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Abstract

Additive models with backfitting algorithms are popular multivariate nonparametric fitting
techniques. However, the inferences of the models have not been much developed due partially
to the complexity of the backfitting estimators. There are few tools available to answer some
important and frequently-asked questions, such as whether a specific additive component is
significant or admits a certain parametric form. In an attempt to address these issues, we
extend the generalized likelihood ratio tests to additive models, using the backfitting estimator.
We demonstrate that under the null models the newly proposed generalized likelihood ratio
statistics follow asymptotically rescaled x2-distributions, with the scaling constants and the
degrees of freedom independent of the nuisance parameters. This demonstrates that the Wilks
phenomenon continues to hold under a variety of smoothing techniques and more relaxed models
with unspecified error distributions. We further prove that the generalized likelihood ratio tests
are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing.
In addition, for testing a parametric additive model, we propose a bias corrected method to
improve the performance of the generalized likelihood test. The bias corrected test is shown
to share the Wilks type of property. Simulations are conducted to demonstrate the Wilks
phenomenon and the power of the proposed tests. A real example is used to illustrate the
performance of the testing approach.
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1 INTRODUCTION

Additive models are an important family of structured multivariate nonparametric models. They

model a random sample {(Y;, X;)}i-, by

D
}/i:a_'_zmd(Xd’i)—i_sia i:17"'7n7 (11)
d=1

where {g;} is a sequence of independent and identically distributed random variables with mean

zero and finite variance o2

. The additive models, which were suggested by Friedman and Stuet-
zle (1981) and Hastie and Tibshirani (1990), have been widely used in multivariate nonparametric
modeling. As all of the unknown functions are one-dimensional, the difficulty that is associated with
the so-called “curse of dimensionality” is substantially reduced. For details, see Stone (1985) and
Hastie and Tibshirani (1990). In fact, Fan, Hardle and Mammen (1998) have shown that an addi-
tive component can be estimated as well as the case where the rest components are known. Similar
oracle properties were obtained by Linton (1997) and Mammen, Linton and Nielsen (1999). Several
methods for estimating the additive functions have been proposed: for example, the marginal inte-
gration estimation methods of Tjgstheim and Auestad (1994) and Linton and Nielsen (1995), the
backfitting algorithms of Buja, Hastie and Tibshirani (1989) and Opsomer and Ruppert (1998), the
estimating equation methods of Mammen, Linton and Nielsen (1999), the Fourier series approxi-
mation approach of Amato et al. (2002), the linear wavelet strategies of Amato and Antoniadis
(2001), and the nonlinear wavelet estimation method of Sardy and Tseng (2003) using the block
coordinate relaxation algorithm of Sardy et al. (2000), among others. Among these methods, the
backfitting algorithm is regarded as a useful fitting tool and has received much attention for its easy
implementation. Hardle and Hall (1993) and Ansley and Kohn (1994) explored the convergence
of the algorithm based on projection smoothers. Opsomer and Ruppert (1997) studied asymptotic
properties of the backfitting estimators for a bivariate additive model that was based on a non-
projection smoother, local polynomial regression, and Wand (1999) and Opsomer (2000) extended
the results to general D-dimensional additive models. Recently, Hastie and Tibshirani (2000) con-
sidered the Bayesian backfitting which is a stochastic generalization of the backfitting algorithm
discussed above. A simulation study comparing the finite sample properties of backfitting and
marginal integration methods was conducted in Sperlich, Linton and Hérdle (1999).

After fitting the additive model via a backfitting algorithm, one often asks whether a specific
additive component in (1.1) is significant or admits a certain parametric form such as a polynomial
function. This amounts to testing whether the additive component is zero or of a polynomial form.
However, for such kinds of frequently-asked questions, there are limited tools available. Compared
with the studies on estimation, the understanding of such testing problems is limited in the additive
model. To our knowledge, there is virtually no formal and theoretical work on the testing under

the present settings in the literature. Recently, Héardle, Sperlich and Spokoiny (2001) used wavelets



along with the adaptive Neyman (Fan, 1996) type of idea to test additive components. While the
procedure is useful, it is tailored to their specific problem and is not easy to comprehend. In contrast,
we develop an easily understandable and generally applicable approach to testing problems. The
idea is based on comparisons of likelihood functions under null and alternative hypotheses. If the
likelihood function for the best model fit under the alternative hypothesis is much larger than that
under the null hypothesis, then the null hypothesis looks implausible and should be rejected. How
do we determine the critical value? Does the null distribution of the likelihood ratio test depend
on nuisance parameters? These questions are poorly understood, particularly for additive models.
This motivates us to unveil a new phenomenon for additive models.

Fan, Zhang and Zhang (2001) proposed “generalized likelihood ratio (GLR)” tests and showed
that the Wilks’ type of results hold for a variety of useful models, including univariate nonpara-
metric regression models and varying-coefficient models and their extensions. The procedure was
motivated by the fact that the nonparametric maximum likelihood estimate (MLE) usually does
not exist and even when it exists, the resulting maximum likelihood ratio test is not optimal. The
idea is to replace the MLE with a nonparametric estimate, which results in a more relaxed family
of tests, called GLR tests. They have shown that the resulting tests are optimal. Like the wide
applicability of likelihood ratio tests for parametric models, the GLR tests should be useful in
our setting. However, in general, since the distribution of ¢; is unknown, the likelihood function
is unavailable. Two important questions that relate to the GLR tests arise naturally: first, it is
unclear how to construct a GLR statistic for a variety of unknown error distributions of ¢;; second,
it remains unknown whether a particularly constructed GLR test will follow the Wilks’ type of
results and share certain optimality. In this paper, we develop generalized likelihood ratio tests
and their bias corrected versions for the additive model to address the above questions. This will
not only provide useful tools to address frequently-asked questions in additive modeling, but also
enrich the GLR test theory. Our results, together with those in Fan, Zhang and Zhang (2001) show
convincingly the generality of the Wilks phenomenon, and the wide applicability of the GLR tests.
This will encourage other researchers to apply GLR tests to related problems.

The technical derivations of GLR tests for the additive model (1.1) based on local polynomial
fitting and a backfitting algorithm are very involved due to the lack of simple expressions for
the backfitting estimators. Furthermore, the GLR statistics involve nonparametric estimators in
complicated nonlinear forms. Even though they will be approximated by generalized quadratic
forms, technical challenges include deriving quadratic approximations and the distributions of the
quadratic functionals with a backfitting estimator. As the additive model and local polynomial
smoother are widely used in multivariate nonparametric modeling, determined efforts have been
made in this paper to examine the null distribution and powers of the GLR tests for the additive
model. Such efforts enable us to answer some important questions such as whether the Wilks’ type

of results hold for additive models, and whether the intuitively appealing GLR tests are powerful



enough.

We will prove that, under general assumptions on the error distribution of €;, the proposed GLR
tests follow the Wilks’ type of results and possess the asymptotic optimality for nonparametric
hypothesis testing. In addition, unlike the classical Wilks’ type of results and their generalization
by Fan, Zhang and Zhang (2001), the additivity of degrees of freedom does not hold. The additivity
property holds in a more generalized sense (see Theorem 3.2). Furthermore, testing a hypothesis
on one additive component has the same asymptotic null distribution as the case where the rest
of the components are known (Remark 3.1). These types of adaptive results are in line with the
oracle property that was given by Fan et al. (1998) and Mammen et al. (1999). Our theoretical
results from the proposed GLR tests shed some lights on the validation of the Wilks phenomenon
and even future research directions on nonparametric inferences.

This article proceeds as follows. In Section 2, we describe the backfitting estimators based on a
local polynomial smoother. Section 3 develops the theoretical framework for the GLR tests. The
bias corrected GLR tests and a conditional bootstrap method for approximating the null distribu-
tions of the GLR statistics are introduced in Section 4. Section 5 demonstrates the performance of
GLR tests on simulated data. Section 6 provides an example of testing on a real dataset. Technical

proofs are given in Appendix II.

2 BACKFITTING ESTIMATORS

To ensure identifiability of the additive component functions mg(z4), we impose the constraint
E[mg4(Xg4)] = 0 for all d. Fitting the additive component mg(z4) in (1.1) requires choosing band-
widths {hg}. The optimal choice of hy can be obtained as in Opsomer and Ruppert (1998) and
Opsomer (2000). We here follow notation that was introduced by Opsomer (2000). Put K, (z) =
h;lK(hid), K(v) = v*7"'K(v), Hy = diag(1, kg, -, h5?), mg = {ma(Xa1), -, ma(Xan)}", and

Y = (Y1,--+,Y,)". The smoothing matrices for local polynomial regression are

Sd = (sd,Xd17 Tt 7Sd,an)T7
where siwd represents the equivalent kernel (Fan and Gijbels, 1996) for the dth covariate at the
point x4:

T _ T
Sie, =€ (X4 K, X4 )7'XE TK,,, (2.1)
with e; as a vector with a one in the ith position and zeros elsewhere, the matrix K;, = diag{ K}, (X4 —
Zq), -, Kny(Xan — xq)} for a kernel function K (z) and bandwidths hg,
1 (Xg1 —mq) - (Xar —zq)P?
d . . . .
Xxd = | : : " : )
1 (Xan —2a) -+ (Xan — za)



and pg is the degree of the local polynomial for fitting mg(z). The intercept a = E(Y;) is typically
estimated by & = Y ; Y;/n. The my’s can be estimated through the solutions to the set of
following normal equations (see Buja et al. 1989; Opsomer and Ruppert 1998):

L, Sf - ST][ m St
S L E
St 8§, .- I, | | mp S

where S% = (I, — 117 /n)S, is the centered smoother matrix. In practice, the backfitting algorithm
(Buja et al. 1989) is usually used to solve these equations and the backfitting estimators converge

to the solution
1

i, I, Sf --- St St
i, St I, --- S% Sk

—| 2 2 2 ly=M"lcy, (2.2)
fp St 8% . I, st

provided that the inverse of M exists.

