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Abstract. In this paper we study a question of semiparametric efficiency bounds for finite

dimensional parameters of structural time series cross section models. When the models

exhibit both temporal and spatial dependence, and heterogeneity among variables, little

is known about this question. Our contribution is twofold. First, we construct a (least

favorable) parametric submodel of a semiparametric model defined by a panel exogeneity

condition. This condition—not seen in previous work—generalizes the notion of strict sta-

tionarity used in setups with independent and identically distributed variables. Second,

we derive the asymptotic distribution of the maximum likelihood estimator obtained in

the (least favorable) submodel, thus providing a tight lower bound on the semiparametric

efficiency.
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1. Introduction

This paper considers structural cross section time series models that come in a form of a

system of dynamic equations. The equations are allowed to be nonlinear, both in variables

and in parameters. The use of nonlinearities may be necessary to represent certain features

of the underlying economic model, such as: dynamic behavior (e.g. dynamic adjustments),

the form of a utility or production function, the institutional or market structure.

Specifically, we focus on structural models that are finitely parameterized, and the finite

dimensional structural parameter is the focal point of the estimation problem. The models

are semiparametric in nature: the random variables which they involve are only known

to satisfy a certain number of conditional moment restrictions; their joint distribution is,

however, left unspecified. This raises a question of semiparametric efficiency bound for the

structural parameter of interest.

There are several important antecedents that deal with semiparametric efficiency in a

special—linear—case of our structural cross section time series model: that of dynamic

panels. Works by Chamberlain (1992), Hayashi (1992), Keane and Runkle (1992), Schmidt

et al. (1992), Arellano and Bover (1995), Ahn and Schmidt (1995) and Park et al. (2007),

for example, address the question of semiparametric efficient estimation under under various

exogeneity assumptions relating the explanatory variables and the unobserved effects.

Common to all of the above work is a strong assumption on the cross-sectional structure

of the variables in the panel: while allowed to be correlated in the time direction, they

remain independent and identically distributed across individuals. In other words, the existing

results on semiparametric efficiency apply to dynamic panel models that do not allow for any

heterogeneity nor cross section dependence. As pointed out by Baltagi and Pesaran (2007),

various spatial or spill over effects, as well as unobserved (or unobservable) common factors,

can result in unobserved errors that are heterogeneous and dependent across individuals.

While well recognized by the recent literature on non-stationary panel data, the problem

of heterogeneity and cross section dependence has remained unsolved by the research on

semiparametric efficiency. The main contribution of our paper is to fill this gap.
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Specifically, we derive the semiparametric efficiency bound for the finite dimensional struc-

tural parameter under a panel exogeneity condition, not yet seen in the literature. The notion

of panel exogeneity extends that of strict exogeneity to cross section time series structural

systems that allow for dependence both across time as well as individuals.

We now give an insight into the paper’s key result by examining a well-known dynamic

panel model:

(1) Yt,i = γYt−1,i + β′Xt,i + Ut,i, with (t, i) ∈ N2

in which t denotes time at which quantities are measured and i denotes cross-sectional unit

(individual).1 The dependent variable Yt,i ∈ R is assumed to depend on its own lag, as well as

on a vector of time-varying explanatory variables Xt,i ∈ RD, all of which are observed. The

disturbance or error term Ut,i ∈ R captures remaining unobserved individual heterogeneity.

The standard setup is the one in which there is some small number T of time periods, while

the number N of individuals in the panel is large. The usual asymptotic analysis is then as

N →∞ while T remains fixed. It is worth pointing out at this stage that the results of our

paper encompass the fixed T case as a special case; they are, however, derived in a more

general setup in which both dimensions T and N get large (Hahn and Kuersteiner, 2002,

2004).

Let θ ≡ (γ, β′)′, with | γ| < 1 and β ∈ RD. The model in (1) is finitely parameterized, and

the finite dimensional parameter θ is the focal point of the estimation problem. We treat

the unknown (joint) distribution of the latent terms as an infinite dimensional nuisance

parameter. Hence, our setup applies to a variety of panel models that are additive in the

unobserved error.2 Let Ui ≡ (U1,i, . . . , UT,i)
′ ∈ RT , Xi ≡ (X ′1,i, . . . , X

′
T,i)
′ ∈ RDT and

Yi ≡ (Y1,i, . . . , YT,i)
′ ∈ RT be the vectors of individual i disturbances, explanatory and

1In what follows, we shall assume that the variables with non-positive time indices disappear from Equa-
tion (1). The main advantage of this assumption is that it simplifies the treatment of the initial observations.
We note, however, that the latter is an important theoretical and practical problem in dynamic panel data
models with unobserved errors (Arellano and Honoré, 2001; Wooldridge, 2005).

2In particular, by letting Ut,i = αi + εt,i we can accommodate both linear and nonlinear panel models
in which the effects αi are random, provided the exogeneity conditions hold both for the errors εt,i and the
random effects αi. Panel models with fixed effects can also be treated as part of our setup provided however
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dependent variables observed throughout T . Assume that {(X ′i, U ′i)′, i > 1} is a sequence of

vectors that are independent and identically distributed and consider estimating θ under the

conditional moment restrictions that:

(2) E(Ut,i|Xt,i, Ut−1,i, Xt−1,i, . . . , U1,i, X1,i) = 0 for every (t, i) ∈ [[1, T ]]× [[1, N ]]

with probability one. Put in words, the conditions in (2) state that for any (t, i) ∈ [[1, T ]]×

[[1, N ]], the error Ut,i is mean independent of: (1) any of its predecessors Uh,i with h < t,

as well as (2) the contemporaneous and past values of the explanatory variable Xk,i, with

k 6 t. The restrictions in Equation (2) say that the explanatory variables are predetermined

(see e.g. Arellano and Honoré (2001)).

Because of the unknown (joint) distribution of the errors, the model defined by Equations

(1) and (2) is semiparametric. This raises a question of semiparametric efficiency bound for

the parameter of interest θ. Chamberlain (1992) is an important antecedent that provides

a solution to this question; we now elaborate on Chamberlain’s (1992) approach. Letting

Zt,i ≡ (X ′t,i, Yt,i)
′ ∈ RD+1 be the vector of observables and Qt,i ≡ (X ′t,i, Ut−1,i)

′ ∈ RD+1 be the

vector of instruments both observed at time t for individual i, the orthogonality conditions in

Equation (2) can be written in the form: E[rt(Zi, θ)|Qt,i, . . . , Q1,i] = 0, with probability one,

for every i = 1, . . . , N , where similar to previously we have defined Zi ≡ (Z ′1,i, . . . , Z
′
T,i) ∈

R(D+1)T . Chamberlain (1992) derives the semiparametric efficiency bound for θ defined by

such sequential conditional moment restrictions.

While few restrictions are placed on the form of the functions rt, Chamberlain’s (1992)

approach crucially relies on the assumption that the vectors Zi, Q1,i, . . . , QT,i are iid across in-

dividuals. It is worth pointing out that this iid assumption does not restrict the heterogeneity

and dependence structure of the variables across time. Indeed, different components of Zi, for

example, can be correlated—which results in an autocorrelated errors—and their marginal

distributions need not be the same—which allows the errors to be heterogeneous across time.

Still, the structure of the sequence {Zi, i > 1} across individuals is very rigid—independent

that they are linear, so that the standard approach of considering differences applies. One such example is
Chamberlain (1992).



EFFICIENT ESTIMATION OF DYNAMIC STRUCTURES 5

and identically distributed—and this property is crucial for Chamberlain’s (1992) results to

hold.

The reason behind lies in the very construction of the semiparametric efficiency bound.

Similar to the setup used in Chamberlain (1987), Chamberlain (1992) relies on a multinomial

approximation to the unknown distribution of Zi. In the iid case, the efficient (in the sense of

Hansen, 1982) GMM estimator of θ and the MLE obtained when the data is generated from

a multinomial distribution are both asymptotically normally distributed with asymptotic

covariance matrices respectively equal to Ω and I−1, where I is the Fisher information

matrix of the multinomial model. When the data has finite support, Chamberlain (1987)

shows that Ω and I−1 are the same. Hence, they must be equal to the semiparametric

efficiency bound for θ. Given that any distribution can be approximated arbitrarily well by

a multinomial distribution, the general expression for the bound follows.

The iid assumption plays an important role in Chamberlain’s (1987) construction of the

semiparametric bounds. If the sequence {Zi, i > 1} is dependent and/or heterogeneous,

Chamberlain’s (1987) multinomial approximations no longer hold which makes the efficiency

results in Chamberlain (1992) difficult to extend to dynamic panels with heterogeneous and

cross section dependent unobserved effects.

Our approach to dealing with heterogeneity and cross section dependence is as follows.

First, we adopt a framework that is more suited to both dimensions of the panel T and N

getting large. We assume that random variables come in a form of a vector random field

{Zt,s, (t, s) ∈ N×S} indexed by a time index t and a space index s that takes values in some

countable subset S of Rd. For example, s could represent the coordinates of individuals

placed on a grid in R2.3 We allow the vectors Zt,s to be heterogeneous as well as weakly

3It is worth pointing out that we allow Zt,s ≡ (X ′t,s, U
′
t,s)

′ ∈ RK+G to be a vector of possibly large though
fixed dimension; in particular, the “fixed T ” panel setup may be obtained as a special case, by letting G ≡ T ,
K ≡ DT , and dropping the time index of the random field.
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dependent across time and space. Specifically, we focus on the case in which the random

field is strong (or α-) mixing.4

Since the variables in the random field are no longer independent and identically dis-

tributed, the order of indices matters for establishing the orthogonality conditions between

the explanatory variables and disturbances. As a consequence, all of our results—including

the expression of the semiparametric efficiency bound—change as one changes the order-

ing of t and s. While for the time index t, a unique order exists on N, the same gen-

erally does not hold for the space index s (except for the case in which S ⊆ R). Our

approach is to consider the order determined by an increasing sequence of subsets of S:

∅ = S0 ⊂ S1 ⊂ . . . ⊂ SN−1 ⊂ SN ⊂ . . . with cardinalities |SN | = N . Given such a sequence,

we let si ∈ Si\Si−1 for any i > 1, and impose the requirement that:

(3) E(Ut,si |Ut,sj , sj ∈ ×Si−1, Uh, h ∈ [[1, t− 1]], X) = 0

with probability one, for any (t, i) ∈ N2, where we have let Uh ≡ {Uh,s, s ∈ S} and

X ≡ {Xt,s, (t, s) ∈ N × S} be the entire fields of time-h errors, and explanatory variables,

respectively. The property in (3) states that for any individual i and time t, Ut,si is mean

independent of: (1) contemporaneous errors of its neighbors with space indices in Si−1, (2)

all past errors Uh (h < t), as well as (3) all explanatory variables. The conditional moment

restrictions in (3) generalize the property of strict exogeneity—used in frameworks with iid

variables—to heterogeneous dynamic panels with cross section dependence. Accordingly, we

call this condition panel exogeneity.

Next, we show that the panel exogeneity condition is sufficient to characterize the semi-

parametric efficiency bound for the parameter of interest θ. For this, we translate the

conditional moment conditions in Equation (3) into a moment condition on the observables

{(X ′t,s, Y ′t,s)′, (t, s) ∈ N× S}. Note that our panel exogeneity condition places no restriction

on the joint behavior of Xt,si and Xh,sj . In other words, the requirement in (3) allows the

4The notions of mixing for random fields are nontrivial extensions of their familiar counterparts used in
time-series analysis. A detailed analysis is given in Ivanov and Leonenko (1986) and Föllmer (1988), for
example.
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explanatory variables to be heterogeneous and correlated across both time and individuals.

This results in a very general setup, in which the dependent variable Yt,s is affected by its own

lags, its own explanatory variables Xt,s, and—through the latter—the explanatory variables

of other individuals in the panel.

The observable conditional moment restrictions are the starting point of our approach,

which can be summarized as follows. Starting from the semiparametric model defined by

the conditional moment restrictions on the observables, we consider fully parametric mod-

els that satisfy the same restriction, and contain the data generating process; these are

called parametric submodels of the initial semiparametric model. Next, we look for one such

parametric submodel that is the least favorable, in a sense that the inverse of the Fisher’s

information matrix I−1 is the largest. Whenever the latter equals the covariance matrix Ω of

a feasible semiparametric estimator—such as GMM—it also equals the semiparametric effi-

ciency bound. When no semiparametric estimator is available, then it still remains that the

inverse Fisher information matrix provides a lower bound for the semiparametric efficiency.

The key insight behind our approach is due to Stein (1956). It is interesting to note that

Chamberlain (1987, 1992) use similar argument. What is different, however, is the way of

obtaining the least favorable submodel. As explained earlier, Chamberlain (1987) uses a

multinomial approximation; our solution is to use the projection of the true but unknown

conditional densities onto a set of densities that satisfy the conditional moment restriction.

Because those densities are conditional, nothing in our projection approach restricts the

variables of the random field to be iid.

Finally, we note that in time series models there are important results on the semipara-

metric efficiency with weakly dependent data. For example, Carrasco and Florens (2004) and

Carrasco et al. (2007) compute the semiparametric efficiency bound for finite dimensional

structural parameters known to satisfy a (potentially infinite) set of unconditional moment

restrictions, though they focus on the time series that are strictly stationary.

The remainder of the paper is organized as follows: Section 2 describes our setup and we

introduce the statistical models in Section 3. In Section 4 we characterize the least favorable
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parametric family. Section 5 derives the asymptotic distribution of the MLE in the latter,

and concludes with the expression of the semiparametric efficiency bound. All proofs are

relegated to Appendix.

