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Abstract. This paper shows that estimators defined in terms of Minimum Di-
vergence are very general and indeed there is a one-to-one relationship between the
Minimum Divergence (MD) and Generalized Empirical Likelihood (GEL) class of
estimators. Newey and Smith (2004) show that in the GEL class, the Empirical
Likelihood estimator can be singled out for having the smallest bias and being
third order efficient. We show that all the estimators in the MD/GEL class that
have the same asymptotic bias as the Empirical Likelihood estimator are third
order equivalent, having the same Mean Square Error of order O(n−2). A new
estimator is suggested that is third order efficient and has bounded influence func-
tion. Boundedness of the influence function implies that the new estimator is well
behaved under misspecification of the moment conditions.

1. Introduction

It is well known that GMM estimators have nice asymptotic properties (see, Gal-

lant and White (1988) and Newey and McFadden (1994) among others). Under

regularity conditions, GMM estimators are consistent, asymptotically normal and

asymptotically efficient. Starting with GMM estimators, efficient test statistics can

be constructed to evaluate hypotheses about parameters of interest. An important

feature of GMM is that, by exploiting the overidentification of moment conditions,

it allows for testing of a theoretical model or a reduced form specification.

Despite GMM’s desirable asymptotic properties, there has been increasing con-

cern over its performance in applications. In Monte Carlo simulations of model

designs and sample sizes similar to those considered in real applications, evidence

shows that GMM estimators are severely biased in finite samples. Given such bias,

it is natural to expect that GMM’s test statistics also have unsatisfying finite sample

performance. In the standard asymptotic thought experiment, asymptotically effi-

cient estimators lead to efficient tests. If, however, the small sample approximation

of this thought experiment is poor, inferences based on GMM estimators lead to
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tests with bad size control. This intuition is in line with the findings of Monte Carlo

simulations that show that GMM based tests have bad size control.

The aim of this paper is to extend the literature that focuses on alternatives to

the traditional GMM. Motivated by the inability of the GMM to deliver estima-

tors whose finite sample distribution adheres to the large n approximation, a new

literature has emerged looking for alternative estimation techniques that possess

better finite sample properties. Over the last decade, a class of alternatives has

been suggested and advocated by many researchers. This class includes Empirical

Likelihood (EL) (Qin and Lawless, 1994), Exponential Tilting (ET) (Kitamura and

Stutzer, 1997) and Continuous Updating (CUE) (Hansen, Heaton and Yaron, 1996).

There are several Monte Carlo experiments that clearly indicate that estimators ob-

tained by these methods may have better finite sample properties than GMM. For

IV estimation of a Gaussian linear equation, Judge and Mittelhammer (2001) show

that EL and ET both have a smaller bias than GMM. Imbens (1997) investigates

a nonlinear covariance structure model and finds that the EL has smaller bias than

GMM. Imbens (2002) studies the properties of ET when applied to dynamic panel

data with fixed effects, and finds that ET is superior in terms of bias and the cov-

erage rate of confidence interval.

All these estimators exploit the same set of moment conditions that GMM uses;

the key difference is how these alternatives deal with the overidentification of the

model. GMM deals with the inability of exactly solving the empirical moment

conditions by minimizing a weighted quadratic distance in the moment conditions.

On the other hand, EL, ET, and CUE deal with the overidentification by setting

the empirical moment conditions to zero through weighting the observations. There

exist many weighting schemes through which the empirical moment condition can be

set to zero. The idea is to pick the scheme that is closer to the empirical distribution

in some meaningful sense. This meaning comes from the choice of an appropriate

metric that is referred to as divergence. Differences between EL, ET, and CUE

estimators arise from the different divergences these methods employ in selecting

a feasible weighting scheme. In a seminal paper, Newey and Smith (2004), NS

henceforth, consider a generalization of EL, ET and CUE based on a saddle point

problem. They refer to the estimators arising from this generalization as Generalized

Empirical Likelihood (GEL) estimators.
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This paper considers estimation using Minimum Divergence (MD) techniques.

MD estimators are obtained by minimizing a divergence between the empirical dis-

tribution and the distribution implied by moment restrictions. Methods that have

received attention as possible alternatives to GMM, such as Empirical Likelihood,

Exponential Tilting and Continuous Updating, are all special cases of Minimum

Divergence estimators. This paper makes the following main contributions. First,

it proves that there is a relationship between the Generalized Empirical Likelihood

(GEL) class of estimators –as defined by Newey and Smith (2004)– and the MD

class. Every MD estimator has a GEL representation. Also, from given GEL esti-

mator a MD problem can be given such that the two problem are equivalent. This

result is very important for a series of reasons. It allows considering estimators that

extend beyond the class defined by the Cressie-Read power discrepancy without

abandoning the nice probabilistic features underpinning the MD class of estimators.

Comparisons between GMM and MD estimators are particularly difficult because

they all share the same asymptotic distribution with the same first order efficient

variance matrix. NS compare higher order asymptotic properties of GMM and GEL.

While they find that all members of GEL have lower bias than GMM, they also show

that EL has the lowest bias in the GEL class. Significantly, NS show that EL is

third order efficient in the sense that, after it is bias corrected, it is efficient of

a higher order relative to other bias corrected estimators. A very interesting and

important finding of this paper is that all MD estimators sharing the asymptotic

bias of EL estimators have the same higher order mean square error. This finding

has two substantive implications: first, that all the members of this MD subclass

are third order efficient after the bias is removed; second, that third order efficiency

is an inadequate criterion for prescribing which specific estimator should be used in

applied work. If one insists on considering estimators that have the same bias as

EL estimators, then another criterion must supplement third order efficiency.

This paper proposes such an additional criterion. For selecting from the class

of third order efficient estimators, a researcher should consider the boundedness of

the influence function of the MD estimator. There are two reasons why properties

of the influence function should be considered when selecting among MD estima-

tors. First, the asymptotic expansions are polynomials in the influence functions

of the estimators. If the influence function can become unbounded, then the rank-

ing based on higher order comparisons can be misleading. Second, test statistics

for overidentifying restrictions are likely to depend crucially on the boundedness of
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the influence function. For example, Imbens, Spady and Johnson (1998) analyze the

properties of overidentifying restrictions tests and find that the Exponential Tilting,

which is not third order efficient but whose influence function is bounded, delivers

test statistics that are especially good in terms of size control even when compared

to Empirical Likelihood, which is third order efficient but whose influence function

is not bounded. Motivated by these reasons, I identify a subclass of third order

efficient MD estimators whose influence function is bounded.

The plan of the paper is as follows. Section 2 defines moment conditions models.

Section 3 reviews the existing alternative to GMM estimation and testing frame-

work. Section 4 briefly presents the existing alternatives to GMM, while Section

4 defines the Minimum Divergence class of estimators and establishes the duality

results. Section 5 reviews the first order asymptotic properties. Section 6 introduces

the higher order expansions. In Section 7 the bias of MD estimator is derived and a

nice bias correction for Instrumental Variables models is discussed. Section 8 intro-

duces third order efficient estimators whose influence function is bounded. Section

9 presents a numerical simulation. Section 10 concludes.

2. The model

In this section we formally introduce models based on moment conditions and we

provide some examples from the economic literature.

Let {wi}ni=1 be i.i.d. observations on a data vector w with unknown probability

distribution Fo. Also, let θ be a k × 1 parameter vector and q(w, θ) be an m × 1

vector of functions of the data observation w and the parameter θ, where m ≥ k.

The model consists of the following moment condition

(2.1) E[q(w, θo)] =

∫
q(w, θo)dFo = 0

Often {wi}ni=1 is partitioned as {xi, yi}ni=1 where xi ∈ Rd and yi ∈ Rp, d+p = s. The

partition is useful when we are interested in some aspects of the conditional distri-

bution of y given x or, more generally, when y is a set of dependent variables to be

determined at least partly on the basis of other variables x. For instance, the model

specified in (2.1) is compatible with conditional restrictions of the form E[ρ(y, θ)|x]
where ρ(y, θ) : Rp → Rj is a known function. The conditional restrictions imply the

unconditional moment restrictions E[A(x)ρ(y, θ))] = 0, where A(x) is a matrix of

functions of the conditioning variables with j columns.
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The econometric models given by equation (2.1) is extremely general and it is

very common in many fields of economics. Simultaneous system of equations, dy-

namic panel data and many other models frequently encounter in economic have a

econometric formulation equivalent to (2.1).

Empirical content is given to (2.1) by considering its sample counterpart

qn(θ) =
1

n

n∑
i=1

q(wi, θ)

When m = k, the model is said to be exactly identified and a consistent estimator

of θo is the root of the m equations

(2.2) qn(θ) = 0

When m > k, i.e. the number of equations is larger than the dimension of the

parameter vector θo, the econometric model specified by (2.1) is overidentified and

the existence of a solutions satisfying the the empirical restrictions is not guaranteed.

A important estimator of (2.1) when m > k is the Generalized Method of Moment

(GMM) of Hansen (1982) which basic idea is to choose the parameter that sets

the sample counterpart of the moment conditions close to zero, where closeness is

measured as a quadratic form in a positive definite matrix. The GMM estimator

solves the following optimization step

(2.3) min
θ∈Θ

Qn(θ,Wn)

where

Qn(θ,Wn) = nqn(θ)
′Wnqn(θ)

The matrix Wn is referred to as distance or weighting matrix and, broadly speaking,

it weighs the contribution of each average moment condition in pinning down the

parameter estimate. Let θ̃ denote a preliminary consistent estimator of θo. The

efficient GMM estimator is defined as

θ̂gmm = arg min
θ∈Θ

Qn(θ, V (θ̃))

where

V (θ) =
1

n

n∑
i=1

qi(θ)qi(θ)
′
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3. Existing Alternatives to GMM

Since the seminal paper of Qin and Lawless (1994), the Empirical Likelihood

(EL) estimator has received much attention as an alternative estimator for moment-

condition-specified models. The EL estimator can be defined as the solution of a

problem in which the empirical moments are set to zero by weighting the observa-

tions, that is

(3.1) θ̂ =

{
arg max

π,θ

1

n

n∑
i=1

log πi | s.t.
n∑
i=1

πiqi(θ) = 0,
n∑
i=1

πi = 1, πi > 0

}
This maximization can be interpreted as a constrained Maximum Likelihood (ML)

procedure applied to joint estimation of θ and the parameters π1, . . . , πn of a multi-

nomial distribution for n different types of data outcomes. As a ML estimator, EL

inherits the first order asymptotic properties of ML, particularly asymptotic effi-

ciency. Qin and Lawless (1994) showed that these properties are preserved when

the underlying distribution of w is continuous.

The logarithm in the objective function does not play a fundamental role in ob-

taining efficient estimators. Kitamura and Stutzer (1997) suggested the Exponential

Tilting (ET) estimator; it is defined similarly to the EL, save that the objective func-

tion is replaced by πi log πi giving

(3.2) θ̂ =

{
arg min

π,θ

n∑
i=1

πi log πi | s.t.
n∑
i=1

πiqi(θ) = 0,
n∑
i=1

πi = 1, πi > 0

}
An important feature of ET is usually singled out:

∑n
i=1 πi log πi is proportional to

the Kullback-Leibler Information Criterion (KLIC) and (3.2) can be seen as min-

imizing the KLIC between the empirical distribution and the distribution implied

by the constraints on {q(wi, θ)}.
A third estimator that has been considered as an alternative to GMM is the

Continuous Updating Estimator (CUE). The CUE is obtained as

(3.3) θ̂ =

{
arg min

π,θ
n

n∑
i=1

π2
i | s.t.

n∑
i=1

πiqi(θ) = 0,
n∑
i=1

πi = 1

}
Notice that here the positivity constraint on πi is dropped because the objective

function is defined on the whole real line. Strictly speaking, the CUE was first

proposed by Hansen, Heaton, and Yaron (1996) who considered obtaining the GMM

estimator without using a first step estimator of the variance matrix. Give a matrix
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A, let A−g denote the Moore-Penrose inverse of A. The CUE estimator minimizes

Q̃n(θ) = nqn(θ)
′

[
1

n

n∑
i=1

qi(θ)qi(θ)
′

]−g
qn(θ)

NS show that arg minθ∈Θ Q̃n(θ) is numerically equivalent to the estimator obtained

by solving (3.3). The common feature of these estimation approaches is that they try

to set the empirical moment conditions equal to zero by weighting the observations.

EL, ET and CUE differ on the way the weighting scheme is found. In particular,

while EL and ET are defined for πi > 0, CUE is defined for negative values of the

weights, allowing solutions that lie outside the convex hull of the data.

NS consider a generalization of EL, ET and CUE relying on a dual problem. They

consider the following problem

max
θ∈Θ

min
λ∈Λn(θ)

1

n

n∑
i=1

ψ(λ′qi(θ))

where ψ(·) is a convex function defined on an interval V that contains zero and

Λn(θ) = {λ|λ′qi(θ) ∈ V, i = 1, . . . n}.1 NS show that the estimator of this problem,

which they call Generalized Empirical Likelihood (GEL), is equivalent to EL for

ψ(x) = − log(1− x), to ET for ψ(x) = exp(x), and to CUE for ψ(x) = x2/2.

4. Minimum Divergence Estimators

The generalization of EL, ET and CUE estimators this paper considers is the class

of Minimum Divergence (MD) estimators. The idea is to generalize the objective

functions of EL, ET and CUE by considering the following problem

(4.1) θ̂ =

{
arg min

π,θ

1

n

n∑
i=1

γ(nπi) | s.t.
n∑
i=1

πiq(wi, θ) = 0,
n∑
i=1

πi = 1, πi ∈ (aγ, bγ)

}
where γ(·) is a divergence, weighting the distance between the π’s and n−1. Let γr(·)
denotes the rth derivative of γ(·) and γr denotes the rth derivatives evaluates at 1,

that is γr ≡ γr(1). Throughout the paper γ(·) will denote a function that satisfies

the following requirements:

1In their specification they consider a problem defined as

min
θ∈Θ

max
λ∈Λn(θ)

1
n

n∑
i=1

ρ(λ′qi(θ))

for a concave function ρ(·) defined on V. Clearly the two problems coincide for ψ(x) = −ρ(x). The
formulation in terms of a convex function is kept here to stress the role of the convexity.
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Assumption 1. (i) γ(·) is a strictly convex function γ : (aγ, bγ) → [−∞,+∞], such

that aγ < 1 < bγ; (ii) γ(·) is twice continuously differentiable on (aγ, bγ); (iii) the

minimum of γ(x) is 0, attained at x = 1; (iv) γ2 = 1.

