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Abstract

This paper extends moment-based estimation procedures to models in which overi-

dentifying information is provided by inequality moment conditions. We derive the

large sample distribution theory for the maximum empirical likelihood estimator of the

finite-dimensional parameter vector θ that indexes the moment conditions. We show

that the asymptotic mean-squared error (MSE) of our estimator is smaller than the

MSE of an empirical likelihood estimator that ignores the information contained in

the inequality moment conditions. We propose asymptotically valid confidence sets

for θ and the slackness associated with the inequality moment conditions. Based on

simulations of the limit distribution of the confidence sets, we provide evidence that

our approach leads to more precise inference than procedures that ignore the the in-

equality moment conditions. The limit distributions derived in this paper also apply

to conventional GMM estimators.
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1 Introduction

This paper extends empirical likelihood (EL) estimation techniques to models in which a

subset of moment conditions take the form of weak inequalities rather than equalities, that

is,

IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] ≥ 0 (1)

if θ = θ0. Inequality moment conditions arise from many important economic models,

including intertemporal models of consumption and investment decisions that are subject to

borrowing constraints, e.g., Zeldes (1989), asset pricing in the presence of financial frictions,

e.g., Luttmer (1996, 1999), models of firm behavior that are based on the assumption that

firms’ actual choices yield higher ex ante expected profits than alternative feasible choices,

see Pakes, Porter, Ho, and Ishii (2005), and instrumental variable models in which a subset

of the instrumental variables is potentially correlated with the error term in the regression

equation, but the direction of the potential correlation is assumed to be known, e.g., as in

the case of Manski and Pepper’s (2000) monotone instrumental variables.

In general, the use of inequality moment conditions may introduce identification prob-

lems, that is, there is a non-singleton subset of the parameter space that satisfies (1).

Estimation and inference in the context of set identification has recently been studied by

Andrews, Berry, and Jia (2004), Chernozhukov, Hong, and Tamer (2002), and Pakes, Porter,

Ho, and Ishii (2005). Our paper, on the other hand, focuses on the additional information

that the inequality moment condition IE[g2(Xi, θ)] ≥ 0 can provide in a model in which θ0

is in principle identifiable based on the equality moment condition IE[g1(Xi, θ)] = 0 alone.

If it is the case that some elements of the vector IE[g2(Xi, θ0)] are near zero, in the sense

that IE[g2(Xi, θ0)] = u0/
√

n, then the second set of moment conditions provides additional

information, even asymptotically. The inequality condition constrains the limit objective

function of the estimator of θ and hence reduces its variability. The larger u0, the less

informative is the second moment condition. As u0 tends to infinity the estimation and

inference procedures proposed in this paper are asymptotically equivalent to those that are

based on g1(Xi, θ) only.

A variety of approaches exist to exploit the moment conditions (1) for the estimation of

θ0. While generalized method of moments (GMM) is currently the most widely used pro-

cedure in practice, information-theoretic estimators such as empirical likelihood estimators

have emerged as an attractive alternative to GMM. For instance, Kitamura (2001) showed

that the empirical likelihood ratio test for moment restrictions is asymptotically optimal
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under the Generalized Neyman-Pearson criterion. Newey and Smith (2004) find that the

asymptotic bias of EL estimators does not grow with the number of moment conditions and

that bias-corrected EL estimators have higher-order efficiency properties. A detailed review

of empirical likelihood methods in econometrics and statistics is provided in the monograph

by Owen (2001).

While we do not extend the above-mentioned higher-order optimality properties of em-

pirical likelihood procedures to the class of irregular models considered in this paper, we

believe that these results provide a good reason for studying empirical likelihood estima-

tors in the context of models with moment inequality constraints. In fact, since moment

conditions are imposed as parametric constraints on the empirical likelihood function, an

extension to inequality conditions is quite natural.

This paper focuses on first-order asymptotic approximations and makes two contri-

butions. First, we derive the joint limit distribution of the EL estimators of θ0 and

IE[g2(Xi, θ0)]. EL estimators are conveniently expressed as the solution to a saddlepoint

problem. Unlike the previous literature, e.g., Kitamura and Stutzer (1997) and Newey

and Smith (2004), that develops the EL limit theory from an expansion of the first-order

conditions associated with the saddlepoint, we follow Chernoff (1954) and, more recently,

Andrews (1999) by deriving a quadratic approximation of the EL objective function and

analyzing the distribution of its saddlepoint. The inequality moment conditions translate

into sign restrictions on the corresponding Kuhn-Tucker parameters in the saddlepoint for-

mulation of the EL problem. For the (special) case in which g2(Xi, θ) is a scalar, we show

analytically that the asymptotic mean-squared error (MSE) of our estimator is smaller than

the MSE of an empirical likelihood estimator that ignores the information contained in the

inequality moment conditions.

Our asymptotic analysis has a straightforward extension to the class of saddlepoint esti-

mators that Newey and Smith (2004) refer to as generalized empirical likelihood estimators.

However, the extension is not pursued in this paper. Since the concentrated limit objective

function of the EL estimator has the same first-order asymptotic approximation as a GMM

estimator that uses an optimal weight matrix and handles the presence of inequality moment

conditions through additional slackness parameters (see below), our large sample analysis

also applies to conventional GMM estimators.

Second, we invert empirical likelihood ratio test statistics to obtain confidence sets for

θ0 and IE[g2(Xi, θ0)]. The near-zero slackness parameter u0 enters the limit distributions

of the EL estimator of θ and related empirical likelihood ratio statistics, which complicates
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statistical inference. Since u0 cannot be consistently estimated we construct a Bonferroni

type confidence set for θ0 that takes a union of confidence sets that are valid conditional on

particular values of u0. This complication is unrelated to the saddlepoint formulation of the

EL estimation problem and also arises in a more conventional GMM analysis of model (1).

The nuisance parameter dependence of the limit distributions resembles the difficulties en-

countered in models with nearly integrated regressors, e.g., Cavanagh, Elliott, and Stock

(1995). Based on simulations of the non-standard limit distribution of the empirical likeli-

hood ratios, we show that the proposed confidence sets for θ0 and u0 perform well compared

to the exact asymptotic confidence sets based on the IE[g1(Xi, θ0)] = 0 estimator.

One can introduce an additional parameter vector ϑ = IE[g2(Xi, θ)] that captures the

slackness in the inequalities and express the second moment condition as IE[g2(Xi, θ0)−ϑ0] =

0, where ϑ0 ≥ 0. Thus, rather than using the inequality moment condition directly, it

could be translated into an inequality restriction on the parameter vector. There exists

an extensive literature on estimation and inference in the presence of inequality parameter

constraints of the form ψ(θ, ϑ) ≥ 0, where ψ(·) is a deterministic function of the model

parameters, e.g., Chernoff (1954), Kudo (1963), Perlman (1969), Gourieroux, Holly and

Monfort (1982), Shapiro (1985), Kodde and Palm (1986), and Wolak (1991). Detailed

literature surveys are provided in in Gourieroux and Monfort (1995) and Sen and Silvapulle

(2002). EL inference subject to a constraint of the form ψ(θ, ϑ) ≥ 0 has been considered

by El Barmi (1995), El Barmi and Dykstra (1995), and Owen (2001). However, none of the

EL papers provides a complete limit distribution theory, considers the important case in

which the inequalities stem directly from the moment conditions, and analyzes confidence

intervals.

The special case of IE[g2(Xi, θ0)] = 0 translates into ϑ0 = 0, which means that ϑ0

lies on the boundary of its domain. Hence, our asymptotic analysis is closely related to

Andrews’ (1999, 2001) work on estimation and testing when a parameter is on the boundary

of the parameter space. Andrews (1999) considers estimators that are defined defined as

extremum of an objective function. He constructs a stochastic quadratic approximation

of this objective function that is valid in large samples and shows that the asymptotic

distribution of interest is given by the distribution of the possibly constrained extremum of

the quadratic limit objective function. We extend some of Andrews’ results to estimators

that are defined as a saddlepoint rather than an extremum. Moreover, Andrews (1999)

focuses on inference for ϑ0, whereas we also discuss inference with respect to θ0, treating ϑ0

as a nuisance parameter.
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The plan of the paper is as follows. Section 2 presents the assumptions underlying our

analysis and the definition of the EL objective function and estimator. We discuss several

important applications of our method. Section 3 develops the asymptotic distribution the-

ory for the EL estimator and its objective function in the presence of inequality moment

conditions. Section 4 constructs interval estimators for θ0 and IE[g2(Xi, θ0)]. Since the

asymptotic distributions derived in this paper are non-standard, we simulate the limit dis-

tributions of point estimators and confidence intervals in the context of a numerical example

in Section 5. Moreover, we make a comparison with the asymptotic properties of simple pro-

cedures that ignore the information in the inequality moment condition. Section 6 concludes

and the Appendix contains all proofs and technical Lemmas.

We use the following notation throughout the paper: “
p−→” and “=⇒” denote conver-

gence in probability and distribution, respectively. “≡” signifies distributional equivalence.

If A is an n×m matrix then ‖A‖ = (tr[A′A])1/2. I{x ≥ a} is the indicator function that is

one if x ≥ a and zero otherwise. We abbreviate the “weak law of large numbers” by WLLN,

the “uniform WLLN” by ULLN, and use w.p.a. 1 instead of “with probability approaching

one.” We denote Rn− = {x ∈ Rn | x ≤ 0} and Rn+ = {x ∈ Rn | x ≥ 0}.

2 Notation and Setup

The moment conditions that we are exploiting for estimation are given in Equation (1).

Let Θ be the domain of the parameter vector θ. The functions g1 and g2 are of dimension

h1 × 1 and h2 × 1, respectively. Let h = h1 + h2 and g(Xi, θ) = [g1(Xi, θ)′, g2(Xi, θ)]′. We

use g
(1)
j (Xi, θ) and g

(2)
j (Xi, θ) to denote the first and the second order partial derivatives of

gj(Xi, θ), the j’th element of the vector g(Xi, θ), with respect to θ. Moreover, we collect

the first-order derivatives in the matrix g(1)(Xi, θ) = [g(1)
1 (Xi, θ), . . . , g

(1)
h (Xi, θ)]. We begin

by stating some fundamental assumptions.

Assumption 1 The random vectors Xi, i = 1, . . . , n are i.i.d. on a probability space

(Ω,F , P ) .

Assumption 2 The parameter space Θ for θ is an m-dimensional compact subset of Rm.

Assumption 3 The function g(x, θ) is continuous at each θ ∈ Θ with probability one.

Assumption 4 IE[g1(Xi, θ0)] = 0, and IE[g1(Xi, θ)] 6= 0 for θ 6= θ0. Moreover, IE[g2(Xi, θ0)] =

νn,0 = ν0 + n−1/2u0 ≥ 0 and IE[g(Xi, θ0)g(Xi, θ0)′] = Jn −→ J is non-singular.
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Assumption 5 E

[
supθ∈Θ ‖g (X, θ)‖α

]
< ∞ for some α > 2.

Assumption 6 The matrix IE[g(1)
1 (Xi, θ0)′] has full column rank. IE

[
supθ∈Θ ‖g(1)

k (X, θ)‖
]

<

∞, IE
[
supθ∈Θ ‖g(2)

j,k (X, θ)‖
]

< ∞ for j = 1, ..., h.

Most importantly, we assume in Assumption 4 that the parameter θ0 is identifiable based

on the equality moment condition IE[g1(Xi, θ0)] = 0. The expected value of g2(Xi, θ0) is

denoted by νn,0 ≥ 0. In order to be able to study the local properties of our estimation

and inference procedures we allow for n−1/2 drifts in the parameter θ and the slackness of

the inequality conditions. In general, it will turn out that moment conditions for which the

corresponding element of ν0 is strictly greater than zero do not affect the limit distribution

of estimators and test statistics. However, if ν0 = 0 and the expected value of the second

set of moment conditions are close to zero in the sense that u0 > 0 then it will influence the

limit distributions that we are deriving subsequently.

2.1 Examples of Inequality Moment Conditions

We now introduce several examples for inequality moment conditions to motivate our econo-

metric analysis. Consider the problem of estimating

XY = X ′
Xθ0 + U, (2)

where XX is an endogenous regressor that is correlated with the error term U . Suppose

two sets of instrumental variables (IV) are available: X1 is a vector of variables that are

orthogonal to U , whereas for X2 it is economically plausible to assume that a potential

violation of the orthogonality takes a particular direction, for instance, IE[X2U ] ≥ 0. This

inequality condition is closely related to Manski and Pepper’s (2000) notion of monotone

instrumental variables:

IE[U |X2 = x2] ≥ IE[U |X2 = x̃2] for all x2 ≥ x̃2.

Suppose that XY is wage, XX is schooling, and X2 measures a person’s ability. If the type

of ability captured by X2 is valued in the market, then it is reasonable to assume that X2

is a monotone instrumental variable and hence satisfies the inequality moment condition.

In macroeconomics there is great interest in characterizing the behavior of central banks

through interest rate feedback rules, e.g.

R = ρR−1 + (1− ρ)(ψ1π + ψ2y) + U,
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where R is the nominal interest rate, π is inflation, and y is output (see Taylor (1999)).

All variables are in deviation from their respective target levels and U is an unanticipated

deviation from the policy rule, typically referred to as monetary policy shock. Hence, in

our notation XY = R and XX = [R−1, π, y]′. Many theoretical dynamic stochastic general

equilibrium models (see Woodford (2003) for an extensive analysis of New Keynesian models)

predict that output and inflation are correlated with the monetary policy shock U , which

establishes the need for IV estimation. Natural candidates in a time series environment are

lagged endogenous variables. However, many theories also predict that inflation and output

fall in response to a contractionary policy shock (U > 0). This prediction leads to the

inequality moment conditions IE[−yU ] ≥ 0 and IE[−πU ] ≥ 0, which can be used to sharpen

the inference with respect to the policy rule coefficients.1

More generally, applied researchers typically pay careful attention to the validity of

instrumental variables, sacrificing relevance, that is, correlation between instruments and

regressors. A widely cited example is Angrist and Krueger (1991) who proposed using

quarter of birth as an instrument to circumvent ability bias in estimating the returns to

education. In response, the econometrics literature has developed an asymptotic theory of

weak IVs, which assumes that instruments and error terms are orthogonal but the correlation

between instruments and regressors vanishes as the sample size tends to infinity (see Stock,

Wright, and Yogo (2002) for a survey). In this paper we take a complimentary approach. Our

analysis encompasses situations in which the IV’s remain asymptotically relevant, but the

validity condition is weakly violated, in the sense that the correlation between instruments

and regressors is potentially positive in finite samples, but converges to zero asymptotically.

Inequality moment restrictions also arise in the context of intertemporal optimization

models, in which agents face liquidity or regulatory constraints. For instance, in an in-

fluential paper Zeldes (1989) studies whether the presence of borrowing constraints can

explain households’ violation of consumption Euler equations. For households that face a

binding borrowing constraint, the marginal utility of consumption in the current period

exceeds the discounted expected marginal utility in the subsequent period. Zeldes (1989)

constructs an observable proxy from the wealth-to-income ratio that indicates if consump-

tion of household i is constrained. He argues that if the wealth threshold is sufficiently

large, then some households may be incorrectly classified as constrained, but it is unlikely

that unconstrained households are misclassified. Hence, the optimality condition for high
1Such an approach is related to the methods developed by De Nicoló (2002) and Uhlig (2005) to identify

impulse response functions based on sign restrictions.
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wealth-to-income households translates into an equality moment condition, whereas the op-

timality condition for the remaining households leads to an inequality moment condition.