As in Opsomer (2000), we define the additive smoother matrix as
W, =E,M 'C, (2.3)

where Eg; is a partioned matrix of dimension n x nD with an n x n identity matrix as the dth
“block” and zeros elsewhere, so that the backfitting estimator for my is mgy = W,Y. Let WE\;d}
be the additive smoother matrix for the data generated by the (D — 1)-variate regression model:
Y = ZkD:L#d my(Xpi) + €. Denote by m = 32 my and Wy, = 20 | W,. The backfitting
estimator of m is then m = W,,Y.

If ||S§W5\2d}|| < 1 for some d € (1,---,D) and a matrix norm || - ||, by Lemma 2.1 of Opsomer

(2000), the backfitting estimators exist and are unique, and

Wy = I,— (I, - S;Wi 11, — s
= (I, - s;wy, ") s, - wi ). (2.4)

For a finite n in practice, the existence and uniqueness condition above can numerically be verified.
To ensure the existence of the backfitting estimators when n is sufficiently large, we here consider

only the design points, denoted by X, such that
lim sup ||S;Wh )| < 1 (2.5)
n

for a matrix norm ||-||. In practice, the smoothing operators S, ---, Sy are conducted over compact
sets of design densities. Hence, we need only to deal the case where the design densities have

bounded support. In the case of D = 2, a sufficient condition for (2.5) is

sup fr2(z1,22) 1| <1,

er,s | f1(z1) f2(z2)



where fg(x4) is the density of Xy and fi2(x1,x2) is the joint density of X; and X,. This is exactly
the restriction (4) in Opsomer and Ruppert (1997). Then by Lemma 2 in the appendix II and
direct matrix multiplication

limsup||S7S5||, < 1,
n

where ||A|[; = maxi<;<n > j—; [aij| denotes the norm of the maximum row sum. However for
D > 2, the condition in (2.5) is not easy to be replaced with other conditions. In fact, for backfit-
ting algorithm using any smoothing technique, the condition (2.5) must be satisfied to assure the

existence of the backfitting estimators. Hence we restrict the design points in X

3 GENERALIZED LIKELIHOOD RATIO TESTS
3.1 The GLR Test

In this section we define the GLR statistics and develop their asymptotic theory under model
(1.1), which is based on the local polynomial smoother and the backfitting algorithm. The Wilks
phenomenon and optimality are unveiled in this general setting.

For simplicity, we first consider the hypothesis testing problem:
Ho : mD(xD) =0++— H1 : mD(xD) 75 0. (3.1)

This tests whether the Dth variable has any significant contribution to the dependent variable.
The testing problem is a nonparametric null hypothesis versus a nonparametric alternative, as
the nuisance parameters under Hy are still nonparametric. Testing significance of more than one
variable can be dealt with analogously.

As the distribution of €; is unknown, we do not have a known likelihood function. Pretending

that error distribution is normal, N'(0,0?) , the log-likelihood under model (1.1) is

n D

n 1
—5log(2m0?) — == > (Vi —a — Y mg(Xak))*.
2 20° ;= =1

Replacing the intercept « and the unknown function mg(-) by & and mg4(-) respectively leads to

n 9 1
—E log(27r0 ) — FRSSI’

2

where RSS; = Y7 (Y, — & — 21?:1 mq(Xar))?. Maximizing over the parameter o2, we obtain a

likelihood of the alternative model:

_g log (2 /n) — glog(Rssl) -

SIE

Therefore, up to a constant term, the log-likelihood of model (1.1) is taken as £(H1) = —% log(RSSy).
Similarly, the log-likelihood for Hy can be taken as £(Hy) = —% log(RSSp), with RSSg = 373 (Y, —

& — Y P M ng(Xar))?, and mg(zq) the estimator of mg(zg) under Hy, using the same backfitting



algorithm and bandwidths. Following Fan, Zhang and Zhang (2001), we define the following GLR

statistic:
n RSSy n RSSy; — RSS;
\,(Hy) = [¢(H,) — ¢(H, 1 ~ ’
(Ho) = [((H1) — £(Ho)] = 8RSS; © 2 RSS;

which compares the likelihood of the nearly best ﬁttlng in the alternative models with that under

(3.2)

the null models. The null hypothesis is rejected when A\, (Hj) is too large.

3.2 Asymptotic Null Distribution
Let 15 = [u'K (u)du, v; = [w'K?(u)du, fori =0,1,---,and Sq = (Wivj—2) (fori,j =1,---,pg+1)
be a (pg + 1) X (pg + 1) matrix. Denote the convolution of K,(z) with K;(z) by K, * K;, where

Ks(x) = xS_IK(x) for s,¢ =1,2,---. Put Cjpati = (Mj, T Jupd+j)T7 (§d,17 T 7§d,pd+1) = e?églu
and Cy) = engglcjyde forj=0,---,pg+1landd=1,---,D. Let

|QD| pp+1 1PD+1
= Z SpKi(0) — 5 Z $p,sSpt K+ Ki(0) |
st 1
200 pp+1 lpD-i-l
Uzz#ﬂ Z SDyt Kt—— Z $D,sSDtKs *Kt||27
D=1 205

. 2 P25, Ky(0) — 2 Lol s sipy Ky x Ki(0)
K= — =
7 | ho sp Ky — IS’J'ZLI 580K« Ki|l3

where Q4| is the length of the support of the den31ty fa(zq) of X4. The following theorem describes

our generalized Wilks type of results conditional on X.

Theorem 3.1 Suppose Condition (A) in Appendiz I holds. Then, under Hy for the testing problem

(3.1),
P{oy (An(Ho) — pn — din) < t| X} 55 0(8),

where dy, = Op(1+ Y1, nhZ(de) +yP, \/ﬁhsdﬂ) and ®(-) is the standard normal distribution.
Furthermore, if nhz(pdﬂ)hp —0 ford=1,---,D, then conditional on X

TKAn ( ) XrKun

In Theorem 3.1, asymptotic normality is given with dj,, unspecified. An asymptotic expression
for this item is very complicated and unnecessary in our opinion. The theorem gives the asymptotic
null distribution, but the di, can be negligible under the condition nh2**™h, — 0 for d =

1,---,D. The above condition holds if nh?*> — 0 and K24 = O(REP ).

Remark 3.1 When K (-) is a symmetric density kernel and py =1ford =1---, D, direct compu-

2p] _1 2\QD\ 1 9 _ K(0)-1K+K(0)
tation yields that i, = 21K (0)— LK< KO), 02 = 421K — 3 K< K[ and rye = SPLEED)

This coincides with the result in the one dimensional nonparametric regression of Fan, Zhang and



Zhang (2001). Therefore, for the additive model, the GLR test has an oracle property in the sense
that though the nuisance functions mg(z4)’s (for d = 1,---,D — 1) are unknown, the GLR test

behaves as though they were known.

From Theorem 3.1, under certain conditions the asymptotic null distribution of the GLR statis-
tic is independent of the intercept and the nuisance functions mgy(-) (d = 1,---, D —1), the nuisance
design densities fg(-) (ford =1,---, D — 1), and the nuisance error distributions over a large range
of bandwidths. We refer to such a result as the Wilks phenomenon.

The asymptotic null distribution offers a method for determining approximately the critical
value of the GLR tests, but one can’t expect this kind of approximation to be highly accurate
unless the bandwidth hp is sufficiently small so that the degree of freedom rg pu,, is large. However,
the Wilks type of result allows us to simulate the null distributions of the GLR tests over a large
range of bandwidths with nuisance functions fixed at their estimated values. This justifies the
conditional bootstrap method in Section 4.2. An alternative approximation of the null distribution
can be obtained by using a calibration idea of Zhang (2003). When hp — oo, the local polynomial
fitting becomes a global polynomial fitting. Hence, one would expect the degree of freedom to be
pp. This prompts Zhang to use X%K n+pp 1O approximate the null distribution.

Now we consider a little more complicated hypothesis testing problem:

HU . medo(xD*do) = ... = mD(mD) =0+¢+— H1 : medO(fL‘D—dO) 7& 07 s, 0r mD(.’L'D) 7é 07
(3.3)
for some integer dy. This generalizes problem (3.1). Let
2 9] [ 1 ]
/J’;L = Z Z Sq it Kt -z Z Sqr sSd’t K x Kt(o) )

d'=D—dy [ st 1 J

, D 2|Qd,| rett oy
o'n2 = Z . I Z Sq 1 Ky — 5 Z SqrsSar 1 Ks * Kt||2v

d=D—dy 7 s,t=1

and . = 2u! /0,2,

Theorem 3.2 For the hypothesis testing problem (3.3), under the same conditions as in Theorem

"2

= and

3.1, the results in Theorem 3.1 continue to hold but with u,, o> and ri replaced by u!,, o
e, where the condition nhfl(p”l)hp — 0 for all d’s is replaced by for all d’s and any d' € {D —

do,--+, D}, nh2P Vg 0.

Interestingly, ! and 0;2 are the summation of the individual p, and o2 given in Theorem
3.1. However, the normalization constant % changes with the testing problem and the degree of
freedom 7’ ), are no longer the summation of those for testing individual problem such as (3.1).

These mark the difference from those given by Fan, Zhang and Zhang (2001). The result is also



different from the case of the degrees of freedom of the fit for an additive penalized spline model
(see Section 8.3 of Ruppert et al., 2003). However, when all p; are equal, the additivity of degrees
of freedom holds.

