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1. Introduction

The generalized method of moments (GMM) is routinely employed in the esti-

mation of autoregressive models from short panels, because it provides simple

estimates that are fixed-T consistent and optimally enforce the model’s restric-

tions on the data covariance matrix. Yet they are known to frequently exhibit

poor properties in finite samples and may be asymptotically biased if T is not

treated as fixed.

There are also available in the literature fixed-T consistent maximum likeli-

hood methods that are likely to have very different properties to GMM in finite

samples and double asymptotics. This category includes random effects esti-

mators of the type considered by Blundell and Smith (1991) and Alvarez and

Arellano (2003), the conditional likelihood estimator in Lancaster (2002), and the

estimators for first-differenced data in Hsiao, Pesaran, and Tahmiscioglu (2002).

However, the existing likelihood-based estimators require that the error variances

remain constant through time for fixed-T consistency. Lack of robustness to time

series heteroskedasticity is an important limitation because the dispersion of the

cross-sectional distribution of errors at each period may differ not only due to

nonstationarity at the individual level but also as a result of aggregate effects.

In this paper we develop likelihood-based estimators of autoregressive models

that are robust in the sense that remain consistent under the same assumptions

as standard panel GMM procedures.1 From a GMM perspective, likelihood-based

estimation can be motivated as a way of reducing the number of moments available

for estimation, and hence the extent of bias in second-order or double asymptotics.

We report numerical calculations of relative asymptotic variances, and provide

an empirical illustration in the context of individual earnings dynamics.

1Cf. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover
(1995), and Ahn and Schmidt (1995).
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2. Model and Assumptions

We consider an autoregressive model for panel data given by

yit = αyi(t−1) + ηi + vit (t = 1, ..., T ; i = 1, ..., N) . (2.1)

The variables (yi0, ..., yiT ) are observed but ηi is an unobservable individual effect.
2

We abstract from additive aggregate effects by regarding yit as a deviation from

a time effect. It is convenient to introduce the notation xit = yi(t−1) and write the

model in the form:

yi = αxi + ηiι+ vi (2.2)

where yi = (yi1, ..., yiT )
0, xi = (xi1, ..., xiT )

0, ι is a T × 1 vector of ones, and
vi = (vi1, ..., viT )

0.

The following assumption will be maintained throughout:

Assumption A : {ηi, yi0, yi1, ..., yiT}Ni=1 is a random sample from a well defined

joint distribution with finite second-order moments that satisfies |α| < 1 and

E
¡
vit | ηi, yi0, ..., yi(t−1)

¢
= 0 (t = 1, ..., T ) . (2.3)

This is our core condition in the sense that we wish to consider estimators

that are consistent and asymptotically normal for fixed T and large N under

Assumption A.

Note that neither time series or conditional heteroskedasticity are assumed.

That is, the unconditional variances of the errors, denoted as

E
¡
v2it
¢
= σ2t , (2.4)

are allowed to change with t and to differ from the conditional variances

E
¡
v2it | ηi, yi0, ..., yi(t−1)

¢
.

2For notational convenience we assume that yi0 is observed, so that the actual number of
time series observations in the data is T o = T + 1.
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Time series homoskedasticity is a particularly restrictive assumption in the

context of short micropanels, both because estimators that enforce homoskedas-

ticity are inconsistent when the assumption fails, and because it can be easily

violated if aggregate effects are present in the conditional variance of the process.

Also note that we assume stability of the process but not stationarity in mean.

Let the covariance matrix of (ηi, yi0) be denoted as

var

µ
ηi
yi0

¶
=

µ
σ2η γη0
γη0 γ00

¶
. (2.5)

Model (2.1) can be written as

yit =

µ
1− αt

1− α

¶
ηi + αtyi0 +

¡
vit + αvi(t−1) + ...+ αt−1vi1

¢
. (2.6)

Thus, for large t E (yit | ηi) tends to the steady state mean µi = ηi/ (1− α). If

the process started in the distant past we would have

yi0 =
ηi

(1− α)
+

∞X
j=0

αjvi(−j), (2.7)

implying γη0 = σ2η/ (1− α) and γ00 = σ2η/ (1− α)2 +
P∞

j=0 α
2jσ2−j.

3 However,

here γη0 and γ00 are treated as free parameters. Note that an implication of lack

of stationarity in mean is that the data in first differences will generally depend

on individual effects.

In a short panel, steady state assumptions about initial observations are also

critical since estimators that impose them lose consistency if the assumptions

fail. Moreover, there are relevant applied situations in which a stable process

approximates well the dynamics of data, and yet there are theoretical or empirical

grounds to believe that the distribution of initial observations does not coincide

with the steady state distribution of the process (cf. Hause, 1980 or Barro and

Sala-i-Martin, 1995, and discussion in Arellano, 2003).

3With the addition of homoskedasticity γ00 = σ2η/ (1− α)2 + σ2/
¡
1− α2

¢
.
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3. Bias-Corrected Conditional Score Estimation

3.1. Normal Likelihood Given Initial Observations and Effects

Under the normality assumption

yit | yt−1i , ηi ∼ N
¡
αyi(t−1) + ηi,σ

2
t

¢
(t = 1, ..., T ) , (Assumption G1)

the log density of yi conditioned on (yi0, ηi) is given by

ln f (yi | yi0, ηi) = −
1

2
ln detΛ− 1

2
v0iΛ

−1vi (3.1)

where Λ is a diagonal matrix with elements (σ21, ...,σ
2
T ) .

The MLE of ηi for given α,σ21, ...,σ
2
T that maximizes (3.1) is

bηi = yi − xiα (3.2)

where yi denotes a weighted average yi =
PT

t=1 ϕtyit with weights

ϕt =
σ−2t

σ−21 + ...+ σ−2T
. (3.3)

Concentrating the log likelihood function with respect to the individual effects

we obtain

L∗ =
N

2
ln detΦ− NT

2
lnωT − 1

2ωT

NX
i=1

v0i (Φ− Φιι0Φ) vi (3.4)

where Φ is a diagonal matrix with elements (ϕ1, ...,ϕT ) and ωT is the variance of

the weighted average error:

ωT = V ar (vi) =
1

σ−21 + ...+ σ−2T
. (3.5)

It is useful at this point to note that the following identities hold:
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v0iD
0 (DΛD0)−1Dvi =

1

ωT
v0i (Φ− Φιι0Φ) vi =

TX
t=1

(vit − vi)2
σ2t

(3.6)

ln det (DΛD0) = − ln detΦ+ (T − 1) lnωT (3.7)

where D is the (T − 1) × T first-difference matrix operator. Thus, L∗ can be

equally regarded as a function of the data in first differences or in deviations from

(weighted) means. Note that with T = 3 (i.e. Four time series observations per

unit), DΛD0 is unrestricted:

DΛD0 =
µ

σ21 + σ22 −σ22
−σ22 σ22 + σ23

¶
.

Moreover, the relationship between period-specific and within-group variances is

given by

σ2t = E
£
(vit − vi)2

¤
+ ωT (t = 1, ...T ) . (3.8)

The MLE of α for given weights is the following heteroskedastic within-groups

estimator

bα = " NX
i=1

TX
t=1

ϕt (xit − xi)2
#−1 NX

i=1

TX
t=1

ϕt (xit − xi) (yit − yi) , (3.9)

which in first differences can also be written as

bα = " NX
i=1

x0iD
0 (DΛD0)−1Dxi

#−1 NX
i=1

x0iD
0 (DΛD0)−1Dyi. (3.10)

Finally, the MLE of ωT for given weights is

bωT = 1

TN

NX
i=1

TX
t=1

ϕt (vit − vi)2 .

Note that, in common with the situation under homoskedasticity, both bα andbωT suffer from the incidental parameters problem. Firstly, although xit and vit are
5



orthogonal, their deviations, (xit − xi) and (vit − vi), are not, leading to a bias inbα. Secondly, bωT evaluated at the true errors and weights will be inconsistent for
fixed T due to lack of degrees of freedom adjustment, as evidenced by the equality

ωT = E

"
1

(T − 1)
TX
t=1

ϕt (vit − vi)2
#
. (3.11)

3.2. Likelihood Conditioned on the ML Estimates of the Effects

Provided G1 holds, the ML estimates of the effects at the true values of the

common parameters bηi = ηi + vi satisfy

bηi | yi0, ηi ∼ N (ηi,ωT ) . (3.12)

Moreover, the conditional log density of yi given yi0, ηi,bηi is given by
ln f (yi | yi0, ηi,bηi) = −12 ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi, (3.13)

which is a within-group density that does not depend on ηi. Thus, (3.1) admits

the decomposition

f (yi | yi0, ηi) = f (yi | yi0,bηi) f (bηi | yi0, ηi) , (3.14)

which confines the dependence on ηi to the conditional density of bηi. Similarly,
any marginal density for yi | yi0 which imposes a prior distribution on the effects
can be written as

f (yi | yi0) = f (yi | yi0,bηi) f (bηi | yi0) . (3.15)

The log likelihood conditioned on bηi is therefore given by
LC =

N

2
ln detΦ− N (T − 1)

2
lnωT − 1

2ωT

NX
i=1

v0i (Φ− Φιι0Φ) vi (3.16)

6



or

LC = −N
2
ln det (DΛD0)− 1

2

NX
i=1

v0iD
0 (DΛD0)−1Dvi, (3.17)

which is similar to the concentrated likelihood (3.4) except that it incorporates

a correction for degrees of freedom. In a model with a strictly exogenous xi, LC

coincides with the likelihood conditioned on sufficient statistics for the effects,

which provides consistent estimates of both the regression and residual variance

parameters. However, in the autoregressive situation, the estimator of α that

maximizes LC satisfies a heteroskedastic within-group equation of the same form

as (3.9) and is therefore inconsistent for fixed T .

