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Abstract

Nonparametric regression with spatial, or spatio-temporal, data is con-
sidered. The conditional mean of a dependent variable, given explanatory
ones, is a nonparametric function, while the conditional covariance re�ects
spatial correlation. Conditional heteroscedasticity is also allowed, as well
as non-identically distributed observations. Instead of mixing conditions,
a (possibly non-stationary) linear process is assumed for disturbances, al-
lowing for long range dependence, while decay in dependence in explana-
tory variables is described using a measure based on the departure of the
joint density from the product of marginal densities. A basic triangular
array setting is employed, with the aim of covering various patterns of
spatial observation. Su¢ cient conditions are established for consistency
and asymptotic normality of kernel regression estimates. When the cross-
sectional dependence is su¢ ciently mild, the asymptotic variance in the
central limit theorem is the same as when observations are independent;
otherwise, the rate of convergence is slower. We discuss application of
our conditions to spatial autoregressive models, and models de�ned on a
regular lattice.

JEL Classi�cations: C13; C14; C21
Keywords: Nonparametric regression; Spatial data; Weak dependence;

Long range dependence; Heterogeneity; Consistency; Central limit theo-
rem.

1 Introduction

A distinctive challenge facing analysts of spatial econometric data is the possi-
bility of spatial dependence. Typically, dependence is modelled as a function of
spatial distance, whether the distance be geographic or economic, say, analogous
to the modelling of dependence in time series data. However, unlike with time
series, there is usually no natural ordering to spatial data. Moreover, forms of
irregular spacing of data are more common with spatial than time series data,
and this considerably complicates modelling and developing rules of statistical
inference.

�Tel. +44-20-7955-7516; fax: +44-20-7955-6592. E-mail address: p.m.robinson@lse.ac.uk

1



Often, as with cross-sectional and time series data, some (parametric or non-
parametric) regression relation or conditional moment restriction is of interest
in the modelling of spatial data. If the spatial dependence in the left-hand-side
variable is entirely explained by the regressors, such that the disturbances are
independent, matters are considerably simpli�ed, and the development of rules
of large sample statistical inference is, generally speaking, not very much harder
than if the actual observations were independent. In parametric regression mod-
els, ordinary least squares can then typically deliver e¢ cient inference (in an
asymptotic Gauss-Markov sense, at least). Andrews (2005) has developed the
theory to allow for arbitrarily strong forms of dependence in the disturbances,
but with the data then generated by random sampling, an assumption that is
not necessarily plausible in practice.
Substantial activity has taken place in the modelling of spatial dependence,

and consequent statistical inference, and this is relevant to handling dependence
in disturbances. In the statistical literature, lattice data have frequently been
discussed. Here, there is equally-spaced sampling in each of d � 2 dimensions,
to extend the equally-spaced time series setting (d = 1). Familiar time series
models, such as autoregressive-moving-averages, have been extended to lattices
(see e.g. Whittle, 1954). In parametric modelling there are greater problems of
identi�ability than in time series, and the "edge e¤ect" complicates statistical
inference (see Guyon, 1982, Dahlhaus and Künsch, 1987, Robinson and Vidal-
Sanz, 2006, Yao and Brockwell, 2006). Nevertheless there is a strong sense in
which results from time series can be extended.
Unfortunately economic data typically are not recorded on a lattice. If the

observation locations are irregularly-spaced points in geographic space, it is
possible to consider, say, Gaussian maximum likelihood estimation based on a
parametric model for dependence de�ned continuously over the space, though a
satisfactory asymptotic statistical theory has not yet been developed. However,
even if we feel able to assign a (relative) value to the distance between each
pair of data points, we may not have the information to plot the data in, say,
2-dimensional space. Partly as a result, "spatial autoregressive" (SAR) models
of Cli¤ and Ord (1981) have become popular. Here, n spatial observations (or
disturbances) are modelled as a linear transformation of n independent and iden
tically distributed (iid) unobservable random variables, the n � n transforma-
tion matrix being usually known apart from �nitely many unknown parameters
(often only a single such parameter). While we use the description "autoregres-
sive", forms of the model can be analogous to time series moving average, or
autoregressive-moving-average, models, not just autoregressive ones, see (2.9)
below. While a relatively ad hoc form of model, the �exibility of SAR has led
to considerable applications (see e.g. Arbia, 2006).
SAR, and other models, have been used to model disturbances, principally

in parametric, in particular linear, regression models (see e.g. Kelejian and
Prucha, 1999, Lee, 2002). On the other hand, nonparametric regression has be-
come a standard tool of econometrics, at least in large cross-sectional data sets,
due to a recognition that there can be little con�dence that the functional form
is linear, or of a speci�c nonlinear type. Estimates of the nonparametric regres-
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sion function are typically obtained at several �xed points by some method of
smoothing. In a spatial context, nonparametric regression has been discussed
by, for example, Tran and Yakowitz (1993), Hallin, Lu and Tran (2004a). The
most commonly used kind of smoothed nonparametric regression estimate in
econometrics is still the Nadaraya-Watson kernel estimate. While originally mo-
tivated by iid observations, its asymptotic statistical behaviour has long been
studied in the presence of stationary time series dependence. Under forms of
weak dependence, it has been found that not only does the Nadaraya-Watson
estimate retain its basic consistency property, but, more surprisingly it has the
same limit distribution as under independence (see, e.g. Roussas, 1969, Rosen-
blatt,1971, Robinson,1983). The latter �nding is due to the "local" character of
the estimate, and contrasts with experience with parametric regression models,
where dependence in disturbances generally changes the limit distribution, and
entails e¢ ciency loss.
The present paper establishes consistency and asymptotic distribution the-

ory for the Nadaraya-Watson estimate in a framework designed to apply to
various kinds of spatial data. It would be possible to describe a theory that
mimics fairly closely that for the time series case. In particular, strong mix-
ing time series were assumed by Robinson (1983) in asymptotic theory for the
Nadaraya-Watson estimate, and various mixing concepts have been generalised
to d � 2 dimensions in the random �elds literature, where they have been em-
ployed in asymptotic theory for various parametric, nonparametric and semi-
parametric estimates computed from spatial data; a less global condition, in a
similar spirit, was employed by Pinkse, Shen and Slade (2007). We prefer to
assume, in the case of the disturbances in our nonparametric regression, a linear
(in independent random variables) structure, that explicitly covers both lattice
linear autoregressive-moving-average and SAR models (with a scale factor per-
mitting conditional or unconditional heteroscedasticity). Our framework also
allows for a form of strong dependence (analogous to that found in long memory
time series), a property ruled out by the mixing conditions usually assumed in
asymptotic distribution theory. In this respect, it seems we also �ll some gap
in the time series literature because we allow our regressors to be stochastic,
unlike in the �xed-design nonparametric regressions with long memory distur-
bances covered by Hall and Hart (1990), Robinson (1997). As a further, if
secondary, innovation, while we have to assume some (mild) falling o¤ of de-
pendence in the regressors as their distance increases, we do not require these
to be identically distributed across observations (as in Andrews, 1995).
The following section describes our basic model and setting. Section 3 in-

troduces the Nadaraya-Watson kernel estimate. Detailed regularity conditions
are presented in Sections 4 and 5 for consistency and asymptotic distribution
theory, respectively, the proofs resting heavily on a sequence of lemmas, which
are stated and proved in appendices. Section 6 discusses implications of our
conditions and of our results in particular spatial settings.
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2 Nonparametric regression in a spatial setting

We consider the conditional expectation of a scalar observable Y given a d-
dimensional vector observable X. We have n observations on (Y;X). It is
convenient to treat these as triangular arrays, that is, we observe the scalar
Yin and the d � 1 vector Xin, for 1 � i � n, where statistical theory will be
developed with n increasing without bound.
The triangular array structure of Y is partly a consequence of allowing a

triangular array structure for the disturbances (the di¤erence between Y and
its conditional expectation) in the model, to cover in particular a common spec-
i�cation of the SAR model. But there is a more fundamental reason for it, and
for treating the X observations as a triangular array also. We can identify each
of the indicies i = 1; :::; n with a location in space. In regularly-obsered time
series settings, these indices correspond to equi-distant points on the real line,
and it is evident what we usually mean by letting n increase. However there is
ambiguity when these are points in space. For example, consider n points on a
2-dimensional regularly-spaced lattice, where both the number (n1) of rows and
the number (n2) of columns increases with n = n1.n2: If we choose to list these
points in lexiographic order (say �rst row left ! right, then second row etc.)
then as n increases there would have to be some re-labelling, as the triangular
array permits. Another consequence of this listing is that dependence between
locations i and j is not always naturally expressed as a function of the di¤erence
i�j, even if the process is stationary (unlike in a time series). For example, this
is so if the dependence is isotropic. Of course in this lattice case we can naturally
label the locations by a bivariate index, and model dependence relative to this.
However, there is still ambiguity in how n1 and/or n2 increase as n increases,
and in any case we do not wish to restrict to 2-dimensional lattice data; we could
have a higher-dimensional lattice (as with spatio-temporal data, for example)
or irregularly-spaced data, or else data modelled using a SAR model, in which
only some measures of distance between each pair of observations are employed.
As a result our conditions tend to be of a "global" nature, in the sense that all
n locations are involved, with n increasing, and thus are also relatively unprim-
itive, sometimes requiring a good deal of work to check in individual cases, but
this seems inevitable in order to potentially cover many kinds of spatial data.
We consider a basic conditional moment restriction of the form

