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Abstract

This paper proposes a new way to construct con�dence sets for a parameter of interest in

models comprised of moment inequalities. Building on results from the literature on multi-

variate one-sided tests, I show how to test the hypothesis that any particular parameter value

is logically consistent with the maintained moment inequalities. The associated test statistic

has an asymptotic chi-bar-square distribution, and can be inverted to construct an asymptotic

con�dence set for the parameter of interest, even if that parameter is only partially identi�ed.

Critical values for the test are easily computed, and Monte Carlo simulations demonstrate good

�nite sample performance.

JEL classi�cation: C3, C12
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1 Introduction

When the assumptions of an econometric model are not restrictive enough to point identify the pa-

rameters of interest, but nonetheless impose meaningful restrictions on the values these parameters

may take, the parameters are said to be partially identi�ed.1 Much of the early research on partial

�This is a revised version of the �rst chapter of my Northwestern PhD dissertation. I thank Richard Blundell,
Andrew Chesher, Joel Horowitz, Sokbae Lee, Chuck Manski, Rob Porter, Jörg Stoye, two referees and an Associate
Editor for comments and suggestions. In addition, I have bene�ted from comments from numerous seminar partic-
ipants. I am especially grateful to Elie Tamer for continued feedback and encouragement. Financial support from
the Robert Eisner Memorial Fellowship and the Center for the Study of Industrial Organization at Northwestern is
gratefully acknowledged. Any and all errors are my own.

yemail: adam.rosen@ucl.ac.uk
1Manski (2003) o¤ers a vast survey of models in which parameters of interest are partially identi�ed. I adopt the

term �partial identi�cation�from this text.
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identi�cation has not focused on issues of statistical inference, and for good reason. First, su¢ cient

characterization of the identi�ed set is a necessary precursor for statistical inference. Second, in

some cases, the size of the estimated identi�ed set is signi�cantly larger than the imprecision of

estimates due to sampling variation.2 However, in order to build con�dence regions, perform hy-

pothesis tests, or compare set-identi�ed parameters to point estimates derived from more restrictive

models, sampling variation must be taken into account.

This paper proposes a way to perform inference in a large class of models whose application often

results in partial identi�cation: moment inequality models. These are models in which the parame-

ter of interest, denoted �0, is known to satisfy a moment restriction of the form E [m (y; x; �0)] � 0,
where y; x are observables and m is a known, vector-valued function of the data and a possibly

multivariate parameter of interest �0. Such restrictions are common implications of optimizing

behavior and appear in many econometric models.

This paper contributes to the literature on inference on partially identi�ed parameters by o¤er-

ing a way to perform inference on a (possibly multivariate) parameter �0 using �xed critical values

based on the asymptotic distribution of a test statistic. Previously, Imbens and Manski (2004)

showed one way this can done in the case where �0 is univariate and interval-identi�ed. Meth-

ods applicable in more general contexts (i.e. when �0 is multivariate) have relied on subsampling,

bootstrapping, or simulation for asymptotic critical values. In this paper, the test statistic used to

perform inference has an asymptotic chi-bar-square distribution, and can be inverted to construct

an asymptotic con�dence set for the parameter of interest. Relative to inferential methods based

on subsampling or bootstrapping, this has the computational advantage of not requiring resam-

pling of one�s data to obtain critical values for a test statistic over a large grid of parameter values.

A Monte Carlo study in section 5.2 demonstrates the performance of the inferential approach in

this paper relative to inference based on subsampling. The merit of the method in this paper is

demonstrated both in terms of computation time and coverage accuracy in �nite samples for the

particular model studied. In general, however, resampling methods have the advantage that they

are consistent in a wider class of models.

To motivate the con�dence sets of this paper, it is useful to �rst consider inference when there

is point-identi�cation. When �0 is point-identi�ed, one may construct a con�dence set Cn such
that in repeated sampling

lim
n!1

P f�0 2 Cng = 1� �, (1)

for pre-speci�ed level 1 � �. This is the starting point taken for motivation of the con�dence

regions constructed in this paper. However, when �0 is partially identi�ed, the standard methods

for constructing such a set Cn do not apply without modi�cation, as they rely on point identi�cation
as a necessary condition. In this context, there is some set of values, ��, which are observationally

2See Manski and Nagin (1998), for example.
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equivalent to �0, called the identi�ed set. In the class of models considered here, a con�dence set

that satis�es (1) for one value of �0 = �0 2 ��, may not do so for another value �0 = �00 2 ��.
Because any two such values �0 and �00 are by de�nition observationally equivalent, no amount of

sample data will allow the researcher to distinguish between any two such values.

Thus, the goal of this paper is construction of sets that satisfy

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= 1� �, (2)

where P is taken to be the measure induced by repeated sampling from the true population dis-

tribution. Cptn is then guaranteed to contain each � that is observationally equivalent to �0 with

at least probability 1 � � in repeated sampling. Since �0 2 ��, i.e. the true �0 is necessarily a
member of the identi�ed set, such sets Cptn will also contain �0 with at least probability 1� � for n
su¢ ciently large, i.e. limn!1 P

n
�0 2 Cptn

o
� 1� �.3

The procedure employed in this paper makes use of results on multivariate one-sided hypoth-

esis testing, such as Bartholomew (1959a), Bartholomew (1959b), Kudo (1963), Perlman (1969),

Gourieroux, Holly, and Monfort (1982), Kodde and Palm (1986)and Wolak (1991).4 Results in this

literature apply in cases where the parameter of interest is point-identi�ed. This paper extends

these methods to the moment inequality setting, where there is no consistent point estimate for �0,

by relying on the asymptotic behavior of the moment restrictions. Speci�cally, I construct a test

statistic Q̂n (�) that, under su¢ cient regularity conditions, when scaled by n and evaluated at any

element � of the identi�ed set ��, has an asymptotic distribution that is a mixture of chi-square

distributions, the chi-bar-square distribution. This test statistic is then inverted to construct con-

�dence sets for �0 with pre-speci�ed asymptotic coverage. The test statistic is a function of the

moments that comprise the imposed modeling restrictions on �0. As such, the theory needed to

guarantee proper asymptotic coverage relies completely on the distribution of observables.5 The

inferential method is relatively straightforward to implement in practice in many cases of interest,

which is demonstrated with two speci�c examples in section 5.

A drawback is that in general the cuto¤ value for the test statistic Q̂n (�) di¤ers for di¤erent

values of � 2 ��. That is, the test statistic Q̂n (�) is not asymptotically pivotal because its asymp-
totic distribution depends on the variance of those components of m (y; x; �) that have expected

value zero. This problem is overcome by building con�dence sets for �0 by using an upper bound

on the number of such components. The dimension of m (y; x; �), J , is clearly an upper bound, but

in models with partially identi�ed parameters there is often a smaller upper bound and that can

3Pointwise con�dence sets that satisfy (2) are one of several types of con�dence sets that have been studied in
the literature on partial identi�cation. The prior literature on construction of con�dence sets of this type as well as
others is discussed in the literature review of the following subsection.

4Sen and Silvapulle (2004) o¤er a thorough compendium of this body of research.
5Hu (2002) uses a conceptually similar approach to building con�dence sets in a GMM framework in which a

subset of model parameters might not be point-identi�ed.
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be used to achieve more accurate inference. As discussed further in section 4, in some cases use

of this upper bound may lead to coverage in�ation, in the sense that inf�2�� limn!1 P
n
� 2 Cptn

o
may exceed 1� �. It is however shown in section 4 that even when this issues arises, the test on
which the con�dence sets are based is consistent.

Some methods for inference with partial identi�cation focus on inference on the identi�ed set

��, rather than the partially identi�ed parameter �0. Of those that are also for �0, many others

may also admit some degree of conservatism, at least in some cases. Exceptions include Imbens

and Manski (2004) and subsampling methods. However, Imbens and Manski (2004) is applicable

only in settings where �0 is univariate and interval-identi�ed. In this case, the inferential method

of this paper is nearly identical to Imbens and Manski (2004), and this is re�ected in Monte

Carlo experiments in section 5.1. Subsampling, on the other hand, is applicable in a wide range

of contexts, but has its own drawbacks, such as computational intensity and choice of tuning

parameters. In addition, the rate of convergence of subsampling distributions in regular cases

is typically slower than that achieved by analytical asymptotic approximations when they exist.6

Thus, it is in general unclear how the accuracy of di¤erent methods for pointwise inference in

the context of partial identi�cation compares in �nite samples, and to date di¤erent methods

have not been systematically compared. Even in cases where methods for pointwise inference are

�conservative�asymptotically, they may still perform well in �nite samples relative to methods that

are not conservative asymptotically, if those methods have slower convergence rates. In section 5.2

I compare inference based on the method of this paper to a subsampling procedure for the case of

linear regression with interval-measured outcomes. In the particular experimental design studied,

the method of this paper performs favorably. However, subsampling is applicable to a larger class

of models, and can also be used to perform inference on the identi�ed set rather than the point �0,

if that is the researcher�s goal.

The paper proceeds as follows. The remainder of the introduction reviews the literature on

inference on partially identi�ed parameters. Section 2 presents the moment inequality model.

Section 3 describes the pointwise hypothesis testing procedure. Section 4 then presents two ways

to construct con�dence sets based on the hypothesis test of section 3. This includes a discussion of

when the con�dence sets are potentially conservative, as well as the result that the test is consistent.

Section 5 presents two examples and investigates the performance of con�dence sets in these models

via Monte Carlo simulations. This includes a comparison to the non-resampling based con�dence

sets of Imbens and Manski (2004) for the case of the mean with missing data, and to the con�dence

sets of Chernozhukov, Hong, and Tamer (2004) for the case of linear regression with censored

outcomes. Section 6 concludes and o¤ers avenues for continued research. All proofs are in the

Appendix.

6For related discussion, see Horowitz (2001) section 2.2 and Andrews and Guggenberger (2006). For general
results on the asymptotic properties of subsampling, see Politis and Romano (1994), and Politis, Romano, and Wolf
(1999).
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1.1 Related Literature

Until recently, much of the literature on partial identi�cation has sought to build �bounds� for

univariate parameters. That is, if the parameter of interest, �0, is univariate, the identi�ed set can

often be characterized by just two numbers, the lower and upper bounds of an interval in R. In

this case, an asymptotically valid bootstrap procedure can be used to build con�dence intervals for

the identi�ed set, such as those constructed by Manski and Nagin (1998) and Horowitz and Manski

(2000). Also in the case where the parameter of interest is univariate and interval-identi�ed,

Imbens and Manski (2004) show how to construct asymptotic pointwise con�dence intervals for �0,

rather than for the entire identi�ed set ��. If the economist wishes to perform inference on �0
rather than ��, their technique yields a strictly smaller con�dence interval for any coverage level.

