
Nonparametric Transformation to White Noise

Oliver B. Linton�

London School of Economics

E. Mammeny

Universität Mannheim

PRELIMINARY AND INCOMPLETE

September 30, 2005

Abstract

We propose a new estimator of a nonparametric regression subject to time series errors that

improves on Xiao et al. (2003). Our method is based on a di¤erent whitening transformation

that produces a type 2 linear integral estimating equation for the regression function. We

investigate both the stationary case and the case where the error has a unit root. In the

stationary case we achieve e¢ ciency improvements. In the unit root case our procedure is

consistent and asymptotically normal unlike the standard regression smoother. We also present

the distribution theory for the parameter estimates, which is non-standard in the unit root case.

We also investigate its �nite sample performance and demonstrate its e¤ectiveness.
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1 Introduction

In this paper we discuss the estimation of the unknown quantities in the model

B(L)Yt = A(L)m(Xt) + "t; (1)
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where "t is a martingale di¤erence sequence and mean independent of the regressors Xt, while

A(L) =
P1

j=0 ajL
j and B(L) =

P1
j=0 bjL

j are lag polynomial operators with a0 = b0 = 1; where

Lxt = xt�1: The function m(:) is assumed to be unknown but smooth, and is the object of central

interest, although the dynamics of the model represented by A(L); B(L) are also fundamental to

the interpretation. We treat only the case where A(L); B(L) are described by a �nite dimensional

parameter � = (�; �) 2 Rp with � 2 Rpa parameterizing A and � 2 Rpb parameterizing B: There are
two main cases to consider: (a) both Yt and Xt stationary and short memory; (b) either Xt or Yt or

both are non-stationary or long memory.

In the stationary case (a) the main issue is e¢ ciency. A special case of interest is the nonpara-

metric regression model

Yt = m(Xt) + ut, t = 1; : : : ; T; (2)

where the covariates follow some stationary mixing process, while the residual process ut satis�es

A(L)ut = "t =
1X
j=0

ajut�j: (3)

In this case, A(L)Yt = A(L)m(Xt) + "t; which is a special case of (1) with A(L) = B(L): In this

model there are many standard estimators of m and of the parameters of A(L) that are consistent.

However, unlike in the parametric case, the standard kernel regression smoothers do not take account

of the correlation structure in Xt or ut and estimate the regression function in the same way as if

these processes were independent. Furthermore, the variance of such estimators is proportional to

the short run variance of ut; �2u = var(ut) and does not depend on the regressor or error covariance

functions cov(Xt; Xt�j); cov(ut; ut�j); j 6= 0: Practitioners accustomed to correcting standard errors
for dependence believe that the standard errors in nonparametric regression are therefore suspect.

As Conley, Hansen, Luttmer, and Scheinkman (1997) say: �Although theoretically correct the prac-

tice of ignoring serial correlation is not likely to work well for the temporal dependence present in

our short-term interest rate data�. This point has been addressed recently by Xiao, Linton, Car-

roll, and Mammen (2003) who proposed a more e¢ cient estimator of m based on a prewhitening

transformation

Yt �
1X
j=1

aj(Yt�j �m(Xt�j)) = m(Xt) + "t;

where the right hand side is now a standard nonparametric regression with whitened errors (and

replacing the unknown quantities on the left hand side by preliminary estimates of m and �). The

transform implicitly takes account of the autocorrelation structure. They obtained an improvement

in terms of variance over the usual kernel smoothers.

We propose an alternative strategy for estimation of m along with the parameters of A(L) in (2,

3). This is essentially to estimate the transformed model (1) as an additive (possibly in�nite order)
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nonparametric regression. Recently, Linton and Mammen (2005) have shown how to estimate similar

models using the theory of linear integral equations of the second kind; see also Carrasco, Florens

and Renault (2002). We obtain an estimating equation for m that is a type 2 linear integral equation

for each parameter value �. To obtain the parameters � we optimize a pro�le likelihood criterion. We

show that our method has attractive theoretical and �nite sample properties. In particular, it has

smaller asymptotic variance than the main method of Xiao, Linton, Carroll, and Mammen (2003)

and furthermore the asymptotics require weaker conditions. The parametric version of the regression

model (2) and (3) is a standard teaching topic in graduate econometrics, Harvey (1981, Chapter 6).

The traditional applications were in for example production studies where Yt is output and Xt is

the capital/labour ratio of a given �rm or industry observed over time. What is of interest is the

function m and its derivatives and it is not essential that the error term be serially uncorrelated. In

fact in many parametric studies serial correlation has been found in error terms.

We de�ne our method in the more general model (1). The more general model (1) allows for richer

dynamics and is more plausible, see Harvey (1981, Chapter 7). For example, it is consistent with a

very general linear partial adjustment mechanism of actual Y to desired Y � when Y � = m(X): It also

corresponds more directly to the general ARMAX class of models treated in Hannan and Deistler

(1988) except that we have a particular nonlinear component.

We also consider the case (b) where some of the variables are nonstationary. This could arise for

example from a unit root in the residual ut or in Xt or in both, see Phillips and Park (1998). In

this case, estimating in the original data (2) may lead to inconsistency, whereas the transformation

involved in (1) yields error terms with a lower order of nonstationarity/persistence and hence con-

sistency can be obtained. The estimation method is more or less the same as in the stationary case

although the justi�cation of it di¤ers. The distribution theory for the parametric part though is non

standard in this case: in fact we obtain T convergence to Dickey-Fuller distributions under the unit

root.

2 The Stationary Case

In this section we suppose that (Yt; Xt) are jointly stationary and weakly dependent mixing processes.

