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Abstract

This note studies the problem of estimating the set of finite dimensional parameter

values defined by a finite number of moment inequality or equality conditions and

gives conditions under which the estimator defined by the set of parameter values that

satisfy the estimated versions of these conditions is consistent in Hausdorff metric.

This note also suggests extremum estimators that with probability approaching to one

agree with the set consisting of parameter values that satisfy the sample versions of

the moment conditions. Finally, the note studies the model where the information

at hand consists of inequality constraints on non-parametric regression functions and

shows the consistency of the plug-in estimator or M-estimators that agree with that

estimator with probability approaching to one.
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1 Introduction

The appeal of estimation methods based on moment conditions to economists is largely due

to their intimate link to economic theory. The optimization problems of economic agents

facing uncertainty yield moment conditions which can be exploited to make inferences about

the parameters of the agents’ utility, cost, or production functions. This note studies the

problem of estimating the set of finite dimensional parameter values defined by a finite

number of moment inequality or equality conditions and gives conditions under which the

estimator defined by the set of parameter values that satisfy the estimated versions of these

conditions is consistent in Hausdorff metric. If the set of parameter values that satisfy the

population moment conditions is not empty, then for large sample sizes the estimator sets

based on the sample versions of the moment conditions will not be empty either. When

the sample size is small, however, these estimated sets may be empty. To deal with this

problem, I also propose alternative estimators which are non-empty even for small sample

sizes and with probability approaching to one agree with the set of parameters satisfying the

sample versions of the moment conditions. These alternative estimators are sets consisting

of the minima of a certain criterion function. Finally, the note studies models in which

the only available information to the researcher is in the form of non-parametric regression

inequalities and shows that both the plug-in estimator and the proposed extremum estimator

are consistent in the Hausdorff metric.

Developing methods for making inferences in the context of partially identified econo-

metric models, that is models in which restrictions imposed on the model do not uniquely

determine the parameters of interest, but contain useful information about the values these

parameters may take, is an active area of research. Recently, Horowitz and Manski (2000)

devised confidence intervals for the identified set of univariate parameters. Imbens and Man-

ski (2004) constructed confidence intervals for the univariate parameter itself, rather than for

the entire identified set. In the context of interval data Manski and Tamer (2002) proposed
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several extremum estimators for multidimensional sets of identified regression parameters

and provided conditions for (Hausdorff) consistency of these estimators. Chernozhukov,

Hong and Tamer (2002, 2007) were the first to develop confidence intervals for a general

class of partially identified models. Romano and Shaikh (2006 a, b) constructed confidence

intervals for the identified set and for individual parameters in the identified set, respec-

tively, by iterating the procedure presented in Chernozhukov, Hong and Tamer (2002 and

2007). Imbens and Manski (2004), Romano and Shaikh (2006 a,b) and Chernozhukov, Hong

and Tamer (2007) also investigate the robustness of these confidence sets in the underlying

probability measure. In the context of economic models of entry Andrews, Berry and Jia

(2004) studies estimation and inference problems for profit function parameters that satisfy

inequality constraints representing necessary conditions for Nash equilibrium. Rosen (2006)

presents a different, computationally simple method of constructing confidence sets for pa-

rameters in models characterized by a finite number of inequalities. For moment inequality

models, Pakes, Porter, Ho and Ishii (2006) suggests a specification test and construct confi-

dence sets for parameter values on the boundary of the identified set in moment inequality

models. Beresteanu and Molinari (2006) provides inference methods for models where the

identified set can be written as the Aumann expectation of a set valued random variable.

Using tools of optimal mass transportation theory Galichon and Henry (2006a) demonstrates

how a one sided Kolmogorov-Smirnov test statistic could be used to make inferences about

parameters of interest in certain partially identified models. Building on the results of this

paper Galichon and Henry (2006b) develops a method of constructing confidence regions in

general partially identified models. Their method is based on projecting a large deviation

region for multivariate quantile function that generates the data into a large deviation region

for the identified set.

When the identified set has multiple disconnected parts with strictly positive distance

between the parts, and the identified set is estimated by the collection of minima of a

3



sample criterion function, for finite sample sizes it is possible that the criterion function will

attain its minimum in neighborhoods of only a strict subset of these disconnected parts,

never picking up neighborhoods of all the parts at once. To deal with this problem Manski

and Tamer (2002), Chernozhukov, Hong and Tamer (2002) and parts of Chernozhukov,

Hong and Tamer (2007) introduce some extra slackness into the objective function or the

constraints themselves; this extra slackness or “tolerance” goes to zero as the sample size

grows. In certain special cases, constructing consistent estimators without relying on such a

“tolerance” parameter is possible. The “degeneracy” condition in Chernozhukov, Hong and

Tamer (2007), which is a high level condition in the sense that it is not a condition on the

primitives of the model, describes such models.1

This note imposes restrictions on the moment functions and the parameter set which

allow the researcher to construct consistent estimators that do not require any “tolerance”

parameter. The estimator proposed here for the model comprised of inequality constraints

only is very closely linked with the one proposed in Andrews, Berry and Jia (2004). The

distinction is in the assumptions imposed on the model. In particular, Andrews, Berry

and Jia (2004) devises a consistent estimator for a set of parameter values, Θ+, over which

a population criterion function is minimized so that their estimator consists of parameter

values that minimize the sample version of the criterion function. To show that this estimator

is consistent they assume either that Θ+ is singleton or that the closure of the interior of

Θ+ is the same as Θ+. This last condition rules out equality constraints. In contrast, I

show the consistency of almost the same estimator by imposing a rank condition on the

derivative matrix of the underlying moment conditions. In addition to allowing me to

consider inequality as well as equality constraints, this condition has two other advantages.

First the data may be used to check whether this condition is satisfied. Second, this condition

1For moment inequality models condition (4.6) in Chernozhukov, Hong and Tamer (2007) is a sufficient
condition for “degeneracy”. Under the conditions imposed on the moment functions in this note their
condition (4.6) holds.
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can be extended to models of non-parametric regression inequalities.

The rest of this note is organized as follows. Section 2 describes the problem. Sections

3 through 5 discuss models where the number of moment conditions does not exceed the

dimension of the parameter space. Section 3 gives an estimator and shows its consistency

for models comprised of inequality constraints only. Section 4 does the same thing for

models consisting of equality conditions only. Section 5 studies models where both types of

constraints are available. Section 6 studies the model characterized by inequality constraints

only for the case where the number of inequality constraints exceeds the dimension of the

parameter space. Section 7 discusses the certain models consisting of regression inequalities.

Section 8 concludes. The main mathematical tools employed are described in the Appendix.