In many cases of interests the endpoints of the domain of γ(·) are given by aγ = 0

and bγ = +∞, but in general the only requirement is that aγ < 1 < bγ. The assump-

tion of strictly convexity of γ(·) over its domain could be relaxed at expenses of fur-

ther complexity. Notice, however, that strict convexity is sufficient to guarantee that

the problem as a unique solution π̂i, provided that there exists a unique minimizer

θ̂. Suppose π̂(θ̂) = (π̂1(θ̂), π̂2(θ̂), . . . , π̂n(θ̂)) and π̃(θ̂) = (π̃1(θ̂), π̃2(θ̂), . . . , π̃n(θ̂)) are

both solution to 4.1. Then, for any 0 ≤ ζ ≤ 1, πζ(θ̂) = ζπ̂(θ̂) + (1 − ζ)π̃(θ̂) is a

feasible solution. But if γ(·) is strictly convex,
∑n

i γ(nπ
ζ
i (θ̂)) < ζ

∑n
i γ(nπ̂i(θ̂)) +

(1− ζ)
∑n

i γ(nπ̃i(θ̂)), that is a contradiction, since by assumption π̂ and π̃ are both

solutions. The conditions on the the second derivative of γ(·) are normalizations

and do not restrict the class of functions that may be considered as divergence.

Such normalizations play a crucial roles in the derivations of the properties of the

estimators.

By setting γ(x) = − log x+x−1, γ(x) = x log x−x+1 and γ(x) = x2/2−x, one

obtains MD problems that are equivalent to the EL, the ET and CUE respectively.

Considering this MD problem is interesting for two reasons. First, it clarifies the

role played by assuming different objective functions γ(x) in (4.1) in pinning down

optimal weights π = (π1, . . . , πn) and the optimal θ . Second, it allows the problem

to be linked to the underlying probabilistic model implied by the set of moment

conditions considered.

The function
∑n

i=1 γ(nπi)/n is minimized over all probability allocations when

all πi equal n−1. MD methods select, from all the π that are feasible, the weights

π̂ = (π̂1, . . . , π̂n) that are closer to a weighting scheme that assigns n−1 to each

observation in the sample. The location of the estimated parameter is implicitly

identified by the shape of the divergence γ(x). Intuitively, since under the moment

conditions πi ≈ n−1 as n → ∞ and γ(1) = 0, the shape of the divergence does

not determine the (first order) asymptotic behavior of the estimator, but it does

determine the finite sample location of the estimator of θo.

Probabilistic content to the MD methods is given by considering the collection of

probability measures (p.m.) on the random variables wi that satisfies the constraint

on the moments for a given θ ∈ Θ. In the population, the problem can be reduced

to that of selecting a p.m. that is as close as possible to Fo in some meaningful
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sense. Formally, the stochastic model for the random vector w = (w1, w2, ..., wn) is

defined as

G =
⋃
θ∈Θ

G(θ)

(4.2) G(θ) =

{
G :

∫
q(w, θ)dG = 0

}
For a given γ define the following functional

(4.3) Iγ(R,G) =

{ ∫
γ
(

dFo

dG

)
dFo

+∞
if G� Fo

otherwise

The functional Iγ(R,G), that is broadly speaking the population counterpart of

(4.1), can be interpreted as specifying a divergence function between two probabil-

ity measures, R and G, and can be thought as generalizing the Kullback-Leibler

Information Criterion (KLIC), that is obtained by setting γ(x) = x log x. The pop-

ulation counterpart of the estimation problem defined by moment conditions can

be cast in terms of finding some G ∈ G that minimizes the functional Iγ(G,Fo),

formally infG∈G Iγ(G,Fo). If the model is correctly specified (i.e. Fo ∈ G) then

clearly Fo = infG∈G Iγ(G,Fo). Similarly, if EFo [q(w, θ)] 6= 0 for θ 6= θo, Fo implicitly

identifies θo. Note that under fairly weak conditions, when the model conditions are

misspecified (i.e. Fo /∈ G), the solutions to F∗ = infG∈G Iγ(G,Fo) can be interpreted

as the pseudo-true probability measure, in the sense that it is the probability mea-

sure that satisfies the moment conditions and is the closest to the true distribution.

The discussion above makes clear the importance of studying the minimum diver-

gence estimation in (4.1): it is the sample counterpart of a population problem that

solves for the probability that is closest to the true distribution of the data. In this

counterpart, the constraint
∫
q(w, θ)dG = 0 is substituted for by

∑n
i πiq(w, θ) = 0,

and the true distribution Fo is substituted for by the empirical distribution function

that assumes no ties. This important feature of Minimum Divergence estimators

allows us, in principle, to consider estimation and inference in misspecified mod-

els. However, the MD formulation is useful as long as a solution can be found by

standard numerical methods. The next section takes up the issue of deriving first

order conditions for the general MD problem and studies the relationship between

the GEL class of NS and the MD class.

4.1. First Order Conditions and Duality. This section discusses the conditions

under which the solution of a MD problem can be obtained by standard Lagrangian
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methods. Lagrangian methods are known to solve the ET, EL and CUE problems,

but a general treatment has not yet been given in the literature. The Lagrangian of

(4.1) can be written as

L(θ, π, λ, η) =
1

n

n∑
i=1

γ(nπi)− λ′
n∑
i=1

πiqi(θ)− η(
n∑
i=1

πi − 1)

where λ ∈ Rm and η ∈ R are the Lagrange multipliers associated with the con-

straints. To further investigate the properties of the Lagrangian solution to the MD

problem, some additional notation is required. Setting to zero the partial derivative

of L(θ, π, λ, η) with respect to πi gives, for i = 1, . . . , n, the following

(4.4) γ1(nπi)− λ′qi(θ)− η = 0

Similarly, setting to zero the derivative of L(θ, π, λ, η) with respect to θ and assuming

that q(·, θ) is differentiable on Θ, yields

(4.5)
n∑
i=1

πi∇θqi(θ)
′λ = 0

The Lagrange multiplier η in (4.4) can be eliminated as follow. Multiplying (4.4)

by πi and summing over n gives

n∑
i=1

πiγ1(nπi)− λ′
n∑
i=1

πiqi(θ)− η = 0

Using the constraint
∑

i πiqi(θ) = 0, a solution must satisfy η =
∑n

i=1 πiγ1(nπi).

Substituting this expression for η into (4.4) yields

γ1(nπi)−
n∑
i=1

πiγ1(nπi)− λ′qi(θ) = 0

For any c ∈ R, a solution to the previous expression is given by

γ1(nπi) = c+ λ′qi(θ)

since c+ λ′qi(θ)−
∑n

i=1 πi (c+ λ′qi(θ))− λ′qi(θ) = 0 for any c. It is very convenient

to set c = 0. Such a normalization allows us to consider the various estimators

delivered by different choices of the divergence from a unified point of view. By

the assumption of strict convexity and by two times continuously differentiability

of γ(x) on (aγ, bγ), it follows that γ1(·) is continuously differentiable and by strict

convexity, γ2(x) > 0 for any x ∈ (aγ, bγ). It follows that γ1(·) is monotone on (aγ, bγ).

Let A ={y : y = γ1(x), x ∈ (aγ, bγ)}. The optimal π can be found by inverting the
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function γ1(·) whenever there exists a λ′ ∈ Rm such that λ′qi(θ) ∈ A, i = 1, . . . , n,

since in this case by the inverse function theorem

(4.6) πi =
1

n
γ̃1(λ

′qi(θ))

where here γ̃1(·) denotes the inverse function of γ1(·). By substituting (4.6) into the

constraint
∑n

i=1 πiqi(θ) = 0 and into (4.5), the following first order conditions are

obtained

1

n

n∑
i=1

γ̃1(λ
′qi(θ))qi(θ) = 0(4.7)

1

n

n∑
i=1

γ̃1(λ
′qi(θ))∇θqi(θ)

′λ = 0(4.8)

Remark 1. The shape of the set A ={y : y = γ1(x), x ∈ (aγ, bγ)} determines the

conditions under which the optimal solution (MD) is attained by Lagrange method.

If, for a given sample, there not exist a θ ∈ Θ and a λ ∈ Rm such that λ′qi(θ) ∈ A
for i = 1, ..., n, the solution is not attained even if there exists a feasible solution

θ̂ and π̂(θ̂). When A ={y : −∞ < y < +∞} the solution will be always attained

(provided it exists). The form of A has also statistical implication, as discussed in

Section 8.

Remark 2. The normalization c = 0 implies that when λ′qi(θ) = 0, πi = 1
n
γ̃1(0) =

1/n.

Remark 3. A side effect of the elimination of the Lagrange multiplier associated

with the constraint
∑n

i=1 πi = 1 is that at the solution the optimal vector π̂ does

not satisfy the constraint, so that in general,
∑n

i π̂i 6= 1. The optimal weight π̂

satisfies the constraint if
∑n

i=1 π̂iγ1(nπ̂i) = 0. Since this is not generally the case,

one needs to consider the normalized weights

ωi =
γ̃1(λ

′qi(θ))∑n
i=1 γ̃1(λ′qi(θ))

Clearly if πi = 1
n
γ̃1(λ

′qi(θ)) satisfies the first order conditions (4.7) and (4.8), the

normalized weights {ω1, ω2, . . . , ωn} still solve (4.7) and (4.8) and, by construction,∑n
i=1 ωi = 1.

Remark 4. The Lagrangian multiplier need not to be eliminated. One can consider

explicitly η. In that case the solution is attained by Lagrange methods if there exists

(η, λ′)′ ∈ Rm+1 such that η + λ′qi(θ) ∈ A for every i = 1, . . . , n, and such that
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solves the first order conditions

1

n

n∑
i=1

γ̃1(η + λ′qi(θ))qi(θ) = 0

1

n

n∑
i=1

γ̃1(η + λ′qi(θ))∇θqi(θ)
′λ = 0

1

n

n∑
i=1

γ̃1(η + λ′qi(θ)) = 1

and in this case no normalization of the weights is required. The elimination of the

Lagrange multiplier η is handy for it allows studying the asymptotic properties of

the resulting estimators from a unified perspective.

The first order conditions (4.7) and (4.8) reduce to the well known first order

conditions for EL, ET and CUE.

Case 1 (Empirical Likelihood). For the EL, γ1(x) = −1/x+ 1. The inverse of γ (·)
is given by γ̃1(y) = 1/1 − y and A = {y : −∞ < y < 1}, it follows that, if there

exists a λ ∈ Rm such that maxi≤n λ
′qi(θ) < 1, the optimal weights are given by

πi = (1− λ′qi(θ))
−1/n

Notice that for EL
∑n

i πiγ1(nπi) =
∑n

i (1−λ′qi(θ))−1(−1+λ′qi(θ))/n = 0, and hence

the normalization of the weights is not necessary, since by construction
∑n

i πi = 1.

Case 2 (Exponential Tilting). The Exponential Tilting is obtained by setting

γ(x) = x log x − x + 1 and thus γ1(x) = log x, A = {y : −∞ < y < +∞},
and the optimal weights are given by

πi = exp(λ′qi(θ))/n

The normalized weights given by ωi = exp(λ′qi(θ))/
∑n

i=1 exp(λ′qi(θ)) satisfy the

constraint
∑n

i πi = 1.

Case 3 (Continuous Updating). For CUE, γ1(x) = x − 1, γ̃1(y) = 1 + y and

A = {y : −∞ < y < 0}. The optimal weights are given by πi = (1 + λ′qi(θ))/n, and

in this case too a normalization is required to satisfy the constraint.

A class of divergences that has received attention is the Cressie and Read (1984)

(CR) power-divergence class given by

γCR(x) =
xα+1 − 1

α(1 + α)
− 1

a
x+

1

a
; −∞ < α < +∞
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The expression above is undefined for a = −1 and α = 0, and in these cases the

continuous limits

lim
α→−1

γCR(x) = − log x+ x− 1; lim
α→0

γCR(x) = x log x− x+ 1

are used. The limits above correspond to the divergences that define EL and ET,

respectively. The divergence that defines the CUE is recovered by setting α = 1.

It should be pointed out that not all the members of the Read Cressie class of

divergences are strictly convex. For a 6= 0, the first order conditions are given by

1

n

n∑
i=1

(1 + αλ′qi(θ))
1/αqi(θ) = 0

1

n

n∑
i=1

(1 + αλ′qi(θ))
1/α∇θqi(θ) = 0

Despite the elegance of the derivation, the analysis based on the first order con-

ditions have some undesirable features. In order to derive the first order conditions,

an explicit formula for the inverse of the first derivative of γ(·) must exist. This, of

course, is not the case generally. For example, consider the following divergence

γ(x) =

{
α(1−α)(x−1)2

2[α(x−1)+α](1−α)
x 6= 1

0 x = 1

for α ∈ [0, 1] and α = 1 − α. This can be thought of as a generalization of the

divergence that delivers the CUE, obtained by setting α = 0. The derivatives of

this divergence is given by

γ1(x) =
2α(x− 1)

α+ α(x− 1)
− αα(x− 1)2

(α+ α(x− 1))2

and clearly the inverse function is not explicitly available. Even when the inverse

function is available, working with first order conditions has two considerable dis-

advantages. From a computational point of view, as pointed out by Imbens (2002)

in the context of ET, calculating θ by solving the first order conditions by standard

numerical methods can be problematic. From a statistical standpoint, investigating

the asymptotic properties of θ̂ by using standard estimating equation techniques

leads to imposing conditions that are stronger than the ones needed to obtain con-

sistency of the GMM estimator.
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In this sense, the GEL representation of NS possesses both a computational and

technical advantage. On the other hand, NS show that the GEL problem is equiv-

alent to the Minimum Divergence framework only in a special case, i.e. when the

divergence belongs to the Cressie-Read class. In an early version of their paper,

NS conjecture that the Cressie-Read family may be the only family of divergences

admitting a GEL representation, undermining the usefulness of considering diver-

gences outside the Cressie-Read class.

Fortunately, it turns out that it is possible to obtain a GEL representation of

MD estimators that use divergences that do not belong to the Cressie-Read class.

The following theorem establishes the equivalence between the MD problem and the

GEL problem.

Theorem 1. If the MD problem given in (4.1) has an interior solution, q(w, θ) is

differentiable in θ ∈ Θ and
∑n

i γ̃2(λ
′qi(θ̂))qi(θ̂)qi(θ̂)

′ is non singular, then the first

order conditions for MD coincide with the first order conditions of the following

problem

θ̂gel = max
θ∈Θ

min
λ∈Λn(θ)

1

n

n∑
i=1

ψ(λ′qi(θ))

where ψ(·) is a strictly convex function defined on A given by

ψ(x) = xγ̃1(x)− γ(γ̃1(x))

with ψ1(0) = ψ2(0) = 1.

As for all the results in the paper, the proof of Theorem 1 is given in the Appendix.

