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Abstract

We study the estimation of static games of incomplete information with multiple equilibria.

A static game is a generalization of a discrete choice model, such as a multinomial logit or probit,

which allows the actions of a group of agents to be interdependent. While the estimator we study

is quite flexible, we demonstrate that in most cases it can be easily implemented using standard

statistical packages such as STATA. We also propose an algorithm for simulating the model which

finds all equilibria to the game. As an application of our estimator, we study recommendations

for high technology stocks between 1998-2003. We find that strategic motives, typically ignored

in the empirical literature, appear to be an important consideration in the recommendations

submitted by equity analysts.
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1 Introduction

Game theory is one of the most commonly applied tools in economic theory, with substantive

applications in all major fields in economics. In some fields, particularly industrial organization,

game theory has not only transformed the analysis of market interactions, but also serves as an

important basis for policy recommendations. Given the importance of gaming in economic theory,

it is not surprising that the empirical analysis of games has been the focus of a recent literature in

econometrics and industrial organization.

In much of the literature, a discrete game is modeled much like a standard discrete choice

problem, such as the multinomial logit. An agent’s utility is often assumed to be a linear function

of covariates and a random preference shock. However, unlike a discrete choice model, utility

is also allowed to depend on the actions of other agents. A discrete game strictly generalizes a

standard random utility model, but does not impose the often strong assumption that agents act

in isolation. Early attempts at the econometric analysis of such games included Bjorn and Vuong

(1984), Bresnahan and Reiss (1991a), Bresnahan and Reiss (1991b). Recent contributions include

Haile, Hortacsu, and Kosenok (2008), Aradillas-Lopez (2005), Ho (2005), Ishii (2005), Pakes, Porter,

Ho, and Ishii (2005), Augereau, Greenstein, and Rysman (2007), Seim (2006), Sweeting (2005) and

Tamer (2003). In particular, Aguirregabiria (2004) proposes a two-step method to estimate static

games of incomplete information and illustrates it using as an example a static game of market

entry.

An important insight in the recent literature is that it is often most straightforward to estimate

discrete games in two steps. The static model of strategic interaction with incomplete information is

a particular case when the discount rate is zero of the dynamic games considered in Aguirregabiria

and Mira (2007), Bajari, Benkard, and Levin (2007), Berry, Pakes, and Ostrovsky (summer 2007)

and Pesendorfer and Schmidt-Dengler (2003). In a first step, the economist estimates the reduced

forms implied by the model. This often boils down to using standard econometric methods to

estimate the probability that one, out of a finite number of possible choices, is observed conditional

on the relevant covariates. In the second step, the economist estimates a single agent random utility

model, including as controls the equilibrium beliefs about the behavior of others from the first step.

In this paper, we study semiparametric estimation and simulation of static games of strategic

interaction with multiple equilibria. Like the two-step approach discussed above, we estimate the

reduced form choice probabilities in a first stage, and use them to simplify the estimation of the

finite dimensional mean payoff parameters in the second stage. We also study simulating multiple

equilibria of the model, which is required to study counterfactual predictions of the model. It is

widely known that models of the form that we consider can generate multiple solutions. However,
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outside of certain specific examples (e.g., those studied in Sweeting (2005)), it is not possible to

analytically derive all of the solutions of the model or even to determine the number of possible

solutions. Therefore, we propose an algorithm that can compute all of the equilibria to the model.

This algorithm uses the “all solutions homotopy”, which is available in standard numerical libraries

such as hompack. Therefore, we can use this to find the entire set of equilibrium actions at our

estimated parameter values. We discuss the potential uses of this algorithm in our application.

The two-step approach pioneered in Aguirregabiria and Mira (2007) can be implemented both

nonparametrically and semiparametrically. It is closely related to nonparametric identification of

the mean utility functions, and does not depend on whether the first stage regressors are discrete

or continuous and does not require a correctly specified first stage parametric model. The two-step

estimator has desirable computational and statistical properties. First, when the regressors are

continuous, despite the fact the first stage is nonparametric and might converge at a slow rate,

the structural parameters estimated in the second stage have normal asymptotics and converge at

a rate proportional to the square root of the sample size. This follows from arguments based on

Newey (1994). Under suitable regularity conditions, the asymptotic variance of the second stage es-

timator is invariant with respect to whether the first stage nonparametric estimator is implemented

using kernel methods or sieve methods. Second, in many cases the two-step nonparametric and

semiparametric estimators can be implemented with correct standard errors using a two-stage least

squares procedure in a standard statistical package like STATA. The simplicity of this approach

makes the estimation of these models accessible to a larger audience of researchers.

In the context of discrete regressors, Pesendorfer and Schmidt-Dengler (2003) demonstrate that

exclusion restrictions are sufficient for identification in a particular set of dynamic entry games.

A related exclusion restriction, which excludes payoff-relevant covariates for a particular player

from the utilities of the other players, is also required when the regressors are continuous. For

instance, in an entry model, if the productivity shock of firm i influences its own entry decision,

but only indirectly influences the entry decisions of other firms, then the mean payoff function

is nonparametrically identified. The condition for nonparametric identification can be formulated

as standard rank conditions for an appropriately defined linear system regardless of whether the

regressors are continuous or discrete. This identification strategy relies crucially on the assumption

that data in each market is generated from a single equilibrium. An alternative identification

strategy that is not considered in this paper is to search for events that change which equilibrium

to the game is played, but otherwise do not influence payoffs. Sweeting (2005) demonstrates that

multiplicity of equilibrium can assist with identification in a symmetric location game.

The assumption that the data come from a single equilibrium has very different implications

for discrete and continuous explanatory variables. If the vector of observable explanatory vari-
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ables has a discrete support and the nonparametric estimator in the first step does not impose any

smoothness conditions (e.g., an unrestricted frequency estimator), then the assumption needed is

that for a given value of explanatory variables, the data come from the same equilibrium. However,

when the explanatory variables contain continuous variables, the first-step estimator usually im-

poses smoothness conditions in order for the second step estimator to convergence at a parametric

rate to a normal distribution. This requires smoothness conditions with respect to continuous state

variables in the equilibrium selection mechanism. These smoothness conditions can be stated in

terms of pseudo-norms and may not allow for nondifferentiability at a set with measure zero, see for

example Chen, Linton, and Van Keilegom (2003). In the presence of multiple equilibria, the points

of nondifferentiability typically occurs when the equilibrium path bifurcates. The smoothness con-

dition does require the equilibrium paths do not bifurcate for almost all values of the continuous

state variable, or a smooth path is chosen at the points of bifurcation. If a substantial amount of

discontinuity is present in selecting among multiple equilibria of the game, in which case an alter-

native approach is to incorporate an equilibrium selection mechanism using exclusion restrictions,

either a full solution method or a version of the recursive method proposed by Aguirregabiria and

Mira (2007) applied to a static game must be used.

As an application of our methods, we model the determination of stock recommendations (e.g.

strong buy, buy, hold, sell) issued by equity analysts for high technology stocks listed in the NAS-

DAQ 100 between 1998 and 2003. The determination of recommendations during this time period

is of particular interest in the wake of the sharp stock price declines for technology firms in 2000.

Recommended stocks underperformed the market as a whole during this period by a wide margin.

Highly-publicized allegations of conflicts of interest have called into question whether analysts were

more concerned with helping their firms win investment banking business than with producing

accurate assessments of the prospects for the firms under scrutiny. While there is a fairly large

literature in finance on recommendations, we are not aware of any papers that formally consider

the simultaneity of recommendations due to strategic motives.