2 Description of the Parametric Problem:

Let Θ ⊆ RI denote the parameter set. Let 0 and 1 denote a vector of zeros and ones,

respectively, with the size of these vectors inferred from the context. Also for each set A, let A

denote the closure of A. Suppose {Xi}n
i=1 is an i.i.d. sequence of random variables defined on

a complete and inner regular probability space (Ω,F , P ). Let X and FX denote the common

support and law of Xi. For each θ ∈ Θ, let g(θ) := EX g̃(X, θ) and ϕ(θ) := EXϕ̃(X, θ), where

g̃, ϕ̃ are known up to the parameter vector θ, and the images of g̃, ϕ̃ are a subsets of RM ,RS,

respectively. The object of interest will be Θ0 := {θ ∈ Θ : g(θ) ≥ 0, ϕ(θ) = 0}. I will

assume that we have n observations on X and for each value of θ estimators, ĝn(θ), ϕ̂n(θ)

are available for g(θ) and ϕ(θ). For example, ĝn(θ) could be 1
n

∑n
j=1 g̃(Xj, θ). The proposed

estimator for the set Θ0 is then Θ̂n := {θ ∈ Θ : ĝn(θ) ≥ 0, ϕ̂n(θ) = 0}. We will show that

under our assumptions,

sup
θ̂∈Θ̂n

inf
θ∈Θ0

||θ̂ − θ|| P→ 0, (1)

5



and

sup
θ0∈Θ0

inf
θ∈Θ̂n

||θ0 − θ|| P→ 0. (2)

The following assumptions will be used in various parts of this note:

Assumption 2.1 The parameter set Θ ⊆ RI is compact and convex. In addition, Θ0 6= ∅.

Assumption 2.2 g̃ and ϕ̃ are continuous in θ for almost every x. Moreover, E‖g̃(X, θ)‖ <

∞ and E‖ϕ̃(X, θ)‖ < ∞ ∀θ ∈ Θ.

Let η > 0. Since Θ is compact and g̃ is continuous, there exists α > 0 such that ‖g̃(x, θ′)−
g̃(x, θ)‖ < η whenever ‖θ′ − θ‖ < α. Since Θ is compact there exists {θ1, ..., θK} ⊆ Θ such

that every θ ∈ Θ is less than α distant from some θk. This means that g̃(x, θk)− η
2

< g̃(x, θ) <

g̃(x, θk) + η
2

for each fixed x. Let g̃η,U(x) := g̃(x, θk) + η
2

and g̃η,L(x) := g̃(x, θk) − η
2
. Then

E(g̃η,U − g̃η,L) < η. Then by Theorem 2 on p. 8 of Pollard (1984) we have supθ∈Θ ||ĝn(θ)−
g(θ)|| a.s.→ 0. Similarly, we can show that supθ∈Θ ||ϕ̂n(θ)− ϕ(θ)|| a.s.→ 0.

3 Inequality Constraints Only:

I will first consider the case where S = 0, i.e. the case where we only have M inequality

constraints.2

In showing the consistency of Θ̂n the following sets will be very useful:

Θ
ε

:= {θ ∈ Θ : g(θ) ≥ −ε · 1},

Θε := {θ ∈ Θ : g(θ) ≥ ε · 1},

Note that for ε > 0, Θε ⊆ Θ0 ⊆ Θ
ε
. On the other hand, assumption (2.2) implies that for

each ε there exists Nε such that for all n ≥ Nε, Θε ⊆ Θ̂n ⊆ Θ
ε

with probability close to 1,

2To be precise, moment inequalities can be transformed into moment equalities by specifying ϕm(θ) :=
|gm(θ)|{g(θ) ≤ 0}. But this specification is not very useful for our purposes because our Jacobian condition
will not be applicable to the ϕ obtained this way.
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so that

sup
θ̂∈Θ̂n

inf
θ0∈Θ0

||θ̂ − θ0|| ≤ sup
θ̂∈Θ

ε
inf

θ0∈Θ0

||θ̂ − θ0||, (3)

and

sup
θ0∈Θ0

inf
θ̂∈Θ̂n

||θ̂ − θ0|| ≤ sup
θ0∈Θ0

inf
θ̂∈Θε

||θ̂ − θ0||, (4)

with probability approaching to 1. Thus, showing that (3) and (4) both converge to 0 as ε

converges to 0 implies that Θ̂n is consistent for Θ0 in the Hausdorff metric. The following

proposition shows that (3) approaches 0 as ε decreases to 0:

Proposition 3.1 If Θ is compact, g is continuous and Θ0 6= ∅, we have

sup
θ∈Θ

ε
inf

θ∈Θ0

||θ − θ0|| → 0 as ε → 0.

Proof 3.1 Consider first the case where M = 1. If g(θ) ≥ 0 for each θ ∈ Θ, then there is

nothing to prove because in this case both Θ0 and Θ
ε
equal Θ for all ε > 0. So suppose there

is some θ ∈ Θ such that g(θ) < 0. Then for ε ∈ (0,−g(θ)), Θ
ε 6= Θ. Next, let δ > 0. We

need to show that there exists ε such that

sup
θ∈Θ

ε
inf

θ∈Θ0

||θ − θ0|| ≤ δ (5)

whenever ε ≤ ε. Consider S := {g(θ) : θ ∈ Θ \ [∪θ0∈Θ0Bδ(θ0)]}. If S = ∅, then Θ
ε ⊆

∪θ0∈Θ0Bδ(θ0), and statement (5) is true. Otherwise, it must be that s := sup S > −∞.

In addition, note that S is compact because closed subsets of a compact sets and images of

compact sets under continuous functions are compact. Since g is continuous the supremum

of S must be attained by an element of S, which implies that s < 0. We claim that statement

(5) holds for ε = −s/2. To see this note that for any ε ≤ ε there are two possibilities: either

there exists θ′ with g(θ′) ∈ [−ε, 0), or there is no such θ. In the latter case, Θ
ε

= Θ0, and

supθ∈Θ
ε infθ∈Θ0 ||θ − θ0|| = 0. On the other hand, if g(θ′) ∈ [−ε, 0) for some θ′ then because
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−ε > s, g(θ′) cannot belong to S. But this means that Θ
ε \ Θ0 ⊆ ∪θ0∈Θ0Bδ(θ0). In other

words, supθ∈Θ
η infθ∈Θ0 ||θ − θ0|| ≤ δ. Since δ could be chosen arbitrarily, this proves the

proposition for M = 1.

This result easily extends to the case where g : RL → RM , with 1 < M < ∞. To see this,

let h(θ) := min{g1(θ), ..., gM(θ)}. Note that since each gi is continuous, so is h. Now repeat

the same arguments above with h in place of g. ¥

Remark 3.1 The first part of the proof is essentially the same as the proof of the corre-

sponding direction in the consistency proof(s) of Andrews, Berry and Jia (2004), and Manski

and Tamer (2002).

To guarantee consistency of Θ̂n we also need to show that (4) converges to 0 as ε ap-

proaches 0. This direction, however, requires an additional assumption. To state the required

assumption we need to define:

Definition 3.1 h(θ) := min{g1(θ), ..., gM(θ)}, Θ∗ := {θ ∈ Θ : h(θ) = 0}.

Assumption 3.1 Consider an open subset, O of RI , containing Θ.3 Suppose I and M are

finite integers. Assume that the function g̃ : X × O → RM is continuously differentiable in

θ for almost every x, and that E
[∣∣∣∂g̃m(X,θ)

∂θj

∣∣∣
]

< ∞ ∀θ ∈ Θ, ∀m, ∀j. In addition, for each

θ∗ ∈ Θ such that h(θ∗) = 0, Dg(θ∗), the Jacobian of g evaluated at θ∗, has rank M .