Theorem 1 shows that given a strictly convex and twice continuously differentiable

function γ(·), the MD problem that uses γ(·) delivers the same first order conditions

as the GEL with an accurately chosen strictly convex function. Notice that this

version of the duality relies on the first order conditions and simply establishes that

MD and GEL solves the same set of first first order conditions. This requires that

a) the moment function is differentiable; b) the solutions θ̂ and π̂ are interior.

Example 1. [Exponential Divergence] Consider the exponential divergence

γ(x) = ex − ex

The domain of γ is (−∞,+∞) and γ1(x) = ex − e. The inverse function of γ1(x) is

given by γ̃1(y) = log(e + y), and A = {y : −e < y < +∞}. By using Theorem 1,

the GEL problem that delivers first order conditions that are equivalent to MD is

given by ψ(y) = (e+ y) log(e+ y)− ey − 1 and ψ(x) is defined on A.
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Remark 5. A similar result holds when the Lagrange multiplier η is not substituted

for γ1 but is instead is explicitly considered by slightly changing the assumption of

Theorem 1. In particular, if
∑n

i=1 γ̃2(η̂ + λ̂′qi(θ̂))qi(θ̂)qi(θ̂)
′ is non singular, the MD

first order condition coincide with the first order conditions of the problem

max
θ∈Θ

min
η,λ∈Λ̃n(θ)

1

n

n∑
i=1

[ψ(η + λ′qi(θ))− η]

where Λ̃n(θ) = {η, λ : η+λ′qi(θ) ∈ A, i = 1, . . . n}, ψ(x) is a strictly convex function

defined on Λn(θ)and given by

ψ(η + λ′qi(θ)) = (η + λ′qi(θ)) γ̃1(η + λ′qi(θ))− γ(γ̃1(η + λ′qi(θ)))

However, in many circumstances an expression for the inverse function of the

derivative cannot be given explicitly, and the form function ψ(·) of Theorem 1 is

unavailable. Although Theorem 1 allows to see MD as GEL, it does not say if

given a strictly convex function ψ(x) the GEL that uses ψ(x) as objective function

corresponds to a MD for a given divergence γ(·). Suppose ψ(·) satisfies the following

assumptions:

Assumption 2. (i) ψ(x) is a strictly convex function ψ : (aψ , bψ) → [0,+∞),

aψ < 0 < bψ; (ii) ψ(x) is twice continuously differentiable on (aψ, bψ); (iii) ψ(0) = 0.

Let V = {y : y = ψ1(x), x ∈ (aψ, bψ)}. By the assumption of strict convexity

and by two times continuously differentiability of ψ(x) on (aγ, bγ), it follows that

ψ1(x) is continuously differentiable and by strict convexity, ψ2(x) > 0 for any x ∈
(aψ, bψ), and ψ1(x) is monotone on (aψ, bψ). By the inverse function theorem, ψ̃1(y),

the inverse function of ψ1(x), is well defined on V .

Theorem 2. Consider the GEL problem given by

(GEL) max
θ∈Θ

min
λ∈Λn(θ)

1

n

n∑
i=1

ψ(λ′qi(θ))

where the function ψ(·) satisfies Assumption 2 and Λn(θ) = {λ : λ′qi(θ) ∈ V , i =

1, ..., n}. Then, if GEL has interior solution for θ and λ, and qi(θ) is differentiable

in θ ∈ Θ, there exists a strictly convex function γ(·) satisfying Assumption 1 such

that the first order conditions of the MD problem are equivalent to those of the GEL.

The preceding result can be interpreted as the converse of Theorem 1 and it

says that MD estimators can be built from the “bottom-up” by specifying ψ(x)
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and then using this result to justify the problem in terms of divergence minimiza-

tion. However, Theorem 1 and 2 are based on equality of the first order conditions

and they make assumption both on the invertibility of
∑n

i γ̃2(λ
′qi(θ))qi(θ)qi(θ)

′ and∑n
i ψ1(λ

′qi(θ))qi(θ)qi(θ)
′ at the solution and on the differentiability of the moment

function. The following result is a generalization of the duality and establishes that

the solution of given a MD problem is the solution of a corresponding GEL problem,

without invertibility and differentiability requirement.

Theorem 3. Let (θ̂, λ̂) denote the solution for the GEL problem for some ψ(·),
satisfying Assumption 2 and λ̂′qi(θ̂) ∈ V, i = 1, . . . , n Then (θ̂, {ω̂i}ni ), where

ω̂i = ψ1(λ̂
′qi(θ̂)/

∑n
i ψ1(λ̂

′qi(θ̂)), is solution for the corresponding MD problem with

γ(x) = xψ̃1(x)− ψ(ψ̃1(x)).

Theorem refth:equivgeneral extend the equality in situations where the moment

conditions is non-differentiable as is the case for quantile restrictions on the moment.

Notice that the above result does not assume nor require that the solution of the

GEL is unique. Indeed, the function f(θ) = minλ
∑n

i ψ(λqi(θ) need not be convex

in θ and uniqueness of the solution cannot be guaranteed.

Theorem 4. Let (θ̂, {π̂i}ni=1) denote the solution for the MD problem for some γ(·)
satisfying Assumption 1, ω̂i = γ̃1(λ̂

′qi(θ̂))/
∑n

i=1 γ̃1(λ̂
′qi(θ̂)) and λ̂′qi(θ̂) ∈ A. Then

(θ̂, λ̂) solve the corresponding GEL problem with ψ(x) = xγ̃1(x)− γ(γ̃(x)).

The duality extends also to the value of the objectives functions γ(·) and ψ (·), as

the following result shows.

Corollary 1. If γ(·) satisfies Assumption 1, the value of the objective function eval-

uated at π̂i = γ̃1(λ̂
′qi(θ̂))/n is equivalent to the negative value of the corresponding

GEL objective function evaluated at θ̂ and λ̂, that is

1

n

n∑
i=1

γ(nπ̂i) = − 1

n

n∑
i=1

ψ(λ̂′qi(θ̂))

When the objective function is evaluated at the normalized value of the weights ω̂i =

γ̃1(λ̂
′qi(θ̂))/

∑
i γ̃1(λ̂

′qi(θ̂)), the following disequality

1

n

n∑
i=1

γ(nω̂i) ≤
1

n

n∑
i=1

γ(nπ̂i) = − 1

n

n∑
i=1

ψ(λ̂′qi(θ̂))
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5. First Order Asymptotic Properties

In this section we discuss the first order asymptotic properties of MD estimators.

The following assumptions are needed to establish consistency of MD estimators.

Assumption 3. (i) Θ is compact; (ii) θo is the only solution to Eq(wi, θ) = 0; (iii)

q(·, θ) is continuous for each θ ∈ Θ with probability one; (iv) E
[
supθ∈Θ ‖q(wiθ)‖

2] <
∞; (v) Vo ≡ E [qi(θo)qi(θo)

′] is non singular.

Consistency of MD estimators can be proved under the same set of assumptions

under which consistency of GMM is generally derived. Other works have assumed a

slight stronger condition on the moment of q(w, θo) than the usual condition on the

second moment. In particular, NS assume that E(supθ∈Θ ‖qi(θ)‖
α) <∞ for α > 2 .

The results of Theorem 5 are derived under the assumption α = 2.

Theorem 5. Let Assumption 3 hold. Then (i) the solutions of the constrained

optimization problem (4.1), (π̂, θ̂), exist with probability approaching one and (ii)

θ̂
p−→ θo; (iii) λ̂ = Op(n

−1/2); (iv) maxi≤n |λ̂′qi(θ̂)| = op(1).

The following assumption is sufficient to show that θ̂ and λ̂ are asymptotically

normal.

Assumption 4. (i) θo lies in the interior of Θ; (ii) q(·, θ) is continuously differen-

tiable on S(θo, ε), ε > 0; (iii) E [supθ∈Θ ‖∇θq(wi, θ)‖] <∞; (iv) Γo ≡ E [∇θq(wi, θo)]

has full column rank.

Theorem 6. Let Assumptions 3-4 hold. Then the sequence of solutions θ̂ and the

vector of Lagrange multiplier λ̂ are asymptotically normal and independent with

√
n

(
θ̂ − θo

λ̂

)
d−→ N

(
0,

(
So 0

0 Po

))
where So = (Γ′oV

−1
o Γo) and Po = V −1

o (Im − ΓoSoΓ
′
oV

−1
o ).

Theorem 6 makes clear that MD and GMM estimators are first order equivalent.

That is, they are both asymptotically normal and they share the same asymptotic

variance So. A notable difference between the class of GMM estimators and the

class of MD estimators is the following. The GMM class is indexed by W and only

the estimator associated with the sequence V −1
n

p−→ V −1
o is efficient. In the MD case,

the class of estimators is indexed by the strictly convex function γ(·), but for each

choice of γ(·) the resulting MD estimator is efficient.
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MD estimators obtain estimates of the parameter θo by selecting a probability

compatible with the moment condition as close as possible to the estimated proba-

bility of the data. It is not surprising that the (normalized) weights {ωi} represent

the probability structure implied by the model. Let Fo(w) =
∫

1[wi ≤ w]dFo and

σw = Fo(w)(1−Fo(w)). Under the conditions of Theorem 6, the empirical distribu-

tion function given by Fn(w) = n−1
∑n

i 1[wi ≤ w] converges point-wise almost surely

to the underlying distribution function of w and has limiting normal distribution

described by √
n(Fn(w)− Fo(w))

d−→ N (0, σw)

Let Mn(w) =
∑n

i 1[wi ≤ w]ω̂i, where ω̂ = (ω̂1, ω̂2, . . . , ω̂n) are the normalized MD

weights.

Theorem 7. Suppose Assumptions 3-4 hold. Then Mn(w)− Fo(w)
p−→ 0 point-wise

and Mn(w) has limiting normal distribution given by

√
n (Mn(w)− Fo(w))

d−→ N(0, σw − q(w)′V −1
o q(w))

where q(w) =
∫

1[wi ≤ w]qi(wi, θo)dFo.

Comparing the variance of the asymptotic distributions of Qn(w) and Mn(w)

yields that Mn(w) is asymptotically more efficient than the empirical distribution

function. This is easily proved by noticing that q(w)′V −1
o q(w) > 0, by positive

definiteness of V −1
o . The intuition behind this result is that the estimated c.d.f.

based on Mn(w) is asymptotically more efficient than the empirical distribution

function because it incorporates the information in E[q(wi, θo)] = 0. Theorem 7

has an important implication. Sample counterparts of population moments can be

weighted by weights {ωi} that are proportional to efficient estimates of the pdf of

w.

6. Higher Order Expansions

In this section we explore the higher order properties of MD estimators. The

analysis is similar under some aspects to that in NS, but it also differs in many

regards. Importantly, the emphasis is different. While they focus on the relation

between GEL and GMM estimators, we examine the higher order properties of

members of the MD family of estimators.

We look for an expansion of θ̂ of the following form

(6.1) (θ̂ − θo) = un + bn + rn +Op(n
−2)
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where un = Op(n
−1/2), bn = Op(n

−1) and rn = Op(n
−3/2). The terms in the ex-

pansion are tractable, in the sense that they are expressed as sums and products

of sample averages. Similar expansions have been carried out in the context of in-

strumental variables models by Nagar (1959) and Hahn, Hausman, and Kuersteiner

(2001a) and Hahn, Hausman, and Kuersteiner (2001b), among others.

Definition 1. [Higher Order Bias] If an estimator θ̂ of θo admits an expansion as

in (6.1), its O(n−1) bias is given by

B−1(θ̂) = E[un] + E[bn]

However, to obtain an expression for the O(n−1) bias an expansion of order n−3/2

is sufficient

(θ̂ − θo) = un + bn +Op(n
−3/2)

Definition 2. [Higher Order Mean Square Error] If an estimator θ̂ of θo admits an

expansion as in (6.1), the O(n−2) MSE is given by

M−2(θ̂) = E(unu
′
n + unr

′
n + rnu

′
n + bnb

′
n)

A few remarks are worth making with respect to the higher order expansions. The

higher order bias and MSE obtained by taking the expectation of the corresponding

terms in the expansion (6.1) are equivalent to the bias and MSE obtained through

a valid o(n−1) Edgeworth expansion of
√
n(θ̂− θo), if the last term in the expansion

is appropriately bounded. The bias of order O(n−1) and MSE of order O(n−2)

are defined as expectations of terms that are bounded in probability. Even if the

remainders are bounded in probability they can still diverge in expectation. As

pointed out by Srinivasan (1970), it is possible that an estimator possesses a valid

asymptotic expansion, yet it does not have finite sample moments. In this sense

higher order comparisons of estimators could be misleading. This is important in the

context of MD estimators. For instance, in a linear simultaneous equations setting,

Kunitomo and Matsushita (2003) show that the Empirical Likelihood estimator does

not have finite moments.

7. Asymptotic Bias

Asymptotic expansions require that additional moments of the underlying distri-

bution of the data exist. Given the nonlinearity of the estimating equation defining

the MD estimators, the terms in the expansions (6.1) are not simple functions of w

and smoothness assumptions must be imposed on q(w, θ).
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The following notation is used. The partial derivatives with respect to θj, j =

1, . . . , k are denoted by qji (θ) = (∂/∂θj)qi(θ) and qjo = E[qji (θo)]. The second deriva-

tives with respect to θj and θr, j, r = 1, . . . , k are qjri (θ) = (∂2/∂θj∂θr)qi(θ) and

qjro = qjri (θo) . The higher order derivatives are defined accordingly.

Assumption 5. There is a ε > 0 and B(wi), E[B(wi)
5] < ∞ such that for any

θ ∈ S(θo, ε) and any j, r, s = 1, . . . , k: i) supθ∈Θ ‖qi(θ)‖ ≤ B(wi); ii) qjrsi (θ) exists;

iii)‖qji (θ)− qjo‖ ≤ B(wi); iv) ‖qjri (θ)− qjro ‖ ≤ B(wi); v) ‖qjrsi (θ)− qjrso ‖ ≤ B(wi)‖θ−
θo‖; v) γ(·) is four times differentiable in a neighborhood of 1.

We first provide the Op(n
−3/2) expansion of (θ̂− θo) and of λ̂. Let Bo = SoΓ

′
oV

−1
o ,

un = Bo

∑n
i qi(θo)/n, ln = Po

∑n
i qi(θo)/n. The vectors ∇1 and ∇2 are of size k × 1

and m× 1 and their expression is given in the Appendix.