2.1 Estimation Method

2.1.1 Population Characterization

We �rst suppose that A(L); B(L) are known. Letting Zt = B(L)Yt we have

Zt = A(L)m(Xt) + "t =

1X
j=0

ajm(Xt�j) + "t;
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which is an additive autoregression with i.i.d. errors where the additive components are subject to

the restriction that they all share a common function m. In view of the assumed stationarity, de�ne

the function m as the minimizer of the criterion

Q(�0;m) = E

24(Zt � 1X
j=0

ajm(Xt�j)

)235 : (4)

A necessary condition for m to be the minimizer is that it satis�es the �rst order condition

E

"(
Zt �

1X
j=0

ajm(Xt�j)

) 1X
k=0

akh(Xt�k)

#
= 0 (5)

for any measurable function h: This implies, taking h(:) to be the Dirac delta function, that

1X
j=0

ajE[ZtjXt�j = x] =
1X
j=0

a2jm(x) +
XX
j 6=k

ajakE[m(Xt�j)jXt�k = x]: (6)

This is an implicit equation for m(:): It can be re-expressed as a linear type 2 integral equation in

L2(f0); where f0 is the marginal density ofXt:De�ne a�j = aj=
P1

j=0 a
2
j and a

+
j =

P
k 6=0 aj+kaj=

P1
l=0 a

2
l ;

and let f0;j be the joint density of (Xt; Xt�j) and f0 be the marginal density of Xt: Then

m(x) = m�(x) +

Z
H(x; y)m(y)f0(y)dy; or m = m� +Hm; (7)

m�(x) =
1X
j=0

a�jE[ZtjXt�j = x]

H(x; y) = �
�1X
j=�1

a+j
f0;j(y; x)

f0(y)f0(x)
:

This is similar to the equation derived in Linton and Mammen (2005) with the exception that there

Xt was lagged values of Yt: Equation (7) is an implicit equation in m and we need some conditions

on the operator H(x; y) to guarantee that there exists a unique solution.
Assumption A1. The operator H(x; y) is Hilbert-Schmidt i.e.,Z Z

H(x; y)2f0(x)f0(y)dxdy <1:

A su¢ cient condition for A1 is that the joint densities f0;j(y; x) have compact support and are

bounded away from zero on this support, which we shall assume below

Under assumption A1, H is a self-adjoint bounded compact linear operator on the Hilbert space

of functions L2(f0), and therefore has a countable number of eigenvalues1:

1 > j�1j � j�2j � : : : ;
1These are real numbers for which there exists functions ej(:) such that Hej = �jej :
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with
P1

j=0 �
2
j <1:

Assumption A2. There exist no m 2 M with kmk2 = 1 such that
P1

j=0 ajm(Xt�j) = 0 with

probability one.

This condition rules out a certain �concurvity�in the stochastic process. That is, the data cannot

be functionally related in this particular way. In the AR(1) case this says that there are no functions

m with kmk2 = 1 that satisfy m(Xt)� �m(Xt�1) = 0 with probability one.

Under A1-A2 there exists a unique solution to (7) that satis�es

m = (I �H)�1m�: (8)

This is the main characterization used for estimation, although we must �rst extend this to the case

where a general � is used not necessarily the true �0:

For each �; �; de�ne Zt(�) =
P1

j=0 bj(�)Yt�j and gj(x; �) = E[Zt(�)jXt�j = x]; j = 0;�1; : : :

m�
�(x) =

1X
j=0

a�j(�)gj(x; �)

H�(x; y) = �
�1X
j=�1

a+j (�)
f0;j(y; x)

f0(y)f0(x)
;

where a�j(�) = aj(�)=
P1

j=0 a
2
j(�) and a

+
j (�) =

P
k 6=0 aj+k(�)aj(�)=

P1
l=0 a

2
l (�): We now let m vary

with �; that is, (4) is de�ned for any �, and let m� be the function that minimizes (4); this satis�es

m� = (I �H�)
�1m�

� for all � provided the conditions A1 and A2 hold uniformly over the parameter

space. Furthermore, we can de�ne � = �0 is the minimizer of

Q(�;m�) = E

24(Zt(�)� 1X
j=0

aj(�)m�(Xt�j)

)235 (9)

with respect to � 2 � and m0 = m�0 : We adopt this pro�ling approach to de�ning �0;m0 as this is

the way our estimation strategy works.

In practice one has to replace m�
� and H� by estimators. Furthermore, one has also to estimate

the parameters of the �lters A;B.

2.1.2 Further Details

Suppose we have a sample f(Y1; X1); : : : ; (YT ; XT )g: The general estimation strategy is

1. For each � compute estimators of bm�
�;
bH� of m�

�;H�

2. Solve an empirical version of the equation (7) to obtain an estimator bm� of m�

3. Choose b� to minimize the pro�led negative log likelihood or least squares criterion with respect
to �: Let bm(x) = bmb�(x):
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Let � = �(T ) be some truncation parameter and de�ne Z�t (�) =
P�

j=0 bj(�)Yt�j: The choice of

truncation depends on the dependence model A(L); B(L): For geometrically declining parameters

(as we shall assume) one can work with logarithmic truncation. For long memory sequences it would

be necessary to allow for algebraic � :

For any sequence fZ�t (�)g and any lag j de�ne the estimator bgj(x; �) = ba0; where (ba0;ba1) are the
minimizers of the weighted sums of squares criterion

TX
t=j+1

fZ�t (�)� a0 � a1(Xt�j � x)g2Kh (Xt�j � x) (10)

with respect to (a0; a1); where K is a symmetric probability density function, h is a positive band-

width, and Kh(:) = K(:=h)=h. Further de�ne

bf0;j(y; x) =
1

T � jjj

TX
t=jjj+1

Kh(y �Xt)Kh(x�Xt�j);

bf0(x) =
1

T

TX
t=1

Kh(x�Xt):

bm�
�(x) =

�X
j=0

a�j(�)bgj(x; �)
bH�(x; y) = �

��X
j=�1

a+j (�)
bf0;j(y; x)bf0(y) bf0(x) :

Then de�ne bm� as any solution to the equation

m = bm�
� + bH�m; (11)

in L2( bf0): Let b� = argmin�2� bQT (�); where
bQT (�) = 1

T

TX
t=2

(
Z�t (�)�

�X
j=0

aj(�)bm�(Xt�j)

)2
:

Finally, let bm(x) = bmb�(x):