Note that the continuous differentiability of g̃ in θ and the absolute integrability of this

derivative combined with the Dominated Convergence Theorem imply that g(θ) is continu-

ously differentiable and its derivative, Dg(θ), equals E[Dg̃(X, θ)]. In addition, the continuity

of the derivative of g̃ with respect to θ for almost every x combined with the compactness

of Θ and Theorem 2 on page 8 of Pollard (1984) imply that

sup
θ∈Θ

‖Dĝn(θ)−Dg(θ)‖ a.s.→ 0.

3Defining the function g on O as opposed to Θ is without loss of generality because of Tietze’s extension
theorem.
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While this result is not used in the proof of the next Proposition, it will be useful in Section

(5).

Proposition 3.2 Suppose M ≤ I and that Θ∗ ⊆ int(Θ). Then under assumptions (2.1),

(2.2) and (3.1), we have

sup
θ0∈Θ0

inf
θ∈Θε

||θ − θ0|| → 0 as ε → 0.

Proof 3.2 Note that if each gm is continuous, so is h(·). Thus, Θ∗ is a closed subset of

Θ. Since Θ itself is compact, this means that Θ∗ is compact as well. Moreover, since

Θ∗ ⊆ int(Θ) and Θ∗ is compact there exists η > 0, with η not depending on θ∗, such that

Bη(θ
∗) ⊆ Θ. On the other hand, the rank of Dg(θ∗) is the same as the Dg(θ∗)Dg(θ∗)T ,

which is a symmetric positive definite matrix. Thus, rank
[
Dg(θ∗)Dg(θ∗)T

]
= M means

Dg(θ∗)Dg(θ∗)T has M strictly positive eigenvalues.4 Moreover, using the Courant Fischer

min-max theorem,5 we can write each eigenvalue of Dg(θ)Dg(θ)T as the value function of

an optimization problem with a continuous objective function and a continuous constraint

correspondence, so that the Theorem of Maximum would imply that these eigenvalues are all

continuous functions of θ.6 Since Θ∗ is compact, this tells us that infθ∗∈Θ∗ λM(θ∗) =: λ > 0,

where λM(θ) denotes the minimum eigenvalue of Dg(θ)Dg(θ)T , and that there exists ρ̃ > 0

such that ||θ − θ∗|| ≤ ρ̃ ⇒ λM(θ) ≥ 1
2
λ, for all θ∗ ∈ Θ∗. Thus, every element of the

compact set ∪θ∗∈Θ∗Bρ(θ∗), where ρ := min
{

η
2
, ρ̃

}
, is a regular point of g.7 In addition,

∪θ∗∈Θ∗Bρ(θ∗) ⊆ Θ. Next, consider

ε∗1 :=
1

2
inf{h(θ) : h(θ) ≥ 0, θ ∈ Θ \ ∪θ∗∈Θ∗Bρ(θ

∗)}. (6)

4For these results, see for example Chapter 11 of Amemiya (1994).
5A statement and proof of this theorem is given on pages 115-117 of Bellman (1970).
6For a statement of the Theorem of the Maximum, refer to p. 963 of Mas-Colell, Whinston and Green

(1995).
7θ is a regular point of g if Dg(θ) maps RI onto RM .
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Arguments similar to those given in the proof of proposition (3.1) imply that ε∗1 > 0. The

arguments up to this point show that whenever h(θ) ∈ [0, ε∗1] for a given θ, then that θ must

belong to Θ and be within ρ distance of some θ∗ ∈ Θ∗, and hence, Dg(θ) must have rank

M . Therefore, by a corollary to the Generalized Inverse Function Theorem8, we know that

for each θ0 satisfying h(θ0) ∈ [0, ε∗1], there exist r > 0 and K < ∞, where r and K do not

depend on θ0, but may depend on ε∗1, such that for each t ∈ Br(g(θ0)), the equation g(θ) = t

has a solution. Moreover, the solution satisfies ||θ − θ0|| ≤ K||g(θ)− g(θ0)||.
Let δ > 0, and consider 0 < ε < min{ r√

M
, δ

K
√

M
, ε∗1,

η

2K
√

M
}. For any θ0 with h(θ0) ≥ ε,

θ0 ∈ Θε, we have infθ∈Θε ||θ − θ0|| = 0. Thus, consider θ0 such that h(θ0) ∈ [0, ε). Note

that if there is no such θ0 we have nothing to prove because in that case Θ0 = Θε. Next, let

t ∈ RM be defined by tm := gm(θ0) + ε− h(θ0). Then

‖t− g(θ0)‖ =

√∑
m

(gm(θ0) + ε− h(θ0)− gm(θ0))2 =
√

M(ε− h(θ0)) ≤
√

Mε < r.

Therefore, there is a θ′ such that gm(θ′) = gm(θ0) + ε− h(θ0), and

‖θ0 − θ′‖ ≤ K
√

Mε < δ.

To argue that θ′ ∈ Θ, note that since h(θ0) ∈ [0, ε∗1), θ0 must be within ρ distance to some

θ∗0 and

‖θ′ − θ∗0‖ ≤ ‖θ′ − θ0‖+ ‖θ0 − θ∗0‖ ≤ K
√

Mε +
η

2
< η.

Finally, since h(θ0) ≤ gm(θ0), ∀m, h(θ′) ≥ ε, i.e. θ′ ∈ Θε. Thus, infθ∈Θε ||θ − θ0|| ≤
||θ′−θ0|| < δ. Since the way ε was chosen did not depend on θ0, we have infθ∈Θε ||θ−θ0|| ≤ δ

for each θ0 ∈ Θ0. Since δ was chosen arbitrarily these arguments prove the proposition. ¥
8See p.240-242 of Luenberger (1969) for a statement and proof of the theorem, and the Mathematical

Tools section of this document for the proof of the corollary.
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Before concluding this section let us note that since Θ0 6= ∅

Θ0 = {θ ∈ Θ : θ minimizes |h(θ)|1{h(θ) ≤ 0}}.

If Θ∗ ⊆ int(Θ), Assumptions (2.2) and (3.1) guarantee that for large n, Θ̂n will be not

empty with probability approaching to 1. Nevertheless, for small sample sizes, Θ̂n could be

empty. This problem can be easily fixed, however, by considering the following alternative

estimator which equals Θ̂n whenever the latter is not empty:

Θ̂a
n = {θ ∈ Θ : θ minimizes |ĥ(θ)|1{ĥ(θ) ≤ 0}}.

4 Equality Constraints Only:

This section studies the case where M = 0 and S ≤ I, that is the identified set is defined

by equality constraints only. Moreover, the number of equality constraints is less than

or equal to the dimension of the parameter space. The set we would like to estimate is

Θ0 = {θ ∈ Θ : ϕ(θ) = 0}, and the proposed estimator is Θ̂n := {θ ∈ Θ : ϕ̂(θ) = 0}. As

before, our goal is to show that dH(Θ0, Θ̂n)
P→ 0. For this purpose define

Θ
ε
:= {θ ∈ Θ : −ε · 1 ≤ ϕ(θ) ≤ ε · 1} = {θ ∈ Θ : ϕ(θ) ≥ −ε · 1,−ϕ(θ) ≥ −ε · 1}.