Inference from a likelihood conditioned on the ML estimates of the effects may

lead to consistent estimates provided the scores of the common parameters and

the effects are uncorrelated (Cox and Reid, 1987). Cox and Reid’s approximate

conditional likelihood approach was motivated by the fact that in an exponential

family model, it is optimal to condition on sufficient statistics for the nuisance

parameters, and these can be regarded as the MLE of nuisance parameters chosen

in a form to be orthogonal to the parameters of interest. From this perspective,

the inconsistency of within-groups in the autoregressive model results from lack

of orthogonality between the scores of α and the effects.

In the homoskedastic case, Lancaster (2002) showed that a likelihood condi-

tioned on the ML estimate of an orthogonalized effect led to a bias-corrected score

and a consistent method-of-moments estimator under homoskedasticity. Follow-

ing a similar approach, we construct a heteroskedasticity-consistent estimator as

the solution to a bias corrected version of the first-order conditions from the like-

lihood conditioned on the MLE of the effects.
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First-Order Conditions The derivatives of LC with respect to α and θ =

(σ21...σ
2
T )
0 are given by

∂LC
∂α

=
NX
i=1

x0iD
0 (DΛD0)−1Dvi. (3.18)

∂LC
∂θ

=
1

2

NX
i=1

K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD
0 −DΛD0) (3.19)

where K is a (T − 1)2 × T selection matrix such that vec (DΛD0) = Kθ.

Maximizing LC with respect to ωT and (ϕ1...ϕT ) for given α, subject to the

adding-up restriction ι0Φι = 1, the first-order conditions for variance parameters

can also be written in a form analogous to (3.8) and (3.11) as

NX
i=1

∙
1

(T − 1)v
0
i (Φ− Φιι0Φ) vi − ωT

¸
= 0 (3.20)

NX
i=1

h
(vit − vi)2 −

¡
vi(t−1) − vi

¢2 − ¡σ2t − σ2t−1
¢i

= 0 (t = 2, ..., T ) .(3.21)

Thus, the conditional MLE of α and θ solve, respectively, (3.10) and

bθ = ¡K 0Υ−1K
¢−1

K 0Υ−1
1

N

NX
i=1

vec (Dviv
0
iD

0) . (3.22)

where Υ = DΛD0 ⊗DΛD0.

Bias corrected conditional ML scores Under Assumption A the ex-

pected conditional ML scores are given by

E
h
x0iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ) (3.23)

E
h
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)
i
= 0 (3.24)
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where

hT (α,ϕ) =
T−1X
t=1

µ
1− αt

1− α

¶
ϕt+1. (3.25)

Under homoskedasticity ϕt = T−1 for all t, in which case the bias function

(3.25) boils down to

hT (α) =
1

(1− α)

∙
1− 1

T

µ
1− αT

1− α

¶¸
, (3.26)

which corresponds to the homoskedastic expression in Nickell (1981) and Lan-

caster (2002).

In view of (3.23)-(3.24), heteroskedasticity-consistent GMM estimators can be

obtained as the solution to the nonlinear estimating equations

NX
i=1

x0iD
0 (DΛD0)−1Dvi +NhT (α,ϕ) = 0 (3.27)

K 0 (DΛD0 ⊗DΛD0)−1 vec
NX
i=1

(Dviv
0
iD

0 −DΛD0) = 0. (3.28)

Consistency of the bias-corrected score estimator (BCS) that solves (3.27)-(3.28)

does not depend on normality nor on conditional or time-series homoskedasticity.

BCS estimation is not possible from a three-wave panel (i.e. T = 2) because

in that case α is not identified from the expected scores, which are given by

E [(yi1 − yi0) (vi2 − vi1)] = −σ21 (3.29)

E
£
(vi2 − vi1)2

¤
= σ21 + σ22. (3.30)

This situation is in contrast with Lancaster’s BCS estimator that enforces time

series homoskedasticity (hence achieving identification from (3.29)-(3.30)), or the

bias-corrected within-group estimator considered in Kiviet (1995).
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Modified Conditional Likelihood Interpretation If the weights ϕ are

known, the method of moments estimators of α and ωT based on the bias corrected

scores

E
h
x0iD

0 ¡DΦ−1D0¢−1Dvii = −ωThT (α,ϕ) (3.31)

E
h
v0iD

0 ¡DΦ−1D0¢−1Dvii = (T − 1)ωT (3.32)

can be regarded as the maximizers of the criterion function

LCR = LC +NbT (α,ϕ) (3.33)

where

bT (α,ϕ) =
T−1X
t=1

¡
ϕt+1 + ...+ ϕT

¢
t

αt, (3.34)

which is the integral of hT (α,ϕ) up to an arbitrary constant of integration that

may depend on ϕ.

Following Lancaster (2002), LCR can be interpreted as a Cox-Reid likelihood

conditioned on the ML estimate bλi of an orthogonal effect λi (Arellano, 2003, p.
105)

LCR =
NX
i=1

ln f
³
yi | yi0, bλi´ , (3.35)

or as an integrated likelihood

LCR =
NX
i=1

ln f (yi | yi0) =
NX
i=1

ln f (yi | yi0,bηi) + NX
i=1

ln f (bηi | yi0) (3.36)

in which the chosen prior distribution of the effects conditioned on yi0 is such that

the marginal density of bηi | yi0 satisfies:
f (bηi | yi0) = κi (ϕ) e

bT (α,ϕ) (3.37)

where κi (ϕ) is a version of the constant of integration.

The first interpretation is based on a decomposition conditional on bλi similar
to (3.14), whereas the second relies on factorization (3.15).
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4. Random Effects Estimation

The analysis so far was conditional on yi0 and bηi. Conditioning on yi0 avoided
steady state restrictions, but by conditioning on bηi estimation is exclusively based
on the data in first-differences. We now turn to explore marginal maximum like-

lihood estimation based on a normal prior distribution of the effects conditioned

on yi0, with linear mean and constant variance. A sufficient condition that we use

for simplicity is:

Assumption G2: (ηi, yi0) is jointly normally distributed with an unrestricted co-

variance matrix.

Normality of yi0 is unessential because its variance is a free parameter, so the

following analysis can be regarded as conditional on yi0. Clearly, assumptions G1

and G2 together imply that(ηi, yi0, yi1, ..., yiT ) are jointly normally distributed.

The random effects log likelihood Under G2,

bηi | yi0 ∼ N ¡φyi0,σ2ε¢ , (4.1)

where φ = γη0/γ00 and σ2ε = ωT + σ2η − γ2η0/γ00. So, using factorization (3.15),

the density of yi conditioned on yi0 but marginal on ηi is:

ln f (yi | yi0) ∝ −1
2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

−1
2
lnσ2ε −

1

2σ2ε
(yi − αxi − φyi0)

2 . (4.2)

Thus, letting ui = yi − αxi, the random effects log likelihood is a function of

(α,σ21, ...,σ
2
T ,φ,σ

2
ε) given by

LR = LC − N
2
lnσ2ε −

1

2σ2ε

NX
i=1

(ui − φyi0)
2 , (4.3)
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with scores:

∂LR
∂α

=
∂LC
∂α

+
1

σ2ε

NX
i=1

xi (ui − φyi0) (4.4)

∂LR
∂θ

=
∂LC
∂θ

+
1

σ2ε

NX
i=1

ΦD0 (DΛD0)−1Dui (ui − φyi0) (4.5)

∂LR
∂φ

=
1

σ2ε

NX
i=1

yi0 (ui − φyi0) (4.6)

∂LR
∂σ2ε

=
1

2σ4ε

NX
i=1

£
(ui − φyi0)

2 − σ2ε
¤
. (4.7)

Under Assumption A the expectations of the second terms in the scores for α

and θ at true values are:

E

∙
1

σ2ε
xi (ui − φyi0)

¸
= hT (α,ϕ) (4.8)

and

E

∙
1

σ2ε
ΦD0 (DΛD0)−1Dvi (ui − φyi0)

¸
= 0. (4.9)

Therefore, in view of (3.23) and (3.24), under Assumption A the expected

scores evaluated at the true values of the parameters are equal to zero:

E

∙
x0iD

0 (DΛD0)−1Dvi +
1

σ2ε
xi (ui − φyi0)

¸
= 0

E

∙
1

2
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)

+
1

σ2ε
ΦD0 (DΛD0)−1Dvi (ui − φyi0)

¸
= 0

E [yi0 (ui − φyi0)] = 0

E
£
(ui − φyi0)

2 − σ2ε
¤
= 0.
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The random effects maximum likelihood estimator (RML) solves the estimat-

ing equations (4.4)-(4.7) and is consistent and asymptotically normal under as-

sumption A regardless of non-normality or conditional heteroskedasticity.

In a three-wave panel (T = 2) the model is just-identified and the RML estima-

tor coincides with the Anderson-Hsiao (1981) estimator based on the instrumental-

variable condition

E [yi0 (∆yi2 − α∆yi1)] = 0. (4.10)

Random effects likelihood functions for homoskedastic autoregressive models

under the normality assumption G2 have been considered in Blundell and Smith

(1991), Sims (2000), and Alvarez and Arellano (2003).

Efficiency Comparisons In order to compare the relative efficiency of the

BCS and RML estimators, it is useful to notice that RML is asymptotically equiv-

alent to an overidentified GMM estimator that uses the moment conditions:

E
h
x0iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ) (4.11)

E
h
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)
i
= 0 (4.12)

E

∙
1

σ2ε
xi (ui − φyi0)

¸
= hT (α,ϕ) (4.13)

E
h
D0 (DΛD0)−1Dvi (ui − φyi0)

i
= 0 (4.14)

E [yi0 (ui − φyi0)] = 0 (4.15)

E
£
(ui − φyi0)

2 − σ2ε
¤
= 0. (4.16)

and a weight matrix calculated under the assumption of normality.