The GLR tests are also applicable to testing the problems with parametric models as the null
hypothesis. Consider the following testing problem with parametric null hypothesis:

Hy: mg(z1,---,zp) € Mo +— Hy: my(z1,-++,2p) ¢ Mo, (3.4)

where Mg = {my(z1,---,zp) = ZdD:1 mq(zq;0) : 6 € O} is a set of functions of parametric
forms, and the parameter space © contains the true parameter value 6y. As before, we can use
the local polynomial fitting technique and backfitting algorithm to fit the alternative model and
obtain the log-likelihood /¢, (Hy) for Hy. By maximizing the likelihood for the fully parametric
model under Hj, we build the log-likelihood /¢, (Hy). Denote by \,(Mg) the GLR statistic for
the testing problem (3.4). To derive the asymptotic null distribution of the test statistic, some
conditions on Mg and © are required to render the likelihood ratio test statistic of order op(hgé)

for the following parametric testing problem:
Hy: m(z1,---,zp) = mg, (21, -+, zp) ¢ Hi : m(z1,---,zp) € Mo.

For ease of exposition, the required conditions are referred to as “Condition B”. Conditions similar
to those of Cramér [see for example, conditions (C1)-(C5) on page 102 of Le Cam and Yang (1990)]
are sufficient in the present setting, as the classical Wilks theorem holds and hence the likelihood

ratio statistic is of order O,(1).

Theorem 3.3 Suppose that Condition (A) in Appendiz I and Condition (B) holds. Then, under
Hy for the testing problem (3.4),

P{o} Y (M(Me) — ph — din) < t| X} 55 2(1),

where dy, = Op(1+ X5, nhz(pdﬂ) +yP, \/ﬁhzdﬂ). Furthermore, if nhz(pdﬂ)hd/ — 0 for all d’s

and any d', then conditioning on X
T;(An(M@) 2 Xz;(ujba
where 1 and 072 are the same as y/, and 0,2 with D — do = 1 and 1%, = 2u% /o2,

3.3 Power of GLR Tests

We now consider the power of GLR tests in the framework of Fan, Zhang and Zhang (2001). For
simplicity, we focus on the null hypothesis in (3.1).
Assume that hp = o(n~1/(2Pp+3)) 50 that the second term in the definition of d,, is of smaller

order than o,,. As to be seen in Theorem 3.5, the optimal bandwidth for the testing problem (3.1) is
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hp = O(n~2/(4Pp+5)) which satisfies the condition hp = o(n~"/(Pr+3)) Under these assumptions,

Theorem 3.1 leads to an approximate level « test based on the GLR statistic:
dn = IH{n(Ho) — pn, > 2a0n}-
If we consider the contiguous alternative of form
Hyp 2 mp(Xp) = Gp(Xp),

where G,,(Xp) — 0 as n — oo, then the power of the GLR test can be approximated by using the

following theorem.

Theorem 3.4 Suppose that Condition (A) in Appendiz I holds and that nhz(pdﬂ)hp — 0 for
d=1,---,D. If BE{G,,(Xp)| X1, -, Xp 1} =0 and hp- 31" | G%(Xp;) 5 C(Q) for some constant
C(G), then under Hyy, for the testing problem (3.1)

_ c
Plot, (Aa(Ho) = pin — dzn) < t{X} = @(t),
where Wy, s the same as that in Theorem 3.1,

don = 3" G2(Xpr)(1 + 0y (1),
=1

and

=1

n
Olp = \IU% + U_QZG%(XDZ').

Remark 3.2 For testing problem (3.1), the alternative hypothesis depends on many nuisance
functions mg for d = 1,---, D — 1. Theorem 3.4 shows that the asymptotic alternative distribution
of the GLR testing statistic is independent of the nuisance functions my(z4), for d # D, over a
large range of bandwidths. This allows us to compute the power of the test via simulations over a

large range of bandwidths with nuisance functions fixed at their estimated values.

Let z1_q be the (1 — a)th percentile of A'(0,1). By Theorems 3.1 and 3.4, the power of the test

is approximately given by
Py, (W) =1 — 80y, onz1_a — o7, dan).

To study the optimal property of the GLR test, we consider the class of functions G,,, satisfying
the following regularity conditions:
Var(G},(Xp)) < M(E[G (Xp)])*
nE[G%(Xp)] > M, — oo, (3.5)
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for some constants M > 0 and M,, — oco. For a given p > 0, let
Gu(p) ={Gn € Gu: E[G(XD)] > p*}.
The maximum of the probabilities of type II errors is then given by

Bla,p) = sup B(a,Gn),
Gnegn(p)

where f(a,G,) = P(¢, = 0lmp = G,) is the probability of type II error at the alternative

Hy, : mp = G,. The minimax rate of ¢, is defined as the smallest p,, such that

(i) forevery p > pyn, @ > 0, and for any 8 > 0, there exists a constant ¢ such that 3(«, cp) < S+o(1);

and

(ii) for any sequence p} = o(py), there exist a > 0, 5 > 0 such that for any ¢ > 0, P(¢, = 1|mp =
Gp) = a+ o(1) and liminf,, f(a, cp}) > B.

This measures how close are the alternatives that can be detected by the GLR test ¢p,.

Theorem 3.5 Under Condition (A) in Appendiz I, if hsdﬂ = O(h%DH) ford=1,---,D—1, then
for the testing problem (3.1) the GLR test can detect alternatives with rate p, = n—2(Pp+1)/(4pp+5)

when hp = c*nfz/(4pD+5) for some constant c,.

Remark 3.3 The GLR tests are asymptotically optimal in terms of rates of convergence for non-
parametric hypothesis testing according to the formulations of Ingster (1993) and Spokoiny (1996).
While Ingster (1993) and Spokoiny (1996) focus only on the univariate setting, their minimax
lower bound is applicable to our additive model with known functions (mq,...,mp_1). Its rate of

convergence is the same as the rate of upper bound given in Theorem 3.5.

Since the distributional property in Theorem 3.1 depends implicitly on the assumption for the

bandwidths Als, in particular, nhz(p atlp,

p = o(1) is required to ensure the Wilks properties. This
suggests that the bandwidths suited well for curve estimation may not be the best for testing. The
power of the GLR tests depends on the smoothing parameters. In fact, Theorem 3.5 shows that

theoretical optimal bandwidth hp is ¢*n=2/(4#?p+5) for some constant c*.

4 Implementations of GLR tests

The GLR test involves the determination of the null distribution and the choice of bandwidth in

practice. We now address these two issues.
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4.1 Bias reduction

The asymptotic null distribution of the GLR statistic A, (Hy) involves a bias term dy,. The band-
width has to be small enough to make it negligible. However, in practice, the size of bandwidth
that would make the bias negligible is unknown and it is desirable to reduce bias automatically. For
the testing problem (3.4), we will demonstrate how this objective can be achieved. The basic idea
is inspired by the prewhitening technique of Press and Tukey (1956) in spectral density estimation
and the technique that was employed by Hardle and Mammen (1993) for univariate nonparametric
testing. The method is also related to the nonparametric estimator that uses a parametric start of
Hjort and Glad (1995) and Glad (1998). Recently, Fan and Zhang (2004) advocate the use of the
bias reduction method in the study of testing problems for spectral density.

Consider the testing problem (3.4). The additive model (1.1) is equivalent to

Y* :m*(Xlia"'aXDi)+5ia (41)

)

where Y;* = Y; — & — m(Xlia"'aXDi§§) and m*(Xy;,---, Xpi) = a+m(Xy;, -+, Xpi) — & —

m(X1i, -, Xpi §) with 6 being the least-squares estimator of # under the null hypothesis in (3.4).
Therefore, the testing problem (3.4) is reduced to the following problem:

Hg : m*(Xla"' 7XD) € MO And HT : m*(Xla"' 7XD) ¢ MOa (42)

where My = {&* = 0,m] = --- = m}, = 0}. This is the specific case of (3.4) and hence the GLR
test can be applied. Denote by A} (Meg) the resulting GLR statistic. As the regression function
m*(Xy,--+,Xp) is nearly zero under Hy, there is little bias involved for the backfitting estimator.
This is demonstrated by the following theorem, which allows virtually all of the bandwidths that

are used in practice.

Theorem 4.1 Suppose that Condition (A) in Appendiz I and Condition (B) hold. Then condi-
tioning on X under Hy for the testing problem (3.4)

2
T;(A;(M@) < Xr;(ujba
where py, and vy, are the same as those in Theorem 35.3.

4.2 Conditional Bootstrap

To implement the GLR tests, we need to obtain the null distributions of the test statistics. In
Section 3.2, the asymptotic distributions of the GLR statistics were given, which demonstrates
that the asymptotic null distributions are independent of nuisance parameters/functions. For a
finite sample, this means that the null distributions do not sensitively depend on the nuisance pa-
rameters/functions. Therefore, the null distributions can be approximated by simulation methods,

via fixing nuisance parameters/functions at their reasonable estimates. This simulation method
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is referred to as the conditional bootstrap method, which is detailed below. To be more specific,

consider (3.1).

1. Fix the bandwidths at their estimated values (iLl, e iLD), and then obtain the estimators of

the additive components under both the null and the unrestricted additive models.

2. Compute the GLR test statistic A,,(Hp) and the residuals &; (for ¢ = 1,---,n) from the unre-

stricted model.

3. For each X;, draw a bootstrap residual &; from the centered empirical distribution of &; and
compute Y;* = &+m1(X;1)+---+mp_1(X;p—1)+&f, where & and m;(-) (j < D —1) are the
estimated regression functions under the unrestricted additive model in step 1. This forms a

conditional bootstrap sample {X;, Y;*}1 ;.