They also consider sets that satisfy

lim
n!1

inf
�2��

P
n
� 2 ~Cufrmn

o
= 1� �. (3)

Such sets are guaranteed to contain any element of the identi�ed set uniformly over �� as n!1.
Sets ~Cufrmn also satisfy the pointwise statement (2) with weak inequality. These sets are weakly

larger than Cptn , but also more robust in that they give uniform coverage.

In a more general context, where �0 is possibly multivariate, Chernozhukov, Hong, and Tamer

(2004) develop a subsampling procedure to build asymptotically valid con�dence sets of a pre-

speci�ed level for the identi�ed set in any model in which the identi�ed set can be written as the

minimizers of an objective function. They further show how to modify their procedure to build

pointwise con�dence sets for the parameter of interest. Romano and Shaikh (2006a, 2006b) also

employ subsampling to construct con�dence sets for both �� and �0. They derive the validity of

an iterative step-down procedure for inference. While the inferential approaches of Chernozhukov,

Hong, and Tamer (2004), and Romano and Shaikh (2006a, 2006b) are applicable in a very general

class of models, their reliance on subsampling may in some cases be computationally intensive.

There are many additional papers that relate to the problem of inference on partially identi�ed

parameters. Pakes, Porter, Ho, and Ishii (2006) study the use of moment inequalities to perform

inference on �0 in models with agents who make optimal, or approximately optimal decisions

in models used in empirical industrial organization. They develop conservative con�dence sets

for model parameters, and use their technique in two applications with multiple equilibria: an

investigation of how banks choose their ATM locations, and an analysis of the determination of

HMO hospital networks in the United States.7 To perform inference, Pakes, Porter, Ho, and Ishii

(2006) use simulations from a multivariate normal distribution to approximate the distribution of

the moments in their model. Andrews, Berry, and Jia (2004) develop a means of inference on ��

in incomplete models of �rms�entry and exit decisions. Their estimation procedure makes use of

7The applications are explored in further detail in Ishii (2005) and Ho (2005).
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the necessary conditions for Nash Equilibrium, which are typically moment inequality restrictions.

To perform inference, they simulate these inequalities for di¤erent parameter values, and use a

bootstrap procedure to construct con�dence sets. They provide an application to the location

decisions of Wal-mart, Kmart, and other discount chain stores. Beresteanu and Molinari (2006)

use the theory of set-valued random variables (SVRVs) to analyze the asymptotic behavior of a class

of set-valued estimators for partially identi�ed parameters. They show how to build con�dence

collections for the identi�ed set in these models. They further show how to modify this approach to

build conservative con�dence sets for the parameter of interest. Blundell, Browning, and Crawford

(2006) use moment inequalities implied by the strong axiom of revealed preference in conjunction

with consumers�observed consumption bundles. To perform inference, they use subsampling to

approximate the distribution of a minimum distance function similar to the one used here.

In this paper, I focus on models that are comprised of a �nite number of moment inequalities.

This class of models includes many examples from the econometrics literature, dating back at least

to Frisch (1934), who derived bounds on the slope parameter of a simple linear regression model

with measurement error. Klepper and Leamer (1984) extend Frisch�s result to the multivariate

linear regression model with errors in all variables. Another example of bounds that can be cast in

terms of moment inequalities are the Frechet bounds (Frechet (1951)) on the value of the joint CDF

of two random variables evaluated at any point based on knowledge of only the marginal CDFs.

More recent examples of models based on moment inequalities include the case of interval data on

outcomes studied by Manski and Tamer (2002) when the covariate space is discrete, bounds on

treatment e¤ects8, and the case of inference on the mean of a univariate distribution with missing

data, studied by Manski (1989) and Imbens and Manski (2004).

2 The Model

Let f(xi; yi) : i = 1; :::; ng denote a random sample of observations of (x; y) distributed with popula-
tion distribution P . Let X , Y denote the support of the random variables x; y, respectively, where

X � Rs and Y � Rp. I take y to be the outcome variables and x covariates. Each observation

(xi; yi) represents all information observed by the econometrician for each i = 1; :::; n. If partial

identi�cation is a result of missing data, for example, then (xi; yi) excludes those characteristics of

individual i in the population that are missing.9 �, rather than �0, is used to denote a represen-

tative value of the parameter of interest. �� denotes the set of values of � 2 � that satisfy the

restrictions of the model, i.e. �� is the identi�ed set for �. The �true�underlying value of � in

the model is denoted �0, but in general �0 might not be point-identi�ed by the restrictions of the

model.
8Some speci�c examples include Manski and Nagin (1998), Molinari (2005), Balke and Pearl (1997), Manski and

Pepper (2000) and Hotz, Mullin, and Sanders (1997).
9This is made more explicit in the missing data example of section 5.1.
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The focus of this paper is moment inequality models. The model is summarized by the restric-

tions

E [m (y; x; �0)] = E

2664
m1 (y; x; �0)

...

mJ (y; x; �0)

3775 �
0BB@
0
...

0

1CCA . (4)

J < 1 is the number of moment inequalities of the model. Formally, the model is given by the

following three assumptions.

Assumption A1 (random sampling) Z � f(xi; yi) : i = 1; :::; Ng are i.i.d. observations distributed
P .

Assumption A2 (compact parameter space) �0 is an element of the compact space � � Rk.
Assumption A3 (moment inequalities) E [m (y; x; �0)] � 0, where m (�; �; �) : Rp � Rs ��! RJ .

The assumptions above yield the following identi�ed set for �0.

De�nition 1 Given assumptions (A1)-(A3), the identi�ed set for �0 is

�� = f� 2 � : E [m (y; x; �)] � 0g .

The identi�ed set for �0, ��, is the set of parameter values � that satisfy the restrictions of the

model, and thus �0 is necessarily an element of this set. If �� is a singleton, then �� = f�0g and
�0 is point identi�ed. If �� is empty, the model is rejected. If �� is neither empty nor singleton,

then �0 is partially identi�ed. In this case, the model is informative even though �0 is not point

identi�ed. By de�nition of the identi�ed set, there is no way to distinguish between any of the

elements of �� being the true �0 on the basis of observables; any element of the identi�ed set is a

plausible value for �0, as all elements of �� are observationally equivalent by de�nition.

The con�dence sets of this paper are based on a test of the hypothesis that � 2 �� against the
alternative � =2 ��, or equivalently, the test

H0 : E [m (y; x; �)] � 0 (5)

H1 : E [m (y; x; �)] � 0,

for any �xed candidate value of � 2 �. The next two sections provide theoretical justi�cation and
a description of how to perform this test with pre-speci�ed asymptotic size �. Once the testing

procedure is established for �xed �, a 1 � � con�dence set for �0 is constructed by taking the set
of � that are not rejected by this hypothesis test.

The hypothesis test is based on a test statistic Q̂n (�) such that if nQ̂n (�) exceeds a criti-

cal value, the null hypothesis is rejected. That is � 2 �� is rejected if nQ̂n (�) > C��, where

sup�2�� limn!1 Pr
n
nQ̂n (�) > C

�
�

o
= �. This implies that the set Cptn �

n
� : nQ̂n (�) � C��

o
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satis�es condition (2) as

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= inf

�2��
lim
n!1

P
n
nQ̂n (�) � C��

o
= 1� sup

�2��
lim
n!1

P
n
nQ̂n (�) > C

�
�

o
= 1� �.

This further implies that limn!1 P
n
�0 2 Cptn

o
� 1 � �. The next section explains how this test

is carried out and characterizes the asymptotic distribution for the statistic nQ̂n (�) on which the

test is based.

3 Asymptotic Behavior of the Test Statistic

In this section, I consider a test of the hypothesis (5) for any �xed candidate value of �. To test this

hypothesis, I construct a test statistic, Q̂n (�) whose asymptotic distribution, when scaled by n, is

chi-bar-square (a mixture of chi-square random variables) under the null hypothesis, while under the

alternative hypothesis, nQ̂n (�) ! 1. The test statistic is in general not asymptotically pivotal,

but can still be used to construct con�dence sets for �0. Depending on the variance of the binding

moments over ��, the con�dence sets may be conservative, in the sense that condition (2) may be

satis�ed with weak inequality � rather than strict inequality. This is not relevant for the theoretical
result of this section, but is an important consideration in the actual construction and accuracy

of con�dence regions. A more detailed discussion is deferred to the details of implementation

discussed in section 4.

In order to test whether � is contained in the identi�ed set implied by the restrictions (4), I

employ the following minimum Wald-type statistic:

Q̂n (�) = min
t�0

h
Ên [m (y; x; �)]� t

i0
V̂ �1�

h
Ên [m (y; x; �)]� t

i
,

where V̂� is the sample variance of m (y; x; �), and where the minimization is taken over the vector

t of dimension J . The value of Q̂n (�) is a function of the sample moment functions evaluated at

�, as well as V̂�. Given any �xed value of � being tested, Q̂n (�) it is the solution of a quadratic

minimization problem over a polyhedral cone, for which the Kuhn-Tucker conditions characterize

a unique minimum (see Kudo (1963)). Thus, for any �xed value of � being tested, Q̂n (�) is

straightforward to compute.10

10The necessary and su¢ cient Kuhn-Tucker conditions are that for each j = 1; :::; J ,h
V̂ �1
�

h
Ên [m (y; x; �)]� t

ii
j
= 0 and tj > 0.

or
V̂ �1
�

h
Ên [m (y; x; �)]� t

i
j
� 0 and tj = 0.
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If the moment restrictions E [m (y; x; �)] � 0 are true, i.e. if � 2 ��, then Q̂n (�) should be
small. In this case, violations of Ên [m (y; x; �)] � 0 are attributable to no more than sampling

variation. As such, the statistic Q̂n (�) satis�es the de�nition of a modi�ed minimum distance

(MMD) objective function, as de�ned by Manski and Tamer (2002). This is because the population

version of Q̂n (�) (and the probability limit of Q̂n (�) under su¢ cient regularity) is

Q (�) = min
t�0

[E [m (y; x; �)]� t]0 V �1� [E [m (y; x; �)]� t] ,

where V� is the variance of m (y; x; �). Q (�) measures the distance of � from �� because Q (�) = 0

if and only if E [m (y; x; �)] � 0, and is otherwise positive. Manski and Tamer (2002) derive

conditions for consistency of MMD estimation of identi�ed sets, and their results apply here. The

focus of this paper is inference, yet in practice estimation proceeds inference, so the application of

this result to Q̂n (�) is stated formally in Proposition 2.

Outside the context of estimating partially identi�ed parameters, test statistics of similar form

have been used previously in the literature on multivariate one-sided hypothesis testing, e.g.

Bartholomew (1959a), Bartholomew (1959b), Kudo (1963), Perlman (1969), Gourieroux, Holly,

and Monfort (1982), Kodde and Palm (1986), and Wolak (1991). In these prior studies, however,

the distribution of unobservables is modeled parametrically, and �0 is point identi�ed and can be

consistently estimated. Here, there is no parametric speci�cation for unobservables and �0 need

not be point identi�ed. Thus, inference is based on the estimated moment functions rather than

an estimate of �0. The formulation that is closest to that considered here is that of Wolak (1991).