BCS is based on moments (4.11) and (4.12), but RML is also using the in-

formation from the data in levels contained in (4.13) and (4.14). Moment (4.13)
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gives the between-group covariance between the regressor and the error, in the

same way as the BCS moment (4.11) specified the within-group covariance. The

moments in (4.14) state the orthogonality between within-group and between-

group errors (partialling out the initial observation). Finally, (4.15) and (4.16)

are unrestricted moments that determine φ and σ2ε.

Therefore, if the data are normally distributed RML is asymptotically more

efficient than BCS. Otherwise, they cannot be ordered. Nevertheless, a GMM

estimator based on (4.11)-(4.16) and a robust weight matrix that remains optimal

under nonnormality will never be less efficient asymptotically than BCS, and may

achieve a significant reduction in the number of moments relative to standard

GMM procedures.

The concentrated random effects log-likelihood Concentrating LR with

respect to σ2ε and φ we obtain the following criterion function that only depends

on α and θ:

L∗R = LC −
N

2
ln
£
(y − αx)0 S0 (y − αx)

¤
(4.17)

where S0 = IN − y0y00/ (y00y0), and y0 = (y10, ..., yN0)0.
L∗R can be regarded as a modified heteroskedastic within-group criterion with

a correction term that becomes less important as T increases.
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5. Estimation from the Data in Differences

Until now, the starting point was an interest in the conditional distribution of

(yi1, ..., yiT ) given yi0 and ηi under the assumption that yi0 was observed but ηi
was not. That is, that the data consisted on a random sample of the vectors

(yi0, yi1, ..., yiT ). In this section we maintain the interest in the same conditional

distribution as before, but assume that only changes of the yit variables are ob-

served, so that the data on individual i is (∆yi1, ...,∆yiT ). This situation is clearly

relevant when the data source only provides information on changes, but it may

also be interesting if it is thought that an analysis based on changes is more “ro-

bust” than one based on levels. An objective of this and the next section is to

discuss the content of this intuition by relating ML in differences to the previous

conditional and marginal methods. Maximum likelihood estimation of autore-

gressive models using first-differences has been considered by Hsiao, Pesaran, and

Tahmiscioglu (2002).

As a matter of notation, note that observability of (∆yi1, ...,∆yiT ) is equivalent

to observing y†i =
³
y†i1, ..., y

†
iT

´0
= (yi1 − yi0, ..., yiT − yi0)0, since (∆yi1, ...,∆yiT )0 =

D†y†i where D
† is the T × T nonsingular transformation matrix

D† =
µ
1 0 · · · 0 0

D

¶
with det

¡
D†¢ = 1. Also note that by construction y†i0 = yi0 − yi0 = 0.

We shall also use the notation x†i =
³
y†i0, ..., y

†
i(T−1)

´0
, so that y†i = yi−yi0ι and

x†i = xi− yi0ι. Similarly, y†i = y†0i Φι = yi− yi0, etc. The following is an expression
of y†i that makes explicit the connection to the data in differences:

y†i = ι0ΦD†−1 (∆yi1, ...,∆yiT )
0 =

TX
t=1

Ã
TX
s=t

ϕs

!
∆yit. (5.1)
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Under homoskedasticity ϕt = 1/T and (5.1) reduces to

y†i =
TX
t=1

µ
T − t+ 1

T

¶
∆yit. (5.2)

The original model can be written as

yi1 − yi0 = [ηi − (1− α) yi0] + vi1 (5.3)

yit − yi0 = α (yit − yi0) + [ηi − (1− α) yi0] + vit (t = 2, ..., T ) . (5.4)

Thus, the model for the deviations y†it can be regarded as a version of the original

model in which y†i0 = 0 for all individuals and the effect is given by

η†i = ηi − (1− α) yi0. (5.5)

From the point of view of this section, bundling together yi0 and ηi into η
†
i makes

sense because they are both unobserved. The usefulness of this notation is that

it allows us to easily obtain densities for the variables in first differences relying

on the previous results for the levels

Since the shocks vit remain the same in representation (5.3)-(5.4), applying

(3.13) we have

ln f
³
y†i | y†i0, η†i ,bη†i´ = −12 ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi (5.6)

where at true values

bη†i = y†i − x†iα = η†i + vi = ui − (1− α) yi0, (5.7)

and following (3.12): bη†i | y†i0, η†i ∼ N ³η†i ,ωT´ . (5.8)

Also, mimicking the marginal density decomposition in (3.15):

f
³
y†i | y†i0

´
= f

³
y†i | y†i0,bη†i´Z f

³bη†i | y†i0, η†i´ dG³η†i | y†i0´ . (5.9)
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Moreover, since y†i0 = 0 with probability one, f
³
y†i
´
= f

³
y†i | y†i0

´
and

bη†i | η†i ∼ N ³η†i ,ωT´ , (5.10)

so that

f
³
y†i
´
= f

³
y†i | bη†i´Z f

³bη†i | η†i´ dG³η†i´ = f ³y†i | bη†i´ f ³bη†i´ . (5.11)

Recall that the density f
³
y†i
´
is also the density of the first-differences of

the data (∆yi1, ...,∆yiT ), which we are expressing as the product of the usual

within-group conditional density and the marginal density of bη†i . Therefore, in
the absence of steady state assumptions about initial conditions, the form of the

density of panel AR(1) data in first differences depends on the distribution of the

effects. In the next section we shall see that this dependence vanishes under the

assumption of mean stationarity.

Let σ2†ε denote the variance of bη†i , which in general satisfies
σ2†ε = σ2η + (1− α)2 γ00 − 2 (1− α) γ0η + ωT . (5.12)

Under the assumption that η†i is normally distributed (as implied by G2, or by

the assumption that the marginal distribution of ∆yi1 is normal)

bη†i ∼ N ¡0,σ2†ε ¢ ,
we have the following “random effects” marginal log density for the data in first

differences

ln f (∆yi1, ...,∆yiT ) = −1
2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

−1
2
lnσ2†ε −

1

2σ2†ε

³
y†i − x†iα

´2
(5.13)

where the error in the last term can be expressed in first-differences as y†i −x†iα =PT
t=1

³PT
s=t ϕs

´
∆vit.
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Therefore, the random effects log likelihood for the data in first-differences is

a function of
¡
α,σ21, ...,σ

2
T ,σ

2†
ε

¢
given by

LRD = LC − N
2
lnσ2†ε −

1

2σ2†ε

NX
i=1

³
y†i − x†iα

´2
. (5.14)

Concentrating LRD with respect to σ2†ε we obtain the following criterion function

that only depends on α and θ:

L∗RD = LC −
N

2
ln
¡
y† − αx†

¢0 ¡
y† − αx†

¢
, (5.15)

which, in common with (4.17), can be regarded as a modified heteroskedastic

within-group criterion with a small T correction term.

The random effects ML estimator in first-differences (RML-dif) maximizes

L∗RD and is consistent and asymptotically normal under assumption A regardless

of nonnormality or conditional heteroskedasticity.

Underidentification in a Three-Wave Panel (T = 2) In common with

BCS, RML-dif estimation is not possible from a three-wave panel because α is not

identified from the expected scores of LRD. In contrast, RML achieves identifica-

tion by relying on the data in levels. The relationship between the two procedures

is best seen by examining the covariance matrix of the transformed series

V ar

⎛⎝ yi0
∆yi1
∆yi2

⎞⎠ = Ω∗ =

⎛⎝ γ00 γ0∆1 γ0∆2
γ0∆1
γ0∆2 Ω∆

⎞⎠ ,
where Ω∗ is a non-singular transformation of the covariance matrix in levels and

Ω∆ is the covariance matrix in first-differences. Thus, a model of Ω∆ is equiva-

lent to a model of Ω∗ that leaves the coefficients γ00, γ0∆1 and γ0∆2 unrestricted

(Arellano, 2003, p. 67). With T = 2, the only identifying information about

α is precisely the restriction γ0∆2 = αγ0∆1 satisfied by those coefficients, hence
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lack of identification from Ω∆. Under time series homoskedasticity, α is identifi-

able from Ω∆ when T = 2, but in that case all the information comes from the

homoskedasticity assumption.

Efficiency Comparisons If the data are normally distributed RML is as-

ymptotically more efficient than RML-dif, which in turn is more efficient than

BCS. The relative efficiency of RML-dif with respect to BCS under normality is

a consequence of the fact that both are statistics of the first differenced data, but

the former is the maximum likelihood estimator.

In the absence of normality, the estimators cannot be ranked. However, re-

gardless of normality, under Assumption A estimates based on first-differences

alone will never be more efficient than an optimal GMM estimator based on the

full covariance structure for the data in levels.
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6. Estimation Under Stationarity in Mean

In this section we consider conditional and marginal maximum likelihood esti-

mators that allow for time series heteroskedasticity but exploit the stationarity

in mean condition discussed in Section 2. Namely, that for every t the mean

of yit conditioned on ηi coincides with the steady state mean of the process

µi = ηi/ (1− α). Specifically, we assume:

γη0 =
σ2η

(1− α)
. (Assumption B)

Under assumptionsA andB the correlation between yit and ηi does not depend

on t, so that the first differenced data are orthogonal to the effects. This situation

led to orthogonality conditions for errors in levels used in the “system” GMM

methods considered by Arellano and Bover (1995) and Blundell and Bond (1998).

SystemGMM remained consistent in the presence of time series heteroskedasticity,

and the random effects estimator discussed below can be regarded as likelihood-

based counterpart to these procedures.

