;58.3 59.1;58.9
613 | 95.8;69.3 87.0;69.3 73.1:69.4 69.7:69.5 70.0:69.6 70.2;69.8 70.5;70.0

TABLE Ic (continued)
Finite Sample Power of Symmetric Two-stage Test and 2SLS Based
t-Test
0=.2,00=0k; =0, a = =.05 n=1000, ks = 5; based on 50,000 repetitions
w2\ p 0 .05 1 2 3 4 5

99.9;52.0
56.3;32.4
23.5:27.1
29.0;31.2
37.8;39.0
48.4:48.9
59.7;59.4
70.8;70.1

6

0 99.8;,0.3  99.9;0.7  99.9;1.5  99.9/4.7 99.9;12.0 99.9;24.7 99.9;41.8
13 | 98.8;8.5 98.4;10.8 97.6;13.5 95.2;19.4 91.0;25.8 83.8;32.0 72.9;38.3
50 197.9;30.9 95.7;32.5 91.6;34.0 76.0;37.1 53.2;40.0 43.3;42.9 44.1;45.7
113 | 97.8;57.3 93.4;57.8 84.6;58.3 63.2;59.3 60.7;60.4 61.7;61.4 62.7;62.4
200 | 97.3;80.3 92.0;80.1 84.3;80.0 80.5;79.9 80.6;79.8 80.7;79.7 80.8;79.6
313 | 98.2;93.7 95.2;93.5 93.7;93.3 93.4;92.8 93.1;92.4 92.6;92.0 92.6;91.6
450 | 99.3;98.6 98.6;98.4 98.5;98.4 98.3;98.1 98.2;97.9 98.1;97.7 97.9;97.5
613 | 99.9;99.8 99.8;99.8 99.8;99.7 99.7;99.7 99.7;99.6 99.6;99.5 99.6;99.4

Table Id*
Finite Sample Rejection Probabilities for the Test in Section 2
lﬁ:O,/{:g:l,a:ﬁ:.%
I. Case I setup: p=10n""%;7 = n~
n m p Upper Sym HPre CondlUpper CondlSym

1/4

100 32 1 25.3 221 86.6 100 100
1000 .18 .32  60.7 61.3 39.3 100 100
10000 .10 .10 84.5 86.5 15.6 100 100
100000 .06 .03 923 94.7 8.1 100 100

—1/4.

II. Case II setup: p=n""*4 1 =n"14

24For each entry in the table, the first component is the finite sample null rejection probability of
the two-stage test and the second component is the null rejection probability of the ¢-test based on
2SLS.

2> The simulation results are based on R = 10,000 simulation repetitions.
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99.9:60.0
61.4:44.4
46.5;48.3
63.8;63.4
81.0;79.7
92.4:91.3
97.8:97.2
99.5:99.3



n m p Upper Sym HPre CondlUpper CondlSym

100 .32 .32 883 832 45 92.7 87.2
1000 .18 .18 86.5 87.6 13.5 100 100
10000 .10 .10 84.5 86.5 15.6 100 100

100000 .06 .06 83.9 86.3 16.2 100 100
III. Case III setup p = n~ /4 7 = 10n"'/2

n T p Upper Sym HPre CondlUpper CondlSym
100 1.00 .32 30.7 27.7 59.2 74.1 63.1
1000 .32 .18 60.8 62.7 39.2 100 100

10000 .10 .10 84.5 86.5 15.6 100 100
100000 .03 .06 926 949 7.7 100 100

IV. Case IV setup: p = 10n""%;7 = 10n"1/2

n m p Upper Sym HPre CondlUpper CondlSym

100 1 1 7.7 5.3 100 - -
1000 .32 .32 1255 13,5 88.2 100 100

10000 .10 .10 84.5 86.5 15.6 100 100
100000 .03 .03 954 97.7 5.5 100 100

I’. Case I setup: p=10n""% 71 =1

n m p Upper Sym HPre CondlUpper CondlSym
00 1 1 7.7 5.3 100 - -

1000 1 .32 4.9 4.8 100 - -

1

1

10000 10 5.0 4.9 100 - -
100000 03 5.1 4.8 100 - -

IT’. Case Il setup: p= 2;7 =1

n m p Upper Sym HPre CondlUpper CondlSym
100 1 .2 31.1 24.0 254 41.7 29.6
1000 1 .2 49 5.1 99.5 100 100

10000 1 .2 5.0 4.9 100 - -
100000 1 .2 5.1 4.8 100 - -
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