Wolak shows that the limiting distribution of test statistics of the form Q̂n (�) depends only on

those constraints that are satis�ed with equality at the least favorable value of � satisfying the null

hypothesis, here that E [m (y; x; �)] � 0. In his model, however, there is a known function h (�)

in place of E [m (y; x; �)]. In the setting of this paper, aside from the complication that here �0 is

only partially identi�ed, it is also the case that E [m (y; x; �)] is not a known function, but rather
must be estimated.

This is a notable di¤erence because, as I show in Proposition 3, the asymptotic distribution of

nQ̂n (�) is degenerate except on the boundary of the null hypothesis.11 Thus, the cuto¤ value of

Q̂n (�) used to compute the critical region is driven entirely by the subset of E [m (y; x; �)] � 0 such
that E [m (y; x; �)] is on the boundary of RJ+, i.e. the set of � such that E [mj (y; x; �)] = 0 for at

least one j 2 f1; :::; Jg. In Wolak�s model, this complication also arises, but in that setting h is a
known function, so that the boundary of the set f� : h (�) � 0g is at least known.

To derive asymptotics for Q̂n (�), I impose the following two additional assumptions.

Imposing these conditions, simpli�es computation of Q̂n (�) signi�cantly.
11Andrews (2001) considers hypothesis tests when a parameter is on the boundary of the maintained hypothesis,

rather than the null. However, the hypothesis test (5) can be recast so that �0 does in fact lie on the boundary of
the maintained hypothesis under the null. This point is elaborated in Appendix A.
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Assumption A4 (�nite variance of m on ��) For some large K, sup
�2��

E
�
m (y; x; �)m (y; x; �)0

�
ij
<

K < 1, i.e. each element of the matrix E
�
m (y; x; �)m (y; x; �)0

�
is bounded and �nite for all

� 2 ��. This also implies that the moments E [m (y; x; �)] are bounded.
Assumption A5 (positive de�nite variance) For each � 2 ��, V� is positive de�nite.

Assumption (A4), along with (A1), guarantees that the strong law of large numbers and a central

limit theorem hold for E [m (y; x; �)], while assumption (A5) guarantees that V� is invertible. Under
(A1) and (A4), it follows that for all � 2 ��,

Ên [m (y; x; �)] =
1

n

nX
i=1

m (yi; xi; �)
a:s:! E [m (y; x; �)] , (6)

V̂n [m (y; x; �)] =
1

n

nX
i=1

�
m (y; x; �)� Ên [m (y; x; �)]

��
m (y; x; �)� Ên [m (y; x; �)]

�0
(7)

a:s:! var fm (y; x; �)g � V�,

and
p
n
n
Ên [m (y; x; �)]� E [m (y; x; �)]

o
d! N (0; V�) . (8)

The validity of assumption (A4) depends on the problem at hand. In the absence of (A4), what

is needed for the asymptotic results of this section are the three conditions written above; the

consistency of the sample mean and variance for m (y; x; �) over ��, and a central limit theorem for
p
n
n
Ên [m (y; x; �)]� E [m (y; x; �)]

o
for each � 2 ��.12 Because the goal here is construction of a

con�dence set Cptn such that inf
�2�� limn!1 Pr

n
� 2 Cptn

o
= 1��, it is enough for these conditions

to hold pointwise over ��. If instead the researcher�s goal was to construct a con�dence set with

uniform coverage over ��, i.e. sets such that limn!1 inf�2�� Pr f� 2 Cng = 1 � �, then stronger
conditions would be needed.

Before proceeding with distributional results, Proposition 1 �rst establishes consistency of the

sample objective function, and Proposition 2 o¤ers su¢ cient conditions for consistent set estimation,

which typically precedes inference in applications. For these results, it is convenient to de�ne

q (�; t) � [E [m (y; x; �)]� t]0 V �1� [E [m (y; x; �)]� t] ,

and

q̂n (�; t) �
h
Ên [m (y; x; �)]� t

i0
V̂ �1�

h
Ên [m (y; x; �)]� t

i
,

12Both the assumption that the observations are iid and that the rate of convergence of Ên [m (y; x; �)] to
En [m (y; x; �)] is

p
n can be relaxed, as long as (6), (7), and (8) can be shown to hold at each � 2 �� for some

sequence of constants an !1 replacing
p
n.
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so that Q (�) = min
t�0

q (�; t) and Q̂n (�) = min
t�0

q̂n (�; t). Properties of the functions q and q̂n translate

directly to properties of Q̂n and Q.

Proposition 1 Let (A1)-(A5) hold. Then for any � 2 �, Q̂n (�)
p! Q (�), and t̂�n (�)

p! t�� (�),

where t̂�n (�) � argmin
t�0

q̂n (�; t),and t�� (�) � argmint�0
q (�; t).

Proposition 1 follows from the concavity and continuity of the q̂n (�; t) in t. If, in addition, the

convergence of Q̂n (�)
p! Q (�) is uniform over �, then the results of Manski and Tamer (2002) can

be applied to formulate a consistent set estimator for ��, as stated in Proposition 2.

Proposition 2 Let (A1)-(A5) hold, and assume that q (�; t) is continuous in � and that Q̂n (�) is
stochastically equicontinuous. Then Q̂n (�)

p! Q (�) uniformly over � 2 �. In addition let �n be a
sequence of positive random variables such that �n

a:s:! 0 and

sup
�2��

���Q̂n (�)�Q (�)��� =�n a:s:! 0.

Then

�̂�n =

�
Q̂n (�) � min

�2�
Q̂n (�) + �n

�
is a consistent set estimate for �� in the Hausdor¤ metric.

The �rst step to deriving distributional results for nQ̂n (�) under H0 shows formally that only

those components of E [m (y; x; �)] exactly equal to zero have a non-negligible contribution asymp-
totically. Before proceeding with the distributional result, I de�ne some additional notation. For

expositional convenience, I refer to the subset of the J constraints that characterize the identi�ed

set as the set of binding constraints. Without loss of generality, let the �rst b (�) constraints be the

subset of binding constraints at �, so that E [mj (y; x; �)] = 0, j = 1; :::; b (�), and E [mj (y; x; �)] > 0,

j = b (�) + 1; :::; J . Let m� (y; x; �) =
�
m1 (y; x; �) ; :::;mb(�) (y; x; �)

�0 denote the subvector of mo-
ments that have mean zero, and let V �� = var (m

� (y; x; �)). Let b � b (�0), V � var (m (y; x; �0)),
and V � � var (m� (y; x; �0)). Finally, Pr

n
�2j � c

o
denotes the probability that a chi-square ran-

dom variable with j degrees of freedom is at least as great as the constant c, where �20 denotes a

point mass as zero. The following proposition characterizes the limiting distribution of nQ̂n (�)

under the hypothesis that � 2 ��.

Proposition 3 Under assumptions (A1)-(A5), for any value of � 2 ��, for any constant c,

lim
n!1

P
n
nQ̂n (�) > c

o
=

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j > c

	
, (9)

where w (b (�) ; b (�)� j; V �� ) is the weights function de�ned by Wolak (1987) and Kudo (1963)
evaluated at w (b (�) ; b (�)� j; V �� ), and the �2j random variables of the summation are independent.

11



Corollary 1 Under assumptions (A1)-(A5), 8� such that E [m (y; x; �)] > 0,

lim
n!1

P
n
nQ̂n (�) > 0

o
= 0.

Proposition 3 closely follows Lemma 1 of Wolak (1991). The �rst step to the proof shows that the

limiting distribution of nQ̂n (�) is determined only by those terms that correspond to components

of E [m (y; x; �)] that are exactly equal to 0. The contribution of the other components vanishes

in the limit as n ! 1. The �rst corollary is an immediate implication; when E [m (y; x; �)] > 0,
nQ̂n (�) is op (1).

The conditions (A1) - (A5) required for Proposition 3 are noticeably weak. They are not as

strong as the conditions required for consistent set estimation, as the result is applicable pointwise

over the identi�ed set, while consistent set estimation relies on the asymptotic behavior of Q̂n (�)

jointly over all � 2 �̂�n. In particular, the assumptions of Proposition 3 do not require that Q̂n (�)
converge to its population counterpart uniformly over �, but merely pointwise over � 2 ��. Unlike
inference based on the asymptotics of m-estimators, this result does not rely on a characterization

of the maximizer of a sample objective function around the maximizer of a population objective

function. Rather, for any �xed value of �, nQ̂n (�) is a well-behaved function of sample moments

evaluated at that value of �. If � 2 �� then this function of sample moments converges in

distribution to a chi-bar square random variable.

The weights function w (b (�) ; b (�)� j; V ) has arisen repeatedly in research on multivariate one-
sided hypothesis testing. It is the probability that a random variable Z � N (0; V �� ) has exactly j

positive components. That is,

w (b (�) ; b (�)� j; V �� ) = Pr fZ has exactly b (�)� j positive componentsg

= Pr fZ has exactly j components equal to zerog .

These weights are referred to as �level probabilities�of a chi-bar-square distribution. Closed form

expressions for the weights are given by Wolak (1987) for the case where b � 4, or where V �� is

diagonal. More generally, closed-form expressions for the weights have not been obtained, but

if V �� and b (�) were known, they could be approximated with arbitrary accuracy by means of

simulation.13

If V �� and b (�) were known, then it would be straightforward using such techniques to compute

the cuto¤ value C�� such that
b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
n
�2j > C

�
�

o
= �. Unfortunately, V �� and

b (�) are not known in this case. An intuitive solution would be to plug consistent estimates into

the weights function, but this won�t work here because the CDF of the limit distribution given by

13Sen and Silvapulle (2004, pp. 78-80).
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(9) is discontinuous in b (�). This problem can, however, be overcome by considering the least

favorable distribution of test statistic over ��. Section 4 details how this can be done by using an

upper bound for b (�) to construct a cuto¤ value Cb
�
� such that

inf
�2��

lim
n!1

P
n
nQ̂n (�) � Cb

�
�

o
= 1� �, (10)

or, in some cases, the more conservative

inf
�2��

lim
n!1

P
n
nQ̂n (�) � Cb

�
�

o
� 1� �. (11)

4 Computing Con�dence Sets

This section provides two ways to compute cuto¤ values for nQ̂n (�) and build con�dence sets that

cover �0 with at least probability 1 � � asymptotically. Both methods have the advantage that

the cuto¤ values are easy to compute with any software package that provides values of chi-square

CDFs. The �rst method is generally applicable. The second method shows how knowledge

that V �� is diagonal can be used to compute a cuto¤ value that satis�es (10) with equality, thus

ensuring exactly correct (i.e. not conservative) asymptotic coverage for the least favorable point

in the identi�ed set. It is also shown that in this case assumption (A5), which requires that V� is

nonsingular, can be relaxed. Cases where V �� is diagonal include both the mean with missing data

and regression with censored outcomes, which are the examples of section 5.