4. Using the bootstrap sample in step 3 with the bandwidths (iLl, e fLD), obtain the GLR statistic

A5 (Hp) in the same manner as A\, (Hp).
5. Repeat steps 3 and 4 many times to obtain a sample of statistic A} (Hp).

6. Use the bootstrap sample in step 5 to determine the quantiles of the test statistic under Hy.
The P-value is the percent of observations from the bootstrap sample of A} (Hy) whose value
exceeds A, (Hp).

Note that the null distribution of A, (Hy) depends on («,my,...,mp_1) and distribution of ¢.
As shown in Theorem 3.1, such a dependence is asymptotically negligible. Hence, they can be
fixed at the values (&, 1, ..., mp_1) and the distribution of £*. The following theorem shows the

consistency of the conditional bootstrap method.

Theorem 4.2 Assume that the conditions in Theorem 3.1 hold. Then, under Hy in (3.1),
P{oy, (Ni(Ho) = pn — dun) < 11X, F} = 8(0),

where Fy, denotes the empirical distribution of the sample {X;, Y}l ;.

4.3 Choice of Bandwidth

The test statistic A, (Hy) depends on the choice of the bandwidths {hg} (ford =1,---, D). In fact,
it can be regarded as a family of the test statistics indexed by hg. The optimal bandwidths for
hypothesis testing differ somewhat from those for estimating the additive components, which was
elaborated in Section 3.3.

The choice of optimal bandwidths for hypothesis testing has not been seriously explored in the
literature, but the optimal bandwidths for estimating the underlying additive components provide a

good proxy for those in the testing problem. Opsomer (2000) gave theoretic optimal bandwidths for
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a D-dimensional additive model. We will use these theoretic optimal bandwidths in our simulation
study. For real data examples, the automatic bandwidth selection rule of Opsomer and Ruppert
(1998) will be used. Due to the difference of the optimal bandwidths between the fitting and
testing, it is a good practice for us to explore the sensitivity of the testing results by varying the
bandwidths over a relatively large range. The correlation between \, (Hp) using bandwidth h; and
that using bandwidth hs is expected to be large when h; = hy. See the work of Zhang (2003) for
the result on nonparametric regression, which corresponds to D = 1. Thus, for many applications,
it suffices to use h = hop /1.5, hopt, 1.5hgp, corresponding to “undersmooth”, “right smooth” and
“oversmooth”, where hgy; is the asymptotically optimal bandwidth used for estimation. This idea

will be followed in our simulations and real data analysis.

5 SIMULATIONS

The purpose of the simulations is twofold: demonstrating the Wilks phenomenon and the power of
the proposed GLR tests. The effect of the error distributions on the performance of the GLR tests
is also investigated. Numerical results show that the GLR tests with bias correction outperform
their counterparts. Throughout this section, the Epanechnikov kernel is employed.

Example 1. Consider the following bivariate additive model:
Y =mi(X1) + ma(X2) +¢, (5.1)

where m1(X1) = 0.5 — 6X?2 + 3X3, mo(X2) = sin(nX5), and the error ¢ is distributed as N(0, 1).

The covariates are generated by the following transformation to create correlation:

X 1 05 U
(X;>:<0.5 1><U;> (5:2)

where U;’s are independent and identically distributed as U(—0.5,0.5).

We employ the optimal bandwidth hg oy for the smoother on mg4(z4) (see Opsomer 2000). To
demonstrate the Wilks phenomenon for the GLR test, three levels of bandwidth are evaluated
with ho fixed at its optimal value: h; = %hl,opty hi1,opt, or %hl,opt- The null hypothesis is taken as
Hy : mgy(z2) = 0 (where mi(x1) is a nuisance function). We also use three levels of m(X;) to

demonstrate that the test does not depend on the nuisance function m,(X;):

myg(X1) = [1 + 6\/Var(0.5 —6X2 +3X3)| (0.5 —6X7+3X}),

where § = —1.5, 0, 1.5. For the GLR test, we drew 1000 samples of 200 observations. Based
on the 1000 samples, we obtained 1000 GLR test statistics. Their distribution is obtained via a
kernel estimate with a rule of thumb bandwidth: A = 1.06sn "2, where s is the standard error
of the normalized GLR statistics. Figure 1 shows that the estimated densities of the normalized

GLR statistics, rx\,(Hp). As expected, they look like densities from x2-distributions, or more
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generally, gamma distributions. The top panel of Figure 1 shows that the null distributions follow
x?-distributions over a wide range of bandwidth h; (the degree of freedom depends on bandwidth
he but not hi). The middle panel demonstrates the Wilks type of phenomenon: For three very

different choices of nuisance functions, the null distributions are nearly the same.
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Figure 1: Results for Example 1. Estimated densities for the GLR statistics among 1000 simula-
tions. Top Panel: with fized hy = hg op, but different bandwidths for hy ( solid — hy = %hl,opt;
dashed — h1 = hi op¢; dash-dotted — hy = %hl,opt); Middle Panel: with different nuisance functions
and optimal bandwidths hg = hgope ( solid — B = —1.5; dashed — f = 0; dotted — 3 = 1.5); Bottom
Panel: estimated densities for the GLR statistics under different errors (solid — normal; dashed —
t(5) ; dotted — x?(5); dash-dotted — x*(10));

For the power assessment, we evaluate the power for a sequence of alternative models that are
indexed by 6:
Hy: mapg(xo) = Osin(nzy), 0<60 <1, (5.3)
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ranging from the null model to reasonably far away from it. The left panel of Figure 2 reports the
differences between the null and the alternatives in (5.3).

For each given value of 8, we use 3000 Monte Carlo replicates for the calculation of the critical
values via the conditional bootstrap method (see Section 4.2), and compute the rejection frequencies
based on 600 simulations. The parameter 0 is related to the separation distance between the null and
the alternative hypotheses. Note that when 8 = 0, the alternative is the same as the null hypothesis,
so that the power should approximately be 0.05 (or 0.10) at the 0.05 (or 0.10) significance level.
This is indeed the case, as shown in Table 1, which again implies that the Monte Carlo method
gives a correct estimator of the null distribution. When € increases, the alternative moves further
away from the null hypothesis. One would expect the rejection rates of the null hypothesis to get
higher and higher, which is evidenced in Table 2.

To investigate the power and the influence of different error distributions on the GLR tests, we
now consider the model (5.1) with different error distributions of . In addition to the standard
normal distribution, the standardized ¢(5) and the standardized x?(5) and x?(10) are also used.
Note that the ¢(5)-distribution is of heavy tail and the chi-squared distributions are asymmetric.
They are used to assess the stability of the performance of the GLR tests for different error dis-
tributions. The sample size is n = 200. The estimated densities of the normalized GLR statistics
under the above four different error distributions are reported in the bottom panel of Figure 1. The
figure shows that the null distributions of the tests are approximately the same for different error
distributions and again exemplifies the Wilks phenomenon stated in Theorem 3.1. The powers of
the GLR tests for the alternative sequence in (5.3) under different error distributions are given in
Table 1, which shows a surprisingly stable performance of the tests for different error distributions
with the characteristics of light or heavy tails and symmetric or asymmetric densities. The numer-
ical results here suggest that the GLR tests not only have high power to differentiate the null and

the smooth alternatives, but also possess robustness, to some extent, against error distributions.

Table 1: Powers of the proposed tests under different error distributions

a  error distr.\ 8 0.0 0.1 0.2 0.4 0.6 0.8 1.0
N(0,1) 0.057 0.068 0.192 0.592 0.948 0.997 1.000

t(5) 0.043 0.068 0.146 0.537 0.903 0.998 1.000

0.05 x2(5) 0.048 0.077 0.175 0.640 0.963 0.995 1.000
x2(10) 0.053 0.090 0.230 0.657 0.952 0.995 1.000

N(0,1) 0.095 0.130 0.280 0.728 0.977 0.997 1.000

t(5) 0.090 0.150 0.255 0.710 0.952 1.000 1.000

0.10 x2(5) 0.088 0.135 0.268 0.727 0.973 0.997 1.000
x2(10) 0.087 0.133 0.298 0.717 0.967 0.998 1.000

Example 2. Instead of considering a nonparametric null hypothesis against a nonparametric

alternative, we deal with parametric null hypothesis to compare the performance of the bias cor-
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Figure 2: Difference between the null and the alternative hypotheses. Left panel: for ezample 1;
Right panel: for Ezample 2 ( star — 6 = 0; dotted — 60 = 0.2; check — 6 = 0.4; plus — 6 = 0.8; solid-
0 =1.0).