Theorem 8. Suppose Assumptions 1-5 hold. Then the MD estimators and the

associated Lagrange multiplier admit Op(n
−3/2) expansion

(θ̂ − θo) = un + bθn +Op(n
−3/2)

and

λ̂ = ln + bλn +Op(n
−3/2)

where

bθn = −BoΓnun + SoΓ
′
nun −BoVnln +

1

2
So∇1 −

1

2
Bo∇2

bλn = PoΓnun +B′
oΓ

′
nln + PoVnln −

1

2
B′
o∇1 −

1

2
Po∇2

There are minor differences between the result of Theorem 8 and the expansion

given in NS. First, they derive the asymptotic bias from the Op(n
−2) expansion and

thus they have to make stronger assumptions on the moments of the derivatives

of the moment functions. Here, we follow Rilstone, Ullah and Srivastava (1996)

and derive the bias from the Op(n
−3/2) expansion, avoiding making assumptions on

fourth derivatives of the moment function. Second, NS consider the expansion of

the vector ((θ̂ − θo)
′, λ̂), while Theorem 8 gives an explicit expansion for (θ̂ − θo)

and λ̂.

The bias up to order Op(n
−1) of MD estimators is obtained by taking the expec-

tation of the first term in the expansion for (θ̂ − θo). Let a be the m × 1 vector

whose element j is given by

aj = Trace
{
SoE

[
∂2qij(θo)/∂θ∂θ

′]} /2
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where qij(θo) denotes the jth element of qi(θo).

Theorem 9. Suppose Assumptions 1-5 hold. Then the asymptotic bias up to order

Op(n
−1) for a MD estimator of θo is given by

(7.1) B−1(θ̂) = n−1
{
b1 + (1− γ3

2
)b2

}
where b1 = Bo {E [∇θqi(θo)Boqi(θo)]− a} and b2 = BoE [qi(θo)qi(θo)

′Poqi(θo)]

The formula for the bias of MD estimators given in Theorem 9 is analogous to that

of NS for GEL estimators. There, the bias involves a parameter that depends on the

function ψ(·) that characterizes the GEL estimators; here it depends on the third

derivatives of γ(·). Using the result in Theorem 1, it follows that, under Assumption

5, ψ3(0) = γ3(1). In the Cressie Read family, the only estimator with γ3 = 2 is EL.

The bias depends also on the curvature of the model through the term a(θo). For

highly nonlinear models the bias induced by this term can be relatively large. When

q(w, θ) has non zero generalized third moments, only MD estimators with γ3 = 2

get rid of the bias induced by the asymmetries of the moment functions.

The bias corrected estimator can in theory be obtained by looking at the sample

counterpart of the expressions involved in the O(n−1) bias formula given in Theorem

9. If θ̂ is the original MD estimator, b1(θo) and b2(θo) can be estimated by

b̂1 = n−1B̂n

(
n∑
i=1

∇θqi(θ̂)B̂nqi(θ̂)− â(θ̂)

)

b̂2 = n−1B̂n

n∑
i=1

qi(θ̂)qi(θ̂)
′P̂nqi(θ̂)

where B̂n, Ŝn and P̂n are sample counterparts of Bo, So and Po, respectively. As

pointed out by NS, the sample terms involved in the expression above can be

weighted by the efficient estimated probabilities given in Section 5. The assump-

tions that need to hold in order to derive the O(n−3/2) expansion of (θ̂− θo) are also

sufficient for b̂1 and b̂2 to be consistent estimators of b1(θo), b2(θo). It follows that

the bias corrected MD estimator defined as

(7.2) θ̂bc = θ̂ − n−1
{
b̂1 + (1− γ3

2
)b̂2

}
is unbiased of order O(n−1). The formula of the bias correction simplifies when

γ3 = 2, because one needs not estimate the term b̂2.

From an applied perspective the bias correction can be a difficult exercise, but

nevertheless it is a feasible strategy. The critical point is rather to assess if the bias
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correction can lead to substantial improvements. For example, Hahn, Hausman and

Kuersteiner (2002) present Monte Carlo simulations of the Nagar’s bias adjusted IV

estimator that show that the bias correction may be ineffective over many points

in the parameter space considered. On the other hand, Rilstone, Srivastava, and

Ullah (1996) apply bias correction to nonlinear logistic regressions and show through

Monte Carlo that in these situations the bias correction can lead to substantial

improvements.

7.1. Instrumental Variables Model. An interesting result is that in the impor-

tant special case of nonlinear instrumental variables models, the first order condi-

tions of MD can be slightly modified in order to deliver estimators that have smaller

bias than the original MD.

Let consider

(7.3) qi(wi, θ) = zig(xi, θ)

where g(xi, θ) : X × Rk → R and {zi} is a m × 1 vector of random variables such

that Ezig(xi, θo) = 0. Let Gi(θ) = ∇θg(xi, θ).

Assumption 6. (i) {xi, z′i} are iid random variables; (ii) θo lies in the interior of

Θ; (iii) E(ziz
′
i) has full column rank; (iv) E‖zi‖2 ≤ ∞; (v) gi(θ) is continuous

for each θ ∈ S(θo, ε); (vi) E[supθ∈Θ ‖gi(θ)‖2] < ∞ (vii) E[supθ∈Θ ‖Gi(θ)‖] < ∞;

(viii) σgG = E[gi(θo)Gi(θo)|zi];(iii) σ2
g = E[gi(θo)

2|zi] (ix) σ3
g = E[g(xi, θo)

3|zi]; (ix)

Assumption 5 and Assumption 7 holds with q(w, θ) replaced by g(x, θ).

Under Assumption IV, the MD estimator is consistent and asymptotically normal

as it can be easily seen by comparing the conditions given for the general case. The

bias for this model is given by the following result.

Theorem 10. Under Assumption 6 the O(n−1) bias of the MD estimator is given

by

(7.4) B−1(θo) = S̃oσgG/σ
2
g/n− B̃oã/n+ (1− γ3

2
)σ3

gσ
3
z/n

where ã is the k × 1 vector whose element j is given by

ãj = Trace(S̃oE[(∂/∂θ∂θ′)gij(θo)zij])

and σ3
z = E(ziz

′
iP̃ozi).
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The expression for the bias in (7.4) specializes immediately to the bias of the

homoschedastic linear IV as given by

B−1(θ̂) = −S̃oE(xiεi|zi)/σ2 + (1− γ3/2)σ3
gB̃oσ

3
z

When γ3 = 2, as mentioned in NS, is the bias of the Limited Information Maximum

Likelihood estimator. Now consider the estimator that solves the following equations

0 =
1

n

n∑
i=1

γ̃1(λ
′zigi(θ))zig(xi, θ)(7.5)

0 =
1

n

n∑
i=1

γ̃1(κλ
′zigi(θ))Gi(θ)

′z′iλ
′(7.6)

for some κ > 0. For κ = 1, these estimating equations are equivalent to those of

MD estimators given in (4.7) and (4.8).

Theorem 11. Let θ̂ and λ̂ be the solution of the estimating equations in (7.5) and

(7.6). Then θ̂ = θo + op(1) and has asymptotic bias given by

B−1(θ̂) = κθS̃oσgG/σ
2
g/n− B̃oã+ (1− γ3

2
)σ3

gσ
3
z/n

where κθ = κ(m− k)− (m− k − 1).

The above result shows that the first term of the bias can be eliminated by setting

κ = (m− k− 1)/(m− k), so that the asymptotic bias of the estimator solving (7.5)

and (7.6) reduces to B̃oã+ (1− γ3
2
)σ3

gσ
3
z . If γ3 = 2 the bias reduces to B̃oã(θo) and

it vanishes when the model is linear, since then ã = 0.

It is difficult to express the estimating equations as first order conditions of an

optimization problem in the MD framework. If one considers the GEL representa-

tion, equations (7.5) and (7.6) can be obtained by considering the following nested

optimization problem

λ(θ) = arg min
λ∈Λ(θ)

1

n

n∑
i=1

ψ(λqi(θ))

and

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

ψ(κλ(θ)qi(θ))

It is easy to verify that this nested problem gives first order conditions that are

equivalent to (7.5) and (7.6).



PROPERTIES OF MINIMUM DIVERGENCE ESTIMATORS 24

8. Mean Square Error

Adapting the argument in Pfanzagl and Wefelmeyer (1979), NS show that the

O(n−1) bias corrected EL estimator is third order efficient, in the sense that it has

the lowest O(n−2) MSE among all the bias corrected estimators based on the same

set of moment conditions. The higher order efficiency of EL only holds among bias

corrected estimators. If the bias corrections are dropped, then EL may not have the

smallest MSE.

In many applications, however, the bias term b2(θo) can be large and hence it is

interesting to consider MD estimators with γ3 = 2. Even if a direct comparison

of higher order MSE of MD estimators is difficult in the general case, it turns out

that if one restricts attention to the subclass of MD estimators with γ3 = 2 some

interesting results can be given.

Comparing the higher order MSE of MD estimators with γ3 = 2 amounts to

verifying whether other members of this class share the same higher order efficiency.

Let θ̂el denote the EL estimator and θ̃md any other MD estimators and let B−1(θ̂el)

and B−1(θ̂md) denote the O(n−1) bias of EL and MD respectively.

Theorem 12. If the estimator θ̂ admits a Op(n
−2) expansion, then

M−2(θ̂el −B−1(θ̂el))−M−2(θ̃md −B−1(θ̂md))

= M−2(θ̂el)−M−2(θ̂md)−B−1(θ̂el)B−1(θ̂el)
′ +B−1(θ̂md)B−1(θ̂md)

If MD estimators with γ3 = 2 are considered, Theorem 12 yields that

M−2(θ̂el −B−1(θ̂el))−M−2(θ̃md −B−1(θ̂md)) = M−2(θ̂el)−M−2(θ̂md)

since in this case B−1(θ̂el) = B−1(θ̂md). It follows that a bias corrected MD estimator

with γ3 = 2 has the same higher order efficiency of EL if the uncorrected estimator

has the same O(n−2) MSE of EL, that is when

M−2(θ̂el)−M−2(θ̃md) = 0

Considering the difference in higher order MSE simplifies the calculations and allows

to give a general results about efficiency. The following assumptions are needed to

obtain a valid expansion of order O(n−2).

Assumption 7. There is an ε > 0 and B(wi), E[B(wi)
6] < ∞ such that for any

j, r, s, h = 1, . . . , k: i) supθ∈S(θo,ε) ‖qi(θ)‖ ≤ B(wi); ii) qjrsi (θ) exists on S(θo, ε);

iii) supθ∈S(θo,ε) ‖q
j
i (θ) − qjo‖ ≤ B(wi); iv) supθ∈S(θo,ε) ‖q

jr
i (θ) − qjro ‖ ≤ B(wi); v)
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supθ∈S(θo,ε) ‖q
jrs
i (θ) − qjrso ‖ ≤ B(wi); vi) ‖qjrshi (θ) − qjrsho ‖ ≤ B(wi)‖θ − θo‖ for any

θ ∈ S(θo, ε); v) γ(·) is five times continuously differentiable in a neighborhood of 1.

Theorem 13. Suppose Assumptions 1-7 hold. Then MD estimators and the asso-

ciated Lagrange multipliers admit O(n−2) expansion of the form

(θ̂ − θo) = un + bθn + rθn +Op(n
−2)

Further, if θ̄md is an MD estimator with γ3 = 2, then

M−2(θ̂el)−M−2(θ̄md) =
(
1− γ̄4

6

) m∑
j=1

m∑
r=1

Soq
4
jr(θo)E [ln,jln,rlnu

′
n]

+
(
1− γ̄4

6

) m∑
j=1

m∑
r=1

E [ln,jln,runl
′
n]S

′
oq

4
jr(θo)

′

where q4
jr(θo) = E [qn,j(θo)qn,r(θo)qi(θo)qi(θo)

′] and γ̄4 is the fourth derivative evalu-

ated at 1 of the divergence from which θ̄md is obtained.

A consequence of Theorem 13 is that in general the O(n−2) MSE of EL is different

from that of other MD estimators unless the MD considered is obtained from a

divergence with γ̃4 = 6 (for EL, γ4 = 6). In this EL and MD are equivalent up

to O(n−2) and they have the same asymptotic variance to that order. It turns out

that MD estimators that are equivalent to EL up to order n−3/2 also have the same

higher order MSE.

Theorem 14. Suppose Assumptions 1-2 hold. If θ̄md is an MD estimator with

γ3 = 2, then

MSE(θ̂el)−MSE(θ̄md) = o(n−2)

This is a very interesting result that has two substantive implications: first, that

all the members of this MD subclass with γ3 = 2 are third order efficient after the

bias is removed; second, that third order efficiency is an inadequate criterion for

prescribing which specific estimator should be used in applied work. If one insists

on considering estimators that have the same bias as EL estimators, then another

criterion must supplement third order efficiency.

It can also be verified that the when γ3 = 2 the estimator that solves the first

order conditions (7.5)-(7.6) is third order efficient having the same O(n−2) MSE

than EL.
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9. Robust Higher Order Efficient Estimators

In the previous section it was shown that any MD estimator with γ3 = 2 has

the same O(n−2) MSE. This section discusses how third order efficiency may be

complemented by another property that can improve the finite sample performance

of MD estimators.

The Minimum Divergence problem cannot always be solved by Lagrange Multi-

plier methods. A requirement that was imposed is that there exist λ̂ ∈ Rm and

θ̂ ∈ Θ such that

λ̂′qi(θ̂) ∈ A, i = 1, . . . , n

A = {y : y = γ1(x), x ∈ (aγ, bγ)}

and such that
n∑
i=1

γ̃1(λ̂
′qi(θ̂))qi(θ̂) = 0

n∑
i=1

γ̃1(λ̂
′qi(θ̂))∇θqi(θ̂)

′λ̂ = 0

Features of the set A have statistical implications. MD estimators that are defined

from divergences that imply a A = {y : −∞ < y < +∞} are robust relatively to

MD estimators defined from divergences that imply a set A with at least a finite

endpoint, because in this second case the Influence Function (IF) of the estimator

can become unbounded even when q(w, θ) is bounded.

Hampel, Ronchetti, Rousseeuw, and Stahel (1986) show that the influence func-

tion of an estimator obtained as solution to the estimating equation

n∑
i=1

s(zi, θ) = 0

for a specified function s(·) is proportional to the estimating equation, so that

IF (z, θ, λ) = −E
[
∂s(z, θ)

∂θ′

]−1

s(z, θ)

Heuristically, the Influence Function measures the asymptotic bias caused by frac-

tional data contamination. It is known that an estimator θ whose influence function

is unbounded may have an unbounded asymptotic bias under single point contami-

nation.
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When evaluated at the true parameter values θ = θo and λ = 0, the IF of any

MD estimator is then given by

IF (w, θo, 0) = −

[
Boqn(θo)

Poqn(θo)

]
However, when evaluated at λ = ε, the IF of MD is proportional to the weights

and hence can become unbounded if the weights are not defined for every value

of λ. Hence, MD estimators with A = {y : −∞ < y < +∞} are preferable

because their influence function is less sensitive to deviations of λ from its asymptotic

limit. For ET and CUE A = {y : −∞ < y < +∞} and the IF will be bounded

in λ, while for EL A = {y : −∞ < y < −1} and the IF is unbounded in λ.