Both approaches require that the researcher impose an upper bound on b (�) for � 2 ��; an
obvious upper bound is the total number of moment inequalities, J . In some settings, it may be

credible to impose a smaller upper bound; more generally, I use b� to denote the chosen upper

bound. In fact, both examples considered in this paper are settings in which it is known that

strictly fewer than J of the constraints can bind at any given value of �. This happens because

the model implies both upper and lower bounds on the expectation of a function of �. This is not

an uncommon occurrence in models with partially identi�ed parameters.

A comment is in order regarding the aforementioned conservatism of the con�dence sets based

on these procedures. As discussed in the introduction, one cannot distinguish between any � 2 ��

and �0 based on one�s data, so that the goal of a con�dence set Cptn =
n
� : nQ̂n (�) � Cb

�
�

o
for �xed

cuto¤ Cb
�
� is to achieve

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= 1� �. (12)

If equality is replaced by �, then Cptn is asymptotically conservative. The conservatism of the

procedures below for computing Cb
�
� , and thus constructing C

pt
n , depends on the variance of the

binding moments, V �� over the identi�ed set. This is because the cuto¤ value is based on the

variance matrix V �� = V that gives the highest (most conservative) possible value of Cb
�
� . If this
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variance matrix is a member of fV �� : � 2 ��g, then (12) is satis�ed with equality. If the worst-case
variance matrix used to compute Cb

�
� is not a feasible value for V �� for � 2 ��, then asymptotic

coverage is at least 1� �, and the con�dence set is asymptotically conservative. However, even in
this case the set is not arbitrarily large, in the sense that a test based on the conservative cuto¤ is

consistent against any �xed alternative, see section 4.3.

The case in which the variance of the binding moments V �� at any � 2 �� is diagonal is an
important special case. Indeed, in this case the source of conservatism discussed above is not

present. As long as the maximal number of binding constraints is known, one can compute the

worst-case variance matrix exactly, so that (12) is satis�ed with equality. V �� is in fact diagonal in

both the mean with missing data and regression with interval-censored outcomes cases investigated

in section 5. The Monte Carlo studies of Chernozhukov, Hong, and Tamer (2004), Beresteanu

and Molinari (2006), and Romano and Shaikh (2006b) also �t in this category, as they perform

inference on the returns-to-schooling parameter of a linear regression model with interval-measured

wages as the outcome variable. These experiments feature a measure of educational attainment as

their covariate, which is discrete, as is the covariate used in the experimental design of section 5.2.

4.1 General Implementation

The asymptotic distribution of nQ̂n (�) obtained in Proposition 3 is discontinuous in b (�) and V �� .

However, whatever V �� , an upper bound on b (�) can be used to construct a cuto¤ value that can be

used to perform the hypothesis test (5). This cuto¤ value can then be used to build conservative,

asymptotically valid con�dence sets for �0. The following corollary provides the result.

Corollary 2 Let (A1)-(A5) hold. Let sup�2�� b (�) = b�. Then for any c,

sup
�2��

lim
n!1

P
n
nQ̂n (�) > c

o
� 1

2
Pr
�
�2b� > c

	
+
1

2
Pr
�
�2b��1 > c

	
.

The proof follows from the fact that the weights function satis�es the properties 0 � w (b (�) ; b (�)� j; V �� ) �

1=2,
bX
j=0

w (b (�) ; b (�)� j; V �� ) = 1, and Pr
n
�2j > c

o
is increasing in j, for any c > 0. The upper

bound on the tail probability of the limit distribution of nQ̂n (�) is obtained by putting as much

weight as possible on the highest terms of the chi-bar-square summation of (9). Results on the

upper bound on chi-bar-square tail probabilities have been used in prior research, going back at

least to Perlman (1969).14 Exactly how slack the inequality is depends on the feasible values of

the variance matrix V �� over � 2 ��.
14Perlman derives upper bounds on tail probabilities of mixtures F distributions that employ the same weights

function.
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This corollary gives a way to construct asymptotically valid con�dence sets for �0. This is

because an implication of the corollary is that if Cb
�
� solves

1

2
Pr
n
�2b� > C

b�
�

o
+
1

2
Pr
n
�2b��1 > C

b�
�

o
= �, (13)

Then

Cptn =
n
� 2 � : nQ̂n (�) � Cb

�
�

o
has asymptotic coverage probability of at least 1� � for �0 since

lim
n!1

P
n
nQ̂n (�0) � Cb

�
�

o
= 1� lim

n!1
P
n
nQ̂n (�0) > C

b�
�

o
� 1� sup

�2��
lim
n!1

P
n
nQ̂n (�) > C

b�
�

o
� 1� 1

2
Pr
n
�2b� > C

b�
�

o
+
1

2
Pr
n
�2b��1 > C

b�
�

o
= 1� �.

The cuto¤ value Cb
�
� is trivial to compute using standard statistical software that can compute

values of the chi-square CDF.

4.2 Implementation when V �� is diagonal

When V �� is a diagonal, then w (b (�) ; b (�)� j; V �� ) only depends on b (�) and j, but not V �� . This
is because the weights function depends only on the correlation matrix associated with V �� . When

all of the o¤ diagonal elements of V �� are zero, the weights function takes the simple form given by

the following corollary. This result also provides a smaller cuto¤ value for the hypothesis test (5)

and thus a smaller con�dence region when V �� is diagonal.

Corollary 3 Let (A1)-(A5) hold. Suppose that V �� is diagonal for all � 2 �� and that sup�2�� b (�) =
b�. Then

w (b (�) ; b (�)� j; V �� ) = 2�b(�)
�

b (�)

b (�)� j

�
, (14)

and 8c 2 R,

sup
�2��

lim
n!1

P
n
nQ̂n (�) > c

o
=

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j > c

	
. (15)

Just as Corollary 2 provides a way to construct con�dence sets for �0 so does Corollary 3 when

V �� is diagonal. If C
b�
� solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
n
�2j > C

b�
�

o
= �, (16)
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then

Cptn =
n
� 2 � : nQ̂n (�) � Cb

�
�

o
satis�es (12).

In addition, when the variance of the binding moments is diagonal, a simpler test statistic,

n ~Qn (�), can be used that is asymptotically equivalent to nQ̂n (�). De�ne

~Qn (�) �
JX
j=1

1 [m̂j (y; x; �) < 0] � m̂j (y; x; �)
2 =V̂�;jj ,

where V̂�;jj is the jth diagonal entry of V̂�, the estimated variance of mj (y; x; �). Moreover, the

convergence in distribution of n ~Qn (�) to a chi-bar square random variable holds when V� is singular,

as long as V �� is nonsingular. The result is driven by the fact that since the binding constraints

have a diagonal variance matrix, replacing o¤-diagonal elements of V̂� with zero in Q̂n (�) has no

e¤ect asymptotically. This modi�cation of Q̂n (�) gives ~Qn (�). The formal result is stated below.

Proposition 4 Suppose that V �� is diagonal and nonsingular for all � 2 ��, sup�2�� b (�) = b�, and
that (A1)-(A4) hold. Then n ~Qn (�) converges in distribution to a chi-bar square random variable

and 8c 2 R,

sup
�2��

lim
n!1

P
n
n ~Qn (�) > c

o
=

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j > c

	
.

4.3 Consistency of the tests

All of the tests on which con�dence sets in this section are based are consistent against any �xed

alternative. Thus, even in the general case of section 4.1, where the pointwise coverage probability

may asymptotically exceed 1��, the con�dence sets are not altogether arbitrary. The idea is that
if � =2 ��, then nQ̂n (�) �blows up�as n!1. This result is given by the following Proposition.

Proposition 5 Let � =2 ��, so that there exists j 2 f1; :::Jg such that E [mj (y; x; �)] < 0. Then

8c <1, if (A1)-(A5) hold
lim
n!1

P
n
nQ̂n (�) > c

o
= 1.

In addition, if (A1)-(A4) hold, and V �� is diagonal and nonsingular for all � 2 ��, then 8c <1

lim
n!1

P
n
n ~Qn (�) > c

o
= 1.

In particular, the results holds for c = Cb
�
� .
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4.4 Implementation Summary

In this subsection, I brie�y outline the steps required to compute a con�dence set Cptn for �0 with

asymptotic coverage of at least 1� �, when sup�2�� b (�) = b� and assumptions (A1)-(A4) hold.

1. Compute the unique value of Cb
�
� such that

sup
�2��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
n
�2j > C

b�
�

o
= �.

- If V � is diagonal, this is the value of Cb
�
� that solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
n
�2j > C

b�
�

o
= �.

- If V � is not diagonal, this is the value of Cb
�
� that solves

1

2
Pr
n
�2b� > C

b�
�

o
+
1

2
Pr
n
�2b��1 > C

b�
�

o
= �.

2. Choose a �ne grid G of candidate values of � over the parameter space ��. For each � 2 G,
compute nQ̂n (�). If nQ̂n (�) � Cb

�
� , then � 2 C

pt
n . If nQ̂n (�) > Cb

�
� , then � =2 C

pt
n .

Appropriate choice of grid values G depends on the particular application. How �ne the

grid should be depends on the desired level of precision for Cb
�
� . If �

� is known to be su¢ ciently

regular (e.g. closed and convex), certain values of � may be able to be included or discarded without

explicitly evaluating nQ̂n (�). However, the characteristics of the con�dence set will depend on

the particular moment functions in any given application. If the moment functions are irregular,

then it may be advantageous to employ an adaptive method for selecting grid points, such as

the Metropolis-Hastings algorithm employed for choosing subsample grid points by Chernozhukov,

Hong, and Tamer (2004). For the Monte Carlo experiments of section 5.2, I use a uniform grid

over the parameter space. In section 5.1, the con�dence set can be characterized su¢ ciently well

that use of a grid is unnecessary.

4.5 Computational Considerations

In general, building con�dence sets by testing H0 over a large grid of values may be computational

intensive, particularly if the parameter space is large and high-dimensional. However, the need to

do this is present in other inferential approaches as well. In addition, resampling based methods

also require that one compute one�s test statistic over a �ne grid of values for each resampling of

the data in order to estimate the appropriate quantile of its distribution. Thus, for cases in which
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the need to test a large grid of parameter values is costly, the problem is more acute if resampling

methods are used.