By Assumption (2.2) Θ̂n ⊆ Θ
ε

as n → ∞ w.p. 1. In addition, if Θ is compact, Θ0 is

non-empty and ϕ is continuous, Proposition (3.1) implies that

sup
θ∈Θ

ε
inf

θ∈Θ0

||θ − θ0|| → 0 as ε → 0.
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Thus,

sup
θ∈Θ̂n

inf
θ∈Θ0

||θ − θ0|| P→ 0.

To show the other direction for Hausdorff consistency of the estimator we need to introduce

an assumption analogous to Assumption (3.1):

Assumption 4.1 Consider an open subset, O of RI , containing Θ. Suppose I and S are

finite integers. Assume that the function ϕ̃ : X × O → RS is continuously differentiable in

θ for almost every x, and that E
[∣∣∣∂ϕ̃m(X,θ)

∂θj

∣∣∣
]

< ∞ ∀θ ∈ Θ, ∀m, ∀j. In addition, for each

θ∗ ∈ Θ such that ϕ(θ∗) = 0, Dϕ(θ∗), the Jacobian of ϕ evaluated at θ∗, has rank S.

Using arguments similar to those given immediately after Assumption (3.1) we can argue

that for each s = 1, ..., S and i = 1, ..., I

sup
θ∈Θ

∣∣∣∣
∂ϕ̂ns(θ)

∂θi

− ∂ϕs(θ)

∂θi

∣∣∣∣
a.s.→ 0.

Proposition 4.1 Suppose Θ0 ⊆ int(Θ). In addition, suppose that Assumptions (2.1), (2.2)

and (4.1) hold. Then dH(Θ0, Θ̂n)
P→ 0.

Proof 4.1 Since Θ0 is compact and Θ0 ⊆ int(Θ) we could show that there exists η > 0 such

that if θ′ ∈ Bη(θ0) for some θ0 ∈ Θ0 then θ′ ∈ Θ. On the other hand, recall that a real square

matrix is positive if and only if determinants associated with all of its upper left submatrices

are positive. Let pJq(θ) denote the determinant of the submatrix consisting of the first p

rows and q columns of Dϕ(θ)Dϕ(θ)T . Let pĴq(θ) be defined in an analogous way with ϕ̂n(θ)

replacing ϕ(θ). By assumption (4.1) sJs(θ0) > 0 ∀s and ∀θ0 ∈ Θ0. By assumption (4.1) and

compactness of Θ0 λE := min{inf{sJs(θ) : θ ∈ Θ0} : s = 1, ..., S} > 0.

To show that

sup
θ∈Θ0

inf
θ′∈Θ̂n

||θ′ − θ|| P→ 0,
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let δ > 0, and ε > 0. By the arguments given just before this proposition and by Egoroff’s

Theorem9 there exists a set A1 ⊆ X∞ with P∞(A1) > 1 − δ
2

and an integer N1 such that

∀x ∈ A1, ∀n ≥ N1 and ∀s, we have

sup
θ∈Θ

|sĴs(x, θ)−s Js(x, θ)| < λE

4
. (7)

This means that for each x ∈ A1 and for each n > N1 every θ0 ∈ Θ0 is a regular point of

ϕ̂n(x, ·). Therefore, by the Corollary of the Generalized Inverse Function Theorem there exist

K < ∞ and r > 0 such that for all θ0 ∈ Θ0 and all y ∈ RS with y ∈ Br(ϕ̂n(θ0)) the equation

y = ϕ̂n(θ) has a solution and the solution, θ̂n, satisfies ‖θ̂n − θ0‖ ≤ K‖ϕ̂n(θ̂n) − ϕ̂n(θ0)‖.
Let ν ∈ (

0, min{r, η
K

, ε
K
}). Using Assumption (2.2) and Egoroff’s Theorem once more we

can argue that there is a set A2 ⊆ X∞ with P∞(A2) > 1 − δ
2

and an integer N2 such that

∀x ∈ A2 and ∀n ≥ N2, we have

sup
θ∈Θ

‖ϕ̂n(x, θ)− ϕ(θ)‖ < ν. (8)

Note that P∞(A1 ∩ A2) > 1 − δ, and that ∀x ∈ A1 ∩ A2 and ∀n ≥ max{N1, N2} both (7)

and (8) hold. Next, consider any θ0 ∈ Θ0. Let x ∈ A1 ∩ A2 and n ≥ max{N1, N2}. Then

‖ϕ̂n(x, θ0)‖ < r (by (8)) and θ0 is a regular point of ϕ̂n(x, ·). Thus, there exists θ̂n(x) with

ϕ̂n(x, θ̂n(x)) = 0. Moreover, ‖θ̂n(x) − θ0‖ ≤ K‖ϕ̂n(x, θ̂n(x)) − ϕ̂(x, θ0)‖ < Kν < min{η, ε}
meaning that θ̂n(x) ∈ Θ and is less than ε distant away from θ0. Since θ0 ∈ Θ0, δ > 0 and

ε > 0 were chosen arbitrarily and since r,K, N1 and N2 do not depend on θ0 these arguments

prove that ∀ε > 0

P∞
(

sup
θ0∈Θ0

inf
θ̂n∈Θ̂n

‖θ̂n − θ0‖ > ε

)
→ 0, as n →∞. ¥

9For a statement of this theorem, please refer to p. 73 of Royden (1988).
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The arguments given in this proof demonstrate that for all sufficiently large n the probability

that Θ̂n 6= ∅ will be close to 1. When Θ̂n 6= ∅,

Θ̂n = Θ̂a
n := {θ′ ∈ Θ : θ′ minimizes ϕ̂n(θ)T Wϕ̂n(θ)},

where W is a positive definite symmetric matrix. Since we have shown that Θ̂n is consistent

for Θ0 in Hausdorff metric, this means that Θ̂a
n is also consistent for Θ0 in the same metric.

On the other hand, since ϕ̂n is continuous in θ Θ̂a
n will be non-empty. This suggests that

Θ̂a
n may be preferable to Θ̂n for small sample sizes.

5 Inequality and Equality Constraints Together:

In this section we turn to the case where the set that needs to be estimated is Θ0 = {θ ∈
Θ : g(θ) ≥ 0, ϕ(θ) = 0}, and the proposed estimator is

Θ̂n := {θ ∈ Θ : ĝn(θ) ≥ 0, ϕ̂n(θ) = 0}. As before, our goal is to show that dH(Θ0, Θ̂n)
P→ 0.

This time we define

Θ
ε
:= {θ ∈ Θ : g(θ) ≥ −ε · 1, −ε · 1 ≤ ϕ(θ) ≤ ε · 1} = {θ ∈ Θ : hE(θ) ≥ −ε},

where hE(θ) = min{ξj(θ) : j = 1, ...,M +2S}, with ξj(θ) = gj(θ) for j = 1, ..., M , ξM+j(θ) =

ϕj(θ) and ξM+S+j(θ) = −ϕj(θ) for j = 1, ..., S. With this definition, it is easy to see that if

Θ is compact, Θ0 6= ∅ and g and ϕ are continuous, by Proposition (3.1) we have

sup
θ∈Θ

ε
inf

θ∈Θ0

||θ − θ0|| → 0 as ε → 0.