6.1. Conditional Maximum Likelihood Estimation

In order to construct a likelihood conditioned on the ML estimator of the effects

under mean stationarity, we consider the following conditional normality assump-

tion for yi0 given the effects:

yi0 | µi ∼ N
¡
µi,σ

2
0

¢
(Assumption G3)

where σ20 can be regarded as
P∞

j=0 α
2jσ2−j and satisfies σ

2
0 = γ00 − σ2η/ (1− α)2.

Under assumptions G1 and G3

yTi | µi ∼ N (µiι, V ) (6.1)
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where yTi = (yi0, yi1, ..., yiT )
0, ι denotes a vector of ones of order (T + 1), and

V = ΓΛ†Γ0 (6.2)

with Λ† = diag (σ20,σ
2
1, ...,σ

2
T ) and

Γ =

⎛⎜⎜⎜⎝
1 0 . . . 0 0
α 1 . . . 0 0
...

. . .
...

αT αT−1 . . . α 1

⎞⎟⎟⎟⎠ .
Thus

ln f
¡
yTi | µi

¢
= −1

2
ln detV − 1

2

¡
yTi − µiι

¢0
V −1

¡
yTi − µiι

¢
. (6.3)

The MLE of µi for given α and Λ† is

bµi = ¡ι0V −1ι¢−1 ι0V −1yTi . (6.4)

Next, to obtain the density of yTi conditioned on bµi (at true values of α and Λ†),

it is simpler to use the transformation matrix

H =
µ
(ι0V −1ι)−1 ι0V −1

D

¶
, (6.5)

which transforms yTi into
¡bµi,DyTi ¢, where D denotes the T × (T + 1) first-

difference matrix operator. Since yTi | µi is normal so is HyTi | µi. Moreover,

V ar
¡HyTi | µi¢ =

Ã
(ι0V −1ι)−1 0

0 DVD
0

!
(6.6)

so that bµi and DyTi are conditionally independent. Therefore,
f
¡
yTi | µi

¢
= f

¡HyTi | µi¢ |detH| = f ¡DyTi ¢ f (bµi | µi) . (6.7)

This is so becauseDyTi is independent of µi and the fact that |detH| = 1 (Arellano,
2003, p. 94).
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Therefore, the density of yTi conditional on bµi does not depend on µi and
coincides with the density for the data in first differences:

f
¡
yTi | bµi, µi¢ = f

¡
yTi | µi

¢
f (bµi | µi) = f ¡DyTi ¢ , (6.8)

which is

ln f
¡
DyTi

¢
= −1

2
ln det

³
DVD

0´− 1
2
yT 0i D

0 ³
DVD

0´−1
DyTi . (6.9)

This result is similar to the one discussed by Lancaster (2002) for a homoskedastic

stationary model.

Comparison with the Marginal Likelihood for First Differenced Data

Thus, the log likelihood conditioned on the ML estimates of the effects under mean

stationarity is a function of (α,σ21, ...,σ
2
T ,σ

2
0) given by

LCS = −N
2
ln det

³
DVD

0´− 1
2

NX
i=1

yT 0i D
0 ³
DVD

0´−1
DyTi . (6.10)

In the previous section we obtained a random effects likelihood (5.14) for

data in first-differences without assuming mean stationarity as a function of¡
α,σ21, ...,σ

2
T ,σ

2†
ε

¢
. In general, σ2†ε satisfies expression (5.12), which under mean

stationarity becomes

σ2†ε = (1− α)2 σ20, (6.11)

but remains a free parameter because so is σ20.

Thus, the restriction of mean stationarity is immaterial to the data in first

differences. LRD and LCS are different parameterizations of the same criterion.

Depending on ones taste it can be regarded as a mean-stationary conditional

likelihood or as a nonstationary random effects likelihood for the first differenced

data. In particular the estimator that maximizes LCS (or LRD) will be consistent

under Assumption A regardless of mean stationarity.
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Note that under homoskedasticity or covariance stationarity the situation is

different because σ20 is no longer a free parameter, but tied to the common variance

σ2 through σ20 = σ2/ (1− α2).

6.2. Random Effects

If in addition to assumptionsG1 andG3 we assume that µi is normally distributed

(as implied by G2), we can obtain the integrated density marginal on µi:

f
¡
yTi
¢
=

Z
f
¡
yTi | µi

¢
dG (µi) (6.12)

whose log is given by

ln f
¡
yTi
¢
= −1

2
ln detΩ− 1

2
yTi

0Ω−1yTi (6.13)

with

Ω = σ2µιι
0 + V. (6.14)

Therefore, the random effects log likelihood under mean stationarity is a func-

tion of
¡
α,σ21, ...,σ

2
T ,σ

2
0,σ

2
η

¢
given by

LRS = −N
2
ln detΩ− 1

2

NX
i=1

yTi
0Ω−1yTi . (6.15)

The random effects ML estimator subject to mean stationarity (RML-s) max-

imizes LRS and is consistent and asymptotically normal under assumptions A and

B regardless of non-normality or conditional heteroskedasticity.

In a three-wave panel (T = 2), the mean stationarity assumption imposes one

restriction in the data covariance matrixΩ, which corresponds to the orthogonality

conditions for the systemGMM estimator simulated in Arellano and Bover (1995):

E [yi0 (∆yi2 − α∆yi1)] = 0

E [∆yi1 (yi2 − αyi1)] = 0.
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RML-s provides a one-step estimator based on T+4moment conditions that is

asymptotically equivalent to two-step GMM system estimators under conditional

homoskedasticity, and more efficient than standard one-step system estimators

under time series heteroskedasticity.

As in the previous sections, the comparison between conditional and marginal

ML estimates under stationarity can be understood as a straightforward compar-

ison between covariance matrices of data in levels and first-differences

Relation to RML without Mean Stationarity Equation (4.3) in Sec-

tion 4 gave the random effects log likelihood conditioned on yi0. Adding to this

expression the likelihood of yi0, we can write the likelihood of yTi in the absence

of mean stationarity as a function of (α,σ21, ...,σ
2
T ,φ,σ

2
ε, γ00) given by

LRU = LR − N
2
ln γ00 −

1

2γ00
y00y0. (6.16)

In the parameterization of LRU , mean stationarity can be expressed as the restric-

tion

σ2ε = (1− α)φ (1− φ) γ00 + ωT . (6.17)

Thus, RML-s can also be obtained maximizing LRU subject to (6.17).
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7. Calculations of Relative Asymptotic Variances

We perform numerical calculations of the asymptotic variances for various esti-

mators of the autoregressive coefficient. In this draft we report the asymptotic

variances of the homoskedastic BCS and RML-dif estimators relative to the ho-

moskedastic RML in levels, calculated under the assumption of normality. For-

mulae for the asymptotic variances are derived in Appendix A.

The interest of the exercise is in providing information on the efficiency gains

that can be expected from the levels of the data, relative to only using first-

differences, when RML is the maximum likelihood estimator, and stationarity

restrictions are not enforced. In addition, we also get to know about the magnitude

of the asymptotic inefficiency of BCS relative to RML-dif under normality.

Figures 1 and 2 show values of the asymptotic standard deviations of the

homoskedastic BCS and RML-dif estimators relative to the standard deviation

of RML, for non-negative values of α. The calculations are for T = 2, 3, and 9,

under stationarity and σ2 = 1.

The T = 2 case is special because in that situation BCS and RML-dif coincide

and their ability to identify α rests exclusively on the homoskedasticity restriction.

In Figure 1 the variance of the effects has been set to zero (λ = σ2η/σ
2 = 0),

whereas in Figure 2 σ2η and σ2 are equal (λ = 1). The relative inefficiency of both

estimators increases monotonically with α and decreases with λ and T . Figure 1

shows potentially important efficiency gains from using the levels when T = 3 and

α is large, but the gains become much smaller when λ = 1, as shown in Figure 2.

Finally in Figure 3 we explore the impact of nonstationarity. We calculate the

same relative inefficiency measures as in the previous figures for different values

of the ratio of the actual to the steady state standard deviations of y0. Thus,

under stationarity κ = 1, and a value of κ = 2 means that the standard deviation
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of initial conditions is twice the standard deviation of the steady state standard

deviation of the process. We set T = 3, λ = 0, and α = 0.9, so that we essentially

calculate the maximal inefficiencies for each value of κ. For κ < 1, the inefficiency

of BCS can be enormous, whereas the inefficiency of RML-dif is much smaller and

shows a non-monotonic pattern.

8. Empirical Illustration: Individual Earnings Dynamics

In order to illustrate the properties of some of the previous methods, we esti-

mate first-order autoregressive equations for individual labour income using two

different samples. The first one is a sample of Spanish men from the European

Community Household Panel (ECHP) for the period 1994-1999. The second is a

sample from PSID for the period 1977-1983 taken from Alvarez, Browning, and

Ejrnæs (2001).

There are 632 individuals in the Spanish data set and 792 in the PSID sample.

All individuals in both data sets are married males, who are aged 20-65 during

the sample period, heads of household, and continuously employed. The earnings

variable is similarly defined in the two samples as total annual labour income of

the head.

The variables that we use in the estimation are log earnings residuals from first-

stage regressions on age, age squared, education and year dummies (see Alvarez,

Browning, and Ejrnæs, 2001, for further details on the PSID sample, and tables

A1 and A2 for the Spanish sample). Log earnings have a much higher variance

in the PSID sample than in the Spanish one. Moreover, the PSID data show a

sharp rise in the variance of earnings in 1982 (a widely documented fact), whereas

there is no appreciable change in the variance in the Spanish sample during the

(different) years that we observe.

