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Abstract

This paper develops an information criterion for the choice of the number of common

shocks for the approximate dynamic factor model developed by Forni, Hallin, Lippi, and

Reichlin (2000). In this framework, the number q of common shocks is associated to the

number of diverging eigenvalues of the spectral density matrix of the observations as the

number n of time series goes to infinity. The criterion exploits this characteristic of the

model. We provide sufficient conditions for consistency of the criterion for large n and T

(where T is the series length). The paper shows how the method can be implemented and

provides simulations and empirics which illustrate its good performance in finite samples.
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1 Introduction

Factor models recently have been quite successfully considered in the analysis of large panels

of time series data. Under such models, the observation Xit (where i = 1, . . . , n stands for the

cross-sectional index, and t = 1, . . . , T denotes time) is decomposed into the sum χit + ξit of two

nonobservable mutually orthogonal (at all leads and lags) parts, the common component χit,

and the idiosyncratic component ξit, respectively.

In the dynamic factor approach, the common component results from the action of a small

number q of unobserved shocks. More specifically, χit takes the form χit =
∑q

j=1 bij(L)ujt, where
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the common shocks ujt—call them the dynamic factors—are loaded via linear one-sided filters

bij(L), j = 1, . . . , q (L, as usual, stands for the lag operator). This approach first was proposed

by Sargent and Sims (1977) and Geweke (1977) in a model where the idiosyncratic components

are assumed to be mutually orthogonal (exact factor model), and developed for large panels

with weakly cross-correlated idiosyncratic components (approximate factor model) in a series

of papers by Forni and Lippi (2001) and Forni, Hallin, Lippi, and Reichlin (2000, 2004). The

main theoretical tool in the latter papers is Brillingers’ theory of dynamic principal components

(Brillinger 1981).

A similar approximate factor model has been proposed by Stock and Watson (2002a and b).

In their approach however, the common component χit is expressed as a linear combination∑r
j=1 aijFjt of a small number r of unobserved common factors (F1t, . . . , Frt)—the static factors;

the loadings aij are real numbers, and all factors, in this approach, are loaded contemporaneously.

A crucial step in the statistical analysis of these factor models is the preliminary identifica-

tion of the number q of common shocks or the number r of static factors. A method for the

identification of r in the static model has been proposed by Bai and Ng (2002), using an infor-

mation criterion approach. The criterion they are proposing is shown to be consistent (under

appropriate assumptions) as n, the cross-section dimension, and T , the length of the observed

series, both tend to infinity. More recently, another criterion, based on the theory of random

matrices, has been developed by Oniatski (2005), still for the number r of static factors, but in

a model l with iid idiosyncratic components.

For the number q of common shocks in the general dynamic model, Forni et al. 2000 only

suggest a heuristic rule based on the number of diverging (as n → ∞) dynamic eigenvalues. The

purpose of this paper is to propose a statistical criterion for this identification, and to establish

its consistency as n and T approach infinity. This number q indeed plays an essential role in

the practical implementation of the generalized dynamic factor method. Moreover, common

shocks in a dynamic framework can be given an economic interpretation (on this latter point,

see Giannone, Reichlin, and Sala 2005, Forni, Giannone, Lippi, and Reichlin 2005, and Stock

and Watson 2005).

As shown by Forni, Hallin, Lippi, and Reichlin (2005) and Forni et al. (2005), for restricted

forms of the dynamic structure, one can bring the dynamic factor model back under the tradi-

tional umbrella of the static one via stacking. In such a setting, static factors are functions of

the number of common shocks and their lags, and the relation between q and r can be exploited

to develop an identification criterion for q. Building on this idea, Bai and Ng (2005) recently

proposed, in that restricted setting, a criterion for q adapted from Bai and Ng (2002)’ s criterion

for r. The criterion we are developing in this paper, however, is valid under much more general

assumptions on the dynamic structure.
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From a technical point of view, due to the spectral techniques involved, the tools we are

using in the proofs are entirely different from those used in the static framework; our criterion

builds directly on the (n, T )-asymptotic properties of the eigenvalues of sample spectral density

matrices, as in Forni et al. (2004). Simulations indicate that the method performs quite well,

even in relatively small panels with moderate series lengths.

The paper is organized as follows. In Section 2, the generalized dynamic factor model

proposed by Forni et al. (2000) is briefly described, together with the required identifiability

assumptions. Section 3 introduces the information criterion we are proposing for the identifica-

tion of q, and establishes sufficient conditions for consistency as n and T tend to infinity. We

recommend a covariogram-smoothing version of our method, the practical implementation of

which is carefully discussed in Section 4. A simulation study of the small sample properties of

the proposed identification procedure, and an application to macroeconomic data, are presented

in Section 5. Section 6 concludes. Proofs are concentrated in an appendix (Section 7).

Boldface are used for vectors and matrices, primes for transposes, and stars for complex

conjugates. A sequence {ζ(n, T, θ);n ∈ N, T ∈ N, θ ∈ [−π, π]} of real numbers is said to be o(1)

(resp. O(1)) as T → ∞ uniformly in n and θ if supn∈N supθ∈[−π,π] ζ(n, T, θ) is o(1) (resp. O(1))

as T → ∞. A sequence {ζ(n, T, θ);n ∈ N, T ∈ N, θ ∈ [−π, π]} of random variables is said to be

oP (1) (resp. OP (1)) as T → ∞ uniformly in n and θ if for all ε > 0 and η > 0 there exists a Tε,η

such that supn∈N supθ∈[−π,π] P [|ζ(n, T, θ)| > η] < ε for all T > Tε,η (resp. if for all ε > 0 there

exist Bε and Tε such that supn∈N supθ∈[−π,π] P [|ζ(n, T, θ)| > Bε] < ε for all T > Tε.

2 The dynamic factor model

The model we are considering throughout is Forni et al. (2000)’s generalized dynamic factor

model, which we now briefly describe. Let {Xit, i ∈ N, t ∈ Z} be a double array of random

variables, where

Xit = bi1(L)u1t + bi2(L)u2t + . . . + biq(L)uqt + ξit, (2.1)

and the following assumptions A1 through A4 are assumed to hold.

Assumption A1.

(i) The q-dimensional vector process {ut := (u1t u2t ... uqt)′; t ∈ Z} is orthonormal white

noise;

(ii) the n-dimensional processes {ξξξn := (ξ1t ξ2t · · · ξnt)′; t ∈ Z} are zero-mean stationary for

any n; moreover, ξi,t1 ⊥ uj,t2 for any i, j, t1 and t2, and

(iii) the one-sided filters bij(L) :=
∞∑

k=1

bijkL
k have square summable coefficients:

∞∑
k=1

b2
ijk < ∞

for all i ∈ N and j = 1, . . . , q.
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The processes {ujt, t ∈ Z}, j = 1, . . . , q, are called the common shocks or factors. The random

variables ξit and χit are called the idiosyncratic and common components of Xit, respectively.