This is best illustrated by �rst considering the test of a single parameter �. To test the

hypothesis that � 2 �� using the chi-bar-square approximation, one computes nQ̂n (�) once and
compares it to the appropriate critical value from the chi-bar-square distribution. This is one

computation of the objective function, and one computation of the chi-bar-square quantile (under

1 second in Matlab). To test this hypothesis via subsampling, a test statistic has to be computed for

each subsample, for each value of � in a particular level set of nQ̂n (�) to compute the appropriate

critical value, which is then compared with nQ̂n (�). Thus, if g is the number of elements of the

level set grid (which is necessarily large for accuracy) over which the statistic is subsampled, and

Bn subsamples are drawn, this requires is g �Bn computations of the subsample statistic bQ̂b (�), in
addition to the computation of nQ̂n (�). The g �Bn subsample computations take the place of the
computation of the chi-bar-square critical value.15 To construct a con�dence region using either

method requires that one compute nQ̂n (�) over a grid of values in the parameter space, which in

general is di¤erent from but contains the grid used for the subsample stage. Since both methods

require this, the computational di¤erence between the two methods for constructing con�dence sets

is entirely due to the g �Bn computations of the subsampling stage.

5 Examples

In this section I provide two speci�c examples of moment inequality models that have appeared

previously in the literature. I demonstrate how to build con�dence sets for model parameters, and

I perform Monte Carlo simulations to evaluate the �nite sample properties of the con�dence sets

in these two cases.

5.1 Example 1: Estimating the Mean of a Univariate Random Variable with
Missing Data

Consider the setup of Imbens and Manski (2004): Let f(xi; zi) : i = 1; :::ng be a random sample

from a population of (x; z) pairs with support [0; 1]�f0; 1g, where z = 1 indicates that x is observed,
while if z = 0, x is not observed. The probability that x is observed, p = Pr fz = 1g, is assumed
to be less than one, and is not known to the researcher, but is consistently estimated by its sample

analog. The goal is inference on �0 � E [x]. Let �1 = E [xjz = 1], which is identi�ed by the
15Chernozhukov, Hong, and Tamer (2004) and Romano and Shaikh (2006b) also consider iterating the subsampling

stage, which e¤ectively magni�es the number of computations involved, though may improve the precision of inference.
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sampling process. This model yields two moment inequalities:

� � �L � p � �1,

� � �U � p � �1 + 1� p,

or, in the form of (4),

E [m1 (x; z; �)] = E [� � xz] � 0, (17)

E [m2 (x; z; �)] = E [1� z + xz � �] � 0.

The identi�ed set for �0 in this model is

�� = [�L; �U ] ,

and the variance of m (x; z; �) is

V� = V = var (�xz; xz � z) =
 
�2l �lu

�lu �2u

!
,

where

�2l = var (xz) ,

�2u = var (xz � z) ,

and

�lu = cov (xz; z)� var (xz) .

Q̂n (�) is given by

Q̂n (�) = min
t1;t2�0

 
Ên [� � xz]� t1

Ên [1� z + xz � �]� t2

!0
V̂ �1

 
Ên [� � xz]� t1

Ên [1� z + xz � �]� t2

!
,

where V̂ is the sample analog of V . In this case, the required assumptions are satis�ed due to the

observations being i.i.d., and the fact that x and z both have bounded support. Thus m (x; z; �)

must have �nite expectation and variance for each � that satis�es (17). Since p < 1, only at

most one of E [m1 (x; z; �)] or E [m2 (x; z; �)] can be equal to zero. Thus, the maximum number

of binding constraints is one, and V � is just a number, and is therefore diagonal so that corollary

3 applies.16 Applying this result, the cuto¤ value for nQ̂n (�) needed to build a con�dence set for

16 In fact, because in this case the limit distribution of nQ̂n (�) is a sum of only two terms, the weights are known
exactly. Each of the two terms of the summation must have weight 1

2
.
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�0 with at least 1� � asymptotic coverage is the unique value of Cb
�
� that solves

1

2
Pr
n
�20 > C

b�
�

o
+
1

2
Pr
n
�21 > C

b�
�

o
= �.

Since Cb
�
� > 0, Pr

�
�20 > C

b�
�

	
= 0, and this equation simpli�es to

1

2
Pr
n
�21 > C

b�
�

o
= �.

Algebraic manipulation of nQ̂n (�) in this context yields a simple analytical form the associated

con�dence set:

CMI
n =

h
�̂l � z1�� � �̂l=

p
n; �̂u + z1�� � �̂u=

p
n
i
.

where z1�� is the 1�� quantile of the standard normal distribution, �̂l and �̂u are sample analogs
of �l and �u, �̂l = Ên [xz], and �̂u = Ên [1� z + xz]. This con�dence set is straightforward to

compute and no grid of candidate parameter values is needed to construct it.

5.1.1 Simulations

I simulate iid draws of (x; z) in order to compare con�dence regions constructed according to the

moment inequality approach to those of Imbens and Manski (2004). The two methods yield

nearly identical results.17 Let the moment inequality con�dence set of level � be denoted CMI
� , for

moment inequalities, and the Imbens/Manski con�dence set CIM� . The sets CIM� are constructed

as described in section 4 of their paper. That is the con�dence sets constructed according to their

method are:

CIMn =
h
�̂l � �Cn � �̂l=

p
n; �̂u + �Cn � �̂u=

p
n
i
,

where �Cn solves

�

 
�Cn +

p
n

�̂u � �̂l
max (�̂u; �̂l)

!
� �

�
� �Cn

�
= 1� �. (18)

Their sets have the additional property that their coverage is uniform over all � 2 [p � �1; p � �1 + 1� p],
even if p is not bounded away from 1.

I run simulations under two di¤erent speci�cations for the distribution of (x; z). For the �rst

speci�cation, I draw x from the uniform(0; 1) distribution and z from the Bernoulli(p) distribution,

independently of each other, inducing joint distribution F1. Under this speci�cation, x is miss-

ing completely at random. The second distribution, denoted F2, is one in which (x; z) are not

independent of each other, so that missingness is not at random. In this case, x is distributed

beta(4; 2) conditional on z = 0, and beta(2; 4) when z = 1. In this case, x tends to be higher

17 Indeed, an earlier version of the paper showed analytically that the two con�dence sets are nearly identical in
this setting.
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when it is not observed; the conditional distribution of x given z = 0 stochastically dominates that

of x given z = 0, with E [xjz = 0] = 2=3 and E [xjz = 1] = 1=3 . For each simulation, for the

speci�ed values of p and n, I draw a dataset from the speci�ed population distribution of (x; z).

The simulated sample data is then f(~xi; zi) : i = 1; :::; n; ~xi = xi if zi = 1, ~xi = ; if zi = 0g. To

evaluate the empirical coverage probability of the con�dence regions, I compute the bounds for the

population identi�cation region [�L; �U ] and check to see if each of the bounds is contained in the

two con�dence regions.18 I keep track of how often these points are in the identi�cation regions

over many simulations. Formally, the procedure is as follows:

1. Specify the number of simulations to draw, R, the sample size for each simulation, n, p, and

�.

2. De�ne REJIML ; REJIMU ; REJMI
L ; and REJMI

U , and set them all equal to 0. These variables

will keep track of the number of times each of the two procedures reject �L 2 �� and �U 2 ��.

3. Perform the following procedure R times.

(a) Draw a random sample of (~x; z) of size n from the population.

(b) Compute CIMn and CMI
n , which amounts to just computing their endpoints since they

are both intervals.

i. If �L =2 CIMn increment REJIML , and if �U =2 CMI
n increment REJIMU .

ii. If �L =2 CIMn increment REJMI
L , and if �U =2 CMI

n increment REJMI
U .

4. From theR simulations, computedCP IM� = min
n
P̂
�
�L 2 CIM�

�
; P̂
�
�U 2 CIM�

�o
anddCPMI

� =

min
n
P̂
�
�L 2 CMI

�

�
; P̂
�
�U 2 CMI

�

�o
. This is the observed probability with which the two

con�dence sets were guaranteed to cover �0.

Note that even though a particular value of �0 was used for the simulations, any value of �0 in

the interval [�L; �U ] could generate the same distribution of observables for some data generation

process consistent with the maintained modeling assumptions. Thus, a con�dence set for the true

underlying model parameter �0 must achieve the desired asymptotic coverage for each �0 2 [�L; �U ].
The procedure above measures the observed frequency with which this occurs.

Tables 1 and 2 compare the empirical coverage of each of the two con�dence sets for di¤erent

choices of n; p; � when (x; z) � F1, while tables 3 and 4 do the same for (x; z) � F2. The number
of repetitions is �xed at R = 5000 in all cases. For the results reported in Tables 1 and 3, p = 0:7,

while for those in Tables 2 and 4, p = 0:9. The empirical coverage probabilities for both types of

regions are very close to each other and approximate the desired target coverage probability rather

18 Because the identi�ed set is an interval, it is su¢ cient to check coverage of the endpoints to �nd the smallest
coverage level for any point in the identi�ed set.
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Table 1: Observed coverage probabilities for p=0.7 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7496 0:7496 0:8514 0:8514 0:9514 0:9514 0:9982 0:9888
500 0:7520 0:7520 0:8498 0:8498 0:9516 0:9514 0:9986 0:9896
1000 0:7514 0:7514 0:8516 0:8516 0:9504 0:9504 0:9978 0:9888

Table 2: Observed coverage probabilities for p=0.9 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7540 0:7510 0:8554 0:8544 0:9498 0:9494 0:9956 0:9884
500 0:7492 0:7492 0:8484 0:8484 0:9460 0:9460 0:9974 0:9882
1000 0:7482 0:7482 0:8484 0:8484 0:9454 0:9454 0:9978 0:9906

well. The case where the observed coverage probabilities of the two types di¤er most are those sets

with nominal level 0:99. In this case, the coverage from the moment inequality approach is always

slightly less than the coverage of Imbens and Manski�s con�dence sets, though both are very close

to the nominal level in all cases. The overall performance of the two approaches is comparable.

5.2 Example 2: Mean Regression with Interval-Censored Outcomes

In this subsection I consider the case of a simple linear regression with interval-censored outcomes. I

then perform Monte Carlo simulations to investigate the �nite sample performance of the inferential

method proposed, and I compare its performance to the subsampling algorithm of Chernozhukov,

Hong, and Tamer (2004).19

19As the con�dence sets of this paper provide coverage for any �xed point, the method for pointwise inference with
subsampling from their Appendix G is used.

Table 3: Observed coverage probabilities for p=0.7 when x|z=1 is distributed beta(2,4) and x|z=0
is distributed beta(4,2).
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7470 0:7470 0:8464 0:8464 0:9480 0:9480 0:9960 0:9854
500 0:7430 0:7430 0:8458 0:8458 0:9464 0:9464 0:9968 0:9882
1000 0:7474 0:7474 0:8502 0:8502 0:9484 0:9484 0:9972 0:9904
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Table 4: Observed coverage probabilities for p=0.9 when x|z=1 is distributed beta(2,4) and x|z=0
is distributed beta(4,2).
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7352 0:7352 0:8296 0:8292 0:9346 0:9340 0:9916 0:9890
500 0:7566 0:7566 0:8488 0:8488 0:9452 0:9452 0:9978 0:9890
1000 0:7358 0:7358 0:8374 0:8374 0:9446 0:9446 0:9954 0:9878

Let a random sample of size n of (y1; y0; x) be observed by the econometrician, where

y� = �0 + �1x+ u.