2.2 Asymptotic Properties

We suppose that fYt; Xtg is a stationary �-mixing process. Let F b
a be the �-algebra of events

generated by the random variables fYt; Xt; a � j � bg. The stationary processes fYt; Xtg is called
strongly mixing [Rosenblatt (1956)] if

sup
A2F0�1;B2F1k

jPr (A \B)� Pr(A) Pr(B)j � s(k)! 0 as k !1: (12)
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We shall consider two cases. First, the �weak form case�where we do not maintain that model

(1) holds with an i.i.d. error process. Second, we maintain that model (1) holds with a martingale

di¤erence error sequence "t. To facilitate the asymptotic analysis, we make the following assumptions

on the residuals and regressors, the kernel function k(�); and the bandwidth parameter h. Let

�t;j(�) = Zt(�)� E[Zt(�)jXt�j]; �t;j(�) = m�(Xt)� E[m�(Xt)jXt�j] and

�1�;t =
1X
j=1

ayj(�)�t;j(�) and �
2
�;t = �

�1X
j=�1

a�j(�)�t;j(�): (13)

B1 The process fXt; Ytg1t=�1 is stationary and alpha mixing with a mixing coe¢ cient, s(k) such

that for some C � 0 and some large s0; s(k) � Ck�s0 :

B2 E
�
jYtj2�

�
<1 for some � > 2:

B3 The covariate process fXtg1t=�1 has absolutely continuous density f0 supported on [�c; c] for
some c < 1: The function m(�) together with the densities f0(�), and f0;j(�) are continuous
and twice continuously di¤erentiable over [�c; c]; and are uniformly bounded. f0 (�) is bounded
away from zero on [�c; c]; i.e., inf�c�w�c f0(w) > 0:

B4 The parameter space � is a compact subset of Rp; and the value �0 is an interior point of �:
Also, A2 holds, and for any � > 0

inf
jj���0jj>�

Q(�;m�) > Q(�0;m�0):

B5 The density function � of (�1t;j(�); �
2
t;j(�)) is Lipschitz continuous on its domain. The joint

densities �0;j; j = 1; 2; : : : ; of (�1t;0(�); �
2
t;0(�)); (�

1
t;j(�); �

2
t;j(�)) are uniformly bounded :

B6 The parameters � 2 A and � 2 B compact subsets of Rpa and Rpb respectively: The coe¢ cients
satisfy sup�2A;k=0;1;2 jj@kaj(�)=@�kjj � Caj for some a < 1 and some �nite constant C; while
inf�2A

P1
j=0 a

2
j(�) > 0: Likewise, sup�2B;k=0;1;2 jj@kbj(�)=@�kjj � Cb

j
for some b < 1 and some

�nite constant C; while inf�2B
P1

j=0 b
2
j(�) > 0:

B7 The truncation sequence �T satis�es �T = C log T for some constant C:

B8 The bandwidth sequence h(T ) satis�es T 1=5h(T ) ! 
 as T ! 1 with 
 bounded away from

zero and in�nity.

B9 The kernel function is a symmetric probability density function with bounded support such that

for some constant C; jK(u)�K(v)j � Cju � vj: De�ne �j(K) =
R
ujK(u)du and jjKjj22 =R

ujK2(u)du:

B10 "t satis�es E
�
"tjfXsg1s=�1; f"t�jg1j=1

�
= 0 a.s.
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B11 "t is i.i.d. and independent of the process fXtg:

These conditions are similar to Linton and Mammen (2005) but we also need conditions on the

bj(�) coe¢ cients and separate conditions on X and Y .

De�ne the functions �j�(x); j = 1; 2; as solutions to the integral equations

�j� = �
�;j
� +H��

j
�;

in which:

��;1� (x) =
@2

@x2
m�
�(x);

��;2� (x) =

�1X
j=�1

a�j(�)

�
E(m�(Xt+j)jXt = x)

f 000 (x)

f0(x)
�
Z
[r2f0;j(x; y)]

m�(y)

p0(x)
dy

�
;

where the operator r2 is de�ned as r2 = @
2=@x2 + @2=@y2. Then de�ne

!�(x) =
jjKjj22
f0(x)

var[�1�;t + �
2
�;t]

b�(x) =
1

2
�2(K)

�
�1�(x) + �

2
�(x)

�
;

where �j�;t; j = 1; 2 were de�ned above in (13). We prove the following theorem in the appendix.

Theorem 1. Suppose that B1-B9 hold. Then for each � 2 � and x 2 (�c; c)
p
Th
� bm�(x)�m�(x)� h2b�(x)

�
=) N (0; !�(x)) ; (14)

Both the bias and variance in this result are quite complicated even though a local linear smoother

has been used in estimating gj. This is a �weak form�result, where the model (1) is not assumed.

We next maintain a �semi-strong form�assumption B10, which allows the �lters to be misspeci-

�ed except that the ensuing error term must still be orthogonal to the covariate process and its own

history. We obtain the properties of b� by an application of the asymptotic theory for semiparamet-
ric pro�led estimators, see Severini and Wong (1992) and Newey (1994). This requires a uniform

expansion for bm�(x) and for the derivatives (with respect to �) of bm�(x): De�ne:

!(x) =
jjKjj22

P1
j=1 a

2
j(�0)E ["

2
t jXt�j = x]

f0(x)
hP1

j=1 a
2
j(�0)

i2 (15)

b(x) = �2(K)

�
1

2
m00(x) + (I �H�)

�1[
f 00
f0

@

@x
(H�m)](x)

�
: (16)

Let "t(�) = Zt(�)�
P1

j=0 aj(�)m�(Xt�j); and let

J = E

�
@2"t

@�@�>
(�0)

�
and I = E

�
@"t
@�

@"t

@�>
"2t (�0)

�
:

8



Theorem 2. Suppose that Assumptions B1 to B10 hold. Then,

p
T (b� � �0) =) N(0;J �1IJ �1):

Furthermore, for x 2 (�c; c)
p
Th
�bm(x)�m(x)� h2b(x)� =) N (0; !(x)) :

Note that the autocorrelation of the induced error term "t does not a¤ect the limiting vari-

ance although its heteroskedasticity does. Under the �strong form�special case that "t is at least

conditionally homoskedastic, !(x) =jjKjj22�2"=f0(x)
P1

j=0 a
2
j : Compare this with the usual kernel es-

timator, which has asymptotic variance !Ker(x) =jjKjj22�2"
P1

j=0 c
2
j=f0(x); where C(L) = A(L)�1:

Compare with the estimator of Xiao, Linton, Carroll, and Mammen (2003), which has variance

!XLCM(x) =jjKjj22�2"=f0(x): In this case, !(x) � !XLCM(x) � !Ker(x):
As in Linton and Mammen (2005, p789) it is possible to adjust the operator in order to produce

a simpler bias term. The modi�ed estimator has bias

b(x) =
�
lim
T!1

p
Th5

� 1
2
�2(K)m

00(x);

which is as for a standard local linear estimator in regression. With this implementation then we get

a straight mean squared error reduction.