Assumption A2. For all n, the vector process Xnt := (x1t x2t . . . xnt)′ is a linear process,

with a representation of the form Xnt =
∑∞

k=−∞ CkZt−k, where Zt is full-rank n-dimensional

white noise with finite fourth order cumulants, and the n × n matrices Ck = (Cij,k) are such

that
∑∞

k=−∞ |Cij,k||k|1/2 < ∞.

Under this form, Assumption A2 is sufficient for a consistent estimation of the model (see

Forni et al. 2000), provided that the number q of factors is known. Consistent identification of

q, as we shall see, is more demanding: denoting by

ci1...i�(k1, . . . , k�−1) := cum
(
Xi1(t + k1), . . . ,Xi�−1

(t + k�−1),Xi�(t)
)

the cumulant of order 	 of Xi1(t + k1), . . . ,Xi�−1
(t + k�−1),Xi�(t), it also requires some uniform

decrease, as the lags tend to infinity, of ci1...i�(k1, . . . , k�−1) up to the order 	 = 4.

Assumption A2
′. Same as Assumption A2, but the convergence condition on the Cij,k’s is

uniform: supi,j∈N

∑∞
k=−∞ |Cij,k||k|1/2 < ∞. Moreover, for all 1 ≤ 	 ≤ 4 and all 1 ≤ j < 	,

sup
i1,...,i�

⎡
⎣ ∞∑

k1=−∞
. . .

∞∑
k�−1=−∞

(1 + |kj |) |ci1,...,i�(k1, . . . , k�−1)|
⎤
⎦ < ∞ (2.2)

This assumption is the uniform version of a condition considered in Section 4.3 of Brillinger (1981)

for the consistency of periodogram-based estimation of the spectrum.

Denote by ΣΣΣn(θ), θ ∈ [−π, π], the spectral density matrix of Xnt, with elements σij(θ), and

by λn1(θ), . . . , λnn(θ) the corresponding eigenvalues in decreasing order of magnitude. Similarly,

with obvious notation, let λχ
nj(θ) and λξ

nj(θ) be the eigenvalues associated with the spectral

densities ΣΣΣχ
n(θ) and ΣΣΣξ

n(θ) of χχχnt and ξξξnt, respectively. Such eigenvalues (actually, the functions

θ �→ λ(θ)) are called dynamic eigenvalues.

Assumption A3. The first idiosyncratic dynamic eigenvalue λξ
n1(θ) is uniformly (with respect

to θ ∈ [−π, π]) bounded as n → ∞, i.e. supθ∈[−π,π] λ
ξ
n1(θ) < ∞ as n → ∞.

Assumption A4. The qth common dynamic eigenvalue λχ
nq(θ) diverges θ−a.e. in [−π, π] as

n → ∞.

Assumptions A3 and A4 play a key role in the identification of the common and the idiosyn-

cratic components in (2.1). However, only the Xit’s are observable, and Assumptions A3 and A4

thus involve the unobserved quantities χχχnt and ξξξnt. This, at first sight, may seem unrealistic,

and the following proposition provides a Xit-based counterpart.
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Proposition 1 (Forni and Lippi 2001) Let Assumption A2 (or A2′) hold. Then, Assumptions

A1, A3, and A4 are satisfied iff the first q eigenvalues of ΣΣΣn(θ) diverge as n → ∞, a.e. in

[−π, π], while the (q + 1)th one is uniformly bounded.

Forni et al. (2000) show how, under Assumptions A1-A4, the common components χit and

the idiosyncratic components ξit are asymptotically identified as n → ∞ and are consistently

estimated, as both n and T → ∞, by means of the dynamic principal components method.

Dynamic principal components are the solutions of an optimization problem, the main features

of which we briefly summarize in the following proposition.

Proposition 2 (Brillinger 1981, Theorem 9.3.1.) Let {Yt, t ∈ Z} be an n-dimensional

stationary process, with zero-mean and rational spectrum ΣY (θ). Denote by Vj(θ) the eigenvec-

tor associated with the jth largest eigenvalue μj(θ) of ΣΣΣY (θ). Then, the coefficients of the (q×n)

filter b(L) :=
∑

k bkL
k and the coefficients of the (n × q) filter c(L) :=

∑
k ckL

k that minimize

E{[Yt − c(L)b(L)Yt]∗′[Yt − c(L)b(L)Yt]} (2.3)

are

bk =
1
2π

∫ π

−π
B(θ)e-ikθdθ and ck =

1
2π

∫ π

−π
C(θ)e-ikθdθ, (2.4)

respectively, where C(θ) = [V1(θ) · · ·Vq(θ)] and B(θ) = C(θ)∗′. The resulting minimum of (2.3)

is
∫ π
−π{

∑
j>q μj(θ)}dθ.

The first q dynamic principal components are defined as the components of the random q-

dimensional vector c(L−1)′Yt. Under model (2.1) and Assumptions A1-A4, Forni et al. (2000)

show that the common component χχχnt can be consistently (as n → ∞) reconstructed by

χ
(n)
it := (K(L)Xnt)it , with K(L) := c(L)c(L−1)′ (2.5)

(with Xnt playing the role of Yt).

This χ
(n)
it of course cannot be computed from the data, since it involves the true spectral

density matrix ΣΣΣn(θ) and the true number of factors q. The spectral density ΣΣΣn(θ) however

can be estimated from the data by means of periodogram or covariogram smoothing methods.

Provided that q is known, applying (2.5) to the estimated spectral density yields a consistent

estimator of χχχnt (Forni et al. 2000, 2004). Determining q prior to this estimation step thus is

absolutely crucial.

3 An information criterion

3.1 Population level

In practice, only finite segments, of length T , of a finite number n of the processes {Xit}
are observed, and the selection of q has to be based on this finite-sample information. As a
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preparation, however, we first prove a consistency result, as n → ∞, at population level, that is,

assuming that the processes {Xit} are observed over t ∈ Z, so that the spectral density matrices

ΣΣΣn(θ) are known. Only asymptotics in n are of interest here. We define a (deterministic)

selection criterion (3.1) and provide sufficient conditions for its consistency as the size n of the

panel tends to infinity.

As mentioned in Proposition 2, the estimated common components χ
(n)
it in (2.5) can be

viewed as solutions of the optimization problem (2.3). For fixed k, this optimization is equiv-

alent to minimizing n−1E{[Xnt − K(L)Xnt]∗′[Xnt − K(L)Xnt]} with respect to K(L). The

corresponding minimum is then n−1∑n
j=k+1{

∫ π
−π λnj(θ)dθ}.

The information criterion approach consists in selecting the number of factors as

q̂n := argmin0≤k≤kmax
Ln(k), where Ln(k) :=

1
n

n∑
j=k+1

∫ π

−π
λnj(θ)dθ + kp(n), (3.1)

where qmax is some predefined upper bound for the actual q, and p(n) is an adequate penalty

function. Note that p(n) here is deterministic, and depends only on n since the spectral density

matrices ΣΣΣn(θ) are assumed to be known; the solution q̂n is deterministic as well, since ΣΣΣn(θ) is.