In our model, recommendations submitted by analysts depend on four factors. First, recom-

mendations must depend on fundamentals and commonly shared expectations about the future

profitability of the firm. These expectations will be embedded in the stock price. Second, analysts

are heterogeneous, both in terms of talent and perhaps in terms of access to information. We try to

capture an individual analyst’s private belief about the stock by looking at the difference between

the quarterly earnings forecast submitted by the analyst (or the analyst’s brokerage firm) and the

distribution of forecasts from other firms. Mindful of the large number of inquiries into possible

conflicts of interest among research analysts, we include as a third factor a dummy variable for an

investment banking relationship between the firm and the analyst’s employer.
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Finally, we consider the influence of peers on the recommendation decision. Peer effects can

impact the recommendation in different ways. Individual analysts have incentive to condition their

recommendation on the recommendations of their peers, because even if their recommendations

turn out to be unprofitable ex-post, performance evaluation is typically a comparison against the

performance of peers. More subtly, recommendations are relative rankings of firms and are not

easily quantifiable (or verifiable) objects. As such, ratings scales usually reflect conventions and

norms. The phenomenon is similar to the college professor’s problem of assigning grades. If a

professor were to award the average student with a C while other faculty give a B+ to the average

student, the professor might incorrectly signal his views of student performance. Even while there

is heterogeneity in how individual professors feel about grading, most conform to norms if only

to communicate clearly with students (and their potential employers) about their performance.

Similarly, analysts might have an incentive to benchmark their recommendations against perceived

industry norms.

This paper makes several contributions. First, we present an algorithm to compute all the

equilibria of a discrete game of incomplete information, which can be used to perform counterfactual

experiments with an estimated model. Second, we conduct an empirical study that applies state-of-

the-art techniques for the estimation and solution of discrete games of incomplete information. The

recent literature has put very little attention into the problem of multiple equilibria when making

predictions with the estimated model. An efficient algorithm that computes all the equilibria can

be a very a useful tool in this context. The empirical application in section 7 illustrates the use of

this algorithm when the estimated model is used to analyze the effects of a policy.

The paper is organized as follows. In section 2 we outline the general economic environment.

For purposes of exposition, we develop many of the key formulae within the context of a simple

entry model. In section 3 we discuss the problem of nonparametric identification of the mean

payoff functions. In section 4 we show how to derive nonparametric and semiparametric estimates

of the structural parameters for our class of models. Section 5 describes the all solutions homotopy

algorithm for simulating the model. Section 6 contains the empirical application to equity analyst

recommendations. Section 7 concludes the paper.

2 The model

In the model, there are a finite number of players, i = 1, ..., n and each player simultaneously

chooses an action ai ∈ {0, 1, . . . ,K} out of a finite set. We restrict players to have the same set of

actions for notational simplicity. However, all of our results will generalize to the case where all

players have different finite sets of actions. Let A = {0, 1, . . . ,K}n denote the vector of possible
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actions for all players and let a = (a1, ..., an) denote a generic element of A. As is common in

the literature, we let a−i = (a1, ...ai−1, ai+1, ..., an) denote a vector of strategies for all players,

excluding player i. We will abstract from mixed strategies since in our model, with probability one

each player will have a unique best response.

Let si ∈ Si denote the state variable for player i. Let S = ΠiSi and let s = (s1, ..., sn) ∈ S

denote a vector of state variables for all n players. We will assume that s is common knowledge to

all players in the game and in our econometric analysis, we will assume that s is observable to the

econometrician. The state variable is assumed to be a real valued vector, but Si is not required to

be a finite set. Much of the previous literature assumes that the state variables in a discrete games

lie in a discrete set. While this assumption simplifies the econometric analysis of the estimator and

identification, it is a strong assumption that may not be satisfied in many applications.

For each agent, there are also K + 1 state variables which we label as εi(ai) which are private

information to each agent. These state variables are distributed i.i.d. across agents and actions.

Let εi denote the 1× (K + 1) vector of the individual εi(ai). The density of εi(ai) will be denoted

as f(εi(ai)). However, we shall sometimes simplify the notation and denote the density for εi =

(εi(0), ..., εi(K)) as f(εi).

The period utility function for player i is:

ui(a, s, εi; θ) = πi(ai, a−i, s; θ) + εi(ai). (1)

The utility function in our model is similar to a standard random utility model such as a multinomial

logit. Each player i receives a stochastic preference shock, εi(ai), for each possible action ai. In

many applications, this will be drawn from an extreme value distribution as in the logit model.

In the literature, the preference shock is alternatively interpreted as an unobserved state variable

(see Rust (1994)). Utility also depends on the vector of state variables s and actions a through

Πi(ai, a−i, s; θ). For example, in the literature, this part of utility is frequently parameterized as

a simple linear function of actions and states. Unlike a standard discrete choice model, however,

note that the actions a−i of other players in the game enter into i’s utility. A standard discrete

choice model typically assumes that agents i act in isolation in the sense that a−i is omitted from

the utility function. In many applications, this is an implausible assumption.

In this model, player i’s decision rule is a function ai = δi(s, εi). Note that i’s decision does not

depend on the ε−i since these shocks are private information to the other −i players in the game

and, hence, are unobservable to i. Define σi(ai|s) as:

σi(ai = k|s) =
∫

1 {δi(s, εi) = k} f(εi)dεi.

In the above expression, 1 {δi(s, εi) = k} is the indicator function that player ı́’s action is k given

6



the vector of state variables (s, εi). Therefore, σi(ai = k|s) is the probability that i chooses action

k conditional on the state variables s that are public information. We will define the distribution

of a given s as σ(a|s) = Πn
i=1σ(ai|s).

Next, define Ui(ai, s, εi; θ) as:

Ui(ai, s, εi; θ) =
∑
a−i

πi(ai, a−i, s; θ)σ−i(a−i|s) + εi(ai)

where σ−i(a−i|s) =Πj 6=iσj(aj |s).
(2)

In (2), Ui(ai, s, εi; θ) is player i’s expected utility from choosing ai when the vector of parameters is

θ. Since i does not know the private information shocks, εj for the other players, i’s beliefs about

their actions are given by σ−i(a−i|s). The term
∑

a−i
Πi(ai, a−i, s, θ)σ−i(a−i|s) is the expected

value of Πi(ai, a−i, s; θ), marginalizing out the strategies of the other players using σ−i(a−i|s). The

structure of payoffs in (2) is quite similar to standard random utility models, except that the

probability distribution over other agents’ actions enter into the formula for agent i’s utility. Note

that if the error term has an atomless distribution, then player i’s optimal action is unique with

probability one. This is an extremely convenient property and eliminates the need to consider

mixed strategies as in a standard normal form game.

We also define the deterministic part of the expected payoff as

Πi (ai, s; θ) =
∑
a−i

πi(ai, a−i, s, θ)σ−i(a−i|s). (3)

It follows immediately then that the optimal action for player i satisfies:

σi(ai|s) = Prob {εi|Πi(ai, s; θ) + εi(ai) > Πi(aj , s; θ) + εi(aj) for j 6= i.} (4)

2.1 A Simple Example.

For expositional clarity, consider a simple example of a discrete game. Perhaps the most commonly

studied example of a discrete game in the literature is a static entry game (see Bresnahan and

Reiss (1991a), Bresnahan and Reiss (1991b), Berry (1992), Tamer (2003), Ciliberto and Tamer

(2003), Manuszak and Cohen (2004)). In the empirical analysis of entry games, the economist

typically has data on a cross section of markets and observes whether a particular firm i chooses

to enter a particular market. In Berry (1992) and Ciliberto and Tamer (2003), for example, the

firms are major U.S. airlines such as American, United and Northwest and the markets are large,

metropolitan airports. The state variables, si, might include the population in the metropolitan
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area surrounding the airport and measures of an airline’s operating costs. Let ai = 1 denote the

decision to enter a particular market and ai = 0 denote the decision not to enter the market. In

many applications, πi(ai, a−i, s; θ) is assumed to be a linear function, e.g.:

πi(ai, a−i, s; θ) =
{s′ · β + δ

∑
j 6=i

1 {aj = 1} if ai = 1

0 if ai = 0
(5)

In equation (5), the mean utility from not entering is set equal to zero.2 The term δ measures the

influence of j’s choice on i’s entry decision. If profits decrease from having another firm enter the

market then δ < 0. The parameters β measure the impact of the state variables on πi(ai, a−i, s).