E (Yin jXin ) = g(Xin); 1 � i � n; n � 1; (2.1)

where g(x) : Rd ! R is a smooth, nonparametric function. We wish to esti-
mate g(x) at �xed points x. Note that g is constant over i and n. However
(anticipating Nadaraya-Watson estimation, which entails density cancellation
asymptotically) we will assume that the Xin have probability densities, fin(x),
that are unusually allowed to vary across i, though unsurprisingly, given the need
to obtain a useful asymptotic theory, they do have to satisfy some homogeneity
restrictions, and the familiar identically-distributed case a¤ords simpli�cation.
The Xin are also not assumed independent across i, but to satisfy "global"
assumptions requiring some falling-o¤ in dependence.
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A key role is played by an assumption on the disturbances

Uin = Yin � g (Xin) ; 1 � i � n; n � 1: (2.2)

We assume
Uin = �in (Xin)Vin; 1 � i � n; n � 1; (2.3)

where �in(x) and Vin are both scalars; as desired the �rst, and usually also
second, moment of �in (Xin) exists; and, for all n � 1; fVin; 1 � i � ng is
independent of fXin; 1 � i � ng : We assume that

E (Vin) = 0; 1 � i � n; n � 1; (2.4)

implying immediately the conditional moment restriction E fUin jXin g = 0;
1 � i � n; n � 1: As the �2in(x) are unknown functions, if Vin has �nite
variance, with no loss of generality we �x

V ar fVing = 1; (2.5)

whence

V ar fYin jXin g = V ar fUin jXin g = �2in(Xin); 1 � i � n; n � 1; (2.6)

so conditional heteroscedasticity is permitted. We do not assume the �2in(x)
are constant across i, thus allowing unconditional heteroscedasticity also, though
again homogeneity restrictions will be imposed.
Dependence across i is principally modelled via the Vin. For many, though

not all, of our results we assume

Vin =
1X
j=1

aijn"jn; 1 � i � n; n � 1; (2.7)

where for each n, the "jn, j � 1, are independent random variables with
zero mean, the nonstochastic weights aijn are at least square summable over
j; whence with no loss of generality we �x

1X
j=1

a2ijn = 1; 1 � i � n; n � 1: (2.8)

When the "jn have �nite variance we �x V ar f"ing = 1; implying (2.5). An
alternative to the linear dependence structure (2.7) is some form of mixing condi-
tion, which indeed could cover some heterogeneity as well as dependence. In fact
mixing could be applied directly to the Xin and Uin, avoiding the requirement of
independence between fVing and fXing, or simply to the observable fYin; Xing :
Mixing conditions, when applied to our triangular array, would require a notion
of falling o¤ of dependence as ji� jj increases, which, as previously indicated,
is not relevant to all spatial situations of interest. Moreover, we allow for a
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stronger form of dependence than mixing; we usually do not require, for exam-
ple, that the aijn are summable with respect to j, and thence cover forms of
long-range dependence analogous to those familiar in time series analysis.
The linear structure (2.7) obviously covers equally-spaced stationary time

series, where aijn is of the form ai�j , and lattice extensions, where the in�nite
series is required not only to model long range dependence but also �nite-degree
autoregressive structure in Vin. Condition (2.7) also provides an extension of
SAR models. These typically imply

Vin =
nX
j=1

aijn"in; 1 � i � n; n � 1; (2.9)

so there is a mapping from n independent innovations "in to the n dependent
Vin. In particular, we may commence from a parametric structure

(In � !1W1n � :::� !pWpn)Un = (In � !p+1Wp+1 � :::� !p+qWp+q)�"n;
(2.10)

where Un = (U1n; :::; Unn)
0, "n = ("1n; :::; "nn)

0, the !i are unknown scalars,
� is an unknown scale factor, and the Win are given n � n "weight" matrices
(satisfying further conditions in order to guarantee identi�ability of the !i), and
such that matrix on the left hand side multiplying Un is nonsingular. Of course
(2.10) is similar to autoregressive-moving-average structure for stationary time
series, but that is generated from an in�nite sequence of innovations, not only n
such (though of course n will increase in the asymptotic theory). There seems no
compelling reason to limit the number of innovations to n in spatial modelling,
and (2.10) cannot cover forms of long-range dependence, unless somehow the
sums �nj=1aijn are permitted to increase in n without bound, which is typically
ruled out in the SAR literature.

3 Kernel regression estimate

We introduce a kernel function K(u) : Rd ) R, satisfying at leastZ
Rd
K(u)du = 1: (3.1)

The Nadaraya-Watson kernel estimate of g(x), for a given x 2 Rd, is

ĝn(x) =
v̂n(x)

q̂n(x)
; (3.2)

where

q̂n(x) =
1

nhdn

nX
i=1

Kin(x); v̂n(x) =
1

nhdn

nX
i=1

YinKin(x); (3.3)
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with

Kin(x) = K

�
x�Xin

hn

�
; (3.4)

and hn is a scalar, positive bandwidth sequence, such that hn ! 0 as n!1.
Classically, the literature is concerned with a sequence Xi of identically

distributed variables, having probability density f(x); with Xi observed at i =
1; :::; n; so Xin = Xi; fin(x) = f(x), In this case q̂n(x) estimates f(x); and
v̂n(x) estimates g(x)f(x); so that ĝn(x) estimates g(x): The last conclusion
results also in our possibly non-identically distributed, triangular array setting,
because under suitable additional conditions,

q̂n(x)� fn(x) !p 0; (3.5)

v̂n(x)� g(x)q̂n(x) !p 0; (3.6)

where

fn(x) =
1

n

nX
i=1

fin(x): (3.7)

It follows from (3.5) and (3.6) and Slutsky�s theorem, that

ĝn(x)!p g(x); (3.8)

so long as limn!1fn(x) > 0. In fact though we establish (3.5), we do not
employ this result in establishing (3.8), but instead a more subtle argument
(that avoids continuity of fn(x): The consistency results are presented in the
following section, with Section 5 then establishing a central limit theorem for
ĝn(x).

4 Consistency of kernel regression estimate

We introduce �rst some conditons of a standard nature on the kernel function
K (u) :

Assumption A1: K (u) is an even function, and

sup
u2Rd

jK (u)j+
Z
Rd
jK (u)j du <1: (4.1)

Assumption A2(�) : As kuk ! 1;

K (u) = O(kuk��): (4.2)
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For � > 1; A2(�) plus the �rst part of A1 implies the second part of A1.
Note for future use that, for " > 0;

sup
kuk�"=hn

jK (u)j = O(h�n): (4.3)

Assumption A3:
K(u) � 0; u 2 Rd: (4.4)

Assumption A3 excludes higher-order kernels, but can be avoided if condi-
tions on the Xin are slightly strengthened.

The following condition on the bandwidth hn is also standard.

Assumption A4: As n!1;

hn + (nh
d
n)
�1 ! 0: (4.5)

For " > 0 de�ne

�n(u; ") = sup
kwk<"

fn(u� w): (4.6)

Assumption A5(u) : For some " > 0;

lim
n!1

�n(u; ") <1: (4.7)

De�ne for any u; v 2 Rd; " > 0;

mn(u; v) =
1

n2

nX
i;j=1
i 6=j

ffijn(u; v)� fin(u)fjn(v)g ; (4.8)

and for " > 0
�n(u; v; ") = sup

kwk<"
jmn(u� w; v � w)j : (4.9)

Assumption A6(u; v): For some " > 0;

lim
n!1

�n(u; v; ") = 0: (4.10)

Assumption A7(x): For some " > 0;

lim
n!1

inf
kuk<"

fn(x� u) > 0 (4.11)

Assumption A8: g is continuous at x; and

lim
n!1

1

n

nX
i=1

E jg(Xin)j <1: (4.12)
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De�ne �in(u) = �2in(u)fin(u); �ijn(u; v) = �in(u)�jn(v)fijn(u; v):

Assumption A9: For some " > 0;

lim
n!1

max
1�i�n

sup
kuk<"

