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In this talk we present our recent result (see the attached paper [Peng2008])
of central limit theorem under uncertainty of probability measures and distri-
butions (or ambiguity), a new type of law of large number is also derived in this
general result. Since the paper is written in a style of mathematics, we now give
explanations for their applications to finance and possibly in econometrics. A
less rigorous language in the sense of mathematics will be used in this part.

This result is a generalization of the classical central limit theorem (CLT
in short). The classical CLT is in the framework of a given probability space
(Ω,F , P ), i.e., without uncertainty of probability measures. Our new result can
provide a new argument to explain a puzzle why so many practitioners, e.g.,
traders and risk officials in financial markets can widely use normal distribution
without serious data analysis or even with data inconsistence. We will show that
in many situations these practitioners are right to calculate according the model
of normal distribution, provided that they know how to chose the corresponding
parameters, even under a situation of strong uncertainty of distributions so that
the historical data cannot at all support the normal distribution hypothesis.
However there are still many other situations where we must use a new type
of ‘sublinear distribution’ N (0, [σ2, σ2]) and the related new calculation in the
place of the classical normal distribution.

Since the law of large number and central limit theorem are two fundamental
results in statistics and econometrics, it is natural to ask if this new result can be
applied to this domains or/and to mathematical finance and other areas where
probability and distribution uncertainties cannot be neglected. Many efforts are
still needed in our future researches.
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In econometrics, finance and many other domains of economics we often
face to calculate of a quantity E[ϕ(X)] for many different purpose, where ϕ
is a given function and X a random variable (examples can be given such as
vNM utilities, portfolio selections, option pricing, risk measures (VaR), pricing
of mortgage based assets, option pricing, and many other situations).

It is an interesting phenomenon that normal distributions are widely applied
to the above types of calculation and analysis. In many practical situation in
finance people just use the normal distribution model:

X ∼ N (µ, σ2), µ = E[X], σ2 = E[(X − µ)2].

Or its multidimensional version. The historical data is used to estimates µ and
σ2 and then the value E[ϕ(X)] calculate is calculated by

E[ϕ(X)] =
1√

2πσ2

∫ ∞

−∞
ϕ(x) exp(

−(x− µ)2

2σ2
)dx.

Many academic researchers give critiques to the practitioners of quantitative
finance for their wide abuses of normal distributions. It is also true that in
many situations their data can be far from being normal distributed (fat tails,
thin tails is usually the critics for theoretical analysis). In fact there exists a big
gap between practitioners and academic researchers at this point since, on the
other side, people in quantitative finance usually think that academic people
are far from be the ‘real world’ of practical finance.

Why normal distributions are so widely applied? A very convincing expla-
nation is from the classical central limit theorem.

Theorem 1 (Classical CLT) Let {Xi}∞i=1 be an i.i.d sequence and let µ =
E[X1] and σ2 = E[(X1 − µ)2], then

lim
n→∞

E[ϕ(
n∑

i=1

Xi − µ√
n

)] = E[ϕ(X)], X ∼ N (0, σ2).

The power and beauty of of this theorem come from the fact that the above
sum tends to N (0, σ2) regardless the original distribution of Xi, provided that
Xi ∼ X1, for all i = 2, 3, · · · and that X1, X2,· · · are mutually independent.
Since in finance, it is common that a big risk position X is in fact a sum a
large (even huge) number of small quantities of assets, thus it is natural to
apply the above CLT to assume that X is normal or nearly normal distributed.
Application of CLT in finance can be traced back to the well-known thesis
[B1900] of Louis Bachelier, in which the above small quantity was considered as a
small step of random walk. This pioneer work deeply influenced [Osborne1959],
B. Mandelbrot [Mande1963], Fama [Fama1965], P. Samuelson [Samuelson1965],
R. Merton [Merton1973], F. Black and M. Scholes’s assumption of geometric
Brownian motion for the underlying prices of stocks in their option pricing
models [BS1973].

Banks treat many of their risk positions of their mortgage based assets based
on the similar reasoning.
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But a question is: can they really be sure that {Xi}∞i=1 is i.i.d. or approxi-
mately i.i.d.? If we ask this question to a trader or a risk manager of a bank,
often the answer is not so clear. We know also many discussions and empirical
analysis on the volatility uncertainty of stocks.

From this start point, it’s more realistic to be within a situation of the
uncertainty of distribution functions (of Xi) which in turn induces the model
uncertainty of our probability space (Ω,F , P ). We will see that this types of
small model uncertainty of distributions does not automatically disappear after
the cumulation of

∑
Xi/

√
n.

In order to treat this type of model uncertainty, we better not assume that
the above Xi come from a same distribution. It is then more realistic to assume
that the distribution of Xi is belong to a subset of distributions {Fθ(x) : θ ∈ Θ}.

More generally speaking, we can not be sure that we have one probability
space, instead we assume to have a set of probabilities Q ∈ Q and we don’t
know which is the real one. A safe robust calculation of an expectation of a loss
position X is to take it’s upper expectation

Ê[X] = sup
Q∈Q

EQ[X],

Remark 2 In general one probability measure Q corresponds one expectation
EQ[·]. The inverse is also true: one expectation E[·] corresponds one probability
measure.

Example 3 Consider an economic agent with vNM type of utility function
u(X) = E[U(X)] where U is a concave and increasing function. If his un-
certainty subset of probabilities is Q, then his robust utility is calculated through

û(X) = inf
Q∈Q

EQ[X] = −Ê[−U(X)].

Example 4 If a trader of a Bank shorts a call option ϕ(X) := max{X − k, 0},
with a price p, where X is the underlying asset and k is the corresponding strike
price. Then the risk of his position p− ϕ(X) is measured by

ϕ(x) = Ê[ϕ(X)− p] = Ê[ϕ(X)]− p.

The above defined upper expectation Ê[·] is a very useful notion. It is easy
to check that it satisfies the following properties:

a) monotonicity: Ê[X] ≥ Ê[Y ], if X ≥ Y ;
b) constant preserving: Ê[c] = c;
c) sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ]
d) positive homogeneity: Ê[λX] = λÊ[X], for constants λ ≥ 0.
Properties c) + d) is called sub-linearity, an operator Ê satisfying a), b),

c) and d) is called an upper (or sublinear) expectation. If the inequality in c)
becomes equality, then Ê becomes the classical (linear) expectation and thus
there is no probability uncertainty.
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It is worth to point out that, recently the above types of sublinear expec-
tations has been received an important attention. Many paper propose to use
ρ̂(X) = Ê[−X] to be the measure of risk of a financial position X. This type of
risk measure is called coherent risk measure. The following representation
theorem is an important and basic result:

Theorem 5 ([ADEH1999], see also [Del2002], [FS2004] and my recent lec-
ture notes) Let Ê be a given a sublinear expectation. Then there exists a subset
{Eθ : θ ∈ Θ} of linear expectations such that

Ê[X] = sup
θ∈Θ

Eθ[X], for each X.

This result tell us that, inversely a sublinear expectation also corresponds
an uncertainty subset of probabilities.

Our basic point view is that: in a world with uncertainty of probabilities, it
is much better to work with

Definition 6 A triple (Ω,H, Ê) is called a sublinear expectation space, where
Ê sublinear expectation Ê defined on a linear space H of random variables X :
Ω 7→ R satisfying X = (X1, · · · , Xn), Xi ∈ H implies ϕ(X) ∈ H, where ϕ is
any function defined on Rn satisfying the following locally Lipschitz condition:
ϕ ∈ CLip(Rn), i.e.,

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn.

In this model a specific Ê gives us a specific size of our model uncertainty.
Under this framework we can see that, for each given n-dimensional random
vector X = (X1, · · · , Xn), Xi ∈ H:

F̂X [ϕ] := Ê[ϕ(X)] : ϕ ∈ CLip(Rn) 7→ R.

F̂X [·] forms again a sublinear expectation on (Rn,CLip(Rn)). F̂X [·] is called
the sublinear distribution of X under Ê. In fact since F̂X [·] is a sublinear
expectation, thus there exists a subset of linear distributions {Fθ, θ ∈ Θ} such
that

F̂X [ϕ] = sup
θ∈Θ

∫
Rn

ϕ(x)dFθ(x)

Namely, the sub-linearity of F̂X [·] describes the distribution uncertainty of X.

Definition 7 In a sublinear expectation space (Ω,H, Ê), two n-dimensional
random vector X and Y is said to be identically distributed, denoted by X ∼ Y ,
if their sublinear distributions coincide. Namely Ê[ϕ(X)] = Ê[ϕ(Y )], for each
function ϕ.

It is clear that X ∼ Y implies that the distribution uncertainties of X and
Y are the same. It does not necessarily imply that the distribution of X is the
same as that of Y .
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Definition 8 An n-dimensional random vector Y is said to be independent of
another m-dimensional random vector X if for each function ϕ ∈ CLip(Rm×Rn)
we have

Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Y is independent of X means that the distribution uncertainty of Y does
not change for any realization of X = x.

It is clear that the above i.i.d. notion is more realistic. We begin to give our
new central limit theorem with generalizes Theorem 1. The result presented
here is in fact a special situation of Theorem 5.1 of the attached paper in the
sense that here we only discuss 1-dimensional case (corresponding 1-dimensional
normal distribution) whereas in Theorem 5.1 of the attached paper consider
multi-dimensional cases. Theorem 5.1 also cover a part of the law of large
number.