The econometrician observes a random sample of observations on (y0; y1; x), and knows that

P fy0 � y� � y1g = 1, but does not observe y�. It is further assumed that P (y0 = y1) < 1,

and that E [ujx] = 0 and E
�
u2jx

�
< 1. The econometrician�s goal is inference on the model

parameters � � (�0; �1), and I use B� to denote the identi�ed set for �.20 Thus the conditional

moment restrictions

E [�y0 + �0 + �1xjx] � 0,

E [y1 � �0 � �1xjx] � 0,

are satis�ed for all x 2 X . If X is �nite, then this yields a �nite number of unconditional moment

inequalities, two for every element of X . The moment functions all have �nite mean and variance
because of the restrictions on u.

Suppose, for example, that X = f1; 2g. Then (4) is

E [m (y1; y0; x; �)] =

0BBBB@
E [�y0jx = 1] + �0 + �1
E [y1jx = 1]� �0 � �1
E [�y0jx = 2] + �0 + 2�1
E [y1jx = 2]� �0 � 2�1

1CCCCA �

0BBBB@
0

0

0

0

1CCCCA . (19)

As in example 1, the variance of m (y1; y0; x; �) does not depend on �, and can be consistently

20For this section, since the goal is inference on model parameters in a linear model, I use � to denote the parameter
of interest rather than �0.
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estimated by

V̂ =

0BBBB@
�̂201 �ĉ1 0 0

�ĉ1 �̂211 0 0

0 0 �̂202 �ĉ2
0 0 �ĉ2 �̂212

1CCCCA ,
where �̂2ij =dvar (yijx = j), and ĉj = ccov (y1; y0jx = j). Furthermore, because E [y1jx] > E [y0jx],
at most only one of the �rst two components and one of the last two components of E [m (y1; y0; x; �)]
can equal zero for any value of �. Thus, at most 2 of the inequalities can bind at any �, and the

variance of the binding inequalities, V � is diagonal. As a result, the method for constructing

con�dence sets when V � is diagonal is applicable.

5.2.1 Simulations

In this section I simulate the model described above, i.e.

y� = �0 + �1x+ u,

y0 = �oor (y) ,

y1 = ceil (y) ,

where it is known by the econometrician that E [ujx] = 0, E
�
u2jx

�
<1, and a random sample of

(y0; y1; x) is observed. The econometrician knows that y� 2 [y0; y1], but does not observe y�. In

particular, but unknown to the econometrician, the following parameter values and distributions

comprise the data generation process:

� x takes the values 1 or 2, each with equal probability.

� u is distributed according to the standard normal distribution.

� x and u are iid and independent of each other.

� (�0; �1) = (1; 1).

10,000 draws were made from this DGP, comprising the �population�. Simulated data were

then drawn as random samples from this population. The population identi�ed set for � = (�0; �1),

B�, is shown in Figure 1.

INSERT FIGURE 1 HERE

CAPTION: The identi�ed set for (�0; �1) in Example 2.
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This is the set of values for � that are consistent with the distribution of (y0; y1; x) and the knowledge

that P fy0 � y� � y1g = 1 and E [ujx] = 0. Thus, for any value of � in this region, there is some
joint distribution of x and u consistent with the maintained assumptions that yields the observed

distribution of (y0; y1; x). Even though � = (1; 1) in the simulations performed, any other value of

� in this set could be used to obtain precisely the same distribution of observables. Although the

goal of my con�dence regions is a pre-speci�ed coverage level for the true �, the region must cover

any �xed � in this set with at least the pre-speci�ed probability, since they are all consistent with

the distribution of observables and a priori knowledge.

Checking the coverage probability of the con�dence sets in the experiments requires using a

grid of points representing the identi�ed set over which to check point-wise coverage. Since both

inferential methods implemented exhibit degenerate asymptotics on the interior of the identi�ed

set, it is su¢ cient to check a suitably �ne set of boundary points of the identi�ed set.21 To check

coverage, I used a grid @B� of 400 points, comprising the four corners of the identi�ed set, and 99

equidistant points between each pair of adjacent corners.

The following procedure was used to evaluate the empirical coverage probability of nominal

1� � con�dence regions for � constructed by computing the cuto¤ value for n ~Qn (�) as described
in section 4.2.

1. Specify the number of simulations to draw, R, and the sample size for each simulation, n.

2. Perform the following procedure R times.

(a) Draw a random sample of (y0; y1; x) of size n from the population.

(b) For each � 2 @B� compute ~Qn (�).

(c) If n ~Qn (�) > C��, reject the null hypothesis that � 2 B�, where C�� is the unique value
that satis�es

1

2
Pr
�
�21 > C

�
�

	
+
1

4
Pr
�
�22 > C

�
�

	
= �.

This corresponds to weights for a 2 � 2 diagonal variance covariance matrix given by
equation (14) from corollary 3.

3. For each � 2 @B�, compute the fraction of simulations for which n ~Qn (�) � C��, denoted

�pt� (�). Because any � 2 B� can generate the observed distribution of observables, the

coverage probability for � is inf
�2��

�pt� (�) � �̂pt� . �̂pt� is the observed probability with which

Cptn was guaranteed to contain the true � in these simulations.

21 It was veri�ed in the �nite sample Monte Carlo studies that the highest rejection probabilities did indeed occur
on the boundary of the identi�ed set.
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For each iteration, I also construct con�dence regions via subsampling. For this, I used the

square loss function used in the Monte Carlos of both Chernozhukov, Hong, and Tamer (2004), and

Romano and Shaikh (2006a):

Gn (�) =
1

n

nX
i=1

���Ê [y0jx = xi]� �0 � xi�1���2
+
+
����Ê [y1jx = xi] + �0 + xi�1���2

+
,

where jzj2+ � 1 [z > 0] z2. As discussed in the previous section, this requires that one specify a

grid of values over the parameter space on which to evaluate a level set of the loss function in the

subsampling stage. For these simulations, I used a uniform grid Bg that ranged from �2 to 4 for
�0 and �1 to 3 for �1. For grid construction I experimented using increments of 0:05 and 0:01 in
both dimensions, and results are reported for both grid increments. For each iteration of step 2

above, I perform the following steps.

a. Compute a starting cuto¤ value c0 via subsampling according to the procedure recommended

by Chernozhukov, Hong, and Tamer (2004) for the interval regression case.22.

b. Collect the following grid of points: B̂k = f� 2 Bg : nGn (�) � k = c0 lnng. This approxi-

mates a level set of the objective function.

c. Randomly draw Bn subsamples (without replacement) of size b << n, and for each � 2 B̂k
compute bGn (�). Compute the 1�� quantile of bGn (�) in the subsamples, denoted q1�� (�).
In these experiments Bn = 200 random subsamples of size b = n=4 were drawn for each

iteration.

d. Compute the maximum over � 2 B̂1�� of the quantiles computed in step c, q�1�� = sup
�2B̂1��

q1�� (�).

Then the pointwise con�dence region for � is

CSSn =
�
� : nGn (�) � q�1��

	
.

e. At the conclusion of all simulations, check the coverage probabilities. For each � 2 @B�,
compute the fraction of simulations for which nGn (�) � q�1��, denoted �

SS
� (�). Because

any � 2 B� can generate the observed distribution of observables, the coverage probability
for � is inf

�2��
�SS� (�) � �̂SS� . �̂SS� is the observed probability with which CSS1�� was guaranteed

to contain the true � in these simulations.

22Speci�cally, I based the initial cuto¤ on the auxilary model where the outcome variable is taken to be ~y =
y0=2 + y1=2. For a model based on a random sample of (~y; x), � is point-identi�ed as the minimizer of the square
loss function. The value of c0 used in step b is the 1 � � quantile of the statistic min�2Bg b � G (�), where b is the
subsample size.
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According to theory, both �̂pt� and �̂SS� converge to 1 � � as n ! 1. Tables 5 and 6 show

empirical coverage probabilities obtained from the above procedures for various pre-speci�ed values

of n and �. The results of table 5 are based on 500 repetitions, with a grid increment of 0.05

for the subsampling implementation. Table 6 is based on 100 repetitions, and grid increments of

0.01.23 The moment inequality method performed well in these simulations, in conjunction with

the asymptotic theory. The subsampling algorithm performed less accurately, though also provided

suitable approximations when the initial grid of values used for subsampling was su¢ ciently dense

(Table 6). While the method of this paper performed favorably, the results must be taken with

caution, as they are particular to the experimental design of this section. Interestingly, both

methods performed worse at the .75 level than at the other levels.

A key di¤erence between the methods that is highlighted by the simulation results is the e¤ect

of the initial grid Bg on the accuracy of subsampling inference. The sensitivity of the subsampling

routine to the choice of subsampling grid is illustrated in the di¤erence in the accuracy of subsam-

pling in Tables 5 and 6. The accuracy of the subsampling con�dence sets was better in nearly

every case when the grid was denser. This seems consistent with the theory on which subsampling

is based, which characterizes the procedure when subsamples are taken over all points in a given

level set. In practice, however, a grid must be used to approximate this level set. It stands to

reason that the denser the grid, the better the resulting approximation. Thus, there is a tradeo¤

to be made in subsampling between the accuracy of inference, and the computational cost, as the

use of more grid points entails more computations in each subsampling stage, as detailed in the

discussion of computational considerations in section 4. Chernozhukov, Hong, and Tamer (2004)

use an adaptive grid based on the Metropolis-Hastings algorithm to approximate this level set,

which may yield more accurate inference, though I am unaware of formal results to this e¤ect. No

such grid is needed to compute critical values using the asymptotic chi-bar-square approximation.

Table 7 reports the amount of time in seconds that it took to construct the con�dence sets Cptn
and CSSn . The reports times are averages across ten consecutive experiments.24 All experiments

were constructed in Matlab on a Pentium 4, 2.8 gigahertz CPU with 1 gigabyte of RAM. Sub-

sample times are reported using the �ner grid with 0.01 increments, as this gave more accurate

inference. The same grid density of 0.01 was used for the larger parameter space grid over which

the sample (as opposed to subsample) objective functions ~Qn and Gn were both evaluated. The

number of subsamples taken also had a substantial e¤ect on computation time for subsampling,

and times are reported when 200, 400, and 1000 subsamples are used, respectively. When 200

subsamples were used, subsampling took a little under three times as long as using the chi-bar-

square approximation. The di¤erence re�ects the added computational time of using subsampling

to obtain the test�s critical value. Using more subsamples obviously increases the computation

23The numbers of repititions with the smaller increments is due to the increased computational time required.
24The variance of computation time was quite low, so that averaging over additional experiments did not have

much e¤ect.
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Table 5: Coverage Probabilities for con�dence regions based on the chi-bar-square approximation
and subsampling based on 500 repetitions and a grid increment of 0.05.