Zeldes (1989) ignores in his empirical analysis the inequality moment condition when esti-

mating utility function parameters and testing for the presence of borrowing constraints.

However, if the marginal utility differential of the borrowing constrained households is small

or the fraction of misclassified households is large then his approach potentially neglects

important information.

Finally, Pakes, Porter, Ho, and Ishii (2005) provide several examples of inequality mo-

ment conditions derived from models of industrial organization, including an ordered choice

problem in which banks choose the number of ATMs, and a model of buyer/seller net-

works, in which hospitals and Health Maintenance Organizations establish health plans and

hospital networks.

2.2 Empirical Likelihood Estimation

Among the various methods that could be used to estimate θ0 based on the moment restric-

tions (1) we consider the method of maximum empirical likelihood. The notion of empirical

likelihood was introduced by Owen (1988) and extended to incorporate moment restrictions

by Qin and Lawless (1994). Our analysis has a straightforward extension (not pursued in

this paper) to the class of estimators that Newey and Smith (2004) refer to as generalized

empirical likelihood estimators, e.g., exponential tilting and continuous updating GMM.

The (constrained) empirical likelihood function is

LEL(θ, p) (3)

=

{
n∏

i=1

pi

∣∣∣∣ pi > 0,

n∑

i=1

pi = 1,

n∑

i=1

pig1(Xi, θ) = 0,

n∑

i=1

pig2(Xi, θ) ≥ 0

}
,

where pi is a probability mass on Xi and p = [p1, . . . , pn]′. The maximum empirical likeli-

hood estimator (MELE) of θ and p is defined as

{θ̂n,EL, p̂n,EL} = argmax
θ∈Θ, p

LEL(θ, p). (4)

Let

ΨEL(θ, p, λ1, λ2) = − 1
n

n∑

i=1

ln pi + λ′1

n∑

i=1

pig1(Xi, θ) + λ′2

n∑

i=1

pig2(Xi, θ). (5)

According to the Kuhn-Tucker Theorem there exist λ̂n,1 ∈ Rh1 and λ̂n,2 ∈ Rh2− such that

(θ̂n,EL, p̂n,EL, λ̂n,1, λ̂n,2) is a saddlepoint of ΨEL. Since the expected value of g2(Xi, θ) is

only required to be non-negative, λ̂2 is restricted to be less than or equal to zero. Based on
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the first-order conditions associated with the saddlepoint of ΨEL it is possible to express the

probabilities p̂n,EL as a function of λ̂n,1 and λ̂n,2. It is common in the empirical likelihood

literature to exploit this relationship and modify the function ΨEL to eliminate the n-

dimensional vector p. Let

Gn(θ, λ1, λ2) =
1
n

n∑

i=1

ln (1 + λ′1g1(Xi, θ) + λ′2g2(Xi, θ)) (6)

and

Λ̂n,1(θ) = {λ ∈ Rh1 | λ′g1(Xi, θ) ≥ −1 + κ, i = 1, . . . , n},
Λ̂−n,2(θ) = {λ ∈ Rh2− | λ′g2(Xi, θ) ≥ −1 + κ, i = 1, . . . , n}

for some κ > 0, and define the estimator θ̂n based on the following saddlepoint problem

θ̂n = argmin
θ∈Θ

max
λ1∈Λ̂n,1(θ), λ2∈Λ̂−n,2(θ)

Gn(θ, λ1, λ2). (7)

The domains of λ1 and λ2 are chosen to ensure that the argument of the logarithm in (6)

is strictly positive.

The (Kuhn-Tucker) first-order conditions associated with ΨEL are of the form

pi =
1

n (1 + λ′1g1(Xi, θ) + λ2g2(Xi, θ))
, (8)

0 =
n∑

i=1

pig1(Xi, θ) =
1
n

n∑

i=1

g1(Xi, θ)
1 + λ′1g1(Xi, θ) + λ2g2(Xi, θ)

, (9)

0 ≤
n∑

i=1

pig2(Xi, θ) =
1
n

n∑

i=1

g2(Xi, θ)
1 + λ′1g1(Xi, θ) + λ2g2(Xi, θ)

, (10)

where λ2,j = 0 if the j’th element of (10) is strictly positive and λ2,j ≤ 0 otherwise. The

objective function (6) is obtained by replacing the probabilities pi in the the function ΨEL

with (8). It is straightforward to verify that the first-order conditions for the modified

saddle-point problem (7) are given by (9) and (10). Hence, as long as the constraints

λ′kgk(Xi, θ) ≥ −1 + κ that appear in the definitions of Λ̂n,1(θ) and Λ̂−n,2(θ) are not binding,

θ̂n and the associated λ̂n,1 and λ̂n,2 satisfy the first-order conditions for a saddlepoint of

ΨEL.

It turns out that the large sample behavior of the saddlepoint of the function Gn(θ, λ1, λ2)

is difficult to analyze directly, since the minimization with respect to λ2 is restricted to non-

positive values. We therefore define the function

G∗n(θ, ν, λ1, λ2) = Gn(θ, λ1, λ2)− ν′λ2, (11)
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where ν is a h2 × 1 vector. In order to develop an asymptotic distribution theory for the

estimator θ̂n it is more convenient to study the following problem

min
θ∈Θ, ν≥0

max
λ1∈Λ̂n,1(θ), λ2∈Λ̂n,2(θ)

G∗n(θ, ν, λ1, λ2). (12)

In the G∗n formulation the vector λ2 in the interior maximization problem is not restricted

to be negative, that is,

λ2 ∈ Λ̂n,2(θ) = {λ ∈ Rh2 | λ′g2(Xi, θ) ≥ −1 + κ, i = 1, . . . , n}.

This will make it easier to approximate the profile of G∗n that is obtained by maximization

with respect to λ1 and λ2 for each value of θ and ν.

As mentioned in the Introduction, one could also rewrite the second moment condition

as

IE[g2(Xi, θ0)− ϑ0,n] = IE[g̃2(Xi, θ0, ϑ0,n)] = 0

and restrict the auxiliary parameter ϑ0 to be nonnegative. The estimators θ̂n and ϑ̂n can

be defined as the saddlepoint

min
θ∈Θ, ϑ≥0

max
λ1∈Λ̂n,1(θ), λ2∈Λ̂n,2(θ)

G∗n(θ, ν, λ1, λ2), (13)

where

G̃n(θ, ϑ, λ1, λ2) =
1
n

n∑

i=1

ln(1 + λ′1g1(Xi, θ) + λ′2[g2(Xi, θ)− ϑ]). (14)

As in the G∗n formulation the vector λ2 is not constrained to be less than or equal to

zero. The following lemma states that the three functions Gn, G∗n, and G̃n have the same

saddlepoints.

Lemma 1 θ̂, λ̂1, λ̂2 are a solution to the saddlepoint problem (7)

(i) if and only if θ̂, λ̂1, λ̂2, and ν̂ are a solution to the saddlepoint problem (12);

(ii) if and only if θ̂, λ̂1, λ̂2, and ϑ̂ are a solution to the saddlepoint problem (13).

The elements of the h2 × 1 vector ν̂ are defined as

ν̂j = ϑ̂j =





∂Gn(θ,λ1,λ2)
∂λ2,j

∣∣∣∣
θ̂,λ̂1,λ̂2

if λ̂2,j = 0

0 if λ̂2,j < 0, j = 1, . . . , h2.
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From the definition of the function Gn in (6) and the first-order condition (10) it can

be deduced that

ν̂ = ϑ̂ =
n∑

i=1

p̂ig2(Xi, θ̂), (15)

that is, the h2 × 1 vector ν̂ in the G∗n formulation of the saddlepoint problem provides an

estimate of the expected value of g2. To obtain a more compact notation we let

λ = [λ′1, λ
′
2]
′, and Λ̂n(θ) = Λ̂n,1(θ)⊗ Λ̂n,2(θ).

Gn(θ, λ) is used to abbreviate Gn(θ, λ1, λ2). We define the h2 × h matrix M = [0 I] such

that

G∗n(θ, ν, λ) = Gn(θ, λ)− ν′Mλ. (16)

We will subsequently study the saddlepoint of G∗n(θ, ν, λ) given by

{θ̂n, ν̂n} = argmin
θ∈Θ, ν≥0

max
λ∈Λ̂n(θ)

G∗n(θ, ν, λ)

λ̂(θ, ν) = max
λ∈Λ̂n(θ)

G∗n(θ, ν, λ).

The introduction of the vector ν will make it easier to approximate the profile objective

function

Ḡ∗n(θ, ν) = G∗n(θ, ν, λ̂(θ, ν)) (17)

and will ultimately lead to a simplification of the asymptotic analysis.

3 Large Sample Analysis of the MELE

The large sample analysis proceeds in three steps. First, we establish the consistency of

the MELE. Second we construct a quadratic approximation, denoted by G∗nq(θ, ν, λ) of the

objective function G∗n(θ, ν, λ) in the neighborhood of θ = θ0, ν = ν0, and λ = 0 and show that

the saddlepoint estimators defined on G∗n(θ, ν, λ) and G∗nq(θ, ν, λ) are
√

n-consistent. The

third step consists of proving that the estimators obtained from G∗n and and its quadratic

approximation G∗nq are distributionally equivalent in large samples.

3.1 Consistency

It is well known that the MELE with equality moment conditions is consistent. Since

Assumption 4 guarantees that θ0 is identifiable from IE[g1(Xi, θ0)] = 0 it is not surprising

that θ̂n is also consistent in our framework. However, we can also show that the difference
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between ν̂n, characterized in Lemma 1 as derivative of Gn(θ, λ1, λ2) with respect to λ2, and

νn,0 = IE[g2(Xi, θ0)] converges to zero. The vector of estimated Kuhn-Tucker parameters λ̂

also converges to zero. The consistency result is formally stated in the following theorem.

Theorem 1 Suppose that Assumptions 1 to 5 are satisfied. Then θ̂n
p−→ θ0 and ν̂n −

νn,0
p−→ 0. Moreover, λ̂(θ̂n, ν̂n)

p−→ 0.

3.2 Quadratic Approximation of Objective Function

We proceed with a second-order Taylor approximation of the objective function G∗n. Let

β = [θ′, ν′, λ′]′, βn,0 = [θ′0, ν
′
n,0, 0]′, and abbreviate G∗n(θ, ν, λ) as G∗n(β). Define G

∗(1)
n (β)

and G
∗(2)
n (β) to be the first and the second order partial derivatives of G∗n(β), respectively,

and write the objective function as

G∗n(β) = G∗nq(β) +
1
n
Rn(β), (18)

where

G∗nq (β) = G∗n (βn,0) + G∗(1)n (βn,0)
′ (β − βn,0) +

1
2

(β − βn,0)
′
G∗(2)n (βn,0) (β − βn,0) . (19)

1
nRn(β) is the remainder term of the Taylor approximation. The domain of β is given by

Bn =
{

β = [θ′, ν′, λ′]′ | θ ∈ Θ, ν ∈ Rh2+, λ ∈ Λ̂n(θ) ∩ Λζ
n

}
,

where Λζ
n =

{
λ ∈ Rh : ‖λ‖ ≤ n−ζ

}
. For technical reasons it is convenient to impose that

the domain of λ shrinks at the rate n−ζ . We show in Lemmas A.1 and A.2 in the Appendix

that this domain restriction asymptotically does not affect λ̂. A bound for the remainder

Rn(β) is provided in the following lemma.

Lemma 2 Suppose Assumptions 1 to 6 are satisfied, then for all γn −→ 0

sup
β∈Bn:‖β−βn,0‖≤γn

|Rn(β)|
(1 + ‖√n(β − βn,0)‖2) = op(1), (20)

where Rn(β) is the remainder term in (18).

The first and second derivatives of G∗n evaluated at βn,0 are of the form

G∗(1)n (βn,0) = [0, 0, n−1/2Z ′n], G∗(2)n (βn,0) =




0 0 Qn

0 0 −M

Q′n −M ′ −Jn


 , (21)
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where

Zn =
1√
n

n∑

i=1

[g(Xi, θ0)−M ′νn,0] , Qn =
1
n

n∑

i=1

g(1)(Xi, θ0), Jn =
1
n

n∑

i=1

g(Xi, θ0)g(Xi, θ0)′.

We proceed by transforming the parameter vector β. Let b = [s′, u′, l′]′ =
√

n(β−β0), where

β0 = [θ′0, ν
′
0, 0]′. The domain of b will be denoted by Bn, where Bn is defined such that

s ∈ Sn =
√

n(Θ− θ0), u ∈ Un =
√

n
(
Rh2+ − ν0

)
, l ∈ Ln(s) = {l | l/√n ∈ Λn(θ0 + s/

√
n)}.

Notice that Sn expands to Rm and the j’th ordinate of Un expands to R if the j’th element

of ν0 is strictly positive. The objective function G∗n can be expressed in terms of the “local”

deviations b from β0 as

G∗n(s, u, l) = nG∗n(θ0 + n−1/2s, ν0 + n−1/2u, n−1/2l) = G∗nq(s, u, l) +R. (22)

We deduce from (19) and (21) that the quadratic approximation of the objective function

is of the form

G∗nq(s, u, l)

= −1
2
(l − J−1

n [Zn + Q′
ns−M ′(u− u0)])′Jn(l − J−1

n [Zn + Q′
ns−M ′(u− u0)])

+
1
2
(Zn + Q′

ns−M ′(u− u0))′J−1
n (Zn + Q′

ns−M ′(u− u0)). (23)

For notational convenience we will stack the parameters s and u into the vector φ = [s′, u′]′

with domain Φn = Sn ⊗ Un. Let φ0 = [0, u′0]
′ and Rn = [−Q′

n,M ′]′. Then we define

G∗nq(φ, l) = −1
2
(l − J−1

n [Zn −R′n(φ− φ0)])′Jn(l − J−1
n [Zn −R′n(φ− φ0)]) (24)

+
1
2
(Zn −R′n(φ− φ0))′J−1

n (Zn −R′n(φ− φ0)).

The coefficient matrices of the function G∗nq have the following limit distribution. Notice

that the limit covariance matrix of Zn depends not just θ0 but also on ν0.

Theorem 2 Suppose Assumptions 1 to 6 are satisfied. Then

(Jn, Rn, Zn) =⇒ (J,R, Z),

where J = limn−→∞ IE[g(Xi, θ0)g(Xi, θ0)′], R = limn−→∞
[−IE[g(1)(Xi, θ0)]′,M ′]′ and Z ∼

N (0, J −M ′ν0ν
′
0M).