2. Setup

2.1. Structural Cross Section Time Series Model. We shall consider models of spatial

dependence among individuals. For this, let Yt,s ∈ RG (G > 1) denote the vector of depen-

dent variables observed at time t ∈ N, for an individual with spacial index s ∈ S where S is

a countable subset of Rd (d > 1). For example, s can represent the geographical coordinates

of the individual situated on a discrete grid in R2. Similarly, we shall denote Xt,s ∈ RK

(K > 1) the corresponding vector of explanatory variables, and Ut,s ∈ RG the vector of

unobserved errors.

Let an economic theory then specify the system of equations:

(4) r(Yt,s, . . . , Yt−τ,s, Xt,s, . . . , Xt−τ,s, θ) = Ut,s , for (t, s) ∈ N× S

The equations in (4) allow different components of Yt,s to depend not only on their own

lags but also on different lags of the explanatory variables. The maximum number of lags

τ is assumed known and fixed (τ > 0). In what follows, we shall moreover assume that the

functional form of r is known and that θ is finite dimensional so Θ ⊂ Rk.

We start by analyzing the system of equations in (4) when (t, s) ∈ [[1, T ]]×SN where T > 1

and SN forms an increasing sequence of subsets of S, S1 ⊂ . . . ⊂ SN ⊂ SN+1 ⊂ . . . ⊂ S, with

cardinality |SN | = N (N > 1). This assumption is important as it will allow us to define

an order of spacial indices in S. While the ordering of time indices t ∈ N follows naturally

from the observed direction of time, the same does not hold for the space indices s ∈ S. It is

worth pointing out that all of our results—including the expression for the semiparametric

efficiency bound for the structural parameter θ in Equation (4)—depend on the way that

both time and space indices t and s are ordered. This is in stark contrast from the earlier

literature which assumes independence and identical distribution thus making the ordering

of the indices irrelevant.
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The setup in Equation (4) allows for the asymptotic analysis to be performed both as T

is held fixed and N → ∞, as well as when (T,N) → ∞. The fixed T setup is obtained by

letting T = 1 in Equation (4) and stacking different time lags of the variables into vectors Yt,s,

Xt,s and Ut,s. In that case the dimension G of the vectors Yt,s and Ut,s plays the traditional

role of T . In what follows, we explicitly treat the second case (T,N) → ∞ and derive the

results corresponding to the fixed T benchmark as a special case.

We start by analyzing the system of equations in (4) when T and N are given. For this,

we first group different vectors appearing in Equation (4) according to their time and space

indices. Specifically, we let ỸTN ≡ (Yt,s, (t, s) ∈ [[1, T ]] × SN) ∈ RGTN be the collection

of dependent variables observed up to time T for all space indices in SN . Similarly, we

define X̃TN ∈ RKTN and ŨTN ∈ RGTN , to be vectors of all the explanatory variables and

unobserved errors, respectively.

The system of dynamic equations in (4) defines a mapping r̃(·, X̃TN , θ) : RGTN → RGTN

from all the dependent variables ỸTN to all the latent variables ŨTN , and we write:

(5) r̃(ỸTN , X̃TN , θ) = ŨTN .

When r̃(·, X̃TN , θ) is differentiable at a point y ∈ RGTN , we shall denote by J(y, X̃TN , θ) the

Jacobian of r̃(·, X̃TN , θ) at y.5 For any y ∈ RGTN with components yt,s ∈ RG (and indices

(t, s) ∈ [[1, T ]]× SN), we then have:

(6) J(y, X̃TN , θ) =
T∏
t=1

∏
s∈SN

detDYt,srt,s(yt,s, θ),

where rt,s(Yt,s, θ) ≡ r(Yt,s, . . . , Yt−τ,s, Xt,s, . . . , Xt−τ,s, θ) from Equation (4) and DYt,srt,s de-

notes the partial derivative of rt,s(Yt,s, θ) with respect to its first variable Yt,s.

5Hereafter, by derivative of r̃(·, X̃TN , θ) we mean a linear transformation DỸT N
r̃(·, X̃TN , θ) of RGTN into

RGTN—property which we denote DỸT N
r̃(·, X̃TN , θ) ∈ L(RGTN ,RGTN )—such that for any (y, h) ∈ R2GTN

we have:

lim
h→0

|r̃(y + h, X̃TN , θ)− r̃(y, X̃TN , θ)−DỸT N
r̃(y, X̃TN , θ)′h|

|h|
= 0.

The Jacobian J(y, X̃TN , θ) is then given by: J(y, X̃TN , θ) = detDỸT N
r̃(y, X̃TN , θ).
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We now provide conditions under which—given the explanatory variables and the param-

eter θ—the system in Equation (5) defines a homeomorphic mapping from the the latent

variables ŨTN—the unobservables—to the dependent variables ỸTN—the observables.6 We

shall assume:

Assumption A1. For any T > 1, N > 1, every (X̃TN , θ) ∈ RKTN ×Θ and (t, s) ∈ [[1, T ]]×

SN : (i) the map (y1, . . . , yτ+1) 7→ r(y1, . . . , yτ+1, Xt,s, . . . , Xt−τ,s, θ) is in C1(RG(τ+1),RG); (ii)

detDYt,srt,s never vanishes; (iii) lim|(y′1,...,y′τ+1)′|→+∞ |r(y1, . . . , yτ+1, Xt,s, . . . , Xt−τ,s, θ)| = +∞.

Assumption A1(i) implies that the mapping r̃ in Equation (5) is continuously differentiable

with respect to the dependent variables ỸTN . Moreover, using the equality established in (6)

together with Assumption A1(ii) we know that J(y, X̃TN , θ) 6= 0 for any y ∈ RGTN . These

two conditions on r̃(·, X̃TN , θ) are sufficient to apply the Implicit Function Theorem: given

the explanatory variables and the parameter θ, Equation (5) can be solved for the dependent

variables in terms of the latent variables in a neighborhood of any point (u, y) ∈ R2GTN at

which r̃(y, X̃TN , θ) = u and J(y, X̃TN , θ) 6= 0 (see e.g. Theorem 9.28 in Rudin (1976)).

The resulting mapping is a local homeomorphism: it maps an open neighborhood of

u homeomorphically onto an open neighborhood of y. This condition by itself does not

insure that this mapping is either one-to-one or onto.7 It is by adding the condition in

Assumption A1(iii) that we can guarantee that the mapping from the latent variables ŨTN

to the dependent variables ỸTN is also a homeomorphism of RGTN onto itself. Assumption

A1(iii) implies that |r̃(y, X̃TN , θ)| goes to infinity as |y| gets large (y ∈ RGTN); this is a

necessary and sufficient condition that the mapping r̃(·, X̃TN , θ) be proper, i.e. that the

inverse image by r̃(·, X̃TN , θ) of any compact set in RGTN be a compact in RGTN . We then

obtain the following result:

Proposition 1. Let the system of dynamic equations be defined as in Equation (5), and

let Assumption A1 hold. Then, given any T > 1, N > 1, and (X̃TN , θ) ∈ RKTN × Θ, the

6A definition of homeomorphic is: continuous, one-to-one, onto, and having a continuous inverse.
7Standard counterexample is the mapping (x1, x2)→ (expx1 cosx2, expx1 sinx2).
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transformation from ŨTN to ỸTN is a diffeomorphism of RGTN onto itself, and we denote it

q̃(·, X̃TN , θ) : RGTN → RGTN .

In other words, the transformation q̃(·, X̃TN , θ) from the unobservables to the observables

is differentiable, one-to-one in RGTN onto itself, and has a differentiable inverse. Obviously,

q̃(·, X̃TN , θ) is then homeomorphic.

Proposition 1 implies the following: if we give ourselves a set of explanatory variables

X̃TN and a set of latent variables ŨTN , then the dynamic system in Equation (5) allows us

to determine the dependent variables ỸTN for any given value of the parameter θ through a

set of reduced form equations: ỸTN = q̃(ŨTN , X̃TN , θ). The dynamic system in Equation (5)

is therefore complete because it accounts for the formation of the values of all the dependent

variables. We now turn to a probabilistic description of how the variables in Equation (5)

are generated.

2.2. Random Fields. For any (t, s) ∈ N× S, define:

(7) Wt,s ≡ (X ′t,s, U
′
t,s)
′ ∈ RK+G,

and considerW ≡ {Wt,s, (t, s) ∈ N×S} to be a collection of random vectors—a vector random

field—defined on a probability space (Ω,W , P ) where W : Ω→ (RK+G)N×S, and (RK+G)N×S

is the product space generated by taking a copy of RK+G for each element in N× S. Given

T > 1 and N > 1, we focus on the TN components of W indexed by (t, s) ∈ [[1, T ]] × SN ,

which we denote W̃TN ∈ R(K+G)TN . We let W̃TN ≡ σ(Wt,s, (t, s) ∈ [[1, T ]] × SN). Note

that the σ-algebraW contains all the information generated by the random vectors Wt,s, i.e.

W̃TN ⊂ W for every T > 1 and N > 1.

Let X̃TN be a sub-σ-field of WTN generated by the explanatory variables alone: X̃TN ≡

σ(Xt,s, (t, s) ∈ [[1, T ]]×SN). We denote by µTN a regular conditional probability distribution

(measure) for ŨTN given X̃TN , i.e. µTN : Ω× BGTN → R+ satisfies: (i) for each B ∈ BGTN ,
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ω 7→ µTN(ω,B) is a version of P (ŨTN(ω) ∈ B|X̃TN), and (ii) for a.e. ω, B 7→ µTN(ω,B) is

a probability measure on {RGTN ,BN}.8 As usual, BGTN denotes the Borel σ-field on RGTN .

To simplify, we assume that our economic theory further specifies that a regular conditional

distribution for ŨTN given X̃TN is absolutely continuous (with respect to Lebesgue measure).9

So by Radon-Nikodym theorem, for a.e. ω:

µTN(ω,B) =

∫
B

fŨTN |X̃TN (u)(ω)du,

where fŨTN |X̃TN : Ω×RGTN → R+, and fŨTN |X̃TN (·)(ω) is a conditional density of ŨTN given

X̃TN . Note that both µTN and fŨTN |X̃TN are random elements, hence any statements made

about them are to be understood to hold P almost surely (a.s.).

Now, recall that for any given (X̃TN , θ) ∈ RKTN ×Θ, the mapping q(·, X̃TN , θ) defined in

Proposition 1 is diffeomorphic from RGTN to RGTN . This has two important implications.

First, by letting νTN : Ω× BGTN → R+ be defined as:

(8) νTN(ω,A) ≡ µTN(ω, q−1(A, X̃TN(ω), θ)),

we have that for a.e. ω, A 7→ νTN(ω,A) is a measure on {RGTN ,BN}; and for each A ∈ BGTN ,

ω 7→ νTN(ω,A) is a version of P (ŨTN(ω) ∈ q−1(A, X̃TN(ω), θ)|X̃TN) = P (ỸTN(ω) ∈ A|X̃TN)

(see e.g. Theorem 3.21 in Davidson (1994)). In other words, νTN is a regular conditional

distribution (measure) for ỸTN given X̃TN . Since q(·, X̃TN , θ) is a homeomorphism, it is

equivalent to work with either µTN or νTN : we can go from one measure to another by

the mapping r̃(·, X̃TN , θ) or its inverse q(·, X̃TN , θ). Second, the measure νTN is absolutely

8Regular conditional distributions allow us to simultaneously compute the conditional expectations of all
functions of ŨTN . For a proof of their existence see e.g. Theorem 4.1.6 in Durrett (1995).

9A common example is the one in which the probability measure of W̃TN is absolutely continuous (with
respect to Lebesgue measure) with density fW̃T N

that is positive on R(K+G)TN . Then, for every (x,B) ∈
RKTN × BGTN , we can let:

Q(x,B) ≡
∫
B

fW̃T N
(u, x)du

/∫
RGT N

fW̃T N
(u, x)du,

and µTN (ω,B) ≡ Q(X̃TN (ω), B) is a regular conditional distribution for ŨTN given X̃TN that is absolutely
continuous (with respect to Lebesgue measure)
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continuous (with respect to Lebesgue measure) with density fỸTN |X̃TN given by:

(9) fỸTN |X̃TN (y)(ω) = fŨTN |X̃TN (r̃(y, X̃TN(ω), θ))(ω)|J(y, X̃TN(ω), θ)| a.s.,

for any y ∈ RGTN where J(y, X̃TN(ω), θ) is the Jacobian of r̃(·, X̃TN(ω), θ) at y, defined

previously (see e.g. Theorem 8.18 in Davidson (1994)). Hereafter, we shall drop reference

to ω in the expressions involving conditional densities—such as the one in Equation (9)—

whenever doing so does not introduce any ambiguity.

In what follows, we shall assume the following:

Assumption A2. For any T > 1 and N > 1, the joint distribution of X̃TN does not depend

on θ.

To give an insight into Assumption A2, consider a sample (x̃′TN , ỹ
′
TN)′ ∈ R(K+G)TN

of observations of the explanatory and dependent variables X̃TN and ỸTN .10 Then,

the statement in A2 implies that all the sample information concerning the parame-

ter of interest θ can be obtained from the partial likelihood function fỸTN |X̃TN (ỹTN) =

fŨTN |X̃TN (r̃(ỹTN , x̃TN , θ))|J(ỹTN , x̃TN , θ)|, and the distribution of X̃TN need not even be spec-

ified. This separability property of the likelihood function is discussed by Engle et al. (1983),

for example.