The results for the Spanish data are reported in Table 1. Heteroskedastic bias-
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corrected score (BCS) and random effects (RMLr) estimates of the autoregressive

coefficient are very similar. They are also very close to the homoskedastic random

effects estimate (RMLnr), which is not surprising given the absence of change in

the period-specific variance estimates reported in the table. By comparison, the

GMM estimates (one- and two-step) are very small, given that GMM, BCS, and

RMLr are all consistent under similar assumptions. The system GMM estimator,

that relies on mean stationarity, is more in line with the likelihood-based estimates,

although probably for the wrong reasons, given the rejection of mean stationarity

that is apparent from the Sargan test. Finally, within-groups (WG) and the

random effects estimate that rules out correlation between the effects and initial

observations (RML, φ = 0) exhibit, respectively, the downward and upward biases

that would be predicted from theory.

The results for the PSID sample, reported in Table 2, also show a marked

discrepancy between the likelihood-based estimates and GMM, and a similar re-

jection of mean stationarity from the incremental Sargan test. In the PSID data

there is more state dependence than in the Spanish data, at least as measured

by the autoregressive coefficient. There is also more variation in the errors and

substantial time series heteroskedasticity. The latter translate into a small but

noticeable upward bias in the RML estimate calculated under the assumption of

homoskedasticity.

Given the estimates reported in tables 1 and 2, the variance of the effects can

be recovered from σ2η = σ2ε + φ2γ00 − ωT (as explained in Section 4), which givesbσ2η = 0.05 for the Spanish data, and bσ2η = 0.07 for the PSID.
The regression coefficient of η on y0 under mean stationarity is

φ∗ =
1

(1− α)

σ2η
γ00
.

The implied RML estimates of this quantity for the Spanish data (bφ∗ = 0.563) is
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very similar to the unrestricted estimate in Table 1, whereas the estimate from the

PSID sample (bφ∗ = 0.464) is somewhat larger than the corresponding unrestricted
estimate in Table 2.

GMM estimates are known to be downward biased in finite samples, specially

when the number of moments is large and the instruments are weak. However, the

magnitude of the bias in our application (relative to the likelihood estimates) is

puzzling for the values of α and T/N that we have, unless related to other aspects

of the specification of the models. In particular, it may be useful to estimate a

second-order autoregressive model. The evidence that we have against second-

order autocorrelation in the first differenced errors from the m2 test statistics

(Arellano and Bond, 1991) is conclusive for the Spanish panel but marginal for

the PSID.

Monte Carlo Simulations In order to illustrate the properties of the es-

timators, we performed a small simulation exercise calibrated to the likelihood-

based estimates from the PSID data. We generated 1000 replications with N =

792, T o = 7, ηi ∼ N
¡
0,σ2η

¢
, vit ∼ N (0,σ2t ), σ2η = 0.07, and mean stationarity.

In Tables 3 and 4 we report means and standard deviations of theWG, GMM1,

RML(nr), RML(r), and BCS estimators for α = 0.4 and 0.8, respectively (with

σ20 = 0.11 and 0.28). The results show that both RML(r) and BCS are virtually

unbiased. Those in Table 3 nicely reproduce the WG downward bias and the

RML(nr) upward bias that we found in the PSID sample. However, further inves-

tigation under alternative specifications of the data generating process is required,

because so far the results fail to explain the performance of GMM with the real

data.
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9. Concluding Remarks

From a GMM perspective, a motivation for considering likelihood based estima-

tors is to reduce the number of moments available for estimation. The number

of orthogonality conditions of optimal GMM estimators in autoregressive panel

models grows at a rate of T (T − 1) /2, whereas the number of score equations
for the heteroskedastic likelihood estimators grows at a rate of T . An interesting

question is to characterize the potential incidental parameter problem that occurs

for these estimators as T tends to infinity.

From ongoing work by the authors, we conjecture that in a double asymptotic

setup where T/N tends to a finite constant, the estimators with unrestricted time

series variances remain consistent and asymptotically normal, but have a bias term

in the asymptotic distribution when the data are not symmetrically distributed.
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Table 1
Autoregressive Model of Earnings
Results for Spanish Data, 1994-1999

N = 632, T 0 = 6
WG GMM1 GMM2 System-GMM

α −0.022 0.041 0.035 0.183
(−0.95) (1.12) (1.87) (7.00)

Sargan test (df) 11.99(9) 22.71(13)
m1 −9.66 −9.89
m2 −0.27 −0.23

Likelihood-based Estimates
BCS RML(r) RML(nr) RML

(robust) (robust) (homosk.) (φ = 0)
α 0.210 0.200 0.207 0.926

(8.03) (9.14) (4.39) (131.9)

σ21 (1995) 0.025 0.023
(11.26) (18.04)

σ22 (1996) 0.022 0.021
(8.46) (20.45)

σ23 (1997) 0.022 0.023
(6.47) (21.31)

σ24 (1998) 0.025 0.023
(10.00) (20.25)

σ25 (1999) 0.020 0.025
(3.77) (19.36)

φ 0.567
(24.67)

σ2ε 0.020
(23.52)

γ00 0.111

Data are log earnings residuals from a regression on age,
education and year dummies. γ00 is the sample variance of y0.
t−ratios robust to conditional heteroskedasticity.
m1 and m2 are serial correlation tests for differenced errors.
(φ,σ2ε) are regression coeffs. of

¡
y − αy−1

¢
on y0.
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Table 2
Autoregressive Model of Earnings
Results for PSID Data, 1977-1983

N = 792, T 0 = 7
WG GMM1 GMM2 System-GMM

α 0.184 0.171 0.157 0.311
(6.08) (3.34) (3.53) (9.75)

Sargan test (df) 15.61 (14) 46.59 (19)
m1 −6.36 −6.39
m2 1.82 1.65

Likelihood-based Estimates
BCS RML(r) RML(nr) RML

(robust) (robust) (homosk.) (φ = 0)
α 0.385 0.367 0.416 0.902

(9.55) (31.82) (18.03) (118.2)

σ21 (1978) 0.063 0.059
(7.74) (34.76)

σ22 (1979) 0.065 0.058
(5.95) (39.63)

σ23 (1980) 0.066 0.052
(6.03) (29.23)

σ24 (1981) 0.032 0.046
(4.16) (30.56)

σ25 (1982) 0.102 0.096
(3.93) (84.79)

σ26 (1983) 0.071 0.091
(2.23) (58.04)

φ 0.384
(24.76)

σ2ε 0.045
(28.09)

γ00 0.239

Data are log earnings residuals from a regression on age,
education and year dummies. γ00 is the sample variance of y0.
∗See notes to Table 1.
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Table 3
Simulations for the Autoregressive Model

Means and standard deviations of the estimators
N = 792, T 0 = 7

WG GMM RML(nr) RML(r) BCS

α
0.178
(0.015)

0.396
(0.035)

0.430
(0.021)

0.400
(0.020)

0.400
(0.021)

σ21
0.059
(0.003)

0.059
(0.004)

σ22
0.058
(0.003)

0.058
(0.004)

σ23
0.052
(0.003)

0.052
(0.004)

σ24
0.046
(0.003)

0.046
(0.005)

σ25
0.096
(0.005)

0.096
(0.007)

σ26
0.091
(0.005)

0.091
(0.006)

1000 replications. Parameter values: α = 0.4, σ21 = 0.059,
σ22 = 0.058,σ

2
3 = 0.052,σ

2
4 = 0.046,σ

2
5 = 0.096,σ

2
6 = 0.091

σ2η = 0.07, σ
2
0 = 0.11.
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Table 4
Simulations for the Autoregressive Model

Means and standard deviations of the estimators
N = 792, T 0 = 7

WG GMM RML(nr) RML(r) BCS

α
0.488
(0.016)

0.772
(0.076)

0.882
(0.028)

0.804
(0.037)

0.805
(0.038)

σ21
0.059
(0.004)

0.059
(0.004)

σ22
0.058
(0.004)

0.058
(0.005)

σ23
0.052
(0.004)

0.052
(0.005)

σ24
0.046
(0.003)

0.046
(0.005)

σ25
0.096
(0.005)

0.096
(0.007)

σ26
0.091
(0.005)

0.091
(0.006)

1000 replications. Parameter values: α = 0.8, σ21 = 0.059,
σ22 = 0.058,σ

2
3 = 0.052,σ

2
4 = 0.046,σ

2
5 = 0.096,σ

2
6 = 0.091

σ2η = 0.07, σ
2
0 = 0.28.
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Table A1
Sample characteristics: Spanish Data, 1994-1999

N = 632, T 0 = 6
Mean Min Max

age 43.5 23 65
tenure (years of exp in the job) 13.4 0 20
real labor income (euros) 13296.8 3529.1 72825.8
real capital income (euros) 276.6 0 27761.8
% less than sec educ 28.3
% secondary educ 46.3
% university educ 25.4
% industry 37.0
% service 63.0
% private sector 65.0

Table A2
Regression results first-step

Dependent variable: log of real labor income
Spanish Data, 1994-1999

Coefficient t-ratio
constant 7.269 54.98
age 0.076 12.79
age2 -0.001 -11.47
sec educ 0.267 19.98
univ educ 0.717 46.48
private sector 0.073 5.73
services -0.006 -0.50
d94 -0.040 -2.15
d95 -0.051 -2.79
d96 -0.054 -2.95
d97 -0.049 -2.68
d98 -0.027 -1.50
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Appendix

A. Asymptotic Variances of Estimators Under Normality

A.1. Asymptotic Variance of the Homoskedastic RML-dif Estimator

Letting η†i = ηi − (1− α) yi0, the model can be written as

∆yi1 = η†i + vi1
∆yit = α∆yi(t−1) +∆vit (t = 2, ..., T )

or in vector notation

B

⎛⎜⎝ ∆yi1
...

∆yiT

⎞⎟⎠ = D†

⎛⎜⎝ η†i + vi1
...