The random error terms εi(ai) are thought to capture shocks to the profitability of entry that

are private information to firm i. Suppose that the error terms are distributed extreme value.

Then, utility maximization by firm i implies that:

σi(ai = 1|s) =

exp(s′ · β + δ
∑
j 6=i

σj(aj = 1|s))

1 + exp(s′ · β + δ
∑
j 6=i

σj(aj = 1|s))
for i = 1, ..., n (6)

In the system of equations above, applying the formula in equation (3) implies that Πi (ai, s; θ) =

s′ · β + δ
∑
j 6=i

σj(aj = 1|s). Since the error terms are distributed extreme value, equation (4) implies

that the choice probabilities, σi(ai = 1|s) take a form similar to a single agent multinomial logit

model. We note in passing that it can easily be shown using Brouwer’s fixed point theorem that

an equilibrium to this model exists for any finite s (see McKelvey and Palfrey (1995))).

We exploit the convenient representation of equilibrium in equation (6) in our econometric

analysis. Suppose that the econometrician observes t = 1, ..., T repetitions of the game. Let ai,t

denote the entry decision of firm i in repetition t and let the value of the state variables be equal

to st. By observing entry behavior in a large number of markets, the econometrician could form a

consistent estimate σ̂i(ai = 1|s) of σi(ai = 1|s) for i = 1, ..., n. In an application, this simply boils

down to flexibly estimating the probability that a binary response, ai, is equal to one, conditional

on a given set of covariates. This could be done using any one of a number of standard techniques.

We let L(β, δ) denote the pseudo-likelihood function defined as:

L(β,δ)=

T∏
t=1

n∏
i=1

0BBBBB@
exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1CCCCCA

1{ai,t=1}0BBBBB@1−

exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1CCCCCA

1{ai,t=0}

2We formally discuss this normalization in our section on identification.
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Given first stage estimates of σ̂i(ai = 1|s), we could then estimate the structural parameters of

the payoff, β and δ, by maximizing the above pseudo-likelihood function. There are two attractive

features of this strategy. The first is that it is not demanding computationally. First stage estimates

of choice probabilities could be done using a strategy as simple as a linear probability model. The

computational burden of the second stage is also light since we only need to estimate a logit model.

A second attractive feature is that it allows us to view a game as a generalization of a standard

discrete choice model. Thus, techniques from the voluminous econometric literature on discrete

choice models can be imported into the study of strategic interaction. While the example considered

above is simple, it nonetheless illustrates many of the key ideas that will be essential in what follows.

We can also see a key problem with identification in the simple example above. Both the first

stage estimates σ̂i(ai = 1|s) and the term s′ · β depend on the vector of state variables s. This

suggests that we will suffer from a collinearity problem when trying to separately identify the effects

of β and δ on the observed choices. The standard solution to this type of problem in many settings

is to impose an exclusion restriction. Suppose, for instance, a firm specific productivity shock is

included in s. In most oligopoly models, absent technology spillovers, the productivity shocks of

firms −i would not directly enter into firm i’s profits. These shocks only enter indirectly through

the endogenously determined actions of firms −i, e.g. price, quantity or entry decisions. Therefore,

if we exclude the productivity shocks of other firms from the term s′ · β, we would no longer suffer

from a collinearity problem. While this idea is quite simple, as we shall discover in the next section,

similar restrictions are required to identify more general models.

3 Identification

In this section, we consider the problem of identifying the deterministic part of payoffs, without

making particular assumptions about its functional form (e.g. that it is a linear index as in the

previous example). In the context of this section, we let θ be completely nonparametric and write

πi (ai, a−i, s) instead of πi (ai, a−i, s; θ).

Definition We will say that πi (ai, a−i, s) is identified if πi (ai, a−i, s) 6= π′i (ai, a−i, s) for some

i = 1, ..., n implies that for the corresponding equilibrium choice probabilities σi(ai = 1|s) 6=
σ′i(ai = 1|s) for some i = 1, ..., n.

Formally, identification requires that different values of the primitives generate different choice

probabilities. If this condition is not satisfied, then it will be impossible for us to uniquely recover

the structural parameters πi (ai, a−i, s) (for i = 1, ..., n) from knowledge of the observed choice
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probabilities, σi(ai = 1|s). While the mean payoff function is nonparametric, the model is semi-

parametric because the distribution of the unobservables is parametrically specified. Even in a

single agent problem,

it is well known that it is not possible to nonparametrically identify both the mean utility

functions and the joint distribution of the error terms F (εi) without making strong exclusion and

identification at infinity assumptions (see for example Matzkin (1992)).

To take the simplest possible example, consider a simple binary response model and assume

that the error terms are normally distributed, as in the probit model. Let σi(ai = 1|s) denote the

probability that the response is equal to one in the data conditional on s. Define Πi(ai = 0|s) = 0

and Πi(ai = 1|s) = F−1(σi(ai = 1|s)) where F−1 denotes the normal cdf. It can easily be verified

that this definition of Πi perfectly rationalizes any set of choice probabilities σi(ai = 1|s). Since

even a single agent discrete choice model is not identified without a parametric assumption on the

error term, assumptions at least as strong will be required in the more general set up with strategic

interactions. In what follows, we will typically impose the assumption that the error terms are

distributed i.i.d. with a known distribution function, since both an independence and parametric

form assumption on the error terms are required for identification.

Based on the discussion above, we shall impose the following assumption in order to identify

the model.

A1 The error terms εi(ai) are distributed i.i.d. across actions ai and agents i. Furthermore, the

parametric form of the distribution F comes from a known family.

Analogous to the notation in the previous section, define Πi(k, s) =
∑

a−i
πi(ai = k, a−i, s)σ−i(a−i|s).

It is straightforward to show that the equilibrium in this model must satisfy:

δi(s, εi) = k if and only if Πi(k, s) + εi(k) > Πi(k′, s) + εi(k′) for all k′ 6= k. (7)

That is, action k is chosen if and only if the deterministic expected payoff and error term associated

with action k is greater than the analogous values of k′ 6= k. An implication of (7) is that the

equilibrium choice probabilities σi(a|s) must satisfy:

σi(ai|s) = Pr {εi(ai) + Πi(ai, s)−Πi(0, s) > εi(k) + Πi(k, s)−Πi(0, s),∀k = 0, . . . ,K, k 6= ai} (8)

Equation (8) is a simple consequence of (7) where we can subtract Πi(0, s) from both sides of the

inequality.

Suppose we generate εi(ai) from an extreme value distribution as in the multinomial logit model.

Then (8) implies that:

σi(ai|s) =
exp(Πi(ai, s)−Πi(0, s))∑K
k=0 exp(Πi(k, s)−Πi(0, s))

.
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Alternatively, in an ordered logit model, for the logistic function Λ (·)

σi(ai = k|s) = Λ (Πi (k + 1, s))− Λ (Πi (k, s)) .