The intuition behind (3.1) is clear: for the bounded eigenvalues (k > q), the averaged contri-

bution 1
n

∑n
j=k+1

∫ π
−π λnj(θ)dθ should be “small”. The penalty kp(n), as n → ∞, should not be

too large, or q will be underestimated; still, it should be large enough to avoid overestimation.

This delicate balance between over- and under-estimation is intimately related to the rate of

divergence, as n → ∞, of the diverging eignevalues. In order to impose consistency conditions

on the penalty function p(n), an assumption about the behavior of the diverging eigenvalues is

needed.

Assumption A5.

(i) All diverging eigenvalues of ΣΣΣn(θ) diverge linearly in n, θ - a.e., that is, there exist 2q

constants 0 < c−i ≤ c+
i , i = 1, ..., q, such that c+

i < c−i−1 and

c−i ≤ liminfn→∞n−1λni(θ) ≤ limsupn→∞n−1λni(θ) ≤ c+
i , θ−a.e, i = 1, ..., q, n ∈ N.

(ii) The non diverging eigenvalues λni(θ) (i > q) are uniformly bounded away from zero, that

is, there exists a constant cλ > 0 such that, for all i > q and n ∈ N, λni(θ) > cλ, θ - a.e.

The linear divergence in (i) has a natural interpretation: the influence of the common shocks,

in some sense, is “stationary along the cross-section”. For a detailed discussion of this assump-

tion, we refer to Forni et al (2004).

The following lemma states a consistency result (as n → ∞) for q̂n at population level.

Lemma 1. Let q̂n be defined in (3.1), and let the penalty p(n) be such that

lim
n→∞ p(n) = 0 and lim

n→∞np(n) = ∞. (3.2)
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Then, under Assumptions A1-A5, limn→∞ q̂n = q.

Proof. See Appendix.

Examples of penalty functions satisfying (3.2) are c/
√

n or c log(n)/n, where c is an arbitrary

positive real number. Lemma 1 of course has little practical consequences. But the pedagogical

value of its proof, which is extremely simple, is worth some attention. First of all, it very clearly

appears from that proof, that the 1
n coefficient, in the definition of the criterion Ln(k) and the

second assumption on the penalty (np(n) → ∞) are directly related to the O(n) divergence

rate in Assumption A5: a different divergence rate (r(n)) would result in a different coefficient

(1/r(n)), and a different assumption on the penalty (r(n)p(n) → ∞). A second remark is

that a penalty p(n) leads to consistent estimation of q iff cp(n) does, where c is an arbitrary

positive constant. Multiplying the penalty with an arbitrary constant thus has no influence on

the asymptotic performance of the identification method. But it obviously quite dramatically

may affect the actual result for given n. This will be exploited later on in the implementation

of the criterion (Section 4).

In practical situations, the spectral density matrix has to be estimated from observed series

with finite length T ; this series length moreover quite naturally has to play a role in the penalty

function.

3.2 Sample level : periodogram smoothing estimation

In this section, we derive sufficient conditions for consistent estimation of q as both n and

T tend to infinity. As mentioned at the end of Section 2, one possibility consists in using

a periodogram-smoothing estimate ΣT
n (θ) of Σn(θ). Based on the nT observations {Xit; t =

1, ..., T, i = 1, ..., n}, this estimator is defined as

ΣT
n (θ) :=

2π
T

T−1∑
t=1

W (T )
(

θ − 2πt

T

)
IT
n

(
2πt

T

)
, (3.3)

where

IT
n (α) :=

1
2πT

[
T−1∑
t=1

Xnt exp(−iαt)

] [
T−1∑
t=1

X′
nt exp(iαt)

]

and

W (T )(α) :=
∞∑

j=−∞
W (B−1

T (α + 2πj)),

with a positive even weight function W (α), and a bandwidth BT . This estimator ΣT
n (θ) is

consistent for any n, as T → ∞, provided that W and BT satisfy the following assumption.

Assumption B1.

(i) BT > 0, BT → 0, and BT T → ∞, as T → ∞;

7



(ii) α �→ W (α) is a differentiable positive even function, of bounded variation, with bounded

derivative W ′, satisfying
∫∞
−∞ W (α)dα = 1 and

∫∞
−∞ |α|3W (α)dα < ∞.

However, such fixed-n consistency is not sufficient here, and some uniformity over the cross-

section is needed. This uniformity can be obtained by requiring some uniformity in the smooth-

ness of the spectrum and its derivatives.

Assumption B2. The entries σij(θ) of Σn(θ) are uniformly (in n and θ) bounded, and have

uniformly (in n and θ) bounded derivatives up to the order three: there exists Q < ∞ such that

supi,j∈N supθ

∣∣∣∣ dk

dθk σij(θ)
∣∣∣∣ ≤ Q, k = 0, 1, 2, 3.

Assuming that Assumptions A2′, B1, and B2 hold, we then have the following uniform

consistency result (see equation (7.4.20) in Brillinger 1981): there exist constants K1, K2, and

T0 such that for all θ, 1 ≤ i, j ≤ n, and n,

sup
n

max
1≤i,j≤n

sup
θ

[
E
∣∣∣ΣΣΣT

n (θ) −ΣΣΣn(θ)
∣∣∣2
ij

]
≤ K1B

−1
T T−1 + K2B

4
T (3.4)

for any T > T0.

The proof of this results is long but easy; it mainly consists in going through all the steps

of Brillinger’s proofs (Section 7.4), and taking into account the uniformity of Assumption A2′

and B2.

The stochastic information criterion we are proposing is defined, in terms of the eigenvalues

λT
ni(θ) of the estimated spectral density matrices ΣT

n (θ), as

ICT
n (k) :=

1
n

n∑
i=k+1

1
T − 1

T−1∑
l=1

λT
ni(θl) + kp(n, T ), 0 ≤ k ≤ kmax < ∞, (3.5)

where p(n, T ) is a penalty function, θl := 2πl/T for l = 1, . . . , T − 1, and qmax is some prede-

termined upper bound. For given n and T , the number of factors q is estimated as

qT
n := argmin0 ≤k≤qmaxICT

n (k). (3.6)

The following consistency property is the first main result of this paper.

Proposition 3. Let Assumptions A1, A2′, A3 through A5, B1, and B2 hold. Then, P(qT
n =

q) → 1 as n and T both tend to infinity in such a way that

(i) p(n, T ) → 0, (ii) min
[
n,B−2

T , B
1/2
T T 1/2

]
p(n, T ) → ∞. (3.7)

Proof. See the Appendix.