Target Coverage: 0:75 0:85 0:95 0:99

Actual Coverage: CSSn Cptn CSSn Cptn CSSn Cptn CSSn Cptn
n � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:660 0:732 0:768 0:834 0:888 0:934 0:968 0:978
200 0:670 0:742 0:764 0:824 0:884 0:946 0:962 0:988
500 0:638 0:732 0:730 0:800 0:870 0:926 0:942 0:978
1000 0:616 0:740 0:744 0:836 0:870 0:950 0:956 0:984

Table 6: Coverage Probabilities for con�dence regions based on the chi-bar-square approximation
and subsampling based on 100 repetitions and a grid increment of 0.01.

Target Coverage: 0:75 0:85 0:95 0:99

Actual Coverage: CSSn Cptn CSSn Cptn CSSn Cptn CSSn Cptn
n � � � � � � � � � � � � � � � � � � � � �
100 0:64 0:67 0:79 0:85 0:93 0:94 0:98 0:99
200 0:72 0:75 0:82 0:87 0:91 0:93 0:97 0:98
500 0:68 0:71 0:77 0:82 0:89 0:92 0:97 0:96
1000 0:68 0:73 0:74 0:84 0:89 0:93 0:95 0:98

time. Because increasing the number of subsamples beyond 200 did not seem to have an e¤ect on

accuracy, the results in Tables 5 and 6 are only reported for a subsample size of 200. The results

were not sensitive to either changes in subsample size b or sample size n at the order of magnitude

considered, likely due to Matlab�s e¢ cient matrix manipulation.

Figures 2 through 4 show examples of 0.95 con�dence regions using both methods based on

random samples of 100 observations. The con�dence regions look very similar in shape and size.

Though those obtained from subsampling were always slightly smaller, their nominal coverage was

further from the actual coverage in the simulations, as shown in Tables 5 and 6. This is because

there are some cases where con�dence regions from subsampling do not contain certain points in

the identi�ed set that the method based on the chi-bar-square approximation does contain. This

observation is illustrated in both �gures 2 and 3. Figure 2 is an example in which all points in the

Table 7: Time in seconds for constructing nominal 0.95 con�dence sets using the chi-bar-square
approximation and subsampling. Subsamples drawn for the computation of test statistic quantiles
are given in parentheses.

n Cptn CSSn (200) CSSn (400) CSSn (1000)

100 36:99 99:85 185:92 449:19
200 36:87 99:53 187:13 447:75
500 36:91 99:62 185:94 449:12
1000 37:05 99:76 186:14 447:77
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identi�ed set were contained in Cptn , but some points were not covered by CSSn . Figure 3 presents

a case in which both con�dence regions excluded some points in the identi�ed set, though CSSn was

slightly smaller and thus excluded some points that Cptn did not. Both methods should of course

exclude at least some point in the identi�ed set 5% of the time. In �gure 4, both con�dence regions

cover each point in the identi�ed set.

INSERT FIGURE 2 HERE

CAPTION: Nominal 0:95 con�dence regions Cptn and CSSn for � based on a random sample of 100

observations. For this sample, Cptn contained all points in the identi�ed set, while CSSn did not

cover some points near the northwest edge of the identi�ed set.

INSERT FIGURE 3 HERE

CAPTION: Nominal 0:95 con�dence regions Cptn and CSSn for � based on a random sample of 100

observations. For this sample, in the southwest corner of the ideniti�ed set there were some

points in the identi�ed set that both Cptn and CSSn did not contain, as well as some points that were

in Cptn but not CSSn .

INSERT FIGURE 4 HERE

CAPTION: Nominal 0:95 con�dence regions Cptn and CSSn for � based on a random sample of 100

observations. For this sample, both con�dence sets contained all points in the identi�ed set.

6 Conclusion

The con�dence sets of this paper are guaranteed to provide a pre-speci�ed level of asymptotic

coverage for a parameter of interest in models that consist of a �nite number of moment inequalities.

Many models in this class have appeared in the literature, and these models comprise a large subset

of models with partially identi�ed parameters. The method for constructing con�dence sets is

easy to implement, as the cuto¤ values used to invert the test statistic are based on an analytical

asymptotic distribution and thus do not require resampling methods to compute.

In some cases, as discussed in section 4, the method may be asymptotically conservative, in the

sense that limiting coverage may be greater than the nominal level. Even in these cases, the test

on which the con�dence sets are based is shown to be consistent. In the important special case

of a single equation regression with censored outcomes, the limiting coverage of the con�dence sets

for the least favorable point in the identi�ed set is in fact shown to be exact. In this case, the

method was shown to perform well in �nite samples relative to a subsampling algorithm. While

those results are speci�c to the experimental design employed, they suggest that in some cases

the method proposed here may result in con�dence sets with favorable �nite sample properties.

However, there are cases where the subsampling method achieves valid asymptotic inference, but
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where the method of this paper is not applicable. It would be of interest to compare other inferential

methods for partially identi�ed parameters in other contexts as well, as many such methods have

been recently proposed.

The �ndings of this paper have naturally lead to some additional avenues for further research.

First, the cuto¤ values for the test statistic nQ̂n (�) are computed by making use of an upper bound

on the feasible number of moments that bind at �. This provides a worst case for the values of

the weights function of the asymptotic chi-bar-square distribution of nQ̂n (�). If the true weights

for the asymptotic distribution of nQ̂n (�) can be consistently estimated for any value of �, then a

smaller cuto¤ value for nQ̂n (�) could possibly be estimated for any size test. If this could be done,

the conservative nature of the con�dence sets that is present in some instances could potentially

be alleviated. However, such an approach would likely not be without computational cost, since a

di¤erent cuto¤ would need to be computed for each value of �.

Furthermore, this paper focuses on building con�dence sets for the parameter of interest �0.

There have been many other types of con�dence sets that have appeared in the literature on par-

tially identi�ed parameters. Which type is appropriate depends on the context and the researcher�s

goal in any particular application. It would be of interest to determine whether the testing proce-

dure of this paper could be modi�ed to construct con�dence sets with uniform asymptotic coverage

over the identi�ed set ��, or con�dence sets for �� itself.

Appendix A: The Boundary of E [m (y; x; �)] in RJ+ and the Boundary
of ��

An implication of Proposition 3 is that the asymptotic distribution of nQ̂n (�) is degenerate when

E [m (y; x; �)] > 0, converging to zero in probability. Put another way, nQ̂n (�) only has a non-

degenerate limiting distribution when E [m (y; x; �)] lies on the boundary of RJ+, the nonnegative
orthant in J dimensional Euclidean space. This section examines the relationship between the

boundary of E [m (y; x; �)] in RJ+ and the boundary of the identi�ed set ��. Toward this end, let

D�� � f� 2 �� : E [mj (y; x; �)] = 0 for at least one j 2 f1; :::; Jgg

be the set of � 2 �� such that E [m (y; x; �)] lies on the boundary of RJ+. Let

@�� �
n
� 2 �� : for every open neighborhood of �, N� � Rk, N� * ��

o
be the boundary of �� in �. In order to characterize the relationship between these two sets, I

consider the implications of the following two assumptions.

Assumption A6 (continuity) E [m (y; x; �)] is continuous in �.
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Assumption A7 (monotonicity) 8j = 1; :::; J , E [mj (y; x; �)] is strictly monotone in at least one

component of �.

First, it is easy to see that if E [m (y; x; �)] is not continuous in �, @�� need not be contained in
D��. This is because if E [m (y; x; �)] has jump discontinuities, it is possible that E [m (y; x; �)] > 0
but that there exists an arbitrarily small � in Rk such that E [m (y; x; � + �)] < 0, i.e. E [m (y; x; �)]
�jumps� from the interior of RJ+ to the exterior of RJ+ at �. Proposition 6 shows that the con-

trapositive is in fact true; if E [m (y; x; �)] is continuous in �, then @�� � D��. In turn, this

implies that if assumption (A5) holds, the asymptotic distribution of nQ̂n (�) is degenerate at 0

on the interior of ��. Proposition 3 proceeds to show that when combined with continuity, the

monotonicity requirement of assumption (A6) is su¢ cient to conclude that @�� and D�� are equal.

In the absence of monotonicity, continuity alone is not enough for for the two sets to be equivalent.

Proposition 6 Let assumptions (A1)-(A3) as well as (A6) hold. Then @�� � D��.

Proposition 7 Let (A1)-(A3),(A6), and (A7) hold. Then @�� = D��.

So far the analysis has centered around the boundary of ��, which is the boundary of the null

hypothesis in (5). The hypothesis test can be recast however as

H0 : Q (�) = 0

H1 : Q (�) > 0.

Because Q (�) = 0 if and only if E [m (y; x; �)] � 0, and Q (�) is nonnegative, this is exactly the

same null and alternative. Written this way, the hypothesis test has the property that Q (�) is

on the boundary of the maintained hypothesis Q (�) � 0. Andrews (2001) studies the problem of

hypothesis testing when a parameter is on the boundary of the maintained hypothesis.

Appendix B: Proofs

6.1 Proposition 1

Proof . Fix �. Let q̂n (�; t) �
�
Ê [m (y; x; �)]� t

�0
V̂ �1�

�
Ê [m (y; x; �)]� t

�
, so that Q̂n (�) =

min
t�0

qn (�; t). Similarly, let q (�; t) � (E [m (y; x; �)]� t)0 V �1� (E [m (y; x; �)]� t), so that Q (�) =

min
t�0

q (�; t). (6), (7), (8) and a Slutsky Theorem imply that qn (�; t)
p! q (�; t) pointwise for each

�; t. qn (�; t) is concave in t, so that by Theorem 2.7 of Newey and McFadden (1994), qn (�; t)

converges uniformly in t > 0 to q (�; t) for �xed �. In addition, uniform convergence holds over

any compact set [0; T ] by the continuity of q (�; t) in t. Therefore qn (�; t)
p! q (�; t) uniformly over

t � 0, so that Q̂n (�)
p! Q (�), further implying convergence in probability of the minimizer over

t � 0 of qn (�; t) to that of q (�; t), i.e. t̂�n (�)
p! t�� (�).
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6.2 Proposition 2

Proof . The �rst result follows from pointwise convergence of Q̂n to Q and Newey and McFadden

(1994), Theorem 2.8. Set consistency in the Hausdor¤ metric under the stated conditions follows

from Manski and Tamer (2002), Proposition 5.

As a preliminary step to proposition 3, I �rst prove the following lemma.

6.3 Lemma 1

Consider the minimization problem

QP = min (x� t)0 V �1 (x� t) s.t. t1 � 0, (20)

where x; t 2 RJ , and x1; t1 2 Rb, b � J , s.t. t = (t01; t02)
0 and x = (x01;x

0
2)
0. Let V11 be the b � b

leading submatrix of V so that

V =

 
V11 V12

V21 V22

!
.