�in(x� u) <1 (4.13)

and
lim
n!1

max
1�i;j�n

sup
kuk<";kvk<"

j�ijn(x� u; x� v)j <1; (4.14)

also
lim
n!1

max
1�i�n

E
�
�2in(Xin)

	
<1: (4.15)

Assumption A10: fXin; 1 � i � ng is independent of fVin; 1 � i � n; g ;
(2.4) and (2.5) hold, and the covariances


ijn = Cov fVin; Vjng ; 1 � i; j � n; n � 1; (4.16)

satisfy

lim
n!1

1

n2

nX
i;j=1;i 6=j


ijn= 0 : (4.17)

Theorem 1: Let Assumptions A1, A2( �) for � > 2d; A3, A4, A5(x),
A6 (x; x); A7, A8, A9 and A10 hold. Then

bgn(x )! p g(x ); as n !1: (4.18)

Proof For any � > 0

P (jbgn(x)� g(x)j > �) � P

 �����(nhdn)�1
nX
i=1

fYin � g(x)gKin(x)

�����
!
> �2)

+P (q̂n(x) < �) (4.19)

Using Lemmas 1 and 2, for � > � ,

P (q̂n(x) < �) � P (jq̂n(x)� Efq̂n(x)gj > � � �) � V ar fq̂n(x)g =(� � �)2 ! 0:
(4.20)

It remains to show that the �rst probability in (4.19) is negligible. But

1

nhdn

nX
i=1

fYin � g(x)gKin(x) = br1n(x) + br2n(x); (4.21)

where br1n(x) = 1

nhdn

nX
i=1

UinKin(x); (4.22)
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br2n(x) = 1

nhdn

nX
i=1

fg(Xin)� g(x)gKin(x); (4.23)

whence it remains only to apply Lemmas 3 and 4. �
The linear representation (2.7) (or (2.9)) is not imposed in Theorem 1. To

provide also a consistency result that avoids �nite variance of Vin , while on
the other hand strengthening dependence. we employ (2.7). In this setting,
�in(Xin) no longer repreents a standard deviation, but simply a scale factor.
For D > 0; de�ne "0in = "in1(j"inj � D); "

00

in = "in � "0in:

Assumption A11: (2.7) holds, where, for all n � 1; fXin; 1 � i � ng
is independent of f"in; i � 1g ; the "in are independent random variables with
zero mean and

lim
D!1

max
n�1

max
i�1

E
���"00in��� = 0; (4.24)

max
j�1

1X
i=1

jaijnj+max
i�1

1X
j=1

jaijnj<1: (4.25)

Notice that if the "in do in fact have �nite variance (taken to be 1);


ijn =
1X
k=1

aiknajkn (4.26)

so (cf (4.17)) under (4.25)

lim
n!1

1

n

nX
i;j=1

��
ijn�� <1: (4.27)

Theorem 2: Let Assumptions A1, A2( �) for � > 2d; A3, A4, A5(x),
A6 (x; x);A7, A8, A9 and A11 hold. Then

bgn(x )! p g(x ); as n !1: (4.28)

Proof Identical to that of Theorem 2, but Lemma 5 is used in place of
Lemma 4. �

5 Asymptotic normality of kernel regression es-
timate

De�ne

sn =
h�d

n2

nX
i=1


iin; (5.1)
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tn =

�������
1

n2

nX
i;j=1
i6=j


ijn

������� : (5.2)

In the present section we establish a central limit theorem for w�1=2n fbgn(x)� g(x)g ;
where wn = sn if tn = O(sn)and wn = tn if sn = o(tn); as n!1. Under our
conditions, sn decays at the standard rate

�
nhdn

��1
;whereas tn is zero when the

Vin are uncorrelated, decays faster than sn when Vin is short-range dependent,
but slower when Vin is long-range dependent: The modulus operator in tn is to
ensure non-negativity; however, because

nX
i=1


iin +
nX

i;j=1;i 6=j

ijn = V ar

(
nX
i=1

Vin

)
� 0; (5.3)

the second term on the left cannot be negative when sn = o(tn); so when the
tn normalization applies the modulus operator is unnecessary.
We have

bgn(x)� g(x) = bvn(x)� g(x)q̂n(x)
q̂n(x)

=
br1n(x)
q̂n(x)

+
br2n(x)
q̂n(x)

; (5.4)

where br1n(x); br2n(x) are given in (4.22), (4.23). There is a basic di¤erence
in our method of proof from that in, say, Robinson (1983). There (where the

assumptions imply that bgn(x) is �nhdn�1=2�consistent) the delta method was
used, after establishing asymptotic joint normality of

�
nhdn

�1=2
[q̂n(x)� fn(x)]

and
�
nhdn

�1=2
[bvn(x)� g(x)fn(x)] ; which in turn follows from asymptotic joint

normality of
�
nhdn

�1=2
[q̂n(x)� E fq̂n(x)g] and

�
nhdn

�1=2
[bvn(x)� E fbvn(x)g] ;

and the properties E fq̂n(x)g�fn(x) = o
��
nhdn

��1=2�
; E fbvn(x)g�g(x)fn(x) =

o
��
nhdn

��1=2�
:We, however, proceed from the rightmost expression in (5.4) by

establishing asymptotic normality of w�1=2n br1n(x) ; along with E fjbr2n(x)jg =
o(w

1=2
n ) ) and q̂n(x)� fn(x)!p 0:
We begin by showing the latter result, or rather q̂n(xi) � fn(xi) !p 0 for

distinct points x1; :::; xp in Rd; because our goal in fact is to establish asymptotic
joint normality of the appropriately normed vector bGn �G; where

G = fg(x1); :::; g(xp)g0 ; bGn = fbgn(x1); :::; bgn(xp)g0 : (5.5)

We introduce a condition on

�n(u; ") = sup
kwk<"

jfn(u� w)� fn(u)j : (5.6)

Assumption B1(u): For all � > 0 there exists " > 0 such that for all
su¢ ciently large n

�n(u; ") < �: (5.7)

11



Theorem 3: Let Assumptions A1, A2( �) for � > 2d; A4, A6 (xi; xi) and
B1(xi) hold, i = 1; :::; p. Then

q̂n(xi)� fn(xi) !p 0; i = 1; :::; p: (5.8)

Proof : Follows from Lemmas 1 and 6. �

Assumption B2(u): g satis�es a Lipschitz condition of degree � 2 (0; 1] in
a neighbourhood of u:

Assumption B3: For the same � as in Assumption B2(u); h2�n =wn ! 0 as
n!1:

Assumption B4: (2.7) and (2.8) hold, where for all n � 1; for all n � 1;
fXin; 1 � i � ng is independent of f"in; i � 1g ; :and the "in are independent
random variables with zero mean, unit variance,

lim
D!1

max
n�1

max
i�1

E
n
"
002
in

o
= 0; (5.9)

where "
00

in is as de�ned before Assumption A11.

De�ne

dn = max
j�1

 
nX
i=1

jaijnj
!2

=

1X
j=1

 
nX
i=1

jaijnj
!2

: (5.10)

Assumption B5:

lim
n!1

max
j�1

nX
i=1

a2ijn <1; (5.11)

lim
n!1

dn ! 0: (5.12)

Assumption B6: When sn = o(tn);

nX
i;j;k=1


ijn
ikn = o(n3tn); as n!1: (5.13)

Assumption B7: The densities fin of Xin (1 � i � n); fi1i2n of Xi1n; Xi21n

(1 � i1 < i2 � n); fi1i2i3n of Xi1n; Xi2n; Xi3n (1 � i1 < i2 < i3 � n) ; and
fi1i2i31i4n of Xi1n; Xi2n; Xi3n; Xi4n (1 � i1 < i2 < i3 < i4 � n) are bounded uni-
formly in large n in neghbourhoods of all combinations of arguments x1; :::; xp:
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Assumption B8(u; v): For all � > 0 there exists " > 0 such that for all
su¢ ciently large n

max
1�i�n

sup
kwk<"

jfin(u� w)� fin(u)j < �: (5.14)

max
1�i�n

sup
kwk<"

���2in(u� w)� �2in(u)�� < � (5.15)

max
1�i;j�n

sup
kwk<";kzk<"

jfijn(u� w; v � z)� fijn(u; v)j < �: (5.16)

Assumption B9: For some " > 0;

lim
n!1

max
1�i�n

"
sup
jusj<"

j�isn(x� us)j+ E
�
�4in (Xin)

	#
<1: (5.17)

Write

�i1i2n(u1; u2; ") = sup
jvsj<"
s=1;2

jfi1i2n(u1 � v1; u2 � v2)

�fi1n(u1 � v1)fi2n(u2 � v2)j ; (5.18)

�i1i2i3n(u1; u2; u3; ") = sup
jvsj<"
s=1;2;3

jfi1i2i3n(u1 � v1; u2 � v2; u3 � v3)