We now define two estimators: b̂ is the standardized version of the actual empirical

likelihood estimator. The second estimator, b̃q is obtained by solving a saddlepoint problem
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based on the objective G∗nq(φ, l) without restricting b to lie in Bn. Formally,

l̂(φ) = argmaxl∈Ln(φ) G∗n(φ, l), φ̂ = argminφ∈Φn
G∗n(φ, l̂(φ))

l̃q(φ) = argmaxl∈Rh G∗nq(φ, l), φ̃q = argminφ∈Φ G∗nq(φ, l̃q(φ)),

where Ln(φ) corresponds to Ln(s) defined above and

Φ(ν0) =
{

φ = [s′, u′] ∈ Rm ⊗ Rh2 | uj ≥ 0 if ν0,j = 0
}

. (25)

The vectors b̃q and β̃nq are defined by stacking and transforming the elements of φ̃q and

l̃q(φ̃q) appropriately.

Theorem 3 Suppose Assumptions 1 to 6 are satisfied, then

(i)
√

n(β̃nq − β0) = Op(1),

(ii)
√

n(β̂n − β0) = Op(1),

(iii) nG∗n(β̂n) = nG∗nq(β̂n) + op(1),

(iv) nG∗nq(β̂n) = nG∗nq(β̃nq) + op(1),

(v) nG∗n(β̂n) = nG∗nq(β̃nq) + op(1).

Theorem 3 establishes that β̂n and β̃nq are
√

n-consistent. Moreover, the theorem states

that the discrepancy between G∗n(β) evaluated at β̂n and G∗nq(β) evaluated at β̃nq vanishes.

Thus, the large-sample behavior of likelihood ratios can be approximated by the behavior

of G∗nq(β̃nq).

3.3 Limit Distribution of MELE

We begin by studying the limit distribution of b̃q. From (24) it follows immediately that

G∗nq(φ, l) is maximized with respect to l ∈ Rh by

l̃q (φ) = J−1
n (Zn −R′n(φ− φ0)) . (26)

According to Assumption 4 the limit of Jn is non-singular. Moreover, the function g(x, θ)

is continuous at each θ ∈ Θ (Assumption 3). Hence, l̃q(φ) is well defined w.p.a. 1 and the

concentrated objective function is of the form

Ḡ∗nq(φ) = G∗nq(φ, l̃q (φ)) =
1
2
(Zn −R′n(φ− φ0))′J−1

n (Zn −R′n(φ− φ0)). (27)

The limit distribution of φ̃q can be determined from Ḡ∗nq(φ). We then use (26) to obtain the

distribution of l̃q(φ̃q). The results are summarized in the following theorem.
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Theorem 4 Suppose Assumptions 1 to 6 are satisfied. Then

(φ̃q, l̃q(φ̃q)) =⇒ (P,L), and G∗nq(φ̃q, l̃q(φ̃q)) =⇒ G∗q (P,L),

where

P = argmin
φ∈Φ(ν0)

1
2
(Z −R′(φ− φ0))′J−1(Z −R′(φ− φ0)),

L = J−1(Z −R′(P − φ0)),

G∗q (P,L) =
1
2
(Z −R′(P − φ0))′J−1(Z −R′(P − φ0)).

The final step in obtaining the limit distribution for β̂n is to show that b̂ and b̃q are

asymptotically equivalent.

Theorem 5 Suppose Assumptions 1 to 6 are satisfied, then b̂ = b̃q + op(1).

3.4 GMM with Inequality Moment Conditions

The limit distribution derived in Theorem 4 also applies to the following GMM estimator:

min
θ∈Θ,ϑ≥0

1
2

(
n∑

i=1

g(Xi, θ)−M ′ϑ

)′

Wn

(
n∑

i=1

g(Xi, θ)−M ′ϑ

)
, (28)

where ϑ is an h2×1 vector of slackness parameters, the h2×h matrix M = [0 I] is defined as

above, and {Wn} is a sequence of positive-definite h×h weight matrices. Let s =
√

n(θ−θ0),

u =
√

n(ϑ− ν0), and φ = [s′, u′]′. Using definitions of Zn, Rn, and Jn in (21) and assuming

that Wn − J−1
n

p−→ 0 it follows from the arguments in Andrews (1999) that the objective

function of the GMM estimator has a quadratic approximation of the form

1
2
(Zn −R′n(φ− φ0))′J−1

n (Zn −R′n(φ− φ0)).

Thus, the approximation of the GMM objective function is equivalent to the concentrated

objective function Ḡ∗nq(φ) of the empirical likelihood estimator in Equation (27). Therefore,

the analysis in the remainder of the paper applies not only to empirical likelihood estimators

but also to conventional GMM estimators.

3.5 Discussion

We will now explore the limit distribution of b̂ in more detail. First, we will show that

the limit distribution of ŝ does not depend on the g2-moment condition if ν0 > 0. In this
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case, our estimator is asymptotically equivalent to the one that only uses the g1-moment

condition. The result has a straightforward generalization: elements of the vector g2 that

have a strictly positive expected value do not affect the limit distribution of θ̂. Second,

if ν0 = 0 and IE[g2(Xi, θ0)] = n−1/2u0, then the parameter u0 affects the shape of the

limit distribution. The larger u0 the less information about θ can be extracted from the

inequality moment condition. Third, for the case h1 = 1 we derive the asymptotic mean

and the variance of ŝ and compare it to the mean and variance of an estimator that only

uses IE[g1(Xi, θ0)] = 0 and one that potentially wrongly imposes IE[g2(Xi, θ0)] = 0.

Irrelevant Inequality Moment Conditions. We partition the random vector Z and the

matrices R and J as follows:

Z =


 Z1

Z2


 , R′ =


 −Q′1 0

−Q′2 I


 , J =


 J11 J12

J21 J22


 .

The partitions conform with g(x, θ) = [g′1(x, θ), g′2(x, θ)]′. Using the formulas for marginal

and conditional means and variances of a multivariate normal distribution it is straightfor-

ward to verify that

(Z −R′(φ− φ0))′J−1(Z −R′(φ− φ0))

= (Z1 + Q′1s)
′J−1

11 (Z1 + Q′1s) (29)

+[Z2 + Q′2s− (u− u0)− J21J
−1
11 (Z1 + Q′1s)]

′

×(J22 − J21J
−1
11 J12)−1[Z2 + Q′2s− (u− u0)− J21J

−1
11 (Z1 + Q′1s)].

If ν0 > 0 then the limit distribution of û is obtained by minimizing (29) with respect to

u ∈ Rh2 . Hence,

U − u0 = Z2 + Q2S − J21J
−1
11 (Z1 + Q′1S),

which implies that the second summand in (29) is zero. We can draw two important con-

clusions from this algebraic manipulation. First, since the first summand does not depend

on any partition of Z, Q, and J associated with g2(x, θ) we deduce that inequality mo-

ment conditions that hold with strict inequality do not influence the distribution of S and,

therefore, asymptotically do not provide any additional information on θ. Second, although

the distribution of the random vector Z depends on ν0, notice that Z1 ∼ N (0, J11). Thus,

neither the distribution of S, nor the distribution of G∗q (P,L) depends on the specific values

of ν0 if ν0 > 0. In particular,

S = −(Q1J
−1
11 Q′1)

−1Q1J
−1
11 Z1 ≡ N

(
0, (Q1J

−1
11 Q′

1)
−1

)
.
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Using the formula for the inverse of a partitioned matrix it can be verified that

L1 = J−1
11 (Z1 + Q′

1S), L2 = 0.

Finally,

2G∗q (P,L) = Z ′1[J
−1
11 − J−1

11 Q′
1(Q1J

−1
11 Q′

1)
−1Q1J

−1
11 ]Z1, (30)

which corresponds to a χ2 random variable with m−h1 degrees of freedom. Thus, the limit

distributions reduce to the well-known case in which estimation and inference is based only

on IE[g1(Xi, θ0)] = 0.

Weakly Informative Inequality Moment Conditions. Now suppose that IE[g2(Xi, θ0)] =

n−1/2u0, where u0 > 0. Then the concentrated asymptotic objective function becomes

Ḡ∗q ([s′, u′]′) =
1
2
(Z + Q′s−M ′(u− u0))′J−1(Z + Q′s−M ′(u− u0)) (31)

and has to be minimized subject to the constraint that u ≥ 0. Using a change of variables

and defining ũ = u− u0 we obtain

Ḡ∗q ([s′, u0 + ũ′]′) =
1
2
(Z + Q′s−M ′ũ)′J−1(Z + Q′s−M ′ũ) (32)

where ũ ≥ −u0. Thus, the further IE[g2(Xi, θ0)] is apart from zero (in the local metric) the

less often the constraint on ũ is binding and the closer limit distribution to the one that is

obtained if the second set of moment conditions is ignored.

Mean-Squared-Error Comparison. For the special case of h2 = 1 we derive an analytic

formula for the asymptotic mean-squared-error of the estimator ŝ. Consider the concentrated

limit objective function for the estimator of φ:

Ḡ∗q (φ) =
1
2
(Z −R′(φ− φ0))′J−1(Z −R′(φ− φ0)). (33)

In the absence of a constraint on φ the limit covariance matrix of φ̂ were given by

Ω = (RJ−1R′)−1 =


 Ωss Ωsu

Ωus Ωuu


 .

The partitions of Ω conform with the partition φ = [s′, u′]′. It can be verified that

Ωss = (Q1J
−1
11 Q′1)

−1

Ωss − ΩsuΩ−1
uuΩus = (QJ−1Q′)−1.

Without loss of generality we are re-normalizing the inequality moment condition such that

Ωuu = 1. Let ϕ(·) denote the probability density function and Φ(·) the cumulative density
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function of a N (0, 1). We show in the Appendix that

IE[S] = Ωsu[ϕ(u0)− u0Φ(u0)] (34)

V [S] = Ωss + ΩsuΩus(1− Φ(u0))
[
1− ϕ2(u0)

(1− Φ(u0))2
− u0ϕ(u0)

1− Φ(u0)
(35)

+
(

u0 +
ϕ(u0)

1− Φ(u0)

)2

Φ(u0)

]
− ΩsuΩus

and the mean-squared-error is given by

MSE(S) = Ωss + ΩsuΩus[(u2
0 − 1)(1− Φ(u0))− u0ϕ(u0)]. (36)

The limit distribution of the empirical likelihood estimator that is based only on IE[g1(Xi, θ0)] =

0 can be expressed as S(1) ∼ N (0, Ωss). Since2

(u2
0 − 1)(1− Φ(u0))− u0ϕ(u0)





= − 1
2 if u0 = 0

< − 1
u0

ϕ(u0) if u0 > 0

we obtain the following efficiency result:

Theorem 6 Suppose Assumptions 1 to 6 are satisfied and h2 = 1, then

MSE(S) ≤ MSE(S(1)).

The limit distribution of the estimator ŝ(12) that imposes IE[g1(Xi, θ0)] = 0 and IE[g2(Xi, θ0)]

can be written as

S(12) ∼ N
(

(QJ−1Q′)−1QJ−1M ′u0, Ωss − ΩsuΩus

)

Hence, for u0 = 0 we obtain the ranking

MSE(S(12)) ≤ MSE(S) ≤ MSE(S(1)).

As the slackness of the inequality constraint, u0, increases, the performance of ŝ(12) quickly

deteriorates. We provide a numerical illustration in Section 5.

4 Inference

Based on the results obtained in the previous section, we will proceed by deriving asymp-

totically valid confidence sets for θ and ν.
2See Pollard (2002, page 317).
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4.1 Confidence Sets for θ

A confidence set for θ can be obtained by inverting the empirical likelihood ratio statistic

for the null hypothesis θ0 = θH . We will first study a joint confidence interval for all

elements of the parameter vector θ. An extension to confidence regions for subsets of

parameters is fairly straightforward and will be discussed at the end of this subsection. The

derivation of the confidence sets is complicated by the dependence of the limit distribution of

the maximized empirical likelihood function on the slackness associated with the inequality

moment condition. In the subsequent analysis we will assume that the second set of moments

is close to zero in the sense that ν0 = 0 and u0 ≥ 0.

The test statistic that is used to obtain the confidence set for θ is defined as the ratio of

the unrestricted maximum of the empirical likelihood function LEL(θ, p) and the constrained

maximum subject to the restriction θ = θH . We will express the test statistic in terms of

the function G∗n(θ, ν, λ). Let

ν̂H
n = argminν≥0 max

λ∈Λ̂n(θH)
G∗n(θH , ν, λ).

The test statistic is given by

LRθ
n(θH) = 2n

(
G∗n(θH , ν̂H

n , λ̂(θH , ν̂H
n ))−G∗n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (37)

As in Section 3, let

Ḡ∗q (φ) =
1
2
(Z −R′(φ− φ0))′J−1(Z −R′(φ− φ0)).

Define the set

ΦH(ν0) = {φ = [s′, u′]′ ∈ {0}m ⊗ Rh2 | uj ≥ 0 if ν0,j = 0}. (38)

The limit distribution under H0 can be easily obtained as a corollary from Theorems 4

and 5.

Corollary 1 Suppose Assumptions 1 to 6 are satisfied. Moreover, θH = θ0, ν0 = 0, u0 ≥ 0.

Then

LRθ
n(θ0) =⇒ LRθ(u0) ≡

(
min

φ∈ΦH(0)
2Ḡ∗q (φ)

)
−

(
min

φ∈Φ(0)
2Ḡ∗q (φ)

)
.

The asymptotic critical value cθ
α(u0) satisfies

Pu0

{
LRθ(u0) ≤ cθ

α(u0)
}

= 1− α.
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Suppose we knew the true value u0 of the slackness in the inequality constraint. Then a

confidence set for θ with asymptotic coverage probability 1− α can be obtained as follows:

CSθ
n(u0, α) =

{
θ ∈ Θ | LRθ

n(θ) ≤ cθ
α(u0)

}
. (39)

We can deduce from Corollary 1 that this set has the desired coverage probability.

Corollary 2 Suppose Assumptions 1 to 6 are satisfied. Moreover, θH = θ0, ν0 = 0, u0 ≥ 0.

Then

Pu0

{
θ0 ∈ CSθ

n(u0, α)
}

= Pu0

{
LRθ

n(θ0) ≤ cθ
α(u0)

}
−→ 1− α.

In practice the “true” slackness parameter u0 is, however, unknown. Since u0 cannot

be consistently estimated, we construct a Bonferroni confidence set for θ0. Let CSu
n(α2) be

a confidence set for u0 with coverage probability 1− α2. Define,

CSθ
n =

⋃

u∈CSu
n(α2)

CSθ
n(u, α1). (40)

Then,

Pu0

{
θ0 6∈ CSθ

n

}
≤ Pu0

{
θ0 6∈ CSθ

n

}{
u0 ∈ CSu

n(α2)
}

+ Pu0

{
u0 6∈ CSu

n(α2)
}

≤ Pu0

{
θ0 6∈ CSθ

n(u0, α1)
}

+ Pu0

{
u0 6∈ CSu

n(α2)
}
−→ α1 + α2.

The Bonferroni confidence interval raises two questions. First, how should one construct the

confidence set CSu
n(α2), and second, how large should its coverage probability be. The next

subsection discusses confidence intervals for u0. In the numerical illustration in Section 5

we will set α2 equal to zero.

In order to obtain a confidence set for a subset of parameters one can proceed by

modifying the likelihood ratio statistic on which the confidence interval is based as follows.