Then

QP = min (x1 � t1)0 V �111 (x1 � t1) s.t. t1 � 0. (21)

Proof. Let � � V �1 and partition � so that

� =

 
�11 �12

�21 �22

!
,

where �11 is b� b and �22 is J � b.� J � b. Let t� be the value of t that solves QP , so that

QP = (x� t�)0 � (x� t�) .

The Kuhn-Tucker conditions for (20) are

(i) For j = 1; :::; b, Either t�j = 0 and [�� (x� t�)]j � 0, or t�j > 0 and [�� (x� t�)]j = 0.

(ii) For j = b+ 1; :::; J , [�� (x� t�)]j = 0.

By conditions (i) and (ii),

��11 (x1 � t�1)� �12 (x2 � t�2) � 0, (22)

��21 (x1 � t�1)� �22 (x2 � t�2) = 0. (23)
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Solving for (x2 � t�2), the latter condition is

(x2 � t�2) = ���122 �21 (x1 � t�1) . (24)

Now

QP = (x� t�)0 � (x� t�)

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) + (x2 � t�2) [�21 (x1 � t�1) + �22 (x2 � t�2)]

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) ,

by (23). Now using (24) it follows that

QP = (x1 � t�1)
0 �11 (x1 � t�1)� (x1 � t�1)

0 �12
�
��122 �21 (x1 � t�1)

�
= (x1 � t�1)

0 ��11 � �12��122 �21� (x1 � t�1)
= (x1 � t�1)

0 V �111 (x1 � t�1) ,

where the last equality follows by the partition inverse result.25 All that remains is to show that

t�1 minimizes (21): min (x1 � t1)
0 V �111 (x1 � t1) s.t. t1 � 0, but this follows from the Kuhn-Tucker

minimization condition (i) as shown below:

The Kuhn-Tucker conditions for t�1 that solves (21) are for j = 1; :::; b;

either t�j = 0 and
�
�V �111 (x1 � t�1)

�
j
� 0; or t�j > 0 and

�
�V �111 (x1 � t�1)

�
j
= 0:

()

either t�j = 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
� 0;

or t�j > 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
= 0.

,

either t�j = 0 and
�
�
�
�11 (x1 � t�1)� �12��122 �21 (x1 � t�1)

�	
j
� 0;

or t�j > 0 and
�
�
�
�11 (x1 � t�1)� �12��122 �21 (x1 � t�1)

�	
j
= 0

,

either t�j = 0 and f� [�11 (x1 � t�1) + �12 (x2 � t�2)]gj � 0;

or t�j > 0 and f� [�11 (x1 � t�1) + �12 (x2 � t�2)]gj = 0

25 If V = ��1 then V11 =
�
�11 � �12��122 �21

��1
.
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by (24), but this is exactly condition (i) from the Kuhn-Tucker conditions for the initial program

(20):

With Lemma 1 in hand, I now prove Proposition 3.

6.4 Proposition 3

Proof. Let
vn �

p
n
�
Ên [m (y; x; �)]� E [m (y; x; �)]

�
,

and

v�n �
p
n
�
Ên [m

� (y; x; �)]� E [m� (y; x; �)]
�
.

Then

nQ̂n (�) = min
t�0

n �
h
Ên [m (y; x; �)]� t

i0
V̂ �1�

h
Ên [m (y; x; �)]� t

i
= min

t�0

�
vn +

p
n (E [m (y; x; �)]� t)

�0
V̂ �1�

�
vn +

p
n (E [m (y; x; �)]� t)

�
= min

t�0

�
vn +

p
nE [m (y; x; �)]� t

�0
V̂ �1�

�
vn +

p
nE [m (y; x; �)]� t

�
= min

s
[vn (�)� s]0 V̂ �1� [vn (�)� s] subject to s = t�

p
nE [m (y; x; �)] ; t � 0

= min
s

[vn (�)� s]0 V̂ �1� [vn (�)� s] : s � �
p
nE [m (y; x; �)] .

Partition s such that s = (s0b; s
0
c)
0, so that sb are the �rst b elements of s, corresponding to those in-

equalities that bind, and sc the remainder. Furthermore, let ~m (y; x; �) = (mb+1 (y; x; �) ; :::;mJ (y; x; �))
0.

Then because E [mj (y; x; �)] = 0 for j � b,

nQ̂n (�) = min
s

[vn (�)� s]0 V̂ �1� [vn (�)� s] : sb � 0, sc � �
p
nE [ ~m (y; x; �)] .

Because
p
nE [ ~m (y; x; �)]!1 as n!1, and V̂�

p! V�, it follows by a Slutsky Theorem that

nQ̂n (�)
p! min

s
[vn � s]0 V �1� [vn � s] : sb 2 Rb+, sc 2 RJ�b,

and by Lemma 1,

min
s

[vn � s]0 V �1� [vn � s] s.t. sb 2 Rb+, sc 2 RJ�b = min
s2Rb+

[v� � s]0 V ��1� [v� � s] ,

where v� � N (0; V �� ) by (8) which holds under (A1) and (A4). Thus

nQ̂n (�)
p! min
s2Rb(�)+

[v� � s]0 V ��1� [v� � s] .
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The statistic mins2Rb+ [v
� � s]0 V ��1� [v� � s] measures the distance of the normal random variable

v� from the nonnegative orthant. By Wolak (1991)

Pr

(
min
s2Rb+

[v� � s]0 V ��1� [v� � s] � c
)
=

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
:

6.4.1 Corollary 2

Proof.

sup
�2��

lim
n!1

P
n
nQ̂n (�) � c

o
= sup

�2��

0@b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	1A
� 1

2
Pr
�
�2b� � c

	
+
1

2
Pr
�
�2b��1 � c

	
,

where the equality of the �rst line follows from Proposition 3. The rest of the proof follows from

Sen and Silvapulle (2004, pp. 80-82), but I repeat the argument here for clarity. The inequality

follows because for any j and b = dim (V �� ),

0 � w (b; j; V �� ) � 1=2,

bX
j=0

w (b; j; V �� ) = 1,

and

Pr
�
�2j � c

	
is increasing in j for all c.

6.4.2 Corollary 3

Proof. The �rst part, (14), follows from Wolak (1987) who derives the result for V � = �2I,

and from Sen and Silvapulle (2004, Proposition 3.6.1 (11)). The latter result is that the weights

function only depends on the variance through its associated correlation matrix. If V � is diagonal,

the correlation matrix is the identity matrix, so that w (b; j; V �) = w (b; j; Ib). The second part,
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(14), follows from the fact that
bX
j=0

2�b
�
b
j

�
Pr
n
�2j � c

o
is monotonically increasing in b, so that

sup
�2��

lim
n!1

P
n
nQ̂n (�) � c

o
= sup

�2��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
= sup

�2��

b(�)X
j=0

2�b(�)
�
b (�)

j

�
Pr
�
�2j � c

	
�

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j � c

	
.

6.5 Proposition 4

Proof. Let �� (~��) be a diagonal matrix with jth diagonal entry 1=V�;jj (1=V̂�;jj), the inverse of
the (estimated) variance ofm (y; x; �). Assume (A1)-(A4) and that V �� is diagonal with all diagonal

entries positive. Then

n ~Qn (�) = n

JX
j=1

1 [m̂j (y; x; �) < 0] � m̂j (y; x; �)
2 =V̂�;jj

= nmin
t�0

h
Ên [m (y; x; �)]� t

i0
~��

h
Ên [m (y; x; �)]� t

i
.

The proof of Proposition 3 goes through unchanged, as ~��
p! ��, with the partition inverse result

used to prove lemma 1 applied to ��.

6.6 Proposition 5

Proof. Let � =2 ��, so that there exists j 2 f1; :::Jg such that E [mj (y; x; �)] < 0. Assume

(A1)-(A5). Let � (�) � E [m (y; x; �)], and let �̂� = V̂ �1� , and .�� = V �1� Proceeding as in the

proof of Proposition 3,

P
n
nQ̂n (�) > C

b�
�

o
= P

�
nmin
t�0

h
Ên [m (y; x; �)]� t

i0
�̂�

h
Ên [m (y; x; �)]� t

i
> Cb

�
�

�
(25)

= P
n
min
s
[vn � s]0 �̂� [vn � s] > Cb

�
� : s � �

p
n� (�)

o
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where vn =
p
n
n
Ên [m (y; x; �)]� � (�)

o
. Let s�n be the unique value of s that solves the inner

minimization problem, so that

P
n
nQ̂n (�) > C

b�
�

o
= P

n
[vn � s�n]

0 �̂� [vn � s�n] > Cb
�
�

o
.

Let �� be the orthogonal matrix that diagonalizes ��, so that �����0� is a diagonal matrix with

diagonal entries equal to the eigenvalues of ��, i.e. �����0� = diag (d�;1; :::; d�;J), where the d�;j are

the eigenvalues of ��. Since �� is nonsingular, each d�;j > 0. Such a matrix �� exists by Corollary

21.5.9 of Harville (1997). Then

[vn � s�n]
0 �̂� [vn � s�n] = [vn � s�n]

0 �� [vn � s�n] + op (1)

=
JX
j=1

�
[vn � s�n] ��1�

�2
jj
d�;j + op (1) .

The constraint s � �
p
n� (�) in (25), implies that s�n diverges to �1. Since vn = Op (1), nQ̂n (�)

diverges to1 and lim
n!1

P
n
nQ̂n (�) > C

b�
�

o
= 1. The same argument applies for lim

n!1
P
n
n ~Qn (�) > C

b�
�

o
under the conditions of Proposition 4, by replacing V̂ �1� with a diagonal matrix with diagonal ele-

ments 1=V̂�;jj .

6.7 Proposition 6

Proof. Let � 2 @��, but suppose that � =2 D�� for contradiction.
� 2 @�� ) � 2 ��, which implies that E [m (y; x; �)] > 0. Therefore, there exists an open

neighborhood of E [m (y; x; �)] contained in RJ+, say N . Let N� be the inverse image of N , i.e.

N� � ft 2 � : E [m (y; x; t)] � Ng .

Because N is an open subset of RJ+, E [m (y; x; t)] � N ) E [m (y; x; t)] > 0. By the continuity of
E [m (y; x; �)] under (A5) N� is an open neighborhood of �, and N� � �� since E [m (y; x; t)] > 0 for
all t 2 N . Therefore, there exists an open neighborhood of � that is contained in ��, contradicting
the supposition that � 2 @��.

6.8 Proposition 7

Proof. Proposition 6 shows @�� � D��, so all that is needed is to show @�� � D��. Let

� 2 D�� so that E [mj (y; x; �)] = 0 for some j. By (A6), E [mj (y; x; �)] is monotone in some

component of �, say �k(j). Let � > 0, and let v (�) be a k-vector with k (j) component � and

all other components zero. By the strict monotonicity of E [mj (y; x; �)] in �k(j), 8� 2 Rk, either
E [mj (y; x; � + v (�))] < 0 or E [mj (y; x; � � v (�))] < 0, so that � 2 @��.
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