A key insight similar to Hotz and Miller (1993) is that equation (8) implies that the equilibrium

choice probabilities, σi(ai|s), have a one-to-one relationship to the “choice specific value functions”,

Πi(ai, s) − Πi(0, s). It is obvious that we should expect the one-to-one mapping in any model

where the distribution of εi has full support. We let Γ : {0, ...,K} × S → [0, 1] denote the map in

general from choice specific value functions to choice probabilities, i.e.

(σi(0|s), ..., σi(K|s)) = Γi (Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s)) . (9)

We will denote the inverse mapping by Γ−1:

(Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s)) = Γ−1
i (σi(0|s), ..., σi(K|s)) . (10)

The above analysis implies that we can invert the equilibrium choice probabilities to nonpara-

metrically recover Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s). However, the above analysis implies that

we will not be able to separately identify Πi(1, s) and Πi(0, s), we can only identify the difference

between these two terms. Therefore, we shall impose the following assumption:

A2 For all i and all a−i and s, πi(ai = 0, a−i, s) = 0.

The above assumption is similar to the “outside good” assumption in a single agent model where

the mean utility from a particular choice is set equal to zero. In the context of the entry model, this

assumption is satisfied if the profit from not entering the market is equal to zero regardless of the

actions of other agents. Just as in the single agent model, there are alternative normalizations that

we could use to identify the πi(ai, a−i, s) just as in a single agent model. However, for expositional

simplicity we shall restrict attention to the normalization A2.

Given assumption A2 and knowledge of the equilibrium choice probabilities, σi(ai|s), we can

then apply the mapping in (10) to recover Πi(ai, s) for all i, ai and s. Recall that the definition of

Πi(ai, s) implies that:

Πi(ai, s) =
∑
a−i

σ−i(a−i|s)πi(ai, a−i, s),∀i = 1, . . . , n, ai = 1, . . . ,K. (11)

Even if we know the values of Πi(ai, s) and σ−i(a−i|s) in the above equation, it is not possible to

uniquely determine the values of πi(ai, a−i, s). To see why, hold the state vector s fixed, determining

the utilities of all agents involves solving for n×K × (K + 1)n−1 unknowns. That is, there are n

agents, for each action k = 1, ...,K, utility depends on the (K + 1)n−1 possible actions of the other
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agents. However, the left hand side of (11) only contains information about n × (K + 1) scalars

holding s fixed. It is clearly not possible to invert this system in order to identify πi(ai, a−i, s) for

all i, all k = 1, ....,K and all a−i ∈ A−i. In the context of discrete state spaces, Aguirregabiria

(2005) and Pesendorfer and Schmidt-Dengler (2003) investigate identification of dynamic discrete

choice models and dynamic discrete games. Bajari, Chernozhukov, Hong, and Nekipelov (2007)

show that identification of dynamic discrete games is composed of two steps: an identification step

for a single agent dynamic discrete choice model, and an identification step for a static discrete

game.

Obviously, there must be cross-equation restrictions across either i or k in order to identify the

system. One way to identify the system is to impose exclusion restrictions. Partition s = (si, s−i),

and suppose πi(ai, a−i, s) = πi(ai, a−i, si) depends only on the subvector si. We can demonstrate

this in the context of an entry model. In this type of model, the state is usually a vector of

productivity shocks. While we might expect the profit of firm i to depend on the entry decisions of

other agents, it should not depend on the productivity shocks of other agents. If such an exclusion

restriction is possible, we can then write

Πi(ai, s−i, si) =
∑
a−i

σ−i(a−i|s−i, si)πi(ai, a−i, si). (12)

Clearly, a necessary order condition for identification is that for each si, there exists (K + 1)n−1

points in the support of the conditional distribution of s−i given si. Note that this assumption will

be satisfied as long as s−i contains a continuously distributed variable with Πi(ai, a−i, si) sufficient

variability. A sufficient rank condition will require that for almost all si, the system of equations

obtained by varying the values of s−i is nonsingular and invertible.

Theorem 1 Suppose that A1 and A2 hold. A necessary order condition for identifying the latent

utilities Πi(ai, a−i, si) is that for almost all si, there exists (K + 1)n−1 points in the support of the

conditional distribution of s−i given si. A sufficient rank condition for identification is that for al-

most all values of si, the conditional second moment matrix of E [σ−i(a−i|s−i, si)σ−i(a−i|s−i, si)′|si]

is nonsingular.

Note that the rank condition holds regardless of whether the regressors are discrete or continuous.

Because the rank condition is stated in terms of the observable reduced form choice probabilities,

it is a testable assumption that can be verified from the data. It is analogous to the standard

rank condition in a linear regression model. The difference is that the “regressors”, σ−i(a−i|s−i, si)

themselves have to be estimated from the data in the first stage. Intuitively, to identify strategic

interaction models in which the primitive payoffs depend on the expected action of the opponent,
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the reduced form choice probabilities are required to depend on the opponent’s idiosyncratic states.

In the single agent model with no strategic interactions, the left hand side of (12) does not depend

on s−i and the right hand does not depend on a−i. the probabilities σ−i (a−i|s−i, si) sum up to

one, and equation (12) becomes an identity.

4 Estimation

In the previous section, we demonstrated that there is a nonparametric inversion between choice

probabilities and the choice-specific value functions, Π(ai, s). Furthermore, we demonstrated that

the structural parameters of our model are identified if appropriate exclusion restrictions are made

on payoffs. In this section, we exploit this inversion to construct nonparametric and semiparametric

estimates of our structural parameters.

Step 1: Estimation of Choice Probabilities. Suppose the economist has access to data on

t = 1, . . . , T repetitions of the game. For each repetition, the economist observes the actions and

state variables for each agent (ai,t, si,t). In the first step we form an estimate σ̂i(k|s) of σi(k|s)
using sieve series expansions ( see Newey (1990) and Ai and Chen (2003)). We note, however, that

we could alternatively estimate the first stage using other nonparametric regression methods such

as kernel smoothing or local polynomial regressions.

The usual approach in the nested fixed point algorithm is to discretize the state space, which

is only required to be precise enough subject to the constraints imposed by the computing facility.

However, increasing the number of grids in a nonparametric or two stage semiparametric method

has two offsetting effects. It reduces the bias in the first stage estimation but also increases the

variance. In fact, when the dimension of the continuous state variables is larger than four, it can

be shown that it is not possible to obtain through discretization
√
T consistent and asymptotically

normal parameter estimates in the second stage, where T is the sample size. Therefore, discretizing

the state space does not provide a solution to continuous state variables, which requires a more

refined econometric analysis.

Let {ql(s), l = 1, 2, . . .} denote a sequence of known basis functions that can approximate a

real valued measurable function of s arbitrarily well for a sufficiently large value of l. The sieve

could be formed using splines, Fourier Series, or orthogonal polynomials. We let the basis become

increasingly flexible as the number of repetitions of the game T becomes large. Let κ(T ) denote the

number of basis functions to be used when the sample size is T. We shall assume that κ(T ) →∞,

κ(T )/T → 0 at an appropriate rate to be specified below. Denote the 1 × κ(T ) vector of basis
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functions as

qκ(T )(s) = (q1(s), . . . , qκ(T )(s)), (13)

and its collection into a regressor data matrix as

QT = (qκ(T )(s1), . . . , qκ(T )(sT )).

One potential sieve estimator for σ̂i(k|s), k = 1, . . . ,K is a linear probability model, i.e.:

σ̂i(k|s) =
T∑

t=1

1(ait = k)qκ(T )(st)(Q′TQT )−1qκ(T )(s). (14)

Equation (14) is the standard formula for a linear probability model where the regressors are the

sieve functions κ(T ) in equation (13). We note that in the presence of continuous state variables,

the sieve estimator σ̂i(k|s) will converge to the true σi(k|s) at a nonparametric rate which is slower

than
√
T .