We now construct statistical models for the joint conditional densities fỸTN |X̃TN .

3. Statistical Models

3.1. Exogeneity Condition. The key tool used in the construction of our statistical models

for fỸTN |X̃TN is a set of exogeneity conditions between ŨTN and X̃TN , to which we now turn.

Note that fŨTN |X̃TN in Equation (9) is a joint conditional density of ŨTN given X̃TN . We can

further “decompose” fŨTN |X̃TN into a sequence of marginal conditional densities. For this, let

Ut ≡ (Ut,s, s ∈ SN) ∈ RGN and Yt ≡ (Yt,s, s ∈ SN) ∈ RGN be the vectors of disturbances and

dependent variables, respectively, observed at times t ∈ [[1, T ]] for all individuals with space

indices in SN . Then let Gt ≡ σ(Uh, h ∈ [[1, t−1]], X̃TN), and Ft ≡ σ(Yh, h ∈ [[1, t−1]], X̃TN),

10Realizations of random variables (or vectors), e.g. Xt,s, are denoted using lowercase letters, e.g. xt,s.
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for any t ∈ [[1, T ]].11 For any (u, y) ∈ R2GN with components (ut, yt), t ∈ [[1, T ]], we then

have:

(10) fŨTN |X̃TN (u) =
T∏
t=1

fUt|Gt(ut) and fỸTN |X̃TN (y) =
T∏
t=1

fYt|Ft(yt) a.s..

The densities fUt|Gt and fYt|Ft are still joint conditional densities of all random vectors

Ut,s and Yt,s, respectively, as s takes values in SN . We now decompose them in a sequence

of conditional densities, where the conditioning is done with respect to the spacial indices

s. We start by defining the conditioning sets. For this, let the elements of SN be labeled

as follows: s1 ∈ S1, s2 ∈ S2\S1, up to sN ∈ SN\SN−1. Obviously, the labeling of elements

in SN depends on the way the sequence of sets S1, . . . ,SN−1 increases up to SN . Now, for

any i ∈ [[1, N ]], let Gt,si ≡ σ(Ut,v, v ∈ Si−1, Uh, h ∈ [[1, t − 1]], X̃TN), and Ft,si ≡ σ(Yt,v, v ∈

Si−1, Yh, h ∈ [[1, t− 1]], X̃TN).12 Then, for any T > 1, every t ∈ [[1, T ]], and any N > 1, we

can write:

(11) fUt|Gt(ut) =
N∏
i=1

fUt,si |Gt,si (ut,si) and fYt|Ft(yt) =
N∏
i=1

fYt,si |Ft,si (yt,si) a.s..

As pointed out previously, the labeling of spacial indices in Equation (11) depends on the

way the sequence of space index sets S1, . . . ,SN−1 increases up to SN . We are now ready to

state the panel exogeneity condition used throughout this paper:

Assumption A3. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]]× [[1, N ]], the conditional

distribution of Ut,si given Gt,si satisfies: E(Ut,si|Gt,si) ≡
∫

RG ufUt,si |Gt,si (u)du = 0 a.s..

The above definition generalizes the notion of strict exogeneity employed in systems in

which the variables are independent and identically distributed across individuals (see e.g.

Arellano and Honoré (2001)) to dynamic systems with heterogeneity and cross section de-

pendence. Under Assumption A3, for any T > 1, N > 1, and every (t, i) ∈ [[1, T ]]× [[1, N ]],

11For t = 1, we let G1 ≡ X̃TN and F1 ≡ X̃TN .
12For i = 1, we let Gt,s1 ≡ Gt and Ft,s1 ≡ F̃t.
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the unobserved error Ut,si is mean independent of: (1) any set of contemporaneous neigh-

bors’ errors Ut,sj with j < i, (2) all the lags Uh with h < t, as well as (3) all the explanatory

variables X̃TN (and all measurable functions thereof).

It is worth pointing out that the conditional moment restrictions in A3 incorporate the

fact that Ut,si is conditionally mean independent of any future values of the explanatory

variables Xk,si with k > t. This condition is equivalent to saying that E[Ut,siψ(Xk,si)] = 0

for any measurable function ψ. The latter is however weaker than requiring that for any

measurable χ we also have E[χ(Ut,si)ψ(Xk,si)] = 0, which is itself equivalent to independence

of Ut,si and Xk,si (k > t). In other words, the panel exogeneity condition in Assumption

A3 allows for the possibility that current values of Xt,s be influenced by past values of the

disturbances.

The set of conditional expectation restrictions in Assumption A3 translates into a restric-

tion on the observables. Combining Equations (6), (9), (10) and (11), and using the fact

that they hold for any choice of T > 1 and N > 1, we have:

(12) fYt,si |Ft,si (yt,si) = fUt,si |Gt,si (rt,si(yt,si , θ))| detDYt,si
rt,si(yt,si , θ)|, a.s.

for every t ∈ [[1, T ]] and every i ∈ [[1, N ]]. Now, take any (t, i) ∈ [[1, T ]] × [[1, N ]] in

Equation (12) and consider the moment condition in Assumption A3. A simple change of

variable u = rt,si(y, θ) then yields:∫
RG
ufUt,si |Gt,si (u)du =

∫
RG
rt,si(y, θ)fUt,si |Gt,si (rt,si(y, θ))| detDYt,si

rt,si(y, θ)|dy

=

∫
RG
rt,si(y, θ)fYt,si |Ft,si (y)dy

≡ E[rt,si(Yt,si , θ)|Ft,si ] = 0 a.s., for every (t, i) ∈ [[1, T ]]× [[1, N ]],(13)

where the first equality uses the fact that for a given value of θ, the mapping from Ut,si to

Yt,si is diffeomorphic from RG onto itself as implied by Proposition 1; the second equality

follows by Equation (11) (for a change of variables result see e.g. Theorem 10.9 in Rudin

(1976)).
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Put in words, restricting the conditional expectation of Ut,si under fUt,si |Gt,si is equivalent to

restricting the conditional expectation of rt,si(Yt,si , θ) under fYt,si |Ft,si . The set of conditional

moment restrictions in Equation (13) is the basis of our semiparametric model, to which we

turn next.

3.2. Semiparametric Model. In what follows we shall assume that the endogenous vari-

ables are generated from the dynamic system in (4), in which θ = θ0 and the conditional

distribution of the latent variables has the following property:

Assumption A4. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], we have:

fUt,si |Gt,si (u) > 0 a.s. for every u ∈ RG.

Fixing any (t, i) ∈ [[1, T ]]× [[1, N ]] in Equation (12) and using the property in Assumption

A4, then shows that the conditional distribution of the endogenous variable Yt,si given Ft,si
needs to be positive on RG a.s.. To simplify the notation, we shall hereafter denote the latter

as ft,si , i.e. for every y ∈ RG we let ft,si(y) ≡ fYt,si |Ft,si (y).

Our semiparametric model for ft,si , denoted SP t,si , is defined as a set of all positive

conditional densities on RG that are measurable with respect to the information set Ft,si
and satisfy the conditional moment restrictions in Equation (13).13 More formally, we let

SP ≡
⋃
θ∈Θ SPθ with SPθ ≡

⊗
t∈[[1,T ]]

⊗
i∈[[1,N ]] SPθ,t,si , and SPθ,t,si defined as:

SPθ,t,si ≡
{
g : Ω× RG → R+ s.t.: (i) for a.e. ω, g(y)(ω) > 0 for every y ∈ RG and∫

RG
g(y)(ω)dy = 1; (ii) for every y ∈ RG, g(y)(ω) is Ft,si-measureable; and (iii)∫

RG
rt,si(y, θ)g(y)(ω)dy = 0 for a.e. ω

}
(14)

The model SPθ,t,si defined by Equation (14) is a collection of conditional probability

densities g given Ft,si that are positive on RG. As a such, SPθ,t,si is parameterized by

an infinite dimensional parameter ranging over an infinite dimensional space that describes

the probability densities. Those densities are however restricted in an important way: the
13The idea of defining a statistical model as a collection of probability densities—in the context of dynamic

systems such as the one in Equation (5)—is traceable to Koopmans (1950).
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conditional expectations of rt,si(Yt,si , θ) under g are equal to zero. Hence, each model SPθ,t,si
is also parameterized by a parametric component θ ranging over a finite dimensional space

Θ. This gives the model SP its semiparametric structure.

Equation (13) shows that under Assumption A3 our semiparametric model SP is correctly

specified: for any T > 1, N > 1, and every (t, i) ∈ [[1, T ]]× [[1, N ]], we have ft,si ∈ SPθ0,t,si
where we have defined θ0 to be the true value of the structural parameter θ in Equation

(4). More conditions are needed to ensure that SP is also (point) identified, i.e. that

ft,si ∈ SPθ0,t,si implies that for any θ1 ∈ Θ\{θ0} we have ft,si /∈ SPθ1,t,si . For this we impose

the following:

Assumption A5. For any T > 1, N > 1, every (t, i) ∈ [[1, T ]] × [[1, N ]], and every

(θ1, θ2) ∈ Θ2, we have: E[rt,si(Yt,si , θ1)|Ft,si ] = E[rt,si(Yt,si , θ2)|Ft,si ] a.s. only if θ1 = θ2.

Note that Assumption A5 imposes restrictions on a global behavior of the structural

function r in Equation (4). It is therefore stronger than requiring that any parameter value

θ1 be locally identified in Θ. Local identification could for example be achieved by imposing

conditions on detDYt,si
rt,si(Yt,si , θ1) which would insure that Implicit Function Theorem

applies in a neighborhood of any θ1 at which E[rt,si(Yt,si , θ1)|Ft,si ] = 0 a.s..

3.3. Parametric Submodel. In general, the model SPθ,t,si in Equation (14) contains more

than one element: this means that the structural parameter θ generally does not character-

ize one conditional probability distribution. In other words, SPθ,t,si may contain several

parametric families of known distributions fθ,π possibly indexed by an additional finite di-

mensional parameter π ∈ Π, Π ⊂ Rp with p < ∞. When one such parametric family is in

addition correctly specified, we call it a parametric submodel of SP :

Definition 1. P ≡
⋃
θ∈Θ

⋃
π∈ΠPθ,π with Pθ,π ≡

⊗
t∈[[1,T ]]

⊗
i∈[[1,N ]]Pθ,π,t,si , and Pθ,π,t,si ≡

{ fθ,π : Ω × RG → R+ s.t.: (i) for a.e. ω, fθ,π(y)(ω) > 0 for every y ∈ RG and∫
RG fθ,π(y)(ω)dy = 1; (ii) for every y ∈ RG, fθ,π(y)(ω) is Ft,si-measureable}, is a para-

metric submodel of SP if: (i) for every (θ, π) ∈ Θ × Π we have Pθ,π,t,si ⊂ SPθ,t,si , and (ii)

for some π0 ∈ Π we have ft,si ∈ Pθ0,π0,t,si .
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The idea of such parametric submodels is traceable back to Stein (1956). Each Pθ,π,t,si is

a parametric model for ft,si since every element fθ,η of Pθ,π,t,si is parameterized by a finite

dimensional parameter (θ, π) ∈ Θ×Π. Within each parametric submodel P , the true value θ0

of the structural parameter can be estimated via maximum likelihood. Let ΩP, θ0 denote its

asymptotic covariance matrix. Since the semiparametric estimation of θ is always at least as

difficult as the fully parametric one (Stein, 1956; Bickel, 1982), the semiparametric efficiency

bound Vθ0 for θ0 is larger than the supremum of ΩP, θ0 over the parametric submodels P . If for

some P∗ this supremum is attained, then P∗ is called least favorable parametric submodel:

in that case ΩP∗, θ0 = supP⊂SP ΩP, θ0 .

4. Least Favorable Family

In this section we show that the least favorable parametric submodel P∗ of the semipara-

metric model SP can be constructed by projecting the true but unknown densities ft,si onto

the sets SPθ,t,si . Since for any given (t, i) ∈ [[1, T ]] × [[1, N ]] with T > 1 and N > 1 fixed,

the projection of ft,si onto SPθ,t,si is unique—up to an unavoidable P equivalence—the sub-

model P∗θ,π,t,si consists of a single element which we shall denote g∗t,si(·, θ).
14 In other words,

the least favorable density g∗t,si(·, θ) is parameterized by the structural parameter θ alone.

This approach is particularly appealing because it naturally leads to a maximum likelihood

estimator for the true value θ0 of θ, and—following Stein’s (1956) idea—to its semiparametric

efficiency bound.

4.1. Projection Approach. The fundamental building block of the probability densities

projections we are interested in is a class of distances defined on sets of probability densities.

Specifically, a distance D on a set S is any nonnegative valued function defined on S×S such

that D(s,m) = 0 if and only if s = m. For S0 ⊂ S, we write: D(S0,m) = infs∈S0 D(s,m). To

make the projection operational we need to define the distances upon which the D-projection

14We shall say that two elements f and g of SPθ,t,si
are P equivalent (or belong to the same P equivalence

class) if and only if f = g a.s..
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are based. Given a convex function φ, a φ-divergence between s and m, denoted Dφ(s,m), is

formally defined as Dφ(s,m) ≡
∫
m(y)φ (s(y)/m(y)) dy (Ali and Silvey, 1966; Csiszar, 1967).