Theorem 9 (New CLT [Peng2007], [Peng2008], See also my lecture notes) Let
{Xi}∞i=1 be a i.i.d. in a sublinear expectation space (Ω,H, Ê) in the following
sense: Xi ∼ X1 and Xi+1 is independent to (X1, · · · , Xi) for each i = 1, 2, · · ·
We also assume that µ = Ê[X1] = −Ê[−X1], then we denote

σ2 = Ê[X2
1 ], σ2 = −Ê[−X2

1 ]

Then for each convex function ϕ we have

Ê[ϕ(
n∑

i=1

Xi − µ√
n

)] → Ê[ϕ(X)], with X ∼ N (0, [σ2, σ2]).

Where X’s distribution N (0, [σ2, σ2]) is a generalized normal distribution,
called G-normal distribution (or G-distribution in the attached paper). A spe-
cial case is σ2 = σ2, in this case X is classically normal distributed: X ∼
N (0, σ2). Before given the full definition of this generalized form N (0, [σ2, σ2])
of our normal distribution, we first present the following two special and typical
situation which has significant implication to the problem we have discussed at
the beginning.

Corollary 10 X ∼ N (0, [σ2, σ2]), then If ϕ is a convex function then

Ê[ϕ(X)] =
1√

2πσ2

∫ ∞

−∞
ϕ(x) exp(

−x2

2σ2 )dx

But ϕ is a concave function, then

Ê[ϕ(X)] =
1√
2πσ2

∫ ∞

−∞
ϕ(x) exp(

−x2

2σ2
)dx.
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Remark 11 The above two situations can explain why in practical situation,
specially in finance and also in many theoretical studies in economics, people can
widely use normal distribution: since in many situation the functions ϕ under
consideration are convex or concave.

Example 12 An economic agent with vNM utility function U , then, as the
above example, his robust utility can be approximately calculated by −Ê[−U(X)].
Since −U is a convex function, thus we have

−Ê[−U(X)] =
1√

2πσ2

∫ ∞

−∞
U(x) exp(

−x2

2σ2 )dx.

Example 13 Similarly when we calculate the risk measure of the short position
p− (X − k)+ by Ê[(X − k)+ − p], since (x− k)+ is convex, then we have

Ê[(X − k)+ − p] =
1√

2πσ2

∫ ∞

−∞
(x− k)+ exp(

−x2

2σ2 )dx− p.

Remark 14 Here it is important to mention that, it is possible that a recent
history data {xi}N

i=1 of X is not at all approximated by a Gaussian. An extreme
example is when σ = 0 and σ = 1. In this case δ{0} is inside the distribution
uncertainty subset of X. Thus it is very possible that our recent data for X
is xi ≡ 0, i = 1, 2, · · · but if, when ϕ is convex, we still use X ∼ N (0, 1) to
calculate Ê[ϕ(X)]. But if ϕ is concave, then Ê[ϕ(X)] = ϕ(0).

We can still given example that with, a with unstable ‘dirty history data’ of
X, the calculation of Ê[ϕ(X)] is still by using Gaussian N (0, σ2) if ϕ is concave
and N (0, σ2).

We now explain the general situation how to calculate Ê[ϕ(X)] for X ∼
N (0, [σ2, σ2]). Before doing this we give the definition of the sublinear distri-
bution N (0, [σ2, σ2]):

Definition 15 A random variable X on a sublinear expectation space (Ω,H, Ê)
is said to be N (0, [σ2, σ2])-distributed, with

σ2 = E[X2], σ2 = −E[−X2],

if for each a,b ≥ 0, we have aX + bX̄ ∼
√

a2 + b2X, where X̄ is an independent
copy of X (namely X̄ is independent of X and identically distributed with respect
to X).

Remark 16 This type of characterization, or definition, of normal distribu-
tion was introduced by P. Lévy and was systematically applied by Mandelbrot
and Fama to modeling the normal distribution behavior of a stock prices. It is
interesting to see that we just change our ground to our uncertainty formulation
to arrive of new definition of normal distribution N (0, [σ2, σ2]).
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The mean of X is zero, this can be easily check by the definition: Ê[X] =
−Ê[−X] = 0. We also denote µ + X ∼ N (µ, [σ2, σ2]).

The calculation of Ê[ϕ(X)] is via:

u(t, x) := Ê[ϕ(x +
√

tX)], t ∈ [0, 1], x ∈ R.

We can check from the above definition that u is the solution of the following

∂tu = G(∂xxu), u(0, x) = ϕ(x).

where

G(a) =
σ2

2
a+ − σ2

2
a−, a+ = max{a, 0}, a− = (−a)+.

Once we solve this parabolic partial differential equation, then it is clear that
Ê[ϕ(X)] = u(1, 0).

Remark 17 When ϕ is convex, it is easy to check that the solution u is convex
in x, and thus u solves the heat equation ∂u = σ2

2 ∂xxu. We the can calculate
Ê[ϕ(X)] = u(1, 0) as X ∼ N (0, σ2). The case where ϕ is concave is similar.

In the continuous time setting, Bachelier has defined Brownian motion.
Similarly we can also define the corresponding G-Brownian motion under the
uncertainty of probabilities for continuous time finance (see [Peng2006a] and
[Peng2006b]).
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Abstract

We describe a new framework of a sublinear expectation space and the

related notions and results of distributions, independence. A new notion of

G-distributions is introduced which generalizes our G-normal-distribution

in the sense that mean-uncertainty can be also described. W present our

new result of central limit theorem under sublinear expectation. This

theorem can be also regarded as a generalization of the law of large number

in the case of mean-uncertainty.

1 Introduction

The law of large numbers (LLN) and central limit theorem (CLT) are long and
widely been known as two fundamental results in the theory of probability and
statistics. A striking consequence of CLT is that accumulated independent and
identically distributed random variables tends to a normal distributed random
variable whatever is the original distribution. It is a very useful tool in finance
since many typical financial positions are accumulations of a large number of
small and independent risk positions. But CLT only holds in cases of model
certainty. In this paper we are interested in CLT with mean and variance-
uncertainty.

Recently problems of model uncertainties in statistics, measures of risk and
superhedging in finance motivated us to introduce, in [13] and [14] (see also
[11], [12] and references herein), a new notion of sublinear expectation, called
“G-expectation”, and the related “G-normal distribution” (see Def. 4.5) from
which we were able to define G-Brownian motion as well as the corresponding

∗The author thanks the partial support from The National Basic Research Program of
China (973 Program) grant No. 2007CB814900 (Financial Risk).
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stochastic calculus. The notion of G-normal distribution plays the same impor-
tant rule in the theory of sublinear expectation as that of normal distribution
in the classic probability theory. It is then natural and interesting to ask if
we have the corresponding LLN and CLT under a sublinear expectation and,
in particular, if the corresponding limit distribution of the CLT is a G-normal
distribution. This paper gives an affirmative answer. We will prove that the
accumulated risk positions converge ‘in law’ to the corresponding G-normal dis-
tribution, which is a distribution under sublinear expectation. In a special case
where the mean and variance uncertainty becomes zero, the G-normal distribu-
tion becomes the classical normal distribution. Technically we introduce a new
method to prove a CLT under a sublinear expectation space. This proof of our
CLT is short since we borrow a deep interior estimate of fully nonlinear PDE in
[5]. The assumptions of our CLT can be still improved.

This paper is organized as follows: in Section 2 we describe the framework
of a sublinear expectation space. The basic notions and results of distributions,
independence and the related product space of sublinear will be presented in
Section 3. In Section 4 we introduce a new notion of G-distributions which
generalizes our G-normal-distribution in the sense that mean-uncertainty can
be also described. Finally, in Section 5, we present our main result of CLT under
sublinear expectation. For reader’s convenience we present some basic results
of viscosity solutions in the Appendix.

This paper is a new and generalized version of [15] in which only variance
uncertainty was considered for random variables instead random random vec-
tors. Our new CLT theorem can be applied to the case where both mean-
uncertainty and variance-uncertainty cannot be negligible. This theorem can
be also regarded as a new generalization of LLN. We refer to [9] and [10] for the
developments of LLN with non-additive probability measures.

2 Basic settings

For a given positive integer n we will denote by 〈x, y〉 the scalar product of x,
y ∈ Rn and by |x| = (x, x)1/2 the Euclidean norm of x. We denote by S(n) the
collection of n×n symmetric matrices and by S+(n) the non negative elements
in S(n). We observe that S(n) is an Euclidean space with the scalar product
〈P,Q〉 = tr[PQ].

In this paper we will consider the following type of spaces of sublinear ex-
pectations: Let Ω be a given set and let H be a linear space of real functions
defined on Ω such that if X1, · · · , Xn ∈ H then ϕ(X1, · · · , Xn) ∈ H for each
ϕ ∈ Cl.Lip(R

n) where Cl.Lip(R
n) denotes the linear space of (local Lipschitz)

functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ.

H is considered as a space of “random variables”. In this case we denote X =
(X1, · · · , Xn) ∈ Hn.
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Remark 2.1 In particular, if X,Y ∈ H, then |X |, Xm ∈ H are in H. More
generally ϕ(X)ψ(Y ) is still in H if ϕ, ψ ∈ Cl.Lip(R).

Here we use Cl.Lip(R
n) in our framework only for some convenience of tech-

nicalities. In fact our essential requirement is that H contains all constants and,
moreover, X ∈ H implies |X | ∈ H. In general Cl.Lip(R

n) can be replaced by
the following spaces of functions defined on Rn.

• L∞(Rn): the space bounded Borel-measurable functions;

• Cb(R
n): the space of bounded and continuous functions;

• Ck
b (Rn): the space of bounded and k-time continuously differentiable func-

tions with bounded derivatives of all orders less than or equal to k;

• Cunif (Rn): the space of bounded and uniformly continuous functions;

• Cb.Lip(R
n): the space of bounded and Lipschitz continuous functions.