Considering MD estimators with bounded IF have two main advantages. First,

the asymptotic expansions are polynomial in the influence function. If the IF can

become unbounded for relatively small deviations of λ from its limit, the higher order

ranking of estimators can be entirely misleading. Second, test statistics based on

MD estimators with bounded influence function should have better size properties.

This intuition is indeed confirmed by the finding in Imbens, Spady, and Johnson

(1998). They show that test statistics based on ET tend to be superior to the same

statistics based on the the third order efficient EL. Their findings support the view

that the influence function could be important in determining the small sample

behavior of estimators and related test statistics.

Another reason to consider MD estimators whose divergence implies A = {y :

−∞ < y < +∞} is related to the existence of the asymptotic variance of MD

estimators in the presence of global misspecification. When the moment function is

unbounded in w, that is infθ∈Θ supw ‖q(w, θ)‖ = +∞, Schennach (2003) shows that

ET asymptotic behavior is robust to misspecification, while EL does not have finite

asymptotic variance.

It is very interesting to consider estimators that combine the superior higher order

behavior of EL with the properties of having a bounded IF in λ. Since we know

from Theorem 14 that all MD estimators with γ3 = 2 have the same higher order

efficiency as EL, the task is to find a divergence γ(·) with γ3 = 2 and such that

A = {y : −∞ < y < +∞}. It is difficult to derive a divergence with a closed

form solution that satisfies the above conditions. However, we can study the MD
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estimators obtained as solutions of the dual problem

(9.1) max
θ∈Θ

min
λ∈Λn(θ)

1

n

n∑
i=1

ψ(λ′qi(θ))

where ψ(·) satisfies Assumption 2(ψ) and Λn(θ) = {λ : λ′qi(θ) ∈ V , i = 1, . . . , n}.
By Theorem 2, the estimator associated with problem (9.1) corresponds to a MD

estimator defined from a strictly convex divergence. Constructing a MD estimator

with bounded IF in λ is equivalent to finding a strictly convex function satisfying

Assumption 2(ψ) and such that the endpoints of V = {y : y = ψ1(x), x ∈ (aψ, bψ)}
are infinite.

Since ET has bounded IF, we consider modifying the ET objective function as in

ψ(υ) = exp(h(υ)), where h(·) : R → R is three times continuously differentiable on

R and such that h(0) = 0. The first derivative is given by ψ1(υ) = exp(h(υ))h1(υ).

In order to have bounded influence function the function h(·) must satisfy

{y : y = h1(x), x ∈ R} = R

In order for the estimator defined in (9.1) to have the same bias of EL, it must hold

that

(9.2)
∂2 exp(h(υ))h1(υ)

∂2υ

∣∣∣∣
υ=0

= 2

Assumption 2(ψ) also requires that h1(0) = 1 and h2(0) = 1. By expanding the

derivative in (9.2), it follows that the function h(·) must solve the following local

differential equation

3h′′(0) + h′′′(0) = 1

A function that satisfies the following restriction is given by

h(υ) =
1

2
(eυ − e−υ)

It is easy to see that h(υ) is continuously differentiable, h(0) = 0 and h1(0) =

1, h2(0) = 0 and h3(0) = 1. The function 1
2
(eυ − e−υ) is usually referred to as

hyperbolic sine and denoted as sinh(υ).We name the problem in (9.1) with ψ(x) =

[exp(sinh(x)) − 1] as Hyperbolic Tilting (HT) by analogy with the Exponential

Tilting from which it originates.
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Theorem 15. [Hyperbolic Tilting] The Hyperbolic Tilting (HT) estimator is defined

as the solution of the following problem

(9.3) max
θ∈Θ

min
λ

1

n

n∑
i=1

[exp(sinh(λ′qi(θ)))− 1]

Since the divergence that corresponds to ψ(x) = [exp(sinh(x)) − 1] is such that

γ3 = 2, the HT estimator has the same O(n−2) MSE of EL. Differently from EL,

the HT estimator has bounded influence function.

Unfortunately, HT is not the only estimator that has bounded influence function

and is third order efficient. Many other estimators could be given by solving the

local differential equation above and making sure that the resulting function has

derivative with unbounded domain. We focus on the HT because from the simula-

tions in Imbens, Spady, and Johnson (1998), ET seems to have nice finite sample

properties in terms of size of resulting statistics for testing overidentified restrictions

and restrictions on the parameters.

10. Numerical Examples

This section provides some simulation evidences on the performances of MD esti-

mators. Three main designs are considered. In order to verify that the Hyperbolic

Tilting estimator behaves well under misspecification, relative to Empirical Likeli-

hood, Monte Carlo simulations are performed using a simple model for the mean

and the variance of a normal distribution where one of the equation is potentially

misspecified. In the second design, the performances of EL, ET, HT and GMM es-

timators are studied by using the experimental design of Hall and Horowitz(1996).

The last design considers the performance of the estimators when applied to the

linear instrumental variables model. For this last model the performance of the bias

correction proposed in Section 2.5.1 are also assessed.

10.1. Misspecified Models. The simple model is considered for the moment func-

tion

(10.1) q(wi, θ) =

[
wi − θ

(wi − θ)2 − 1

]
In each Monte Carlo replication w is drawn from a normal distribution. Two models

are considered. For the first model, w ∼ N(0, 1). In this case the moment function is

correctly specified, E[q(w, θo)] = 0 for θo = 0. For the second model w ∼ N(0, 0.64)

in which case the moment function is misspecified, since ‖E[q(w, θ)]‖ > 0 for any
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θ. The estimator considered are the Empirical Likelihood, the Exponential Tilting,

the Hyperbolic Tilting, the Two-Step GMM and the Iterated GMM estimator. The

simulations are carried out for sample sizes n = 1000, 5000.

Table 1-2 report the result of the simulations for both models. Clearly, at the

sample sizes considered here, the differences in the sampling distributions of EL,

ET, HT, GMM and GMM10 are practically nonexistent for the correctly specified

model. Notice, in particular, that the sampling variance of the estimator is equal to

the asymptotic approximation value of 0.001 for n = 1000 and 0.0002 for n = 5000.

The situation changes dramatically when we consider the misspecified model. The

ratio of the sampling variances at n = 1000 and n = 5000 is for ET, HT, GMM and

GMM10 very close to 1/5, the value predicted by a sqrtn asymptotic approximation

to the distribution of the estimators. The behavior of EL is not in line with a sqrtn

consistent estimator. The variance goes from 0.0030 to 0.0027, well above the 1/5

ratio. The difficulties of EL in dealing with misspecification are highlighted by

Figure 10.1-10.2. Figure 10.1 plots the sampling density of EL,ET,HT for correctly

specified model. As predictable, the difference are between these distributions are

undetectable. Figure 10.2 plots the sampling distribution for EL, ET, HT under

the misspecified model. The sampling distribution of EL shows clear signs of non-

normality. Also, the degree of non-normality tends to increase with the sample

size. A behavior clearly inconsistent with a
√
n consistent estimator. Notice also

that the sampling distribution of the HT estimator has a sampling distribution

that is very close to the asymptotic approximation that would hold in absence of

misspecification.
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Table 1. Monte Carlo simulations: Normal model under correct specification

Var Mean Median Mse Mad Iqr
n = 1000

HT 0.0010 0.0003 0.0005 0.0010 0.0010 0.0421
ET 0.0010 0.0003 0.0005 0.0010 0.0010 0.0420
EL 0.0010 0.0003 0.0005 0.0010 0.0010 0.0420

GMM2 0.0010 0.0003 0.0005 0.0010 0.0010 0.0421
GMM10 0.0010 0.0003 0.0005 0.0010 0.0010 0.0421

n = 5000
HT 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0194
ET 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0194
EL 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0194

GMM2 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0194
GMM10 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0194

Table 2. Monte Carlo simulations: Normal model under misspecification

Var Mean Median Mse Mad Iqr
n = 1000

HT 0.0010 0.0005 0.0007 0.0010 0.0010 0.0426
ET 0.0014 0.0003 0.0003 0.0014 0.0015 0.0521
EL 0.0030 −0.0000 −0.0003 0.0030 0.0039 0.0844

GMM2 0.0015 0.0006 0.0013 0.0015 0.0015 0.0515
GMM10 0.0009 0.0005 0.0005 0.0009 0.0009 0.0410

n = 5000
HT 0.0002 −0.0002 −0.0005 0.0002 0.0002 0.0193
ET 0.0005 −0.0004 −0.0006 0.0005 0.0005 0.0288
EL 0.0027 −0.0007 −0.0015 0.0027 0.0052 0.0973

GMM2 0.0003 −0.0001 −0.0002 0.0003 0.0003 0.0234
GMM10 0.0002 −0.0002 −0.0004 0.0002 0.0002 0.0183
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Figure 10.1. (Normal Model) Sampling distribution of HT
(dashed), ET (dotted), EL (dotdash) and normal asymptotic approxi-
mation (solid line) under correct specification, for n = 1000 (left plot)
and n = 5000 (right plot)
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Figure 10.2. (Normal Model) Sampling distribution of HT
(dashed), ET (dotted), EL (dotdash) and normal asymptotic approxi-
mation (solid line) under correct specification, for n = 1000 (left plot)
and n = 5000 (right plot)
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Proof to Theorem 1. Since, by assumption, the solutions of the MD problem are interior
we have that λ̂′q(wi, θ̂) ∈ A, where

A = {y : y = γ1(x), x ∈ (aγ , bγ)}

and hence π̂i = γ̃1(λ̂′qi(θ̂))/n, and if qi(θ) is differentiable in θ, λ̂ and θ̂ solves the following
first order conditions

n∑
i=1

π̂iqi(θ̂) = 0;
n∑
i=1

π̂i∇θqi(θ̂) = 0

Consider the following GEL problem

max
θ

[
min

λ∈Λn(θ)

1
n

n∑
i=1

(λ′qi(θ))γ̃1(λ′qi(θ))− γ(γ̃1(λ′qi(θ)))

]
where Λn(θ) = {λ|λ′qi(θ) ∈ A, i = 1, ..., n}. First of all, notice that

ψ(x) = xγ̃1(x)− γ(γ̃1(x))

is well defined on A. By the Inverse Function Theorem and strict convexity of γ(·) on
(aγ , bγ),

∂ψ2(x)
∂x

=
1

γ2(γ̃1(x))
> 0

for x ∈ A, and hence ψ(·) is strictly convex on x ∈ A. The first order conditions for λ are
given by

(.2)
1
n

n∑
i=1

γ̃1(λ′qi(θ))qi(θ̂) = 0

that corresponds the first order conditions for λ in the MD problem. Since
n∑
i=1

qi(θ̂)qi(θ̂)′γ̃2(λ̂′qi(θ̂))

is non singular by assumption then there is a neighborhood of θ̂ where λ̂(θ) that solves
(.2) exists and it is continuously differentiable in a neighborhood of θ. By the envelope
theorem, the first order conditions for θ are then given by

1
n

n∑
i=1

γ̃1(λ′q(wi, θ))∇θqi(θ)′λ = 0

and the result follows.

Proof to Theorem 2. Let V = {y : y = ψ1(x), x ∈ (aψ, bψ)} and consider the function

γ(x) = xψ̃1(x)− ψ(ψ̃1(x))

that is well defined on V. Strict convexity follows as in the proof of Theorem 5.1 by noting
that strict convexity of ψ(·) implies

∂γ2(x)
∂x

=
1

ψ2(ψ̃1(x))
> 0
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By Assumption, there exist λ̂ ∈ Rm and θ ∈ Θ such that {λ̂′qi(θ̂) ∈ V, i = 1, ..., n} and
satisfy the first order conditions

n∑
i=1

ψ1(λ̂′q(θ̂))q(θ̂) = 0

n∑
i=1

ψ1(λ̂′q(θ̂))∇θq(θ̂)′λ̂ = 0

The MD problem

min
π,θ

1
n

n∑
i=1

{
nπiψ̃1(nπi)− ψ(ψ̃1(nπi))

}
s.t.

n∑
i=1

πiqi(θ) = 0;
n∑
i=1

πi = 1

has first order conditions given by

ψ̃1(nπi) = η + λ′qi(θ)
n∑
i=1

πi∇θqi(θ) = 0

Notice that γ1 = ψ̃1(1) = 0, since by assumption ψ1(0) = 1 and γ2 = ψ̃2(1) = 1 since

γ2 = ψ̃2(1) =
1

ψ2(ψ̃1(1))
=

1
ψ2(0)

= 1

Setting the Lagrange multiplier η = 0, by hypothesis there exists λ̂ ∈ Rm and θ ∈ Θ such
that λ′qi(θ) ∈ V , i = 1, ..., n and hence by inverting ψ̃1(·)

(.3) πi =
1
n
ψ1(λ′qi(θ))

Substituting (.3) into
∑n

i=1 πiqi(θ) = 0 gives
n∑
i=1

ψ1(λ′qi(θ))qi(θ) = 0

and the result follows.