η†i + viT

⎞⎟⎠ ≡ D†u†i

where B and D† are T × T matrices of the form

B =

⎛⎜⎜⎜⎝
1 0 . . . 0 0
−α 1 . . . 0 0
...

. . .
...

0 0 . . . −α 1

⎞⎟⎟⎟⎠ , D† =
µ
1 0 · · · 0 0

D

¶
.

Moreover,
V ar

³
D†u†i

´
= D† ¡σ2η†ιι0 + Λ

¢
D†0

where σ2η† = V ar
³
η†i
´
and under homoskedascity Λ = σ2IT .

Therefore,

V ar

⎛⎜⎝ ∆yi1
...

∆yiT

⎞⎟⎠ = B−1D† ¡σ2η†ιι0 + Λ
¢
D†0B−10 ≡ Ω (γ) (A.1)

where γ =
¡
α,σ2,σ2η†

¢0
.4

4The same expression is valid for the heteroskedastic RML-dif except that in that case γ =³
α,σ21, ...,σ

2
T ,σ

2
η†
´0
.
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Moreover, note that the homoskedastic marginal MLE for the data in differ-
ences in (B.14) can be written as

¡bαD, bσ2, bσ2η†¢ = argmin
⎡⎢⎣ln detΩ (γ) + 1

N

NX
i=1

(∆yi1, ...,∆yiT )Ω
−1 (γ)

⎛⎜⎝ ∆yi1
...

∆yiT

⎞⎟⎠
⎤⎥⎦ .

Thus, under normality the asymptotic variance matrix of
¡bαD, bσ2, bσ2η†¢ is given

by5

2
©
H (γ)0D0 £Ω−1 (γ)⊗ Ω−1 (γ)

¤DH (γ)ª−1
where

H (γ) =
∂vech [Ω (γ)]

∂γ0

and D is the selection matrix

D = ∂vecΩ

∂ (vechΩ)0
.

5See for example Arellano (2003, p. 72).
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A.2. Asymptotic Variance of the Homoskedastic RML-lev Estimator

In order to exploit the previous result for the differences, we express the covariance
structure corresponding to the levels using the transformation:

V ar

⎛⎜⎜⎜⎝
yi0
∆yi1
...

∆yiT

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
γ00 γ0η† αγ0η† . . . αT−1γ0η†
γ0η†
αγ0η† Ω (γ)
...

αT−1γ0η†

⎞⎟⎟⎟⎟⎟⎠ = Ω∗ (γ∗)

where γ00 = V ar (yi0), γ0η† = Cov
³
yi0, η

†
i

´
, and γ∗ =

¡
α,σ2,σ2η†, γ0η†, γ00

¢0
.

Arguing as in the previous case, the homoskedastic marginal MLE for the data
in levels can be written as ¡bαL, eσ2, eσ2η†, eγ0η†,eγ00¢ =
argmin

⎡⎢⎢⎢⎣ln detΩ∗ (γ∗) + 1

N

NX
i=1

(yi0,∆yi1, ...,∆yiT )Ω
∗−1 (γ∗)

⎛⎜⎜⎜⎝
yi0
∆yi1
...

∆yiT

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

Thus, under normality the asymptotic variance matrix of
¡bαL, eσ2, eσ2η†,eγ0η†,eγ00¢ is

given by
2
©
H∗ (γ∗)0D∗0 £Ω∗−1 (γ∗)⊗ Ω∗−1 (γ∗)

¤D∗H∗ (γ∗)
ª−1

where

H∗ (γ∗) =
∂vech [Ω∗ (γ∗)]

∂γ∗0

and D∗ is the selection matrix
D∗ = ∂vecΩ∗

∂ (vechΩ∗)0
.

Note that in this parameterization, under stationary initial conditions, γ00
remains a free parameter (which determines σ2η) and

γ0η† ≡ Cov
³
yi0, η

†
i

´
= − σ2

(1 + α)

σ2η† ≡ V ar
³
η†i
´
=

µ
1− α

1 + α

¶
σ2.
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A.3. Asymptotic Variance of the Homoskedastic Lancaster Estimator

Because of the incidental parameters problem, the ML estimates of α and σ2

estimated jointly with the effects are inconsistent for fixed T . However, as noted by
Lancaster (2002), we can obtain score adjusted (or “degrees of freedom” adjusted)
estimators that are consistent in view of the moment relationships:

E (x∗0i v
∗
i ) = −σ2hT (α)

E (v∗0i v
∗
i ) = (T − 1)σ2

where x∗i and v
∗
i denote orthogonal deviations of the original variables.

By substituting the second equation we can eliminate σ2 and get

E [ψi (α)] = 0

where

ψi (α) = x
∗0
i v
∗
i + v

∗0
i v

∗
i

hT (α)

(T − 1) . (A.2)

Under suitable regularity conditions, if there is a consistent root of the equationPN
i=1 ψi (a) = 0,

6 its asymptotic variance is given by

vα =
v

d2
. (A.3)

where
v = E

£
ψ2i (α)

¤
and

d = E

∙
∂ψi (α)

∂α

¸
.

Because of

∂ψi (α)

∂α
= −x∗0i x∗i − 2x∗0i v∗i

hT (α)

(T − 1) +
v∗0i v

∗
i

(T − 1)h
0
T (α) ,

we have

d = −E (x∗0i x∗i ) + 2σ2
h2T

(T − 1) + σ2h0T (A.4)

where we are using hT and h0T for shortness.

6A formal proof of consistency is given in Lancaster (2002), Theorem A1.
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Similarly,

v = E
h
(x∗0i v

∗
i )
2
i
+E

h
(v∗0i v

∗
i )
2
i h2T
(T − 1)2 + 2E [(x

∗0
i v
∗
i ) (v

∗0
i v

∗
i )]

hT
(T − 1) . (A.5)

The availability of expression (A.1) allows us to calculate the term E (x∗0i x
∗
i )

that appears in (A.4) as follows

E (x∗0i x
∗
i ) = E

³
x0iD

0 (DD0)−1Dxi
´
= tr

h
(DD0)−1Ω11

i
(A.6)

where Ω11 = E (Dxix0iD
0) is the (T − 1)× (T − 1) north-west submatrix of Ω (γ).

Next, under normality and homoskedasticity we have

E
h
(x∗0i v

∗
i )
2
i
= σ4h2T + σ2E (x∗0i x

∗
i ) + σ4tr (QCTQCT ) (A.7)

E
h
(v∗0i v

∗
i )
2
i
= σ4 (T + 1) (T − 1) (A.8)

E [(x∗0i v
∗
i ) (v

∗0
i v

∗
i )] = −σ4hT (T + 1) (A.9)

where Q = IT − ιι0/T and CT is such that E (xiv0i) = σ2CT .
Thus,

v = σ4h2T + σ2E (x∗0i x
∗
i ) + σ4tr (QCTQCT )− σ4h2T

µ
T + 1

T − 1
¶

or
v = σ2E (x∗0i x

∗
i ) + σ4tr (QCTQCT )− 2

(T − 1)σ
4h2T . (A.10)

To get the results (A.7)-(A.9) we have used the following intermediate formulae
for moments of quadratic forms in normal variables:

E
h
(x∗0i v

∗
i )
2
i
= [E (x∗0i v

∗
i )]

2
+ tr [E (x∗ix

∗0
i )E (v

∗
i v
∗0
i )] + tr [E (x

∗
i v
∗0
i )E (x

∗
i v
∗0
i )]

E
h
(v∗0i v

∗
i )
2
i
= tr2 [E (v∗i v

∗0
i )] + 2tr [E (v

∗
i v
∗0
i )E (v

∗
i v
∗0
i )] = (T − 1)2 σ4 + 2σ4 (T − 1)

E [(x∗0i v
∗
i ) (v

∗0
i v

∗
i )] = E (x∗0i v

∗
i )E (v

∗0
i v

∗
i ) + 2tr [E (x

∗
i v
∗0
i )E (v

∗
i v
∗0
i )]

= −σ4hT (T − 1)− 2σ4hT .

41



B. Proofs and Intermediate Results

B.1. Bias-Corrected Score Estimation

B.1.1. Heteroskedastic First-Differences, Within-Groups, and Orthog-
onal Deviations

Let D be the (T − 1)×T first-difference matrix operator. For any (σ21, ...,σ2T ) and
v = (v1, ..., vT )

0 the following equivalences hold:

v0D0 (DΛD0)−1Dv =
TX
t=1

(vt − v)2
σ2t

=
1

ωT

TX
t=1

ϕt (vt − v)2

=
1

ωT
v0 (Φ− Φιι0Φ) v (B.1)

where Λ = diag (σ21, ...,σ
2
T ),

v =
TX
s=1

ϕsvs ≡ v0Φι

ϕs =
σ−2s

σ−21 + ...+ σ−2T
,

also Φ = diag (ϕ1, ...,ϕT ), and

ωT = V ar (v) =
TX
s=1

ϕ2sσ
2
s =

¡
σ−21 + ...+ σ−2T

¢−1
=
¡
ι0Λ−1ι

¢−1
so that Λ−1 = (1/ωT )Φ.
It is also true that

ωT = E

"
1

(T − 1)
TX
t=1

ϕt (vt − v)2
#
, (B.2)

so that for fixed T a degrees of freedom correction is needed.
Regarding period-specific variances, taking into account that:

E
£
(vt − v)2

¤
= σ2t + ωT − 2E (vtv) = σ2t + ωT − 2ϕtσ2t = σ2t + ωT − 2ωT
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we have the following expressions:

σ2t = E
£
(vt − v)2

¤
+ ωT (B.3)

or
σ2t − σ2t−1 = E

£
(vt − v)2

¤− E £(vt−1 − v)2¤ (t = 2, ...T ) .