Definition 2.2 A sublinear expectation Ê on H is a functional Ê : H 7→ R

satisfying the following properties: for all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê[X ] ≥ Ê[Y ].

(b) Constant preserving: Ê[c] = c.

(c) Sub-additivity: Ê[X ] − Ê[Y ] ≤ Ê[X − Y ].

(d) Positive homogeneity: Ê[λX ] = λÊ[X ], ∀λ ≥ 0.

(In many situation (c) is also called property of self–domination). The triple

(Ω,H, Ê) is called a sublinear expectation space (compare with a probabil-

ity space (Ω,F ,P)). If only (c) and (d) are satisfied Ê is called a sublinear
functional.

Remark 2.3 Just as in the framework of a probability space, a sublinear expec-
tation space can be a completed Banach space under its natural norm ‖·‖ =Ê[|·|]
(see [11]-[16]) and by using its natural capacity ĉ(·) induced via Ê[|·|] (see [4]
and [3]). But the results obtained in this paper do not need the assumption of
the space-completion.

Lemma 2.4 Let E be a sublinear functional defined on (Ω,H), i.e., (c) and
(d) hold for E. Then there exists a family Q of linear functional on (Ω,H) such
that

E[X ] := sup
E∈Q

E[X ], ∀E ∈ Q.

and such that, for each X ∈ H, there exists a E ∈ Q such that E[X ] := E[X ].
If we assume moreover that (a) holds (resp. (a), (b) hold) for E, then (a)
also holds (resp. (a), (b) hold) for each E ∈ Q.
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Proof. Let Q be the family of all linear functional dominated by E, i.e., E[X ] ≤
E[X ], for all X ∈ H, E ∈ Q. We first prove that Q is non empty. For a given
X ∈ H, we denote L = {aX : a ∈ R} which is a subspace of H. We define
I : L → R by I[aX ] = aE[X ], ∀a ∈ R, then I[·] forms a linear functional on
L and I ≤E on L. Since E[·] is sub-additive and positively homogeneous, by
Hahn-Banach theorem (see e.g. [19]pp102) there exists a linear functional E
on H such that E = I on L and E ≤ E on H. Thus E is a linear functional
dominated by E such that E[X ] := E[X ]. We now define

EQ[X ] , sup
E∈Q

E[X ].

It is clear that EQ=E.
If (a) holds for E, then for each non negative element X ∈ H, for each

E ∈ Q, E[X ] = −E[−X ] ≥ −E[−X ] ≥ 0, thus (a) also holds for E. If
moreover (b) holds for E, then for each c ∈ R, −E[c] = E[−c] ≤ E[−c] = −c
and E[c] ≤ E[c] = c, we get E[c] = c. The proof is complete.

Example 2.5 For some ϕ ∈ Cl.Lip(R), ξ ∈ H, let ϕ(ξ) be a gain value favor-
able to a banker of a game. The banker can choose among a set of distribution
{F (θ,A)}A∈B(R),θ∈Θ of a random variable ξ. In this situation the robust expec-
tation of the risk for a gamblers opposite to the banker is:

Ê[ϕ(ξ)] := sup
θ∈Θ

∫

R

ϕ(x)F (θ, dx).

3 Distributions, independence and product spaces

We now consider the notion of the distributions of random variables under
sublinear expectations. LetX = (X1, · · · , Xn) be a given n-dimensional random

vector on a sublinear expectation space (Ω1,H1, Ê). We define a functional on
Cl.Lip(R

n) by

F̂X [ϕ] := Ê[ϕ(X)] : ϕ ∈ Cl.Lip(R
n) 7→ (−∞,∞). (1)

The triple (Rn, Cl.Lip(R
n), F̂X [·]) forms a sublinear expectation space. F̂X is

called the distribution of X .

Definition 3.1 Let X1 and X2 be two n–dimensional random vectors defined
respectively in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They

are called identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl.Lip(R
n).

It is clear that X1
d
= X2 if and only if their distributions coincide.
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Remark 3.2 If the distribution F̂X of X ∈ H is not a linear expectation, then
X is said to have distributional uncertainty. The distribution of X has the
following four typical parameters:

µ̄ := Ê[X ], µ := −Ê[−X ], σ̄2 := Ê[X2], σ2 := −Ê[−X2].

The subsets [µ, µ̄] and [σ2, σ̄2] characterize the mean-uncertainty and the variance-
uncertainty of X. The problem of zero-mean uncertainty have been studied in
[P3], [P4]. In this paper the mean uncertainty will be in our consideration.

The following simple property is very useful in our sublinear analysis.

Proposition 3.3 Let X,Y ∈ H be such that Ê[Y ] = −Ê[−Y ], i.e. Y has no
mean uncertainty. Then we have

Ê[X + Y ] = Ê[X ] + Ê[Y ].

In particular, if Ê[Y ] = Ê[−Y ] = 0, then Ê[X + Y ] = Ê[X ].

Proof. It is simply because we have Ê[X + Y ] ≤ Ê[X ] + Ê[Y ] and

Ê[X + Y ] ≥ Ê[X ] − Ê[−Y ] = Ê[X ] + Ê[Y ].

The following notion of independence plays a key role:

Definition 3.4 In a sublinear expectation space (Ω,H, Ê) a random vector Y =
(Y1, · · · , Yn), Yi ∈ H is said to be independent to another random vector X =

(X1, · · · , Xm), Xi ∈ H under Ê[·] if for each test function ϕ ∈ Cl.Lip(R
m ×Rn)

we have
Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Remark 3.5 In the case of linear expectation, this notion of independence is
just the classical one. It is important to note that under sublinear expectations
the condition “Y is independent to X” does not implies automatically that “X
is independent to Y ”.

Example 3.6 We consider a case where X,Y ∈ H are identically distributed
and Ê[X ] = Ê[−X ] = 0 but σ̄2 = Ê[X2] > σ2 = −Ê[−X2]. We also assume

that Ê[|X |] = Ê[X+ +X−] > 0, thus Ê[X+] = 1
2 Ê[|X | +X ] = 1

2 Ê[|X |] > 0. In
the case where Y is independent to X, we have

Ê[XY 2] = Ê[X+σ̄2 −X−σ2] = (σ̄2 − σ2)Ê[X+] > 0.

But if X is independent to Y we have

Ê[XY 2] = 0.

5



The independence property of two random vectors X,Y involves only the
joint distribution of (X,Y ). The following construction tells us how to construct
random vectors with given sublinear distributions and with joint independence.

Definition 3.7 Let (Ωi,Hi, Êi), i = 1, 2 be two sublinear expectation spaces.
We denote by

H1 ×H2 := {Z(ω1, ω2) = ϕ(X(ω1), Y (ω2)) : (ω1, ω2) ∈ Ω1 × Ω2,

(X,Y ) ∈ (H1)
m × (H2)

n, ϕ ∈ Cl.Lip(R
m × R

n), m, n = 1, 2, · · · },

and, for each random variable of the above form Z(ω1, ω2) = ϕ(X(ω1), Y (ω2)),

(Ê1 × Ê2)[Z] := Ê1[ϕ̄(X)], where ϕ̄(x) := Ê2[ϕ(x, Y )], x ∈ R
m.

It is easy to check that the triple (Ω1 × Ω2,H1 × H2, Ê1 × Ê2) forms a sunlin-
ear expectation space. We call it the product space of sublinear expectation of
(Ω1,H1, Ê1) and (Ω2,H2, Ê2). In this way we can define the product space of
sublinear expectation

(

n∏

i=1

Ωi,

n∏

i=1

Hi,

n∏

i=1

Êi)

of any given sublinear expectation spaces (Ωi,Hi, Êi), i = 1, 2, · · · , n. In par-

ticular, when (Ωi,Hi, Êi) = (Ω1,H1, Ê1) we have the product space of the form

(Ω⊗n
1 ,H⊗n

1 , Ê
⊗n
1 ).

The following property is easy to check.

Proposition 3.8 Let Xi be ni-dimensional random vectors in sublinear expec-
tation spaces (Ωi,Hi, Êi), for i = 1, · · · , n, respectively. We denote

Yi(ω1, · · · , ωn) := Xi(ωi), i = 1, · · · , n.

Then Yi, i = 1, · · · , n are random variables in the product space of sublinear

expectation (

n∏

i=1

Ωi,

n∏

i=1

Hi,

n∏

i=1

Êi). Moreover we have Yi
d
= Xi and Yi+1 is inde-

pendent to (Y1, · · · , Yi), for each i.

Moreover, if (Ωi,Hi, Êi) = (Ω1,H1, Ê1) and Xi = X1, for all i, then we also

have Yi
d
= Y1. In this case Yi ia called independent copies of Y1 for i = 2, · · · , n.

The situation “Y is independent to X” often appears when Y occurs after
X , thus a very robust sublinear expectation should take the information of X
into account. We consider the following example: Let Y = ψ(ξ, θ), ψ ∈ Cb(R

2),
where ξ andX are two bounded random variables in a classical probability space
(Ω,F , P ) and θ is a completely unknown parameter valued in a given interval
[a, b]. We assume that ξ is independent of X under P in the classical sense.
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On the space (Ω,H) with H := {ϕ(X,Y ) : ϕ ∈ Cl.Lip(R
2)}, we can define the

following three robust sublinear expectations:

E1[ϕ(X,Y )] = sup
θ∈[a,b]

EP [ϕ(X,ψ(ξ, θ)], E2[ϕ(X,Y )] = EP [ sup
θ∈[a,b]

ϕ(X,ψ(ξ, θ)],

E3[ϕ(X,Y )] = EP [{ sup
θ∈[a,b]

EP [ϕ(x, ψ(ξ, θ)]}x=X ].