Proof to Theorem 3. Since by assumption (λ̂, θ̂) are interior solutions, it follows that
λ̂′qi(θ̂) ∈ V. The normalized GEL weights are feasible for the MD problem, since {π̂i}ni=1

solve
∑n

i=1 π̂iqi(θ̂) = 0 and
∑n

i=1 π̂i = 1. Let us show that π̂i is optimal. Under the
assumptions made on ψ(·), the Fenchel inequality applies (see Rockafellar (1970)),

ψ(s) = sγ̃1(s)− γ(γ̃1(s)) ≥ st− γ(t)

for all t ∈ (aγ , bγ) and for all s ∈ V. Seting s = λ̂′qi(θ̂) and t = p(wi, θ̂), where p(wi, θ̂)
denotes any feasible solutions, the above inequality can be written as

(.4) γ(γ̃1(λ̂′qi(θ̂))− λ̂′qi(θ̂)γ̃1(λ̂′qi(θ̂) ≤ γ(p(wi, θ̂))− λ̂′qi(θ̂)p(wi, θ̂)
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Feasibility of p(wi, θ̂) implies that it must satisfies the constraint given by
∑n

i=1 p(w, θ̂)qi(θ̂) =
0. Summing (.4) over i = 1, . . . , n, we obtain

n∑
i=1

γ(γ̃1(λ̂′qi(θ̂))) ≤
n∑
i=1

γ(p(wi, θ))

By strictly convexity of γ(·) on (aγ , bγ) it follows that for all x, y ∈ (aγ , bγ), γ(y) >
γ(x) + γ1(x)(y − x), that in turns implies that

n∑
i=1

γ

(
n

γ̃1(λ̂′qi(θ̂))∑n
i=1 γ̃1(λ̂′qi(θ̂))

)
≤

n∑
i=1

γ(γ̃1(λ̂′qi(θ̂)))

+
n∑
i=1

γ1(γ̃1(λ̂′qi(θ̂)))

(
n

γ̃1(λ̂′qi(θ̂))∑n
i=1 γ̃1(λ̂′qi(θ̂))

− p(wi, θ)

)

=
n∑
i=1

γ(γ̃1(λ̂′qi(θ̂)))

where the equality comes from the fact theγ1(γ̃1(λ̂′qi(θ̂))) = λ̂′qi(θ̂) and
∑

i λ̂
′qi(θ̂)γ̃1(λ̂′qi(θ̂)) =∑

i λ̂
′qi(θ̂)ψ1(λ̂′qi(θ̂)) = 0, since γ̃1(x) = ψ1(x) and by assumption λ̂ solve the GEL first

order condition. We also need to prove that θ̂ from the GEL is optimal for the MD
problem. Let θ̃ ∈ Θ be any other MD feasible estimator. Feasibility here means that∑n

i=1 γ̃1(λ̂′qi(θ̃))qi(θ̃) = 0. It holds that
n∑
i=1

ψ(λ̂′qi(θ̂)) ≥
n∑
i=1

ψ(λ̂′qi(θ̃))

Notice that the weak inequality is necessary because we are not assuming that the solutions
in θ̂ is unique. Using ψ(s) = sγ̃1(s)− γ(γ̃1(s)) and the feasibility of θ̃ in the MD problem

n∑
i=1

γ(γ̃1(λ̂′qi(θ̃))−
n∑
i=1

γ(γ̃1(λ̂′qi(θ̂)) ≥ λ̂′
n∑
i=1

qi(θ̃)γ̃1(λ̂qi(θ̃))− λ̂′
n∑
i=1

qi(θ̂)γ̃1(λ̂qi(θ̂))

≥ 0

And the result follows.

Proof to Corollary 1. The results follows from the definition of ψ(·),

ψ(λ̂′qi(θ̂)) = λ̂′qi(θ̂)γ̃1(λ̂′qi(θ̂))− γ(γ̃1(λ̂′qi(θ̂)))

Summing over i = 1, 2, ..., n and using
∑n

i γ̃1(λ̂′qi(θ̂))qi(θ̂) = 0 yields

1
n

n∑
i=1

ψ(λ̂′qi(θ̂)) = − 1
n

n∑
i=1

γ(γ̃1(λ̂′qi(θ̂)))

as required.

Proof to Theorem 5. The consistency follows from using the duality results estab-
lished in the paper and using the result of NS for GEL. To relax their assumption
E[supθ∈Θ ‖q(w, θ)‖α] = 0, α > 2 required by their Lemma A1, it is sufficient to show
that Assumption A.(iv) implies maxθ∈Θ,i≤n ‖q(wi, θ)‖ = op(n1/2). This can be shown
along the lines of Owen (1990). Since supθ∈ΘE(‖q(w, θ)‖2) ≤ ∞ for θ ∈ Θ implies that
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i=1 P (supθ∈Θ ‖q(wi, θ)‖2 > n) <∞ and hence that

∑∞
i=1 P (supθ∈Θ ‖q(wi, θ)‖ > n1/2) <

∞. By applications of the Borel Cantelli Lemma,
{
supθ∈Θ ‖q(wn, θ)‖ > n1/2

}
finitely of-

ten with probability 1. Also, for any A > 0,
{
supθ∈Θ ‖q(wi, θ)‖ > An1/2

}
finitely often

and hence
lim
n→∞

{ sup
1≤i≤n

sup
θ∈Θ

‖q(wi, θ)‖}n−1/2 ≤ A

holds with probability 1. The probability 1 applies simultaneously over any countable set
of values A so

sup
1≤i≤n

sup
θ∈Θ

‖q(wi, θ)‖ = o(n1/2)

Let Λ̃n(θ) = {λ : ‖λ‖ < n−ζ}. By Cauchy-Swartz

sup
θ∈Θ,λ∈Λ̃n,1≤i≤n

|λ′qi(θ)| ≤ n−ζ sup
θ∈Θ,1≤i≤n

‖qi(θ)‖ = op(n−ζ+1/2)

and supθ∈Θ,λ∈Λ̃n,1≤i≤n |λ
′qi(θ)| = op(1) for ζ ≥ 1/2. Theorem 3.1 of NS then holds by

replacing their Assumption 1.(d) with E[supθ∈Θ ‖q(w, θ)‖α], α = 2.

Proof to Theorem 6. The first order conditions are
n∑
i=1

γ̃1(γ1 + λ̂′q(wi, θ̂))q(wi, θ̂) = 0

n∑
i=1

γ̃1(γ1 + λ̂′q(wi, θ̂))∇θq(wi, θ̂)′λ = 0

Applying a law of large number for stationary and ergodic sequences we have that

Γ̂(θo) ≡ n−1
n∑
i

∇θqi(θo)
p−→ −Γo; V̂ (θo) ≡ n−1

n∑
i

qi(θo)qi(θo)′
p−→ Vo

Using maxi |λ′q(wi, θ)|
p−→ 0, expanding around λ̂ = 0 and θ̂ = θo as in Newey and

Smith (2004) and noting that from the normalizations imposed on γ it follows that
dγ̃1(x)/dx|x=γ1 = 1, we have

√
n

(
θ̂ − θo
λ̂

)
=
√
n

(
−So Bo
B′
o Po

)(
0
− 1
n

∑n
i=1 q(θo)

)
+ op(1)

where So, Bo and Po are given by So = (Γ′oV
−1
o Γo)−1, Po = (V −1

o − V −1
o ΓoSoΓ′oV

−1
o ) and

Bo = SoΓ′oV
−1
o . The conclusion follows by application of the CLT for stationary ergodic

sequences.

Proof to Theorem 7. Imbens (1997) gives a proof for the EL case. Here we extend
the result to the MD class of estimators. Let ω̂i(λ̂, θ̂) = γ̃1(λ̂′q(wi, θ̂))/

∑n
i γ̃1(λ̂′q(wi, θ̂)).

Taylor expansion of ω̂i(λ̂, θ̂) around λ̂ = 0 and using maxi≤n |λ̂′q(wi, θ̂)|
p−→ 0 gives, after

some manipulation

ω̂i(λ̂, θ̂) =
1
n

+
1
n

(1− γ3/2)λ̂′qi(θ̂)qi(θ̂)′λ̂+ op(n−1)

=
1
n

+ op(n−1)
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Then, Mn(w) = Qn(w) + op(1). Thus, by the Glivenko-Cantelli, we have, pointwise, that

Mn(w)−Qo(w)
p−→ 0

Let β = (F(w), θ̂)′, fi(β) = (Mi(w)−Qo(w), qi(θ)′)′ and ∇βfi(β) = ∂fi/∂β. The variance
of β under the model (2.1) is given by

E (∇βfi(βo))
′E
(
fi(βo)fi(βo)′

)−1
E (∇βfi(βo))

Then, for Q̃o = Qo(w)(1−Qo(w)) and qwi (θ) = qi(θ)1l{wi≤w} and qo(w) =
∫
qi(θo)1l{wi≤w}dQo,

we have

E
(
fi(βo)fi(βo)′

)−1 =
(
4o(w) Πo(w)
Πo(w) Ξ(w)

)
where ∆o(w) =

(
Q̃o − qo(w)V −1

o qo(w)
)−1

, Ξo = V −1
o −∆(w)V −1

o qo(w)qo(w)′V −1
o and Π =

−∆o(w)qo(w). The variance of Mn(w) is then given by ∆o(w)−1 = Q̃o − qo(w)V −1
o qo(w).

Appendix A. Asymptotic Expansions

This Appendix provides proofs for the theorems concerning higher order properties
given in Section 6.

Let mi(τ) = m(wi, τ) denotes a vector valued function mi(τ) : Θτ → Rg and let
mn(τ) = 1

n

∑n
i mi(τ). For Lemma B.2 and Lemma B.3 below, it is assumed that the τ̂

is
√
n-consistent for τo solving the unbiased estimating equation

√
nmn(τ̂) = 0, at least

with probability tending to one.
The Jacobian of mn(τ) is denoted by Jn(τ) and Qn(τ) = Jn(τ)−1. The higher order

derivatives of mn(τ) are arranged recursively into matrices. Hn(τ), the matrix collecting
the second derivatives of mn(τ) is of dimension g × g2. Dn(τ), the matrix collecting
the third derivatives of mn(τ) is of dimension g × g3. The arrangement of the elements
(∂/∂τj∂τr)mT (τ) for j, r = 1, . . . , g, into Hn(τ) is as follow:

Hn(τ) =
(

(∂2/∂τ1∂τ
′)mn(τ) · · · (∂2/∂τg∂τ

′)mn(τ)
)

where (∂2/∂τj∂τ
′)mn(τ) is a g × g matrix. The arrangement of the third derivatives into

Dn(τ) follows the same pattern

Dn(τ) =
(

(∂3/∂τ1∂τ1∂τ
′)mn(τ) · · · (∂3/∂τg∂τg∂τ

′)mn(τ)
)

where (∂3/∂τj∂τr∂τ
′)mn(τ) is a g × g matrix. This specification of the higher order

derivatives is very convenient because it allows expressing Taylor’s expansions as tensor
products. Very similar notation is used by Rilstone, Srivastava, and Ullah (1996) and
indeed Lemma B.2 and Lemma B.3 are adaptation of their results.

Given two matrices A ∈ Rm×kand B ∈ Rg×j , the Kronecker product, A⊗B, is defined
as the (m · g)× (k · j) matrix whose elements are given by [aijB]ij . The vector ej denote
the j − th unitary vector of dimension m × 1 or of dimension k × 1, depending on the
contest. If x is g× 1 vector, [x]u denotes the u-th element of x. Similarly, [x]1,...,k denotes
the first k elements of x.

Lemmas.

Lemma 1. Suppose Jn is bounded and uniformly positive definite matrix such that Jn
p−→

Jo. Suppose there exists a matrix Zn = Op(n−1/2) such that Jn = Jo − Zn, then the
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following expansions hold for Qn = J−1
n :

Qn = Qo +Op(n−1/2)

Qn = Qo −QoZnQo +Op(n−1)

Qn = Qo −QoZnQo +QoZnQoZnQo +Op(n−3/2)

where Qo = plimn→∞Qn.

Lemma 2. Suppose (i) ‖ τ̂−τo ‖= Op(n−1/2); (ii) Qo(τ) = E[∇τmi(τ)] <∞, for any τ ∈

S(τo, δ), δ > 0, exists; (iii) Qomn(τo) = Op(n−1/2); (iv) for j, r = 1, . . . , g E
[(

∂mi(τo)
∂τj∂τr

)2
]
;

(iv) there exists B̄(wi), E[B̄(wi)] <∞ and δ > 0 such that for j, r = 1, . . . , g,

|(∂/∂τj∂τr)mi(τ)− (∂/∂τj∂τr)mi(τo)| ≤ B̄i(w) ‖ τ − τo ‖
for any τ ∈ S(τo, δ).

Then
(τ̂ − τo) = fn + bn +Op(n−3/2)

where
fn = −Qomn(τ)

and
bn = QoZn(τo)fn(τo)−

1
2
Ho(fn(τo)⊗ fn(τo))

Lemma 3. Suppose (i) ‖ τ̂ − τo ‖= Op(n−1/2); (ii) Qo(τ) = E[∇τmi(τ)] < ∞, for
any τ ∈ S(τo, δ), δ > 0, exists; (iii) Qomn(τo) = Op(n−1/2); (iv) for j, r, p = 1, . . . , g

E

[(
∂mi(τo)
∂τj∂τr∂τp

)2
]
≤ ∞; (vi) there exists C̄(wi), E[C̄(wi)] < ∞ and δ > 0 such that for

j, r, p = 1, . . . , g,

|(∂/∂τj∂τr∂τl)mi(τ)− (∂/∂τj∂τr∂τl)mi(τo)| ≤ C̄i(w) ‖ τ − τo ‖
, E[C̄i(w)] <∞

Then

(τ̂ − τ0) = fn + bn + rn +Op(n−2)

where the expressions for fn(τo) and bn(τo) are the same of those in Lemma B.2 and

rn = −1
2
QoHo {(fn + bn)⊗ (an + bn)}

+
1
6
Do {fn ⊗ fn ⊗ fn}

Proofs of Lemma.

Proof of Lemma B1. By assumption QoZn = Op(n−1/2). Rewrite Qn as Qn = (Jo + Zn).
Multiplying and dividing by (Qo −QoZnQo) yields

Qn = (Jo + Zn)−1

= (Qo −QoZnQo)(Qo −QoZnQo)−1(I +QoZn)−1

= (Qo −QoZnQo)(I − ZnQoZnQo)−1

Notice that

(I − ZnQoZnQo)−1 = (I + ZnQoZnQo) +Op(n−3/2)
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Thus,

Qn = (Qo −QoZnQo)
[
I + ZnQoZnQo +Op(n−3/2)

]
= Qo −QoZnQo +QoZnQoZnQo +Op(n−3/2)

The result follows by noting that last two terms are of the required order, that is Op(n−1/2)
and Op(n−1) respectively.