Observe that if p(n, T ) is an appropriate penalty function, that is, if (3.7) holds, then cp(n, T ),

where c is an arbitrary positive real, also is an appropriate penalty function.
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3.3 Sample level : covariogram smoothing estimation

The consistency conditions in Proposition 3 are derived for the periodogram smoothing estima-

tor (3.3) of ΣΣΣn(θ). For computational convenience, however, covariogram smoothing estimation

is preferable in the practical implementation of the Forni et al (2000) method. The covariogram

smoothing estimator of ΣΣΣn(θ) is defined as

ΣΣΣ∗T
n (θ) :=

1
2π

MT∑
u=−MT

w(M−1
T u)ΓΓΓT

nue−iuθ (3.8)

where ΓΓΓT
nu denotes the sample cross-covariance matrix of Xnt and Xn,t−u based on T observa-

tions, w(α) is a positive even weight function, and MT is a truncation parameter. The estimator

Σ∗T
n (θ) is consistent for any n, as T → ∞, provided that w and MT satisfy the following

assumption.

Assumption B1
′
.

(i) MT > 0, MT → ∞, and MT T−1 → 0, as T → ∞;

(ii) α �→ w(α) is an even, piecewise continuous function, differentiable with bounded first three

derivatives, satisfying w(0) = 1, |w(α)| ≤ 1 for all α and w(α) = 0 for |α| > 1.

Under Assumptions A2′, B1′, and B2, we then have the following uniform consistency result:

there exist constants L1, L2, and T0 such that for all θ, 1 ≤ i, j ≤ n, and n,

sup
n

max
1≤i,j≤n

sup
θ

[
E
∣∣∣ΣΣΣ∗T

n (θ) −ΣΣΣn(θ)
∣∣∣2
ij

]
≤ L1MT T−1 + L2M

−4
T (3.9)

for any T > T0.

As in the periodogram smoothing case, the proof of this result is long but easy; it mainly

consists in going through all the steps of Parzen’s Theorem 5A proof (Parzen 1957), and taking

into account the uniformity of Assumption A2′, B1′, and B2.

Associated with the covariogram smoothing estimator ΣΣΣ∗T
n (θ), consider the following infor-

mation criterion

IC∗T
1;n(k) :=

1
n

n∑
i=k+1

1
2MT + 1

MT∑
l=−MT

λ∗T
ni (θl) + kp(n, T ), 0 ≤ k ≤ qmax (3.10)

where p(n, T ) is a penalty function, θl := πl/(MT + 1/2) for l = −MT , . . . ,MT , and qmax is

some predetermined upper bound; the eigenvalues λ∗T
ni (θ) are those of ΣΣΣ∗T

n (θ).

This criterion has a structure comparable to that of Bai and Ng (2002). In a Corollary to

their Theorem 2, these authors also show that a logarithmic form of their criterion has similar
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consistency properties as the original one. Experience seems to indicate, moreover, that this

logarithmic form has better finite sample performances. We therefore also consider the criterion

IC∗T
2;n(k) := log

⎡
⎣ 1

n

n∑
i=k+1

1
2MT + 1

MT∑
l=−MT

λ∗T
ni (θl)

⎤
⎦+ kp(n, T ), 0 ≤ k ≤ qmax, (3.11)

Depending on the criterion adopted, the resulting estimated number of factors, for given n

and T , is,

q∗Ta;n := argmin0 ≤k≤qmaxIC∗T
a;n(k), a = 1, 2. (3.12)

The following proposition provides sufficient conditions for the consistency of both q∗T1;n and q∗T2;n.

Proposition 4. Let Assumptions A1, A2′, A3 through A5, B1′, and B2 hold. Then, P(q∗Ta;n =

q) → 1 for a = 1, 2 as n and T both tend to infinity, in such a way that

(i) p(n, T ) → 0, and (ii) min
(
n,M2

T ,M
−1/2
T T 1/2

)
p(n, T ) → ∞. (3.13)

Proof. See the Appendix.

Here again, if p(n, T ) is an appropriate penalty function, then cp(n, T ), where c is an arbitrary

positive real, also is; for given n and T , a penalty function p(n, T ), although satisfying (3.13), can

be arbitrary bad (the same remark holds for all information criteria developed in the literature).

4 A practical guide to the selection of q

As emphasized in the previous section, if our identification procedures are consistent for penalty

p(n, T ), they also are for any penalty of the form cp(n, T ), where c ∈ R
+. Important as they

are, the above consistency results thus are of limited value for practical implementation. In

this section, we show how this degree of freedom in the choice of c can be exploited. We

first give some theoretical considerations, which we check on two examples (Examples 1 and

2) before describing a practical implementation of our method. In Section 5.1, we validate the

method through simulation; in Section 5.2, we apply it to a dataset of quarterly macroeconomic

indicators.

Denote by q∗Tc;1;n and q∗Tc;2;n the number of factors resulting from applying (3.10) or (3.11),

respectively, with penalty cp(n, T ): as both n and T in practice are fixed, the only information

we can obtain on the functions (n, T ) �→ q∗Tc;a;n is to be obtained from J-tuples of the form

q
∗Tj
c;a;nj , a = 1, 2, j = 1, . . . J , where 0 < n1 < n2 < . . . < nJ = n, and 0 < T1 < T2 < . . . < TJ =

T . For any fixed value of (nj , Tj), q
∗Tj
c;a;nj clearly is a nonincreasing function of c: for given a,

the curves [nj, Tj ] �→ q
∗Tj
c;a;nj thus never cross each other. The typical situation is as follows (for

simplicity, we drop a subscripts).
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Assume that q > 0. If we let c = 0 (no penalty at all—this is thus a non-valid value of c),

q
∗Tj

0;nj
is increasing with j, and would tend to infinity if n and T would. If c > 0 is “very small”

(severe underpenalization), although Proposition 4 applies, the situation for finite (n, T ) will

not be very different: q
∗Tj
c;nj is still an increasing function of j, and only would redescend and

tend to q (as implied by Proposition 4) if n and T were allowed to increase without limits. As

c grows, hence also the penalization, this increase of j �→ q
∗Tj
c;nj is less and less marked; for c

large enough, it eventually decreases, or even may be decreasing from the beginning. A common

feature of all these underpenalized cases however is that the variability among the J values of

q
∗Tj
c;nj , j = 1, . . . , J , is high; this variability can be captured, for instance, by the mean squared

deviation J−1∑J
j=1

(
q
∗Tj
c,nj − J−1∑J

j=1 q
∗Tj
c,nj

)2
or its square root.

Let us now consider, quite on the contrary, a “very large” value of c, hence severely overpe-

nalized q
∗Tj
c;nj ’s. If c is large enough, q

∗Tj
c;nj will be identically zero for all [nj, Tj ]’s, and convergence

to q will not be visible for the values of n and T at hand. As c decreases, this convergence is

observed for smaller and smaller values of (n, T ) yielding horizontal segments at underestimated

values of q.

In view of the monotonicity of c �→ q
∗Tj
c;nj , somewhere between those “small” underpenalizing

values of c (with j �→ q
∗Tj
c;nj curves eventually tending to q from above) and the “large” overpe-

nalizing ones (with j �→ q
∗Tj
c;nj curves tending to q from below), a range of “moderate” values of

c, yielding a stable behavior of j �→ q
∗Tj
c;nj ≈ q, typically exists. This stability can be assessed,

for instance, via the empirical standard error, for given c, of the q
∗Tj
c;nj ’s, j = 1, . . . , J (see (4.14)

below).