Table 2: Powers of the proposed tests under different error distributions

a  error distr.\ § 0.0 0.2 0.4 0.6 0.8 1.0
N(0,1) 0.055 0.238 0.803 0.995 1.000 1.000

t(5) 0.038 0.206 0.792 0.998 1.000 1.000

0.05 x2(5) 0.055 0.193 0.780 0.985 1.000 1.000
x2(10) 0.055 0.235 0.810 0.993 1.000 1.000

N(0,1) 0.132 0.328 0.875 1.000 1.000 1.000

t(5) 0.085 0.315 0.870 1.000 1.000 1.000

0.10 x2(5) 0.122 0.317 0.872 0.995 1.000 1.000
x2(10) 0.113 0.338 0.888 0.998 1.000 1.000

rected GLR test with its counterpart for a testing problem with a parametric null hypothesis. The

following three dimensional additive model is used:
Y :m(Xl,XQ,Xg) + e, (54)

where m(X1, Xo, X3) = m1(X1) + mo(Xa) + m3(X3), m1(X1) = i X3P, me(X2) = sin(beX>),
and m3(X3) = sin(b3X3) with b = (b1, ba,b3) = (9,37, 37). The covariates are generated from
a joint distribution with marginals N(0,1/9), the correlation between X; and X» is 0.25, and
X3 is independent of (X7, X3). We rejected all observations in which one of the covariates fell
out [—0.5,0.5] and replaced them with new observations, so that the support of the covariates is
bounded. The error ¢ is distributed as N'(0,1/4). The null model is taken as Hy : {(b1,ba,b3) €
R3}, which is fully parametric and can easily be fitted by the nonlinear regression function “nlinfit”
in Matlab. Throughout this example, the bandwidths are fixed at their optimal values and the

sample size is n = 200.
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The power of the GLR test is evaluated at the following sequence of alternative models:
Hy . mg(Xl,Xg,Xg) = m(Xl,XQ,Xg) +6X5 - mg(Xg), 0<H<1. (55)

When 6 = 0, Hy = Hy. As 0 increases, the alternative model Hy deviates away from Hy. The right

panel of Figure 2 gives the difference between the null and the alternative models.

(a) Powers Functions (0=0.10) (b) Powers Functions (0=0.05) (c) Powers Functions (0:=0.01)

08 08 1 o8
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0 0 0
(d) Powers Functions (¢=0.10) (e) Powers Functions (¢=0.05) (f) Powers Functions (¢=0.01)
. . . . . i . . . . . . . . .
0.8t 4 08 1 o8t
0.6/ 1 06t 1 06f

Figure 3: Power functions of the GLR tests for Example 2. Top panel: h = h,,; Bottom panel:
h = h,, /2. From left to right, significance levels are oo = 0.10, 0.05, and 0.01, respectively. The
dashed lines are for the bias corrected method, and the solid lines are for the tests without bias
reduction.

For each given 6, we simulated data from the alternative model Hy. The percents of rejection
for Hy were computed based on the same simulation method as in Example 1. The results are
given in Figure 3. When 6 = 0, the power of both tests become the sizes of the tests. It is evident
from Figure 3 that the bias corrected test is more powerful than its counterpart. Note that the
bandwidths that are used above are optimal for estimation. By setting the bandwidths to be half
of their optimal values, the bias of the backfitting estimator decreases and the relative advantage of
the bias correction method over its counterpart declines. This is evidenced in Figure 3, where the
power of the bias corrected test increases faster than its counterpart as the bandwidths increase.

These are in line with our asymptotic results.
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6 Real Data Example

We use the proposed GLR tests on the Boston Housing dataset to demonstrate their usage in
applications. The dataset comprises of the median value of homes in 506 census tracts in the
Boston Standard Metropolitan Statistical Area in 1970, and 13 accompanying sociodemographic
and related variables. It has previously been studied by several authors, including Harrison and
Rubinfeld (1978), Belsley, Kuh, and Welch (1980), Breiman and Friedman (1985), and Opsomer
and Ruppert (1998). Of the 13 variables, we use the following dependent variable and covariates

of interest to demonstrate how our GLR tests work in practice:

MV: median value of owner-occupied homes (in $1,000)

RM: average number of rooms

TAX: full property tax rate ($/$10,000)
PTRATIO: pupil/teacher ratio by town school district
LSTAT: proportion of population that is of “lower status” (%).

The last four covariates were also chosen by Breiman and Friedman (1985) and Opsomer and
Ruppert (1998) to investigate the factors that affect the median value of owner-occupied homes.

Opsomer and Ruppert (1998) analyzed the dataset via a four dimensional additive model:
E[MV — M—V|X1, X9, X3, X4] = ml(Xl) + mg(Xg) + mg(Xg) + m4(X4), (61)

where X; = RM, Xy = log(TAX), X3 = PTRATIO, and X4 = log(LSTAT). The local linear
smoother and a fully automated bandwidth selection method were employed after six outliers were
removed. They suggested that the fitted additive components are of apparent features: a linear
term for PTRATIO and logarithmic terms for TAX and LSTAT.

We now focus on the model diagnostic problems. Specifically we check whether the fitted
functions are of certain parametric forms. Added variable plots (Cook and Weisberg 1982) are useful
in this case, see Opsomer and Ruppert (1998). Fitting the data with model (6.1) via the method
of Opsomer and Ruppert (1998), we get the partial residuals. Figure 4 reports the partial residual
plots along with their simple polynomial regression to indicate their trends and the fitted additive
components based on the backfitting algorithm with a local linear smoother. More precisely, the

following fully parametric models are fitted to the partial residuals:

mi(X1) = a1+ 0 X+ X?, me(Xa) = az + by Xo,
m3(X3) = a3+ b3X3, ma(Xs) = as + bsXy. (6.2)

Intuitively, apart from the fitted line for the variable RM, these regression lines seem consistent

with the data. It is natural to ask whether the additive components apart from the variable RM
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Figure 4: Partial residual plots along with fitted regression curves for the Boston Housing dataset.
Solid — estimated additive functions; dashed — empirical regression lines based on model (6.2).

admit these parametric forms, namely, whether the following semiparametric model is consistent

with the data:
ma(X2) = ag + baXo, m3(X3) = a3z + b3 X3, ma(Xy) = aq + by Xy, (6.3)

where mq(X7) is unspecified.

Table 3: Results of the GLR tests. RSSy and RSS; — sum of squared residuals for the GLR test
under Hy and Hi, respectively; GLRT — the normalized GLR statistic.

Bandwidth RSSy; RSS:1 GLRT P-value
%hopt 19743 17219 31.0 0.097
%hopt 2044.0 1812.5 27.0 0.034
h,pt 2091.2 1904.3  20.8 0.016
%hopt 2158.6 2042.3 12.0 0.046
2h,pt 2301.7 2231.6 6.65 0.179

We now use our GLR statistic to test whether the semiparametric null model (6.3) holds against
the additive alternative model (6.1). To compute the P-value of the test statistic, we need to find the
null distribution of the GLR statistic A\, (Hp). This can be estimated by the conditional bootstrap
method in Section 4.2. The P-value of our GLR test is estimated as zero by employing the optimal
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Figure 5: Partial residual plots along with fitted regression curves fora random subsample of the
Boston Housing dataset. Solid — estimated additive functions; dashed — empirical regression lines
based on model (6.2).

bandwidth and using 1000 bootstrap replicates. This does not come as a surprise to us, as the
P-value depends heavily on the sample size. With a sample size as large as 500, a small deviation
from the null hypothesis should lead to a tiny P-value. Hence, we take a random subsample of
n = 200 for analysis. The partial residuals from model (6.1) for the subsample are reported in
Figure 5, where the fitted additive components from models (6.1) and (6.2) are also given. The
optimal bandwidth from the automated bandwidth selection rule of Opsomer and Ruppert (1998)
is computed to be h,,; = (1.1129,0.2530,2.1432, 0.2315)7". Visually, similar parametric forms of the
additive components are suggested from Figures 4 and 5. Our interest is to test whether the model
(6.3) is adequate for the subsample. Table 3 reports the results of the GLR tests for five different
bandwidths, using 1000 bootstrap replicates. This provides stark evidence that the semiparametric

model is appropriate for this dataset within the additive models at the 0.01 significance level.

7 Discussion

7.1 Other tests

There are many nonparametric tests designed for certain specific problems. Most of them are in

univariate nonparametric regression setting. See Fan, Zhang and Zhang (2001) for an overview
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of the literature. While they can be powerful for their problems where the tests were designed,
extensions of these tests to multivariate setting can pose some challenges. Further, these tests are
usually not distribution free, when null hypotheses involve nuisance functions. This would hamper
their applicability.

Hypothesis testing for multivariate regression problems is difficult due to the curse of dimension-
ality. In bivariate regression, Aerts et al. (1999) constructed tests based on orthogonal series. Fan
and Huang (2001) proposed various testing techniques based on the adaptive Neyman test for var-
ious alternative models in multiple regression setting. These problems become conceptually simple
by using our generalized likelihood method. Delgado and Gonzélez-Manteiga (2001) developed a
test to select explanatory variables in nonparametric regression based on functionals of a U-process,
while this test can detect a specific class of contiguous alternatives at a rate nos. However, this
requires one to estimate the joint density of the significant variables and the regression function. In
addition, Gozalo and Linton (2001) studied several tests for additivity in generalized nonparametric
regression based on the integration estimation method and the generalized method of moments.
Neumeyer and Sperlich (2003) developed a test for difference of impacts from a specific covariate
on the regression curve in two independent samples, via comparing a distance of the fitted curves
based on the integration estimation approach.

Our GLR tests are motivated by comparing the pseudo-likelihood of the nearly best fitting in
the null and alternative models, which leads to the log ratio of the variance estimators under the
null and the alternative. This lends further support to the widely used goodness-of-fit test for a
parametric regression that was constructed based on the variance estimators from a parametric
fitting and a nonparametric kernel smoother, see for example Dette (1999). Our GLR tests are
asymptotically distribution free, and possess the Wilks’ type of results. They are asymptotically
optimal in terms of convergence for nonparametric hypothesis testing according to the formulations
of Ingster (1993) and Spokoiny (1996).