�fi1n(u1 � v1)fi2i3n(u2 � v2; u3 � v3)j ; (5.19)

�i1i2i3i4n(u1; u2; u3; u4; ") = sup
jvsj<"
s=1;:::;4

jfi1i2i31i4n(u1 � v1; u2 � v2; u3 � v3; u4 � v4)

�fi1i2n(u1 � v1; u2 � v2)fi3i4n(u3 � v3; u4 � v4)j :
(5.20)

Assumption B10 For (u1; u2; u3; u4) = xi1 ; xi2 ; xi3 ; xi4 ; is = 1; :::; p;
s = 1; :::; 4,

lim
n!1

1

n2

nX
is=1
s=1;2

0�i1i2n(u1; u2; "): = 0; (5.21)

lim
n!1

1

n2tn

nX
is=1
s=1;2;3

0
���


i2i3n

��� �i1i2i3n(u1; u2; u3; ") = 0; (5.22)

lim
n!1

1

n4t2n

nX
is=1

s=1;:::;4

0
���


i1i2n


i3i4n

��� �i1i2i3i4n(u1; u2; u3; u4; ") = 0; (5.23)

where each primed sum omits terms with any equalities between the relevant is:
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Assumption B11: There exists a function �(x); x 2 Rdsuch that

fn(x) � �(x); as n!1; (5.24)

When tn = O(sn) there exists a function �(x); x 2 Rd; such that

1

n

nX
i=1in

�in(x) � �(x); as n!1; (5.25)

When sn = O(tn) there exists a function  (x; y); x; y 2 Rd; such that
nX

i;j=1;i 6=j

ijn�ijn(x)

nX
i;j=1;i 6=j


ijn

�  (x; y); as n!1; (5.26)

and

lim
n!1

1X
k=1

nX
i;j=1;i 6=j

jaiknajknj =
1X
k=1

nX
i;j=1;i 6=j

aiknajkn <1: (5.27)

Denote � = diag f�(x1); :::; �(xp)g ;� = diag f�(x1); :::; �(xp)g ; and 	 the
p� p matrix with (i; j)th element  (xi; yj):Under Assumption A1

� =

Z
Rd
K2 (u) du (5.28)

is �nite.

Theorem 4: Let Assumptions A1, A2( �) for � > 4d; A4, A7 (xi), A8,
B1 (xi), B2 (xi); B3, B4, B5, B7, B8(xi; xj); B9, B10, and B11 hold, i; j =
1; :::; p:

(i) If also tn = o(sn);

s�1=2n

� bGn �G�! d N (0 ; ��
�1
���1); as n !1; (5.29)

(ii) if also tn � �sn;

s�1=2n

� bGn �G�! d N (0 ;�
�1
(�� + �	)��1); as n !1; (5.30)

(iii) if also sn = o(tn);

t�1=2n

� bGn �G�! d N (0 ;�
�1
	��1); as n !1: (5.31)

14



Proof: From (5.4),

w�1=2n (bgn � g) = bq�1n w�1=2n (br1n + br2n) ; (5.32)

where

bqn = diag fq̂n(x1); :::; q̂n(xp)g ; brin = fbrin(x1); :::; brin(xp)g0 ; i = 1; 2: (5.33)

We deduce bqn !p � from Lemma 6 and br2n = op (wn) from Lemma 7; whence
it remains to prove

w�1=2n br1n !d N(0;�); (5.34)

where

� = ��; if tn = o(sn);

= 	; if sn = o(tn);

= (�� + �	); if tn � �sn: (5.35)

Write

br1n = 1

nhdn

nX
i=1

UinKin =
1X
j=1

Zjn"jn; Zjn =
1

nhdn

nX
i=1

Kin�in(Xin)aijn; (5.36)

where
Kin = fKin(x1); :::;Kin(xp)g0 : (5.37)

For positive integer N = Nn; increasing with n; de�ne

br�1n = NX
j=1

Zjn"jn; br#1n = br1n � br�1n: (5.38)

By Lemma 9, there exists an N sequence such that br#1n = op(w
�1=2
n ):

Consider

Tn = E
nbr�1nbr�01n��� Xng =

NX
j=1

ZjnZ
0
jn; (5.39)

and introduce a p � p matrix Pn such that Tn = PnP
0
n: For n large enough Tn

is positive de�nite under our conditions. For a p� 1 vector � ; such that � 0� = 1
write

b�n = � 0P�1n br�1n; (5.40)

so E
�
b�2n
	
= 1: We show that, conditionally on Xn; n � 1;

b�n !d N(0; 1); (5.41)

whence by the Cramer-Wold device,

P�1n br�1n !d N(0; Ip): (5.42)
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which implies unconditional convergence, Then for a p� p matrix P such that
� = PP 0 it follows that

w�1=2n P�1br�1n !d N(0; Ip): (5.43)

if w�1=2n P�1Pn converges in probability to an orthogonal matrix; which is im-
plied if w�1n P�1PnP

0
nP

�10 !p Ip, i.e. if

w�1n Tn !p �: (5.44)

But

E fTng = E fbr1nbr01ng+ E�br#1nbr#0

1n � br1nbr#0

1n � br#1nbr01n� ; (5.45)

and the norm of the �nal expectation is o(wn) by the Schwarz inequality and
Lemmas 8 and 9, while w�1n E fbr1nbr01ng ! � from Lemma 8. Lemma 10 com-
pletes the proof of (5.44).
To prove (5.41), write

b�n =
NX
j=1

zjn"jn; zjn = � 0P�1n Zjn=nh
d
n: (5.46)

Since zjn"jn is a martingale di¤erence sequence, and

NX
j=1

z2jn = 1; (5.47)

(5.41) follows, from e.g. Scott (1973), if, for any � > 0

NX
j=1

E
�
z2jn"

2
jn1(jzjn"jnj > �

�� X1n; :::; Xnng !p 0; (5.48)

as n!1: Now for any r > 0 fjzjn"jnj > �g �
�
"2jn > �r

	
[
�
z2jn > �=r

	
; so

by independence of "jn and X1n; :::; Xnn the left side is bounded by

NX
j=1

z2jnE
�
"2jn1("

2
jn > �=r)

	
+

NX
j=1

z2jn1(z
2
jn > �r) (5.49)

which, from (5.47), is bounded by

max
j�1

E
�
"2jn1("

2
jn > �=r)

	
+
1

�r

NX
j=1

z4jn: (5.50)

The �rst term can be made arbitrarily small for small enough r; the second by
Lemma 11. �
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6 Discussion

Under conditions motivated by spatial or spatio-temporal settings, we have es-
tablished consistency of the Nadaraya-Watson estimate under relatively broad
conditions, and asymptotic normality under stronger conditions. Our discus-
sion focusses on the relevance of some of the conditions, and some implications
of these results.

1. Assumption A5(u) is implied by lim
n!1

max1�i�n supkwk<" fin(u� w) <

1; and with identically distributed Xin, both requirements are equivalent to
boundedness of f in a neghbourhood of u: Other conditions on Xin likewise
simplify. In case of a regularly-spaced stationary time series fXig ; we have
fijn(u; v) = fi�j(u; v); so

mn(u; v) =
2

n

n�1X
j=1

(1� j

n
) ffj(u; v)� f(u)f(v)g : (6.1)

In this setting, with d = 1; Castellana and Leadbetter (1986) established point-
wise consistency of kernel probability density estimates for regularly-spaced time
series under the assumption

lim
n!1

sup
u;v2Rd

1

n

n�1X
j=1

jfj(u; v)� f(u)f(v)j = 0: (6.2)

Even after adding stationarity to our conditions, Assumption A6(u; v); used for
consistency of density (Theorem 3) as well regression (Theorems 1 and 2) es-
timates, is milder than (6.2), both because in (6.2) the modulus is inside the
summation and because the supremum is over all u; v 2 Rd: Castellana and
Leadbetter (1986) showed that (6.2) holds in case of a scalar Gaussian process
fXig with lag-j autocovariance tending to zero as j ! 1; and thus covers ar-
birarily strong long range dependence. These observations extend to the vector
case d > 1;whence Assumption A6(u; v) is satis�ed also. Moreover, (5.21)-(5.23)
of Assumption B10 are of a similar character, because all involve convergence
to zero, with no rate, of weighted averages of density-based measures of de-
pendence (though suprema are now inside the summations). If we employed
instead an asymptotic normality proof for bqn in proving Theorem 4, a possiblity
mentioned in Secton 5, density-based conditions on Xin would, however, have
to entail rates, as indeed would mixing conditions. (Castellana and Leadbetter
(1986), like other authors, used mixing conditions in their cental limit theorem
for density estimates from stationary time series.)