14



Assumption (2.2) then implies that

sup
θ∈Θ̂n

inf
θ∈Θ0

||θ − θ0|| P→ 0.

As in the previous section, to show the other direction for Hausdorff consistency of the

estimator we need to strengthen Assumption (2.2) and modify Assumption (3.1). Recall

that h(θ) = min{gm(θ) : m = 1, ..., M}. Let f̃(θ) :=




g̃(θ)

ϕ̃(θ)


, f̂n(θ) := 1

n

∑n
i=1 f̃(Xi, θ)

and f(θ) = EX f̃(X, θ). In addition, let Θ∗∗ := {θ ∈ Θ : h(θ) = 0, ϕ(θ) = 0}.

Assumption 5.1 Consider an open subset, O of RI , containing Θ. Suppose I,M and S

are finite integers. Assume that the functions ϕ̃ : X × O → RS and g̃ : X × O → RM

are continuously differentiable in θ for almost every x, and that E
[∣∣∣∂ϕ̃s(X,θ)

∂θj

∣∣∣
]

< ∞ and

E
[∣∣∣∂g̃m(X,θ)

∂θj

∣∣∣
]

< ∞∀θ ∈ Θ, ∀s, m ∀j. In addition, for each θ∗ ∈ Θ0, Dϕ(θ∗) has rank S,

and for each θ∗ ∈ Θ0 such that h(θ∗) = 0, Df(θ∗) has rank S + M .

Note that Assumption (2.2) implies that supθ∈Θ ‖ĥn(θ)− h(θ)‖ a.s→ 0.

Proposition 5.1 Suppose Θ∗∗ ⊆ int(Θ). In addition, suppose that Assumptions (2.1), (2.2)

and (5.1) hold. Then dH(Θ0, Θ̂n)
P→ 0.

Proof 5.1 Using Assumption (5.1) and arguments as in the proof of Proposition (3.2) we

can show that there is ρ > 0 such that every element of ∪θ∗∈Θ∗∗Bρ(θ∗) is a regular point of

f and ∪θ∗∈Θ∗Bρ(θ∗) ⊆ Θ. Let ε∗1 := 1
2
inf{h(θ) : θ ∈ Θ0 \ ∪θ∗∈Θ∗Bρ(θ

∗)}. Again we can show

that if h(θ) ∈ [0, ε∗1] and ϕ(θ) = 0 for a given θ then that θ must be a regular point of f

belonging to Θ.

Define E := {θ ∈ Θ : h(θ) ≥ ε∗1, ϕ(θ) = 0}, F := {θ ∈ Θ : h(θ) ∈ [0, ε∗1], ϕ(θ) = 0}.
Note that E and F are compact and Θ0 = E ∪F .. Also, using continuity of h, compactness

of Θ and the fact that Θ0 ⊆ int(Θ) we can show that there exists ρ2 > 0 such that ∀e ∈ E

‖θ − e‖ < ρ2 ⇒ h(θ) ≥ ε∗1
2

and θ ∈ Θ.

15



Let pJq(θ) and pĴq(θ) be defined as in the proof of Proposition (4.1). Let pJ
f
q (θ) and pĴ

f
q (θ)

analogously with f and f̂n replacing ϕ and ϕ̂n, respectively. Also let λ := min{inf{sJs(θ) :

θ ∈ Θ0}, inf{lJ
f
l (θ) : θ ∈ F} : s = 1, ..., S, l = 1, ...,M + S}.

Let 0 < δ < 1 and ε > 0. By Assumption (2.2) and Egoroff’s Theorem, there exists a

positive integer N1 and a set A1 ⊆ X∞ with P∞(A1) > 1− δ
2

such that ∀ω ∈ A1, ∀s = 1, ..., S,

∀l = 1, ...,M + S and ∀n ≥ N1 we have

sup
θ∈Θ

∣∣∣sĴs(θ)−s Js(θ)
∣∣∣ <

λ

4
, and (9)

sup
θ∈Θ

∣∣∣lĴf
l (θ)−l Jf

l (θ)
∣∣∣ <

λ

4
.

This means that for each ω ∈ A1 and each n > N1, every θ0 ∈ Θ0 is a regular point of ϕ̂n(ω, ·)
and every θ ∈ F is a regular point of f̂n(ω, ·). Then our Corollary to the Generalized Inverse

Function Theorem implies that there exist r > 0 and K < ∞ such that ∀ω ∈ A1 and ∀n > N1

the following two conditions hold:

(i) ∀θ0 ∈ Θ0 the equation ϕ̂n(ω, θ) = y has a solution ∀y ∈ Br(ϕ̂n(ω, θ0)), and the solution

satisfies ‖θ − θ0‖ ≤ K‖y‖;

(ii) ∀θ0 ∈ F the equation f̂n(ω, θ) = y has a solution ∀y ∈ Br(z) where z = f̂n(ω, θ0).

Moreover, the solution satisfies ‖θ − θ0‖ ≤ K‖y − z‖.

Next, let ν ∈
(
0, min

{
r√

M+1
, ρ

K
√

M+1
, ρ2

K
, ε

K
√

M+1
,

ε∗1
2

})
. Using Assumption (2.2) and Ego-

roff’s Theorem once more, we can argue that there exists a positive integer N2 and a set

A2 ⊆ X∞ with P∞(A2) > 1− δ
2

such that ∀ω ∈ A2, and ∀n ≥ N2 we have

sup
θ∈Θ

∥∥∥∥∥∥∥∥∥∥




ĥn(ω, θ)

ĝn(ω, θ)

ϕ̂n(ω, θ)



−




h(θ)

g(θ)

ϕ(θ)




∥∥∥∥∥∥∥∥∥∥

< ν. (10)
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Consider θ0 ∈ Θ0. Let ω ∈ A1 ∩A2 and n > max{N1, N2}. Suppose θ0 ∈ E. As in the proof

of Proposition (4.1) we can show that there exists θ̂n(ω) ∈ Θ such that ϕ̂n(ω, θ̂n(ω)) = 0,

‖θ̂n(ω) − θ0‖ < ε and ‖θ̂n(ω) − θ0‖ < ρ2. This last expression guarantees that h(θ̂n) ≥ ε∗1
2
.