7.2 Extension

Under #2d errors, the generalized likelihood ratio tests are derived for nonlinear additive models
(1.1) based on the local polynomial smoother and the backfitting algorithm. For the heteroscedastic

errors, for example the model
D
Yi=a+ Y my(Xa)+e, i=1-n,
d=1

where ¢; = o(X;)u; and 0%(X;) = 51 03(Xy;) is also of additive form to assuage the curse of
dimensionality. Note that

e? = 0*(X;) + 0% (X;) (uf — 1). (7.1)
Our method continues to apply by considering the generalized likelihood ratio statistic for {u;}

which counsists of the following three steps:
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(a) Fit the regression components by backfitting algorithm, and obtain the residuals ¢; = Y; —
Y — Y1 a(Xai);

(b) Obtain the estimator 6(X;) by fitting the model (7.1) with ; replaced by &;, and get the
RSS, = Y1, 42, where 4; = &;/6(X;) .

(c) Compute RSSy = Y% ,(¢9)?/6%(X;) and form the GLR (3.2), where &) is the residual under
Hy.

The conditional bootstrap approximation in Section 4.2 can also be adapted to this situation, if
one draws bootstrap residuals from the centered empirical distribution of {4;};" ;. For other forms
of the conditional standard deviation o(X;), the above method still applies but with other fitting
techniques for o(X;). The techniques can also be extended to the generalized additive models
(Hastie and Tibshirani, 1990). We would expect that similar results continue to hold.

In implementation, two forms of bandwidths have been introduced: constant bandwidth and
constant span (see e.g. LOWESS in Cleveland, 1979). The constant span has an advantage of
avoiding the sparsity of design points, but the bandwidths at such regions are large and hence
it can introduce large modelling biases. When the constant span is used, its effective bandwidth
depends on the design density and is usually not a constant. Our asymptotic results can be extended
to such a constant span case, but its normalization constant and degree of freedom will depend
on nuisance functions under the null hypothesis. In other words, the Wilks phenomenon does not
hold and this makes estimating the null distribution harder. The situation is very much like using
the ordinary GLR tests in the heteroscedastic model. The asymptotic results can be extended but
the normalization constant and degrees of freedom depend on the unknown variance function. See

Remark 4.2 of Fan et al. (2001) for this kind of results.
APPENDIX I: Condition (A)

To derive the asymptotic distributions of the testing statistics, we make the following technical

assumptions and use the following notation.
(1) The kernel function K (z) is bounded and Lipschitz continuous with a bounded support.

(2) The densitiesfq(zq) of X4 are Lipschitz continuous and bounded away from 0, and have

bounded supports g ford=1,---,D.
(3) The joint density of X4 and Xy, fqa (24, z4 ), is Lipschitz continuous on its support Qg X Q.
(4) As n — oo, hg = 0 and nhg/log(n) - co ford =1,---,D.
(5) The (pq + 1)th derivatives of my ( for d = 1,---, D ) exist and are bounded and continuous.

(6) Elei]* < co.
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APPENDIX II: PROOFS

In this appendix, we give technical proofs of the theorems. Let P; =~ P3 denote P; = Po(1 +
o(1)) a.s., componentwise for any matrices Py, Py of the same dimension. For any constant d, d
is the n-valued vector (d,---,d)”. Denote by Z the average of components of any vector Z. To
facilitate the exposition of the proofs, we will ignore the intercept « and introduce the following
technical lemmas. Because & is root-n consistent, the same arguments can be used for the case

with the unknown intercept.

Lemma 1 Let assumptions (1)-(4) in Condition (A) hold. Then

T . —1p=1 T&—1lyr—1~d T
Sday, ~ 1 fg (zg)e1 S, H Xy, Kay,

uniformly for xq € Q4.
Proof. The result is derived on page 64 in Fan and Gijbels (1996).
Lemma 2 Under assumptions (1)-(4) in Condition (A), the following asymptotic approzimations

hold uniformly over all elements of the matrices:

117 117

Sz:Sd—T—i—O( " ) a.s.,

117
SZSEI = Trld’ + O(T) a.s.,

where T, is a matriz with (i,j)th element,

l[ faa (Xai, Xarj)
n- fa(Xai) far(Xarj)

[Tzd']ij = —1].

Proof. This is shown in Lemma 3.1 of Opsomer and Ruppert (1997).

Lemma 3 Denote by Ay = (W5, —1)T(WL P —1,) and Any = (W — 1) (Wy — L), If
assumptions (1)-(4) in Condition (A) hold, then conditional on X

RSSy — RSS; = YT [A,1 — An]Y (A1)

and

D—1 D—1
An— A =Sp+Sp" —=Sp"Sp— (D Sa)"Sp —Sp" (> Sa) + R, (A.2)
d=1 d=1

where R, is a matriz whose (i,)th element is [R,];; such that E{[Ry)i,j, [Ruliyjnt = O(1/n?) and
[Rn)ij = O(3) a-s. uniformly for 1 <4,55i1, ji542, j2 < n.

n
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Proof. By definition, we have (A.1). Using an argument which is similar to that in the proof
for Theorem 3.1 of Opsomer (2000), we obtain SZWE\}d] = O(%T) a.s., and (I, — S;W%}d])*l =
I, + O(#), uniformly over all elements of the matrix. Throughout the proof of this lemma, the
term O(117 /n) means that each element is of order O(1/n). Then by (2.4), Lemma 2 and direct

matrix multiplications

D D
Wi =Y Wa = 3 (L - 8;Wy,") 185, - W, )
d=1 d=1
= S+,
where S = Y2 | Sy and U = O(#) a.s.. Hence,
An2 = STS o ST+In+Rn23
where R,,2 = O(%) a.s.. Similarly, we have
-D - _
WE\/[ I = gl-n1 L yl-pl (A.3)
and
— gl-01Tgl-p] _ gl-1] _ gl-DI"
Anl—S S -S -S +In+Rnla
where SI=Pl = P15, Ul-Pl = O(%) a.s., and Ry, = O(%) a.s.. Therefore,

D—-1 D—-1
Api— A =Sp+Sp" —Sp"Sp—(D_Sa)"Sp —Sp" (> Sa) + R,
d=1 d=1

with R, = O(%) a.s.. Furthermore, by assumption (2) in Condition (A), we complete the proof

of the lemma.

Lemma 4 Let

SiXdl Qg (Xa1)
Q4= :
sian de (an)
and .
Q) = (L. - =)Qu,
n
where
(X = zapet OPitlmy(zy)
Qg (7a) = : TPt
(Xan — xq)PaT d

If assumptions (1)-(5) in Condition (A) hold, then

Q= Ctgpdﬂ)hgdHDPded + o(hgdﬂ) a.s.,
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where
OPdimy(Xa1)

pg+1
Oz,

Dpd+1md — :
OPd T my(Xgn)

pg+1
oz,

Proof. The lemma follows by Taylor’s expansion.

Lemma 5 Put B/ = E[W;Y — my|X] and B = EW Y — m|X] = (W), — I,)m, where B is
the conditional bias in estimation of m by the model (1.1). If Condition (A) holds, then

_ 1
B = (I, - s;, Wi, ") ! [m% - BB—D] +mpO(1) + o(WhPH) as.,
D D
B=00_hi*")+ 3 m,-001) as., (A.4)
d=1 d=1

uniformly over all elements of the vector, where B_p = (WE;[D] — In)m(,D) 15 the conditional bias
in estimation of m(_p) by the (D — 1)-variate regression model
D-1

Y/ =" my(Xa) + e
d=1

Proof. Applying the same Taylor expansion approximations as in Theorem 2.1 of Ruppert and

Wand (1994), we obtain

S¢gmy = my + de + 0(h§d+1)-
Then by Lemma 2
* — 1 *
(I, — Sg)mg =Myl — de + O(hgdﬂ)-
It follows from (2.4) that
(I, - Wp)mp = (I, - SpwW,, ") "ML, — S))m)p
* —1r— 1 *
= (L= SpWy, ) mnl - g Q] +oh ) e (A)
Note that
* —D]\— *
(L, - Wp)m(_p) = (L, —SpWh,”) (I, - Sh)m(_p,
= m_p + (L, - SHWL ) IsEB . (A.6)
This, together with (A.5), leads to
1

B =mp0(1) + (L, — Sp Wi, 7)1 Qb — SHB_p + (b2t as.

(pp + 1)

Hence, (A.4) holds by a recursive argument.
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Lemma 6 If Condition (A) holds, then under Hy: mp =0
D ) L D
din = m"(An — Ap2)m + 267 (A — Ago)m = Op(1 + 3 nh2P) 4 3™ mnket) (A7)
d=1 d=1

where Ap1 and Ao are defined in Lemma 8. Furthermore, di, = Op(1) if mq(-) is a polynomial

of order pg ford=1,---,D.

Proof. (i) Under Hy, we obtain from Lemma 5 that

D
m”(Ay — Ap)m =BT ,B_p —BTB = 0,(1 + 3 nh) Py, (A.8)
d=1

By Lemmas 3 and 5, we have under Hy
m” (A, — Ape)le =BL, (WE\}D} - In) e—BT (Wy —I,)e,

E[(Wy —1,)e] =0,

and

D D
(War —Tn)e = Wye —e = Y Sge — e+ 0,(3 nhjH).
d=1 d=1

By directly computing the mean and variance and using Lemma 1, we obtain BTSe = Op(1 +
SE o vrkbith, BTe = 0,(1 4+ X2, /nhbe ™), and hence BT (W, — I,)e is bounded by O,(1 +
S | /nhkth). With the same argument, B:CD(WE;[D] ~L)e = O,(14+X 8, \/nhbeth). Therefore,
the second term in dy, is O,(1 + X7, \/ﬁhzdﬂ), which combined with (A.8) leads to (A.7).

(ii) Assume that mgy(-) is a polynomial of order pg (for d = 1,---, D), then Q4 = 0. Using
recursive reasoning, we obtain B_jp = ZdD;f mgO(1) = Op(%) and B = Op(%). Hence, the first
term in dy, is Op(1). Similarly, the second term in dy,, is Op(1), which completes the proof of the
lemma.