Second Step: Inversion In our second step, we take as given our estimates σ̂i(k|s) of the

equilibrium choice probabilities. We then form an estimate of the expected deterministic utility

functions, Π̂i(k, st) − Π̂i(0, st) for k = 1, ...,K and t = 1, ..., T . This can be done by evaluating

(10) using σ̂i(k|s) in place of σi(k|s). That is:(
Π̂i(1, st)− Π̂i(0, st), ...Π̂i(K, st)− Π̂i(0, st)

)
= Γ−1

i (σ̂i(0|st), ..., σ̂i(K|st))

In the specific case of the binary logit model, this inversion would simply be:

Π̂i(1, st)− Π̂i(0, st) = log (σ̂i(1|st))− log (σ̂i(0|st))

In an alternative model, such as one with normal shocks, we would need to solve a nonlinear system.

In what follows, we shall impose A2 so that Π̂i(0, s) = Π̂i(0, a−i, s) = 0 for all a−i.

Third Step: Recovering The Structural Parameters In the first step we recovered an

estimate of σ̂i(ai, s) and in the second step we recovered an estimate of the choice specific value

function Π̂i(k, s). In our third step, we use the empirical analogue of (11) to form an estimate of

π(ai, a−i, si). We shall assume that we have made a sufficient number of exclusion restrictions, as

discussed in the previous section, so that the model is identified. For a given value of si, for a given

a = (ai, a−i), we estimate πi (ai, a−i, si) by minimizing the following weighted least square function
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Πi (ai, a−i, si), which are taken to be a vector of coefficients:

T∑
t=1

π̂i(ai, s−it, si)−
∑
a−i

σ̂−i (a−i|s−it, si)πi (ai, a−i, si)

2

w (t, si) ,

where the nonparametric weights w (t, si) can take a variety of forms. For example,

w (t, si) = k

(
sit − si

h

)
/

T∑
τ=1

k

(
siτ − si

h

)
uses kernel weights, and other local weights are also possible. The identification condition in

the previous section ensures that the regressor matrix in this weighted least squares regression is

nonsingular asymptotically.

4.1 A Linear Model of Utility

The nonparametric estimation procedure described in the previous section follows the identification

arguments closely and offers the advantage of flexibility and robustness against misspecification.

However, without a huge amount of data, nonparametric estimation methods can be subject to a

severe curse of dimensionality when we intend to control for a large dimension of state variables

s. Also, in small samples, different implementations of nonparametric procedures may lead to

drastically different point estimates. Therefore, in the following we consider a semiparametric

estimation where the deterministic utility components πi (ai, a−i, s) are specified to be a linear

function of a finite dimensional parameter vector θ. This is the typical econometric specification

that is commonly used in the empirical literature. In this section we describe a straightforward

estimation and inference procedure for this model.

The deterministic part of the utility is assumed to take the form of

πi (ai, a−i, si) = Φi (ai, a−i, si)
′ θ.

In the above expression, the deterministic part of utility is a linear combination of a vector of

basis functions, Φi (ai, a−i, si). For instance, we might let utility be a linear index as in our simple

entry game example of the previous section. Alternatively, we might choose Φi (ai, a−i, si) to be a

standard flexible functional form, such as a high-order polynomial, spline function, or orthogonal

polynomial. The estimator we discuss below can easily be generalized to allow for the possibility

that θ enters the utility nonlinearly. However, the exposition of the properties of the estimator

is facilitated by the linearity assumption. Also, most applications of discrete choice models and

discrete games usually are linear in the structural parameters of interest.
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This linearity assumption implies that the choice specific value function, given ai and s, takes

the convenient form:

Πi (ai, s) = E [πi (ai, a−i, si) |s, ai] = Φi (ai, s)
′ θ.

where Φi (ai, s) is defined as:

Φi (ai, s) = E [Φi (ai, a−i, si) |ai, s] (15)

=
∑

a−i
Φi (ai, a−i, si)

∏
j 6=i σ(aj = kj |s).

For example, in a binary logit model, the equilibrium choice probabilities must satisfy:

σi (ai = 1|s) =
exp

(
Φi (1, s)

′ θ
)

1 + exp
(
Φi (1, s)

′ θ
) .

More generally, it may not be possible to express the equilibrium choice probabilities in closed

form as above. However, equation (4) implies that each σi (ai|s) depends on σj (aj |s) , j 6= i through

(15). We denote this mapping as:

σi (ai|s) = Γi,ai (s, σj (k|s) , j 6= i, k = 1, . . . ,K) . (16)

If we define σ (s) to be the stacked vector of choice probabilities σi (k|s) for all k = 1, . . . ,K, i =

1, . . . , n, then we can collect (16) into a fixed point mapping:

σ (s) = Γ (σ (s)) .

To emphasize the dependence on the parameter θ, we can also write

σ (s; θ) = Γ (s, θ;σ (s; θ)) . (17)

4.2 Semiparametric Estimation.

Step 1: Estimation of Choice Probabilities. The simple semiparametric procedure we pro-

pose proceeds in two steps. We begin by forming a nonparametric estimate of the choice probabil-

ities, σ̂i (k|s). We will do this like above using a sieve approach, though one could alternatively use

kernels or a local polynomial method.

σ̂i (k|s) = qκ(T )(s)′
(
Q′TQT

)−1
T∑

τ=1

qκ(T )(sτ )1 (ai = k) . (18)
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Given our estimates of the choice probabilities, we can then estimate Φi (k, s) correspondingly by

Φ̂i (k, s) =
∑
a−i

Φi (ai = k, a−i, si)
∏
j 6=i

σ̂(aj |s)

For instance, take the example presented in (5). In this example, Πi(ai = 1, a−i, s) = (s,
∑

j 6=i 1{aj =

1}) · (β, δ) where “ ·” denotes an inner product. Thus, in the above formula, Φ′i(ai = 1, a−i, s) =

(s,
∑

j 6=i 1{aj = 1}) and θ = (β, δ). Then, given our first stage estimates of the choice probabilities,

Φ̂′(ai = 1, a−i, s) = (s,
∑

j 6=i 1{aj = 1}σj(aj |s)).
For each parameter value θ, we can evaluate the empirical analogue of (17). For example, in

the binary logit case,

σi

(
ai = 1|s, Φ̂, θ

)
=

exp
(
Φ̂i (1, s)

′ θ
)

1 + exp
(
Φ̂i (1, s)

′ θ
)

Step 2: Parameter Estimation. In the second stage a variety of estimators can be used to

recover the value of θ. Most of these estimators can be written as GMM estimators with a properly

defined set of instruments. To describe the second stage, define yikt = 1 if ait = k and yikt = 0

otherwise, for k = 0, . . . ,K. Define yit = (yi1t, . . . , yiKt) and the vector

σi

(
st, Φ̂, θ

)
=
(
σi

(
k|st, Φ̂, θ

)
, k = 1, . . . ,K

)
Furthermore, collect yit, i = 1, . . . , n into a long vector yt with n×K elements, and similarly collect

σi

(
st, Φ̂, θ

)
, i = 1, . . . , n into a long vector σ

(
st, Φ̂, θ

)
with corresponding n×K elements. Then

for any dimension dim (θ)× (nK) matrix of instruments Â (st), a GMM estimator θ̂ can be defined

by solving the sample equations:

1
T

T∑
t=1

Â (st)
(
yt − σ

(
st, Φ̂, θ̂

))
= 0. (19)

The instrument matrix Â (st) may be known as A (st), may be estimated in the first stage (such as

two-step optimally weighted GMM), or may be estimated simultaneously (such as pseudo MLE).