As an illustration, let us consider two examples:

– in Example 1, a panel of size n = 200 and length T = 200 was generated. The common

part was modelled with q = 3 factors and MA loadings, see Section 5.1 for details. The

truncation parameter was set as MT = [0.7
√

T ];

– in Example 2 a panel of size n = 150 and length T = 120 was generated. The common

part was modelled with q = 2 factors and AR loadings, see Section 5.1 for details. The

truncation parameter was set as MT = [0.5
√

T ].

In both cases, a triangular window was used, qmax was set to 19, and the penalty function

p3(n, T ) =
(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
was chosen. The values of c in the interval [0, 2] were explored with a grid step of size 0.01.

– Example 1. The graphs of (nj, Tj) �→ q
∗Tj
c,nj and

c �→ Sc :=

⎡
⎢⎣J−1

J∑
j=1

⎛
⎝q

∗Tj
c,nj − J−1

J∑
j=1

q
∗Tj
c,nj

⎞
⎠

2
⎤
⎥⎦

1/2

(4.14)
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are presented for nj = Tj = 50, 60, . . . , 200 and various values of c in Figure 1, based on

criterion IC∗T
1;n(k) in (a1) and (a2), on criterion IC∗T

2;n(k) in (b1) and (b2). The typical

patterns described are all present in (a1) as well as in (b1). Inspection of (a2) in conjunc-

tion with (a1) reveals the very characteristic fact that Sc vanishes over certain intervals,

corresponding with a stable behavior of the corresponding graphs in (a1): (a2) yields four

“stability intervals”, (0, 0.02], [0.20, 0.29], [0.36, 0.48] and [0.54, 0.70], corresponding to a

selection of q = qmax = 19, 3, 2, and 1 factors, respectively. Those “stability intervals”

are separated by “instability” intervals, corresponding to more fluctuations in (a1) curves.

The correct value of q, in (a1), is obtained for c = 0.25. Note that q
∗Tj

0.15,nj
, as j ↑, converges

to q
∗Tj

0.25,nj
from above, while q

∗Tj

0.35,nj
converges to q

∗Tj

0.25,nj
from below and that c = 0.25 is

the only value ĉ of c in (a1) exhibiting that pattern. The same comments can be made

for the logarithmic version of the criterion: see (b1). Moreover, this ĉ corresponds to the

second “stability interval” in the c �→ Sc graphs (a2) and (b2), while the first “stability

interval” (namely, (0, 0.02] in (a2), and (0, .24] in (b2)) clearly is associated with severe

underpenalization, hence the maximal possible number of factors qmax; Figure (b2) in

this respect provides a somewhat clearer picture than (a2).

This example suggests that, irrespective of the choice of IC∗T
1;n or IC∗T

2;n, the selection of q

should be based on an inspection of the family of curves (nj, Tj) �→ q
∗Tj
c,nj , trying to spot (as in

Figure 1(a1)) the curve (and the associated value of c) the neighbors of which (corresponding

to c ± δ) tend to, both from above (for δ < 0) as from below (for δ > 0). This search is greatly

facilitated, and can be made automatic, by considering also the c �→ Sc mapping, and choosing

q∗Tĉ,n, where ĉ belongs to the second “stability interval”. The relevant figure then is a joint plot

of c �→ Sc and c �→ q∗Tc,n: see Figure 2 (c1) and (c2).

– Example 2. Here we apply the automatic selection rule just described, but with nj =

80 + 10j, j = 1, . . . , J = 7, Ti = 60 + 10i, i = 1, . . . , I = 6, and

Sc :=

⎡
⎢⎣(IJ)−1

∑
i,j

⎛
⎝q∗Ti

c,nj
− (IJ)−1

∑
i,j

q∗Ti
c,nj

⎞
⎠

2
⎤
⎥⎦

1/2

; (4.15)

the relevant plots of c �→ Sc and c �→ q∗Tc,n are given in Figure 3. For the IC∗T
1;n(k) criterion,

the stability intervals (in Figure (d1)) are (0, 0.02], [0.17, 0.54], [0.63, 0.93], and [1, 2],

yielding q∗Tc,n = 19, 2 (correct identification), 1, and 0, respectively. The situation again is

rather clearer with IC∗T
2;n(k) (Figure (d2)), with stability intervals (0, 0.26], [0.39, 0.95],

[1.06, 1.12], and [1.2, 2], yielding q∗Tc,n = 19, 2 (correct identification), 1, and 0, respectively.

In both cases, thus, the second stability interval identifies the correct value q = 2.
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When T is small relative to n, which is typically the case in macroeconomic data sets, one

may like to look at J-tuples n1, . . . , nJ only, keeping T fixed. The monotoniocity of c �→ q∗Tc;nj

still holds, and the same discussion as above can be made, though all patterns may not be

present (typically, the “redescending” to q of j �→ q∗Tc;nj
may not be observed). Finally, whenever

the actual value of q is zero (no common component at all), the same analysis can be made, but

the overpenalization part of the picture is not present: typically, no (nj, Tj) �→ q
∗Tj
c,nj curve will

tend to any other one from below, and only two stability intervals will appear in the c§c plots,

the second one extending to the maximal possible value of c, and corresponding to q∗Tc,n = 0.

Summing up, our identification method in practice is to be performed as follows.

(0) Preliminary to the analysis, it may be worth choosing a random permutation of the n

cross-sectional items, as some irrelevant structure may exist in the initial ordering of the

panel;

(i) fix the upper bound qmax on the number of factors;

(ii) choose a covariogram smoothing function w(α) satisfying Assumption B1∗(ii);

(iii) choose T �→ MT so that Assumption B1′(i) be satisfied, e.g., MT := [0.5
√

T ] or MT :=

[0.7
√

T ];

(iv) choose a penalty function (n, T ) �→ p(n, t) and a criterion (IC∗T
1;n(k) or IC∗T

2;n(k)), and define

p∗c(n, t) = cp(n, t) for a suitable set C ⊂ R
+ of values of c (e.g. C := [0.01, 0.02, . . . , 3]);

(v) define sequences n1 < n2 < . . . < nJ = n and T1 < T2 < . . . < TI = T (e.g., for n = 150,

set nj := 40 + 10j, j = 1, . . . , 11, for T = 100, set Ti := 70 + 10i, i = 1, . . . , 3); if T is too

small, let I = 1, that is, keep T fixed;

(vi) defining Sc as in (4.14) or (4.15), identify the number of factors as q̂ := q∗Tĉ,n, where ĉ is

selected as explained above (see Examples 1-2), either by inspecting the (nj, Tj) �→ q
∗Tj
c,nj

curves, or by selecting the second stability interval of c �→ Sc.