Proof of Theorem 3.1. The proof mainly consists of the following four steps:

(i). Asymptotic expression for RSSy; — RSS;: By definition, we have
_ _ -DlNxs 2 _ 2
RSSy — RSS; = [|W, 'Y = Y| - [|[Wy,Y - Y|,
which can be written, using the notation of Lemma 3, as

RSSp —RSS1 = Y'[An — Ap]Y
= €T(An1 - Ang)é‘ + [mT(Anl - An2)m + 2€T(An1 - An2)m]
= €T(An1 — Ang)é‘ + dip. (Ag)
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From Lemma 6, dy,, is bounded by O, (1 + Y1 n (pdﬂ +y2, \/_hpdﬂ) In the following, we

will show that the first term in (A.9) can be appr0x1mated as:

pp+1 Xpi — Xp;
€T[An1—An2]€ ~ nh Zazaij (Xpi)4 2 Z SDth< JhD )
1<j

pp+1
. Xpj — Xpi ,
— Z 5p,sSp K x Ky <7jh Z) + pr + op(th)
s,t=1 D

= W + 1 + 0p(h3), (A.10)

where p} = 202u, with

pp+1 1PD+1
Hn:hD71|QD| Z §D,t Kt - = Z SDssDtK *Kt(O) .
t=1 st 1
Then, by (A.9)
RSSo — RSS1 &~ W(y) + 201y + dip + 0p(hp'). (A.11)

For readers who are not interested in the proof of (A.10), please skip to (ii). Note that the (j,£)th

element of HJIX%“CTKXM is now
1 _
Lk, (XdZ Xdk> .
hq hq
By Lemma 1, direct matrix multiplications give the (i, j)th element of S :
Pa+1
Xy — Xai
(Sa)ij = —fd (Xai) Z Sa Ky (73 hoa Z) . (A.12)
t=1

Then by directly computing the mean and variance, we obtain from the Chebychev inequality

n 2 pat+1
> € (Sa)ii = |l D 3a:ki(0) (A.13)
i=1 ha t=1
and B
Pd X L X ;
> eiej(Sa)iy & —— Zﬁzﬁgfd (Xai) Z 500Ky (7@ >y d ) : (A.14)

i£] d i

Similarly, using Lemma 1 we have the (i, j)th element of SISy

1 PatlPatt 1 1 Xy — Xge\ 1 Xy — Xgn
(S4Sa)ij ~ - Z Z Sd,s8d t— Z [fd_l(Xdk)fd_'l(Xd’k)_Ks (7) K, <]7>]
pa+1pg+1

n! S0 SasSay — Zpdd’z]kh (A.15)

s=1 t=1
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Then

d+1pdl+1
Z&ﬂj(sgsdl)ij = 26163 Z Z Sdssd’t_ Z Paaijin
1#£] z;ﬁy s=1 t=1 k;éz,]

pat+lpg+1 1

+— 26163 > Sdssd’t_[Pdd’zgzh+Pdd’w]h]
z;é] s=1 t=1
= Lpda1 + Lnddara- (A.16)

It can easily be shown that E(L,g4s2) = 0 and

1 1
Var(Lpda2) = O
ar(Lydar2) (thZhd' * nthl,hd) 7

which implies L,gg0 = Op < 1 o + nhd}\/H)' By the definition of Pdd’ijkh and taking the

nhg
iterative expectation, we get for d # d' and k # 4,5 (i # j)
P faar (Xdai, Xar5)
t—
. fa(Xai) fao (Xarj)

E[Pyaijkn| Xai, Xaj] = + op(1),

uniformly for 4,5 = 1,---,n. Hence for d # d’

2( pd—l—lpd/-l-l
Lpgasn = ngzgj > > SasSa s ElPagijin|Xair Xarj]
1<j s=1 t=1

2(n — 2) (0) ~(0) faar (Xai» Xaj)
n2 ;66‘7 d ~d fd(Xdi)fd’(Xd’j)( (1)

= Op(l)a

where the first approximation is from

_ 1
Eln™" > (Pazijen — E(Paaijin|Xai» Xaj))? <072 > E[Plyiop] = O( W )- (A.17)
k#i,j k#1,2 nhalta
Then, by (A.16), for d # d’
> €igj(SiSa)ij = Oy <1 . ! > (A.18)
it nhd\/ hd/ nhd/\/
By (A.17), we have
"> Pagijen = E(Paaijien| Xai, Xarj) + 0p(1),
ki,
uniformly for 4,57 = 1,---,n, so that
1 Pl faa (Xai, Xar)
STS )i =~ Sd.sSdthbs— po 4
( d d ) J nhd stzl d,s dtl’[’ 1Mt — 1fd(Xdz)fd’ (Xd’])
_ 1 fao (Xai, Xarj) (A.19)

n fa(Xai) fa (Xaj)
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Therefore, for d # d’

- T ISR 0) faw (Xais Xarj)
z; (SuSa)i ZE 'O’ Ja(Xai) fo (Xa;) =) (4.20)

By the definition of Pyg;jx, and using a change of variable, we obtain for i # j and k # 1,5

_ 1 X5 —u 1 X —u
1 Xai — Xgi X — X\ 1
gl (Ka) [ G i (o4 T (04 SR
d d P
X — X
_ ifd‘l(Xdi)Ks « K, <M> ,

which combined with (A.17) leads to

Q

_ Xy — Xy
"> Pugijien = —fd "X K, x Ky <%> : (A.21)
k#i,j

It follows from (A.15) and (A.21) that for 7 # j

pa+1

L _ X — X
(SISa)i; ~ i g::l Sa58acfy (X)) Ky * K, <%> : (A.22)

By the definition of L,44 and (A.21), we have

pa+1 Xd' _ Xd'
A
Lypgn = E gigj Y Sa, sSdt TN Xa) K+ Ky (7] > > . (A.23)
1<j s,t=1

Observing that Ly4q2 = O) (WI\/@) = op(h;"'), by (A.16) and (A.21) we obtain

pa+1

Xy — X _
267,6] Sd Sd 2616] Z Sdssdt (Xdi)Ks*Kt (%) +0p(hd1)' (A'24)
1#£] 1<J s,t=1 d

By (A.22) and the same argument as that for (A.13), we obtain

n o2 patl
> €5(S4Sa)s5 —|Qd| > Bas5aiKs x Ki(0). (A.25)
j=1 s,t=1

Applying Lemma 3, we obtain ¢/ R, = op(hBI) and

D—1
eT[Ap — Apole = 2e7Spe — e (ShSp)e — 267 ( Z Sa) 'Spe + op(hpt).
d=1

This, together with (A.13), (A.14), (A.18), (A.20), (A.24) and (A.25) entails (A.10).

(ii). Asymptotic normality of W,

Denote by G(z) = 2522 5  Ky(z) — pD+11 $D,s8p+Ks * Ki(x). Then by the definition of
W) and direct computation

Xpj — Xpi

o )P = dotor?.

Var[W(,,|X] = 40t 2h2 Z L(Xpi)G(
z<]
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Applying Proposition 3.2 of de Jong (1987), we obtain

Note that
1 Xpo — X
*2 -1 D2 D1yq2
~ —F Xp1))G(——————
pp+1 1 pp+1
~ 2h; Q]| Y DK =5 > 5ps8puKs x Kill3 = o
t=1 s,t=1
It follows that conditional on X
I c
5570 "Wy = N(0,1). (A.26)

(iii). Asymptotic expression RSS;/n = 02 + 0,(1): By the definition of RSS;, we have

RSS, = elA,e+mPA,om+2TA,,m
= e'Ae +BTB +2BT (W) — I,)e.

Referring to the results in the proof of Lemma 6, we obtain
RSS/n =n"tel Apge + 0,(1).
It remains to show that n='e? A, 96 = 0 + 0,(1). Note that from the proof of Lemma 3
Ap=1,+87S—-s—-8ST + R,

where R, = O(%), uniformly over all elements of the matrix. By using an argument similar to

that for (A.10), we can obtain

n"lel'Ape = n_15T1n6+0p(1)

= 0% +0,(1).

(iv) Conclusion: By (iii), (A.11) and the definition of A, (Hj), we have

1 _ 1
)\n(H[]) — Up — pdln + Op(th) ~ 2—

o2

Wny- (A.27)
The combination of (A.27) and (A.26) leads to
_ 1
P{O—nl(An(HO) — Mn — Fdln) < t|X} £> (I)(t),

which reduces to the first result of the theorem. If nhfl(pdﬂ)hp — 0 for d = 1,---,D, then
din = 0p(hpy"), which is dominated by fin,. Then rg A, (Ho)|X < X2, .

Proof of Theorem 3.2. By the same argument as in Theorem 3.1.
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Proof of Theorem 3.3. Let my,(z1,---,2zp) denote the true function of m(zy,---,zp). Then

the GLR statistic A\, (Meg) for testing problem (3.4) can be decomposed as
An(Me) = An(mg,) — A (0), (A.28)
where A, (myg,) is the GLR statistic for the fabricated testing problem with the simple null hypothesis
Hy: m(z1,---,zp) = mgy(z1, -+, zp) ¢ Hi: m # mg,(z1,,2p)
and A’ (0) is the GLR statistic for another fabricated testing problem with simple null hypothesis
Hy: m(z1,---,zp) = mgy(21, -+, zp) +— Hi : m(z1,---,zp) € Mo.

1
By the standard parametric hypothesis theory, the second term in (A.28) is o,(h,,*), which is
entailed by Condition B. This term is negligible in the asymptotic distribution. Hence by the same

argument as that for Theorem 3.1 the result of the theorem holds.