Note that 0 ≤ ϕt ≤ 1,
PT

t=1 ϕt = 1, and that under homoskedasticity ϕt = 1/T
for all t. Also note that (B.3) can be used to easily verify (B.2).
Moreover,

ln det (DΛD0) =
TX
t=1

lnσ2t + ln
¡
σ−21 + ...+ σ−2T

¢
=

T−1X
t=1

ln eσ2t
= −

TX
t=1

lnϕt − (T − 1) ln
¡
σ−21 + ...+ σ−2T

¢
= − ln detΦ+ (T − 1) lnωT (B.4)

Note that these equivalences also imply

ln detΛ = ln det (DΛD0) + lnωT . (B.5)

Heteroskedastic Orthogonal Deviations The following equivalence also
holds

v0D0 (DΛD0)−1Dv =
T−1X
t=1

ev2teσ2t (B.6)

where the heteroskedastic orthogonal deviations are given by

evt =
⎧⎪⎨⎪⎩
vT−1 − vT for t = T − 1

vt − σ−2t+1vt+1+...+σ
−2
T vT

σ−2t+1+...+σ
−2
T

for t = T − 2, ..., 1
(B.7)

eσ2t =
⎧⎨⎩

σ2T−1 + σ2T for t = T − 1

σ2t +
1

σ−2t+1+...+σ
−2
T

for t = T − 2, ..., 1
. (B.8)

or

evt =
⎧⎨⎩ vT−1 − vT for t = T − 1

(vt − vt+1) + λt+1evt+1 for t = T − 2, ..., 1
(B.9)
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where λt = σ2t/eσ2t , (t = T − 1, ..., 1).
To clarify the mapping between (σ21, ...,σ

2
T ) and

¡eσ21, ..., eσ2T−1¢ note that
E [(vT−1 − vT ) (vT−2 − vT )] = σ2T

E (evt) = eσ2t (t = T − 1, ..., 1) .
So we identify σ2T as a covariance between (vT−1 − vT ) and (vT−2 − vT ), and eσ2T−1
as the variance of evT−1 = (vT−1 − vT ), so that σ2T−1 = eσ2T−1 − σ2T . We can get

λT−1 =
σ2T−1eσ2T−1 = σ2T−1

σ2T−1 + σ2T

and use it to form evT−2 = (vT−2 − vT−1) + λT−1evT−1,
which allows us to get eσ2T−2. Now we can get σ2T−2 = eσ2T−2 − 1/ ¡σ−2T−1 + σ−2T

¢
,

λT−2 = σ2T−2/eσ2T−2, and proceed recursively to obtain the remaining terms. Note
that the eσ2t will be nonnegative by construction, so that the non-negativity prob-
lem is confined to σ2T .

Idempotent Matrices Concerning relevant idempotent matrices, letting
Q = Φ−Φιι0Φ, note that the matrix Q† = I−Φ1/2ιι0Φ1/2 is idempotent, and that
Q = Φ1/2Q†Φ1/2. Also

Q† = Λ1/2D0 (DΛD0)−1DΛ1/2 = I − ωTΛ
−1/2ιι0Λ−1/2

and D0 (DΛD0)−1D = Λ−1/2Q†Λ−1/2. So that

D0 (DΛD0)−1D = Λ−1 − ωTΛ
−1ιι0Λ−1 =

1

ωT
Q. (B.10)

Derivatives Letting ϕ = (ϕ1, ...,ϕT )
0 = Φι, we have the following result:

∂ϕ

∂θ0
= − (Φ− Φιι0Φ)Λ−1 = −D0 (DΛD0)−1DΦ. (B.11)

To see this recall that ϕs = ωT/σ
2
T and consider

dϕ = ωT
∂

∂θ0

⎛⎜⎝ 1/σ21
...

1/σ2T

⎞⎟⎠ dθ +
⎛⎜⎝ 1/σ21

...
1/σ2T

⎞⎟⎠ ∂ωT
∂θ0

dθ.
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Also using
∂ωT
∂σ2s

=
1/σ4s¡

σ−21 + ...+ σ−2T
¢2 = ϕ2s, (B.12)

we get

∂ϕ

∂θ0
= −ωT

⎛⎜⎝ 1/σ41 . . . 0
...

. . .
...

0 . . . 1/σ4T

⎞⎟⎠+
⎛⎜⎝ 1/σ21

...
1/σ2T

⎞⎟⎠ ¡ ϕ21 . . . ϕ2T
¢

= − 1

ωT

⎛⎜⎝ ϕ21 . . . 0
...

. . .
...

0 . . . ϕ2T

⎞⎟⎠+ 1

ωT

⎛⎜⎝ ϕ1
...
ϕT

⎞⎟⎠ ¡ ϕ21 . . . ϕ2T
¢

= − 1

ωT
ΦΦ− 1

ωT

⎛⎜⎝ ϕ1
...
ϕT

⎞⎟⎠ ¡ ϕ1 . . . ϕT
¢
Φ = − 1

ωT
(Φ− Φιι0Φ)Φ.

B.1.2. Joint MLE of Common Parameters and Effects

Under Assumption G1 the joint log likelihood of common parameters and effects
is

L
¡
α,σ21, ...,σ

2
T , η1, ..., ηN

¢
= −N

2

TX
t=1

lnσ2t −
1

2

NX
i=1

TX
t=1

µ
v2it
σ2t

¶
The MLE of ηi for given α and (σ21, ...,σ

2
T ) is:

bηi = TX
t=1

ϕt
¡
yit − αyi(t−1)

¢
.

Thus the likelihood concentrated with respect to η1, ..., ηN is

L∗
¡
α,σ21, ...,σ

2
T

¢
= −N

2

TX
t=1

lnσ2t −
1

2

NX
i=1

TX
t=1

µ
vit − vt

σt

¶2
.

The MLE of α for given (σ21, ...,σ
2
T ) is:

bα = " NX
i=1

TX
t=1

ϕt
¡
yi(t−1) − y(−1)

¢#−1 NX
i=1

TX
t=1

ϕt
¡
yi(t−1) − yi(−1)

¢
(yit − yi)
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The MLE of (σ21, ...,σ
2
T ) for given α and (η1, ..., ηN) is

7

bσ2t = 1

N

NX
i=1

¡
yit − αyi(t−1) − ηi

¢2
.

Therefore, bσ2t solves
bσ2t = 1

N

NX
i=1

£
(yit − yi)− bα ¡yi(t−1) − yi(−1)¢¤2 (t = 1, ..., T )

where yi =
PT

s=1 bϕsyis, bϕt = bσ−2t /PT
s=1 bσ−2s , and bα is as above but with weights

evaluated at their ML estimates.
Finally, expressing L∗ in terms of ϕs and ωT

L∗
¡
α,σ21, ...,σ

2
T

¢
=
N

2

TX
t=1

lnϕt −
NT

2
lnωT − 1

2ωT

NX
i=1

TX
t=1

ϕt (vit − vt)2 ,

we can see that the MLE of ωT for given α and
¡
ϕ1, ...,ϕT−1

¢
is

bωT = 1

NT

NX
i=1

TX
t=1

ϕt (vit − vt)2 ,

which is inconsistent for fixed T because of the absence of degrees of freedom
adjustment.

B.1.3. First-Order Conditions for Conditional ML Estimation

We are using

A =

⎛⎜⎝ a01
...
a0n

⎞⎟⎠ vec (A) =

⎛⎜⎝ a1
...
an

⎞⎟⎠
A⊗B = {ajkB}

7Note that
∂L

∂σ2t
=
N

2σ4t

Ã
1

N

NX
i=1

v2it − σ2t

!
.
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vec (ABC) = (A⊗ C 0) vec (B)
tr (A0B) = [vec (A)]0 vec (B)

d ln det (Ω) = tr
¡
Ω−1dΩ

¢
d
¡
Ω−1

¢
= −Ω−1 (dΩ)Ω−1.

The derivative of LC with respect ωT is

∂LC
∂ωT

=
N (T − 1)

ω2T

"
1

N (T − 1)
NX
i=1

v0i (Φ− Φιι0Φ) vi − ωT

#

=
1

ω2T

NX
i=1

[v0i (Φ− Φιι0Φ) vi − (T − 1)ωT ] .

The concentrated likelihood with respect to ωT is

L∗C =
N

2

TX
t=1

lnϕt −
N (T − 1)

2
ln

NX
i=1

TX
t=1

ϕt (vit − vi)2 ,

and the Lagrangean

L = L∗C + λ

Ã
1−

TX
t=1

ϕt

!
,

so that

∂L
∂ϕt

=
N

2

1

ϕt
− 1

2bωT
NX
i=1

"
(vit − vi)2 − 2vitvi

Ã
1−

TX
s=1

ϕs

!#
− λ

∂L
∂λ

= 1−
TX
t=1

ϕt.

Inserting the restriction, the first-order conditions for the weights are

1

ϕt
=
1bωT 1N

NX
i=1

(vit − vi)2 + λ,

and taking first-differences to eliminate the Lagrange multiplier

1

ϕt
− 1

ϕt−1
=
1bωT 1N

NX
i=1

(vit − vi)2 − 1bωT 1N
NX
i=1

¡
vi(t−1) − vi

¢2
47



or bωT
ϕt
− bωT

ϕt−1
=
1

N

NX
i=1

h
(vit − vi)2 −

¡
vi(t−1) − vi

¢2i
.

Nonnegativity constraints The nonnegativity constraints σ2t > 0 may be
enforced through the parameterization (ωT ,ϕ1, ...,ϕT ) imposing adding-up and
non-negativity restrictions to the weights. Alternatively, transformed variances
for errors in orthogonal deviations can be used, which confine nonnegativity re-
strictions to σ2T .

B.1.4. Bias corrected conditional ML scores

Under Assumption A

E
h
x0iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ)

where

hT (α,ϕ) =
T−1X
t=1

µ
1− αt

1− α

¶
ϕt+1.