5 Numerical study

5.1 Simulations

In order to evaluate the performance of the selection strategy proposed in the previous section,

the following Monte-Carlo experiment has been conducted. Three datasets were generated, with

q = 1, 2, and 3 factors, respectively, from the model

xnt = Bnq(L)ut + ent, (n, T ) = (70, 60), (90, 90), (150, 120),

where

13



– the random shocks ut = (u1t, ..., uqt)′, the idiosyncratic components ent = (e1t, ..., ent)′,

and the loading filters [Bnq(L)]rs = brs(L), r = 1, ..., n, s = 1, ..., q are randomly generated

as follows:

– the vectors ut and et are i.i.d., with ut ∼ N(0, Iq),

– the eit’s are of the form ei,t = difi,t, fit = yi,t +0.1yi,t−1 +0.1yi+1,t, with yit ∼ N(0, 1)

and di ∼ U(0.9, 1.1) mutually independent and independent of the ut’s;

– the filters bik(L) (i = 1, ..., n, k = 1, ..., q) are randomly generated (independent

from the ut’s and et’s) by one of the following two devices :
(MA loadings): bik(L) = b0

ik + b1
ikL + b2

ikL
2 with (b0

ik, b1
ik, b2

ik) ∼ N(0, I);

(AR loadings): bik = b0
ik(1 + b1

ikL)−1, with b0
ik ∼ N(0, 1) and b1

ik ∼ U(−0.8, 0.8),

mutually independent;

– for each i, the variance of fi,t and that of the common component
∑q

k=1 bik(L)uit were

normalized to 0.5.

In each case, the number of replications was set to 500, the upper bound qmax to 19. Spectral

density matrices were estimated with a triangular smoothing function w(v) = 1 − |v| and two

different values of MT , MT = [0.5
√

T ] and MT = [0.7
√

T ]. For each pair (n, T ), the automatic

identification rule described in the previous section was performed with sequences nj := n −
10j, j = 1, . . . , 3, Ti := T − 10i, i = 1, . . . , 3, C := [0.01, 0.02, . . . , 3], and penalty functions

p1(n, T ) =
(
M−2

T + M
1/2
T T−1/2 + n−1

)
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])

p2(n, T ) =
(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1/2

p3(n, T ) =
(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
,

respectively.

Tables 1 and 2 provide, for each case, the percentages (over the 500 replications) of under-,

correct, and over-identification of the number of factors. Inspection of the results show that

identification is uniformly very good. The choice of MT , the penalty function and the criterion

(IC∗T
1;n(k) or IC∗T

2;n(k)) apparently have very little impact when n and T are large; larger values

of q (q = 3) and the MA loadings in this respect are “more difficult” than smaller qvalues (q = 1)

and AR loadings.

5.2 A real data application

The proposed criteria thus seems to work rather well in simulated data. We now consider a

real case study. We build a panel of n = 62, T = 40 by pooling seven quarterly macroeconomic
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indicators for all countries of the Eurozone, excluding Luxembourg and Ireland, from 1995 to

first quarter 2005 (source: Eurostat). For all those countries, the panel includes seasonally

adjusted series of imports of goods and services (millions of euros, at 1995 prices and exchange

rates), exports of goods and services (millions of euros, at 1995 prices and exchange rates),

harmonized consumer price indices (3rd, 6th, 9th, 12th months values), quarterly production

index, total industry (excluding construction), gross domestic product at market prices (constant

prices, millions of euros, at 1995 prices and exchange rates), final consumption expenditure of

households (millions of euros, at 1995 prices and exchange rates), gross fixed capital formation

(millions of euros, at 1995 prices and exchange rates). Only the Austrian quarterly production

index is missing. Data are taken in log-differenced and then normalized by their sample standard

deviations. The truncation parameter is MT = [0.5
√

T ] = 3 and nj = 47 + j, j = 1, . . . , 15.

A triangular window was used, and the penalty function p1(n, T ) was chosen. The automatic

identification based on IC∗T
2;n(k) yields the stability interval [0.44, 0.63], and the number of

factors q = 1 is identified: see Figure 5.

6 Concluding remarks

This paper is an attemps to fill a gap in the literature on dynamic factor models, by providing

an efficient yet flexible tool for identification of the number q of factors. We establish the

consistency, as both n and T approach infinity in an appropriate way, of two methods, based on

periodogram and covariogram smoothing, logged and non-logged criteria, respectively. We also

show how to take advantage of the fact that penalty functions are defined up to a multiplicative

constant. The performance of the method is evaluated through simulation, and appears to be

surprisingly good.

7 Appendix.

Proof of Lemma 1. We have to show that limn→∞
[
Ln(k) − Ln(q)

]
> 0 for all k �= q,

k ≤ qmax < ∞. This inequality holds true provided that there exists a finite n0 such that, for

all n > n0 and k �= q,

1
n

n∑
j=k+1

{∫ π

−π
λnj(θ)dθ

}
+ kp(n) >

1
n

n∑
j=q+1

{∫ π

−π
λnj(θ)dθ

}
+ qp(n).

Two cases are possible.

(a) Either k > q; then, for n sufficiently large, (k − q)p(n) > 1
n

∑k
j=q+1

{∫ π
−π λnj(θ)dθ

}
, since

np(n) → ∞ as n → ∞; or
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(b) k < q and , for n sufficiently large, 1
n

∑q
j=k+1

{∫ π
−π λnj(θ)dθ

}
> (q−k)p(n), since p(n) → 0

as n → ∞ and λnj(θ), j ≤ q, under Assumption E, is O(n) but not o(n).

The result follows. Q.E.D.

Before turning to the proof of Proposition 3, we prove a general result on the asymptotic

behavior of eigenvalues of (n, T )-indexed sequences of n × n random matrices, as both n and

T tend to infinity. This result relies on a matrix inequality of Weyl (1912), the importance of

which in the context of factor models was first recognized by Giannone (2004) (see also Lemma 1

of Forni et al. 2005). Lemma 2 and Corollary 1 below collect the statements under the form

we need in the sequel; the ideas and the arguments of the proof, however, essentially belong to

Domenico Giannone.

Denote by {ζij; i, j ∈ N} a collection of complex numbers such that for all n the n×n matrices

ζζζn with entries (ζij; 1 ≤ i, j ≤ n) be hermitian. Denote by
{
ζT
n,ij; 1 ≤ i, j ≤ n, n ∈ N, T ∈ N

}
a

collection of complex-valued random variables such that similarly, for all n and T , the n × n

matrices ζζζT
n with entries

(
ζT
n,ij; 1 ≤ i, j ≤ n

)
be hermitian. Write λni(ζζζ) and λT

ni(ζζζ), respectively,

for ζζζn and ζζζT
n ’s eigenvalues in decreasing order of magnitude. The following lemma characterizes

the asymptotic behavior of λni(ζζζ)−λT
ni(ζζζ) when ζζζn−ζζζT

n converges to zero in a sense to be made

precise in (7.16) below.