Lemma 7 Suppose Condition (A) in Appendiz I holds and that nh%”)+3 — 0. Then under Hy,,
there exists a A\g > 0 such that

don = G (W = L)' (W" —1,)Gy > X Y G2(Xpi) + o(h3).
=1

Proof. Note that by (2.4)

S5 (L, — W, = @, - spwh, Phw,

and by (A.5)
- — 1
WDGn - Gn - (In - SBWEWD})_I[GTL]_ - 7|Q*D] + O(h%D—i_l) a.s..
(pp +1)!
Then by Lemma 4
_ _ 1

SpL, - WiNG, = @ -spwi”ha, +omiy*) + o 7=) as

This entails that
&, = GIa,-wi,"h'sTsya, —-wh,"ha,

= GI(L, - $pWh Y, —sp Wi, G, +o(hp!) as.

As ||S’,5WE;[D]|| < 1 when n is large enough, the matrix (I, — S*DWE;[D])T(IR — SBWE\}D}) is

positive definite. Denote its minimum eigenvalue by Ay (> 0). Then,

d3, > Mo > G2(Xpi) + o(hph).
=1
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Using (A.12), for any n x 1 scalar vector Z, we have S%Z ~ Z1, which implies that

Hence,

27T 7~ nZ.

IISplla = sup /ZTS%SpZ
1Z||=1
~ sup nZ’
[1Z]|=1
< 1,

by using the Cauchy-Schwartz inequality. Therefore, the matrix I, — S}‘JTS’b is asymptotically

non-negative definite, and its eigenvalues are in [0,1]. It follows that

d2n

>

Furthermore, if hp 31 | G2(Xp;)

Proof of Theorem 3.4.

RSSy — RSS:

3k
2n

Mo D G2(Xp;) + o(hph).
=1

+ G (L = Wi, ) (L, - 878D (L, — Wi, ") G,

(A.29)

O(1) a.s., then by direct but tedious algebra, we obtain

n

Under Hy,, by the definition of B and B_p,

In3

dan = 0> GE(Xpi)) = O(hp'). (A.30)
=1
Write
YT A — Ap]Y
el [Ap1 — Apgle + 26T [Ap1 — Apo]lm + m' (A, — Ajp]m
Int + Ino + Ips. (A.31)
BT ,B_, - BB +2BT ,(W,,”) - 1,)G, + GI(W[” - 1,)T (W[, - 1,)G,.

Note that from Lemma 5 both B and B_p are of order O,(X5; thH + %) It follows that

In3 = 2BZ—ﬂD (WE\}D] - In)Gn

D
+GIWL 1) (W - 1,)G + 0, (14 3 nh3®4HY). (A.32)
d=1

By the definitions of A,; and A2 in Lemma 3 and the result in the proof of Lemma 6, we obtain

In2

~1L,)"'B_p + 27 (W,

D
~ 1) (WL, —1,)G, + 0,(1 + Y Vakketh),

CP 1) T WP - 1,) G, - 2BT (W — Iy)e

(A.33)
d=1
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The combination of (A.31) with (A.32) and (A.33) leads to

RSSy— RSS, = ILy+e (Wh2 1) wh”-1)G,+2B",(W,,” -1,)G,

+GIwh P o1,) "W, - 1,)G, + 0, <1 + i N i nhj(”d“)>
N dD:1 d=1
= Iy +Cn+ Dy +doy + O, (1 + 3 Vahktt £y nhff”””) . (A.34)
d=1 d=1
We now assess each of the above terms. Note that by (A.10)
Int = Wiy + 202 1in + 0p(hph). (A.35)
Using (A.3), we obtain
D, = 2B’ sl-Yg, - 2B ,G, + 2B, Ul-"lG,,.
By the Cauchy-Schwartz inequality, we have
IBL,Gal < [IBopl| [|Gall = 0p(1)

and

n

BT, UNPIG, = O )Y I(B p)il Y 1Gu(Xp))| = 0p(hp').
i=1 j=1

Using (A.12), one gets
BT ,SI7P1G,, = o,(h}).

Hence,

Dy, = op(hp"). (A.36)

Observing that both Sq and S4S, (for d,d' # D) are of order Ry, = O(%) , we obtain from
(A.3) that
don = GLG,, + GIR3,G,,.

Note that Rgs, does not involve Xp;,---, Xp,. By conditioning argument and directly computing

the mean and variance, the second term above is 0,(h'). Hence,

o = 3 G2 (Xp2) + 0y (). (4.37)

=1
Similarly, we have
Cn =l G + €T R3, Gy, = TGy, + 0y (B3},

which conditional on X is asymptotically identically distributed as N (0, %) This together with

D
(A.26) and (A.34)-(A.37) yields the result of the theorem.
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Proof of Theorem 3.5. The argument used here is similar to that for Theorem 8 of Fan, Zhang
and Zhang (2001), but the technical details are much more complex. Under Hy, : mp(Xp) =
Gn(Xp) and under Condition (A), it follows from (A.34), (A.35), and (A.36) that for hp — 0,

D D
“An(Ho)o? = —no?(1 4+ 0p(1)) = Wiy /2 = don/2 + Op(1 + 3 v/mhle ™ £ 3 np2PetD)y — ¢, /2,
d=1 d=1

uniformly in G,, € G,. Thus, by definition

Bla,Grn) = P{Uﬁl(_An(HO) + tn) 2 za| X'}

Wn n
- P{a,gl l——(; e Onyo, 1+Z\thd+1+znhd”d“>)

> Za |X}

9 2
20 20 20 = =
= Pln + P2n

with

2pD+3 4pp+5
Pln:P{Un ( 202 )+\/_h b1n+nhD2 b2n_\/th3nZZa7|b1n|SM7|b2n|SM|X}7

2PD+3 dpp+5
P2n:P{Un( )+\/_h b1n+nhD2 b2n_Vth3n2Z0u|bln|2M7|b2n|2M |X}7
and

2pp+3 D )
bin = (Vnhp > 0n) tOp(1+ > VahliTh) = 0,(1),
d=1

dpp+5 D
bon = (nhp, 2 00) 7 0,(3 nh3PTY) = 0,(1),
d=1

bsn = \/ UnU d2n +C ]

Note that E[Cy,|X] = 0 and Var(Cy|X) = UngAnlAann = 02Gn0(#)Gn =02, G%(Xpy)).
Hence C), = O,(v/d2y). This together with (A.29) and (A.30) in Lemma 7 yield

Vhpbsp, — 0o only when nvhpp? — .

2PD+3 dpp+5 2pp +3 dpp+5

1
When hp < ¢, oLy 2(pD+1) we have /nh, >cynhp? ,/nh,? —0,andnh,?* —0.
Thus for hp — 0 and nhp — oo, it follows that 8(c, p) — 0 only when ny/hpp? — +o0. It implies

4pD+3
that p2 = n lhD , and the possible minimum value of p, in this setting is n 5®p+). When

nhD(p ptl) 00, for any § > 0, there exists a constant M > 0 such that P, < % uniformly in

Gy € Gp. Then
)
IB(a7p) S 5 +P1n

4pD+5 1
Note that supg, (,) Pin — 0 only when B(hp) =nhp, > M — nh?p® — —oo. Since B(hp) attains
4pp+5

1
the minimum value —222ED[(4p), + 5)M]" ToT0 npTeotD at hp = [0/ ((dpp + 5)M)] 00,
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~ 2(pp+l)
Now simple algebra shows that in this setting the corresponding minimum value of p,, is n p+°

with hp = c*n_W2+5 for some constant c,.

Proof of Theorem 4.1. Using exactly the same argument as that for the proof of Theorem
3.3, and noticing that from Lemma 6 the di, = O(1) in the current situation, we obtain the result
of the theorem.

Proof of Theorem 4.2. Let RSS; and RSST be similarly defined as RSSy and RSS; re-
spectively, based on a bootstrap sample {X;,Y;*}" ;. We use the superscript * of a quantity as its
bootstrap analog. Then . .

N (Ho) ~ gRSS;%S—YS?Ssl

It can be shown that under Hy for given bandwidths satisfying Condition (A)
_ L
Plo, (N (Ho) = pn — din) < HX, Fp} — ©(1), (A.38)

which will be proven through the following three steps:
(i) Note that Y* = m_p) + €%, it follows that

RSS; — RSS; = &7(Ap1 — An2)é" + [ p)(Ap1 — Ana)th_p) + 267 (An1 — Apo)iin_p)]
T (Ap1 — Apo)é* + di,.

(ii) Using the same argument as that for (A.11), conditional on F,, we have
RSS; — RSSY = Wiy + 207 s + di,, + 0p(h3"),

where W(*n) is similarly defined as W,y but with ¢; replaced by €7, and by argument similar to that

for Lemma 6 [note that m_py = mg(1 + 0p(1))]

to ~mg(Apt — Apo)mg + 267 (A — Ana)mg &~ Op(1+ S nh P £ 37 /mpbatty,
d d

(iii) Note that RSS}/n ~ o2, E[¢}|F,] =0, E[¢}?|F,] = 0%, and

Xpj — Xpi

o )]2 ~ 40403,

1 _
Var[Wi) |Fa] = 4o’ = 31 (X1) G
D i<y
where G(+) is defined in the proof of Theorem 3.1. Then applying Proposition 3.2 of de Jong (1987),
one gets
1

N L

Combination of (i)-(iii) yields (A.38). Note that hq, d = 1,---, D satisfy the bandwidth restric-
tion in Condition (A). The consistency of the bootstrap estimate of the conditional null distribution

is obtained.
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