Without loss of generality, partition θ = [θ′1, θ
′
2]
′ and denote the hypothesized value of θ1 by

θH
1 . Let

{θ̂H
2,n, ν̂H

n } = argminθ2,ν≥0 max
λ∈Λ̂n(θH

1 ,θ2)
G∗n(θH

1 , θ2, ν, λ)

and redefine the test statistic as

LRθ
n(θH

1 ) = 2n

(
G∗n(θH

1 , θ̂H
2,n, ν̂H

n , λ̂(θH
1 , θ̂H

2,n, ν̂H
n ))−G∗n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (41)

The subsequent steps remain unchanged.
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4.2 Confidence Sets for u

As mentioned previously, we are most interested in the case in which the second set of

moment conditions is near zero, that is, ν0 = 0 and u0 ≥ 0. In particular, it is the local

slackness parameter u0 that affects the limit distribution of the likelihood ratios. To keep

the notation simple we will focus on a joint confidence set for u. An extension to confidence

sets for subsets of u is fairly straightforward. The confidence set is obtained by inverting

the empirical likelihood statistic for the null hypothesis u0 = uH . Let

θ̂H
n = argminθ max

λ∈Λ̂n(θ)
G∗n(θ, n−1/2uH , λ)

and define the test statistic

LRu
n(uH) = 2n

(
G∗n(θ̂H

n , n−1/2uH , λ̂(θ̂H
n , n−1/2uH))−G∗n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (42)

We summarize its limit distribution in the following theorem.

Theorem 7 Suppose Assumptions 1 to 6 are satisfied. Moreover, ν0 = 0, u0 ≥ 0, and

uH = u0. Then

LRu
n(u0) =⇒ LRu(u0) ≡ Z ′uΛ−1Zu − (Ũ − Zu)′Λ−1(Ũ − Zu),

where

Ũ = argminũ≥−u0
(ũ− Zu)′Λ−1(ũ− Zu),

Λ = (M [J−1− J−1Q′(QJ−1Q′)−1QJ−1]M ′)−1, and Zu ∼ N (0, Λ). The asymptotic critical

value cu
α(u0) satisfies

Pu0

{
LRu(u0) ≤ cu

α(u0)
}

= 1− α.

If u0 = 0 then the limit distribution simplifies to Ũ ′Λ−1Ũ and the test-statistic has a

so-called χ̄2 limit distribution, e.g., Kudo (1963). As before, a confidence set for u0 with

asymptotic coverage probability 1−α can be obtained by inverting the test statistic LRu(u0)

as follows:

CSu
n(α) =

{
u ≥ 0 | LRu

n(u) ≤ cu
α(u)

}
. (43)

We can deduce from Theorem 7 that the confidence set has the desired coverage probability.

Corollary 3 Suppose Assumptions 1 to 6 are satisfied. Moreover, ν0 = 0, u0 ≥ 0, and

uH = u0. Then

Pu0

{
u0 ∈ CSu

n(α)
}

= Pu0

{
LRu

n(u0) ≤ cu
α(u0)

}
−→ 1− α.
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4.3 Implementation

The asymptotic critical value functions cθ
α(u0) and cu

α(u0) that are needed for the construc-

tion of the confidence sets depend on the matrices Q and J . First, one has to calculate

the empirical likelihood estimator θ̂n. Second, a consistent estimate of J and R can be

computed as follows:

Ĵn =
1
n

n∑

i=1

g(Xi, θ̂n)g(Xi, θ̂n)′, Q̂n =
1
n

n∑

i=1

g(1)(Xi, θ̂n), R̂′n = [−Q̂′
n,M ′]. (44)

Approximate asymptotic critical values ĉθ
α(u0) and ĉu

α(u0) can be obtained by simulating

LRθ(u0) (Corollary 1) and LRu(u0) (Theorem 7) conditional on Ĵn and R̂n for a fine grid

of u0 values (see also Andrews (2001)). Finally, the confidence sets for θ0 and u0 can be

constructed according to Equations (39) and (43).

5 Example

In the remainder of this paper we provide a numerical example to illustrate the large sample

distributions that we derived previously. Consider a simultaneous equations model of the

form

XY,i = XX,iθ + Ui (45)

XX,i = X ′
1,iγ1 + X ′

2,iγ2 + εi (46)

X2,i = X ′
1,iρ1,2 +

ρu,2√
n

Ui + ηi, (47)

where XX,i is an endogenous regressor, and X1,i (2 × 1) and X2,i (1 × 1) are two vectors

of instruments. While X1,i is assumed to be uncorrelated with the error term Ui, X2,i is

potentially positively correlated with Ui, that is ρu,2 ≥ 0. We assume that the random

vector Vi = [Ui, ε
′
i, η

′
i, X

′
1,i]

′ is independently and identically distributed and satisfies the

following moment conditions: IE[X ′
1,iUi] = 0, IE[X ′

1,iηi] = 0, and IE[ε′iUi] 6= 0. Let Xi =

[XY,i, XX,i, X
′
1,i, X2,i]′ and define

g1(Xi, θ) = X1,i(XY,i −XX,iθ) (48)

g2(Xi, θ) = X2,i(XY,i −XX,iθ). (49)

Point and interval estimation will be based on the moment conditions

IE[g1(Xi, θ)] = 0 IE[g2(Xi, θ)] =
ρu,2√

n
IE[U2

i ] ≥ 0
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for θ = θ0. Using the notation of Sections 2 to 4, ν0 = 0 and u0 = ρu,2IE[U2
i ]. Moreover, it

is straightforward to verify that

Z1,n =
1√
n

∑
X1,iUi, Z2,n =

1√
n

∑
(X2,iUi − ρu,2IE[U2

i ]), Zn = [Z ′1,n, Z2,n]′

and

Qn = − 1
n

∑
[X ′

1,iXX,i , X2,iXX,i], Jn =
1
n

∑

 X1,iU

2
i X ′

1,i X1,iU
2
i X ′

2,i

X2,iU
2
i X ′

2,i


 .

5.1 Parameterization

Since we are simulating the limit distribution of our estimators and confidence sets, we only

have to parameterize the matrices J and Q. In order to make the numerical values easier to

interpret we derive them from the simultaneous equations model specified above. Suppose

that the random variables Ui, ηi, and X1,i have zero mean and are independent of each

other; εi has mean zero, is independent of XX,i, and ηi, but is correlated with Ui.

The matrix J is determined by the covariance matrix of the instruments XZ,i =

[X ′
1,i, X2,i]′. We assume that the instruments X1,i have a unit covariance matrix and that

ρ′1,2ρ1,2 < 1. Let σ2
η = 1− ρ′1,2ρ1,2 and IE[U2

i ] = 1 such that

J =


 I ρ1,2

1


 .

The vector Q is a function of the correlation between the instruments and the endogenous

regressor, denoted by the 2 × 1 vector ρ1,X and the scalar ρ2,X (1 × 1). We impose that

XX,i has unit variance and obtain3

Q = −
[

ρ′1,X ρ2,X

]
.

Hence, the relevant design parameters for the data generating process (DGP) are u0 = ρu,2,

ρ1,2, ρ1,X , and ρ2,X . We consider three different parameterizations of the DGP, listed in

Table 1. DGP 1 can be viewed as a benchmark. The correlations between the three instru-

ments and the endogenous regressors are equal to 0.5. X2,i is positively correlated with the

first element of X1,i and slightly negatively correlated with the second. For DGP 2 we in-

crease the correlation between X1,i and X2,i by reducing the variance of ηi in Equation (47).

This will make it easier to estimate u0. Finally, we consider a parameterization in which we

lower the correlation between the instruments X1,i and the endogenous regressor to 0.3.
3Based on ρ1,X , ρ2,X , and ρ1,2 it is possible to calculate γ1, γ2, and σ2

ε . While not all choices of the

correlation parameters are consistent with σ2
ε > 0, the ones reported in the paper lead to a positive variance.
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5.2 Alternative Estimators and Confidence Sets

In order to assess the asymptotic performance of the proposed point estimator we consider

two alternatives, using the following notation:

(i) θ̂(0) is MELE based on IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] ≥ 0.

(ii) θ̂(1) is MELE based on IE[g1(Xi, θ)] = 0.

(iii) θ̂(12) is MELE based on IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] = 0.

The estimator θ̂(1) does not use the second moment condition and is not affected by the

parameter u0. As discussed in Section 3, its limit distribution is given by−(Q1J
−1
11 Q′1)

−1Q1J
−1
11 Z1,

where the partitions of J , Q, and Z conform with the partitioning of g(Xi, θ) into g1 and

g2. Thus,
√

n(θ̂(1) − θ0) =⇒ N
(

0, (Q1J
−1
11 Q′1)

−1

)
.

Numerical values for the asymptotic standard deviation of the estimator can be found in

Table 1. The estimator θ̂(12) is based on the assumption that the second moment condition

is satisfied with equality. Its limit distribution is given by

√
n(θ̂(12) − θ0) =⇒ N

(
− (QJ−1Q′)−1QJ−1M ′u0, (QJ−1Q′)−1

)
.

The larger u0, the larger the bias of the estimator that incorrectly imposes IE[g2(Xi, θ0)] = 0.

In order to conduct inference with respect to θ0 and u0 we consider two types of confi-

dence sets:

(i) CSθ
(0) and CSu

(0) are obtained based on IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] ≥ 0 as

described in Section 4. In computing the Bonferroni interval we set α2 = 0 and

α1 = α such that CSθ
(0) =

⋃
u≥0 CSθ

(0)(u, α).

(ii) CSθ
(1) is obtained based on IE[g1(Xi, θ)] = 0. We invert the empirical likelihood ratio

test for the hypothesis θ0 = θH .

(iii) CSu
(1) is obtained based on IE[g1(Xi, θ)] = 0. The confidence set is constructed by

inverting the Wald test statistic for the hypothesis u0 = uH . The test statistic is

constructed as follows

Wu
(1) =

(
max{−uH , û(1) − uH}

v1/2(û(1))

)
,

where

û(1) =
1√
n

∑
X2,i(XY,i −XX,iθ̂(1))

= u0 + Z2,n −Q′2,n(Q1,nJ−1
11,nQ′1,n)−1Q1,nJ−1

11,nZ1,n + op(1).
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The asymptotic variance of this estimator is

v(û(1)) = J22 + Q′2(Q1J
−1
11 Q′

1)
−1Q2 − 2Q′

2(Q1J
−1
11 Q′1)Q1J

−1
11 J12.

Numerical values for the three DGPs are provided in Table 1.

5.3 Numerical Results

All numerical results reported subsequently are based on 100,000 draws from the limit

distribution.

Table 2 reports the bias and mean squared error (MSE) for the three empirical likelihood

estimators. As we previously showed, the limit distribution of θ̂(1) is not affected by u0.

The estimator is asymptotically unbiased and its MSE is equal to 2 under DGP 1. For

u0 = 0 the estimator θ̂(12) which assumes that IE[g2(Xi, θ0)] = 0 is more efficient than θ̂(1)

since it uses an additional valid instrument. Its MSE equals 1.6. However, as u0 increases

the performance of θ̂(12) quickly deteriorates due to the bias introduced by imposing an

invalid moment condition. This deterioration can be avoided by treating the second moment

condition as inequality. If u0 = 0 the MSE of our proposed estimator is 1.8 and lies between

MSE(θ̂(12)) and MSE(θ̂(1)). Not surprisingly, θ̂(0) is asymptotically biased. As u0 increases

the inequality becomes less informative, the bias vanishes, and θ̂(0) becomes more and more

similar θ̂(1). The same pattern emerges under DGP 2 and DGP 3.

Table 3 summarizes the performance of the confidence intervals for θ0. The coverage

probability is 90 percent and we report the average lengths of the confidence intervals. The

simulation of the confidence intervals CSθ
(1) involves several steps. Without loss of generality

we set θ0 = 0 and let s =
√

nθ. First, we specify grids for u and s. For simplicity, we will

denote these grids by S and U . Second, we generate draws from the asymptotic distribution

of Zn and simulate the empirical likelihood ratio statistics for each u0 ∈ U . Based on the

output of this simulation it is possible to approximate the critical values cθ
α(u0). Third,

we fix a u0, simulate the empirical likelihood ratio statistic again, and determine for each

s ∈ S and u ∈ U whether LRθ(
√

ns) ≤ cα(u). This will lead to CSθ(u, α). We then take

the union of these confidence intervals over α to obtain CS(θ)
(0). The simulation of CSθ

(1) is

considerably easier because the critical values of the empirical likelihood ratio statistic do

not depend on u0 and can simply be obtained from a χ2 distribution.

The interval based on IE[g1(Xi, θ0)] = 0 only is not affected by the local slackness

parameter u0. Its (scaled) length under DGP 1 is 4.62. The use of the inequality moment
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condition sharpens the inference. For u0 = 0 the interval CSθ
(0) has a length of 4.39. As

u0 increases and the information in the inequality moment condition vanishes, its length

expands to 4.62. A similar pattern emerges under DGP 2.

Results for the u0 confidence intervals are reported in Table 4. Unlike CSθ
(1), the length

of the interval CSu
(1) varies with u0. If u0 is near zero, the distribution of the Wald statistic

Wu
(1) has a point mass near zero that keeps the confidence short, since the domain of u0 is

bounded below by zero. As u0 increases, the point mass at zero vanishes and the confidence

interval becomes longer. For all values of u0 reported in the table CSu
(0) dominates CSu

(1) and

our procedure is able to exploit the additional information contained in the second moment

condition. The percentage gain over CSu
(1) is largest for DGP 2, under which X2,i is strongly

correlated with the first element of X1,i.

6 Conclusion

This paper developed a limit distribution theory for empirical likelihood estimators when

some of the moment conditions take the form of inequalities. The inequality moment condi-

tions provide additional information if they are close to zero. The limit distribution of the

parameter estimators and empirical likelihood ratio statistics typically depend on a nuisance

parameter that measures the slack in the inequality conditions. This nuisance parameter

complicates statistical inference because it cannot be estimated consistently. We constructed

Bonferroni type confidence sets for the parameter of interest, θ, by taking a union of sets

that are valid for a particular value of the nuisance parameter. While the focus of this

paper has been interval estimation, the nuisance parameter problem also arises in the con-

text of hypothesis tests. The null distribution of an empirical likelihood ratio coefficient

test is a function of u0 and the testing problem becomes that of testing a composite hy-

pothesis, which has been studied, for instance, by Berger and Boos (1994), Hansen (2003),

and Silvapulle (1996). Finally, we have assumed throughout the paper that the parameter

θ is identifiable based on the equality moment condition IE[g1(Xi, θ0)] = 0. Relaxing this

assumption would imply that the model parameters are likely to be only set identifiable

rather than point-identifiable. We leave this interesting extension for future research.
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A Proofs and Derivations

The Appendix contains detailed proofs and derivations for the results presented in the

main text. Section A.1 shows the equivalence of the three formulations of the saddlepoint

problem discussed in Section 2. Section A.2 contains the consistency proof. By and large,

we follow the structure of the proofs in Newey and Smith (2004), making the necessary

adjustments for the presence of the inequality moment conditions. In Section A.3 the

quadratic approximation of the objective function is obtained. We use Lemma 1(a) of

Andrews (1999) to bound the remainder term in the second-order Taylor approximation of

the objective function. The proof of
√

n consistency differs from Andrews (1999) because

he studied an extremum estimator and we are studying a saddlepoint estimator. The proof

also differs from Newey and Smith (2004), who expand the first-order condition associated

with the saddlepoint, whereas we work with the quadratic approximation of the objective

function. Based on the asymptotic approximation of the empirical likelihood objective

function, we derive limit distributions for point and interval estimators in Sections A.4 and

A.5.