For example, with a pseudo MLE method, θ̂ is defined by maximizing the pseudo likelihood function,

which can be written as the following because of the independent error terms across agents:

T∑
t=1

n∑
i=1

[
K∑

k=1

yikt log σi

(
k|st, Φ̂, θ

)
+

(
1−

K∑
k=1

yikt

)
log

(
1−

K∑
k=1

σi

(
k|st, Φ̂, θ

))]
. (20)
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In the following we let σ̂ikt (θ) = σi

(
k|st, Φ̂, θ

)
. The first-order condition for the “pseudo” MLE

estimator is then given by

T∑
t=1

n∑
i=1

K∑
k=1

[
yikt − σ̂ikt (θ)

σ̂ikt (θ)
+

∑K
j=1 (yijt − σ̂ijt (θ))

1−
∑K

j=1 σ̂ijt (θ)

]
∂

∂θ
σi

(
k|st, Φ̂, θ̂

)
,

In terms of expressing it as an instrumental variables estimator, this corresponds to (19) with Â (st)

equal to the ∂
∂θσ

(
st, Φ̂, θ̂

)
× Ŵ (st, θ), where Ŵ (st, θ) is the nK × nK diagonal matrix, such that

the ith diagonal block, for i = 1, . . . , n, is given by
1

σ̂i1t(θ)
0 0

0
. . . 0

0 0 1
σ̂iKt(θ)

+


1

σ̂i0t(θ)
...
1

σ̂i0t(θ)

 [1 · · · 1] ,

where σ̂i0t (θ) = 1 −
∑K

j=1 σ̂ijt (θ). If we define W (st, θ) in analog to Ŵ (st, θ), except with

Φ̂ replaced by the true unknown Φ in each σ̂ikt (θ), then it is easy to verify that W (st, θ0) =

V ar (yt − σ (st,Φ, θ0) |st)
−1, where the ith diagonal block of the block diagonal matrix

V ar (yt − σ (st,Φ, θ0) |st)

is given by 
σi1t 0 0

0
. . . 0

0 0 σiKt

−

σi1t

...

σiKt

 [σi1t · · ·σiKt] .

It is well known that the estimation errors in Â (st) will not affect the asymptotic distribution of

θ̂ defined by (19), regardless of whether Â (st) is estimated in a preliminary step or is estimated

simultaneously with θ̂. Therefore, the asymptotic distribution of the pseudo MLE is the same as

that of an infeasible GMM IV estimator with an instrument matrix A(st) which is given by

∂

∂θ
σ (st,Φ0, θ0)×W (st, θ0) .

Here, note that in terms of (17),

∂

∂θ
σ (st,Φ0, θ0) =

∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ

.

Therefore, assuming all Φ are known, the MLE corresponds to the efficient choice of instruments

Â (st) in (19), under the efficiency framework of Newey and McFadden (1994). Therefore, next we

will focus on deriving the large sample properties of θ̂ defined by (19) where A(st) is known.
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The estimator that we consider falls within the class of semiparametric estimators considered

by Newey (1994). A somewhat surprising conclusion is that even though the first stage is esti-

mated nonparametrically and can be expected to converge at a rate slower than
√
T , the structural

parameters will be asymptotically normal and will converge at a rate of
√
T . Moreover, under

appropriate regularity conditions, the second stage asymptotic variance will be independent of the

particular choice of nonparametric method used to estimate the first stage (e.g. sieve or kernel).

As a practical matter, these results justify the use of the bootstrap to calculate standard errors for

our model.

In the appendix, we derive the following result, applying the general framework developed by

Newey (1990). Under appropriate regularity conditions, the asymptotic distribution of θ̂ defined in

19 satisfies the following:

√
T
(
θ̂ − θ

)
d−→ N

(
0, G−1ΩG−1′

)
,

where

G = EA (st)
∂

∂θ
σ (st,Φ0, θ0) ,

and Ω is defined such that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
d−→ N (0,Ω) .

In the appendix, we also compare the asymptotic variance of alternative estimators.

4.3 Fixed effect models

Market specific fixed effects can also be introduced into the two-step estimation method. For each

market t = 1, . . . , T , all the players in that market observe a market specific profit shifter αt that

is not observed by the econometrician. We will assume that αt is an unknown but smooth function

of the state variables st = (st1, . . . , stn) in that market, which we will denote as α (st). In principal,

we would prefer a model where the fixed effect was not required to be a function of the observables.

However, in highly nonlinear models, such as ours, similar assumptions are commonly made (see,

for example, Newey (1994)).

This assumption is convenient technically since it implies that the equilibrium choice probabil-

ities, σi, can still be written as a function of the state st. If the fixed effects were not a function of

st, then it would be quite difficult to estimate the choice probabilities, σi since they would depend

on an unknown, market specific parameter in a nonlinear manner. There is no obvious method to

19



identify or estimate the first stage in this case unless one has access to a long panel of observations

across both time and markets.

With the inclusion of a market specific fixed effect, the mean period utility function in (1) for

player i in market t is now modified to

πi(ai, a−i, s) = α (ai, s) + π̃i(ai, a−i, s).

In the above, and what follows, we drop the market specific subscript t for notational simplicity.

Under the normalization assumption that Πi (0, a−i, s) ≡ 0 for all i = 1, . . . , n, our previous

results show that, as in (11), the choice-specific value functions Πi(ai, s) are nonparametrically

identified. Note that the choice specific value functions must satisfy ∀i = 1, . . . , n, ai = 1, . . . ,K:

Πi(ai, s) =
∑

a−i
σ−i(a−i|s)πi(ai, a−i, s)

= α (ai, s) +
∑

a−i
σ−i(a−i|s)π̃i(ai, a−i, si). (21)

Obviously, since α (ai, s) is unknown but is the same function across all market participants,

they can be differenced out by looking at the difference of Πi (k, s) and Πj (k, s) between different

players i and j. By differencing (21) between i and j one obtains

Πi (k, s)−Πj (k, s) =
∑
a−i

σ−i (a−i|s) π̃i(ai, a−i, si)−
∑
a−j

σ−j (a−j |s) π̃j(aj , a−j , sj)

Here we can treat π̃i(ai, a−i, si) and π̃j(aj , a−j , sj) as coefficients, and σ−i (a−i|s) and σ−j (a−j |s)
as regressors in a linear regression. Identification follows as in Theorem 1. As long as there is

sufficient variation in the state variables si, sj , the coefficients π̃i(ai, a−i, si) and π̃j(aj , a−j , sj) can

be nonparametrically identified.

We could nonparametrically estimate π̃j(aj , a−j , sj) using an approach analogous to the non-

parametric approach discussed in section Section 4. However, in practice, semiparametric estima-

tion will typically be a more useful alternative. Denote the mean utility (less the market specific

fixed effect) as:

π̃i (ai, a−i, si) = Φi (ai, a−i, si)
′ θ.

In practice, we imagine estimating the structural model in two steps. In the first step, we

estimate the equilibrium choice probabilities nonparametrically. In the second stage, we estimate

π̃i treating α (st) as a fixed effect in a discrete choice model. Estimating discrete choice models

with fixed effects is quite straightforward in many cases.

For instance, consider a model of entry and suppose that the error terms are distributed extreme

value. In the first step, we nonparametrically estimate Φ̂i (1, sit), the probability of entry by firm i
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when the state is sit. As in the previous section, we could do this using a sieve linear probability

model. In the second stage, we can form a conditional likelihood function as in Chamberlain (1984)).