Assumption B10 is needed for the consistency of the parameter estimates b�: In the pure regression
model (2, 3) one only needs a weaker assumption E

�
"tjfXsg1s=�1

�
= 0 a.s. for consistent estimation

of m and � as is known from the parametric case:

Under the �strong form�assumption B11 the parametric estimator is semiparametrically e¢ cient.

3 Nonstationary Case

In this section we investigate the case where Yt can be nonstationary but Xt is stationary mixing

as before. The most general case would be where both A;B contained unit roots either simple or

complex, so for example A(L) = (1�L)A0(L); where A0(L) obeys the summability conditions in B6.
For expositional reason we shall focus on an even more special case where B(L) = A(L) = 1� L:
Consider the model

(1� �L)Yt = (1� �L)m(Xt) + "t; (17)

where in fact �0 = 1 and "t obeys B11: In this case,

Yt = m(Xt) + ut;

where ut = ut�1 + "t is a unit root process, Phillips (1987). We suppose that u0 = 0:
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Direct estimation of Yt on Xt will produce inconsistent estimates of m: On the other hand our

estimation of the additive model

Yt � Yt�1 = m(Xt)�m(Xt�1) + "t

with white noise errors will produce consistent estimates of m: In fact, the theory for m�0 is exactly

as in Theorem 1. The Xiao, Linton, Carroll, and Mammen (2003) procedure is also inconsistent in

this unit root case because it relies on the initial standard nonparametric regression estimator that is

inconsistent. The task here is to determine that we can estimate the parameter � in (17) consistently

and thence estimate m consistently.

One issue is that for � 6= 1; the process (1��L)Yt is non-stationary and so some of the de�nitions
of the previous section don�t make sense. Instead we de�ne mT� to be the potentially time varying

minimizer of

QT (m) =
1

T

TX
t=1

E
�
fYt � �Yt�1 �m(Xt) + �m(Xt�1)g2

�
:

A necessary condition for m to be the minimizer is that it satis�es the �rst order condition

1

T

TX
t=1

E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x] (18)

= (1 + �2)mT�(x) + � (E[mT�(Xt)jXt�1 = x] + E[mT�(Xt�1)jXt = x]) :

Then note that Yt � �Yt�1 = m(Xt) � �m(Xt�1) + "t + (1 � �)ut�1; and so E[Yt � �Yt�1jXt = x]

and E[Yt� �Yt�1jXt�1 = x] are time invariant. Furthermore, we have assumed that Xt is stationary.

Therefore, there exists a time invariant solution to equation (18) as in the purely stationary case.2

Furthermore, the solution is characterized by the integral equation (7) with in this special case:

m�
�(x) =

1

1 + �2
(E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x])

H�(x; y) = �
�

1 + �2

�
f0;1(y; x)

f0(y)f0(x)
+
f0;1(x; y)

f0(y)f0(x)

�
:

What is di¤erent here is the error in estimating E [Yt � �Yt�1jXt�1 = x] for example can be large

unless � is close to one in which case the term (1 � �)ut�1 is small and the process Yt � �Yt�1 is
almost stationary. The di¤erence in behaviour of the resulting bm� for � = 1 and � 6= 1 is what drives
the faster rate of convergence for b�:
De�ne bQT (�) = 1

T

TX
t=2

fYt � �Yt�1 � bm�(Xt) + �bm�(Xt�1)g2

and let b� = argmin� bQT (�): Let B denote the standard Brownian Motion on [0; 1].
2Note also that m� = m for all �:
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Theorem 3. Suppose that assumption B1 holds for Xt; that B2 holds for "t; that B3, B7-B9

and B11 hold. Then

T (b�� 1) =) R 1
0
B(s)dB(s)R 1
0
B2(s)ds

:

Furthermore, p
Th
�bm(x)�m(x)� h2b(x)� =) N (0; !(x)) ;

where b(x) is de�ned in (16) and

!(x) = jjKjj22
E ["2t jXt = x] + E ["

2
t jXt�1 = x]

4f0(x)
:

This can be generalized easily to allow for short run dynamics in addition to the unit root.

4 Extensions

4.1 NonStationary X; Y

Suppose now that

Xt = Xt�1 + �t

with �t also white noise and uncorrelated with "t: Thus Xt is a unit root process. This makes

a substantial di¤erence to the asymptotics since the operator H�(x; y) is now random; rates of

convergence are slower etc.

5 Numerical Results

We investigate the performance of our procedure on simulated data. We suppose that

Yt = m(Xt) + ut; ut = �0ut�1 + "t

withm(x) = �0x
2=2; whereXt � N(0; 1); and "t � N(0; �):We examine the cases T 2 f800; 400; 200g

and �0 2 f0; 0:2; 0:4; 0:6; 0:8; 1:0g; and use ns = 1000 replications:We compute our estimator bm using
200 grid points and assuming in the �rst instance that �0 is known. We also compute the standard

local linear estimator em; in both cases the Gaussian kernel was used.
We chose bandwidth to be optimal according to (asymptotic) weighted mean squared error

P1(bm) = plim
T!1

T 4=5
Z c

�c
[bm(x)�m(x)]2 f0(x)dx;

which gives hopt = cKcMT�1=5; where cK = (2cjjKjj22=�22(K))1=5 is to do with the kernel and cM =