Here, we are interested in the Dφ-projection of ft,si onto a set SPθ,t,i defined as follows:

Definition 2. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], the Dφ-

projection of ft,si onto a set SPθ,t,si is (when it exists) a density g∗t,si(·, θ) ∈ SPθ,t,si satisfying

Dφ(g∗t,si(·, θ), ft,si) = Dφ(SPθ,t,si , ft,si) a.s., where for any g ∈ SPθ,t,si we let:

Dφ(g, ft,si) ≡ E

[
φ
( g(Yt,si)

ft,si(Yt,si)

)∣∣∣∣Ft,si] =

∫
RG
φ
( g(y)

ft,si(y)

)
ft,si(y)dy.(15)

We restrict the class of divergences Dφ in Equation (15) by considering the functions φ

with the following properties:

Assumption A6. (i) φ ∈ C4(R∗+,R+); (ii) φ is strictly convex; (iii) φ(1) = φ′(1) = 0,

φ′′(1) = 1; (iv) limu→+∞ φ
′(u) = +∞; (v) φ′(0) = limu→0 φ

′(u) = −∞.15

Assumptions A6(i)-(iii) are fairly standard. Notice that requirement A6(iv) rules out the

reverse I-divergence, φ(u) = − lnu + u − 1, and the Hellinger distance, φ(u) = (
√
u − 1)2,

since for both cases limu→+∞ φ
′(u) = 0. Assumption A6(v) is not strictly necessary, but

it guarantees that the Dφ-projection of ft,si is almost everywhere positive, provided such

density is in SPθ,t,si .

An important example of φ satisfying all the requirements of Assumption A6 is φ(u) =

u lnu − u + 1; then the distance in Equation (17) is equivalent to the Kullback-Leibler

information criterion (KLIC) or I-divergence (see e.g. Kullback and Khairat (1966) and

Csiszar (1975) for a detailed study of the corresponding Dφ-projection). In the econometric

literature, an application of I-divergence can be found in Kitamura and Stutzer (1997)’s

Exponential Tilting estimator.

15Further, to deal with zeros, we adopt the understanding that:

φ(0) = limu→0 φ(u), φ′(0) = limu→0 φ
′(u), 0 · φ

(υ
0

)
= υ · limu→+∞ φ′(u) = +∞.
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Before proceeding with the discussion on the existence and characterization of the Dφ-

divergence, we recall some basic concepts from convex analysis. For a detailed discussion

of the concepts introduced below see Rockafellar (1970) and Hiriart-Urruty and Lemarechal

(1993). The Legendre conjugate of the pair (C, φ) is the pair (C∗, φ∗), where C∗ is the image

of C under under the gradient mapping φ′(·), and φ∗ is the function on C∗ given by:

φ∗(υ) ≡ υ(φ′)−1(υ)− φ
(
(φ′)−1(υ)

)
.

The following lemma establishes several useful properties of the Legendre conjugate φ∗ of φ:

Lemma 1. Under Assumption A6, we have: (i) φ∗ ∈ C2(R,R), (ii) φ∗ is strictly convex,

(iii) φ∗ > 0 on R∗+, (iv) φ∗
′
> 0 on R, (v) φ∗′(υ) = (φ′)−1(υ) for any υ ∈ R, (vi) φ∗′′(υ) =

[φ′′((φ′)−1(υ))]−1 for any υ ∈ R.

We are now ready to discuss existence and uniqueness of the Dφ-projection of ft,si char-

acterized in Definition 2.

4.2. Existence and Uniqueness. Take the conditional moment constraint in Equation

(13) which was used to define our semiparametric model. It is easy to show that the resulting

set SPθ,t,si in (14) is convex. Even for nice convex sets such as SPθ,t,si , however, the Dφ-

projection of ft,si onto SPθ,t,si may not exist.

In the literature (Teboulle and Vajda, 1993; Csiszar, 1995), the usual way to derive suffi-

cient conditions for the existence of g∗t,si(·, θ) is to require that—in addition to being convex—

the set SPθ,t,si be closed, say in L1 norm. Such closedness condition would be satisfied if

either the range of the structural mapping r in Equation (4) were bounded, which is equiv-

alent to boundedness of the structural disturbances Ut,s, or if its domain were bounded,

which is equivalent to boundedness of the endogenous variables Yt,s. Both these conditions

are contradictory to our setup, and our Assumption A1 explicitly rules out either possibility.

Our approach to establishing the existence of g∗t,si(·, θ) is based on the following intuitive

argument: Under Assumption A3 we have that ft,si ∈ SPθ0,t,si . In addition, Dφ(ft,si , ft,si) =

0 a.s.. Hence, at the true value θ0 of the structural parameter θ we have, for any T > 1, any
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N > 1, every (t, i) ∈ [[1, T ]]× [[1, N ]], and every y ∈ RG:

(16) g∗t,si(y, θ0) = ft,si(y) a.s..

In other words, when θ = θ0 the Dφ-projection of ft,si onto SPθ0,t,si exists and is a.s. P

unique. Provided we can invoke Implicit Function Theorem, it should then hold that for

small deviations of θ around θ0, the projection of ft,si onto SPθ,t,si exists as well. We now

provide a more formal treatment of this argument.

We start by restricting our attention to dynamic systems in Equation (4) in which r is

continuously differentiable with respect to the structural parameter θ.

Assumption A7. For any T > 1, N > 1, and every (Ỹ ′TN , X̃
′
TN)′ ∈ R(G+K)TN , the mapping

θ 7→ r(Yt,s, . . . , Yt−τ,s, Xt,s, . . . , Xt−τ,s, θ) is in C1(Θ,RG).

For structural mappings that satisfy Assumption A7 we let Dθrt,s(Yt,s, ·) ∈ L(Rk,RG)

denote the partial derivative of rt,s, defined previously, with respect to θ.

We first restrict the behavior of the Legendre conjugate φ∗ and its derivative φ∗′ by im-

posing several local integrability conditions. In what follows, U(θ0, ε) ≡ B((θ′0, 0, 0
′)′, ε) is

an open ball in Rk+G+1, centered at (θ′0, 0, 0
′)′ and with radius ε > 0.

Assumption A8. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], there

exists U(θ0, ε1) ⊂ Θ × RG+1 such that for every (θ′, η, λ′)′ ∈ U(θ0, ε1) we have: (i)

E
[
φ∗
(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] < ∞ a.s.; (ii) E
[
φ∗
′(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] < ∞ a.s.;

(iii) E
[
|rt,si(Yt,si , θ)|φ∗

′(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] <∞ a.s..

Assumption A8 effectively imposes restrictions on the true conditional densities ft,si . We

now give an interpretation of A8(i,ii) in the case of I-divergence: φ(u) = u lnu− u+ 1. The

Legendre conjugate of φ then equals φ∗(υ) = exp υ − 1, so the properties in A8(i,ii) hold

under a conditional version of a weak Cramér condition: for every θ in a neighborhood of θ0

and every λ close to 0 ∈ RG, we have
∫

RG exp
(
λ′rt,si(y, θ)

)
ft,si(y)dy <∞ a.s.. The Cramér

condition restricts the generating function for the conditional moments of rt,si(Yt,si , θ)—when
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θ is close to θ0—to be finite on a neighborhood of zero, at which the restriction is obviously

satisfied.

Originally employed by Cramér (1938), the condition was imposed in order to apply a

bound on the error of the normal approximation in the Central Limit Theorem (CLT) for

univariate iid random variables. First multivariate extension of the Cramér condition can be

found in Borovkov and Rogozin (1965). Alternatively, this condition can be interpreted as

requiring that the conditional distribution of the disturbances in Equation (4) be smooth.

The following conditions ensure that one can differentiate under integral sign:

Assumption A9. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], there exists

U(θ0, ε2) ⊂ Θ× RG+1 such that we have:

(i) E
[

sup(θ′,η,λ′)′∈U(θ0,ε2) φ
∗′′(η + λ′rt,si(Yt,si , θ)

)(
1 + |rt,si(Yt,si , θ)|2

)∣∣Ft,si] <∞ a.s.

(ii)E
[

sup(θ′,η,λ′)′∈U(θ0,ε2) φ
∗′′(η+λ′rt,si(Yt,si , θ)

)
‖Dθrt,si(Yt,si , θ)

′λrt,si(Yt,si , θ)
′‖
∣∣Ft,si] <∞ a.s.

(iii) E
[

sup(θ′,η,λ′)′∈U(θ0,ε2) φ
∗′′(η + λ′rt,si(Yt,si , θ)

)
|Dθrt,si(Yt,si , θ)

′λ|
∣∣Ft,si] <∞ a.s., and

(iv) E
[

sup(θ′,η,λ′)′∈U(θ0,ε2) φ
∗′(η + λ′rt,si(Yt,si , θ)

)
‖Dθrt,si(Yt,si , θ)‖

∣∣Ft,si] <∞ a.s..

Assumption A9 is used to ensure that Lebesgue Dominated Convergence Theorem applies,

i.e. that we can interchange the order of integration and differentiation in the first order

conditions that characterize the projection g∗t,si(·, θ) in Definition 2. In order to apply Im-

plicit Function Theorem to those conditions obtained when θ = θ0, we require the following

invertibility assumption:

Assumption A10. For any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], we have

E
[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′

∣∣Ft,si] invertible a.s..

We are now ready to state the main result of this section. As previously, B(θ0, ε) is an

open ball in Rk, centered at θ0 and with radius ε > 0.

Theorem 1. Let Assumptions A1-A4 and A6-A10 hold. Then, for any T > 1, N > 1, and

every (t, i) ∈ [[1, T ]]× [[1, N ]], there exists B(θ0, ε) ⊂ Θ such that for every θ ∈ B(θ0, ε), the

Dφ-projection g∗t,si(·, θ) of ft,si onto SPθ,t,si exists, is P a.s. unique, and positive for a.e. ω.
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The projection g∗t,si(·, θ) is given by:

(17) g∗t,si(y, θ) ≡ φ∗
′
(ηt,si(θ) + λt,si(θ)

′rt,si(y, θ))ft,si(y), for every y ∈ RG,

where (ηt,si(θ), λt,si(θ)) ≡ arg inf(η,λ′)′∈RG+1 E
[
φ∗
(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si]− η.
We first comment on the strength of the assumptions used in Theorem 1. Csiszar (1995)

gives a proof of the existence of the Dφ-projection that does not make topological assump-

tions on the set SPθ,t,si and/or on the range of the random variables Ut,s and Yt,s. In

particular, Corollary to Theorem 3 in Csiszar (1995) is based on a moment condition on the

convex conjugate φ∗ of φ. Under I-divergence, this condition translates into a strong Cramér

condition, whereby “strong” we mean that the finiteness of the generating function for the

conditional moments of rt,si(Yt,si , θ) (when θ is close to θ0) needs to hold for all λ ∈ RG. This

condition is obviously stronger than our “weak” version imposed in Assumption A8, which

only needs to hold for λ in some neighborhood of 0 ∈ RG.

Theorem 1 establishes two important results. First, it shows that the Dφ-projection

g∗t,si(·, θ) of ft,si onto SPθ,t,si exists and is unique, that is except for the unavoidable

nonuniqueness within a P -equivalence class of random variables. As pointed out previ-

ously, this result exploits the existence of the Dφ-projection when θ = θ0 and extends it by

means of Implicit Function Theorem. It is worth noting that the proof of Theorem 1—in

particular, the part of the proof corresponding to Lemma 2—establishes in a direct way

that there exists g∗t,si(·, θ) in SPθ,t,si with density (17). An early suggestion of such direct

approach can be found in Csiszar (1975) (see a discussion on p.156 in Csiszar (1975)).

The second key result of Theorem 1 is to derive the analytic expression of g∗t,si(·, θ). The

density of the Dφ-projection obtained in Equation (17) reveals an interesting property: it is

parameterized by two random finite dimensional Lagrange multipliers ηt,si(θ) and λt,si(θ),

both of which are Ft,si-measurable and depend on θ. In other words, projecting onto the semi-

parametric set SPθ,t,si reduces the problem to the one in which, for any y ∈ RG, the density

g∗t,si(y, θ) can be written as a product of two terms: a first one φ∗′(ηt,si(θ)+λt,si(θ)
′rt,si(y, θ))
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that is finitely parameterized by θ, and a second one that is the true density ft,si(y) which

does not depend on θ. We now derive additional useful properties of g∗t,si(·, θ).

4.3. Definition and Properties of P∗. A number of interesting properties can be derived

from the expression of the Dφ-projected density g∗t,si(·, θ) obtained in Theorem 1. We start

by restricting our attention to local parameter sets Θ′ defined as follows.

Definition 3. Let B(θ0, ε̄) be the largest open ball under which the results of Theorem 1

hold for every T > 1 and N > 1. Then Θ′ is the largest compact set contained in B(θ0, ε̄).

In general Θ′ ⊂ Θ unless Theorem 1 holds for B(θ0, ε̄) = Int(Θ). Notice that restricting the

parameter set to Θ′ is without loss of generality. Since our goal is to derive a semiparametric

bound for θ0, we can limit our analysis to a neighborhood of θ0.

We now use Θ′ to define our parametric submodel P∗. By construction, for any T > 1,

N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], we have g∗t,si(·, θ) ∈ SPθ,t,si ; combining this

with the property in Equation (16) then shows, by Definition 1, the following Corollary to

Theorem 1.

Corollary 2. Assume the conditions of Theorem 1 hold, and let Θ′ be as in Definition 3.