2. With respect to the conditions on Vin; the requirement A10 for consistency
in Theorem 1 implies an arbitrarily slow decay in contributions from 
ijn as,
say, ji� jj diverges, and under stationarity is satis�ed by arbitrarily strong long
range dependence. On the other hand avoiding a second moment in Theorem
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2 rules out long range dependence, while easily covering conventional forms of
weak dependence. Asymptotic normality in Theorem 4 also permits general
long range dependence, though the strength of this in part determines the precise
outcome, including convergence rate, see parts (i)-(iii). Condition (5.27) means
that changing the sign of any negative aijn would not make tn decay slower,
and could be satis�ed more generally if the aijn are eventually positive as j
increases. The Lindeberg condition (5.12) was checked for linear time series
with arbitrarily strong dependence in the central limit theorem for the sample
mean by Ibragimov and Linnik (1971), and for �xed-design nonparametric time
series regression by Robinson (1997) (where, incidentally, the kind of trichotomy
observed in parts (i)-(iii) of Theorem 4 in our stochastic design setting does not
occur). Assumption B6 is a very mild additional decay restriction on the 
ijn:

3. While overall our conditions on fVing and fXing are neither stronger
nor weaker than those employed under a mixing framework, in some respects
ours provide a more precise tool. Theorem 4 indicates exactly when the usual
kind of result with (nhn)1=2 convergence ceases to apply, whereas a mixing rate
can usually only be interpreted as su¢ cient. On the other hand the linear-
ity of Vin plays an important role in the achievement of asymptotic normality
throughout Theorem 4, despite possible long range dependence. Extending
the nonlinear-functions-of-Gaussian-processes conditions employed in the long
range dependent time series literature would sometimes yield non-normal limits,
especially given our allowance for strong dependence in Xin:

4. It is important to stress that the question of which of parts (i)-(iii) of
Theorem 4 is relevant depends on hn; as well as the strength of dependence in
Vin: More precisely, under the weak dependence condition

Xn

i;j=1;i 6=j

ijn =

O(n); part (i) is relevant however we choose hn; subject to Assumptions A4 and
B3, but not otherwise. Putting the conditions together, (5.29) occurs when

1

nhdn
+

hdn

nX
i;j=1;i 6=j


ijn

n
+ nhd+2�n ! 0; as n!1; (6.3)

(5.30) occurs when

hn �

0BBBB@ �n
nX

i;j=1;i 6=j

ijn

1CCCCA
1=d

; � > 0;

nX
i;j=1;i 6=j


ijn

n2
+

n2(1+�=d)

nX
i;j=1;i 6=j


ijn

! 0; as n!1;

(6.4)
and (5.31) occurs when
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nX
i;j=1;i 6=j


ijn

n2
+

n

hdn

nX
i;j=1;i 6=j


ijn

+
n2h2�n
nX

i;j=1;i 6=j

ijn

! 0; as n!1: (6.5)

These conditions also re�ect the dimension d of Xin;and the curse of dimen-
sionality is always of concern with smoothed nonparametric estimation; Gao,
Lu and Tjostheim (2006), Lu, Lundervold, Tjostheim and Yao (2007) consider
semiparametric and additive models, respectively, in di¤erent spatial settings
from ours.

5. Our results do not directly address the issue of bandwidth choice, which
is always of practical concern in smoothed nonparametric estimation, though
they have some implications for it. By adding a bias calculation under twice
di¤erentiability of g to the variance implications of part (i) of Theorem 4 we
can reproduce the usual minimum-mean-squared error optimal rate for hn of
n4=5: As our results stand, we do not exploit this degree of smoothness (see
Assumptions B2 and B3), and to do so would require a stronger restriction on
the dependence in Xin; similar to that mentioned in the penultimate sentence
of point 1 above. However the condition tn � �sn for part (ii) of Theorem 4
prescribes a rate for hn which ignores bias, while the part (iii) convergence rate
does not directly depend on hn; so cannot contribute to an optimal bandwidth
calculation.

6. Part (i) of Theorem 4 reproduces the classical asymptotic independence
across distinct �xed points familiar from the settings of independent observa-
tions and mixing time series. Since tn = o(sn) entails

Xn

i;j=1

ijn = o(n=hn);

the result nevertheless also holds under some degree of long range dependence
in Vin; while, at least in the Gaussian case, strong versions of long range depen-
dence inXin are permitted: The allowance for non-stationarity in both processes
leads to a more complicated form of asymptotic variance, the ith diagonal el-
ement of ���1���1 reducing to the familiar ��2(xi)=f(xi) under identity of
distribution. To carry out inference, such as set con�dence regions, we need to
consistently estimate the diagonal elements; the extent to which this possible in
our more general setting would require discussion that goes beyond the scope
of the present paper.

7. Consistent variance estimation is an even more challenging proposition
in (ii) and (iii) of Theorem 4, in part due to the di¢ culty with estimating
tn: This in turn stems in part from the possible non-stationarity of Vin; and
estimating tn would require imposing some additional structure to limit this. It
also stems from the implied long range dependence in Vin in both parts (ii) and
(iii); note that tn is analogous to quantities arising in the "HAC" literature of
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econometrics, which extends earllier statistical literature (see e.g. Hannan, 1956,
Eicker, 1963), but there weak dependence is typically assumed, in which case we
are back to part (i). However, at least for stationary Vin; proposals of Robinson
(2005) in the long range dependent time series case may be extendable. The
results in parts (ii) and (iii) are much less attractive for practical use due to the
non-diagonality of 	; and even less so than immediately meets the eye. Notice
that if the Xin are iid, 	 has unit rank for all p; so estimates are undesirably
perfectly correlated. The same kind of outcome was observed by Robinson
(1991) in kernel probability density estimates from long range dependent time
series data. Unit rank could result more generally: under similar conditions on
Xin to those in Assumption B10 the numerator of the left side of (5.26) di¤ers
from

nX
i;j=1;i 6=j


ijn�in(x)�jn(y)fin(x)fjn(y) (6.6)

by o
�Xn

i;j=1

ijn

�
: Then 	 has unit rank for all p if the Xin are identically

distributed, and is possibly not well conditioned more generally. Nevertheless it
is of interest that here non-identity of distribution has the potential to desirably
increase rank.

8. Consider some implications of our setting for data observed on a rectan-
gular lattice. For simplicity we focus on a 2-dimensional lattice, where observa-
tions are recorded at points (t1; t2); for t1 = 1; :::; n1; t2 = 1; :::; n2; so n = n1n2
(though interval of observation can di¤er across dimensions): We can regard
either or both of n1; n2 as increasing with n: The (t1; t2)th observation can be
indexed by i = n2(t1 � 1) + t2; say, in our triangular array setting. With this
correspondence, consider a process; such that Vin = v(t1; t2): We might de�ne
v(t1; t2) for t1; t2 = 0;�1; :::, and take it to be stationary. Then under broad
conditions, v(t1; t2) has a "half-plane" linear representation in terms of orthog-
onal, homoscedastic innovations, analogous to the Wold representation for time
series (see e.g. Whittle, 1954). However, for Theorems 2 and 4, we require
a linear representation for Vin in independent innovations, so for non-Gaussian
v(t1; t2) a general, multilateral representation, would be preferred, namely

v(t1; t2) =
1X

j1;j2=�1
b(t1 � j1; t2 � j2)e(j1; j2) (6.7)

with independent e(j1; j2) and square-summable b(j1; j2) : To produce a cor-
respondence with (2.7) we might read o¤ the j1; j2 in a kind of spiral fash-
ion: taking j = 1 when (j1; j2) = (0; 0); then j = 2; :::; 9; correspond to
the points (�1;�1); (�1; 0); :::; going clockwise around the square with ver-
tices (�1;�1); with j = 10; :::; 25 generated analogously from the square with
vertices (�2;�2); and so on. If a "half-plane" representation is desired we
simply omit the relevant points on each square. A correspondence between
the aijn and moving average weights b(t1 � j1; t2 � j2) then follows. Now the
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b(t1 � j1; t2 � j2) might be chosen to be the moving average weights in unilat-
eral or multilateral spatial analogues of autoregressive moving averages (see e.g.
Whittle, 1954, Guyon, 1982, Robinson and Vidal-Sanz, 2006). These models
have the weak dependence to place them �rmly in the setting of part (i) of
Theorem 4. But (6.7) can also describe long range dependence, in either or
both dimensions, so parts (ii) and (iii) of Theorem 4 can also be relevant. No-

tice that
Xn

i;j=1;i 6=j

ijn =

Xni�1

ji=1�ni;i=1;2
Cov fv(0; 0); v(j1; j2)g : Tran (1990),

Hallin, Lu, and Tran (2001, 2004b), for example, established consistency results
for kernel density estimates with lattice spatial data, under di¤erent conditions
from those in Theorem 3.