(�2"=(1+�
2
0)�

2
0(F0(c)�F0(�c)))1=5; where F0(x) is the c.d.f. of the covariate, is to do with the model.
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We have taken c = 2; which corresponds to an interval containing almost 95% of the covariate

distribution. For the standard local linear estimator the optimal bandwidth is cKc�MT
�1=5 with

c�M = (�2"=(1 � �20)�20(F0(c) � F0(�c))1=5 provided �0 6= 1 (when �0 = 1 we set �0 in the formula

arbitrarily to 0.9):

In Figure 1 below we report the relative value of the performance measure

PT (bm) = E Z c

�c
[bm(x)�m(x)]2 f0(x)dx

to PT (em); where E is computed by the average over Monte Carlo simulations. Both estimators use
their optimal bandwidths, and consequently their theoretical relative e¢ ciency is ((1��20)=(1+�20))4=5:
This is plotted below along with the simulation average value for the di¤erent sample sizes against �

values. The results indicate that bm is indeed more e¢ cient than em and that the advantage takes o¤

after �0 = 0:8; until this value the advantage is less than 20% in MSE terms. For small values of �0
the �nite sample performance ratio is actually better than predicted, although this is partly becauseem performs worse than predicted by its asymptotic theory. Note that when �0 = 1 the standard

local linear estimator is inconsistent.

Figure 1. Shows the empirical performance ratio PT (bm)=PT (em) for di¤erent sample sizes along with the
asymptotic value P1(bm)=P1(em) predicted from the asymptotic theory. Xt iid N(0; 1):

We also looked at the case where Xt is autocorrelated, speci�cally, Xt = 0:95Xt�1 + ut; where

ut is normally distributed such that Xt is marginally N(0; 1): Theoretically, this does not make any

di¤erence, and in practice if anything relative performance is improved for this case.

12



Figure 2. Shows the empirical performance ratio PT (bm)=PT (em) for di¤erent sample sizes along with the
asymptotic value P1(bm)=P1(em) predicted from the asymptotic theory. Xt = 0:95Xt�1 + ut with

Xt � N(0; 1):

We next examine the performance of the estimates of b�: When � < 1 these behave pretty much
as predicted. When �0 = 1; our simulations show that the variance of b� decreases rapidly with
sample size with standard deviation being 0:0161, 0:00896; and 0:00458 for T = 200; 400; and 800

respectively. Below we show the densities. As the sample size increases the density approaches the

Dicky-Fuller density.
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Figure 3. Shows the density of b� for three diferent sample sizes: Xt = 0:95Xt�1 + ut with Xt � N(0; 1):

A Appendix

A.1 Computational Appendix

We discuss brie�y how we solve the equation (11) in practice. Note that one can rewrite (8) as an inte-

gral equation on [0; 1]2 as my
�(s) = m

�y
� (s) +

R 1
0
Hy
�(s; t)m�(t)dt; where Hy

�(s; t) = H
y
�(F

�1
0 (s); F�10 (t))

with y = F�10 (s); x = F�10 (t) and my
�(t) = m�(F

�1
0 (t)) and m�y

� (t) = m
�
�(F

�1
0 (t)) and F0 is the c.d.f.

of Xt. For simplicity we drop the super�uous y superscript in the sequel. Let ftj;n; j = 1; : : : ; ng be
some equally spaced grid of points in [0; 1]; and let qj;n = bF�10 (tj;n) be the empirical tj;n quantile of

Xt: Now approximate (11) by

bm�(qi;n) = bm�
�(qi;n) +

nX
j=1

bH�(qi;n; qj;n)bm�(qj;n); i = 1; : : : ; n: (19)

The linear system (19) can be written in matrix notation

(In � bH�) bm� = bm�
�; (20)

14



where In is the n � n identity, bm� = (bm�(q1;n); : : : ; bm�(qn;n))
> and bm�

� = (bm�
�(q1;n); : : : ; bm�

�(qn;n))
>;

while bH� = �
��X
k=�1

a+k (�)

" bf0;k(qi;n; qj;n)bf0(qi;n) bf0(qj;n)
#n
i;j=1

is an n � n matrix. We then �nd the solution values bm� = (bm�(q1;n); : : : ; bm�(qn;n))
> to this system

(20) by direct inversion when n is less than say 2000.

A.2 Proof of Theorems

A.2.1 Stationary Case

Proof of Theorem 1. The proof strategy follows Linton and Mammen (2005). First, for general

� 6= �0 we apply Linton and Mammen (2005, Proposition 1). Thus we write

bm�
�(x)�m�

�(x) = bm�;B
� (x) + bm�;C

� (x) + bm�;D
� (x) (21)

( bH� �H�)m�(x) = bm�;E
� (x) + bm�;F

� (x) + bm�;G
� (x); (22)

where bm�;B
� (x) and bm�;E

� (x) are deterministic and O(T�2=5);

bm�;B
� (x) =

h2

2
�2(K)m

�00
� (x)

bm�;E
� (x) =

h2

2
�2(K)

�1X
s=�1

a�j(�)

�
E(m�(Xt+j)jXt = x)

f 000 (x)

f0(x)
�
Z
[r2f0;j(x; y)]

m�(y)

f0(x)
dy

�
where r2 = @

2=@x2 + @2=@y2, while

bm�;C
� (x) =

1

Tf0(x)

X
t

Kh(Xt � x)�1�;t

bm�;F
� (x) =

1

Tf0(x)

X
t

Kh(Xt � x)�2�;t

and the remainder terms bm�;D
� (x) and bm�;G

� (x) satisfy

sup
�2�;x2X

�� bm�;j
� (x)

�� = op(T�2=5); j = D;G:

From this one obtains an expansion

bm�(x)�m�(x) = m
B
� (x) +m

E
� (x) + bm�;C

� (x) + bm�;F
� (x) + op(T

�2=5); (23)

where mB
� = (I �H�)

�1 bm�;B
� and mE

� = (I �H�)
�1 bm�;E

� ; and the error is small uniformly over x.