Lemma 2. Assume that, for all 1 ≤ i, j ≤ n, n ∈ N and T ∈ N, there exist a positive constant

K that does not depend on n, T , i nor j, and a sequence of positive constants MT depending on

T only such that MT → ∞ as T → ∞ and

E
[∣∣∣ζT

n,ij − ζij

∣∣∣2] ≤ KM−1
T . (7.16)

Then, for any ε > 0, there exist Bε and Tε such that, for any fixed qmax, n and T > Tε,

max
1≤k≤qmax

P
[
M

1/2
T

1
n

∣∣∣λnk(ζζζ) − λT
nk(ζζζ)

∣∣∣ > Bε

]
≤ ε. (7.17)

Corollary 1. Let Assumptions A1, A2′ , B1, and B2 hold. Then, for any ε > 0, there exist

Bε and Tε such that, for any fixed qmax, n and T > Tε,

max
1≤k≤qmax

sup
θ

P

[
min

(
B−2

T , B
1/2
T T 1/2) ∣∣∣∣∣λ

T
nk(θ)
n

− λnk(θ)
n

∣∣∣∣∣ > Bε

]
≤ ε.

Proof of Lemma 2. Weyl’s inequality implies that, for any hermitian matrices A and B, with

eigenvalues λj(A) and λj(B), respectively, maxj |λj(B) − λj(A)|2 ≤ tr ((B − A)(B − A)′) . It

follows that, for all n, T , and k,

∣∣∣λT
nk(ζζζ) − λnk(ζζζ)

∣∣∣2 ≤ tr
(
(ζζζT

n − ζζζn)(ζζζT
n − ζζζn)′

)
=

n∑
i=1

n∑
j=1

∣∣∣ζT
n,ij − ζij

∣∣∣2 .
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Taking expectations, we thus have, in view of (7.16),

E
[∣∣∣λT

nk(ζζζ) − λnk(ζζζ)
∣∣∣2] ≤ n∑

i=1

n∑
j=1

E
[∣∣∣ζT

n,ij − ζij

∣∣∣2] ≤ n2KM−1
T

for all n, T , and k. The Markov inequality completes the proof. Q.E.D.

Proof of Corollary 1. From (3.4) there exist constants K1, K2, and T0 such that

sup
n

max
1≤i,j≤n

sup
θ

[
E
∣∣∣ΣΣΣT

n (θ) −ΣΣΣn(θ)
∣∣∣2
ij

]
≤ K1B

−1
T T−1 + K2B

4
T

for any T > T0. Therefore, ΣΣΣT
n (θ) and ΣΣΣn(θ) for all θ satisfy the assumption (7.16) of Lemma 2,

with a constant K = max [K1,K2] and a rate MT = max
[
B−1

T T−1, B4
T

]
that do not depend

on θ. The corollary follows.

Proof of Proposition 3: We will prove that, under (3.7), P
[
ICT

n (q) < ICT
n (k)

]
→ 1 for

all k �= q, k ≤ qmax, as min(n, T ) → ∞. For all k < q,

ICT
n (q) < ICT

n (k) (7.18)

if and only if
q∑

i=k+1

1
T − 1

T−1∑
l=1

λT
ni(θl)
n

> (q − k)p(n, T ),

that is, in view of Corollary 2, if and only if

q∑
i=k+1

1
T − 1

T−1∑
l=1

[
λni(θl)

n
+ K1n(T )

]
> (q − k)p(n, T ), (7.19)

where K1n(T ) is OP

(
max

[
B2

T , B
−1/2
T T−1/2

])
uniformly in n and θ. By Assumption E, the first

q eigenvalues λni(θ) diverge linearly in n, which implies that there exists a dense set Ω in [−π, π]

such that

sup
θ

λni(θ)
n

= O(1) and lim inf
n→∞ sup

θ∈Ω

λni(θ)
n

> 0,

for i = k + 1, ..., q. Since K1n(T ) converges to 0, a sufficient condition for (7.18) to hold with

probability one as min(n, T ) → ∞ is that p(n, T ) → 0 as min(n, T ) → ∞.

Next, for any k > q, (7.18) holds if and only if

k∑
i=q+1

1
T − 1

T−1∑
l=1

λT
ni(θl)
n

< (k − q)p(n, T ),

that is, in view of Corollary 1 , if and only if

k∑
i=q+1

1
T − 1

T−1∑
l=1

[
λni(θl)

n
+ K2n(T )

]
< (k − q)p(n, T ), (7.20)
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where K2n(T ) is OP

(
max

[
B2

T , B
−1/2
T T−1/2

])
uniformly in n and θ. By Assumption E, λn q+1(θ),

λn q+2(θ), . . . are bounded uniformly in n and θ. Hence, supθ
λni(θ)

n = O(n−1) as n → ∞ for

i = q + 1, . . . , k . It is sufficient, for inequality (7.18) to hold with probability arbitrarily close

to one as min(n, T ) → ∞, that

np(n, T ) → ∞ and min
[
B−2

T , B
1/2
T T 1/2

]
p(n, T ) → ∞,

as min(n, T ) → ∞. The result follows. Q.E.D.

Turning to covariogram estimation, the proof of Proposition 4 relies on the following coun-

terpart of Corollary 1.

Corollary 2. Let Assumptions A1, A2′, B1′, and B2 hold. Then, for any ε > 0, there exist

Mε and Tε such that, for any fixed qmax, n and T > Tε,

max
1≤k≤qmax

sup
θ

P

[
min

(
M2

T ,M
−1/2
T T 1/2) ∣∣∣∣∣λ

∗T
nk (θ)
n

− λnk(θ)
n

∣∣∣∣∣ > Mε

]
≤ ε.

Proof of Corollary 2. From (3.9) there exist constants L1, L2, and T0 such that

sup
n

max
1≤i,j≤n

sup
θ

[
E
∣∣∣ΣΣΣ∗T

n (θ) −ΣΣΣn(θ)
∣∣∣2
ij

]
≤ L1MT T−1 + L2M

−4
T

for any T > T0.

Therefore, ΣΣΣ∗T
n (θ) and ΣΣΣn(θ) for all θ satisfy the assumption (7.16) of Lemma 2, with a

constant K = max [L1, L2] and a rate MT = max
[
MT T−1,M−4

T

]
that do not depend on θ. The

corollary follows. Q.E.D.