This allows us to consistently estimate θ when market specific fixed effects α (st) are present. The

likelihood function is then:

logL =
T∑

t=1

log

[
exp

(
θ′

n∑
i=1

aitΦ̂i (1, sit)

)]
− log

 ∑
dt∈Bt

exp

(
θ′

n∑
i=1

ditΦ̂i (1, sit)

)
where Bt ≡ {dt :

∑n
i=1 dit =

∑n
i=1 ait} is the set of actions that give rise to the same number of

entrants as observed in the data. In other words, the likelihood is formulated conditional on the

number of entrants. One can follow similar steps as in previous derivations to prove consistency

and demonstrate asymptotic normality of this semiparametric conditional logit estimator where

Φ̂i (1, sit) is estimated in the first stage nonparametrically.

We note that we could estimate this model using a panel data rank estimation type proce-

dure as in (Manski (1987)). While this is a more challenging model computationally, it is free of

distributional assumptions on the error term. A caution with the conditional likelihood function

approach is that if we are interested in doing counterfactuals, such as understanding the average

effect of policy changes, we still need to identify the fixed effect function α (s) which may require

additional assumptions. We also note that while fixed effect models do not impose strong stochastic

assumptions between the state variables and the error terms, many empirical papers used finite

mixture unobserved heterogeneity models or parametric random effects. For such cases, alternative

estimators, including the method of Aguirregabiria and Mira (2007) and a full solution method can

be used.

5 Computing Models with Multiple Equilibria.

In the previous sections, we have either assumed that the model has a unique equilibrium (which

can be the case, for example, for a linear probability interaction model), or that only a single

equilibrium outcome out of several possible multiple equilibria is being observed in the data set.

However, in many static game models, multiple equilibria are possible. The importance of multiple

equilibria in empirical research is emphasized by many authors, including Brock and Durlauf (2001)

and Sweeting (2005). In the rest of this manuscript we present a method for estimating parametric

models of interactions in the presence of possible multiple equilibria.

In the previous sections we have considered a model with known distribution F (εi) of the

error terms and a parametric model for the mean utility functions πi (ai, a−i, θ). At every possible

parameter value θ, given the known distribution F (εi), equations (8), (9) and (11) defined a fixed
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point mapping in the conditional choice probabilities:

σi(ai|s) = Γi

(∑
−i

σa−i (a−i|s) [πi (k, a−i, s; θ)− πi (0, a−i, s; θ) , k = 1, . . . ,K]

)
. (22)

For example, under the linear mean utility specification (3), this system of fixed point mappings in

the choice probabilities takes the form of

σi(ai|s) = Γi

∑
a−i

σ−i(a−i|s)Φi(ai, a−i, s)′θ, ai = 1, . . . ,K

 , i = 1, . . . , n. (23)

In previous sections, we have assumed that either there is a unique solution to this system of

fixed mapping with K × n equations and K × n unknown variables

σi (ai|s) ,∀ai = 1, . . . ,K, i = 1, . . . , n,

or that only one particular fixed point of this system gets realized in the observed data. However,

this system of fixed point mapping can potentially have multiple solutions, leading to the possibility

of multiple equilibria.

In the following of this section, we will first give a brief introduction to the use of homotopy

methods for finding multiple solutions to a system of nonlinear equations. We will then discuss

how the homotopy method can be used to compute multiple equilibria for our model of static

interactions. In the next section, we will describe an innovative estimation method that we develop

for estimating the parameters in static interaction models with multiple equilibria. While brief,

this section is highly technical. Readers can proceed to the application in section 6 after reading

section 5.1.

5.1 The homotopy method

The homotopy continuation method (which will simply be referred to as the homotopy method in

the rest of the paper) is a well known generic algorithm for looking for a fixed point to a system

of nonlinear equations. Based on the particular nonlinear system of equations to be solved, a

well-designed homotopy system is capable of finding multiple solutions of the nonlinear system,

and in some cases, all solutions to the system. A concise and clear introduction to the homotopy

method can be found in the book by Zangwill and Garcia (1981). Algorithms for implementing the

homotopy method can be found in several papers including Watson, Billups, and Morgan (1987),

Kostreva and Kinard (1991), Allgower and Georg (1980) and Watson, Sosonkina, Melville, Morgan,

and Walker (1997).
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Our goal is to find, for all possible parameter values and realized state variables s, the solutions

for the fixed point system (17):

σ − Γ (σ) = 0.

To simplify the notation, we suppress the fact that the choice probabilities depend on the state

σ = σ (s).

The basic idea behind the homotopy method is to take a system for which we know the solution

and map this system into the system that we are interested in. Under the right conditions, the

solution to the original system will also map into the solution that we are seeking. Formally, a

homotopy is a linear mapping between the two topological spaces of functions of the form

H (σ, τ) = τG (σ) + (1− τ) (σ − Γ (σ)) , τ ∈ [0, 1] , (24)

where each of H (σ, τ) and G (σ) are vectors of functions with n×K component functions:

Hi,ai (σ, τ) and Gi,ai(σ) for i = 1, . . . , n and ai = 1, . . . ,K.

H (σ, τ) is the homotopy function and τ is the homotopy parameter. As one can see, for τ = 1

we get H (σ, 0) = G (σ) and for τ = 0 we obtain H (σ, 0) = σ−Γ (σ) so varying τ from 1 to 0 maps

the function G (·) into the function Γ(·). The homotopy method suggests that we start with τ = 1

and choose G (σ) to be a system for which it is very easy to obtain the solutions to G (σ) = 0. If

for each 0 ≤ τ < 1, we can solve for the nonlinear equations, H (σ, τ) = 0, then by moving along

the path in the direction of τ = 1 to τ = 0, at the end of the path we should be able to reach a

solution of the original nonlinear equations σ − Γ (σ) = 0. This path then constructs a mapping

between a solution of the initial system G (σ) = 0 and a solution to the fixed point problem of

interest, σ − Γ (σ) = 0.

In practice, algorithms for solving differential equations can be used to trace the path from

τ = 1 to τ = 0. At each τ , we denote the solution along a particular path by σ (τ):

H (σ (τ) , τ) = 0.

By differentiating this homotopy function with respect to τ :

d

dτ
H (σ (τ) , τ) =

∂H

∂τ
+
∂H

∂σ
· ∂σ
∂τ

= 0.

This defines a system of differential equations for σ (τ) with initial condition σ (1) calculated from

the solution of the (easy) initial system G (σ (1)) = 0. A number of computer algorithms are

available to compute numerical solutions of nonlinear systems of differential equations can then be
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used to trace this differential equation system to reach an end point in the path of τ = 1 to τ = 0

in order to obtain a solution σ (0) of the original system σ − Γ (σ) = 0.

A regularity condition is necessary to insure the stability and the proper behavior of the homo-

topy differential equation system.

Condition 1 (Regularity) Let ∇ (τ) denote the Jacobian of the homotopy functions with respect

to σ at the solution path σ (τ):

∇ (τ) =
∂

∂σ
Re{H (σ, τ)}

∣∣∣∣
σ=σ(τ)

,

where Re{H (σ, τ)} denotes the real component of the homotopy functions. The jacobian ∇ (τ) has

full rank for almost all τ .

This condition ensures the smoothness and differentiability of the paths. It rules out cases of

bifurcation, branching and infinite spiraling. The mapping between G (σ) and σ − Γ (σ) is called

a conformal one if the path that links them is free of these complications. If a homotopy system

satisfies the regularity condition, it will either reach a solution or drift off to infinity.