9. Data that are irregularly-observed in space and/or time pose far greater
problems in both computation and deriving asymptotic theory for many statis-
tical procedures. Describing a model for irregularly-spaced observations from
an underlying continuous model can be di¢ cult even in the time series case;
from a �rst-order stochastic di¤erential equation, Robinson (1977) derived a
(time-varying autoregressive) model but this kind of outcome is di¢ cult to ex-
tend to higher-order models, or spatial processes. Nonparametric regression, on
the other hand, is readily applied, though detailed checking of our conditions
would be far more di¢ cult than in the regularly-spaced circumstances just de-
scribed, especially as observation locations might be regarded as stochastically
rather than deterministically generated. However, at least some formal cor-
respondence wih our triangular array setting can be constructed. Suppose we
have an underlying Gaussian process, where again for simplicity we consider 2
dimensions only, and denote it v(t1; t2); though now t1 and t2 might be real-
valued. Then with some ordering the n v(t1; t2) become the n Vin: Moreover,
(conditionally on the locations when these are stochastic) the Vin are Gaussian.
Denote by �n the covariance matrix of the vector Vn = (V1n; :::; Vnn)

0. In a
general irregularly-spaced framework �n has little structure to exploit. How-
ever, we can write �n = AnA

0
n; where, for positive de�nite �n the n�n matrix

An is uniquely de�ned only up to premultiplication by an orthogonal matrix.
Due to Gaussianity we can write Vn = An�n; where �n � N(0; In). We deduce
(2.7), indeed (2.9), by taking aijn to be the (i; j)th element of An and "n = �n:

10. Processes in the SAR class (2.10) are more directly placed in our
framework. Consider the special case m1 = 1; m2 = 1 of (2.10), i.e:

(In � !Wn)Un = �"n; 0 < j!j < 1; (6.8)

with nonstochastic n�n Wn having row sums normalized to 1: Note that (6.6)
generally implies unconditional heteroscedasticity in the Uin; as can be covered
by our �in(Xin) = �in: As noted by Lee (2002), it follows that Sn = In�!Wn is

non-singular, and thus we have a solution to (6.8) of form Uin =
Xn

j=1
bijn"jn;

with V ar fUing =
Xn

j=1
b2ijn = �2in . Thus we have (2.9) with (2.8) on taking
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aijn = bijn=�in: Moreover, because
Xn

i;j=1

ijn = �21

0

nS
�1
n S�1

0

n 1
0

n; where

1
0

n is the n � 1 vector of 10s, it follows that if S�1n has uniformly bounded
column sums (for which a condition is given in Lemma 1 of Lee, 2002), thenXn

i;j=1

ijn = O(n); so "weak dependence" is implied, and part (i) of Theorem

4 applies.

7 Appendix A: Technical Lemmas for Section 4

Lemma 1: Let Assumptions A1, A2( �) for � > 2d; A4, A5(x), and A6 (x; x)
hold. Then as n!1; for some " > 0

Varfq̂n(x )g = O((nh
d
n)
�1
�n(x ; ") + n

�1
h2(��d)n +�n(x ; x ; ") + h

��2d
n )! 0 :

(A.1)
Proof. We have

Varfq̂n(x )g =
1

(nhdn)
2

24 nX
i=1

V arfKin(x)g+
nX

i;j=1;i 6=j
CovfKin(x);Kjn(x)g

35 :
(A.2)

The �rst term in the square brackets is bounded by

n

Z
Rd
K2

�
x� w
hn

�
fn(w)dw = nhdn

Z
Rd
K2 (u) fn(x� hnu)du

= nhdn

(Z
khnuk<"

K2 (u) fn(x� hnu)du
)

+

Z
khnuk�"

K2 (u) fn(x� hnu)du
)
; (A.3)

for any " > 0: The �rst term in braces is bounded by ��n(x; "); where, through-
out, C denotes an arbitrarily large generic constant. The second term in braces
is bounded by

sup
kuk�"=hn

K (u)
2
Z
Rd
fn(x� hnu)du = O(h2��dn ); (A.4)

so

1

(nhdn)
2

nX
i=1

V arfKin(x)g = O((nhdn)
�1�n(x; ") + n

�1h2(��d)n ): (A.5)
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The second term in the square brackets in (A.2) is

(nhdn)
2f
Z
J1n(")

K (u)K (v)mn(x� hnu; x� hnv)dudv

+2

Z
J2n(")

K (u)K (v)mn(x� hnu; x� hnv)dudv

+

Z
J3n(")

K (u)K (v)mn(x� hnu; x� hnv)dudvg;

(A.6)

where J1n(") = fu; v : khnuk < "; khnvk < "g ; :J2n(") = fu; v : khnuk < "; khnvk � "g ;
J3n(") = fu; v : khnuk � "; khnvk � "g : The �rst integral in braces is bounded
by

�n(x; x; ")

�Z
Rd
jK (u)j du

�2
: (A.7)

The second integral is bounded by

2

Z
khnuk<";v2Rd

jK (u)K (v)j jmn(x� hnu; x� hnv)j dudv

� 2 sup
kuk�"=hn

jK (u)j sup
v2Rd

jK (v)j

�
Z
R2d

1

n2

nX
i;j=1;i 6=j

ffijn(x� hnu; x� hnv) + fin(x� hnu)fjn(x� hnv)g dudv

= O(h��2dn ): (A.8)

The third integral is bounded byZ
khnuk�";v2Rd

jK (u)K (v)j jmn(x� hnu; x� hnv)j dudv

� sup
kuk�"=hn

K (u)
2

�
Z
R2d

1

n2

nX
i;j=1;i 6=j

ffijn(x� hnu; x� hnv) + fin(x� hnu)fjn(x� hnv)g dudv

= O(h2��2dn ): (A.9)

Thus

1

(nhdn)
2

nX
i;j=1;i 6=j

CovfKin(x);Kjn(x)g = O(�n(x; x; ") + h
��2d
n ): (A.10)

�
Lemma 2: Let Assumptions A1, A2( �) for � > d; A3 and A4 hold. Then

lim
n!1

Efq̂n(x)g > 0: (A.11)
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Proof: We have

Efq̂n(x)g �
Z
kuk<"=hn

K (u) fn(x� hnu)du�
�����
Z
kuk�"=hn

K (u) fn(x� hnu)du
����� ;

� inf
kuk<"

fn(x� u)
Z
kuk<"=hn

K (u) du� sup
kuk�"=hn

jK (u)j =hdn

� 1

2
inf

kuk<"
fn(x� u)�O(h��dn ) > � (A.12)

for n su¢ ciently large and some � > 0; by Assumption A7(x). �

Lemma 3: Let Assumptions A1, A2( �) for � > d; A4, A5(x), and A8
hold. Then

E jbr2n(x)j ! 0; as n!1: (A.13)

Proof: We have

E

�����
nX
i=1

fg(Xin)� g(x)gKin(x)

����� � nhdn

Z
Rd
jK (u)j jg(x� hnu)� g(x)j fn(x� hnu)du

� nhdn sup
kuk�"

jg(x� u)� g(x)j sup
kuk�"

fn(x� u)
Z
Rd
jK (u)j du

+nhdn sup
kuk�"=hn

jK (u)j
�Z

Rd
jg(x� hnu)j fn(x� hnu)du

+ jg(x)j
Z
Rd
fn(x� hnu)du

�
� �nhdn + Cnh

�
n

(
1

n

nX
i=1

E jg(Xin)j+ jg(x)j
)

(A.14)

for any � > 0;to complete the proof. �

Lemma 4: Let Assumptions A1, A2( �) for � > 2d; A4, A9, and A10 hold.
Then

E
�br1n(x)2	! 0; as n!1: (A.15)

Proof:
The left side of (A.15) is

1

(nhdn)
2

24 nX
i=1

Ef�2in(Xin)K
2
in(x)g+

nX
i;j=1;i 6=j


ijnEf�in(Xin)�jn(Xjn)Kin(x)Kjn(x)g

35 :
(A.16)
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recalling that 
iin = V ar fVing = 1: The �rst expectation is

hdn

(Z
khnuk<"

K2 (u)�in(x� hnu)du+
Z
khnuk�"

K2 (u)�in(x� hnu)du
)
:

(A.17)
The �rst term in braces is bounded by

C sup
kuk<"

�in(x� u): (A.18)

The second term is bounded by

sup
kuk�"=hn

K (u)
2
Z
Rd
�in(x� hnu)du � Ch2��dn E�2in(Xin): (A.19)

The second expectation in (A.16) isZ
R2d

K

�
x� w
hn

�
K

�
x� z
hn

�
�ijn(w; z)dwdz

= h2dn f
 Z

J1n(")

+ 2

Z
J2n(")

+

Z
J3n(")

!
K (u)K (v) �ijn(x� hnu; x� hnv)dudv:

(A.20)