Then, for any T > 1 and any N > 1, P∗ ≡
⋃
θ∈Θ′ P∗θ with P∗θ ≡

⊗
t∈[[1,T ]]

⊗
i∈[[1,N ]]Pθ,t,si

and P∗θ,t,si ≡
{
g∗t,si(·, θ)

}
is a parametric submodel of SP.

In other words, Corollary 2 says that the model P∗ satisfies all the conditions of Definition

1. The next step needed to derive the infimum (i.e. the greatest lower bound) of the

semiparametric efficiency bound for θ0 is to derive the asymptotic variance of the MLE in

the parametric submodel P∗. We shall see that the latter depends on the derivatives with

respect to θ of the Dφ-projections g∗t,si(·, θ), which we study next.

Similar to the identity derived in Equation (16), we are now interested in the values that

successive derivatives of g∗t,si(·, θ) with respect to the structural parameter θ (when they

exist) take at the true value θ0. Under the same set of conditions as in Theorem 1, we have

the following result:
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Corollary 3. Assume the conditions of Theorem 1 hold and that Θ′ is as in Definition 3.

Then, for any T > 1, N > 1, and every (t, i) ∈ [[1, T ]] × [[1, N ]], the Lagrange multipliers

ηt,si(θ) and λt,si(θ) are continuously differentiable on Θ′ a.s. with: Dθηt,si(θ0) = 0 a.s., and

Dθλt,si(θ0) = E
[
Dθrt,si(Yt,si , θ0)

∣∣Ft,si]{E[rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|Ft,si
]}−1 a.s..

In particular, Corollary 3 implies that the least favorable densities g∗t,si(·, θ) in Theorem 1

are continuously differentiable with respect to θ with scores that satisfy:

Dθ ln g∗t,si(y, θ0) =

rt,si(y, θ0)
{
E
[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|Ft,si

]}−1
E
[
Dθrt,si(Yt,si , θ0)|Ft,si

]
,(18)

for every y ∈ RG. The assumptions of Theorem 1 (and its Corollaries 2 and 3) will be

required for the asymptotic analysis of the MLE based on P∗, to which we turn next.

5. Least Favorable Maximum Likelihood Estimator

We now derive the asymptotic distribution of the maximum likelihood estimator (MLE)

of θ0 based on the least favorable densities g∗t,si(·, θ). The estimator is not feasible because

the parameters λt,si(θ) and ηt,si(θ) of the least favorable distributions g∗t,si(·, θ) are generally

unknown. The estimation procedure is a device to obtain the semiparametric bound under

Assumption A3.

To avoid technical difficulties, we consider the case for which the structural mapping

r in the dynamic system (4) is twice continuously differentiable with respect to all of its

arguments.

Assumption A11. The mapping r is in C2(R(G+K)τ ×Θ′,RG).

5.1. Estimator. We start by defining the least favorable MLE of θ0. For this, start by

fixing T > 1 and N > 1, and consider the product of conditional densities g∗t,si(·, θ) obtained

as:

(19) g∗
ỸTN |X̃TN

(ỹTN , x̃TN , θ) ≡
T∏
t=1

N∏
i=1

g∗t,si(yt,si , θ)
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where the labeling of the elements in SN is done as before, i.e. s1 ∈ S1, s2 ∈ S2\S1, up to

sN ∈ SN\SN−1. Under assumptions of Theorem 1, by Corollary 2, we know that the expres-

sion in Equation (19) defines a model for the conditional density for ỸTN given X̃TN that is pa-

rameterized by θ, and correctly specified, i.e. g∗
ỸTN |X̃TN

(ỸTN , X̃TN , θ0) = f
ỸTN | ˜̃XTN

(ỸTN) a.s..

Moreover, under Assumption A5, for any (θ1, θ2) ∈ Θ′ we have: g∗
ỸTN |X̃TN

(ỸTN , X̃TN , θ1) =

g∗
ỸTN |X̃TN

(ỸTN , X̃TN , θ2) a.s. only if θ1 = θ2, so the model in (19) is in addition identified on

Θ′.

Let then L(θ|x̃TN , ỹTN) denote the likelihood function:

(20) L(θ|x̃TN , ỹTN) = g∗
ỸTN |X̃TN

(ỹTN , x̃TN , θ)fX̃TN (x̃TN)

where fX̃TN denotes the joint distribution of the exogenous variables X̃TN . From the

separability assumption A2 we know that the latter does not depend on θ. Using the

Kullback-Leibler inequality it follows that for any θ ∈ Θ′, we have E
[
lnL(θ0|X̃TN , ỸTN)

]
>

E
[
lnL(θ|X̃TN , ỸTN)

]
, with the expectation being taken with respect to the joint measure of

ỸTN and X̃TN . Combining the above inequality with Equations (20) and (19) then shows

that θ0 solves the optimization problem:

max
θ∈Θ′

E

[ T∑
t=1

N∑
i=1

ln g∗t,si(Yt,si , θ)

]
.

From the expression of the least favorable densities obtained in Theorem 1, solving the

above optimization problem is equivalent to solving:

(21) max
θ∈Θ′

E

[ T∑
t=1

N∑
i=1

Gt,si(θ)

]
, with Gt,si(θ) ≡ lnφ∗

′
(ηt,si(θ) + λt,si(θ)

′rt,si(Yt,si , θ))

which suggests estimating θ0 by solving the sample counterpart:

(22) max
θ∈Θ′

1

TN

T∑
t=1

N∑
i=1

Gt,si(θ).

5.2. Asymptotic Distribution. We consider the asymptotic properties of the least favor-

able MLE θTN obtained by solving the maximization problem in Equation (22) when both

T and N to tend to infinity; see Hahn and Kuersteiner (2002, 2004), for example.
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There are three schemes under which the asymptotic distribution of estimators can be

derived when (T,N)→∞. The first is by using the sequential limit approach composed of

two steps: in the first step, N is fixed and T is allowed to pass to infinity; in the second,

N is let to pass to infinity. Another approach is to pass to infinity along a specific diagonal

path determined by a function relation of the type T = T (N) with N → ∞. A third

approach is to let N and T to pass to infinity simultaneously. The joint limit requires

stronger conditions, but it does not run into the drawback of the other two approaches.

Phillips and Moon (1999), for example, give an exhaustive discussion on the drawbacks of

sequential and diagonal limits.

To deal with the joint limit theory without restricting the cross-sectional dependence we

use the concept of random fields.16 The collection Z = {Zt,s, (t, s) ∈ N × S} of random

vectors in RK+G composed of the explanatory and dependent variables:

(23) Zt,s ≡ (X ′t,s, Y
′
t,s)
′

for any (t, s) ∈ N× S, defines a vector random field. As previously, (RK+G)N×S denotes the

countable product space, and Z : Ω→ (RK+G)N×S. For any subset of indices V ⊆ N× S, we

introduce the σ-algebra ZV ≡ σ(Zt,s, (t, s) ∈ V ).

We limit our attention to random fields Z that are α-mixing (or “strong” mixing). Mix-

ing conditions for random field extend the usual mixing conditions on random sequences.

Rosenblatt (1986) gives the following definition.

Definition 4 (Strong Mixing). Let V ⊆ N×S and W ⊆ N×S be two sets of indices, and

let d(V,W ) be a distance between them. Consider ZV ≡ (Zv, v ∈ V ) and ZW ≡ (Zw, w ∈ W ),

and the associated σ-algebras ZV and ZW . The random field Z is said to be α-mixing (or

strong mixing) if there exists a function ϕ satisfying ϕ(d)→ 0 as d→∞, for which:

α(ZV ,ZW ) ≡ sup
A∈ZV , B∈ZW

[P (ZV ∈ A ∩ ZW ∈ B)− P (ZV ∈ A)P (ZW ∈ B)] 6 ϕ(d(V,W )).

16Ivanov and Leonenko (1986) and Föllmer (1988) provide a detailed analysis of random fields.
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For nonempty sets V ⊆ N× S and W ⊆ N× S that are disjoint, we use the abbreviation

α(V,W ) ≡ α(ZV ,ZW ). For any m ∈ N and (k, l) ∈ N∪ {∞}, the mixing coefficients for the

random field Z are defined as:

(24) αk, l(m) ≡ sup{α(V,W ) : |V | 6 k, |W | 6 l, d(V,W ) > m}

where |V | and |W | denote the cardinalities of the sets V and W , respectively. The mixing

coefficient αk, l(m) was introduced by Bulinsky and Zhurbenko (1976) (see also Bolthausen,

1982). Notice that the dependence of the σ-algebras ZV and ZW may increase as the sets V

and W become larger if the distance between them is not preserved. The role of αk, l(m) is

to quantify how this dependence diminishes as the sets V and W become more distant and

their cardinalities do not exceed given values k and l.

We are now ready to state the dependence condition imposed on the random field Z.

Hereafter, we shall make the following assumption:

Assumption A12. The vector random random field Z = {Zt,s, (t, s) ∈ N× S}, with Zt,s =

(X ′t,s, Yt,s)
′ ∈ RK+G is α-mixing with mixing coefficients satisfying:

(a)
∑∞

m=1 mαk, l(m) <∞, for k + l 6 4;

(b)
∑∞

m=1 mα1,1(m)δ/(2+δ) <∞, for some δ > 0;

(c) α1,∞(m) = O(m−2−ε).

Assumption A12 it is generally not sufficient to guarantee that nonlinear functions of the

random field Z, such as the objective function Gt,si in Equation (22), satisfy a law of large

numbers and a central limit theorem. The difficulty stems from the fact that the Lagrange

multipliers ηt,si(θ) and λt,si(θ) are functions of an increasing number of vectors in the random

field Z as T and N get large. In order to avoid such difficulties, we limit the dependence of

ηt,si(θ) and λt,si(θ) on some finite number of vectors in Z. We first introduce the following

set of indices: Πt,si ≡ {(h, sj) : |h − t| 6 κ, |j − i| 6 ς}, where κ ∈ N and ς ∈ N are

maximal numbers of lags (and leads) and neighbors, respectively, which we assume to be

finite: κ < ∞ and ς < ∞. Let then Z̃t,si ≡ {Zh,v, (h, v) ∈ Πt,si} and FΠ
t,si
≡ σ(Yt,v, v ∈



EFFICIENT ESTIMATION OF DYNAMIC STRUCTURES 29

{si−ς , . . . , si−1}, Yh,v, (h, v) ∈ [[t − τ, t − 1]] × {si−ς , . . . , si+ς}, Xh,v, (h, v) ∈ Πt,si). Put in

words, FΠ
t,si

is the σ-algebra of those generating variables in Ft,si whose indices are restricted

to lie in the set Πt,si .

We make the following assumption.

Assumption A13. For every (t, i, θ) ∈ N2 ×Θ′, ηt,si(θ) and λt,si(θ) are FΠ
t,si

-measurable.

Assumption A13 limits the dependence of the parameters of the least favorable distribution

g∗t,si(·, θ) on a finite number of vectors in the random field Z.17 This assumption is for

instance satisfied if for every θ ∈ Θ′ and every (η, λ′)′ in a neighborhood of 0 ∈ RG+1, we

have: E
[
φ∗(η + λ′rt,si(Yt,si , θ))|Ft,si ] = E

[
φ∗(η + λ′rt,si(Yt,si , θ))|FΠ

t,si
] a.s. (see Theorem 1).

This property implies that the sequence of Lagrange multipliers—and hence the sequence

of objective functions {Gt,si , (t, i) ∈ N2}—are α-mixing if the underlying random field Z

is α-mixing. Replacing Assumption A13 with any assumption that guarantees α-mixing of

{ηt,si(θ), (t, i) ∈ N2} and {λt,si(θ), (t, i) ∈ N2} would not affect the results of this section.

As such, Assumption A13 is to be regarded as purely technical requirement that does not

impact the generality of our results.

The derivation of consistency for the estimator defined in Equation (22) involves a demon-

stration that the objective function of the estimator converges uniformly over Θ′ to its as-

ymptotic counterpart. This is tantamount to showing that the uniform law of large numbers

(ULLN) holds for {Gt,si(θ), (t, i) ∈ N2}, i.e. that as (T,N) → ∞ we have, uniformly on

[[1, T ]]× [[1, N ]],

sup
θ∈Θ′

∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

Gt,si(θ)− E
[
Gt,si(θ)

]∣∣∣∣ p−→ 0.

ULLN can be established is by imposing conditions which transform a pointwise conver-

gence result delivered by an appropriate LLN into the corresponding uniform one. Here, we

follow recent work by Jenish and Prucha (2007) to give sufficient conditions for ULLN for

possibly nonstationary random fields. Two key assumptions are sufficient for a ULLN to hold
17Note that under Assumption A13, the Lagrange multipliers no longer depend on T and N . In other

words, they no longer form a triangular array of random fields. For this reason, the qualifier “for any T > 1,
N > 1, and every (t, i) ∈ [[1, T ]]× [[1, N ]]” can be reduced to “for every (t, i) ∈ N2”.
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in our context. First, a (pointwise) LLN holds for all θ ∈ Θ′. Second, {Gt,si(θ), (t, i) ∈ N2}

is L0 stochastically equicontinuous on Θ′, i.e. for every ε > 0

1

NT

T∑
t=1

N∑
i=1

P

(
sup
θ′∈Θ′

sup
θ∈B(θ′,δ)

∣∣Gt,si(θ)−Gt,si(θ
′)
∣∣ > ε

)
→ 0, as δ → 0.

The following assumptions are sufficient to establish consistency of the MLE θTN .