A.1 Empirical Likelihood Estimation

Proof of Lemma 1: We will verify the saddlepoint properties directly. (i) Suppose

θ̂, ν̂, λ̂1, λ̂2 is a saddlepoint of G∗n. If λ̂2,j = 0 it lies in the interior of Λ̂2(θ) and satis-

fies the first-order condition

ν̂j =
∂Gn(θ, λ1, λ2)

∂λ2,j

∣∣∣∣
θ̂,λ̂1,λ̂2

.

If λ̂2,j = 0 then ν̂j minimizes G∗n with respect to νj ≥ 0. Moreover, it is straightforward to

verify that λ̂2 cannot be strictly positive. Hence, ν̂′λ̂2 = 0 and

Gn(θ̂, λ̂1, λ̂2) = G∗n(θ̂, ν̂, λ̂1, λ̂2) ≤ G∗n(θ, ν̂, λ̂1, λ̂2) = Gn(θ, λ̂1, λ̂2)

for all θ ∈ Θ. Moreover,

Gn(θ̂, λ̂1, λ̂2) = G∗n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗n(θ̂, ν̂, λ1, λ̂2) = Gn(θ̂, λ1, λ̂2)

for all λ1 ∈ Λ̂n,1(θ̂). Using the same argument as above it follows for λ̂2,j < 0 and ν̂j = 0

that

Gn(θ̂, λ̂1, λ̂2) ≥ Gn(θ̂, λ̂1, λ2,(j)),
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where λ2,(j) ∈ Λ̂n,2(θ̂) is obtained by replacing the j’th element of λ̂2 by λ2,j ≤ 0. Finally,

if λ̂2,j = 0 then
∂Gn(θ, λ1, λ2)

∂λ2,j

∣∣∣∣
θ̂,λ̂1,λ̂2

= ν̂j ≥ 0.

Since the function Gn(θ, λ1, λ2) is globally concave in λ2 we deduce that

Gn(θ̂, λ̂1, λ̂2) ≥ Gn(θ, λ̂1, λ2,(j)).

As before, λ2,(j) ∈ Λ̂n,2(θ̂) is obtained by replacing the j’th element of λ̂2 by λ2,j ≤ λ̂2,j = 0.

Hence, we have established that θ̂, λ̂1, λ̂2 is a saddlepoint of Gn.

Now suppose θ̂, λ̂1, λ̂2 is a saddlepoint of Gn. The following inequalities are straightfor-

ward to verify:

G∗n(θ̂, ν̂, λ̂1, λ̂2) ≤ G∗n(θ, ν̂, λ̂1, λ̂2)

G∗n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗n(θ̂, ν̂, λ1, λ̂2).

Recall that ν̂′λ̂2 = 0 and ν′λ2 ≤ 0. Therefore,

G∗n(θ̂, ν̂, λ̂1, λ̂2) = Gn(θ̂, λ̂1, λ̂2)− ν̂′λ̂2

≤ Gn(θ̂, λ̂1, λ̂2)− ν′λ̂2

= G∗n(θ̂, ν, λ̂1, λ̂2).

If λ̂2,j < 0 then ν̂j = 0 and

G∗n(θ̂, ν̂, λ̂1, λ̂2) = Gn(θ̂, λ̂1, λ̂2)− ν̂′λ̂2

≥ Gn(θ̂, λ̂1, λ2,(j))− ν̂′λ2,(j)

= G∗n(θ̂, ν̂, λ̂1, λ2,(j)),

where λ2,(j) is defined as above. Now suppose that λ̂2,j = 0. Then

∂G∗n(θ, ν, λ1, λ2)
∂λ2,j

∣∣∣∣
θ̂,ν̂,λ̂1,λ̂2

=
∂Gn(θ, λ1, λ2)

∂λ2,j

∣∣∣∣
θ̂,λ̂1,λ̂2

− ν̂2,j = 0

Since G∗n is globally concave in λ2,j we deduce that

G∗n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗n(θ̂, ν̂, λ̂1, λ2,(j)),

because Gn attains at λ̂2,j its maximum with respect to λ2,j .

The proof of (ii) is very similar to (i) and therefore omitted. ¥



28

A.2 Consistency

A.2.1 Main Result

Proof of Theorem 1: We have to show that for any δ > 0

lim
n−→∞

P
{

θ̂n ∈ B(θ0, δ), ν̂n ∈ B(νn,0, δ)
}

= 1,

where

B(θ, δ) = {θ̃ ∈ Θ
∣∣ ‖θ − θ̃‖ < δ}, B(ν, δ) = {ν̃ ∈ Rh2+

∣∣ ‖ν − ν̃‖ < δ}.

Define

Θc
0 = Θ ∩ B (θ0, δ)

c and N c
0 = Rh2+ ∩ B (νn,0, δ)

c
.

To simplify the notation we omit the subscript n from the set N c
0 . Recall that according

to Assumption 5 the constant α > 2 is such that IE[supθ∈Θ ‖g(X, θ)‖α] < ∞. We show the

following two statements are true: (i) For a given ε, δ > 0 and ζ such that 1
α < ζ < 1

2 , there

exist positive constants η and κ and n̄ such that for n ≥ n̄

P
{
Ḡ∗n (θ0, νn,0) ≥ n−ζ−κη

}
<

ε

2
(A.1)

and (ii)

P

{
min

θ∈Θc
0, ν∈Nc

0

Ḡ∗n (θ, ν) ≤ n−ζη

}
<

ε

2
. (A.2)

Then, from (A.1) and (A.2) we deduce that there exists an η > 0 such that for n ≥ n̄:

P
{

θ̂n ∈ B (θ0, δ) , ν̂n ∈ B(νn,0, δ)
}

≥ P

{
Ḡ∗n (θ0, νn,0) < n−ζ−κη, min

θ∈Θc
0, ν∈Nc

0

Ḡ∗n (θ, ν) > n−ζη

}
≥ 1− ε.

Proof of (i): By Lemma A.2

Ḡ∗n(θ0, νn,0) = max
λ∈Λ̂n(θ0)

G∗n(θ0, νn,0, λ) ≤ Op(1/n).

Choose κ > 0 such that ζ + κ < 1. Then

nζ+κḠ∗n(θ0, νn,0) ≤ Op(nζ+κ−1) = op(1)

as required.

Proof of (ii): To obtain a lower bound for Ḡ∗n(θ, ν) we will evaluate the function G∗n(θ, ν, λ)

at λ = n−ζu(θ, ν), where the function u(θ, ν) is defined as

u(θ, ν) =





0 if θ = θ0, ν = νn,0

IE[g(X,θ)]−M ′ν
‖IE[g(X,θ)]−M ′ν‖ otherwise
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such that ‖u(θ, ν)‖ ≤ 1. Strictly speaking, the function u(θ, ν) depends through νn,0 on the

sample size n, but for notational convenience the n subscript is omitted.

Moreover, we truncate the function g(x, θ) as follows. Since α > 2, we can choose a

positive constant ξ such that
1
α2

< ξ <
1
2α

.

Let

Xn =
{

x : sup
θ∈Θ

‖g (x, θ)‖ ≤ nξ

}
and gn (x, θ) = I {x ∈ Xn} g (x, θ) .

We then replace the terms

ln(1 + λ′g(x, θ))− λ′Mν

in the definition of the objective function G∗n(θ, ν, λ) by

qn(x, θ, ν) = ln
(
1 + n−ζu(θ, ν)′gn(x, θ)

)− n−ζu(θ, ν)′Mν.

In what follows, we deduce the required result for (ii) by showing that

(ii)-(a): min
θ∈Θc

0,ν∈Nc
0

1
n

n∑

i=1

qn (Xi, θ, ν) ≤ min
θ∈Θc

0,ν∈Nc
0

Ḡ∗n (θ, v) + op

(
n−ζ

)

and

(ii)-(b): P

{
min

θ∈Θc
0,ν∈Nc

0

1
n

n∑

i=1

qn (Xi, θ, ν) < n−ζη

}
≤ ε

2
.

Proof of (ii)-(a): Notice that n−ζu′ (θ, ν) ∈ Λζ
n ⊂ ∩θ∈ΘΛ̂n (θ) w.p.a.1 by Lemma A.1.

Then, by Lemma A.5 and by the definition of λ̂n (θ, v) ,

min
θ∈Θc

0,ν∈Nc
0

1
n

n∑

i=1

qn (Xi, θ, ν)

= min
θ∈Θc

0,ν∈Nc
0

[
1
n

n∑

i=1

ln
(
1 + n−ζu (θ, ν)′ g (Xi, θ)

)− n−ζu (θ, ν)′Mν

]
+ op

(
n−ζ

)

≤ min
θ∈Θc

0,ν∈Nc
0

[
1
n

n∑

i=1

ln
(
1 + λ̂n (θ, v)′ g (Xi, θ)

)
− λ̂n (θ, v)′Mν

]
+ op

(
n−ζ

)

= min
θ∈Θc

0,ν∈Nc
0

Ḡ∗n (θ, v) + op

(
n−ζ

)
,

as required.

Proof of (ii)-(b): A second-order Taylor expansion of qn around u (θ, ν) = 0 yields

nζqn(x, θ, ν) = u(θ, ν)′(gn(x, θ)−M ′ν)− 1
2

n−ζu′(θ, ν)gn(x, θ)gn(x, θ)′u(θ, ν)

(1 + n−ζu′∗(θ, ν)gn(x, θ))2
, (A.3)
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where u′∗(θ, ν) lies between zero and u(θ, ν). The second-order term of the Taylor approxi-

mation (A.3) can be bounded as follows. For given x, θ, and ν

sup
θ∈Θ, ν

∣∣∣n−ζu∗
′
(θ, ν) gn (x, θ)

∣∣∣ ≤ n−ζ sup
θ∈Θ

‖gn (x, θ)‖ ≤ n−ζ+ξ ≤ n−ζ/2

since ξ < 1
2α < ζ

2 . Therefore,

sup
θ∈Θ, ν

n−ζ u(θ, ν)′gn(x, θ)gn(x, θ)′u(θ, ν)

(1 + n−ζu∗(θ, ν)′gn(x, θ))2
≤ sup

θ∈Θ, ν
n−ζ ‖gn(x, θ)‖2‖u(θ, ν)‖2

(1− n−ζ/2)2
≤ n−ζ+2ξ = o (1) .

(A.4)

Now consider the expected value of nζqn(x, θ, ν). From (A.3), (A.4), and by the domi-

nated convergence theorem, we have

nζIE [qn (X, θ, ν)] = u(θ, ν)′(IE[gn(X, θ)]−M ′ν) + o(1) (A.5)

=





o(1) if θ = θ0, ν = νn,0

‖IE[g(X, θ)]−M ′ν‖+ o(1) > 0 otherwise
.

The o(1) terms absorb the second-order term of the Taylor approximation and the discrep-

ancy between IE[gn(X, θ)] and IE[g(X, θ)], which vanishes as Xn expands. From (A.5) and

the monotone convergence theorem we can deduce that

lim
n→∞

nζ lim
δ↓0

IE

[
inf

θ∗∈B(θ,δ), ν∗∈B(ν,δ)
qn (X, θ∗, ν∗)

] 



= 0 if θ = θ0, ν = νn0

> 0 otherwise
.

Next, according to Assumption 5 there exists a finite K such that

sup
θ∈Θ

‖IE[g2(X, θ)]‖ < K < ∞. (A.6)

Since Θ is compact by assumption the set Θ ∩ B(θ0, δ)c is compact. Moreover, define

the compact set Rh2+
K = {x ∈ Rh2+, ‖x‖ ≤ 2K}. We can cover both Θ ∩ B(θ0, δ)c and

Rh2+
K ∩ B(νn,0, δ)c with Θj = B(θj , δj) and Nj = B(νj , δj)’s, j = 1, . . . , J taking each δj

small enough such there exist ηj ’s such that

nζIE

[
inf

θ∈Θj , ν∈Nj

qn (X, θ, ν)
]
≥ 2ηj , n ≥ nj (A.7)

for some positive numbers ηj = ηj (δ), j = 1, . . . , J . By the WLLN4 and (A.7) , for a given

4Notice that

IE

�����nζ inf
θ∈Θj , ν∈Nj

qn (X, θ, ν)

����� ≤ IE

�
sup
θ∈Θ

‖g (X, θ)‖
�

+ 2K + n−ζ IE
�
supθ∈Θ ‖g (X, θ)‖��

1− n−ζ/2
�2 < ∞. (A.8)
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ε > 0, we can find n̄′js such that n ≥ n̄j implies that

ε

4J
≥ P

{∣∣∣∣∣
1
n

n∑

i=1

nζ inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν)− E

[
nζ inf

θ∈Θj , ν∈Nj

qn (Xi, θ, ν)
]∣∣∣∣∣ > ηj

}

≥ P

{
1
n

n∑

i=1

inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) < E

[
inf

θ∈Θj , ν∈Nj

qn (Xi, θ, ν)
]
− n−ζηj

}

≥ P

{
1
n

n∑

i=1

inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) < n−ζηj

}

≥ P

{
inf

θ∈Θj , ν∈Nj

1
n

n∑

i=1

qn (Xi, θ, ν) < n−ζηj

}

for j = 1, . . . , J . Also, after this proof we show that w.p.a.1

inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

nζqn (Xi, θ, ν) ≥ K. (A.9)

For the given ε, then, we can choose an n̄J+1 such that n ≥ n̄J+1 implies that

P

{
inf

θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

qn (Xi, θ, ν) < n−ζK

}
≤ ε

4
.

Now let letting η = min {η1, . . . , ηJ ,K} and n̄ = maxj=1,...,J+1 n̄j , we have for n ≥ n̄

P

{
min

θ∈Θc
0, ν∈Nc

0

1
n

n∑

i=1

qn (Xi, θ, ν) < n−ζη

}

≤ P

{
min

{
min

j=1,...,J

{
inf

θ∈Θj , ν∈Nj

1
n

n∑

i=1

qn(Xi, θ, ν)

}
, inf

θ∈Θ, ‖ν‖≥2K

1
n

n∑

i=1

qn(Xi, θ, ν)

}
< n−ζη

}

≤
J∑

j=1

P

{
inf

θ∈Θj , ν∈Nj

1
n

n∑

i=1

qn(Xi, θ, ν) < n−ζηj

}
+ P

{
inf

θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

qn(Xi, θ, ν) < n−ζηJ+1

}

≤ ε

2
,

as required part (ii)-(b).

Combining (ii)-(a) and (ii)-(b) we have

P

{
min

θ∈Θc
0,ν∈Nc

0

Ḡ∗n (θ, ν) < n−ζη

}
≤ ε

2
,

as required for (ii).