Step 1. The �rst step is to establish the expansions (21) and (22). Write

Zt(�)� Z�t (�) =
1X

j=�+1

bj(�)Yt�j:
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Let egj(x; �) denote (10) with Zt(�) replacing Z�t (�): Then
max
1�j��

sup
x2X ;�2B

jbgj(x; �)� egj(x; �)j = op(T�1=2): (24)

This follows because of the assumed decay rates on bj and the moment condition on Y:

Then for each j;

egj(x; �)� gj(x; �) = 1

Thf0(x)

TX
t=j+1

K

�
x�Xt�j

h

�
�t;j(�) +

h2

2
�2(K)bj(x; �) +RTj(x; �);

where bj(x; �) is the bias function and RTj(x; �) is the remainder term. By a change of variables

and interchanging the order of summation we obtain

�X
j=0

a�j(�)
TX

t=�+1

K

�
x�Xt�j

h

�
�t�j;j(�) =

TX
s=�+1

K

�
x�Xs

h

� 1X
j=0

a�j(�)�s;j(�)

�
TX

s=�+1

K

�
x�Xs

h

� 1X
j=�+1

a�j(�)�s;j(�)

+
�X
j=0

a�j(�)
�+1X

s=�+1�j
K

�
x�Xs

h

�
�s;j(�)

+
�X
j=0

a�j(�)
TX

t=T�j
K

�
x�Xs

h

�
�s;j(�);

where the terms apart from the �rst are of smaller order. Therefore,

�X
j=0

a�j(�)[bgj(x; �)� gj(x; �)] = �X
j=0

a�j(�)
TX

s=�+1

K

�
x�Xs

h

� 1X
j=0

a�j(�)�s;j(�)

+
h2

2
�2(K)

�X
j=0

a�j(�)bj(x; �) + op(T
�2=5)

Note that uniformly over j � � and over x;

1

Th

TX
t=j+1

K

�
x�Xt�j

h

�
� 1

Th

TX
t=1

K

�
x�Xt

h

�
= Op(�=T ) = op(T

�1=2);

so that one can shift the indexes with impunity.

We next establish the expansion (22). We haveZ bH�(x; y)m�(y) bf0(y)dy � Z H�(x; y)m�(y)f0(y)dy

= �
��X
j=�1

a+j (�)

Z " bf0;j(x; y)bf0(x) � f0;j(x; y)
f0(x)

#
m�(y)dy:
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Denote by Z
f0;j(x; y)

f0(x)
m�(y)dy = E [m(Xt�j)jXt = x] � rj(x):

Then write R bf0;j(x; y)m�(y)dybf0(x) =
1
Th

P
tK

�
x�Xt
h

�
m�
t�j

1
Th

P
tK

�
x�Xt
h

� ; (25)

where

m�
t�j =

1

h

Z
K

�
y �Xt�j

h

�
m�(y)dy =

Z
K(u)m�(Xt�j + uh)du ' m�(Xt�j) +

h2

2
�2(K)m

00
�(Xt�j):

This is just like a local constant smoother of m�
t�j on Xt and can be analyzed in the same way.

Therefore using ba=bb� c = (ba�bbc)=bb we haveR bf0;j(x; y)m�(y)dybf0(x) �
Z
f0;j(x; y)

f0(x)
m�(y)dy

=
1
Th

P
tK

�
x�Xt
h

� �
m�
t�j � rj(x)

�
1
Th

P
tK

�
x�Xt
h

�
=

1
Th

P
tK

�
x�Xt
h

�
[m�(Xt�j)� rj(x)]

1
Th

P
tK

�
x�Xt
h

� +
1
Th

P
tK

�
x�Xt
h

� �
m�
t�j �m�(Xt�j)

�
1
Th

P
tK

�
x�Xt
h

� (26)

'
1
Th

P
tK

�
x�Xt
h

�
[m�(Xt�j)� rj(Xt)]

1
Th

P
tK

�
x�Xt
h

� +
1
Th

P
tK

�
x�Xt
h

�
[rj(Xt)� rj(x)]

1
Th

P
tK

�
x�Xt
h

�
+
h2

2
�2(K)E[m

00
�(Xt�j)jXt = x]

' 1

Th

1

f0(x)

X
t

K

�
x�Xt

h

�
�t;j +

h2

2
�2(K)

�
r00j (x) +

2r0j(x)f
0
0(x)

f0(x)
+ E[m00

�(Xt�j)jXt = x]

�
(27)

by standard arguments where �t;j = m�(Xt�j)� rj(Xt) = m�(Xt�j)� E[m�(Xt�j)jXt] is mean zero

sequence given Xt:

We have

E[m00
�(Xt�j)jXt = x] =

Z
f0;j(x; y)

f0(x)
m00
�(y)dy =

Z
@2f0;j(x; y)=@y

2

f0(x)
m�(y)dy

r0j(x) =
1

f0(x)

Z
@f0;j(x; y)

@x
m�(y)dy �

f 00(x)

f 20 (x)

Z
f0;j(x; y)m�(y)dy

r00j (x) =
1

f0(x)

Z
@2f0;j(x; y)

@x2
m�(y)dy +

�
2(f 00(x))

2

f 30 (x)
� f

00
0 (x)

f 20 (x)

� Z
f0;j(x; y)m�(y)dy

�2 f
0
0(x)

f 20 (x)

Z
@f0;j(x; y)

@x
m�(y)dy:

17



The bias terms in (27) are

h2

2
�2(K)

�
r00j (x) +

2r0j(x)f
0
0(x)

f0(x)
+

1

f0(x)

Z
@2f0;j(x; y)

@y2
m�(y)dy

�
: (28)

However, there is a cancellation

2
f 00(x)

f 20 (x)

Z
@f0;j(x; y)

@x
m�(y)dy � 2

(f 00(x))
2

f 30 (x)

Z
f0;j(x; y)m�(y)dy +

1

f0(x)

Z
@2f0;j(x; y)

@x2
m�(y)dy

+

�
2(f 00(x))

2

f 30 (x)
� f

00
0 (x)

f 20 (x)

� Z
f0;j(x; y)m�(y)dy

�2 f
0
0(x)

f 20 (x)