But it is seen that only under the sublinear expectation E3 that Y is independent
to X .

Remark 3.9 It is possible that the above parameter θ is in fact a function of X
and ξ: θ = Θ(X, ξ) where Θ is a completely unknown function valued in [a, b],
thus Y = ψ(ξ,Θ(X, ξ)) is dependent to X in the classical sense. But since Θ is
a completely unknown function a robust expectation is E3.

Definition 3.10 A sequence of d-dimensional random vectors {ηi}∞i=1 in H is

said to converge in distribution under Ê if for each ϕ ∈ Cb(R
n) the sequence{

Ê[ϕ(ηi)]
}∞

i=1
converges.

4 G-distributed random variables

Given a pair of d-dimensional random vectors (X,Y ) in a sublinear expectation

space (Ω,H, Ê), we can define a function

G(p,A) := Ê[
1

2
〈AX,X〉 + 〈p, Y 〉], (p,A) ∈ S(d) × R

d (2)

It is easy to check that G : Rd × S(d) 7→ R is a sublinear function monotonic in
A ∈ S(d) in the following sense: For each p, p̄ ∈ Rd and A, Ā ∈ S(d)





G(p+ p̄, A+ Ā) ≤ G(p,A) +G(p̄, Ā),
G(λp, λA) = λG(p,A), ∀λ ≥ 0,
G(p,A) ≥ G(p, Ā), if A ≥ Ā.

(3)

G is also a continuous function.
The following property is classic. One can also check it by using Lemma 2.4.

Proposition 4.1 Let G : Rd × S(d) 7→ R be a sublinear function monotonic
in A ∈ S(d) in the sense of (3) and continuous in (0, 0). Then there exists a
bounded subset Θ ∈ Rd × Rd×d such that

G(p,A) = sup
(q,Q)∈Θ

[
1

2
tr[AQQT ] + 〈p, q〉], ∀(p,A) ∈ R

d × S(d).

The classical normal distribution can be characterized through the notion
of stable distributions introduced by P. Lévy [6] and [7]. The distribution of
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a d-dimensional random vector X in a sublinear expectation space (Ω,H, Ê) is
called stable if for each a, b ∈ Rd, there exists c ∈Rd and d ∈ R such that

〈a, X〉 +
〈
b, X̄

〉 d
= 〈c, X〉 + d,

where X̄ is an independent copy of X .
The following G-normal distribution plays the same role as normal distribu-

tions in the classical probability theory:

Proposition 4.2 Let G : Rd × S(d) 7→ R be a given sublinear function mono-
tonic in A ∈ S(d) the sense of (3) and continuous in (0, 0). Then there exists
a pair of d-dimensional random vectors (X,Y ) in some sublinear expectation

space (Ω,H, Ê) satisfying (2) and the following condition:

(aX + bX̄, a2Y + b2Ȳ )
d
= (

√
a2 + b2X, (a2 + b2)Y ), ∀a, b ≥ 0, (4)

where (X̄, Ȳ ) is an independent copy of (X,Y ). The distribution of (X,Y ) is
uniquely determine by G.

Example 4.3 For the sublinear function Ḡ : R
d 7→ R defined by Ḡ(p) :=

G(p, 0), p ∈ Rd, we can concretely construct a d-dimensional random vector

Y in some sublinear expectation space (Ω,H, Ê) satisfying

Ḡ(p) := Ê[〈p, Y 〉], p ∈ R
d (5)

and the following condition:

a2Y + b2Ȳ
d
= (a2 + b2)Y, ∀a, b ∈ R, (6)

where Y is an independent copy of Y . In fact we can take Ω = Rd, H =
Cl.Lip(R

d) and Y (ω) = ω. To define the corresponding sublinear expectation Ê,
we apply Proposition 4.1 to find a subset Θ̄ ∈ Rd such that

Ḡ(p) = sup
q∈Θ̄

〈p, q〉 , p ∈ R
d. (7)

Then for each ξ ∈ H of the form ξ(ω) = ϕ(ω), ϕ ∈ Cl.Lip(R
d). ω ∈ Rd we set

Ê[ξ] = sup
ω∈Θ̄

ϕ(ω). (8)

It is easy to check that the distribution of Y satisfies (5) and (6). It is the
so-called worst case distribution with respect to the subset of mean uncertainty
Θ̄. We denote this distribution by U(Θ̄).

Example 4.4 For the sublinear and monotone function Ĝ : S(d) 7→ R defined
by Ĝ(A) := G(0, A), A ∈ S(d) the d-dimensional random vector X in Proposi-
tion 4.2 satisfies

Ĝ(A) :=
1

2
Ê[〈AX,X〉], p ∈ R

d (9)
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and the following condition:

aX + bX̄
d
=

√
a2 + b2X, ∀a, b ∈ R, (10)

where X̄ is an independent copy of X. In particular, for each components Xi

of X and X̄i of X̄, we have
√

2Ê[Xi] = Ê[Xi + X̄i] = 2Ê[Xi] and
√

2Ê[−Xi] =

Ê[−Xi − X̄i] = 2Ê[−Xi] it follows that X has no mean uncertainty:

Ê[Xi] = Ê[−Xi] = 0, i = 1, · · · , d.

On the other hand, by Proposition 4.1 we can find a bounded subset Θ̂ ∈ S+(d)
such that

1

2
Ê[〈AX,X〉] = Ĝ(A) =

1

2
sup
Q∈Θ̄

tr[AQ], A ∈ S(d). (11)

If Θ̂ is a singleton Θ̂ = {Q}, then X is a classical zero-mean normal distributed
with covariance Q. In general Θ̂ characterizes the covariance uncertainty of X.

Definition 4.5 (G-distribution) The pair of d-dimensional random vectors
(X,Y ) in the above proposition is called G-distributed. X is said to be Ĝ-normal

distributed. We denote the distribution of X by X
d
= N (0, Θ̂).

Proposition 4.8 and Corollary 4.9 show that a G-distribution is a uniquely
defined sublinear distribution on (R2d, Cl.Lip(R

2d)). We will show that a pair
of G-distributed random vectors is characterized, or generated, by the following
parabolic PDE defined on [0,∞) × Rd × Rd:

∂tu−G(Dyu,D
2
xu) = 0, (12)

with Cauchy condition u|t=0 = ϕ, where Dy = (∂yi)
d
i=1, D

2
x = (∂2

xi,xj
)d
i,j=1.

(12) is called the G-heat equation.

Remark 4.6 We will use the notion of viscosity solutions to the generating
heat equation (12). This notion was introduced by Crandall and Lions. For the
existence and uniqueness of solutions and related very rich references we refer to
Crandall, Ishii and Lions [2] (see Appendix for the uniqueness). We note that,
in the situation where σ2 > 0, the viscosity solution (12) becomes a classical
C1+ α

2
,2+α-solution (see [5] and the recent works of [1] and [18]). Readers can

understand (12) in the classical meaning.

Definition 4.7 A real-valued continuous function u ∈ C([0, T ]× Rd) is called
a viscosity subsolution (respectively, supersolution) of (12) if, for each function
ψ ∈ C3

b ((0,∞)×Rd×Rd) and for each minimum (respectively, maximum) point
(t, x, y) ∈ (0,∞) × Rd × Rd of ψ − u, we have

∂tψ −G(Dyψ,D
2
xψ) ≤ 0 (respectively, ≥ 0).

u is called a viscosity solution of (12) if it is both super and subsolution.
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Proposition 4.8 Let (X,Y ) be G-distributed. For each ϕ ∈ Cl.Lip(R
d × Rd)

we define a function

u(t, x, y) := Ê[ϕ((x+
√
tX, y + tY )], (t, x) ∈ [0,∞) × R.

Then we have

u(t+ s, x, y) = Ê[u(t, x+
√
sX, y + sY )], s ≥ 0. (13)

We also have the estimates: For each T > 0 there exist constants C, k > 0 such
that, for all t, s ∈ [0, T ] and x, y ∈ R,

|u(t, x, y) − u(t, x̄, ȳ)| ≤ C(1 + |x|k + |y|k + |x̄|k + |ȳ|k)|x− y| (14)

and
|u(t, x, y) − u(t+ s, x+ y)| ≤ C(1 + |x|k + |y|k)(s+ |s|1/2). (15)

Moreover, u is the unique viscosity solution, continuous in the sense of (14) and
(15), of the generating PDE (12).

Proof. Since

u(t, x, y) − u(t, x̄, ȳ) = Ê[ϕ(x +
√
tX, y + tY )] − Ê[ϕ(x̄+

√
tX, ȳ + tY )]

≤ Ê[ϕ(x +
√
tX, y + tY ) − ϕ(x̄ +

√
tX, ȳ + tY )]

≤ Ê[C1(1 + |X |k + |Y |k + |x|k + |y|k + |x̄|k + |ȳ|k)]

× (|x − x̄| + |y − ȳ|)
≤ C(1 + |x|k + |y|k + |x̄|k + |ȳ|k)(|x − x̄| + |y − ȳ|).

We then have (14). Let (X̄, Ȳ ) be an independent copy of (X,Y ). Since (X,Y )
is G-distributed, then

u(t+ s, x, y) = Ê[ϕ(x+
√
t+ sX, y + (t+ s)Y )]

= Ê[ϕ(x+
√
sX +

√
tX̄, y + sY + tȲ )]

= Ê[Ê[ϕ(x +
√
sx̃+

√
tX̄, y + sỹ + tȲ )](ex,ey)=(X,Y )]

= Ê[u(t, x+
√
sX, y + sY )].