Since θ̂n
p−→ θ0 and ν̂n − νn,0

p−→ 0 we can deduce from Lemmas A.2 and A.3 that

λ̂(θ̂n, ν̂n)
p−→ 0. ¥
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A.2.2 Technical Lemmas

Proof of (A.9): Notice from (A.3) and (A.4) that

nζqn (Xi, θ, ν) ≥ u (θ, ν)′ (gn (Xi, θ)−M ′ν)− 1
2
n−ζ+2ξ.

Then we have

inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

nζqn (Xi, θ, ν)

≥ inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

u (θ, ν)′E [(g (Xi, θ)−M ′ν)]

+ inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

u (θ, ν)′ (gn (Xi, θ)− E [g (Xi, θ)])− 1
2
n−ζ+2ξ.

First, by the definition of u (θ, ν) , we have

inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

u (θ, ν)′E [(g (Xi, θ)−M ′ν)]

= inf
θ∈Θ, ‖ν‖>2K

‖E [g (X, θ)]−M ′ν‖ ≥ inf
θ∈Θ, ‖ν‖>2K

‖E [g2 (X, θ)]− ν‖
≥ inf

θ∈Θ, ‖ν‖>2K
[‖ν‖ − ‖E [g2 (X, θ)]‖] ≥ 2K − sup

θ∈Θ
‖E [g2 (X, θ)]‖

≥ K.

Next, by the Cauchy-Schwarz inequality and the definition of gn (Xi, θ),

inf
θ∈Θ, ‖ν‖>2K

u (θ, ν)′
[

1
n

n∑

i=1

(
gn (Xi, θ)− E [g (Xi, θ)]

)]

≥ − sup
θ∈Θ, ‖ν‖>2K

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) I

{
sup
θ∈Θ

‖g (Xi, θ)‖ ≤ nξ

}
− E [g (Xi, θ)]

)∥∥∥∥∥

≥ − sup
θ∈Θ

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ)− E [g (Xi, θ)]

)∥∥∥∥∥− sup
θ∈Θ

∥∥∥∥∥
1
n

n∑

i=1

g (Xi, θ) I

{
sup
θ∈Θ

‖g (Xi, θ)‖ > nξ

}∥∥∥∥∥ .

The first term is

sup
θ∈Θ

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ)− E [g (Xi, θ)]

)∥∥∥∥∥ = op (1)

by the ULLN. The second term is

− sup
θ∈Θ

∥∥∥∥∥
1
n

n∑

i=1

g (Xi, θ) I

{
sup
θ∈Θ

‖g (Xi, θ)‖ > nξ

}∥∥∥∥∥

≥ − 1
n

n∑

i=1

sup
θ∈Θ

‖g (Xi, θ)‖ I

{
sup
θ∈Θ

‖g (Xi, θ)‖ > nξ

}

≥ −n−ξ(α−1) 1
n

n∑

i=1

sup
θ∈Θ

‖g (Xi, θ)‖α

= Op

(
n−ξ(α−1)

)
= op (1) .
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These give

inf
θ∈Θ, ‖ν‖>2K

u (θ, ν)′
[

1
n

n∑

i=1

{gn (Xi, θ)− E [g (Xi, θ)]}
]
≥ op (1) .

Therefore we have

inf
θ∈Θ, ‖ν‖>2K

1
n

n∑

i=1

nζqn (Xi, θ, ν) ≥ K + op (1) ,

as required. ¥

Lemma A.1 Suppose that Assumptions 1 to 5 are satisfied. Then,

(i) sup
θ∈Θ,λ∈Λζ

n,1≤i≤n

|λ′g (Xi, θ)| −→p 0,

(ii) Λζ
n ⊆

⋂
θ∈Θ Λ̂n(θ) w.p.a. 1.

Proof of Lemma A.1: See proof of Lemma A1 in Newey and Smith (2004). ¥

Lemma A.2 Suppose that Assumptions 1 to 5 are satisfied. Let θ̄ ∈ Θ and ν̄ ≥ 0 be

sequences such that θ̄
p−→ θ0, and ν̄−νn,0

p−→ 0. Moreover, 1√
n

∑n
i=1 g1(Xi, θ̄) = Op(1) and

1√
n

∑n
i=1

(
g2(Xi, θ̄)− ν̄

)
= Op(1). Then,

(i) λ̂(θ̄, ν̄) exists w.p.a. 1,

(ii) λ̂(θ̄, ν̄) = Op(n−1/2),

(iii) G∗n
(
θ̄, ν̄, λ̂(θ̄, ν̄)

)
≤ Op

(
1
n

)
.

Proof of Lemma A.2:

Proof of (i): Define

λ̃(θ̄, ν̄) = arg max
λ∈Λζ

n

G∗n(θ̄, ν̄, λ)

Since Λζ
n is compact and ln

(
1 + λ′g(Xi, θ̄)

)− ν̄′Mλ is continuous and strictly concave in λ

the optimal solution λ̃(θ̄, ν̄) exists and is unique. Statement (i) then follows from Lemma A.1.

Proof of (ii) and (iii): Write ḡi = g(Xi, θ̄). For some constant C

0 = G∗n(θ̄, ν̄, 0) ≤ G∗n(θ̄, ν̄, λ̃(θ̄, ν̄))

=
1
n

n∑

i=1

ln
(
1 + λ̃(θ̄, ν̄)′ḡi

)
− ν̄′Mλ̃(θ̄, ν̄)

= λ̃(θ̄, ν̄)′
(

1
n

n∑

i=1

ḡi −M ′ν̄

)
− 1

2
λ̃(θ̄, ν̄)′

(
1
n

n∑

i=1

ḡiḡ
′
i

(1 + λ′∗ḡi)2

)
λ̃(θ̄, ν̄)

≤ λ̃(θ̄, ν̄)′
(

1
n

n∑

i=1

ḡi −M ′ν̄

)
− C

4
λ̃(θ̄, ν̄)′λ̃(θ̄, ν̄),
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where λ∗ lies on the line joining λ̃(θ̄, ν̄) and 0. The last inequality holds because

max
1≤i≤n

|λ′∗ḡi| = op(1)

according to Lemma A.1 and 1
n

∑n
i=1 ḡiḡ

′
i converges in probability to J , a positive definite

matrix, by the ULLN. The remainder of the proof follows the proof of Lemma A2 in Newey

and Smith (2004). ¥

Lemma A.3 Suppose Assumptions 1 to 5 are satisfied. Then,

1√
n

n∑

i=1

[
g

(
Xi, θ̂

)
−M ′v̂

]
= Op (1) .

Proof of Lemma A.3: Let ĝi = g
(
Xi, θ̂

)
− M ′ν̂ and ĝ = 1

n

∑n
i=1

[
g

(
Xi, θ̂

)
−M ′ν̂

]
.

Define û
(
θ̂, ν̂

)
= n−ζ ĝ

‖ĝ‖ . (Recall the definition of u (θ, ν) in the proof of consistency.)

Approximation G∗n (θ, ν, λ) with respect to λ around λ = 0 at (θ, ν, λ) =
(
θ̂, ν̂, û

(
θ̂, ν̂

))
.

Then,

G∗n
(
θ̂, ν̂, û

(
θ̂, ν̂

))

= G∗n
(
θ̂, ν̂, 0

)
+

∂G∗n
(
θ̂, ν̂, 0

)

∂λ′
û

(
θ̂, ν̂

)
+

1
2
û

(
θ̂, ν̂

)′ ∂2G∗n
(
θ̂, ν̂, λ̈

)

∂λ∂λ′
û

(
θ̂, ν̂

)

= ĝ′û
(
θ̂, ν̂

)
− 1

2
û

(
θ̂, ν̂

)′

 1

n

n∑

i=1

ĝiĝ
′
i(

1 + λ̈′ĝi

)2


 û

(
θ̂, ν̂

)
,

where λ̈ is located between 0 and û
(
θ̂, ν̂

)
.

Notice that max1≤i≤n

∣∣∣∣û
(
θ̂, ν̂

)′
ĝi

∣∣∣∣ →p 0 and û
(
θ̂, ν̂

)
∈ Λ̂n

(
θ̂
)

by Lemma A.1 w.p.a.1.

Also, 1
n

∑n
i=1 ĝiĝ

′
i ≤

(
supθ∈Θ

1
n

∑n
i=1 ‖g (Xi, θ)‖

)
I →p CI. Then,

ĝ′û
(
θ̂, ν̂

)
− 1

2
û

(
θ̂, ν̂

)′

 1

n

n∑

i=1

ĝiĝ
′
i(

1 + λ̈′ĝi

)2


 û

(
θ̂, ν̂

)

= n−ζ ‖ĝ‖ − 1
2
û

(
θ̂, ν̂

)′

 1

n

n∑

i=1

ĝiĝ
′
i(

1 + λ̈′ĝi

)2


 û

(
θ̂, ν̂

)

≥ n−ζ ‖ĝ‖ − 1
2

max
1≤i≤n


 1(

1 + λ̈′ĝi

)2


 û

(
θ̂, ν̂

)′( 1
n

n∑

i=1

ĝiĝ
′
i

)
û

(
θ̂, ν̂

)

≥ n−ζ ‖ĝ‖ − Cn−2ζ . (A.10)
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Then,

n−ζ ‖ĝ‖−Cn−2ζ ≤ G∗n
(
θ̂, ν̂, û

(
θ̂, ν̂

))
≤ G∗n

(
θ̂, ν̂, λ̂

)
≤ sup

λ∈Λ̂n(θ0)

G∗n (θ0, νn,0, λ) ≤ Op

(
1
n

)
,

(A.11)

where the first inequality is from (A.10), the second and third inequalities hold because(
θ̂, ν̂, λ̂

)
is a saddle point, and the last inequality is from Lemma A.2 with 1√

n

∑n
i=1 [g (Xi, θ0)−M ′νn,0] =

Op (1) by the CLT. Also, by ζ < 1
2 , ζ − 1 < − 1

2 < −ζ. Solving (A.11) for ‖ĝ‖ gives

‖ĝ‖ ≤ Op

(
n−ζ

)
. (A.12)

Now, for a given sequence εn → 0, let λ̄ = εnĝ. By (A.12) , λ̄ = op

(
n−ζ

)
, and so λ̄ ∈ Λζ

n

w.p.a.1. Then, as in (A.11) , we have

λ̄′ĝ − C
∥∥λ̄

∥∥ = εn ‖ĝ‖2 − Cε2
n ‖ĝ‖2 ≤ εn ‖ĝ‖2 (1− Cεn) ≤ Op

(
1
n

)
.

Since, for n large enough, 1 − Cεn is bounded away from zero, it follows that εn ‖ĝ‖2 =

Op

(
1
n

)
. Since εn is an arbitrary sequence that tends to zero, we deduce that

‖ĝ‖ = Op

(
1√
n

)
,

as required. ¥

Lemma A.4 Suppose that Zi is a sequence of iid random variables such that IE |Zi|α < ∞.

Then, max1≤i≤n |Zi| = Op

(
n1/α

)
.

Proof of Lemma A.4: The result follows from

max
1≤i≤n

|Zi| =
[

max
1≤i≤n

|Zi|α
]1/α

≤ n1/α

[
1
n

n∑

i=1

|Zi|α
]1/α

= Op

(
n1/α

)
. ¥

Lemma A.5 Assume Assumptions 1 to 5. Let gn(x, θ) = I{x ∈ Xn}g(x, θ) where

Xn =
{

x : sup
θ∈Θ

‖g (x, θ)‖ ≤ nξ

}
,

where 1
α2 < ξ < 1

2α and α > 2 as in Assumption 5. Define

qn (Xi, θ, ν) = ln
[
1 + n−ζu′(θ, ν)gn(Xi, θ)

]− n−ζu(θ, ν)′Mν

q̃n (Xi, θ, ν) = ln
[
1 + n−ζu′(θ, ν)g(Xi, θ)

]− n−ζu(θ, ν)′Mν

and assume that ‖u(θ, ν)‖ ≤ 1. Then,

sup
θ∈Θ, ν≥0

∣∣∣∣∣
1
n

n∑

i=1

(
qn (Xi, θ, ν)− q̃n (Xi, θ, ν)

)∣∣∣∣∣ = op

(
n−ζ

)
.
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Proof of Lemma A.5: By the mean value theorem,

sup
θ∈Θ, ν≥0

∣∣∣∣∣
1
n

n∑

i=1

{qn (Xi, θ, ν)− q̃n (Xi, θ, ν)}
∣∣∣∣∣

= sup
θ∈Θ, ν≥0

∣∣∣∣∣
1
n

n∑

i=1

(
n−ζu′(θ, ν)g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ)

)
I {Xi /∈ Xn}

∣∣∣∣∣ (A.13)

≤ max
1≤i≤n

sup
θ∈Θ, ν≥0

∣∣∣∣
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ)

∣∣∣∣
1
n

n∑

i=1

I

{
sup
θ∈Θ

‖g (Xi, θ)‖ > nξ

}

≤ 1
nαξ

(
max

1≤i≤n
sup

θ∈Θ, ν≥0

∣∣∣∣
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ)

∣∣∣∣
)(

1
n

n∑

i=1

sup
θ∈Θ

‖g (Xi, θ)‖α

)

where u∗(θ, ν) is located between 0 and u(θ, ν). The second term on the right-hand side

of (A.13) can be bounded as follows. According to Lemma A.4

n−ζ max
1≤i≤n

sup
θ∈Θ

‖g (Xi, θ)‖ = n−ζ+1/αOp (1) .

Moreover, ‖u(θ, ν)‖ ≤ 1. Therefore,

max
1≤i≤n

sup
θ∈Θ, ν≥0

∣∣∣∣
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu∗′ (θ, ν) g (Xi, θ)

∣∣∣∣ ≤ 2n−ζ max1≤i≤n supθ∈Θ ‖gk (Xi, θ)‖
1− 2n−ζ max1≤i≤n supθ∈Θ ‖g (Xi, θ)‖

=
n−ζ+1/αOp (1)

1− n−ζ+1/αOp (1)
= n−ζ+1/αOp (1) .

By Assumption 5 and the Markov inequality, the third term on the right-hand side of (A.13)

is Op(1). Since 1
α2 < ξ < 1

2α , we are able to deduce that

nζ sup
θ∈Θ, ν≥0

∣∣∣∣∣
1
n

n∑

i=1

(
qn (Xi, θ, ν)− q̃n (Xi, θ, ν)

)∣∣∣∣∣ = n−αξ+ 1
α Op (1) = op (1) ,

as required. ¥

A.3 Quadratic Approximation of the Objective Function

We begin by deriving the coefficient matrices for the quadratic approximation of the objec-

tive function (19). A direct calculation shows that

G∗(1)n (β) =
[
G∗(1)n (β)′θ , G∗(1)n (β)′ν , G∗(1)n (β)′λ

]′
, (A.14)

where

G∗(1)n (β)θ =
1
n

n∑

i=1

(
g(1) (Xi, θ) λ

1 + λ′g(Xi, θ)

)
,

G∗(1)n (β)ν = −Mλ,

G∗(1)n (β)λ =
1
n

n∑

i=1

(
g(Xi, θ)

1 + λ′g(Xi, θ)

)
−M ′v.
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At βn,0 the first derivatives simplify to

G∗(1)n (βn,0)θ = 0, G∗(1)n (βn,0)ν = 0, G∗(1)n (βn,0)λ =
1
n

n∑

i=1

g(Xi, θ0)−M ′νn,0 = n−1/2Zn,

which leads to the formula for G
∗(1)
n (βn,0) that appears in Equation (21) of the main text.