Moreover, by expression (10), ĥn(θ̂n) > 0 and hence, θ̂n ∈ Θ̂n for such ω and n. Next,

suppose that θ0 ∈ F . Let tm := ĝnm(θ0) + h(θ0) − ĥn(θ0) for m = 1, ..., M and tm = 0 for

m = M +1, ..., M +S. Then ‖t− f̂n(ω, θ0)‖ =

√
M(h(θ0)− ĥn(θ0))2 + ‖ϕ̂n(θ0)− ϕ(θ0)‖2 <

√
M + 1ν < r. Note that t ≥ 0 since h(θ0) ≥ 0 and since ĥn(θ0) ≤ ĝnm(θ0) ∀m. Since θ0 is

a regular point of f̂n(ω, ·) there exists θ̂′n(ω) satisfying f̂n(ω, θ̂′n(ω)) = t and ‖θ̂′n(ω)− θ0‖ ≤
K‖t− f̂n(ω, θ0)‖ < K

√
M + 1ν < ε. Finally, ‖θ̂′n(ω)− θ0‖ < ρ ⇒ θ̂′n(ω) ∈ Θ. Since θ0 ∈ Θ0

was chosen arbitrarily, and all these arguments hold regardless of which θ0 ∈ Θ0 is chosen

the results indicate that ∀n > max N1, N2,

P ( sup
θ∈Θ0

inf
θ′∈Θ̂n

‖θ0 − θ′‖ < ε) > 1− δ. ¥

Note that when Θ̂n 6= ∅

Θ̂n = Θ̂a
n := {θ ∈ Θ : θ minimizes |ĥn(θ′)|1{ĥn(θ′) ≤ 0}+ ϕ̂n(θ′)T Wϕ̂n(θ′)},

where W is a positive definite matrix. Since Θ is compact and the objective function is

continuous this alternative estimator will be non-empty for each sample size. Since Θ̂n will

be non-empty with probability approaching to 1 and since the two estimators agree whenever

Θ̂n 6= ∅ Θ̂a
n will be consistent as well.

6 More Moment Inequalities than Parameters:

Suppose we have M ≥ I and S = 0. In this case we cannot use the Generalized Inverse

Function Theorem because the derivative map will not be onto. Nevertheless, we can try
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to solve this problem by breaking the set of moment inequalities into subsets where the

number of elements in each subset is at most I. Suppose this gives us L subsets, with

Ml ≤ I, denoting the cardinality of the lth subset. The analysis of the previous subsection

can be applied to each subset of inequalities provided that the assumptions we made there

hold for each subset. In particular, for l = 1, ..., L define Θl
0 := {θ ∈ Θ : gl(θ) ≥ 0} and

Θ̂l
n := {θ ∈ Θ : ĝl(θ) ≥ 0}. The analysis in section (3) shows that for each l = 1, ..., L,

dH(Θl
0, Θ̂

l
n)

P→ 0. Using this fact along with Θ0 = ∩L
l=1Θ

l
0 and Θ̂n = ∩L

l=1Θ̂
l
n, one might try

to argue that dH(Θ0, Θ̂n)
P→ 0. We cannot, however, immediately come to this conclusion

based on the analysis in section (3); we need to make extra assumptions to guarantee this

result. To illustrate this point, consider the case where L = 2. Define for l = 1, 2, Θ
ε,l

, Θε,l,

and hl as in section (3) with gl replacing g in each case. Then with probability approaching

to 1, we have

sup
θ̂∈Θ̂1

n∩Θ̂2
n

inf
θ0∈Θ1

0∩Θ2
0

||θ̂ − θ0|| ≤ sup
θ̂∈Θ

ε,1∩Θ
ε,2

inf
θ0∈Θ1

0∩Θ2
0

||θ̂ − θ0||, (11)

sup
θ0∈Θ1

0∩Θ2
0

inf
θ̂∈Θ̂1

n∩Θ̂2
n

||θ̂ − θ0|| ≤ sup
θ0∈Θ1

0∩Θ2
0

inf
θ̂∈Θε,1∩Θε,2

||θ̂ − θ0||, (12)

for sufficiently large n. Since the proof of Proposition (3.1) did not make any assumptions

about the size of M relative to that of I, that proposition is valid for M ≥ I, and we have

sup
θ̂∈Θ

ε,1∩Θ
ε,2

inf
θ0∈Θ1

0∩Θ2
0

||θ̂ − θ0|| → 0.

Unfortunately,

sup
θ0∈Θl

0

inf
θ̂∈Θε,l

||θ̂ − θ0|| → 0 for l = 1, 2,; sup
θ0∈Θ1

0∩Θ2
0

inf
θ̂∈Θε,1∩Θε,2

||θ̂ − θ0|| → 0.

This results from the fact that even if Θ1
0∩Θ2

0, Θε,1 and Θε,2 are all non-empty the intersection

of Θε,1 and Θε,2 could be empty, which would imply that the expression on the right hand
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side of (12) is infinite. We can deal with this problem in more specialized models. The

following assumption describes the additional condition these specialized models require:

Assumption 6.1 Let h(θ) := min{hl(θ) : l = 1, ..., L} and Θ∗ = {θ ∈ Θ : h(θ) = 0}.
Suppose either that Θ0 is singleton or for each θ∗ ∈ Θ∗ there is j0, with j0 possibly dependent

on θ∗, such that h is strictly increasing or strictly decreasing in θj0 at θ∗ ∈ Θ∗.

Proposition 6.1 Suppose Assumptions (2.1), (2.2) and (6.1) hold, and that Θ∗ ⊆ int(Θ).

In addition, suppose that the moment functions could be broken into L groups as described

above such that each group of functions satisfies Assumption (2.1) for Θ∗ as defined here.

Then dH(Θ̂a
n, Θ0)

P→ 0 where Θ̂a
n = {θ ∈ Θ : θ minimizes |ĥ(θ)|1{ĥ(θ) ≤ 0}}.

Proof 6.1 Note that all of the assumptions except Assumption 2 of Theorem 1 of Andrews,

Berry and Jia (2004) immediately follow from the assumptions we imposed and our previous

analysis. Here we will verify that (i) ∀θ0 ∈ int(Θ0) h(θ0) > 0, and that (ii) Θ0 = int(Θ0).

To see that (i) holds, suppose towards contradiction there is θ0 ∈ int(Θ0) with h(θ0) = 0.

Then hl0(θ0) must be 0 for some l0 ∈ {1, ..., L}. Then by Assumption (3.1) and our Inverse

Function Theorem, for all sufficiently small ε > 0 there is θε with h(θε) ≤ hl0(θε) ≤ −ε and

‖θε − θ0‖ ≤ Kε for some finite K. This shows that θ0 cannot be in the interior of Θ0.

To see why (ii) holds, recall that Θ0 is a closed set, so that Θ0 = Θ0 ⊇ int(Θ0) by

definition of the closure of a set. Next, let θ0 ∈ Θ0. If θ0 ∈ int(Θ0) then θ0 ∈ int(Θ0) as well.

If θ0 /∈ int(Θ0) then that means for all δ > 0 there exists θ′(δ) ∈ Bδ(θ0) with h(θ′(δ)) < 0.