We thus obtain (13). From this and (14) it follows that

u(t+ s, x, y) − u(t, x, y) = Ê[u(t, x+
√
sX, y + sY ) − u(t, x)]

≤ Ê[C1(1 + |x|k + |y|k + |X |k + |Y |k)(
√
s|X | + s|Y |)].

Thus we obtain (15). Now, for a fixed (t, x, y) ∈ (0,∞) × Rd × Rd, let ψ ∈
C1,3

b ([0,∞) × Rd × Rd) be such that ψ ≥ u and ψ(t, x, y) = u(t, x, y). By (13)
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and Taylor’s expansion it follows that, for δ ∈ (0, t),

0 ≤ Ê[ψ(t− δ, x+
√
δX, y + δY ) − ψ(t, x, y)]

≤ C̄(δ3/2 + δ2) − ∂tψ(t, x, y)δ

+ Ê[〈Dxψ(t, x, y), X〉
√
δ + 〈Dyψ(t, x, y), Y 〉 δ +

1

2

〈
D2

xψ(t, x, y)X,X
〉
δ]

= −∂tψ(t, x, y)δ + Ê[〈Dyψ(t, x, y), Y 〉 +
1

2

〈
D2

xψ(t, x, y)X,X
〉
]δ + C̄(δ3/2 + δ2)

= −∂tψ(t, x, y)δ + δG(Dyψ,D
2
xψ)(t, x, y) + C̄(δ3/2 + δ2).

From which it is easy to check that

[∂tψ −G(Dyψ,D
2
xψ)](t, x, y) ≤ 0.

Thus u is a viscosity supersolution of (12). Similarly we can prove that u is a
viscosity subsolution of (12).

Corollary 4.9 If both (X,Y ) and (X̄, Ȳ ) are G-distributed with the same G,
i.e.,

G(p,A) := Ê[
1

2
〈AX,X〉+〈p, Y 〉] = Ê[

1

2

〈
AX̄, X̄

〉
+

〈
p, Ȳ

〉
], ∀(p,A) ∈ S(d)×R

d.

then (X,Y )
d
= (X̄, Ȳ ). In particular, X

d
= −X.

Proof. For each ϕ ∈ Cl.Lip(R
d × Rd) we set

u(t, x, y) := Ê[ϕ(x +
√
tX, y + tY )],

ū(t, x, y) := Ê[ϕ(x +
√
tX̄, y + tȲ )], (t, x) ∈ [0,∞) × R.

By the above Proposition, both u and ū are viscosity solutions of the G-heat
equation (12) with Cauchy condition u|t=0 = ū|t=0 = ϕ. It follows from the
uniqueness of the viscosity solution that u ≡ ū. In particular

Ê[ϕ(X,Y )] = Ê[ϕ(X̄, Ȳ )].

Thus (X,Y )
d
= (X̄, Ȳ ).

Corollary 4.10 Let (X,Y ) be G-distributed. For each ψ ∈ Cl.Lip(R
d) we define

a function

v(t, x) := Ê[ψ((x +
√
tX + tY )], (t, x) ∈ [0,∞) × R

d.

Then v is the unique viscosity solution of the following parabolic PDE

∂tv −G(Dxv,D
2
xv) = 0, v|t=0 = ψ. (16)

Moreover we have v(t, x + y) ≡ u(t, x, y), where u is the solution of the PDE
(12) with initial condition u(t, x, y)|t=0 = ψ(x + y).

11



4.1 Proof of Proposition 4.2

We now proceed to prove Proposition 4.2. Let u = uϕ be the unique viscosity so-
lution of the G-heat equation (12) with uϕ|t=0 = ϕ, Then we take Ω̃ = R2d, H̃ =

Cl.Lip(R
2d), ω̃ = (x, y) ∈ R2d. The corresponding sublinear expectation Ẽ[·] is

defined by, for each ξ ∈ H of the form ξ(ω) = (ϕ(x, y))(x,y)∈R2d ∈ Cl.Lip(R
2d),

Ẽ[ξ] = uϕ(1, 0). The monotonicity and sub-linearity of uϕ with respect to ϕ are
known in the theory of viscosity solution. For reader’s convenience we provide
a new and simple proof in the Appendix (see Corollary 6.4 and Corollary 6.5).

The positive homogeneity of Ẽ[·] is easy to be checked.

We now consider a pairs of d-dimensional random vectors (X̃, Ỹ )(ω) = (x, y).
We have

Ê[ϕ(X̃, Ỹ )] = uϕ(1, 0), ∀ϕ ∈ Cl.Lip(R
2d).

In particular, just set ϕ0(x, y) = 1
2 〈Ax, x〉 + 〈p, y〉, we can check that

uϕ0(t, x, y) := G(p,A)t+
1

2
〈Ax, x〉 + 〈p, y〉 .

We thus have

Ẽ[
1

2

〈
AX̃, X̃

〉
+

〈
p, Ỹ

〉
] = uϕ0(t, 0)|t=1 = G(p,A), (p,A) ∈ R

d × S(n).

To prove that the distribution of (X̃, Ỹ ) satisfies condition (4), we follow
Definition 3.7 to construct a product space of sublinear expectation

(Ω,H, Ê) = (Ω̃ × Ω̃, H̃ × H̃, Ẽ × Ẽ)

and introduce two pair of random vectors

(X,Y )(ω1, ω2) = ω1, (X̄, Ȳ )(ω1, ω2) = ω2, (ω1, ω2) ∈ Ω̃ × Ω̃.

By Proposition 3.8 both (X,Y )
d
= (X̃, Ỹ ) and (X̄, Ȳ ) is an independent copy of

(X,Y ). For each ϕ ∈ Cl.Lip(R
2d) and for each fixed λ > 0, (x̄, ȳ) ∈ R2d, since

the function v defined by v(t, x, y) := uϕ(λt, x̄+
√
λx, ȳ+λy) solves exactly the

same equation (12) but with Cauchy condition

v|t=0 = ϕ(x̄+
√
λ× ·, ȳ + λ× ·).

Thus

Ê[ϕ(x̄+
√
λX, ȳ + λY )] = v(t, x̄, ȳ)|t=1

= uϕ(
√

λ×·,λ×·)(t, x̄, ȳ)|t=1 = uϕ(λ, x̄, ȳ).

By the definition of Ê, for each t > 0 and s > 0,

Ê[ϕ(
√
tX +

√
sX̄, tY + sȲ )] = Ẽ[Ẽ[ϕ(

√
tx+

√
sX̄, ty + sȲ )](x,y)=(X,Y )]

= uuϕ(s,·,·)(t, 0, 0) = uϕ(t+ s, 0, 0)

= Ê[ϕ(
√
t+ sX, (t+ s)Y )].
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Namely (
√
tX +

√
sX̄, tY + sȲ )

d
= (

√
t+ sX, (t+ s)Y ). Thus the distribution

of (X,Y ) satisfies condition (4).

It remains to check that the functional Ẽ[·] : Cl.Lip(R
2d) 7→ R forms a

sublinear expectation, i.e., (a)-(d) of Definition 2.2 are satisfied. Indeed, (a)
is simply the consequence of comparison theorem, or the maximum principle of
viscosity solution (see [CIL], the prove of this comparison theorem as well as the
sub-additivity (c) are given in the Appendix of [P6]). It is also easy to check
that, when ϕ ≡ c, the unique solution of (12) is also u ≡ c; hence (b) holds true.
(d) also holds since uλϕ = λuϕ, λ ≥ 0. The proof is complete.

5 Central Limit Theorem

Theorem 5.1 (Central Limit Theorem) Let a sequence {(Xi, Yi)}∞i=1 of Rd ×
Rd-valued random variables in (H, Ê). We assumed that (Xi+1, Yi+1)

d
= (Xi, Yi)

and (Xi+1, Yi+1) is independent to {(X1, Y1), · · · , (Xi, Yi)} for each i = 1, 2, · · · .
We assume furthermore that,

Ê[X1] = Ê[−X1] = 0,

Then the sequence {S̄n}∞n=1 defined by

S̄n :=

n∑

i=1

(
Xi√
n

+
Yi

n
)

converges in law to ξ + ζ:

lim
n→∞

Ê[ϕ(S̄n)] = Ẽ[ϕ(ξ + ζ)], (17)

for all functions ϕ ∈ C(Rd) satisfying a polynomial growth condition, where
(ξ, ζ) is a pair of G-distributed random vectors and where the sublinear function
G : S(d) × Rd 7→ R is defined by

G(p,A) := Ê[〈p, Y1〉 +
1

2
〈AX1, X1〉], A ∈ S(d), p ∈ R

d.

Corollary 5.2 The sum
∑n

i=1
Xi√

n
converges in law to N (0, Θ̂), where the subset

Θ̂ ⊂ S+(d) is defined in (11) for Ĝ(A) = G(0, A), A ∈ S(d). The sum
∑n

i=1
Yi

n
converges in law to U(Θ̄), where the subset Θ̄ ⊂ Rd is defined in (7) for Ḡ(p) =
G(p, 0), p ∈ Rd. If we take in particular ϕ(y) = dΘ̄(y) = inf{|x − y| : x ∈ Θ̄},
then by (8) we have the following generalized law of large number:

lim
n→∞

Ê[dΘ̄(

n∑

i=1

Yi

n
)] = sup

θ∈Θ̄

dΘ̄(θ) = 0. (18)

13



Remark 5.3 If Yi has no mean-uncertainty, or in other words, Θ̄ is a singleton:
Θ̄ = {θ̄} then (18) becomes

lim
n→∞

Ê[|
n∑

i=1

Yi

n
− θ̄|] = 0.