We proceed by partitioning the matrix of second derivative as follows

G∗(2)n (β) =




G
∗(2)
n (β)θθ′ G

∗(2)
n (β)θν′ G

∗(2)
n (β)θλ′

G
∗(2)
n (β)νθ′ G

∗(2)
n (β)νν′ G

∗(2)
n (β)νλ′

G
∗(2)
n (β)λθ′ G

∗(2)
n (β)λν′ G

∗(2)
n (β)λλ′


 , (A.15)

where

G∗(2)n (β)θθ′ =
1
n

n∑

i=1

(∑h
j=1 λjg

(2)
j (Xi, θ)

1 + λ′g(Xi, θ)
− g(1) (Xi, θ)λλ′g(1) (Xi, θ)

′

(1 + λ′g(Xi, θ))2

)
,

G∗(2)n (β)θν′ = 0, G∗(2)n (β)νν′ = 0, G∗(2)n (β)λν′ = −M ′,

G∗(2)n (β)λθ′ =
1
n

n∑

i=1

(
g(1) (Xi, θ)

′

1 + λ′g(Xi, θ)
− g (Xi, θ) λ′g(1)(Xi, θ)′

(1 + λ′g(Xi, θ))2

)
,

G∗(2)n (β)λλ′ = − 1
n

n∑

i=1

g(Xi, θ)g(Xi, θ)′

(1 + λ′g(Xi, θ))2
.

At βn,0 the second derivatives simplify to

G∗(2)n (βn,0)θθ′ = 0, G∗(2)n (βn,0)θλ′ =
1
n

n∑

i=1

g(1)(Xi, θ) = Qn,

G∗(2)n (βn,0)λλ′ = − 1
n

n∑

i=1

g(Xi, θ)g(Xi, θ)′ = −Jn,

which leads to the formula for G
∗(2)
n (βn,0) that appears in Equation (21) of the main text.

In addition to the estimators b̂ and b̃q defined in the main text, we will introduce a third

estimator, b̂q, based on the quadratic approximation G∗nq(φ, l) subject to the restriction that

b̂q ∈ Bn. Formally,

l̂q(φ) = argmaxl∈Ln(φ) G∗nq(φ, l), φ̂q = argminφ∈Φn
G∗nq(φ, l̂q(φ)).

A.3.1 Main Results

Proof of Lemma 2: By Lemma 1(a) of Andrews (1999), it is sufficient to prove

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥G∗(2)n (β)−G∗(2)n (βn,0)
∥∥∥ = op (1) ,

for every sequence γn −→ 0. G
∗(2)
n is defined in (A.15). To verify this sufficient condition

we will subsequently show that
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(i) supβ∈Bn:‖β−βn,0‖≤γn

∥∥∥G
∗(2)
n (β)θθ′ −G

∗(2)
n (βn,0)θθ′

∥∥∥ = op (1),

(ii) supβ∈Bn:‖β−βn,0‖≤γn

∥∥∥G
∗(2)
n (β)λθ′ −G

∗(2)
n (βn,0)λθ′

∥∥∥ = op (1) ,

(iii) supβ∈Bn:‖β−βn,0‖≤γn

∥∥∥G
∗(2)
n (β)λλ′ −G

∗(2)
n (βn,0)λλ′

∥∥∥ = op (1).

We begin by showing that

sup
β∈Bn

∣∣∣∣
1

1 + λ′g (Xi, θ)

∣∣∣∣ = Op(1). (A.16)

Since

sup
β∈Bn, 1≤i≤n

|λ′g (Xi, θ)| = op (1)

it follows that for any given 0 < δ < 1
2

P

{
sup

β∈Bn,1≤i≤n
|λ′g (Xi, θ)| > δ

}
−→ 0.

Set K > 1
δ > 2. Then,

P

{
sup

β∈Bn,1≤i≤n

∣∣∣∣
1

1 + λ′g (Xi, θ)

∣∣∣∣ > K

}
≤ P

{
sup

β∈Bn,1≤i≤n
|1 + λ′g (Xi, θ)| < 1

M

}

≤ P

{
sup

β∈Bn,1≤i≤n
|λ′g (Xi, θ)| > δ

}
−→ 0,

which proves (A.16).

(i) Notice that

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
λjg

(2)
j (Xi, θ)

1 + λ′g (Xi, θ)

)∥∥∥∥∥

≤ sup
λ∈Λζ

n

|λj |
(

sup
β∈Bn,1≤i≤n

∣∣∣∣
1

1 + λ′g (Xi, θ)

∣∣∣∣
) (

sup
θ∈Θ

1
n

∑∥∥∥g
(2)
j (Xi, θ)

∥∥∥
)

= O(n−ζ)Op(1)Op(1) = op(1),

where the last inequality holds by the definition of Λζ
n, (A.16) and the ULLN under As-

sumption 6. Moreover,

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g(1) (Xi, θ)

′
λλ′g(1) (Xi, θ)

(1 + λ′g (Xi, θ))
2

)∥∥∥∥∥

≤ sup
λ∈Λζ

n

‖λk‖2
(

sup
β∈Bn, 1≤i≤n

1
(1 + λ′g (Xi, θ))

2

)(
sup
θ∈Θ

1
n

n∑

i=1

∥∥∥g(1) (Xi, θ)
∥∥∥
)

= O
(
n−2ζ

)
Op (1)Op (1) = op (1) .
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The last inequality holds by the definition of Λζ
n, (A.16) and the ULLN under Assumption

6.

(ii) Apply the triangle inequality to

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g(1) (Xi, θ)

1 + λ′g (Xi, θ)
− g(1) (Xi, θn,0)

)∥∥∥∥∥

≤ sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g(1) (Xi, θ)

1 + λ′g (Xi, θ)
− g(1) (Xi, θ)

)∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥
1
n

n∑

i=1

(
g(1) (Xi, θ)− IE

[
g(1) (Xi, θ)

])∥∥∥∥∥

+ sup
θ∈Θ:‖θ−θ0‖≤γn

∥∥∥IE
[
g(1) (Xi, θ)

]
− E

[
g(1) (Xi, θ0)

]∥∥∥

+

∥∥∥∥∥
1
n

n∑

i=1

(
g(1) (Xi, θ0)− IE

[
g(1) (Xi, θ0)

])∥∥∥∥∥
= Id + op (1) + op (1) + op (1) ,

where the last equality holds by the ULLN under Assumption 6, the uniform continuity of

IE
[
g(1) (Xi, θ)

]
in θ, and the WLLN. Next,

Id ≤ sup
β∈Bn

|λ′g (Xi, θ)|
(

sup
β∈Bn

∣∣∣∣
1

1 + λ′g (Xi, θ)

∣∣∣∣
)(

sup
θ∈Θ

1
n

n∑

i=1

∥∥∥g(1) (Xi, θ)
∥∥∥
)

= op (1) Op (1) Op (1) = op (1)

by Lemma A.1, (A.16), and the ULLN under Assumption 6. Moreover,

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

g (Xi, θ)
1 + λ′g (Xi, θ)

λ′g (Xi, θ)
1 + λ′g (Xi, θ)

∥∥∥∥∥

≤ sup
λ∈Λζ

n

‖λ‖
(

sup
β∈Bn,1≤i≤n

1
(1 + λ′g (Xi, θ))

2

)(
sup
θ∈Θ

1
n

∑
‖g (Xi, θ)‖2

)

= O
(
n−ζ

)
Op (1) Op (1) = op (1) .
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(iii) Similar as before, we have

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) g (Xi, θ)

′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ0) g (Xi, θ0)

′
)∥∥∥∥∥

≤ sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) g (Xi, θ)

′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′
)∥∥∥∥∥

+ sup
Θ

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) g (Xi, θ)

′ − IE
[
g (Xi, θ) g (Xi, θ)

′])
∥∥∥∥∥

+ sup
Θ

∥∥IE
[
g (Xi, θ) g (Xi, θ)

′]− IE
[
g (Xi, θ0) g (Xi, θ0)

′]∥∥

+ sup
Θ

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ0) g (Xi, θ0)

′ − IE
[
g (Xi, θ0) g (Xi, θ0)

′])
∥∥∥∥∥

= sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) g (Xi, θ)

′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′
)∥∥∥∥∥ + op (1) .

Next,

sup
β∈Bn:‖β−βn,0‖≤γn

∥∥∥∥∥
1
n

n∑

i=1

(
g (Xi, θ) g (Xi, θ)

′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′
)∥∥∥∥∥

≤ sup
β∈Bn,1≤i≤n

|λ′g (Xi, θ)|
(

sup
β∈Bn,1≤i≤n

1
|1 + λ′g (Xi, θ)|

)

×
(

sup
β∈Bn,1≤i≤n

1
|1 + λ′g (Xi, θ)| + 1

)(
sup
θ∈Θ

1
n

n∑

i=1

‖g (Xi, θ)‖2
)

= op (1)Op (1) Op (1) Op (1) = op (1) . ¥

Proof of Theorem 2 is omitted. ¥

Proof of Theorem 3: (i) Follows from Lemma A.7.

(ii) According to Lemma A.2, λ̂(θ̂, ν̂) = Op(n−1/2). It remains to show that φ̂ =
√

n[(θ̂ −
θ0)′, (ν̂ − ν0)′]′ is stochastically bounded. The saddlepoint property implies that

0 = G∗n(φ̂, 0) ≤ G∗n(φ̂, l̂(φ̂)) ≤ G∗n(0, l̂(0)). (A.17)

Then using the quadratic approximation (18), the bound for the remainder term given in

Lemma 2 and the definition of l̂ and φ̂ we obtain

G∗n(φ̂, l̂(φ̂)) = G∗nq(φ̂, l̂(φ̂)) + (1 + ‖φ̂− φ0‖2 + ‖l̂(φ̂)‖2)op(1) (A.18)

=
1
2
(Zn −R′n(φ̂− φ0))′J−1

n (Zn −R′n(φ̂− φ0))

−1
2
(l̂(φ̂)− J−1

n [Zn −R′n(φ̂− φ0)])′Jn(l̂(φ̂)− J−1
n [Zn −R′n(φ̂− φ0)])

+(1 + ‖φ̂− φ0‖2 + ‖l̂(φ̂)‖2)op(1)

=
1
2
(Zn −R′n(φ̂− φ0))′J−1

n (Zn −R′n(φ̂− φ0)) + (1 + ‖φ̂− φ0‖2 + ‖l̂(φ̂)‖2)op(1),
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where φ0 = [0, u′0]
′. The last equality is a consequence of Lemma A.8. Similarly, we can

deduce from Lemmas A.2, 2, and Theorem 2 that

G∗n(0, l̂(0)) = −1
2
l̂ (0)′ Jn l̂ (0) + Z ′n l̂ (0) + (1 + ‖l̂(0)‖2)op(1) = Op (1) . (A.19)

Hence, from (A.17), (A.18), and (A.19) we obtain the inequality

0 ≤ 1
2
(Zn + op(1)−R′n(φ̂− φ0))′J−1

n (Zn + op(1)−R′n(φ̂− φ0)) ≤ Op(1). (A.20)

Notice that Zn + op(1) = Op (1). According to Assumptions 4 and 6, Rn is full rank and Jn

is positive definite w.p.a. 1. Therefore, (A.20) implies that φ̂−φ0 is stochastically bounded.

(iii) We deduce from Lemma 2 and Part (ii) that

nG∗n(β̂n) = G∗nq(
√

n(β̂n − βn,0)) + (1 + ‖√n(β̂n − βn,0)‖2)op(1)

= nG∗nq(β̂n) + Op(1)op(1).

(iv) We proceed by establishing op(1) bounds for nG∗nq(β̂n)− nG∗nq(β̃nq).

We begin with the upper bound. Using (iii) can rewrite the differential as

nG∗nq(β̂n)− nG∗nq(β̃nq) = G∗n(φ̂, l̂(φ̂)) + op(1)− G∗nq(φ̃q, l̃q(φ̃q)) (A.21)

≤ G∗n(φ̂q, l̂(φ̂q))− G∗nq(φ̃q, l̂q(φ̃q)) + op(1).

Replacing φ̂ by φ̂q raises G∗n, whereas substituting l̃q with l̂ lowers G∗nq. Using Lemma 2 the

first term on the right-hand side of (A.21) can be rewritten as

G∗n(φ̂q, l̂(φ̂q)) = G∗nq(φ̂q, l̂(φ̂q)) + op(1)
(
1 + ‖φ̂q − φ0‖2 + ‖l̂(φ̂q)‖2

)
(A.22)

= G∗nq(φ̂q, l̂(φ̂q)) + op(1).

The second equality in (A.22) is a consequence of Lemmas A.2 and A.7. According to

Lemma A.8

l̂(φ̄) = (Jn + op(1))−1[Zn − (R′n + op(1))(φ̄− φ0)]

for φ̄ = Op(1). Hence,

l̂(φ̃q)− l̂(φ̂q) = (Jn + op(1))−1[Zn − (R′n + op(1))](φ̃q − φ̂q) = op(1)

by Lemma A.7. Since G∗nq(φ, l) is continuous in its arguments we can now express the second

term on the right-hand side of (A.21) as

G∗nq(φ̃q, l̂(φ̃q)) = G∗nq(φ̂q, l̂(φ̂q)) + op (1) (A.23)
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Plugging (A.22) and (A.23) into (A.21) we obtain the upper bound

nG∗nq(β̂n)− nG∗nq(β̃nq) ≤ op(1).

Using similar arguments, we can establish a lower bound as follows:

nG∗nq(β̂n)− nG∗nq(β̃nq) = G∗n(φ̂, l̂(φ̂))− G∗nq(φ̃q, l̃q(φ̃q)) + op(1)

≥ G∗n(φ̂, l̂q(φ̂))− G∗nq(φ̂, l̃q(φ̂)) + op(1)

= G∗n(φ̂, l̂q(φ̂))− G∗nq(φ̂, l̂q(φ̂)) + op(1)

= op(1)

which proves (iv). ¥

(v) Follows from parts (iii) and (iv).

A.3.2 Technical Lemmas

Lemma A.6 Suppose Assumptions 1 to 6 are satisfied. Then, b̃q exists uniquely w.p.a. 1.

Proof of Lemma A.6: The subsequent statements are true w.p.a. 1. Notice that Ḡ∗nq(φ),

defined in (27), is strictly convex function of φ because R′n = [−Q′n,M ′] is a full rank matrix

under Assumption 6 and J−1
n is positive definite under Assumption 4. Hence, R′nJ−1

n Rn

is a positive definite matrix. Moreover, the domain Φ is convex. Therefore, φ̃q is unique.

Finally, from (26) we deduce that l̃q exists uniquely. ¥

Lemma A.7 Suppose Assumptions 1 to 6 are satisfied. Then

(i) b̃q = Op(1),

(ii) b̂q = b̃q + op(1).