Since h is continuous, this implies that h(θ0) = 0. On the other hand, by Assumption (6.1)

there is j0 such that h is either increasing or decreasing in θj0 at θ0. Let θtj = θ0j for j 6= j0,

θtj0 = θ0j0 + 1
t

if h is increasing in θj0 and θtj0 = θ0j0− 1
t

if h is decreasing in θj0 at θ0. Since

θ0 ∈ Θ∗ ⊆ int(Θ) for some sufficiently large n1 {θt}∞t=n1
⊆ int(Θ0). Moreover θt → θ0 as

t →∞. Thus, θ0 ∈ int(Θ0), and Θ0 ⊆ int(Θ0), and the Proposition follows from Theorem 1

of Andrews, Berry and Jia (2004). ¥
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7 Nonparametric Regression Inequalities:

Consider the model of the form

Y ≤ g0(X, Z1) + ε, (13)

with E(ε|Z) = 0, Z = (ZT
1 , ZT

2 )T . Initially, we assume that Y is M × 1 random vector, with

M < ∞. g0 denotes the unknown structural function of interest, X is a dx × 1 vector of

explanatory variables, Z1 and Z2 are d1×1 and d2×1 vectors of instrumental variables, and

ε is unobserved. Taking conditional expectation of equation (13) yields the integral equation

π(Z) = E(Y |Z) ≤ E[g0(X,Z1)|Z] =

∫
g0(x, z1)dFX|Z(x). (14)

Since S := (Y, XT , ZT )T are observed, π and F , the joint distribution of S, and hence FX|Z ,

the conditional distribution of X given Z are identified. Our main goal is to be able make

inferences about g0 using the available information.

Let L2
F denote the set of square integrable (with respect to F ) and measurable functions

of S, and let W := (XT , ZT
1 )T . In addition, let L2

F (Y ), L2
F (W ) and L2

F (Z) denote subspaces

of L2
F consisting of real valued functions depending on Y , W or Z only. Note that we assume

that Y ∈ L2
F (Y ) and π(Z) ∈ L2

F (Z). Also define

TF : L2
F (W ) → L2

F (Z), g → TF (g) := E[g(X,Z1)|Z1, Z2]− π(Z1, Z2).

Note that if the Fréchet differential, δTF (g; h) ∈ L2
F (Z), of TF at g ∈ L2

F (W ) with increment

h ∈ L2
F (W ) exists, it is defined as a linear and continuous mapping with respect to h that

is defined by

lim
‖h‖L2→0

‖TF (g + h)− TF (g)− δTF (g; h)‖L2

‖h‖L2

.

Since TF is linear, TF (g + h) − TF (g) = TF (h). Thus, δTF (g; h) exists for each g ∈ L2
F (W )
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and each h ∈ L2
F (W ); it is given by

δTF (g; h) = E[h(W )|Z].

Since δTF (g; h) is continuous and linear in h by definition, we can write δTF (g; h) =

T ′
F (g)h, where T ′

F (g) defines a transformation from L2
F (W ) into the normed linear space

B
(L2

F (W ),L2
F (Z)

)
10. This transformation is called the Fréchet derivative T ′

F of TF . Note

in our case T ′
F does not depend on g. Thus, in our case, T ′

F is trivially continuous in g and

the mapping TF is continuously Fréchet differentiable.

Define g a regular point of TF if T ′(g) maps L2
F (W ) onto L2

F (Z). In our case, T ′(g) = T ′
F

for each g ∈ L2
F (W ), so each g ∈ L2

F (W ) is a regular point if for each r ∈ L2
F (Z) there exists

an h ∈ L2
F (W ) such that T ′

F h = E[h(W )|Z] = r(Z). When σ(W ) ⊆ σ(Z). Note that in this

case X is exogenous because

E(ε|X) = E[E(ε|W )|X] = E{E[E(ε|Z)|W ]|X} = 0.

In addition, in this special case, every g ∈ L2
F (W ) is a regular point of TF .

Suppose G is a non-empty and compact (in the L2 norm) subset of L2
F (W ). Define

G0 := {g ∈ G :

∫
g(x, z1)dFX|Z(x|z)− π(Z) ≥ 0},

G∗ := {g ∈ G :

∫
g(x, z1)dFX|Z(x|z)− π(Z) = 0},

Ĝ := {g ∈ G :

∫
g(x, z1)dF̂X|Z(x|z)− π̂(Z) ≥ 0},

Gε
:= {g ∈ G :

∫
g(x, z1)dFX|Z(x|z)− π(Z) ≥ −ε · 1},

Gε := {g ∈ G :

∫
g(x, z1)dFX|Z(x|z)− π(Z) ≥ ε · 1},

10This is the space of all bounded linear operators from L2
F (W ) into L2

F (Z). Note that since L2
F (Z) is

complete, this space is complete as well.
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where 1 is the M dimensional vector of ones.

Proposition 7.1 Suppose G∗ ⊆ int(G). Then as ε → 0,

sup
g∈Gε

inf
g0∈G0

‖g − g0‖L2
F
→ 0, (15)

sup
g0∈G0

inf
g∈Gε

‖g − g0‖L2
F
→ 0. (16)

Proof 7.1 Let h(g; Z) := min{E[g1(X, Z1)|Z]−π1(Z), ..., E[gM(X,Z1)|Z]−πM(Z)}. Then

the proof of Proposition (3.1) goes through in L2 norm without any modification. Thus, (16)

is true. To show (16), first observe that there exist η > 0 such that BL2

η (G∗) ⊆ G because

by the conditional version of Jensen’s inequality h is a continuous function of g. Next, let

δ > 0. By the Generalized Inverse Function Theorem for each g0 ∈ G0 there exist r > 0 and

K < ∞, which do not depend on g0, such that for each t ∈ B
L2(Z)
r (0) the equation TF (g) = t

has a solution, and the solution satisfies ‖g− g0‖L2(W ) ≤ K‖TF (g)− TF (g0)‖L2(Z). Then let

g0 ∈ G0 and consider ε ∈
(
0, min

{
r√
M

, δ
K
√

M
, η

2
√

M

})
. Define tm(Z) := E[g0m(X, Z1)|Z] −

π(Z) + ε − h(g0; Z) for m = 1, ...,M . The rest of the proof is the same as the last part of

the proof of Proposition (3.2). ¥

To prove consistency of the plug-in estimator we also need to show that Gε ⊆ Ĝ ⊆ Gε
with

probability approaching to one as the sample size increases. For this purpose suppose for

the moment that the conditional distribution of X given Z is absolutely continuous with

respect to Lebesgue measure. Then,

T̂F (g)− TF (g) =

∫
g(x, z1)f̂X|Z(x|z)dx− π̂(z)−

(∫
g(x, z1)fX|Z(x|z)dx− π(z)

)

=

∫
g(x, z1)[f̂X|Z(x|z)− fX|Z(x|z)]dx− [π̂(z)− π(z)].

These equalities demonstrate that it is possible to find conditions on the joint distrbution

of X and Z which will guarantee that Gε ⊆ Ĝ ⊆ Gε
with probability approaching to one as

22



the sample size increases.

8 Conclusion

This note has proposed conditions under which the most intuitive estimator in parametric

partially identified moment equality and inequality models as well as non-parametric regres-

sion inequality models is consistent for the identified set. The note has also proposed alter-

native M-estimators which agree with the set of parameters satisfying the sample versions

of the moment conditions that characterize the model. This note has focused on estimation

only. The results of this note, however, can be combined with the methods developed in

Chernozhukov, Hong and Tamer (2007) or Andrews, Berry and Jia (2004).