Proof to Lemma B2. By assumption τ̂ is a consistent root of mn(τ), that is

mn(τ̂)/
√
n = 0

at least with probability tending to one. Taking a mean value expansion around τo gives

mn(τo)/
√
n+ Jn(τo)(τ̂ − τo)/

√
n+

1
2
Hn(τ̄)[(τ̂ − τo)⊗ (τ̂ − τo)]/

√
n = 0

where τ̄ lies between τ̂ and τo and it is allowed to differ between rows of Hn(·). Solving
for (τ̂ − τo) yields

(τ̂ − τo) = −Qn(τo)mn(τo)−
1
2
Qn(τo)Hn(τ̄)[(τ̂ − τo)⊗ (τ̂ − τo)]

Adding and subtracting 1
2Qn(τo)Ho[(τ̂ − τo)⊗ (τ̂ − τo)] gives

(τ̂ − τo) = −Qn(τo)mn(τo)−
1
2
Qn(τo)Ho[(τ̂ − τo)⊗ (τ̂ − τo)]

+
1
2
Qn(τo) {Ho −Hn(τ̄)} [(τ̂ − τo)⊗ (τ̂ − τo)]

By the assumption, the Jacobian is bounded

‖Jn(τo)− Jo‖ = Op(n−1/2)

It follows that the results of Lemma 1 can be applied to Jn(τo) with Zn(τo) = Jn(τo)−Jo.
Substituting the approximation for Qn(τo) from the Lemma 1 up to order n−1 in the
first term, up to order n−1/2 in the second and third terms and substituting (τ̂ − τo) =
−Qomn(τo) +Op(n−1) in the terms involved in the Kronecker products, gives

(τ̂ − τo) = −
{
Qo −QoZn(τo)Qo +Op(n−1)

}
mn(τo)(A.1)

−1
2

{
Qo +Op(n−1/2)

}
Ho {Qomn(τo)⊗Qomn(τo)}

+
1
2

{
Qo +Op(n−1/2)

}
{Ho −Hn(τ̄)} {Qomn(τo)⊗Qo,mmn(τo)}

It can be shown that the elements of {Ho −Hn(τ̄)} are bounded in probability of order
n−1/2 . The (j, r) element of {Ho −Hn(τ)} satisfies the following inequality

(A.2)
∥∥∥∥∂2mn(τ̄)
∂τj∂τr

− E

[
∂2mn(τo)
∂τj∂τr

]∥∥∥∥
≤
∥∥∥∥∂2mn(τ̄)
∂τj∂τr

− ∂2mn(τo)
∂τj∂τr

∥∥∥∥+
∥∥∥∥∂2mn(τo)
∂τj∂τr

− E

[
∂2mn(τo)
∂τj∂τr

]∥∥∥∥
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The first term after the inequality is bounded by∥∥∥∥∂2mn(τ̄)
∂τj∂τr

− ∂2mn(τo)
∂τj∂τr

∥∥∥∥ ≤ 1
n

n∑
i=1

∥∥∥∥∂2mi(τ̄)
∂τj∂τr

− ∂2mi(τo)
∂τj∂τr

∥∥∥∥
≤

[
1
n

n∑
t=1

B̄i(w)

]
‖τ̄ − τo‖

By (iii) and the law of large numbers,
∑n

i B̄i(w)/n = Op(1). Since τ̄
p−→ τo by (i) ‖τ̄−τo‖ =

Op(n−1/2) and thus
[

1
n

∑n
t=1 B̄i(w)

]
‖τ̄ − τo‖ = Op(n−1/2), giving that∥∥∥∥∂2mn(τ̄)

∂τj∂τr
− ∂2mn(τo)

∂τj∂τr

∥∥∥∥ = Op(n−1/2)

Under (iv) and by applications of the Central Limit Theorem gives that∥∥∥∥∂2mn(τo)
∂τj∂τr

− E

[
∂2mn(τo)
∂τj∂τr

]∥∥∥∥ = Op(n−1/2)

and hence, Ho − Hn(τ̄) = Op(n−1/2). By observing that the Kronecker products in the
second and third terms of (A.1) are are bounded in probability of order n−1 it follows that

Op(n−1/2) · {Ho −Hn(τ̄)} {Qomn(τo)⊗Qomn(τo)} = op(n−3/2)

and similarly
Op(n−1/2) ·Ho {Qomn(τo)⊗Qomn(τo)} = Op(n−3/2)

Since Op(n−1)mn(τo) = Op(n−3/2), collecting terms and dropping terms of order n−ζ ,
ζ ≥ 3/2, gives

(τ̂ − τo) = −Qo(τo)mn(τo) +QoZn(τo)Qomn(τo)

−1
2
QoHo {Qomn(τo)⊗Qomn(τo)}+Op(n−3/2)

as required.

Proof to Lemma B.3. The prove is very similar to that of Lemma B.2. By third order
Taylor expansion with Lagrange remainder of mn(τ̂)/

√
n = 0 around τo and by solving

for τ̂ − τo, we obtain

(τ̂ − τo) = −Qn(τo)mn(τo)−
1
2
Qn(τo)Hn(τo) {(τ̂ − τo)⊗ (τ̂ − τo)}

−1
6
Qn(τo)Dn(τ̄) {(τ̂ − τo)⊗ (τ̂ − τo)⊗ (τ̂ − τo)}

where τ̄ lies between τ̂ and τo and it is allowed to differ across different rows of Dn(·).
Adding and subtracting the last term with Dn(τ̄) replaced by Do, the above expression
can be rewritten as

(τ̂ − τo) = −Qn(τo)mn(τo)−
1
2
Qn(τo) (Ho −Hn(τo)) {(τ̂ − τo)⊗ (τ̂ − τo)}

−1
6
Qn(τo)Do {(τ̂ − τo)⊗ (τ̂ − τo)⊗ (τ̂ − τo)}

−1
6
Qn(τo) [Dn(τ̄)−Do] {(τ̂ − τo)⊗ (τ̂ − τo)⊗ (τ̂ − τo)}
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where Ho−Hn(τo) is Op(n−1/2) in virtue of (iv) by application of the CLT to its elements.
Also, (τ̂ − τo) = Op(n−1/2) and the Kronecker products in the second and third term is
On(n−3/2). The term involving the difference between the matrix of third derivatives and
its expectation is bounded in probability. Considering the generic element of [Dn(τ̄)−Do]
gives that∥∥∥∥ ∂3mn(τ̄)

∂τj∂τr∂τl
− E

∂3mn(τo)
∂τj∂τr∂τl

∥∥∥∥
≤
∥∥∥∥ ∂3mn(τ̄)
∂τj∂τr∂τl

− ∂3mn(τo)
∂τj∂τr∂τl

∥∥∥∥+
∥∥∥∥ ∂3mn(τo)
∂τj∂τr∂τl

− E

[
∂3mn(τo)
∂τj∂τr∂τl

]∥∥∥∥
≤ 1
n

n∑
i=1

∥∥∥∥ ∂3mi(τ̄)
∂τj∂τr∂τl

− ∂3mi(τo)
∂τj∂τr∂τl

∥∥∥∥+
1
n

n∑
i=1

∥∥∥∥ ∂3

∂τj∂τr∂τl
mi(τo)− E

∂3

∂τj∂τr∂τl
mi(τo)

∥∥∥∥
The first term after the inequality above is, by assumption, bounded above by ‖τ̄ −
τo‖ 1

n

∑n
i C̄i(w). Since τ̄

p−→ τo, normality of
√
n(τ̂ − τo) and EC̄i(w) ≤ ∞, implies that

‖τ̄ − τo‖ 1
n

∑n
i C̄i(w) = Op(n−1/2). The second term is Op(n−1/2) by (v) and the Central

Limit Theorem. Substituting the expansions of Qm(τo) given in Lemma 1 and collecting
terms of similar order, we obtain

(τ̂ − τo) = −[Qo −QoZn(τo)Qo +QoZn(τo)QoVn(τo)Qo]mn(τo)

−1
2

[Qo −QoZn(τo)Qo]Ho {(τ̂ − τo)⊗ (τ̂ − τo)}

−1
2
Qo[Ho −Hn(τo)] {(τ̂ − τo)⊗ (τ̂ − τo)}

−1
6
QoDo {(τ̂ − τo)⊗ (τ̂ − τo)⊗ (τ̂ − τo)}

+Op(n−3/2)mn(τo)︸ ︷︷ ︸
Op(n−2)

+Op(n−1)[Ho −Hn(τo)] {(τ̂ − τ0)⊗ (τ̂ − τ0)}︸ ︷︷ ︸
Op(n−1)Op(n−1/2)Op(n−1)=op(n−2)

+Op(n−1/2)Do,m {(τ̂ − τ0)⊗ (τ̂ − τ0)⊗ (τ̂ − τ0)}︸ ︷︷ ︸
Op(n−1/2)·Op(n−1)·Op(n−3/2)=Op(n−2)

+
1
6
Qo (Dn(τ̄)−Do) {(τ̂ − τ0)⊗ (τ̂ − τ0)⊗ (τ̂ − τ0)}︸ ︷︷ ︸

Op(1)·Op(n−1/2)Op(n−3/2)=Op(n−2)

Substituting (τ−τo) = fn(τo)+Op(n−1/2) in the second and third summand and (τ̂−τo) =
fn(τo) +An(τo) +Op(n−3/2) in the fourth term, and noting that

QoZn(τo)Qo {[fn(τo)⊗An(τo)] + [fn(τo)⊗An(τo)]} = op(n−2)

and dropping terms of order lower than Op(n−ζ) ζ ≥ 2 gives

(τ̂ − τo) = −Qomn(τo) +QoZn(τo)Qomn(τo)

−QoZn(τo)QoVn(τo)Qomn(τo)

− 1
2
QoHo {[fn(τo)⊗An(τo)] + [fn(τo)⊗An(τo)]}

− 1
2
Qo[Ho −Hn(τo)] {fn(τo)⊗ fn(τo)}
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+Op(n−2)

as required.

Proof to Theorem 8. Let g = k+m and h = k+1. Let τ̂ denote the (k+m)×1 vector that
stacks the MD estimator of θo and λ, that is τ̂ = (θ̂′, λ̂′)′. With probability approaching
to one, τ̂ solves the first order conditions of MD given by

[mn(τ̂)]1,k ≡ 1
n

n∑
i=1

π̂i∇θq(w, θ̂)′λ̂ = 0

[mn(τ̂)]h,g ≡ 1
n

n∑
i=1

π̂iq(w, θ̂) = 0

where here and throughout the proof π̂i = 1
n γ̃1(γ1 + λ̂′q(wi, θ̂)) and even if the arguments

are dropped for notational reasons, π̂i must be interpreted as function of θ̂ and λ̂. Similarly,
π̄i = 1

n γ̃1(γ1+λ̄′q(wi, θ̄)). Form Theorem ?.??, it follows that (τ̂−τo) = −Qomn(τo)+op(1),
where

Qo =
[
−So Bo
B′
o Po

]
To be apply to apply Lemma B.1, required by Lemma B.2, is sufficient to show that
‖Jn(τo)− Jo‖ is of order n−1/2. Note that

Jn(τo) =
[

0 1
n

∑n
i ∇θqi(θo)′

1
n

∑n
i ∇θq(w, θo) 1

n

∑n
i qi(θo)qi(θo)

′

]
By Assumption C, the elements of 1

n

∑n
i ∇θqi(θo) and 1

n

∑n
i qi(θo)qi(θo)

′ obeys the CLT
and hence ‖Jn(τo)−Jo‖ = Op(n−1/2). To apply Lemma B.2, it is sufficient that ‖ Hn(τ̄)−
Ho ‖ be of order n−1/2. For j = 1, . . . k + m, and letting νi(τ) = γ1 + λ′qi(θ) and
bi(τ) = ∂νi(τ)/∂τ

∂2mi(τ)
∂τj∂τ

= γ̃1(νi(τ))∂2bi(τ)/∂τj∂τ + γ̃3(νi(τ))bi(τ)jbi(τ)bi(τ)′

+γ̃2(νi(τ))
{
∂[bi(τ)bi(τ)′]/∂τj + bi(τ)j∂bi(τ)/∂τ

}
where γ̃2(x) = 1/γ2(γ̃1(x)) and γ̃3(x) = −γ3(γ̃1(x))γ̃2(x)/[γ2(γ̃1(x))]2 and γ3(x) = ∂3γ(x)/∂3x.
By assumption, γ̃j(x), j = 2, 3 are compositions of continuously differentiable and function
in a neighborhood of zero and thus for τ̄ ∈ S(τo, δ)

|γ̃1(νi(τ̄))| ≤ C‖τ̄‖‖q(wi, θ̄)‖ ≤ CBi(w)‖τ̄ − τo‖
and similarly

γ̃j(νi(τ̄)) ≤ CBi(w)‖τ̄ − τo‖
Since the expressions for the second derivatives involves at maximum combinations of
three functions b(·), the elements of ‖Hm(τ)−Hm(τo)‖ are bounded in a neighborhood by
C 1
n

∑n
i B4

i (w)‖θ̄−θo‖ and by Assumption C, E[Bi(w)4] ≤ ∞, ‖Hn(τ)−Ho‖ = Op(n−1/2).
Thus, Lemma B.2 applies with B̄(wi) = B(wi)4.

The terms of order n−1/2 are given by

(A.3) Qoqn =
(
−Boqn
−Poqn

)
=
(
un
ln

)
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The terms of order n−1 are given by

bn = QoZnQoqn −QoHo

{(
un
ln

)
⊗
(
un
ln

)}
/2

where

Zn =
[

0 Γ′o − Γ′n
Γo − Γn Vo − Vn

]
It follows that using (A.3) we obtain

QoZnQoqn =
{[

Ik 0
0 Im

]
−
[
BoΓn −SoΓ′n +BoVn
PoΓn B′

oΓ
′
n + PoVn

]}(
un
ln

)
=

[
un −BoΓnun + SoΓ′nun −BoVnln
ln − PoΓnun −B′

oΓ
′
nln − PoVnln

]
Define βshj ≡ E [(∂/∂sj∂h)[mn(τo)]1,k] and µshj ≡ E [(∂/∂sj∂h)[mn(τo)]h,g] for s, h =
{θ, λ}. The term

QoHo {f(τo)⊗ f(τo)} =
(
−So∇1 +Bo∇2

B′
o∇1 + Po∇2

)
where

∇1 =
k∑
j=1

βθθj un,jun +
k∑
j=1

βθλj un,jln

m∑
j=1

βλθj ln,jun +
m∑
j=1

βλθj ln,jln

∇2 =
k∑
j=1

µθθj unun,j +
k∑
j=1

µθλj un,jln

m∑
j=1

µλθj ln,jun +
m∑
j=1

µλλj ln,jln

and ln,j and un,j denote respectively the j-th elements of ln and un respectively. Thus,
the first k elements of the expansion for (τ̂ − τo) are given by

(θ̂ − θo) = un− BoΓnun + SoΓ′nun −BoVnln

+
1
2
So∇1 −

1
2
Bo∇2

The expression above gives the first conclusion for fθn = un and

bθn = −BoΓnun + SoΓ′nun −BoVnln +
1
2
So∇1 −

1
2
Bo∇2

Similarly, taking the last m elements yields the expression up to order n−3/2 for the
Lagrange multiplier

λ̂ = ln− PoΓnun +B′
oΓ

′
nln − PoVnln

−1
2
B′
o∇1 −

1
2
Po∇2
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Giving for fλn = ln and

bλn = PoΓnun +B′
oΓ

′
nln + PoVnln −

1
2
B′
o∇1 −

1
2
Po∇2

the conclusion of the theorem.