Proceeding as in the proof of Lemma 1, this is bounded by

Ch2dn sup
kuk<";kvk<"

j�ijn(x� u; x� v)j

+h2dn

8<:2 sup
kuk�"=hn

jK (u)j sup
v2Rd

jK (v)j+
 

sup
kuk�"=hn

jK (u)j
!29=;

�
Z
R2d
j�ijn(x� hnu; x� hnv)j dudv (A.21)

whose last term is bounded by Ch�nE j�in(Xin)�jn(Xin)j � Ch�nEf�2in(Xin)gEf�2jn(Xjn)g1=2:
Thus (A.16) is thus bounded by

C

(nhdn)
2

8<:n(hdn + h2�n ) + (h2dn + h�n)
nX

i;j=1;i 6=j

��
ijn��
9=;

� C

nhdn
+
C

n2

nX
i;j=1;i 6=j

��
ijn�� : (A.22)

�
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Introduce

V 0in =
1X
j=1

aijn"
0
jn; U

0
in = �in (Xin) (V

00

in � E fV 0ing);

V
00

in =
1X
j=1

aijn"
00

jn; U
00

in = �in (Xin) (V
00

in � E
n
V

00

in

o
): (A.23)

Lemma 5: Let Assumptions A1, A2( �) for � > 2d; A4, A9, and A11 hold.
Then

E jbr1n(x)j ! 0; as n!1: (A.24)

Proof: We have

1

nhdn

nX
i=1

U 0inKin(x) =
1

nhdn

nX
i=1

�in (Xin)Kin(x)
1X
j=1

aijn("
0
jn�E

�
"0jn
	
) (A.25)

has mean zero and variance

1

(nhdn)
2

nX
i=1

Ef�2in(Xin)K
2
in(x)g

1X
k=1

a2iknV arf"0kng

+
1

(nhdn)
2

nX
i;j=1;i 6=j

Ef�in(Xin)�jn(Xjn)Kin(x)Kjn(x)g

�
1X
k=1

aiknajknV arf"0kng: (A.26)

From the proof of Lemma 4, this is bounded by

C

nhdn

1X
k=1

a2ikn+
C

n2hdn

nX
i;j=1

1X
k=1

jaiknj jajknj �
C

nhdn
(1+ max

1�i�n

1X
k=1

jaiknjmax
k�1

nX
j=1

jajknj)! 0

(A.27)
as n!1: On the other hand

E

����� 1nhdn
nX
i=1

U
00

inKin(x)

����� � 2

nhdn

nX
i=1

E j�in (Xin)Kin(x)j
1X
j=1

jaijnjE
���"00jn��� :
(A.28)

In a similar way as before, E j�in (Xin)Kin(x)j � Chdn; whence (A.28) is bounded
by

Cmax
n�1

max
1�j�n

E
���"00jn���max

i�1

1X
j=1

jaijnj ! 0 (A.29)

as D !1: �
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8 Appendix B: Technical Lemmas for Section 5

Lemma 6: Let Assumptions A1, A2( �) for � > d; A4 and B1(x) hold. Then
for all � > 0 there exists " > 0 such that

jEfq̂n(x)g � fn(x)j � C(�n(x; ") + h
��d
n ) < �; (B.1)

for all su¢ ciently large n:

Proof: We have

Efq̂n(x)g � fn(x) =

Z
Rd
K (u) ffn(x� hnu)� fn(x)gdu

=

Z
khnuk<"

K (u) ffn(x� hnu)� fn(x)gdu

+

Z
khnuk�"

K (u) ffn(x� hnu)� fn(x)gdu; (B.2)

for " > 0: The �rst term is bounded by

�n(u; ")

Z
Rd
jK (u)j du: (B.3)

The second term is bounded by

sup
kuk�"=hn

jK (u)j
Z
Rd
fn(x�hnu)du+fn(x)

Z
kuk�"=hn

jK (u)j du = O(h��dn )+o(1):

(B.4)
�

Lemma 7: Let Assumptions A1, A2( �) for � > 2d+ �; A4, A5(x), A8 and
B2(x) hold. Then

E kbr2n(x)k = O(h�n); as n!1: (B.5)

Proof: This is very similar to the proof of Lemma 3, and thus omitted. �

Lemma 8 Let Assumptions A1, A2( �) for � > 2d; A4, A9, B4, B8(x; y);
B10 and B11 hold. Then

Cov fbr1n(x); br1n(y)g � ��(x)sn; if x = y and tn = o (sn) ;

= o (sn) ; if x 6= y and tn = o (sn) ;

�  (x; y)tn; if sn = o (tn) ; (B.6)

� f��(x) + � (x; y)g sn; if tn � �sn; � 2 (0;1):
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Proof: Proceeding as in the proof of Lemma 4, Cov fbr1n(x); br1n(y)g is
1

(nhdn)
2

nX
i=1

Ef�2in(Xin)Kin(x)Kin(y)g (B.7)

+
1

(nhdn)
2

nX
i;j=1;i 6=j


ijnEf�in(Xin)�jn(Xjn)Kin(x)Kjn(y)g: (B.8)

When x = y; from (A.17) (B.7) equals

h�dn
n2

nX
i=1

Z
Rd
K2 (u)�in(x� hnu))du: (B.9)

The di¤erence between the integral and ��2in(x)fin(x) isZ
Rd
K2 (u)

�
�2in(x� hnu)� �2in(x)

	
fin(x� hnu)du

+�2in(x)

Z
Rd
K2 (u) ffin(x� hnu)� fin(x)g du: (B.10)

The �rst term is bounded by

� max
1�i�n

sup
khnuk<"

���2in(x� u)� �2in(x)�� sup
khnuk<"

fin(x� hnu)

+ max
1�i�n

sup
khnuk�"

K2 (u)

Z
Rd

�
�2in(x� hnu) + �2in(x)

	
fin(x� hnu)du

= o(1) +O(h2��dn ); (B.11)

uniformly in i; proceeding as in the proof of Lemma 4. The second term is
bounded by

� max
1�i�n

�2in(x) sup
khnuk<"

jfin(x� hnu)� fin(x)j

+ max
1�i�n

�2in(x) sup
kuk�"=hn

K2 (u)

Z
Rd
fin(x� hnu)du

+ max
1�i�n

fin(x)

Z
kuk�"=hn

K2 (u) du

= o(1) +O(h2��dn + h2��1n ): (B.12)

uniformly in i: Thus, when x = y; there is a sequence �n ! 0 such that

(B:7) � �
h�dn
n2

nX
i=1

f�in(x) + �ng � ��(x)sn: (B.13)

When x 6= y; (B.7) equals
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h�dn
n2

nX
i=1

Z
Rd
K (u)K

�
u+

y � x
hn

�
�in(x� hnu)du: (B.14)

The di¤erence between the integral and

�in

Z
Rd
K (u)K

�
u+

y � x
hn

�
du (B.15)

is, by essentially the same proof, o(1) +O(h2��dn + h2��1n ) uniformly in i: There
exists � > 0 such that kx� yk > �: Thus kx� hnuk < � implies ky � hnuk >
� > 0; where � = kx� yk � �: Thus the integral in (B.15) is bounded byZ

kx�hnuk>�

����K (u)K �u+ y � x
hn

����� du+ Z
ky�hnuk>�

����K (u)K �u+ y � x
hn

����� du
� C

(Z
kuk>�=hn

jK (u)j du+
Z
kuk>�=hn

jK (u)j du
)
� Ch��1n : (B.16)

Thus when x 6= y; for �n as before,

(B:7) =
h�dn
n2

nX
i=1

�in(x)�n = o(sn); (B.17)

As in (A.20), (B.8) is

1

n2

nX
i;j=1;i 6=j


ijn

Z
R2d

K (u)K (v) �ijn(x� hnu; y � hnv)dudv: (B.18)

Now �ijn(x� u; y � v)� �ijn(x; y) can be written

f�in(x� u)� �in(x)g�jn(y � v)fijn(x� u; y � v)
+�in(x) f�jn(y � v)� �jn(y)g fijn(x� u; y � v)
+�in(x)�jn(y) ffijn(x� u; y � v)� fijn(x; y)g : (B.19)

By proceeding much as before with each of these three terms, it may thus be
seen that

(B:18) � 1

n2

nX
i;j=1;i 6=j


ijn f�in(x; y) + �ng �  (x; y)tn: (B.20)

�

Lemma 9 Let Assumptions A1, A2( �) for � > 2d; A4, A9, B4, B8(xi; xj);
i; j = 1; :::; p; B10 and B11 hold. Then there exists a sequence N = Nn; increas-
ing with n; such that

E



 br#1n


2 = o(wn); as n!1: (B.21)
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Proof: We have

E



 br#1n


2 = 1

(nhdn)
2

nX
i;j=1

E
�
K 0
inK

0
jn�in(Xin)�jn(Xjn)