For parametric models most of the conditions proposed in this note are for models in

which the number of moment conditions is less than or equal to the dimension of the param-

eter space. When the number of moment conditions is larger than the number of parameters

one could use the conditions proposed here by selecting as many of the conditions as the

number of parameters to consistently estimate the set of parameters that satisfy the selected

subset of moment conditions. This set of course will always contain the identified set. Nev-

ertheless, one could iteratively use the subsampling procedure of Chernozhukov, Hong and

Tamer (2007) by taking this set, denoted by Θn, as the starting point for the iterations.

Iterating on this procedure using the whole parameter set as the initial point was suggested

by Romano and Shaikh (2006 a,b). I expect that using Θn as the initial point as opposed

to the whole parameter set would significantly decrease the computational burden of this

method.
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9 Mathematical Tools:

Corollary 9.1 (to the Generalized Inverse Function Theorem) Suppose every element, x0,

of a compact set F is a regular point of a continuously (Fréchet) differentiable transformation

T mapping the Banach space X = RI into the Banach space Y = RM . Then there is s > 0
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and K < ∞ such that for each x0 ∈ F and y0 = T (x0), the equation T (x) = y has a solution

for every y ∈ Bs(y0), and the solution satisfies ||x− x0|| ≤ K||y − y0||.

Definition 9.1 Let T be a continuously Fréchet differentiable transformation from an open

set S in a Banach space X into a Banach space Y , and let DT (·) denote its Fréchet deriva-

tive. If x0 ∈ S is such that DT (x0) maps X onto Y , the point x0 is said to be a regular

point of the transformation T .11

Before stating the proof of this corollary let me describe the notation, and provide some

small results that are used in the proof:

Remark 9.1 ||DT (x0)|| := sup||z||≤1 ||DT (x0)z||, and it is equal to the absolute value of

the largest eigenvalue of [DT (x0)
T DT (x0)]. In addition, if x0 ∈ F where F is a compact

set, then by the Theorem of the Maximum, ||DT (x0)|| is uniformly continuous on F (as a

function of x0).

Remark 9.2 ”Let L0 := {x : DT (x0)x = 0}. Since L0 is a closed subspace, X/L0 is

a Banach space. Define the operator A on this space by Ax0 [x] = DT (x0)x, where [x]

denotes the class of elements equivalent to x modulo L0. The operator is well defined, since

x1 ∈ [x] ⇔ DT (x0)(x − x1) = 0 ⇔ DT (x0)x = DT (x0)x1, so that equivalent elements x

yield identical elements y ∈ Y . Furthermore, this operator is linear, continuous, one-to-

one, and onto; hence, it has a linear inverse. Moreover, by the Banach inverse theorem its

inverse is continuous.” (Luenberger, page 240, beginning of the proof the Generalized Inverse

Theorem.)

Definition 9.2 Let L be a subspace of a vector space X.

1. Two elements x1, x2 ∈ X are said to be equivalent modulo L if x1 − x2 ∈ L. In this

case, we write x1 ≡ x2 and let [x] denote the equivalence class of x.

11This definition is from Luenberger p. 240.
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2. The quotient space X/L consists of all equivalence classes modulo L with addition and

scalar multiplication defined by [x1] + [x2] = [x1 + x2], α[x] = [αx]. (Luenberger, page

41.)

Proposition 9.1 Let X be a Banach space, L a closed subspace of X, and X/L the quotient

space with the quotient norm defined as ||[x]|| = inf {||x + l|| : l ∈ L}. Then X/L is also a

Banach space. (Luenberger, page 42)

This proposition is needed for the application of the Banach Inverse Theorem, which tells

us that the mapping Ax0 is invertible.

Remark 9.3 Note that ||A−1
x0
|| := sup||y||≤1 ||A−1

x0
(y)||. Since for each y ∈ Y , A−1

x0
is an

equivalence class which consists of points that are all mapped to y by DT (x0)

sup
||y||≤1

||A−1
x0

(y)|| = sup
||y||≤1

inf{||x + v|| : v ∈ L0},

where x is such that DT (x0)x = y.

In this note, we are concerned with the case where X = RI and Y = RM , each equipped

with the corresponding Euclidean norm. For this special case, let us examine ||A−1
x0
|| more

closely. Note that for each fixed x ∈ X, minimizing ||x + s|| is the same as minimizing

||x + s||2. On the other hand, if the minimum exists the necessary condition for ṽ to be a

minimizer is

2(x + ṽ) + DT (x0)
T λ = 0 ⇔ ṽ = −x− 1

2
DT (x0)

T λ,

for some λ ∈ RM . In addition, ṽ ∈ L0 ⇔ λ = −2(DT (x0)DT (x0)
T )−1DT (x0)x, so that

ṽ = −(
I −DT (x0)

T [DT (x0)DT (x0)
T ]−1DT (x0)

)
x.

√
(x + ṽ)T (x + ṽ) =

√
xT DT (x0)T [DT (x0)DT (x0)T ]−1DT (x0)x.
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Using DT (x0)x = y, we see that this last expression equals
√

yT [DT (x0)DT (x0)T ]−1y. Thus,

sup||y||≤1 ||A−1
x0

(y)|| equals the square root of the largest eigenvalue of [DT (x0)DT (x0)
T ]−1.

Remark 9.4 Definition 9.3 If X and Y are normed spaces, and A is a bounded linear

operator from X to Y , then the adjoint operator A∗ : Y ∗ → X∗ is defined by the equation

< x, A∗y∗ >=< Ax, y∗ >, where < ·, · > denotes the inner product operator (Luenberger

(1969), page 150).

Theorem 9.1 The adjoint operator A∗ of the bounded linear operator A : X → Y is linear

and bounded with ||A∗|| = ||A|| (Luenberger (1969), page 151).

If X = RI and Y = RM , each equipped with the corresponding Euclidean norm, then a

bounded linear function from X to Y could be represented by an I×M real matrix. Moreover,

A∗ = AT . thus, the operator norms of A and AT are equal.

Remark 9.5 If DT (x0) has rank M then the M ×M , symmetric, positive-definite matrix

DT (x0)DT (x0)
T has M real and positive eigenvalues. Moreover, if λ1, ..., λM denote the

eigenvalues of DT (x0)DT (x0)
T ordered from largest to smallest according to their size then

1/λM , ..., 1/λ1 represent the eigenvalues of [DT (x0)DT (x0)
T ]−1 in the same order.

Proof of the Corollary: Note that ||DT (·)|| is uniformly continuous on F . Therefore, for

each ε > 0, we can choose r > 0, which is independent of x0, such that ||x − x0|| < r ⇒
||DT (x) −DT (x0)|| < ε. On the other hand, since F is compact and ||A−1

x0
|| is continuous

in x0, sup{||A−1
x0
|| : x0 ∈ F} := c < ∞. Now we take our ε to be in (0, 1

4
c), then take rc

to be the r value corresponding to this value of ε (i.e. for all x0 ∈ F , ||x − x0|| < rc ⇒
||DT (x)−DT (x0)|| < ε). Then take s ∈ (0, 1

4c
rc], and K = 4c. ¥
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