An alternative expression is

hT (α,ϕ) =
1

(1− α)

"
1− ϕ1 −

TX
t=2

ϕtα
t−1
#

so that

hT (α,ϕ) =

(
1

(1−α)
h
1−PT

t=1 ϕtα
t−1
i
if α 6= 0

(1− ϕ1) if α = 0.

Proof. Using (B.10) we have

E
h
x0iD

0 (DΛD0)−1Dvi
i
= E

¡
x0iΛ

−1vi
¢− ωTE

¡
x0iΛ

−1ιι0Λ−1vi
¢

= −ωT ι0Λ−1E (vix0i)Λ−1ι
where E (vix0i) = ΛCT . The (t, s)th element of CT is α(s−t−1) for t < s, and zero
otherwise. Thus,

E
h
x0iD

0 (DΛD0)−1Dvi
i
= −ωT ι0CTΛ−1ι = −ι0CTΦι
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= − ¡0, 1, 1 + α, 1 + α+ α2, ..., 1 + α+ ...+ αT−2
¢⎛⎜⎝ ϕ1

...
ϕT

⎞⎟⎠
= −

∙µ
1− α

1− α

¶
ϕ2 +

µ
1− α2

1− α

¶
ϕ3 + ...+

µ
1− αT−1

1− α

¶
ϕT

¸
= −

T−1X
t=1

µ
1− αt

1− α

¶
ϕt+1.

The variance of the average error can be eliminated to give rise to moment
conditions that only depend on α and the weights as follows:

E [x0i (Φ− Φιι0Φ) vi] = −ωT
T−1X
t=1

µ
1− αt

1− α

¶
ϕt+1

ωT = E

∙
1

(T − 1)v
0
i (Φ− Φιι0Φ) vi

¸

E

"
x0i (Φ− Φιι0Φ) vi − 1

(T − 1)v
0
i (Φ− Φιι0Φ) vi

T−1X
t=1

µ
1− αt

1− α

¶
ϕt+1

#
= 0.

Integral of the Heteroskedastic Bias Function The integral of hT (α,ϕ)
is given by

bT (α,ϕ) =
T−1X
t=1

¡
ϕt+1 + ...+ ϕT

¢
t

αt.

To see this note that using

hT (α,ϕ) =
T−1X
t=1

¡
1 + α+ ..+ αt−1

¢
ϕt+1

=
T−1X
t=1

ϕt+1 + α
T−1X
t=2

ϕt+1 + α2
T−1X
t=3

ϕt+1 + ...+ αT−2ϕT ,

we can write

bT (α,ϕ) = α
T−1X
s=1

ϕs+1 +
α2

2

T−1X
s=2

ϕs+1 +
α3

3

T−1X
s=3

ϕs+1 + ..+
αT−1

T − 1ϕT
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=
T−1X
t=1

¡
ϕt+1 + ...+ ϕT

¢
t

αt.

Derivatives of bT (α,ϕ) with respect to ϕt are:

∂bT (α,ϕ)

∂ϕt
=

½
0 for t = 1Pt−1

s=1
αs

s
for t > 1

and in view of (B.11):

∂bT (α,ϕ)

∂θ
=

µ
∂ϕ

∂θ0

¶0
∂bT (α,ϕ)

∂ϕ
= −ΦD0 (DΛD0)−1D

⎛⎜⎜⎜⎜⎜⎝
0
α

α+ α2

2

α+ α2

2
+ α3

3
...

⎞⎟⎟⎟⎟⎟⎠ .

B.2. Random Effects Estimation

Proof of Results for the Random Effects Scores We show that under
Assumption A:

1

σ2ε
E [xi (ui − φyi0)] = hT (α,ϕ)

and

E

∙
1

σ2ε
ΦD0 (DΛD0)−1Dvi (ui − φyi0)

¸
= 0

First, using (2.6) and (3.25), the lagged average xi can be written as

xi = hT (α,ϕ) ηi+

Ã
ϕ1 +

T−1X
t=1

ϕt+1α
t

!
yi0+

T−1X
t=1

ϕt+1
¡
vit + αvi(t−1) + ...+ αt−1vi1

¢
.

(B.13)
To see this, note that

xi = ϕ1yi0 +
T−1X
t=1

ϕt+1yit

= ϕ1yi0 +
T−1X
t=1

ϕt+1

∙µ
1− αt

1− α

¶
ηi + αtyi0 +

¡
vit + αvi(t−1) + ...+ αt−1vi1

¢¸
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=

"
T−1X
t=1

ϕt+1

µ
1− αt

1− α

¶#
ηi +

Ã
ϕ1 +

T−1X
t=1

ϕt+1α
t

!
yi0

+
T−1X
t=1

ϕt+1
¡
vit + αvi(t−1) + ...+ αt−1vi1

¢
.

Moreover, letting ξi = ηi − φyi0, so that

σ2ε = V ar (vi) + V ar (ξi) .

Using these two expressions we have

1

σ2ε
E [xi (ui − φyi0)] =

1

σ2ε
{E (xivi) +E [xi (ηi − φyi0)]}

=
1

σ2ε

£
ω2TΛ

−1ι0E (vix0i)Λ
−1ι+ hT (α,ϕ)E (ηiξi)

¤
=

1

σ2ε
[ωThT (α,ϕ) + hT (α,ϕ)Cov (ηi, ξi)]

= hT (α,ϕ)
1

σ2ε
[V ar (vi) + V ar (ξi)] = hT (α,ϕ) .

This proves the first result. Turning to the second result, we have

E

∙
1

σ2ε
ΦD0 (DΛD0)−1Dvi (ui − φyi0)

¸
=

=
1

σ2ε
ΦD0 (DΛD0)−1E (Dvivi)

=
1

σ2ε
ΦD0 (DΛD0)−1DE (viv0i)Φι

=
1

σ2ε
ΦD0 (DΛD0)−1DΛΦι

=
ωT
σ2ε

ΦD0 (DΛD0)−1DΛΛ−1ι =
ωT
σ2ε

ΦD0 (DΛD0)−1Dι = 0.
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B.3. Estimation from the Data in Differences

Average of deviations from yi0 in terms of first-differences We use

the notation x†i =
³
y†i0, ..., y

†
i(T−1)

´0
, so that y†i = yi − yi0ι and x†i = xi − yi0ι.

Similarly, y†i = y
†0
i Φι = yi − yi0, etc. The following expression makes explicit that

y†i only depends on the data in differences:

y†i = ι0Φy†i = ι0ΦD†−1 (∆yi1, ...,∆yiT )
0

= (ϕ1, ...,ϕT )

⎛⎜⎜⎜⎝
∆yi1
∆yi1 +∆yi2
...
∆yi1 + ...+∆yiT

⎞⎟⎟⎟⎠ =
TX
t=1

Ã
TX
s=t

ϕs

!
∆yit.

Under homoskedasticity ϕt = 1/T and the previous expression reduces to

y†i = ∆yi1 +
T − 1
T

∆yi2 + ...+
1

T
∆yiT =

TX
t=1

µ
T − t+ 1

T

¶
∆yit.

Alternative Expressions for densities and criteria for first-differences
We have the following “random effects” marginal log density for the data in first
differences

ln f (∆yi1, ...,∆yiT ) = −1
2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

−1
2
lnσ2†ε −

1

2σ2†ε

³
y†i − x†iα

´2
or

ln f (∆yi1, ...,∆yiT ) =
1

2
ln detΦ− (T − 1)

2
lnωT − 1

2ωT
v0iD

0 ¡DΦ−1D0¢−1Dvi
−1
2
lnσ2†ε −

1

2σ2†ε

"
TX
t=1

Ã
TX
s=t

ϕs

!
∆vit

#2
.

Therefore, the random effects log likelihood for the data in first-differences is

LRD =
N

2

TX
t=1

lnϕt −
(T − 1)N

2
lnωT − 1

2ωT

NX
i=1

v0iD
0 ¡DΦ−1D0¢−1Dvi

−N
2
lnσ2†ε −

1

2σ2†ε

NX
i=1

³
y†i − x†iα

´2
.
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Concentrating LRD with respect to ωT and σ2†ε we can define the

(bαDH , bϕDH) = argmin

(
ln

Ã
NX
i=1

v0iD
0 ¡DΦ−1D0¢−1Dvi!− 1

(T − 1)
TX
t=1

lnϕt

+
1

(T − 1) ln
Ã

NX
i=1

u†2i

!)

subject to 0 < ϕt < 1 and
PT

t=1 ϕt = 1.
Finally, the corresponding homoskedastic estimator and log likelihood are

bαD = argmin(lnÃ NX
i=1

v0iD
0 (DD0)−1Dvi

!
+

1

(T − 1) ln
NX
i=1

[ui − (1− α) yi0]
2

)
.

(B.14)
and

ln f (∆yi1, ...,∆yiT ) ∝ −(T − 1)
2

lnσ2 − 1

2σ2
v∗0i v

∗
i

−1
2
lnσ2†ε −

1

2σ2†ε
[yi − αxi − (1− α) yi0]

2 .

The first-order conditions for α in the homoskedastic case are

∂ ln f (∆yi1, ...,∆yiT )

∂α
=
1

σ2
x∗0i v

∗
i +

1

σ2†ε
[ui − (1− α) yi0] (xi − yi0) .
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Figure 1
Relative Inefficiency Ratios (lamda=0)
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Figure 2
Relative Inefficiency Ratios (lamda=1)
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Figure 3
Relative Inefficiency Under Nonstationary Initial Variance

(T=3, alpha=0.9, lamda=0)

A
sy

m
pt

ot
ic

 S
D

 r
at

io

kapa

BCS
RML dif.