Proof of Lemma A.7:

Proof of (i): We will show that φ̃q = Op (1). For notational simplicity, denote

A1n = R′nJ−1
n Rn, A2n = A−1

1n R′nJ−1
n Zn, and A3n = Z ′nJ−1

n Zn −A′2nA1nA2n,

and write the concentrated quadratic objective function (27) as

Ḡ∗nq(φ) =
1
2

(φ− φ0 + A2n)′A1n (φ− φ0 + A2n) +
1
2
A3n.
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Observe that Jn, Rn, and Zn converge weakly according to Theorem 2. Moreover based on

Assumptions 4 and 6 A1n is positive definite w.p.a. 1. Let

φ̄q = argminφ∈Rm+h2 Ḡ∗nq(φ) = φ0 −A2n = Op(1).

Notice that φ̃q is the projection of φ̄q onto the set Φ with respect to the inner product

〈x, y〉 = x′A1ny. Then,

‖φ̃q‖ ≤ λ−1
min(A1n)〈φ̃q, φ̃q〉1/2 ≤ λ−1

min(A1n)〈φ̄q, φ̄q〉1/2 = Op(1)

where λmin(A1n) denotes the smallest eigenvalue of A1n and is strictly positive w.p.a. 1.

Finally, from (26) we can deduce that l̃q(φ̃q) = Op(1).

Proof of (ii): According to Lemma A.6 the saddlepoint problem minφ∈Φ maxl∈Rh G∗nq(φ, l)

has a unique solution b̃q on the domain B = Φ⊗ Rh. Since Bn ⊂ B for any ε > 0

P
{
‖b̂q − b̃q‖ > ε

}
≤ P

{
b̃q ∈ B\Bn

}

≤ P{b̃q ∈ B\(Φn ⊗
√

nΛζ
n)}+ o (1) ,

where the o (1) term in the last line holds by Lemma A.1(ii). The set
√

nΛζ
n consists of

the elements in Λζ
n multiplied by

√
n and expands to Rh because ζ < 1/2. Since the true

parameter θ0 is in the interior of Θ, the first m ordinates of Φn expand to Rm. Ordinate

m + j expands to R if ν0,j > 0 and to R+ otherwise. Since b̃q = Op(1), we deduce P{b̃q ∈
B\(Φn ⊗

√
nΛζ

n)} = o(1). Therefore b̂q = b̃q + op (1), as required. ¥

Lemma A.8 Suppose that Assumptions 1 to 6 are satisfied. Let θ̄ ∈ Θ and ν̄ ≥ 0 be

sequences such that θ̄
p−→ θ0 and ν̄ − νn,0

p−→ 0. Let l̂
(
φ̄
)

=
√

nλ̂
(
θ̄, ν̄

)
, and φ̄ = [s̄′, ū′],

where s̄ =
√

n(θ̄ − θ0) and ū =
√

n(ν̄ − ν0). Then

0 = Zn − (R′n + op(1))(φ̄− φ0)− (Jn + op(1))l̂(φ̄).

Proof of Lemma A.8: In view of Lemmas A.1(ii) and A.2, we deduce that λ̂(θ̄, v̄) is in

the interior of Λ̂(θ̄) w.p.a. 1. Hence, λ̂ satisfies the first-order conditions associated with

maxλ∈Λ̂(θ̄) G∗n
(
θ̄, ν̄, λ

)
:

0 =
1
n

n∑

i=1

g(Xi, θ̄)

1 + λ̂′g(Xi, θ̄)
−M ′ν̄.

We now apply the mean-value theorem and multiply by
√

n:

0 =
√

nG∗(1)n (βn,0)λ + G∗(2)n (β∗)λθ′ s̄−M ′(ū− u0) + G∗(2)n (β∗)λλ′ l̂,
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where β∗ lies on the line joining βn,0 and β̄ = [θ̄′, ν̄′, λ̂(θ̄, ν̄)′]′. The matrices G
∗(1)
n (β) and

G
∗(2)
n (β) and their partitions are defined in (A.14) and (A.15). Using the same arguments

as in the proof of Lemma 2 and the definitions of Jn, Qn, Rn, and Zn in (21) we obtain the

desired result. ¥

A.4 Limit Distribution

Proof of Theorem 4: By the theorem of the maximum (e.g., see Berge, 1963) φ̃q is a

continuous function of Zn, Jn, and Rn. Moreover, from direct inspection we know that l̃q

is continuous in Zn, Jn, Rn, and φ̃n. The statement of the theorem then follows from the

continuous mapping theorem. ¥

Proof of Theorem 5: According to Theorem 3(iii):

G∗nq(φ̂, l̂(φ̂)) = G∗nq(φ̃q, l̃q(φ̃q)) + op(1). (A.24)

Since φ̂ = Op(1) we can deduce from Lemma A.8 that

l̂(φ̂) = l̃q(φ̂) + op(1). (A.25)

and

G∗nq(φ̂, l̂(φ̂)) = G∗nq(φ̂, l̃q(φ̂)) + op(1). (A.26)

Let Ḡ∗nq(φ) = G∗nq(φ, l̃q(φ)). Combining (A.24) and (A.26) then yields

Ḡ∗nq(φ̂) = Ḡ∗nq(φ̃q) + op(1). (A.27)

Since Ḡ∗nq(φ) is a strictly convex quadratic function of φ and φ̃q uniquely minimizes Ḡ∗nq(φ)

over a convex domain Φ, we deduce from (A.27) that

φ̂ = φ̃q + op (1) .

Using (A.25) once more we conclude that

l̂(φ̂) = l̃q(φ̂) + op(1) = l̃q(φ̃q) + op(1)

which completes the proof. ¥

Derivations for MSE: Define

P̃ = φ0 + (RJ−1R′)−1RJ−1Z
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and partition P̃ = [P̃ ′s, P̃ ′u]′. We can write

S = P̃sI{P̃u ≥ 0}+ (P̃s − ΩsuP̃u)I{P̃u < 0}
= ΩsuP̃uI{P̃u ≥ 0}+ P̃s.uu

U = P̃uI{P̃u ≥ 0},

where P̃s.uu = P̃s − ΩsuP̃u. Notice that

P̃s.uu ∼ N (Ωsuu0,Ωss − ΩsuΩus)

and P̃s.uu is uncorrelated with P̃u. Using the formulas for moments of a truncated normal

distribution (e.g. Greene (2003) p. 763) the mean and variance of S reported in the text

can be computed.

A.5 Inference

Proof of Corollary 1: omitted. ¥

Proof of Corollary 2: omitted. ¥

Proof of Theorem 7: The asymptotics of θ̂H
n and λ̂H(θ̂H

n , n−1/2u0) are well known (e.g.,

Newey and Smith (2004)) and follow from straightforward modifications of the proofs of

Theorems 3, 4, and 5. We will denote the limit distribution of [ŝH′
n , uH′

]′ by PH and begin

by characterizing P and PH . The concentrated limit objective function is of the form

Ḡ∗q (φ) =
1
2
(Z −R′(φ− φ0))′J−1(Z −R′(φ− φ0))

=
1
2
[(φ− φ0)− (RJ−1R′)−1RJ−1Z]′RJ−1R′[(φ− φ0)− (RJ−1R′)−1RJ−1Z]

+g(J,R, Z),

where the function g(J,R, Z) does not depend on φ. Define the matrix partitions

(RJ−1R′)−1RJ−1Z =


 Zs

Zu


 =


 QJ−1Q′ −QJ−1M ′

−MJ−1Q′ MJ−1M ′



−1 

 −QJ−1Z

MJ−1Z




and

Ω = J−1 − J−1Q′(QJ−1Q′)−1QJ−1.

Using the formula for the inverse of a partitioned matrix it can be verified that

Zu = (MΩM ′)−1MΩZ. (A.28)
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We can express Ḡ∗q (φ) = Ḡ∗q (s, u) as

Ḡq(s, u) =
1
2
[(s− Zs)− (QJ−1Q′)−1(QJ−1M ′)(u− u0 − Zu)]′

× QJ−1Q′[(s− Zs)− (QJ−1Q′)−1(QJ−1M ′)(u− u0 − Zu)]

+
1
2
(u− u0 − Zu)′MΩM ′(u− u0 − Zu) + g(J,R,Z).

Under the assumption that uH = u0 we can deduce that

SH = Zs − (QJ−1Q′)−1QJ−1M ′Zu (A.29)

S = Zs − (QJ−1Q′)−1QJ−1M ′(Zu − Ũ)

Ũ = argmin
ũ≥−u0

(ũ− Zu)′MΩM ′(ũ− Zu),

where ũ = u − u0 and Ũ = U − u0. Then let PH = [SH′
, u′0]

′ and P = [S ′, u′0 + Ũ ′]′. The

limit distribution of the likelihood ratio statistic can be manipulated as follows

2
(Ḡ∗q (PH)− Ḡ∗q (P)

)

= Z ′uMΩMZu − (Ũ − Zu)′MΩM ′(Ũ − Zu)

= −Ũ ′Λ−1Ũ + Z ′uΛ−1Ũ + Ũ ′Λ−1Zu,

where Λ = (MΩM ′)−1. We deduce from Theorems 4 and 5

LRu
n(u0) =⇒ 2

(Ḡ∗q (P0)− Ḡ∗q (P)
)
.

The statement of the theorem follows from defining . ¥

Proof of Corollary 3: omitted. ¥



47

References

Andrews, Donald W.K., Stephen Berry, and Panle Jia (2004): “Confidence Regions for Pa-

rameters in Discrete Games with Multiple Equilibria, with an Application to Discount

Chain Store Locations,” Manuscript, Yale University, Department of Economics.

Andrews, Donald W.K. (1999): “Estimation when a Parameter is on a Boundary,” Econo-

metrica, 67, 1341-1383.

Andrews, Donald W.K. (2001): “Testing when a Parameter is on the Boundary of the

Maintained Hypothesis,” Econometrica, 69, 683-734.

Angrist, Joshua and Alan Krueger (1991): “Does Compulsory School Attendance Affect

Schooling and Earnings?” Quarterly Journal of Economics, 106, 979-1014.

Berge, Claude (1963): “Topological Spaces,” MacMillan, New York.

Berger, Roger L., and Dennis D. Boos (1994): “P Values Maximized Over a Confidence

Set for the Nuisance Parameter,” Journal of the American Statistical Association, 89,

1012-1016.
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Table 1: Parameterizations of DGPs

DGP 1 DGP 2 DGP 3

ρ1,2 [0.5,−0.1]′ [0.9, 0.3]′ [0.5,−0.1]′

ρ1,X [0.5, 0.5]′ [0.5, 0.5]′ [0.3, 0.3]′

ρ2,X 0.5 0.5 0.8√
v(θ̂(1)) 1.41 1.41 2.36

√
v(û(1)) 1.05 0.55 1.87
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Table 2: Sampling Distribution of θ̂

θ̂(0) θ̂(1) θ̂(12)

u0 Bias MSE Bias MSE Bias MSE

DGP 1

0.00 -0.25 1.81 0.00 2.00 0.00 1.61

0.50 -0.12 1.84 0.00 2.00 0.32 1.71

1.00 -0.05 1.91 0.00 2.00 0.65 2.03

2.00 -0.01 1.98 0.00 2.00 1.30 3.30

3.00 0.00 2.00 0.00 2.00 1.95 5.42

5.00 0.00 2.00 0.00 2.00 3.26 12.21

10.00 0.00 2.00 0.00 2.00 6.52 44.08

DGP 2

0.00 0.23 1.84 0.00 2.00 0.00 1.67

0.50 0.02 1.97 0.00 2.00 -0.83 2.36

1.00 0.00 2.00 0.00 2.00 -1.66 4.44

2.00 0.00 2.00 0.00 2.00 -3.33 12.76

3.00 0.00 2.00 0.00 2.00 -5.00 26.64

5.00 0.00 2.00 0.00 2.00 -8.33 71.06

10.00 0.00 2.00 0.00 2.00 -16.66 279.34

DGP 3

0.00 -0.82 3.37 0.00 5.56 0.00 1.24

0.50 -0.56 3.52 0.00 5.56 0.57 1.57

1.00 -0.37 3.85 0.00 5.56 1.15 2.55

2.00 -0.13 4.63 0.00 5.56 2.29 6.47

3.00 -0.03 5.19 0.00 5.56 3.43 13.00

5.00 0.00 5.53 0.00 5.56 5.71 33.87

10.00 0.00 5.56 0.00 5.56 11.42 131.67

Notes: The table reports bias and mean squared error (MSE) based on the simulation of

the limit distribution.
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Table 3: Asymptotic Confidence Intervals for θ0

CSθ
(0) CSθ

(1)

u0
√

n Length Cov Prob
√

n Length Cov Prob

DGP 1

0.00 4.42 0.90 4.64 0.90

0.50 4.51 0.90 4.64 0.90

1.00 4.58 0.90 4.64 0.90

2.00 4.65 0.90 4.64 0.90

3.00 4.66 0.90 4.64 0.90

5.00 4.66 0.90 4.64 0.90

10.00 4.66 0.90 4.64 0.90

DGP 2

0.00 4.45 0.90 4.64 0.90

0.50 4.62 0.90 4.64 0.90

1.00 4.65 0.90 4.64 0.90

2.00 4.65 0.90 4.64 0.90

3.00 4.65 0.90 4.64 0.90

5.00 4.65 0.90 4.64 0.90

10.00 4.65 0.90 4.64 0.90

DGP 3

0.00 5.81 0.90 7.77 0.90

0.50 6.15 0.93 7.77 0.90

1.00 6.48 0.93 7.77 0.90

2.00 7.05 0.91 7.77 0.90

3.00 7.44 0.90 7.77 0.90

5.00 7.75 0.90 7.77 0.90

10.00 7.79 0.90 7.77 0.90

Notes: The table reports the length, scaled by
√

n, and the coverage probabilities of the

asymptotic confidence intervals.
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Table 4: Asymptotic Confidence Intervals for u0

CSu
(0) CSu

(1)

u0
√

n Length Cov Prob
√

n Length Cov Prob

DGP 1

0.00 1.64 0.90 1.91 0.90

0.50 2.03 0.90 2.21 0.90

1.00 2.37 0.90 2.51 0.90

2.00 2.86 0.90 2.97 0.90

3.00 3.08 0.90 3.23 0.90

5.00 3.16 0.90 3.45 0.90

10.00 3.16 0.90 3.46 0.90

DGP 2

0.00 0.61 0.90 1.03 0.90

0.50 0.95 0.90 1.31 0.90

1.00 1.11 0.90 1.54 0.90

2.00 1.15 0.90 1.76 0.90

3.00 1.15 0.90 1.80 0.90

5.00 1.15 0.90 1.81 0.90

10.00 1.15 0.90 1.81 0.90

DGP 3

0.00 3.11 0.90 3.43 0.90

0.50 3.49 0.90 3.71 0.90

1.00 3.87 0.90 4.01 0.90

2.00 4.56 0.90 4.59 0.90

3.00 5.11 0.90 5.08 0.90

5.00 5.74 0.90 5.68 0.90

10.00 5.99 0.90 6.14 0.90

Notes: The table reports the length, scaled by
√

n, and the coverage probabilities of the

asymptotic confidence intervals.