Proof of Proposition 4: We will prove that P
[
IC∗T

a;n(q) < IC∗T
a;n(k)

]
→ 1 for all k �= q,

k ≤ qmax, a = 1, 2, as min(n, T ) → ∞ in such a way that (3.13) holds. Let V T
n (k) :=∑n

i=k+1
1

2MT +1

∑MT
l=−MT

λ∗T
ni (θl)/n. For all k < q,

IC∗T
1;n(q) < IC∗T

1;n(k) (7.21)

if and only if

q∑
i=k+1

1
2MT + 1

MT∑
l=−MT

λ∗T
ni (θl)

n
> (q − k)p(n, T ), (7.22)

that is, in view of Corollary 2, if and only if

q∑
i=k+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K1n(T )

]
> (q − k)p(n, T ), (7.23)

where K1n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n and θ. By Assumption A5, the

first q eigenvalues λni(θ) diverge linearly in n, which implies that there exists a dense set Ω in

18



[−π, π] such that

sup
θ

λni(θ)
n

= O(1) and lim inf
n→∞ sup

θ∈Ω

λni(θ)
n

> 0, (7.24)

for i = k + 1, ..., q. Since K1n(T ) converges to 0, a sufficient condition for (??) to hold with

probability tending to one as min(n, T ) → ∞ is that p(n, T ) → 0 as min(n, T ) → ∞.

Similarly, for the logarithmic version of the criterion,

IC∗T
2;n(q) < IC∗T

2;n(k) (7.25)

for k < q if and only if

log
[
V T

n (k)/V T
n (q)

]
> (q − k)p(n, T ), (7.26)

where V T
n (k) :=

∑n
i=k+1

1
2MT +1

∑MT
l=−MT

λ∗T
ni (θl)/n. In view of Corollary 2, we have, for k = q,

V T
n (q) =

n∑
i=q+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K2n(T )

]
(7.27)

where K2n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n and θ. By Assumption A5, the

eigenvalues λni(θ), i > q are, uniformly in n and θ-a.e. in [−π, π], bounded and bounded away

from zero. Thus there exist positive constants c0 and c1 such that P
[
c0 > V T

n (q) > c1

]
→ 1 as

min(n, T ) → ∞. For k < q, we have

V T
n (k) − V T

n (q) =
q∑

i=k+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K3n(T )

]
(7.28)

where K3n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n and θ-a.e. in [−π, π]. As (7.28)

coincides with the left-hand side of (7.23), by the same argument as above, there exists a constant

c2 > 0 such that P
[
V T

n (k) − V T
n (q) > c2

]
→ 1, hence a a constant c3 > 0 such that

P
[
log

[(
V T

n (k) − V T
n (q)

)
/V T

n (q) + 1
]

> c3

]
= P

[
log

[
V T

n (k)/V T
n (q)

]
> c3

]
→ 1

as min(n, T ) → ∞. The same condition that p(n, T ) → 0 is thus sufficient for both (7.22) and

(7.26) to hold with probability tending to one as min(n, T ) → ∞.

Next, for any k > q, (7.21) holds if and only if

k∑
i=q+1

1
2MT + 1

MT∑
l=−MT

λ∗T
ni (θl)

n
< (k − q)p(n, T ), (7.29)

that is, in view of Corollary 2, if and only if

k∑
i=q+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K4n(T )

]
< (k − q)p(n, T ), (7.30)
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where K4n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n, θ-a.e. in [−π, π]. As, λn q+1(θ),

λn q+2(θ), . . . are bounded uniformly in n and θ, supθ
λni(θ)

n = O(n−1) as n → ∞ for i =

q + 1, . . . , k . For k > q, it is thus sufficient for inequality (7.21) to hold with probability

arbitrarily close to one as min(n, T ) → ∞ that

np(n, T ) → ∞ and min
[
M2

T ,M
−1/2
T T 1/2

]
p(n, T ) → ∞,

as min(n, T ) → ∞.

Turning to the logarithmic criterion, (7.25) holds for k > q if and only if

log
[
V T

n (q)/V T
n (k)

]
< (k − q)p(n, T ). (7.31)

Still in view of Corollary 2,

V T
n (k) =

n∑
i=k+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K5n(T )

]
,

where K5n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n and θ. By the same arguments

as in (7.27), there exist positive constants c4 and c5 such that P
[
c4 > V T

n (k) > c5

]
→ 1 as

min(n, T ) → ∞. Similarly,

V T
n (q) − V T

n (k) =
k∑

i=q+1

1
2MT + 1

MT∑
l=−MT

[
λni(θl)

n
+ K6n(T )

]

where K6n(T ) is OP

(
max

[
M−2

T ,M
1/2
T T−1/2

])
uniformly in n and θ. This term coincides with

the left-hand side of (7.30), and the same arguments imply that

V T
n (q) − V T

n (k) = OP

(
max

[
n−1,M−2

T ,M
1/2
T T−1/2

])

as min(n, T ) → ∞. Thus,
(
V T

n (q) − V T
n (k)

)
/V T

n (k) and, therefore,

log
[(

V T
n (q) − V T

n (k)
)

/V T
n (k) + 1

]
= log

[
V T

n (q)/V T
n (k)

]

are also OP

(
max

[
n−1,M−2

T ,M
1/2
T T−1/2

])
as min(n, T ) → ∞. Consequently, it is sufficient, for

inequality (7.31) to hold with probability arbitrarily close to one as min(n, T ) → ∞, that

min
[
n,M2

T ,M
−1/2
T T 1/2

]
p(n, T ) → ∞,

as min(n, T ) → ∞. This completes the proof. Q.E.D.
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Figure 1: Example 1. MA loadings, q = 3, n = T = 200; MT = [0.7
√

T ]. Graphs of

(nj, Tj) �→ q
∗Tj
c;nj and c �→ Sc for (nj, Tj) = (50, 50), (60, 60), . . . , (200, 200) and various values of c,

using penalty function p3(n, T ) :=
(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
,

qmax = 19, and ((a1), (a2)) IC∗T
1;n(k) criterion, ((b1), (b2)) IC∗T

2;n(k) criterion, respectively.
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Figure 2: Example 1. MA loadings, q = 3, n = T = 200; MT = [0.7
√

T ].

Simultaneous plots of c �→ Sc and c �→ q∗Tc,n, using penalty function p3(n, T ) :=(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
, qmax = 19, and (c1) IC∗T

1;n(k) cri-

terion, (c2) IC∗T
2;n(k) criterion, respectively.
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Figure 3: Example 2. AR loadings, q = 2, n = 150, T = 120; MT = [0.5
√

T ]. Simultaneous plots

of c �→ Sc and c �→ q∗Tc,n for nj = 80 + 10j, j = 1, . . . , 7, Tj = 60 + 10j, j = 1, . . . , 6, for penalty

function p3(n, T ) :=
(
min

[
n,M2

T ,M
−1/2
T T 1/2

])−1
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
, qmax = 19,

and (d1) IC∗T
1;n(k) criterion, (d2) IC∗T

2;n(k) criterion, respectively.
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Figure 4: Eurozone macroeconomic indicators (n = 62, T = 40). Simultaneous plots of

c �→ Sc and c �→ q∗Tc,n for nj = 47 + j, j = 1, . . . , 12, MT = [0.5
√

T ] = 3, penalty function

p1(n, T ) =
(
M−2

T + M
1/2
T T−1/2 + n−1

)
log

(
min

[
n,M2

T ,M
−1/2
T T 1/2

])
, and the IC∗T

2;n(k) crite-

rion, respectively.
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