Proof to Theorem 9. The bias up to order n−1 of θ̂ is given by the expectation of the
terms of order n−1 in the expansion of θ̂. Dropping terms of zero expectation, the higher
order bias is given by

E
[
bθn

]
= −E [BoΓnun] + E

[
SoΓ′nun

]
− E [BoVnln]

+So∇1/2−Bo∇2/2

We analyze the expectation of the terms involved in E(bθn):
(i) E [BoΓnun]

E [BoΓnun] = −Bo
n∑
i=1

n∑
j=1

E [∇θqi(θo)Boqj(θo)] /n2

= −BoE [∇θqt(θ)Boqt(θo)] /n

(ii) E [BoVnln]

E (BoVnln) = −Bo
n∑
i=1

n∑
j=1

E [qi(θo)qi(θo)Poqj(θo)] /n2

= −BoE [qi(θo)qi(θo)Poqi(θo)] /n

(iii) E [SoΓnln]

E (SoΓnln) = − So

n∑
i=1

n∑
j=1

E [∇θqi(θo)Poqj(θo)] /n2

= − SoE [∇θqi(θ)Poqi(θo)] /n

(iv) E [So∇1]

E (∇1) =
k∑
j=1

βθλj E(un,jln) +
m∑
j=1

βλθj E(ln,jun)

+
m∑
j=1

βλλj E(ln,jln)
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It is easy to show that the expectations involving products of the influence function of λ
and θ vanish:

E [un,jln] = E
[
lnu

′
n

]
ej

= E

[
Po

n∑
i=1

qi(θo)
n∑
i=1

q′i(θo)B
′
o

]
ej

= PoE[qi(θo)qi(θo)′]B′
oej

= PoVoB
′
oej = 0

and similarly

E [ln,jun] = E(unl′n)ej
= BoE[qi(θo)qi(θo)′]Poej
= 0

Thus, E(∇1) =
∑m

j=1 β
λλ
j E(ln,jln). By PoVoPo = Po, it follows that E[ln,jln] = Poej/n.

The terms βλλj is given by

βλλj = E
[
∇θqt(θo)′ejqi(θo)′ + qt,j∇θqt(θo)′

]
and by symmetry of Po follows that

E[∇1] = 2E
[
∇θqi(θo)′Poqi(θo)

]
yielding

(A.4) E[So∇1] = 2SoE
[
∇θqi(θo)′Poqi(θo)

]
(v) E[Bo∇2]

E[∇2] =
k∑
j=1

µθθj E[un,jun] +
k∑
j=1

µθλj E[un,jln]

+
m∑
j=1

µλθj E[ln,jun] +
m∑
j=1

µλλj E[ln,jln]

By the same arguments of point (iv), E[ln,jun] = E[un,jln] = 0, and hence

E(∇2) =
k∑
j=1

µθθj E[un,jun] +
m∑
j=1

µλλj E[ln,jln]

where

µθθj = E

[
∂qi(θo)
∂θj∂θ

]
; µλλj = γ3E[qi,j(θo)qi(θo)qi(θo)]

Since E(un,jun) = BoVoB
′
oej/n and BoVoB′

o = So, we have
k∑
j=1

µθθj E[un,jun] =
k∑
j=1

E

[
∂qi(θo)
∂θj∂θ

]
Soej/n
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and noting that E(ln,jln) = PoVoPoej = Poej yields
m∑
j=1

µλλj E(ln,jln) =
m∑
j=1

γ3E[qi,j(θo)qi(θo)qi(θo)′]Poej/n

=
m∑
j=1

γ3E[qi(θo)qi(θo)′Poejqi,j(θo)]/n

= γ3E

qi(θo)qi(θo)
 m∑
j=1

Poeje
′
j

 qi(θo)

 /n
= γ3E [qi(θo)qi(θo)Poqi(θo)] /n

and hence

E(∇2) = γ3E [qi(θo)qi(θo)Poqi(θo)] /n+
k∑
j=1

E

[
∂qi(θo)
∂θj∂θ

]
Soej/n

Substituting expression of part (i)-(v) into the expectation for the term of order n−1 in
the asymptotic expansion we obtain

E(bn) = −E[BoΓnun] + E[SoΓ′nun]− E[BoVnln]

+
1
2
SoE(∇1)−

1
2
BoE(∇2)

B−1(θo) = BoE [∇θqt(θ)Boqt(θo)] /n
−SoE [∇θqi(θ)Poqi(θo)] /n
+BoE [qi(θo)qi(θo)Poqi(θo)] /n

+SoE
[
∇θqi(θo)′Poqi(θo)

]
/n− 1

2
γ3BoE

[
qi(θo)qi(θo)′Poqi(θo)

]
/n

−1
2
Bo

k∑
j=1

E

[
∂qi(θo)
∂θj∂θ

]
Soej/n

simplifying and rearranging yields

B−1(θ) = BoE [∇θqt(θ)Boqt(θo)] /n+
(
1− γ3

2

)
BoE

[
qi(θo)qi(θo)′Poqi(θo)

]
/n

−1
2
Bo

k∑
j=1

E

[
∂qi(θo)
∂θj∂θ

]
Soej/n

as required.

Proof to Theorem 10. Let Gi(θo) = Gi and gi(θo) = gi. The first therm of the bias of
Theorem 9 can be written as

(A.5) BoE[ziGiBozigi]

Noting that GiBozi is a scalar, we can write (A.5) as

BoE[ziz′iB
′
oG

′
igi]
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By the law of iterated expectation

BoE[ziz′iB
′
oG

′
igi] = BoE[ziz′i]B

′
oσgG

and hence

E[ziz′i]B
′
oσgG = E[ziGi]S̃oσgG/σ2

g

BoE[ziz′i]B
′
oσgG = BoE[ziGi]S̃oσgG/σ2

g

= S̃oσgG/σ
2
g(A.6)

where S̃o = E[Gi(θo)′z′i]E[ziz′i]
−1E[ziGi(θo)]. For the second term, using the law of iterated

expectations,

(A.7) E[ziz′iPozig
3
i ] = E[ziz′iPozi]σ

3
g

Substituting (A.6) and (A.7) into the formula for the bias gives the desired result.

Proof to Theorem 11. When the first order conditions are modified, the expectations
of the terms in the expansions hold with the exception of the expectation in (A.4), because
it involves βθθjr . Multiplying the Lagrange multiplier re-scale the derivatives by κ

βλλj = κE
[
∇θqt(θo)′ejqi(θo)′ + qt,j∇θqt(θo)′

]
Hence, the expectation in (A.4) becomes

E[So∇1] = 2κSoE
[
∇θqi(θo)′Poqi(θo)

]
For the instrumental variable case the expectation above is given by

2κE
[
Gi(θo)′z′iPozigi(θo)

]
= 2κσ2

gGE[z′iPozi]

= 2κσ2
gGE[Trace{z′iPozi}]

= 2κσ2
gGE[Trace{Poziz′i}]

Notice that

PoE[ziz′i] = V −1
o E[ziz′i]− V −1

o ΓoSoΓoV −1
o E[ziz′i]

= σ−2
g (Im − V −1

o ΓoSoΓo)

Using the properties for the Trace, it follows that Trace{Poziz′i} = Trace{σ−2
g (Im −

V −1
o ΓoSoΓo)} = σ−2

g (m−k), and 2κSoE [Gi(θo)′z′iPozigi(θo)] = 2κS̃oσ2
gG(m−k)σ−2

g . Sub-
stituting the terms in the expansion gives

B−1(θo) = S̃oσgGσ
−2
g /n

−S̃oσ2
gGσ

−2
g (m− k)/n

+BoE[ziz′iPozi]σ
3
g/n

+κS̃oσ2
gGσ

−2
g (m− k)/n

−1
2
γ3BoE[ziz′iPozi]σ

3
g/n

−1
2
Bo

k∑
j=1

E

[
zi
∂gi(θo)
∂θ∂θj

]
Soej/n
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Collecting terms gives

B−1(θo) = S̃oσgGσ
−2
g (κ(m− k)− (m− k − 1))

+(1− γ3

2
)BoE[ziz′iPozi]σ

3
g/n

−1
2
Bo

k∑
j=1

E

[
zi
∂gi(θo)
∂θ∂θj

]
Soej/n

as required.

Proof to Theorem 12. Let B−1(θ̂el)−B−1. Since by assumption (θ̂el−θo) = un+bn+rn,
noting that E(unB′

−1) = 0 and dropping terms o(n−2), we have

M−2(θ̂el −B−1(θ̂el)) = E(θ̂el −B−1 − θo)(θ̂el −B−1 − θo)′

= E(un + bn + rn −B−1 − θo)(un + bn + rn −B−1 − θo)′

= E(unu′n + rnu
′
n + unr

′
n + bnb

′
n +B−1B−1

′ − bnB
′
−1 −B−1b

′
n)

By the definition of O(n−1) bias, E(bnB′
−1) = B−1B

′
−1 and the result follows.

Proof to Theorem 13. The validity of the expansion can be proved along the lines of
Theorem 9 by verifying the conditions of Lemma B.3. By Assumption D the CLT can
be applied to the elements of the Jacobian giving ‖Jn − Jo‖ = Op(n−1/2). Similarly, the
elements of the matrix collecting the second derivatives is also bounded in probability of
order n−1/2, by the same argument given in the proof of Theorem 4.3. By Assumption
D, the third derivatives are bounded by 1

n

∑n
i B(wi)5‖τ − τo‖ and Lemma B.3 holds with

C̄(wi) = B(wi)5.
Application of Lemma B3 gives the first conclusion of the theorem, where the expansion

for (θ̂ − θo) and λ̂ are given, respectively, by the first k and the last m elements of

(τ̂ − τo) = −Qomn +QoZnQomn

−1
2
QoHo

{
[Qomn ⊗Qomn]⊗

[
+QoṼm(τ0)Qom̄T (τ0)

]}
−1

6
QoDo {Qomn ⊗Qomn ⊗Qomn}

By inspection of the matrix collecting the second derivatives of mn, it follows that differ-
ences in the expansions of two MD estimators with γ3 = 2 appear only in the term

(A.8) ∆n ≡ −
1
6
QoDo {Qomn ⊗Qomn ⊗Qomn}

Let

βθθθjr = E

[
∂[mi]1,k(τo)
∂θj∂θr∂θ

]
; µθθθjr = E

[
∂[mi]h,m(τo)
∂θj∂θr∂θ

]
and

βθθλjr = E

[
∂[mi]1,k(τo)
∂θj∂θr∂λ

]
; µθθλjr = E

[
∂[mi]h,m(τo)
∂θj∂θr∂λ

]
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so on for the other cross partial derivatives. The first k elements of ∆n are given by

∆θ
n = − 1

6

−Bo
k∑
j=1

k∑
r=1

βθθθjr un,jun,run + So

k∑
j=1

k∑
r=1

µθθθjr un,jun,jun

−Bo
k∑
j=1

k∑
r=1

βθθλjr un,jun,rln + So

k∑
j=1

k∑
r=1

µθθλjr un,jun,rl

−Bo
k∑
j=1

m∑
r=1

βθλθjr un,jln,run + So

k∑
j=1

m∑
r=1

µθλθjr un,jln,run

−Bo
k∑
j=1

m∑
r=1

βθλλjr un,jln,rln + So

k∑
j=1

m∑
r=1

µθλλjr un,jln,rln

−Bo
k∑
j=1

k∑
r=1

βλθθjr ln,jun,run + So

k∑
j=1

k∑
r=1

µλθθjr ln,jun,run

−Bo
m∑
j=1

k∑
r=1

βλθλjt ln,jun,rln + So

m∑
j=1

k∑
r=1

µλθλjt ln,jun,rln

−Bo
m∑
j=1

m∑
r=1

βλλλjr ln,jln,rln + So

m∑
r=1

m∑
j=1

µλλλjr ln,jln,rln


Inspecting the expected value of the third derivatives of of mi(τo) shows that EL and any
MD with γ3 = 2 have the same partial derivatives with exception of µλλλjr , j, r = 1, . . . ,m.
This implies that for any MD estimators with γ3 = 2

∆θ
n = −1

6
So

m∑
r=1

m∑
j=1

µλλλjr ln,jln,rln

Let θ̂ denote the EL estimator and θ̃ denote any MD estimator with γ3 = 2. The difference
of the MSE for EL and any other MD estimators with γ3 = 2 is then given by

MSE(θ̂)−MSE(θ̃) = E
[
(∆θ

n,el −∆θ
n,umd)u

′
n

]
+E

[
un(∆θ′

n,el −∆θ′
n,umd)

]
where ∆θ

n,el and ∆θ
n,umd denote the differences in the expansion for EL and an any MD

estimator with γ3 = 2, respectively. Thus, the expression of the difference between the
MSE errors above reduces to

MSE(θ̂)−MSE(θ̃) =
1
6
So

m∑
r=1

m∑
j=1

[
µ̃λλλjr − µ̂λλλjr

]
E(ln,jln,rlnu′n)(A.9)

+
1
6

m∑
r=1

m∑
j=1

[
µ̃λλλjr − µ̂λλλjr

]
E(ln,jln,runl′n)S

′
o
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Noting that µ̂λλλjr = −γ4E(qi,jqi,rqiq′i) and the for EL γ4 = 6 gives

MSE(θ̂)−MSE(θ̃) =
(
1− γ4

6

)
So

m∑
r=1

m∑
j=1

[
E(qi,jqi,rqiq′i)

]
E(ln,jln,rlnu′n)

+
(
1− γ4

6

) m∑
r=1

m∑
j=1

[
E(qi,jqi,rqiq′i)

]
E(ln,jln,runl′n)S

′
o

as required.

Proof to Theorem 14. Expanding the summations in expressions (A.9) in the proof of
Theorem 9.3 yields

MSE(θ̂)−MSE(θ̃) =
(
1− γ4

6

) 1
n4
So

m∑
j=1

m∑
r=1

q4jrE(
n∑
ν=1

n∑
ς=1

n∑
α=1

n∑
η=1

lν,jlς,rlαu
′
η)

+
(
1− γ4

6

) 1
n4

m∑
j=1

m∑
r=1

q4jrE(
n∑
ν=1

n∑
ς=1

n∑
α=1

n∑
η=1

lν,jlς,ruαl
′
η)So

Consider the first term, since the second is the transpose of the first one. For ν = ς = α =
η = i, (n times), it follows from Assumption D that n−3E(li,jli,rliu′i) = O(n−3). When
three indexes are equal by independence and since E(li) = E(ui) = 0, E(tηl′αlj,ν lr,ς) = 0.
Thus the summation can reduced to

1
n4

n∑
ν=1

n∑
ς=1

n∑
α=1

n∑
η=1

lν,jlς,ruαl
′
η = n−2

[
E(l1,jl1,r)E(u2l

′
2) + E(l2,jl2,j)E(u1l

′
1)

+E(l1,ju1)E(l′2l2,r) + E(l1,ru1)E(l′2l2,j)
]

+o(n−2)

The results then follows by noting that the all the expectation involving li and ui are zero,
since by orthogonality of PoVoB′

o = 0,

E(li,ru′i) = e′rE(Poqi(θo)qi(θo)′B′
o)

= e′rE(PoVoB′
o) = 0

Noting that the same holds for the expectations involved in the transpose, the result
follows.
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