Assumption A14. (i) sup(t,i)∈N2 E
[
| supθ∈Θ′ Gt,si(θ)|1+δ

]
<∞, for δ in Assumption A12(b);

(ii) for every (t, i) ∈ N2 and every (θ, θ′) ∈ (Θ′)2, we have: |Gt,si(θ)−Gt,si(θ
′)| 6 Bt,si | θ−θ′|

a.s. where {Bt,si , (t, i) ∈ N2} satisfies lim(T,N)→∞(TN)−1
∑T

t=1

∑N
i=1 E(Bp

t,si) < ∞ for some

p > 0.

Assumption A14(i) bounds the moments of the objective function. The Lipschitz property

in A14(ii) implies that {Gt,si , (s, i) ∈ N2} is L0 equicontinuous on Θ′.

Theorem 4. Let Assumptions A1-A11,A13-A14 be satisfied. Moreover, let Assumption

A12(a) hold for k = l = 1. Then a solution θTN to the maximization problem in Equation

(22) exists, and θTN
p−→ θ0 as (T,N)→∞.

The proof of Theorem 4 uses a uniform law of large numbers for random fields, established

by Jenish and Prucha (2007). Note that there are no requirements on the relative speeds

with which the two sample sizes increase, i.e. we can have T/N → c with c ∈ R ∪ {∞}.

Recalling that g∗t,si(·, θ) is twice continuously differentiable with respect to θ, let

Hθ ln g∗t,si(·, θ) denote the Hessian of the log-likelihood and define the expected Hessian eval-

uated at θ0 as: H ≡ E
[
Hθ ln g∗t,si(Yt,si , θ0)

]
. To obtain asymptotic normality, we define:

V ≡ lim
(T,N)→∞

Var

(
1√
TN

T∑
t=1

N∑
i=1

Dθ ln g∗t,si(Yt,si , θ0)

)
and seek conditions which will ensure the unit asymptotic normality of:

(25)
1√
TN

T∑
t=1

N∑
i=1

υ′V −1/2Dθ ln g∗t,si(yt,si , θ0)

for arbitrary vectors υ ∈ RK such that υ′υ = 1. Using the Cramér-Wold device, this will

establish that that (TN)−1/2
∑T

t=1

∑N
i=1 V

−1/2Dθ0g
∗
t,si

(Yt,si , θ0)
d−→ N(0, Ik). In our setting,
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asymptotic normality of the quantity defined in Equation (25) can be deduced from Jenish

and Prucha’s (2007) CLT for random fields. Uniform convergence and non-singularity of the

Hessian will establish the asymptotic distribution of the MLE.

Before stating the assumptions under which the asymptotic normality for θTN is proved,

it is helpful to examine more closely the the form of the gradient Dθ ln g∗t,si(·, θ) evaluated

at θ = θ0. Under the assumptions of Theorem 1, using the law of iterated expectations

and the expression derived in Equation (18), it follows that for every (t, i) ∈ N2, we have:

E
[
Dθ ln g∗t,si(Yt,si , θ0)

]
= 0 a.s..

The following primitive assumptions are sufficient for asymptotic normality of θTN .

Assumption A15. For every (t, i) ∈ N2, we have: (i) E
[
|Dθ ln g∗t,si(Yt,si , θ0)|2+δ

]
< ∞,

with δ as in Assumption A12(b); (ii) for every θ ∈ Θ′, E
[
|Hθ ln g∗t,si(Yt,si , θ)|

1+ξ
]
< ∞

for some ξ > 0 and |Hθ ln g∗t,si(Yt,si , θ
′) − Hθ ln g∗t,si(Yt,si , θ)| 6 Ct,si(θ)| θ′ − θ| a.s. where

{Ct,si , (t, i) ∈ N2} satisfies lim(T,N)→∞(TN)−1
∑T

t=1

∑N
i=1 E

[
Ct,si

]
<∞.

Assumption A15(i) guarantees that the appropriate version of the CLT can be applied to

the quantity in Equation (25) and that the Hessian converge uniformly to a positive definite

matrix. Underlying the existence of the Hessian of the objective functions are regularity

conditions on certain moments of rt,si(Yt,si , θ) and its derivatives that guarantee that ηt,si(θ)

and λt,si(θ) are twice differentiable on Θ′. Assumption A15(ii) imposes additional smoothness

on the Hessian.

The expected value of the Hessian at θ0 can be calculated explicitly by twice differenti-

ating the objective function Gt,si(θ) in Equation (21) with respect to θ. However, correct

specification of the parametric model P∗ allows an alternative derivation of the expected

Hessian at θ0. By the information matrix equality we have:

(26) H = lim(T,N)→∞
1

TN

T∑
t=1

N∑
i=1

E

[
E
[
Dθrt,si(Yt,si , θ0))′|FΠ

t,si

]
× E

[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|FΠ

t,si

]−1
E
[
Dθrt,si(Yt,si , θ0))|FΠ

t,si

]]
.
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Note that—in virtue of Assumption A13—the conditioning σ-algebra in the expression of

the Hessian is FΠ
t,si

and not Ft,si .

We have the following asymptotic normality result:

Theorem 5. Let Assumptions A1-A11, A13-A15 hold. Further let Assumption A12 be

satisfied for some δ, ε > 0. Assume that for any T > 1 and N > 1, we have θTN ∈ int(Θ′).

Then,
√
TN(θTN − θ0)

d−→ N(0, H−1).

The MLE estimator based on the projection of fYt,i|Ft,si on SPθ,t,si is consistent and asymp-

totically normal. The projected densities form a parametric submodel and hence no semi-

parametric estimator can have asymptotic variance smaller (in the semidefinite sense) than

H−1.

6. Conclusion

We have derived an efficiency bound for structural cross section time series models that

come in a form of a system of dynamic nonlinear equations. The models we consider exhibit

both temporal and spatial dependence, and heterogeneity among variables. We construct

a (least favorable) parametric submodel of a semiparametric model defined by a panel exo-

geneity condition. This condition generalizes the notion of strict stationarity used in setups

with independent and identically distributed variables. The variance of asymptotic distri-

bution of the estimator of the parameter of interest gives a bound on the efficiency bound:

no semiparametric estimator can have variance lower than H−1. The lower bound is derived

under the large T large N thought experiment. Asymptotic results are established by using

a law of large numbers and a central limit theorem for random fields recently given in Jenish

and Prucha (2007). Our results extend to a setting with the T fixed, in which case the bound

can be derived by assuming a richer time dependence structure.

Constructing an estimator possessing asymptotic variance equal to H−1 is the next step

in the analysis of the efficiency problem. We briefly consider what is viable strategy for

the construction of such estimator. Let θ̄TN a consistent estimator of θ0. This preliminary
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estimator can be easily obtained by using the unconditional moment restrictions generated

by (13). Define the following weighting

ωt,sij,` =
K(ψt,sij,` )∑
j,`K(ψt,sij,` ))

, ψt,sij,` =
qt,si − qj,s`

hNT
, q ∈ FΠ

t,si
,

where K is a kernel function, and hTN denotes a null sequence of positive number such that

a TNhTN →∞. Consider the following minimization problem

(27) min
θ∈Θ

(
1

TN

T∑
t=1

N∑
i=1

rwt,si(θ)

)′
WT,N

(
1

TN

T∑
t=1

N∑
i=1

rwt,si(θ)

)
where

rwt,si(θ) =
T∑
j=1

N∑
`=1

ωt,sij,` rt,si(Yt,si , θ),

WT,N =

[
1

TN

T∑
t=1

N∑
i=1

T∑
j=1

N∑
`=1

ωt,sij,` rt,si(Yt,si , θ̄)rt,si(Yt,si , θ̄)
′
]−1

.

The role of the weighting is to incorporate the information about the conditional moment

restrictions. Under suitable regularity conditions we have that (TN)−1
∑T

t=1

∑N
i=1 r

ω
t,si

(θ)
p−→

E
[
rt,si(Yt,si , θ)|FΠ

t,si

]
, WT,N

p−→ W ≡ (TN)−1
∑T

t=1

∑N
i=1E

[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|FΠ

t,si

]
,

and, more generally, sample averages weighted by ωt,sij,` converge to their conditional (with

respect to FΠ
t,si

) expected values. Mean value expansion of the first order conditions of the

solution of (27), θ̂, gives

0 =

(
1

TN

T∑
t=1

N∑
i=1

Dθr
w
t,si

(θ̂)

)′
WT,N

(
1

TN

T∑
t=1

N∑
i=1

rwt,si(θ0)

)

+

(
1

TN

T∑
t=1

N∑
i=1

Dθr
w
t,si

(θ̂)

)′
WT,N

(
1

TN

T∑
t=1

N∑
i=1

Dθr
w
t,si

(θ̇)

)(
θ̂ − θ0

)
.

Under regularity conditions—such as uniform convergence of higher order moments of the

weighted version of rt,si(Yt,si , θ)—the following approximation may be shown to hold

√
TN

(
θ̂−θ0

)
= H−1

(
1√
TN

T∑
t=1

N∑
i=1

E
[
Dθrt,si(Yt,si , θ0)

])
W−1

(
1

TN

T∑
t=1

N∑
i=1

rwt,si(θ0)

)
+op(1).
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A version of the central limit theorem for random fields applied to the sample average of rωt,si
gives that

1√
TN

T∑
t=1

N∑
i=1

rwt,si(θ0)
d−→ N(0,W ).

By standard asymptotic arguments it follows that θ̂ is asymptotically normal with variance

equal to the bound given in Theorem 5, H−1.
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Appendix A. Proofs

Proof of Proposition 1. Under A1(i)-(ii), the mapping r̃(·, X̃N , θ) is in C1(RGTN ,RGTN), and

its Jacobian J(·, X̃N , θ) never vanishes. Now, consider y = (yt,s, (t, s) ∈ [[1, T ]]×SN) ∈ RGTN

(yt,s ∈ RG for any (t, s) ∈ [[1, T ]] × SN): then |y|2 =
∑T

t=1

∑
s∈SN |yt,s|

2 and |y| → ∞

implies that for least one (t0, s0), (t0, s0) ∈ [[1, T ]] × SN , we have |yt0,s0| → ∞. As-

sumption A1(iii) then ensures that at least for one t1, t0 6 t1 6 max{t0 + τ, T},

we have |r(yt1,s0 , . . . , yt1−τ,s0 , Xt1,s0 , . . . , Xt1−τ,s0 , θ)| → ∞. Given that |r̃(y, X̃N , θ)|2 =∑T
t=1

∑
s∈SN |r(yt,s, . . . , yt−τ,s, Xt,s, . . . , Xt−τ,s, θ)|2, we then have that |r̃(y, X̃N , θ)| → ∞;

hence the mapping r̃(·, X̃N , θ) is proper. We can now apply Corollary 4.3 in Palais (1959),

to show that r̃(·, X̃N , θ) is a diffeomorphism of RGTN onto itself. Let then q(·, X̃N , θ) be

its inverse, i.e. for any (y, u) ∈ R2GTN we have: q(u, X̃N , θ) = y ⇔ r̃(y, X̃N , θ) = u, and

q(·, X̃N , θ) is a diffeomorphism of RGTN onto itself. �

Proof of Lemma 1. First, note that from the definition of the Legendre conjugate, φ∗ is

continuous and differentiable on R. In addition, the derivative of φ∗ is given by:

φ∗
′
(υ) = (φ′)−1(υ), for any υ ∈ R.

Given the strict convexity of φ in Assumption A6(ii), φ′ is continuous and strictly increas-

ing on R∗+ with φ′(0) = −∞ from A6(v), and limu→+∞ φ
′(u) = +∞ from A6(iv); so its

inverse φ∗′ is continuous and strictly increasing on R. Hence, φ∗ is strictly convex. Since

limυ→−∞ φ
∗′(υ) = 0, we have φ∗′ > 0 in R. Moreover, from A6(iii) φ∗(0) = 0 which combined

with the previous property gives φ∗ > 0 on R∗+. Finally, A6(ii) implies φ′′ > 0 on R∗+ so φ∗′

is continuously differentiable on R with derivative:

φ∗
′′
(υ) =

1

φ′′((φ′)−1(υ))
.

This completes the proof of Lemma 1. �
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Proof of Theorem 1. The proof is done in two steps. In the first step, we show that the con-

clusion of Theorem 1 holds when θ = θ0. In the second step, we invoke Implicit Function The-

orem around the first order condition satisfied by the lagrange multipliers (ηt,si(θ0), λt,si(θ0))

to extend the results to a neighborhood of θ0.

Step 1: We start with the following lemma:

Lemma 2. Let Assumptions A1-A4, and A6 hold. Fix T > 1, N > 1, and let I(η, λ) ≡

E
[
φ∗
(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] − η. Suppose that for some θ̄ ∈ Θ, inf(η,λ′)′∈RG+1 I(η, λ)

is attained and (η̄t,si(θ̄), λ̄t,si(θ̄)) is optimal with I(η̄t,si(θ̄), λ̄t,si(θ̄)) < ∞ a.s.. If there

exists Uθ̄ open in Θ × RG+1 such that for every (θ′, η, λ′)′ ∈ Uθ̄ we have: E
[
φ∗
(
η +

λ′rt,si(Yt,si , θ)
)∣∣Ft,si] < ∞ a.s., E

[
φ∗
′(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] < ∞ a.s., and E
[
φ∗
′(
η +

λ′rt,si(Yt,si , θ)
)
|rt,si(Yt,si , θ)|

∣∣Ft,si] <∞ a.s., then the Dφ-projection g∗t,si(·, θ) of ft,si on SP θ̄,t,i
exists, is a.s. P unique and positive for a.e. ω. For every y ∈ RG, it is given by:

g∗t,si(y, θ̄) = φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
ft,si(y) a.s..