To our knowledge, the law of large numbers with non-additive probability mea-
sures have been investigated with a quite different framework and approach from
ours (see [9], [10]).

To prove this theorem we first give

Lemma 5.4 We assume the same condition as Theorem 5.1. We assume
furthermore that there exists β > 0 such that, for each A, Ā ∈ S(d) with A ≥ Ā,
we have

Ê[〈AX1, X1〉] − Ê[
〈
ĀX1, X1

〉
] ≥ βtr[A− Ā]. (19)

Then (17) holds.

Proof. We first prove (17) for ϕ ∈ Cb.Lip(R
d). For a small but fixed h > 0, let

V be the unique viscosity solution of

∂tV +G(DV,D2V ) = 0, (t, x) ∈ [0, 1 + h] × R
d, V |t=1+h = ϕ. (20)

Since (ξ, ζ) is G-distributed we have

V (h, 0) = Ẽ[ϕ(ξ + ζ)], V (1 + h, x) = ϕ(x) (21)

Since (20) is a uniformly parabolic PDE and G is a convex function thus, by
the interior regularity of V (see Krylov [5], Example 6.1.8 and Theorem 6.2.3),
we have

‖V ‖C1+α/2,2+α([0,1]×Rd) <∞, for some α ∈ (0, 1).

We set δ = 1
n and S0 = 0. Then

V (1, S̄n) − V (0, 0) =

n−1∑

i=0

{V ((i+ 1)δ, S̄i+1) − V (iδ, S̄i)}

=

n−1∑

i=0

{[V ((i+ 1)δ, S̄i+1) − V (iδ, S̄i+1)] + [V (iδ, S̄i+1) − V (iδ, S̄i)]}

=

n−1∑

i=0

{
Ii
δ + J i

δ

}

with, by Taylor’s expansion,

J i
δ = ∂tV (iδ, S̄i)δ+

1

2

〈
D2V (iδ, S̄i)Xi+1, Xi+1

〉
δ+

〈
DV (iδ, S̄i), Xi+1

√
δ + Yi+1δ

〉
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Ii
δ =

∫ 1

0

[∂tV ((i+ β)δ, S̄i+1) − ∂tV (iδ, S̄i+1)]dβδ + [∂tV (iδ, S̄i+1) − ∂tV (iδ, S̄i)]δ

+
1

2

〈
D2V (iδ, S̄i)Xi+1, Yi+1

〉
δ3/2 +

1

2

〈
D2V (iδ, S̄i)Yi+1, Yi+1

〉
δ

+

∫ 1

0

∫ 1

0

〈
Θi

βγ(Xi+1

√
δ + Yi+1δ), Xi+1

√
δ + Yi+1δ

〉
γdβdγ

with
Θi

βγ = D2V (iδ, S̄i + γβ(Xi+1

√
δ + Yi+1δ) −D2V (iδ, S̄i).

Thus

Ê[
n−1∑

i=0

J i
δ] − Ê[−

n−1∑

i=0

Ii
δ] ≤ Ê[V (1, S̄n)] − V (0, 0) ≤ Ê[

n−1∑

i=0

J i
δ] + Ê[

n−1∑

i=0

Ii
δ]. (22)

We now prove that Ê[
∑n−1

i=0 J
i
δ] = 0. For the 3rd term of J i

δ we have:

Ê[
〈
DV (iδ, S̄i), Xi+1

√
δ
〉
] = Ê[−

〈
DV (iδ, S̄i), Xi+1

√
δ
〉
] = 0.

For the second term, we have, from the definition of the function G,

Ê[J i
δ] = Ê[∂tV (iδ, S̄i) +G(DV (iδ, S̄i), D

2V (iδ, S̄i))]δ.

We then combine the above two equalities with ∂tV +G(DV,D2V ) = 0 as well
as the independence of (Xi+1, Yi+1) to {(X1, Y1), · · · , (Xi, Yi)}, it follows that

Ê[

n−1∑

i=0

J i
δ] = Ê[

n−2∑

i=0

J i
δ] = · · · = 0.

Thus (22) can be rewritten as

−Ê[−
n−1∑

i=0

Ii
δ] ≤ Ê[V (1, S̄n)] − V (0, 0) ≤ Ê[

n−1∑

i=0

Ii
δ].

But since both ∂tV and D2V are uniformly α-hölder continuous in x and α
2 -

hölder continuous in t on [0, 1] × R, we then have

|Ii
δ| ≤ Cδ1+α/2[1 + |Xi+1|2+α + |Y1|2+α].

It follows that

Ê[|Ii
δ|] ≤ Cδ1+α/2(1 + Ê[|X1|2+α + |Y1|2+α]).

Thus

−C(
1

n
)α/2(1 + Ê[|X1|2+α + |Y1|2+α]) ≤ Ê[V (1, S̄n)] − V (0, 0)

≤ C(
1

n
)α/2(1 + Ê[|X1|2+α + |Y1|2+α]).
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As n→ ∞ we have
lim

n→∞
Ê[V (1, S̄n)] = V (0, 0). (23)

On the other hand, for each t, t′ ∈ [0, 1 + h] and x ∈ Rd, we have

|V (t, x) − V (t′, x)| ≤ C(
√

|t− t′|.+ |t− t′|).
,

Thus |V (0, 0) − V (h, 0)| ≤ C(
√
h+ h) and, by (23),

|Ê[V (1, S̄n)] − Ê[ϕ(S̄n)]| = |Ê[V (1, S̄n)] − Ê[V (1 + h, S̄n)]| ≤ C(
√
h+ h).

It follows form (21) and (23) that

lim sup
n→∞

|Ê[ϕ(S̄n)] − Ẽ[ϕ(ξ + ζ)]| ≤ 2C(
√
h+ h).

Since h can be arbitrarily small we thus have

lim
n→∞

Ê[ϕ(S̄n)] = Ẽ[ϕ(ξ)].

We now give

Proof of Theorem 5.1. For the case when the uniform Elliptic condition 19
does not hold, we first follow an idea of Song [17] to introduce a perturbation
to prove the above convergence for ϕ ∈ Cb.Lip(R

d). According to Definition 3.7
and Proposition 3.8 we can construct a sublinear expectation space (Ω̄, H̄, Ē)
and a sequence of three random vectors {(X̄i, Ȳi, η̄i)}∞i=1 such that, for each n =

1, 2, · · · , {(X̄i, Ȳi)}n
i=1

d
= {(Xi, Yi)}n

i=1 and (X̄n+1, Ȳn+1, η̄n+1) is independent to
{(X̄i, Ȳi, η̄i)}n

i=1 and, moreover,

Ē[ψ(Xi, Yi, ηi)] =
1√
2πd

∫

Rd

Ê[ψ(Xi, Yi, x)]e
− |x|2

2 dx, ∀ψ ∈ Cl.Lip(R
3×d).

We then use the following perturbation Xε
i = Xi + εηi for a fixed ε > 0. It is

seen that the sequence {(X̄ε
i , Ȳi)}∞i=1 satisfies all conditions in the above CLT,

in particular

Gε(p,A) := Ē[
1

2

〈
AX̄ε

1 , X̄
ε
1

〉
+

〈
p, Ȳ1

〉
] = G(p,A) +

ε2

2
tr[A].

Thus it is strictly elliptic. We then can apply Lemma 5.4 to

S̄ε
n :=

n∑

i=1

(
Xε

i√
n

+
Yi

n
) = S̄n + εJn, Jn =

n∑

i=1

ηi√
n

and obtain
lim

n→∞
Ê[ϕ(S̄ε

n)] = Ẽ[ϕ(ξ + ζ + εη)].
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where (ξ, ζ) is G-distributes and

Ẽ[ψ(ξ + ζ, η)] =
1√
2πd

∫

Rd

Ẽ[ψ(ξ + ζ, x)]e
−|x|2

2 dx, ψ ∈ Cl.Lip(R
2d).

Thus (ξ + εη, ζ) is Gε-distributed. But we have

|Ê[ϕ(S̄n)] − Ê[ϕ(S̄ε
n)]| = |Ê[ϕ(S̄n)] − Ê[ϕ(S̄n + εJn)]|

≤ εCÊ[|Jn|] ≤ Cε

and similarly |Ẽ[ϕ(ξ)] − Ẽ[ϕ(ξ + εη)]| ≤ Cε. Sine ε can be arbitrarily small, it
follows that

lim
n→∞

Ê[ϕ(S̄n)] = Ẽ[ϕ(ξ + ζ)], ∀ϕ ∈ Cb.Lip(R
d).

On the other hand, it is easy to check that supn Ê[|S̄n|]+ Ẽ[|ξ+ζ|] <∞. We
then can apply the following lemma to prove that the above convergence holds
for the case where ϕ in C(Rd) with a polynomial growth condition. The proof
is complete.

Lemma 5.5 Let (Ω̂, Ĥ, Ê) and (Ω̃, H̃, Ẽ) be two sublinear expectation space and

let ζ ∈ Ĥ and ζn ∈ H̃, n = 1, 2, · · · , be given. We assume that, for a given p ≥ 1
we have supn Ê[|Yn|p] + Ẽ[|Y |p] ≤ C. If the convergence limn→∞ Ê[ϕ(Yn)] =

Ẽ[ϕ(Y )] holds for each ϕ ∈ Cb.Lip(R
d), then it also holds for all function ϕ ∈

C(Rd) with growth condition |ϕ(x)| ≤ C(1 + |x|p−1).