	 1X
k=N+1

aiknajkn

(B.22)
From the proof of Lemma 8 the expectation is

�hdn f�in(x1); :::; �in(xp)g 1(i = j)(1 + o(1)) +Dijn1(i 6= j)(1 + o(1)) (B.23)

uniformly in i:j; where 1(:) denotes the indicator function and Dijn is the p� p
matrix with (k; l)th element h2dn �ijn(xk; xl):
First suppose tn = O(sn): By the Cauchy inequality

max
1�i;j�n

�����
1X

k=N+1

aiknajkn

����� � max
1�i�n

1X
k=N+1

a2ikn (B.24)

In view of (2.8), there exists a sequence �n; such that �n ! 0 as n!1; and

max
1�i�n

1X
k=N+1

a2ikn � �n: (B.25)

Thus

E



br#1n


2 = O

 
�nnh

d
n

(nhdn)
2

!
= o(�n); as n!1: (B.26)

Now suppose sn = o(tn): We have

nX
i;j=1;i 6=j

�����
1X

k=N+1

aiknajkn

����� �
1X

k=N+1

nX
i;j=1;i 6=j

jaiknajknj : (B.27)

Now
1X
k=1

bkn � 1; bkn =
nX

i;j=1;i 6=j
jaiknajknj =

1X
k=1

nX
i;j=1;i 6=j

jaiknajknj : (B.28)

Thus there exists a sequence "n; such that �n ! 0 as n!1; and
1X

k=N+1

bkn � �n: (B.29)

Thus from (5.27),

E



 br#1n


2 = h2dn

(nhdn)
2

nX
i;j=1

1X
k=N+1

jaiknajknj = O(�ntn) = o(tn); as n!1:

(B.30)
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�

Lemma 10 Let Assumptions A1, A2( �) for � > 4d; A4, A9, B4, B6, B7,
B9 and B10 hold. Then

E kTn � E fTngk2 = o(w2n); as n!1: (B.31)

Proof: It su¢ ces to check (B.31) in case p = 1; so we put x1 = x:We have

E fTn � E fTngg2 =
NX

j;k=1

�
E
�
Z2jnZ

2
kn

	
� E

�
Z2jn

	
E
�
Z2kn

	�
: (B.32)

The summand is

1

(nhdn)
4E

8<:
 

nX
i=1

Kin(x)�in(Xin)aijn

nX
i=1

Kin(x)�in(Xin)aikn

!29=;
�E

8<:
 

nX
i=1

Kin(x)�in(Xin)aijn

!29=;E

8<:
 

nX
i=1

Kin(x)�in(Xin)aikn

!29=;
=

1

(nhdn)
4

nX
is=1

s=1;:::;4

ai1jnai2jnai3knai4kn

�
E

�
4Q
s=1

Kisn(x)�isn(Xisn)

�

�E
�

2Q
s=1

Kisn(x)�isn(Xisn)

�
E

�
4Q
s=3

Kisn(x)�isn(Xisn)

��
(B.33)

The quadruple sum yields terms of seven kinds, depending on the nature of
equalities, if any, between the is; and bearing in mind the fact that i1; i2 are
linked with j; and i3; i4 are linked with k: Symbolically, denote such a term
hA;B;C;Di � hA;Bi hC;Di ; when all is are unequal, and repeat the corre-
sponding letters in case of any equalities. The other six kinds of term are
thus

hA;A;B;Ci � hA;Ai hB;Ci ; hA;B;A;Ci � hA;Bi hA;Ci ; hA;B;A;Bi � hA;Bi hA;Bi ;
hA;A;B;Bi � hA;Ai hB;Bi ; hA;A;A;Bi � hA;Ai hA;Bi ; hA;A;A;Ai � hA;Ai hA;Ai :

(B.34)

For an hA;B;C;Di � hA;Bi hC;Di term, the quantity in square brackets in
(B.33) is

h4dn

Z
R4d
ffi1i2i31i4n(x� hnu1; x� hnu2; x� hnu3; x� hnu4)

�fi1i2n(x� hnu1; x� hnu2)fi3i4n(x� hnu3; x� hnu4)g

�
4Q
s=1

fK (us)�isn(x� hnus)dusg : (B.35)
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By arguments similar to those in Lemma 4 the contribution to (B.32) is thus
bounded by

C

n4

nX
is=1

s=1;:::;4

0
���


i1i2n


i3i4n

��� �i1i2i3i4n(x; x; x; x; ") (B.36)

for some " > 0: This is o(t2n); and thus o(s
2
n) if tn = O(sn):

In a similar way, the contribution of an hA;A;B;Ci � hA;Ai hB;Ci term is
bounded by

Ch�dn
n3

nX
is=1
s=1;2;3

0
���


i2i3n

��� �i1i2i3n(x; x; x; "): (B.37)

This is o(sntn); which is o(s2n) if tn = O(sn); and o(t2n) if sn = o(tn): Likewise
the contribution of an hA;A;B;Bi � hA;Ai hB;Bi term is bounded by

Ch�2dn

n2
�i1i2n(x; x; "): (B.38)

This is o(s2n); and thus o(t
2
n) if sn = o(tn):

The remaining terms in (B.34) are handled by showing that the individual
components of each di¤erence are o(w2n): The hA;B;A;Ci contribution is (using
Assumption B6) bounded by

Ch�dn
n4

nX
is=1
s=1;2;3

���

i1i2n

��� ���

i1i3n

��� sup
jusj<"
s=1;2;3

fi1i2i3n(x� u1; x� u2; x� u3) = o(sntn);

(B.39)
the hA;Bi hA;Ci one by

C

n4

nX
is=1
s=1;2;3

���

i1i2n

��� ���

i1i3n

��� sup
jusj<"
s=1;2

fi1i2n(x�u1; x�u2) sup
jusj<"
s=1;3

fi1i3n(x�u1; x�u3) = o(sntn);

(B.40)
the hA;B;A;Bi one by

Ch�2dn

n4

nX
is=1
s=1;2


2
i1i2n

sup
jusj<"
s=1;2

fi1i2n(x� u1; x� u2) = O(s2ntn); (B.41)

the hA;Bi hA;Bi one by

C

n4

nX
is=1
s=1;2


2
i1i2n

sup
jusj<"
s=1;2

f2i1i2n(x� u1; x� u2) = o(s2ntn); (B.42)

the hA;A;A;Bi one by
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Ch�2dn

n4

nX
is=1
s=1;2

���

i1i2n

��� sup
jusj<"
s=1;2

fi1i2n(x� u1; x� u2) = O(s2ntn); (B.43)

the hA;Ai hA;Bi one by

Ch�dn
n4

nX
is=1
s=1;2

���

i1i2n

��� sup
juj<"

fi1(x�u) sup
jusj<"
s=1;2

fi1i2n(x�u1; x�u2) = o(s2ntn); (B.44)

the hA;A;A;Ai one by

Ch�3dn

n4

nX
i=1

sup
juj<"

fin(x� u) = O(s3n); (B.45)

and the hA;Ai hA;Ai one by

Ch�2dn

n4

nX
i=1

sup
juj<"

f2in(x� u) = o(s3n): (B.46)

�

Lemma 11 Let Assumptions A1, A2( �) for � > 4d; A4, B4, B5, B7 and
B9 hold. Then

E

8<:
NX
j=1

z4jn

9=; = O(dn + n
�1 + sn + tn); as n!1: (B.47)

:
Proof: Arguing as before, the left side is bounded by

Cw�2n

(nhdn)
4

NX
j=1

nX
is=1

s=1;:::;4

jai1jnai2jnai3jnai4jnj
�
h4dn 1(is 6= it; s; t = 1; :::; 4; s 6= t)

+h3dn 1(i1 = i2 6= i3; i4; i3 6= i4) + h
2d
n 1(i1 = i2 6= i3 = i4) + h

d
n1(i1 = i2 = i3 = i4)

	
� Cw�2n

n4

NX
j=1

8<:
 

nX
i=1

jaijnj
!4
+ h�dn

 
nX
i=1

jaijnj
!2 nX

i=1

a2ijn

+h�2dn

 
nX
i=1

a2ijn

!2
+ h�3dn

 
nX
i=1

a4ijn

!9=; : (B.48)
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Now
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and
NX
j=1

 
nX
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But
w�2n
n4

nX
i;j=1


ijn � tns
�2
n =n2 � Ct�1n =n2 if tn = O(sn) (B.51)

and the latter conclusion follows more directly if sn = o(tn): Also

h�dn t�1n =n2 = h�dn s�1n =n2 = n�1 if tn = O(sn);

= snt
�1
n =n = o(n�1) if sn = o(tn): (B.52)

Next
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for both tn = O(sn) and sn = o(tn): Finally
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= o(t3nt
�2
n ) = o(tn) if sn = o(tn): � (B.54)
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