Next, we show that when θ̄ = θ0, inf(η,λ′)′∈RG+1 I(η, λ) is attained at (η̄t,si(θ0), λ̄t,si(θ0)′)′ =

0 ∈ RG+1. For this, we use the strict convexity of φ∗ (from Lemma 1(ii)) which im-

plies that for any υ ∈ R, φ∗(υ) − φ∗(0) > υφ∗
′
(0). From Lemma 1(v) and Assump-

tion A6(iii) we know that φ∗′(0) = 1 and φ∗(0) = 0, so for any (η, λ′)′ ∈ RG+1 we

have I(η, λ) > λ′E
[
rt,si(Yt,si , θ0)

∣∣Ft,si] = 0 a.s.. So for any (η, λ′)′ ∈ RG+1 it holds that

I(η, λ) > I(η̄t,si(θ0), λ̄t,si(θ0)) = 0 a.s. which shows that (η̄t,si(θ0), λ̄t,si(θ0)′)′ = 0 ∈ RG+1 is

optimal and that inf(η,λ′)′∈RG+1 I(η, λ) is attained.

Now, note that under Assumption A8, we can let Uθ0 ≡ U(θ0, ε1) so the moment conditions

of Lemma 2 hold when θ̄ = θ0.18 Applying the lemma shows that Theorem 1 holds for θ = θ0.

18Recall that U(θ0, ε1) is an open ball in Θ× RG+1 with radius ε1 > 0 and centered at (θ′0, 0, 0
′)′.
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Step 2: We now use the set of first order conditions satisfied by (η̄t,si(θ0), λ̄t,si(θ0)′)′. From

the proof of Lemma 2, we know that:

0 =

∫
RG
φ∗
′(
η̄t,si(θ0) + λ̄t,si(θ0)′rt,s(y, θ0)

)
ft,si(y)dy − 1 a.s.

=

∫
RG
φ∗
′(
η̄t,si(θ0) + λ̄t,si(θ0)′rt,s(y, θ0)

)
rt,s(y, θ0)ft,si(y)dy a.s.(28)

Let τ ≡ (η, λ) ∈ RG+1 and τ0 ≡ 0 ∈ RG+1. For any (θ, τ) ∈ Θ× RG+1 consider then:

F̃ (θ, τ) ≡
∫

RG
F (θ, τ, y)ft,si(y)dy,

where for any y ∈ RG we define:

F (θ, τ, y) ≡

 φ∗
′(
η + λ′rt,si(y, θ)

)
− 1

φ∗
′(
η + λ′rt,si(y, θ)

)
rt,si(y, θ)

 .

Note that under A8, Lemma 2 also shows that τ 7→ F̃ (θ, τ) is continuous a.s. on RG+1∩Uθ0 .

Continuity of θ 7→ F̃ (θ, τ) a.s. on Θ ∩ Uθ0 follows from continuity of φ∗ (Lemma 1(i)) and

rt,si(y, ·) (Assumption A7), and from Assumption A8(ii,iii) by using the same reasoning as

in Lemma 2.

We now establish that (θ, τ) 7→ F̃ (θ, τ) is also continuously differentiable in a neighborhood

of (τ0, θ0). Under Assumptions A6 and A7, the mapping (θ, τ) 7→ F (θ, τ, y) is continuously

differentiable on Θ × RG+1. Let then DτF (θ, τ, y)′ ∈ L(RG+1,RG+1) and DθF (θ, τ, y)′ ∈

L(Rk,RG+1) denote the derivatives of F with respect to τ and θ, respectively. Writing r for

rt,si(y, θ) we have:

DτF (θ, τ, y) = φ∗
′′
(η + λ′r)

1 r′

r rr′


DθF (θ, τ, y) =

(
φ∗
′′
(η + λ′r)Dθrλ φ∗

′′
(η + λ′r)Dθrλr

′ + φ∗
′
(η + λ′r)Dθr

)
where Dθr

′ ∈ L(Rk,RG) denotes a partial derivative of rt,si(y, θ) with respect to θ. Using

the fact that φ∗ is convex, we then have:

‖DτF (θ, τ, y)‖ = φ∗
′′
(η + λ′r)

(
1 + |r|2

)
,
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and

‖DθF (θ, τ, y)‖ 6 φ∗
′′
(η + λ′r)|Dθrλ|+ φ∗

′′
(η + λ′r)‖Dθrλr

′‖+ φ∗
′
(η + λ′r)‖Dθr‖.

Given the continuity of r, φ∗′, and φ∗′′, and the moment assumptions in A9, both

‖DτF (θ, τ, y)‖ and ‖DθF (θ, τ, y)‖ are bounded on Uθ0 ∩ U(θ0, ε2) by quantities that are

integrable with respect to ft,si . So by Lebesgue Dominated Convergence Theorem we can

exchange limits and integration to get (letting R ≡ η+λ′rt,si(Yt,si , θ)), with probability one:

Dτ F̃ (θ, τ)

=

 E[φ∗
′′
(R)|Ft,si ] E[φ∗

′′
(R)rt,si(Yt,si , θ)|Ft,si ]′

E[φ∗
′′
(R)rt,si(Yt,si , θ)|Ft,si ] E

[
φ∗
′′
(R)rt,si(Yt,si , θ)rt,si(Yt,si , θ)

′|Ft,si
]


and

DθF̃ (θ, τ)

=
(
E
[
φ∗
′′
(R)Dθrt,si(Yt,si , θ)λ

∣∣Ft,si] E
[
φ∗
′′
(R)Dθrt,si(Yt,si , θ)λrt,si(Yt,si , θ)

′ + φ∗
′
(R)Dθrt,si(Yt,si , θ)

∣∣Ft,si])
for all (θ, τ) ∈ Uθ0 ∩ U(θ0, ε2). Same assumptions suffice to show that (θ, τ) 7→ Dτ F̃ (θ, τ)

and (θ, τ) 7→ DθF̃ (θ, τ) are continuous on Uθ0 ∩ U(θ0, ε2), following a reasoning similar to

that in the proof of Lemma 2. In particular, under Assumption A3 we have:

Dτ F̃ (θ0, τ0) =

1 0

0 E
[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|Ft,si

]
 a.s.

DθF̃ (θ0, τ0) =
(

0 E[Dθrt,si(Yt,si , θ0)|Ft,si
])

a.s..

Finally, we invoke Implicit Function Theorem for (θ, τ) in a neighborhood of (θ0, τ0), which

by Equation (28) are known to solve F̃ (θ0, τ0) = 0 a.s.. Under Assumption A10, Dτ F̃ (θ0, τ0)

is invertible a.s.. Then Implicit Function Theorem (e.g. Theorem 9.28 in Rudin (1976))

applies and there exists B(θ0, ε) in which to any θ ∈ B(θ0, ε) ⊂ Θ there corresponds a unique

τ such that:

(θ, τ) ∈ Uθ0 ∩ U(θ0, ε2) and F̃ (τ(θ), θ) = 0 a.s.
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In particular, for each θ̄ ∈ B(θ0, ε), there exists a unique (η̄t,si(θ̄), λ̄t,si(θ̄)) ≡ τ(θ̄) which

satisfies the conditions in Equation (29); so (η̄t,si(θ̄), λ̄t,si(θ̄)) minimizes I(η, λ) when θ = θ̄.

Given that (θ̄′, η̄t,si(θ̄), λ̄t,si(θ̄)
′)′ ∈ Uθ0 ∩ U(θ0, ε2), the moment conditions of Lemma 2 are

satisfied and we can apply its results to show that the Dφ-projection g∗t,si(y, θ̄) of ft,si on

SP θ̄,t,si exists, is a.s. P unique and positive for a.e. ω, and given by:

g∗t,si(y, θ̄) = φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
ft,si(y) a.s..

for every y ∈ RG. In addition, the mapping θ̄ 7→ τ̄ = τ(θ̄) is continuously differentiable

on B(θ0, ε) with derivative Dθ̄τ(θ̄)′ ∈ L(Rk,RG+1), and when θ̄ = θ0 (and τ̄ = τ0) we have:

Dθτ(θ0) = −DθF̃ (τ0, θ0)
[
Dτ F̃ (τ0, θ0)

]−1. In particular, under Assumption A3 we have:

Dτ F̃ (τ0, θ0) =

1 0

0 E
[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|Ft,si

]
 a.s.

DθF̃ (τ0, θ0) =
(

0 E[Dθrt,si(Yt,si , θ0)|Ft,si
])

a.s.

which shows that

Dθτ(θ0) =
(

0 −E[Dθrt,si(Yt,si , θ0)|Ft,si
]{
E
[
rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′|Ft,si

]}−1
)
.

This completes the proof of Theorem 1 and its Corollaries 2 and 3. �

Proof of Lemma 2. The proof is done in two steps. We first show that g∗t,si(y, θ̄) defined in

Lemma 2 is in SP θ̄,t,si . Then, we show that it is optimal.

Step 1: Given θ̄, we have that I(η, λ) <∞ a.s. for any (η, λ′)′ ∈ RG+1∩Uθ̄ which is open.

Hence, (η̄t,si(θ̄), λ̄t,si(θ̄)) is an interior optimum, and we have that DηI(η̄t,si(θ̄), λ̄t,si(θ̄)) =

0 a.s., and DλI(η̄t,si(θ̄), λ̄t,si(θ̄)) = 0 a.s., where DηI(η, λ)′ ∈ L(R,R) and DλI(η, λ)′ ∈

L(RG,R) denote the partial derivatives of I with respect to η and λ. We first use Lebesgue

Dominated Convergence Theorem to be able to take the limit into the expectation in:

DηI(η̄t,si(θ̄), λ̄t,si(θ̄)) =

lim
h→0

E
[φ∗(η̄t,si(θ̄) + h+ λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
− φ∗

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)

h

∣∣∣Ft,si]− 1 a.s..
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Under Assumption A6, Lemma 1 applies and φ∗ is in C2(R,R) so by mean value theorem:

φ∗
(
η̄t,si(θ̄) + h+ λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
− φ∗

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)

h
=

φ∗′
(
η̄t,si(θ̄) + ḣ+ λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
a.s.,

with ḣ ∈ (min{0, h},max{0, h}). Given that φ∗′ is positive and strictly increasing on R (see

Lemma 1(iv)), we have:

0 < φ∗′
(
η̄t,si(θ̄)+ḣ+λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
6 φ∗′

(
η̄t,si(θ̄)+max{0, h}+λ̄t,si(θ̄)′rt,si(Yt,si , θ̄)

)
a.s..

Now, for h ∈ R such that (θ̄′, η̄t,si(θ̄)+h, λ̄t,si(θ̄)
′)′ ∈ Uθ̄, the upper bound above is integrable

with respect to ft,si ; we can therefore exchange limit and expectation to get:

DηI(η̄t,si(θ̄), λ̄t,si(θ̄)) = E
[
φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)∣∣∣Ft,si]− 1 a.s..

The same reasoning shows that for any (θ′, η, h, λ′)′ ∈ Θ × RG+2 such that (θ′, η, λ′)′ ∈ Uθ̄
and (θ′, η + h, λ′)′ ∈ Uθ̄, we have:

lim
h→0

E
[
φ∗′
(
η + h+ λ′rt,si(Yt,si , θ)

)∣∣Ft,si] = E
[
φ∗′
(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] a.s.,
so that η 7→ E

[
φ∗′
(
η + λ′rt,si(Yt,si , θ)

)∣∣Ft,si] is continuous a.s. on R ∩ Uθ̄.

Similarly, fix any 1 6 j 6 G and consider the partial derivative of I(η, λ) with respect to

λj, when evaluated at (η̄t,si(θ̄), λ̄t,si(θ̄)). We have:

φ∗
(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄) + hrjt,si(Yt,si , θ̄)
)
− φ∗

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)

h

= φ∗′
(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄) + ḣrjt,si(Yt,si , θ̄)
)
rjt,si(Yt,si , θ̄) a.s.,

where rj denotes the jth component of r, and ḣ ∈ (min{0, h},max{0, h}). Now, using again

the convexity of φ∗ we have, with probability one:∣∣∣φ∗′(η̄t,si(θ̄) + λ̄t,si(θ̄)
′rt,si(Yt,si , θ̄) + ḣrjt,si(Yt,si , θ̄)

)
rjt,si(Yt,si , θ̄)

∣∣∣ 6
max

{
φ∗′
(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
, φ∗′

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄) + hrjt,si(Yt,si , θ̄)
)}∣∣rjt,si(Yt,si , θ̄)∣∣
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Both terms of the right hand side of the above inequality are integrable with respect to ft,si ,

so using again Lebesgue’s Dominated Convergence theorem, we get:

DλjI(η̄t,si(θ̄), λ̄t,si(θ̄)) = E
[
φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,si(Yt,si , θ̄)
)
rjt,si(Yt,si , θ̄)

∣∣∣Ft,si] a.s..
Same reasoning as previously shows that moreover, for any (θ′, η, λ′)′ ∈ Uθ̄, we have λj 7→

E
[
φ∗′
(
η + λ′rt,si(Yt,si , θ)

)
rjt,si(Yt,si , θ̄)

∣∣Ft,si] continuous a.s. on R ∩ Uθ̄.