Proof. We first prove that the above convergence holds for ϕ ∈ Cb(R
d) with

a compact support. In this case, for each ε > 0, we can find a ϕ̄ ∈ Cb.Lip(R
d)

such that supx∈Rd |ϕ(x) − ϕ̄(x)| ≤ ε
2 . We have

|Ê[ϕ(Yn)] − Ẽ[ϕ(Y )]| ≤ |Ê[ϕ(Yn)] − Ê[ϕ̄(Yn)]| + |Ẽ[ϕ(Y )] − Ẽ[ϕ̄(Y )]|
+ |Ê[ϕ̄(Yn)] − Ẽ[ϕ̄(Yn)]| ≤ ε+ |Ê[ϕ̄(Yn)] − Ẽ[ϕ̄(Y )]|.

Thus lim supn→∞ |Ê[ϕ(Yn)]− Ẽ[ϕ(Y )]| ≤ ε. The convergence must hold since ε
can be arbitrarily small.

Now let ϕ be an arbitrary Cb(R
n)-function. For each N > 0 we can find

ϕ1, ϕ2 ∈ Cb(R
d) such that ϕ = ϕ1 + ϕ2 where ϕ1 has a compact support and

ϕ2(x) = 0 for |x| ≤ N , and |ϕ2(x)| ≤ |ϕ(x)| for all x. It is clear that

|ϕ2(x)| ≤
C̄(1 + |x|p)

N
, ∀x, where C̄ = sup

x∈Rd

|ϕ(x)|.

Thus

|Ê[ϕ(Yn)] − Ẽ[ϕ(Y )]| = |Ê[ϕ1(Yn) + ϕ2(Yn)] − Ẽ[ϕ1(Y ) + ϕ2(Y )]|
≤ |Ê[ϕ1(Yn)] − Ẽ[ϕ1(Y )]| + Ê[|ϕ2(Yn)|] + Ẽ[|ϕ2(Y )|]

≤ |Ê[ϕ1(Yn)] − Ẽ[ϕ1(Y )]| + C̄

N
(Ê[|Yn| + Ẽ[|Y |])

≤ |Ê[ϕ1(Yn)] − Ẽ[ϕ1(Y )]| + C̄C

N
.
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We thus have lim supn→∞ |Ê[ϕ(Yn)]−Ẽ[ϕ(Y )]| ≤ C̄C
N . SinceN can be arbitrarily

large thus Ê[ϕ(Yn)] must converge to Ẽ[ϕ(Y )].

6 Appendix: some basic results of viscosity so-

lutions

We will use the following well-known result in viscosity solution theory (see
Theorem 8.3 of Crandall Ishii and Lions [2]).

Theorem 6.1 Let ui ∈USC((0, T ) ×Qi) for i = 1, · · · , k where Qi is a locally
compact subset of RNi . Let ϕ be defined on an open neighborhood of (0, T ) ×
Q1×· · ·×Qk and such that (t, x1, · · · , xk) is once continuously differentiable in
t and twice continuously differentiable in (x1, · · · , xk) ∈ Q1× · · ·×Qk. Suppose
that t̂ ∈ (0, T ), x̂i ∈ Qi for i = 1, · · · , k and

w(t, x1, · · · , xk) := u1(t, x1) + · · · + uk(t, xk) − ϕ(t, x1, · · · , xk)

≤ w(t̂, x̂1, · · · , x̂k)

for t ∈ (0, T ) and xi ∈ Qi. Assume, moreover that there is an r > 0 such that
for every M > 0 there is a C such that for i = 1, · · · , k,

bi ≤ C whenever (bi, qi, Xi) ∈ P2,+ui(t, xi),
|xi − x̂i| + |t− t̂| ≤ r and |ui(t, xi)| + |qi| + ‖Xi‖ ≤M.

(24)

Then for each ε > 0, there are Xi ∈ S(Ni) such that

(i) (bi, Dxiϕ(t̂, x̂1, · · · , x̂k), Xi) ∈ P2,+
ui(t̂, x̂i), i = 1, · · · , k;

(ii)

−(
1

ε
+ ‖A‖) ≤



X1 · · · 0
...

. . .
...

0 · · · Xk


 ≤ A+ εA2

(iii) b1 + · · · + bk = ∂tϕ(t̂, x̂1, · · · , x̂k)
where A = D2ϕ(x̂) ∈ S(N1 + · · · +Nk).

Observe that the above conditions (24) will be guaranteed by having ui be
subsolutions of parabolic equations given in the following two theorems, which
is an improved version of the one in the Appendix of [16].

Theorem 6.2 (Domination Theorem) ui ∈USC([0, T ]×RN) be subsolutions of

∂tu−Gi(t, x, u,Du,D
2u) = 0, i = 1, · · · , k, (25)

on (0, T )×RN such that, for given constants βi > 0, i = 1, · · · , k,
(∑k

i=1 ui(t, x)
)+

→
0, uniformly as |x| → ∞. We assume that
(i) The functions

Gi : [0, T ]× R
N × R

N × S(N) 7→ R, i = 1, · · · , k,
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are continuous in the following sense: for each t ∈ [0, T ), v1, v2 ∈ R, x, y, p,
q ∈ RN and Y ∈ S(N),

[Gi(t, x, v, p,X) −Gi(t, y, v, p,X)]−

≤ ω̄(1 + (T − t)−1 + |x| + |y| + |v|)ω(|x− y| + |p| · |x− y|)
where ω, ω̄ : R+ 7→ R+ are given continuous functions with ω(0) = 0.
(ii) Given constants βi > 0, i = 1, · · · , k, the following domination condition
holds for Gi:

k∑

i=1

βiGi(t, x, vi, pi, Xi) ≤ 0, (26)

for each (t, x) ∈ (0, T ) × RN and (vi, pi, Xi) ∈ R × RN × S(N) such that∑k
i=1 βivi ≥ 0,

∑k
i=1 βipi = 0,

∑k
i=1 βiXi ≤ 0.

Then a similar domination also holds for the solutions: If the sum of initial
values

∑k
i=1 βiui(0, ·) is a non-positive and continuous function on R

N , then∑k
i=1 βiui(t, ·) ≤ 0, for all t > 0.

Proof. We first observe that for δ̄ > 0 and for each 1 ≤ i ≤ k, the functions

defined by ũi := ui − δ̄/(T − t) is a subsolution of:

∂tũi − G̃i(t, x, ũi + δ̄/(T − t), Dũi, D
2ũi) ≤ − δ̄

(T − t)2

where G̃i(t, x, v, p,X) := Gi(t, x, v + δ̄/(T − t), p,X). It is easy to check that

the functions G̃i satisfy the same conditions as Gi. Since
∑k

i=1 βiui ≤ 0 follows

from
∑k

i=2 βiũi ≤ 0 in the limit δ̄ ↓ 0, it suffices to prove the theorem under the
additional assumptions

∂tui −Gi(t, x, ui, Dui, D
2ui) ≤ −c, c := δ̄/T 2,

and limt→T ui(t, x) = −∞, uniformly in [0, T )× RN .
(27)

To prove the theorem, we assume to the contrary that

sup
(s,x)∈[0,T )×RN

k∑

i=1

βiui(t, x) = m0 > 0

We will apply Theorem 6.1 for x = (x1, · · · , xk) ∈ Rk×N and

w(t, x) :=
k∑

i=1

βiui(t, xi), ϕ(x) = ϕα(x) :=
α

2

k−1∑

i=1

|xi+1 − xi|2.

For each large α > 0 the maximum of w − ϕα achieved at some (tα, xα) inside
a compact subset of [0, T )× Rk×N . Indeed, since

Mα =
k∑

i=1

βiui(t
α, xα

i ) − ϕα(xα) ≥ m0,
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thus tα must be inside an interval [0, T0], T0 < T and xα must be inside a
compact set {x ∈ ×Rk×N : supt∈[0,T0] w(t, x) ≥ m0

2 }. We can check that (see
[2] Lemma 3.1)





(i) limα→∞ ϕα(xα) = 0.
(ii) limα→∞Mα = limα→∞ β1u1(t

α, xα
1 ) + · · · + βkuk(tα, xα

k ))
= sup(t,x)∈[0,T )×RN [β1u1(t, x) + · · · + βkuk(t, x)]

= [β1u1(t̂, x̂) + · · · + βkuk(t̂, x̂)] = m0.

(28)

where (t̂, x̂) is a limit point of (tα, xα
1 ). Since ui ∈ USC, for sufficiently large α,

we have
β1u1(t

α, xα
1 ) + · · · + βkuk(tα, xα

k ) ≥ m0

2
.

If t̂ = 0, we have lim supα→∞
∑k

i=1 βiui(t
α, xα

i ) =
∑k

i=1 βiui(0, x̂) ≤ 0. We
know that t̂ > 0 and thus tα must be strictly positive for large α. It follows
from Theorem 6.1 that, for each ε > 0 there exists bαi ∈ R, Xi ∈ S(N) such that

(bαi , Dxiϕ(xα), Xi) ∈ J̄2;+
Qi

(ui)(t
α, xα

i ),
k∑

i=1

βib
α
i = 0, for i = 1, · · · , k, (29)

and such that

− (
1

ε
+ ‖A‖)I ≤




β1X1 . . . 0 0
...

. . .
...

...
0 . . . βk−1Xk−1 0
0 . . . 0 βkXk


 ≤ A+ εA2, (30)

where A = D2ϕα(xα) ∈ S(kN) is explicitly given by

A = αJkN , where JkN =




IN −IN 0 . . . 0 −IN
...