Z
@f0;j(x; y)

@x
m�(y)dy

=
1

f0(x)

Z
@2f0;j(x; y)

@x2
m�(y)dy �

f 000 (x)

f 20 (x)

Z
f0;j(x; y)m�(y)dy;

so the bias (28) is

h2

2
�2(K)

�
1

f0(x)

Z
@2f0;j(x; y)

@x2
m�(y)dy �

f 000 (x)

f 20 (x)

Z
f0;j(x; y)m�(y)dy +

1

f0(x)

Z
@2f0;j(x; y)

@y2
m�(y)dy

�
=

h2

2
�2(K)

�
1

f0(x)

Z
@2f0;j(x; y)

@x2
m�(y)dy �

f 000 (x)

f0(x)
rj(x) +

1

f0(x)

Z
@2f0;j(x; y)

@y2
m�(y)dy

�
:

In conclusion, we haveZ bH�(x; y)m�(y) bf0(y)dy � Z H�(x; y)m�(y)f0(y)dy

= � 1

f0(x)

1

Th

X
t

K

�
x�Xt

h

� ��X
j=�1

a+j (�)�t;j

+
h2

2
�2(K)

��X
j=�1

a+j (�)

�
f 000 (x)

f0(x)
rj(x)�

1

f0(x)

Z �
@2f0;j(x; y)

@x2
+
@2f0;j(x; y)

@y2

�
m�(y)dy

�
+op(T

�2=5):

Step 2. The
p
T -consistency of b� follows along the lines of Linton and Mammen (2005) using

the expansions obtained above uniform over �:

Step 3. This implies that one can treat � as known and one obtains a simpler expansion forbm�0(x)�m(x): In particular:

�t;j = Zt+j � E[Zt+jjXt] = "t+j +
X
k 6=j

ak [m(Xt+j�k)� E[m(Xt+j�k)jXt]]

1X
j=1

ayj�t;j =

1X
j=1

ayj"t+j +

1X
j=1

ayj
X
k 6=j

ak [m(Xt+j�k)� E[m(Xt+j�k)jXt]]
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1X
j=1

ayj
X
k 6=j

ak [m(Xt+j�k)� E[m(Xt+j�k)jXt]] =

�1X
j=�1

a+j [m(Xt+j)� E[m(Xt+j)jXt]] =

�1X
j=�1

a+j �t;j;

where ayj = aj=
P1

j=0 a
2
j and a

+
j =

P
k 6=0 aj+kaj=

P1
j=0 a

2
j : It follows that

1X
j=1

ayj�t;j �
�1X
j=�1

a+j �t;j =

1X
j=1

ayj"t�j: (29)

Therefore, the stochastic part of (23), bm�;C
� (x)+ bm�;F

� (x); simpli�es. Likewise, there is a simpli�cation

for the bias term mB
� (x) +m

E
� (x):
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A.2.2 Nonstationary Case

Proof of Theorem 2. Let

"t(�) = Yt � �Yt�1 �m�(Xt) + �m�(Xt�1) = Yt � �Yt�1 �m(Xt) + �m(Xt�1) = "t + (1� �)ut�1

b"t(�) = Yt � �Yt�1 � bm�(Xt) + �bm�(Xt�1)

QT (�) =
1

T

TX
t=2

"2t (�):

We �rst establish the properties of an estimator that minimizes QT (�); denoted �: In our case,

QT (�) =
1

T

TX
t=2

"2t + T (1� �)2
1

T 2

TX
t=2

u2t�1 + 2(1� �)
1

T

TX
t=2

"tut�1

' �2" + T (1� �)2�2"
Z
B2(s)ds+ 2(1� �)�2"

Z
B(s)dB(s);

where B is the standard Brownian motion, from which we obtain consistency of � at rate T and

furthermore

T (�� 1) =)
R
B(s)dB(s)R
B2(s)ds

:

We next consider the di¤erence between bQT (�) and QT (�): We have
bQT (�) = QT (�) + 1

T

TX
t=2

fb"t(�)� "t(�)g2 + 2 1
T

TX
t=2

fb"t(�)� "t(�)g "t(�); (30)

b"t(�)� "t(�) = �(bm�(Xt)�m�(Xt)) + �(bm�(Xt�1)�m�(Xt�1)):

Step 1. When � = 1 the properties of bQT (�) can be derived as in the stationary case. In
particular, bQT (1)!p q (31)

for some q > 0; hence, bQT (1)=T !p 0:

Step 2. Derive the properties of bm��m� for � 6= 1: As in the stationary case we can approximatebm��m� in terms of bm�
��m�

� and ( bH��H�)m�: The expansion for ( bH��H�)m� is as above. The main

di¤erence concerns the fact that the expansion for bm�
��m�

� contains a term that is large when � 6= 1
and indeed bm�

� does not consistently estimate m
�
� unless � = 1: Therefore, bm� �m� is dominated by

the large term in bm�
� �m�

�: The intercept function m
�
� is

m�
�(x) =

1

1 + �2
(E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x])

=
1

1 + �2
[g0�(x)� �g1�(x)] ;
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a linear combination of g0�(x) = E[Yt��Yt�1jXt = x] and g1�(x) = E[Yt��Yt�1jXt�1 = x]: Therefore,

we must establish the properties of bgj�(x)� gj�(x); j = 0; 1; where bgj�(x) are the estimates of gj�(x):
Step 3. Derive the properties of bgj�(x)� gj�(x); j = 0; 1 and � 6= 1: We have

Yt��Yt�1�E [Yt � �Yt�1jXt = x] = m(Xt)�m(x)�� (m(Xt�1)� E[m(Xt�1)jXt = x])+"t+(1��)ut�1:

Yt��Yt�1�E [Yt � �Yt�1jXt�1 = x] = m(Xt)�E[m(Xt)jXt�1 = x]�� (m(Xt�1)�m(x))+"t+(1��)ut�1:

The terms m(Xt)�m(x) and m(Xt�1)�m(x) on the rhs contribute to biases; the stationary error
terms �� (m(Xt�1)� E[m(Xt�1)jXt = x]) + "t and m(Xt)�E[m(Xt)jXt�1 = x] + "t may contribute

to the variance but are standard, it is the term (1� �)ut�1 containing the unit root that is di¤erent.
We have

bgj�(x)� gj�(x) =
1

Thf0(x)

TX
t=j+1

K

�
x�Xt�j

h

�
"t + (1� �)

1

Thf0(x)

TX
t=j+1

K

�
x�Xt�j

h

�
ut�1

+
h2

2
�2(K)bj(x; �) +RT (x; �) � �T1 + �T2 + �T3 +RT (x; �);

where the remainder term RT (x; �) is of smaller order. This approximation is valid because the

X process is stationary so everything except �T2 is standard. We consider the term �T2 and write

�T2 =
p
T (1� �)�T (x) +

p
T (1� �)�T (x) with

�T (x) =
1

T

TX
t=1

E

�
1

hf0(x)
K

�
x�Xt�j

h

��
ut�1p
T

�T (x) =
1

T

TX
t=1

�
1

hf0(x)
K

�
x�Xt�j

h

�
� E

�
1

hf0(x)
K

�
x�Xt�j

h

���
ut�1p
T
:

Clearly,

�T (x) =
1

T

TX
t=1

ut�1p
T
+ op(1) = Op(1)

for all x:

We argue that �T (x) = op(1): Note that E[�T (x)] = 0 by independence of X; u processes. De�ne

�Tt =
1

hf0(x)
K

�
x�Xt�j

h

�
� E

�
1

hf0(x)
K

�
x�Xt�j

h

��
: (32)

This has (approximately as T !1) covariance function

cov(�Tt; �Tt�r) ' E

�
1

h2f 20 (x)
K

�
x�Xt

h

�
K

�
x�Xt�r

h

��
� E2

�
1

hf0(x)
K

�
x�Xt

h

��
' f0;t�r(x; x)

f 20 (x)
� 1 � 
�(t� r):
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Furthermore,

var [�T (x)] =
1

T 3

TX
t=j+1

E
�
�2Tt
�
E[u2t�1] +

1

T 3

XX
t6=s

E [�Tt�Ts]E[utus]

' �2"
T 3

XX
t6=s

minfs; tg
�(t� s):

We have

1

T 3

XX
t6=s

minfs; tg
�(t� s) '
2

T 3

T�1X
s=1

s

TX
t=s+1


�(t� s) '
2

T 2

T�1X
s=1

s(T � s)
1X
k=1


�(k) =
2

3T

1X
k=1


�(k)

so that var [�T (x)] = O(T
�1): Therefore

bgj�(x)� gj�(x) ' pT (1� �) 1
T

TX
t=1

ut�1p
T
;

which is the same regardless of location x and j: By the usual arguments (Phillips (1987))

1

T

TX
t=1

ut�1p
T
=) �"

Z 1

0

B(s)ds: (33)

Therefore, (bgj�(x)� gj�(x))=pT =) (1� �)�"
R 1
0
B(s)ds for all x:

Step 4. Obtain an approximation to b"t(�)� "t(�): For � 6= 1 we have
b"t(�)� "t(�)

= �(bm�(Xt)�m(Xt)) + �(bm�(Xt�1)�m(Xt�1))

' �(bm�
� �m�

�)(Xt) + �(bm�
� �m�

�)(Xt�1)

' �1
1 + �2

�
[bg0� � g0�](Xt) + �

2[bg1� � g1�](Xt�1)� �[bg0� � g0�](Xt�1)� �[bg1� � g1�](Xt)
�

' �(1� �)3
1 + �2

p
T
1

T

TX
t=1

ut�1p
T
;

because the other terms are of smaller order in probability.

Step 5. Obtain properties of the terms in bQT (�):
1. We have

1

T

TX
t=2

fb"t(�)� "t(�)g2 ' (1� �)6T
(1 + �2)2

�2"

�Z 1

0

B(s)ds

�2
:

2. We have

(1� �) 1
T

TX
t=2

fb"t(�)� "t(�)gut�1 ' �(1� �)4T
1 + �2

�2"

�Z 1

0

B(s)ds

�2
:

22



3. We have
1

T

TX
t=2

fb"t(�)� "t(�)g "t ' �(1� �)3
1 + �2

1p
T

TX
t=2

ut�1p
T
"t = Op(1):

Step 6. Obtain an expansion for bQT (�): We have
bQT (�) ' �2" + T (1� �)2�2"

Z
B2(s)ds+ 2(1� �)�2"

Z
B(s)dB(s)

+
(1� �)6T
(1 + �2)2

�2"

�Z 1

0

B(s)ds

�2
� 2(1� �)

4T

1 + �2
�2"

�Z 1

0

B(s)ds

�2
� �2(1� �)

3

1 + �2
Op(1):

Therefore

1

T
bQT (�) ' (1� �)2�2"

Z
B2(s)ds+

�
(1� �)6
(1 + �2)2

� 2(1� �)
4

1 + �2

�
�2"

�Z 1

0

B(s)ds

�2
= (1� �)2�2"

Z
B2(s)ds� (1� �)

4 (�+ 1)2

(1 + �2)2
�2"

�Z 1

0

B(s)ds

�2
:

By Cauchy-Schwarz Z 1

0

B2(s)ds �
�Z 1

0

B(s)ds

�2
:

Therefore, with probability one:

1

T
bQT (�) � 4 (1� �)2 �2

(1 + �2)2
�2"

�Z 1

0

B(s)ds

�2
� 0 (34)

for all � 6= 1: Hence, with probability tending to one

lim
T!1

inf
j��1j>�

1

T
bQT (�) > 0: (35)

Step 7. Combine (31) and (35) yields b� P�! 1; see for example Pakes and Pollard (1989).

Step 8. Then reparameterizing � 7! r = 1� �=T we get

bQT (r) ' �2" + r2T �2"
Z
B2(s)ds+ 2

r

T
�2"

Z
B(s)dB(s) + o(T�1)

so that the asymptotic distribution is just the Dickey-Fuller

T (b�� 1) =) R
B(s)dB(s)R
B2(s)ds

:
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