In particular, the first order conditions satisfied by (η̄t,si(θ̄), λ̄t,si(θ̄)) can then be written

as:

0 =

∫
RG
φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
ft,si(y)dy − 1 a.s.

=

∫
RG
φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
rt,s(y, θ̄)ft,si(y)dy a.s..(29)

Combined with φ∗′ > 0 on R from Lemma 1(iv), and ft,si(y) > 0 a.s. for every y ∈ RG from

Assumption A4, the two equalities in Equation (29) show that g∗t,si(·, θ̄) is a feasible element

of SP θ̄,t,si .

Step 2: We now show that g∗t,si(·, θ̄) is indeed optimal. Let πθ̄,t,si be any other probability

density belonging to SP θ̄,t,si . As consequence of Assumption A6, we have that for all (υ, u) ∈

R2 (see Hiriart-Urruty and Lemarechal (1993)):

φ∗(υ) = υ(φ′)−1(υ)− φ
(
(φ′)−1(υ)

)
> υu− φ(u).

When evaluated at u ≡ πθ̄,t,si(y)/ft,si(y) and υ ≡ η̄t,si(θ̄) + λ̄t,si(θ̄)
′rt,s(y, θ̄), the above in-

equality becomes:

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
(φ′)−1

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
ft,si(y)

− φ
(
(φ′)−1

(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
))
ft,si(y)

> πθ̄,t,si(y)
(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
)
− φ
(πθ̄,t,si(y)

ft,si(y)

)
ft,si(y) a.s..
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Integrating over RG, using Equation (29) and feasibility of the probability density πθ̄,t,si then

gives:

Dφ(g∗t,si(·, θ̄), ft,si) =

∫
RG
φ
(
φ∗
′(
η̄t,si(θ̄) + λ̄t,si(θ̄)

′rt,s(y, θ̄)
))
ft,si(y)dy

6
∫

RG
φ
(πθ̄,t,si(y)

ft,si(y)

)
ft,si(y)dy = Dφ(πθ̄,t,si , ft,si) a.s.,

so g∗t,si(·, θ̄) is optimal. This completes the proof of Lemma 2. �

Proof of Theorem 4. We start the proof with the following lemma:

Lemma 3. Suppose Assumptions A11, A13 hold, and Z is α-mixing with mixing coefficients

αk,l(m). Then, for every θ ∈ Θ′, {Gt,si(θ), (t, i) ∈ N2} is α-mixing with mixing coefficients

αk,l(m).

Combining Assumption A12(a), Assumption A13 and Lemma 3, it then follows that for all

θ ∈ Θ′, Gt,si(θ) is α-mixing with mixing coefficient satisfying
∑∞

m=1mα1,1(m) <∞. By this

and Assumption A14(i) we have, pointwise on Θ′, (TN)−1
∑T

t=1

∑N
i=1Gt,si(θ)−E

[
Gt,si(θ)

] p−→

0 (see Jenish and Prucha, 2007, Theorem 3). The Lipschitz condition of Assumption A14(ii)

suffices for Gt,si(θ) to be L0 stochastically equicontinuous on Θ′ (see Jenish and Prucha, 2007,

Proposition 1). Thus, we can apply Jenish and Prucha (2007, Theorem 2) to get that, as

(T,N)→∞, supθ∈Θ′ |(TN)−1
∑T

t=1

∑N
i=1Gt,si(θ)−E

[
Gt,si(θ)

]
| p−→ 0. Therefore, consistency

of θTN follows by standard asymptotic arguments (e.g. Gallant and White, 1988). �

Proof of Lemma 3. From Assumption A11, rt,s(Yt,s, θ) is continuous with respect to

all its arguments which implies that rt,si(Yt,si , θ) is a Ft,si-measurable function of

(Yt,si , . . . , Yt−τ,si , Xt,si , . . . , Xt−τ,si) with τ finite. Hence, when Z is α-mixing with mix-

ing coefficients αk, l(m) satisfying A12, so is the random field {rt,si(Yt,si , θ), (t, i) ∈ N2}.

Assumption A13 guarantees that the same holds for the fields {ηt,si(θ), (t, i) ∈ N2} and

{λt,si(θ), (t, i) ∈ N2}, thereby yielding the desired result. �
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Proof of Theorem 5. Consider the mean value expansion of the first order conditions defining

θTN :

(30) 0 =
1√
TN

T∑
t=1

N∑
i=1

Dθ ln g∗t,si(yt,si , θ0)+
1

TN

T∑
t=1

N∑
i=1

Hθ ln g∗t,si(yt,si , θ̇TN)
√
TN(θTN−θ0),

where Hθ ln g∗t,si(yt,si , ·) is evaluated at the mean value θ̇TN = {θ1
TN , . . . , θ

K
TN} lying on the

segment connecting θTN and θ0. Assumption A15, the α-mixing conditions of Assump-

tion A12, and Lemma 3 imply Jenish and Prucha’s (2007) ULLN for the random field

{Hθ ln g∗t,si(Yt,si , θ), (t, i) ∈ N2}. By consistency of θTN , θ̇jTN
p−→ θj0 we have:

(31)
√
TN(θTN − θ0) = −H−1

{
1√
TN

T∑
t=1

N∑
i=1

Dθ ln g∗t,si(yt,si , θ0)

}

+

[
1

TN

T∑
t=1

N∑
i=1

Hθ ln g∗t,si(yt,si , θ̇TN)−H
]{

1√
TN

T∑
t=1

N∑
i=1

Dθ ln g∗t,si(yt,si , θ0)

}

By Lemma 3 the score is α-mixing with mixing coefficient satisfying A12. By Assumption

A15(i) the first term on the right hand side of rightmost term obeys the CLT for random

fields (see Jenish and Prucha, 2007, Theorem 1):

(32)
1√
TN

T∑
t=1

N∑
i=1

υ′V −1/2Dθ ln g∗t,si(yt,si , θ0)
d−→ N(0, 1).

Triangular inequality and uniform convergence of the Hessian on Θ′ implied by Assumption

A15(ii) gives∣∣∣∣ 1

TN

T∑
t=1

N∑
i=1

Hθ ln g∗t,si(yt,si , θ̇TN)−H
∣∣∣∣ = op(1)Op(T

−1/2N−1/2) = op(1).

Therefore,

(33)
√
TN(θTN − θ0) = −H−1

{
1√
TN

T∑
t=1

N∑
i=1

Dθ ln g∗t,si(yt,si , θ0)

}
+ op(1).

Standard multivariate asymptotic normality arguments (see White (2001), Corollary 4.24)

give:
√
TN(θTN − θ0)

d−→ N
(
0, H−1V H−1

)
. In virtue of Assumption A3 and equation (13),
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the moment functions rt,si(Yt,si , θ0) are uncorrelated for every (t, i) ∈ N2 and, thus, the

following simplification occurs:

V = lim
T,N→∞

1

TN

T∑
t=1

N∑
i=1

E

(
Dθλt,si(θ0)′rt,si(Yt,si , θ0)rt,si(Yt,si , θ0)′Dθλt,si(θ0)

)
Hence, application of the law of iterated expectations gives that V = H, from which it

follows that
√
TN(θTN − θ0)

d−→ N(0, H−1)

as required. �
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Appendix A. Overview of Random Fields

In this Appendix, we give a brief overview of random fields. Let Z ≡ {Zs, s ∈ N2} be a

collection of random vectors Zs ∈ Rd defined on a probability space (Ω,Z, P ). Let (Rd)N2

denote the countable product space; then Z : Ω → (Rd)N2 . For any S ⊂ N2, we introduce

the σ-algebra ZS ≡ σ(Zs : s ∈ S). Note that Z = ZN2 . We will usually identify Z with

its distribution which is a probability measure µ on (Rd)N2 . In the approach of Dobruschin

(1968), µ is called a random field (see also Föllmer (1988)). Here, we shall use the same

nomenclature—random field—for both Z and its distribution µ.

For any V ⊂ N2 we can choose a regular conditional distribution of µ with respect to ZV c

(where V c = N2\V is the usual complement of V ), µV : Ω × ZV c → R+ such that: (i) for

every A ∈ ZV c , ω 7→ µV (ω,A) is a version of a conditional distribution of µ given ZV c , i.e.

for any Z-measurable function ϕ > 0 we have:

(34) Eµ[ϕ|ZV c ](ω) =

∫
ϕ(A)µV (ω, dA) ≡ (µV ϕ)(ω);

and, (ii) for a.e. ω, A 7→ µV (ω,A) is a probability measure on (Ω,ZV c) (Föllmer, 1988).

These conditional distributions are consistent in the usual sense: since ZW c ⊆ ZV c for

W ⊇ V , we have:

(35) (µWµV ϕ)(ω) = Eµ
[
Eµ[ϕ|ZV c ]

∣∣ZW c

]
(ω) = Eµ[ϕ|ZW c ](ω) = (µWϕ)(ω) a.s.

for any Z-measurable ϕ > 0.

We are now going to prescribe the local conditional behavior of a random field by fixing

a system of conditional distributions µV for the finite subsets V ⊆ N2. Note that these

conditional distributions are required to be consistent in a strict sense, i.e. without the

intervention of null sets.

Definition 5 (Gibbs Measure). For each finite V ⊆ N2, let µV : Ω× ZV c → R+ be such

that for a.e. ω, A 7→ µV (ω,A) is a probability measure on (Ω,ZV c). The collection (µV ) is

called a local specification if µWµV = µW for V ⊆ W . A random field µ is called a Gibbs
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measure with respect to the local specification (µV ) if, for any finite V , µV is a conditional

distribution of µ with respect to ZV c in the sense of Equation (34).

In what follows, for a given local specification (µV ) we denote by G(µ) the corresponding

class of Gibbs measures. It is worth pointing out that G(µ) need not be nonempty nor

a singleton. Dobruschin (1968) investigates the problems of existence and uniqueness of a

random field µ with a given system of conditional distributions (µV ).

We now discuss some important properties of the random fields.

Definition 6 (Spatial Homogeneity). Let i ∈ N2 and let Ti : Ω → Ω be the shift map

defined by (Tiω)(k) = ω(i + k). A local specification is called spatially homogeneous if

µV (Tiω, ·) = µV+i(ω, ·) ◦ Ti, i.e. (µV ϕ) ◦ Ti = µV+i(ϕ ◦ Ti) for finite V ⊆ N2.

In this case, we denote by SΩ ≡ {µ : µ ◦ Ti = µ for any i ∈ N2} the class of all spatially

homogeneous random fields. In the literature, the name “spatial homogeneity” seems to be

reserved for the measure µ (see e.g. Föllmer (1988)). An equivalent property of Z is referred

to as “strict stationarity” (Rosenblatt, 1986; Bradley, 1989).

Definition 7 (Strict Stationarity). The random field Z is strictly stationary, if the as-

sociated measure µ is spatially homogeneous, i.e. for any A ⊆ Z, P (Z ∈ TiA) = µ(TiA) =

µ(A) = P (Z ∈ A) where i ∈ N2.

We now explore some dependence properties of the random field Z that extend the usual

mixing conditions on random sequences. It is important to note that for strictly stationary

random fields such as Z, apparently natural versions of the φ-mixing condition turn out to

be extremely restrictive. For example, Bradley (1989) showed that versions of φ-mixing or

even absolute regularity are in fact equivalent to corresponding versions of m-dependence

for random sequences. By Rosenblatt (1986), this does not apply to corresponding versions

of the α-mixing or ρ-mixing conditions. Thus, we limit our attention to strictly stationary

random fields Z that are α-mixing (or “strong” mixing). Rosenblatt (1986) gives the following

definition.
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Definition 8 (Strong Mixing). Let V ⊆ N2 and W ⊆ N2 be two sets of indices, and let

d(V,W ) be the Euclidean distance between them, i.e. d(V,W ) ≡ infi∈V,j∈W ‖i − j‖ with

‖i − j‖ ≡ max{|i1 − j1|, |i2 − j2|} for any i = (i1, i2) ∈ N2 and j = (j1, j2) ∈ N2. Consider

ZV ≡ (Zi, i ∈ V ) and ZW ≡ (Zj, j ∈ W ), and the associated σ-algebras ZV and ZW . The

random field Z is said to be α-mixing (or strong mixing) if

α(ZV ,ZW ) ≡ sup
A∈ZV , B∈ZW

[P (ZV ∈ A ∩ ZW ∈ B)− P (ZV ∈ A)P (ZW ∈ B)] 6 ϕ(d(V,W ))

with ϕ a function such that ϕ(d)→ 0 as d→∞.

For nonempty sets V ⊆ N2 and W ⊆ N2 that are disjoint, we use the abbreviation

α(V,W ) ≡ α(ZV ,ZW ). For any n ∈ N and (k, l) ∈ N ∪ {∞}, the mixing coefficients for the

random field Z are defined as in Bolthausen (1982):

(36) αk, l(n) ≡ sup{α(V,W ) : |V | 6 k, |W | 6 l, d(V,W ) > n}

where |V | and |W | denote the cardinalities of the sets V and W , respectively.

Let Vn be any subset of N2. We denote by |Vn| its cardinality, and we let ∂Vn be the

boundary of this set, i.e. ∂Vn ≡ {i ∈ Vn : ∃j /∈ Vn such that |i − j| = 1}. Throughout,

(Vn, n ∈ N) is a sequence of finite subsets of N2, satisfying:

(37) lim
n→∞

|Vn| =∞ and lim
n→∞

|Vn|−1|∂Vn| = 0