. . .
...

...
0 0 . . .− IN IN −IN

−IN 0 . . . 0 −IN IN


 .

The second inequality of (30) implies
∑k

i=1 βiXi ≤ 0. Setting

pα
1 = Dx1

ϕα(xα) = β−1
1 α(2xα

1 − xα
3 − xα

2 ),

...

pα
k = Dxk

ϕα(xα) = β−1
k α(2xα

k − xα
k−1 − xα

1 ).

Thus
∑k

i=1 βip
α
i = 0. This with (29) and (27) it follows that

bαi −Gi(t
α, xα

i , ui(t
α, xα

i ), pα
i , Xi) ≤ −c, i = 1, · · · , k.
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By (28)-(i) we also have limα→∞ |pα
i | · |xα

i − xα
1 | → 0. This, together with the

the domination condition (26) of Gi, implies

−kc = −
k∑

i=1

βib
α
i − kc ≥ −

k∑

i=1

βiGi(t
α, xα

i , ui(t
α, xα

i ), pα
i , Xi)

≥ −
k∑

i=1

βiGi(t
α, xα

1 , ui(t
α, xα

i ), pα
i , Xi)

−
k∑

i=1

βi[Gi(t
α, xα

i , ui(t
α, xα

i ), pα
i , Xi) −Gi(t

α, xα
1 , ui(t

α, xα
i ), pα

i , Xi)]
−

≥ −
k∑

i=1

βiω̄(1 + (T − T0)
−1 + |xα

1 | + |xα
i | + |ui(t

α, xα
i )|)ω(|xα

i − xα
1 | + |pα

i | · |xα
i − xα

1 |)

The right side tends to zero as α → ∞, which induces a contradiction. The
proof is complete.

Theorem 6.3 (Domination Theorem) Let polynomial growth functions ui ∈USC([0, T ]×
R

N ) be subsolutions of

∂tu−Gi(u,Du,D
2u) = 0, i = 1, · · · , k, (31)

on (0, T ) × RN . We assume that Gi : R × RN × S(N) 7→ R, i = 1, · · · , k, are
given continuous functions satisfying the following conditions: There exists a
positive constant C, such that
(i) for all λ ≥ 0

λGi(v, p, Y ) ≤ CGi(λv, λp, λY );

(ii) Lipschitz condition:

|Gi(v1, p,X)−Gi(v2, q, Y )| ≤ C(|v1 − v2| + |p− q| + ‖X − Y ‖),
∀v1, v2 ∈ R, ∀p, q ∈ R

N and X,Y ∈ S(N),

(iii) domination condition for Gi: for fixed constants βi > 0, i = 1, · · · , k,
k∑

i=1

βiGi(vi, pi, Xi) ≤ 0, for all vi ∈ R, pi ∈ R
N , Xi ∈ S(N),

such that

k∑

i=1

βivi ≥ 0,

k∑

i=1

βipi = 0,

k∑

i=1

βiXi ≤ 0.

Then the following domination holds: If
∑k

i=1 βiui(0, ·) is a non-positive
continuous function, then we have

k∑

i=1

βiui(t, x) ≤ 0, ∀(t, x) ∈ (0, T ) × R
N .
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Proof. We set ξ(x) := (1 + |x|2)l/2 and

ũi(t, x) := ui(t, x)e
λtξ−1(x), i = 1, · · · , k,

where l is chosen large enough so that
∑k

i=1 |ũi(t, x)| → 0 uniformly. From
condition (i) it is easy to check that for each i = 1, · · · , ũi is a subsolution of

∂tũi − G̃i(x, ũi, Dũi, D
2ũi) = 0, (32)

where

G̃i(x, v, p,X) := −λv
+ eλtCGi(v, p+ vη(x), X + p⊗ η(x) + η(x) ⊗ p+ vκ(x)).

Here

η(x) := ξ−1(x)Dξ(x) = k(1 + |x|2)−1x,

κ(x) := ξ−1(x)D2ξ(x) = k(1 + |x|2)−1I − k(k − 2)(1 + |x|2)−2x⊗ x.

Since η and κ are uniformly bounded, one can choose a fixed but large enough
λ > 0 such that G̃i(x, v, p,X) satisfies all conditions of Gi, i = 1, · · · , k in
Theorem 6.2. The proof is complete by directly applying this theorem.

We have the following Corollaries which are basic in this paper:

Corollary 6.4 (Comparison Theorem) Let F1, F2 : RN × S(N) 7→ R be given
functions satisfying similar conditions (i) and (ii) of Theorem 6.3. We also
assume that, for each p, q ∈ RN and X, Y ∈ S(N) such that X ≥ Y , we have

F1(p,X) ≥ F2(p, Y ).

Let vi ∈LSC((0, T ) × RN), i = 1, 2, be respectively a viscosity supersolution of
∂tv − Fi(Dv,D

2v) = 0 such that v1(0, ·) − v2(0, ·) is a non-negative continuous
function. Then we have v1(t, x) − v2(t, x) ≥ 0 for all (t, x) ∈ [0,∞) × RN .

Proof. We set β1 = β2 = 1, G1(p,X) := −F1(−p,−X) and G2 = F2(p,X).
It is observed that u1 := −v1 ∈USC((0, T ) × R

N) is a viscosity subsolution of
∂tu − G1(Du,D

2u) = 0. For each p1, p2 ∈ RN and X1, X2 ∈ S(N) such that
p1 + p2 = 0 and X1 +X2 ≤ 0, we also have

G1(p1, X1) +G2(p2, X2) = F2(p2, X2) − F1(p2,−X1) ≤ 0

We thus can apply Theorem 6.3 to get −u1 +u2 ≤ 0. The proof is complete.

Corollary 6.5 (Domination Theorem) Let Fi : RN × S(N) 7→ R, i = 0, 1,
given functions satisfying similar conditions (i) and (ii) of Theorem 6.3. Let
vi ∈LSC((0, T ) × RN ) be viscosity supersolutions of ∂tv − Fi(Dv,D

2v) = 0

22



respectively for i = 0, 1 and let v2 ∈USC((0, T )×RN ) be a viscosity subsolution
of ∂tv − F1(Dv,D

2v) = 0. We assume that:

F1(p,X) − F1(q, Y ) ≤ F0(p− q, Z),

∀p, q ∈ R
N , X, Y, Z ∈ S(N) such that X − Y ≤ Z.

Then the following domination holds: If v0(0, ·)+v1(0, ·)−v2(0, ·) is a continuous
and non-negative function then v0(t, ·) + v1(t, ·) − v2(t, ·) ≥ 0 for all t > 0.

Proof. We denote

Gi(p,X) := −Fi(−p,−X), i = 0, 1, and G2(p,X) := F1(p,X).

Observe that ui = −vi ∈USC((0, T ) × RN ), i = 0, 1, are viscosity subsolutions
of ∂tu−Gi(Du,D

2u) = 0, i = 0, 1. We thus have, for each X0 +X1 +X2 ≤ 0,
p0 + p1 + p2 = 0,

G0(p0, X0) +G1(p1, X1) +G2(p2, X2)

= −F0(−p0,−X0) − F1(−p1,−X1) + F1(p2, X2) ≤ 0.

Theorem 6.3 can be applied, for the case βi = 1, to get
∑
ui ≤ 0, or v0+v1−v2 ≥

0.
Another co-product of Theorem 6.3 is:

Corollary 6.6 (Concavity) Let F : RN × S(N) 7→ R be a given function sat-
isfying similar conditions (i) and (ii) of Theorem 6.3. We assume that F is
monotone in X, i.e. F (p,X) ≥ F (p, Y ) if X ≥ Y , and that F is concave: for
each fixed α ∈ (0, 1),

αF (p,X)+(1−α)F (q, Y ) ≤ F (αp+(1−α)q, αX+(1−α)Y ), ∀p, q ∈ R
N , X, Y ∈ S(N).

Let vi ∈USC((0, T ) × RN ), i = 0, 1, be respectively viscosity subsolutions of
∂tv−F (Dv,D2v) = 0 and let v ∈LSC((0, T )×R

N ) be viscosity supersolution of
∂tv−F (Dv,D2v) = 0 such that αv1(0, ·)+(1−α)v2(0, ·)−v(0, ·) is a non-positive
continuous function. Then for all t ≥ 0 αv1(t, ·) + (1 − α)v2(t, ·) − v(t, ·) ≥ 0.

Proof. We set β1 = α, β2 = (1 − α), β3 = 1 and denote

G1(p,X) = G2(p,X) := F (p,X), G3(p,X) = −F (−p,−X).

Observe that ui = vi ∈USC((0, T ) × R
N ), i = 1, 2, are viscosity subsolutions

of ∂tu −Gi(Du,D
2u) = 0, u3 = −v ∈ USC is a viscosity subsolution of ∂tu −

G3(Du,D
2u) = 0. Since F is concave, thus for each pi ∈ RN and Xi ∈ S(N)

such that β1X1 + β2X2 + β3X3 ≤ 0, β1p1 + β2p2 + β3p3 = 0, we have

β1G1(p1, X1) + β2G2(p2, X2) + β3G3(p3, X3) ≤ F (β1p1 + β2p2, β1X1 + β2X2) − F (−p3,−X3)

≤ F (−p3, β1X1 + β2X2) − F (−p3,−X3)

≤ 0.

Theorem 6.3 can be applied to prove that αv1(t, ·)+(1−α)v2(t, ·) ≤ v(t, ·). The
proof is complete.
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