Obviously, in applied work where the system of differential equations above will be solved

numerically, it will be convenient to work with conformal mappings. A convenient way of generating

a conformal mapping, or a homotopy that satisfies the above regularity condition, is to extend the

original homotopy into the complex space. A homotopy, as defined in equation (24) is extended to

the complex space by permitting the argument σ to take on complex values, which will result in

complex values of the homotopy. When the real and complex components of σ are considered two

different sets of arguments, and the real and complex components of the output are considered two

different sets of components of the homotopy, this defines a real valued homotopy with 2nK inputs

and 2nK outputs. If the original homotopy (24) is an analytic function in the complex space, then

the Cauchy-Riemann conditions will ensure that the extended real-value 2nK × 2nK homotopy

system satisfies the regularity condition above.

The all solution homotopy is one where the initial system G (σ) is chosen such that, if we follow

the paths originating from each of the solutions to G (σ) = 0, we will reach all solutions of the

original system σ = Γ (σ) at the end of the path. The extension of a real homotopy system into

the complex space is essential to the idea of all-solution homotopy. It is related with the property

of the complex space that conformal mappings in the complex space do not change the algebraic

properties of the sets. 3 The concept of conformal mapping is widely used in complex analysis. It
3The conformal mapping is a mapping in the complex space that does not locally change the argument of a

complex number. It is known that if the function is analytic and does not have stationary points then the associated

mapping is conformal.
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implies that we can conformally map a function with a complicated set of roots to another function

with a simple set of roots, then the results from an analysis of the function with the simple set of

roots should apply to the function with the complicate set of roots. An all solution homotopy has

to satisfy an additional path finiteness condition:

Condition 2 (Path Finiteness) Define H−1 (τ) to be the set of solutions σ (τ) to the homotopy

system at τ . H−1 (τ) is bounded for all 0 ≤ τ < 1. In other words, for all τ > 0.

lim
||σ||→∞

H (σ, τ) 6= 0.

5.2 Multiple equilibria in static discrete games

As we noted in the previous section, the issue of multiple equilibria in static interaction models

amounts to the issue of computing all the fixed points to the system of equations of choice prob-

abilities defined in equation (22). Note that the argument to the mapping from expected utility

to choice probabilities, Γ (·), is linear in the choice probabilities of competing agents σ−i (a−i|s).
Therefore, the question of possible multiplicity of equilibria depends crucially on the functional

form of Γ, which in turn depends exclusively on the assumed joint distribution of the error terms.

Interestingly, if we are content with the linear probability model where Γ is a linear function

of the individual choice probabilities, and the model has only two agents, then the equilibrium

will be guaranteed to be unique and the issue of multiple equilibria is not relevant. Γ is a linear

function of the individual choice probabilities if the underlying utility functions depend linearly

on the indicator function of whether individual competitors make a particular choice or not. For

example, this would be the case if the profit from entering a market depends on the total number

of competitors who also enter the market. On the other hand, if we have nonlinear interactions of

the individual choice probabilities in the linear probability model, or if the joint distribution of the

error term in the multinomial choice model is specified such that Γi is a polynomial function for

each i = 1, . . . , n, then all the equilibria can be found by choosing a homotopy system where the

initial system of equations

Gi,ai (σ) , i = 1, . . . , n and ai = 1, . . . ,K.

takes the following simple polynomial form:

Gi,ai(σ) = σi (ai)
qi,ai − 1 = 0 for i = 1, . . . , n and ai = 1, . . . ,K, (25)

where qi,ai is an integer that exceeds the degree of the polynomial of Γi,ai as a function of σ−i (a−i).

This results in a homotopy mapping

Hi,ai(σ, τ) = τ{σi (ai)
qi,ai − 1}+ (1− τ) (σi (ai)− Γi,ai(σ)) , τ ∈ [0, 1]. (26)
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For τ = 0 the system (24) coincides with the original system while for τ = 1 it is equal to the

’simple’ system (25).

It is a well known result from complex analysis that there are exactly qi,ai complex roots to

Gi,ai (σ) that are evenly distributed on the unit circle. It is known that nondegenerate poly-

nomial functions are analytic and the regularity condition of the resulting homotopy system is

automatically satisfied. The particular choice of qi,ai also ensures the path finiteness property of

the homotopy system (c.f. Zangwill and Garcia (1981)).

While a polynomial model for Γ (·) is convenient for calculating multiple equilibria, it is rarely

used in applied problems because it is not clear what parametric utility specification will give rise

to a polynomial choice probability function. The most popular multinomial choice probability

functions are probably the multinomial logit, the ordered logit, and the multinomial probit models.

Our analysis in the following will consist of three steps. First we will establish that most common

models used in empirical analysis have a finite number of equilibria represented by real solutions

to (16). Second, we will show that by letting the degree of the initial polynomial system increase

to infinity at an appropriate rate, we will be able to find all the equilibria for the multinomial logit

choice model (16) using the homotopy method. We prove it by first verifying that the homotopy

mapping is regular in the complex space when the discontinuity points of the original function are

isolated, and then providing a method to make homotopy work in the small vicinity of discontinuity

points.

It is not difficult to show that the fixed point system (16) has a finite number of solutions in

the real line. To see this, note that in general, this function is clearly continuous and infinitely

differentiable with nonsingular derivatives. In particular, it is easy to verify this condition for the

multinomial logit and probit models that are commonly used in practice. Consider a compact

ball BR in RnK with radius larger than 1. By Sard’s theorem the set of irregular values of Γ (·)
has measure zero. In particular, it can be verified by differentiation through the implicit function

theorem that zero is its regular value. This implies that the submanifold of σ satisfying σ = Γ (σ)

is compact as a closed subset of this ball BR. Thus it contains a finite number of points. This

verifies that the set of solutions in BR in finite. It is also obvious that all the solutions must satisfy

0 ≤ σi (ai) ≤ 1 because of the choice probability functional form. Therefore there can not be

solutions outside BR.

While we have just shown that there are in general a finite number of multiple equilibria, to

compute these equilibria we need to make use of an all solution homotopy system. In particular,

we choose to use the all solution homotopy defined in (26). In the following we will show that

there exists a homotopy system of the form of (26) with a sufficiently high orders of the initial

system qi,ai ’s, such that we will find all the solution to the original system of choice probabilities.
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As described in the previous subsection, verifying the validity of the all solution homotopy requires

checking the regularity condition and the path finiteness condition, which in turn require extension

of the real homotopy system into the complex space. Verifying these conditions require us to specify

the particular functional form of the joint distribution of the error terms in the latent utilities.

The following Theorem 2 and Theorem 3 formally state this result. In the statement of the

theorems, σ = {σr, σi} denotes more generally a vector of the real part and the imaginary part of

complex numbers which extend the real choice probabilities we considered early into the complex

space. Theorem 2 first establishes the regularity properties of the homotopy outside the imaginary

subspace.

Theorem 2 Define the sets H−1 = {(σr, σi, τ) | H(σr, σi, τ) = 0} and

H−1(τ) = {(σr, σi) | H(σ, τ) = 0} for σr ∈ RnK , and σi ∈ RnK .

Note that H is a homotopy of dimension R2nK that include both real and imaginary parts separately.

Also define, for any small ε, ℘ε = ∪i,ai{|σr,i,ai | ≤ ε} to be the area around the imaginary axis. Then:

1) The set H−1 ∩ {R2nK \ ℘ε × [0, 1]} consists of closed disjoint paths.

2) For any τ ∈ (0, 1] there exists a bounded set such that H−1(τ) ∩ R2nK \ ℘ε is in that set.

3) For (σr, σi, τ) ∈ H−1 ∩ {R2nK \ ℘ε × [0, 1]} the homotopy system allows parametrization

H(σr(s), σi(s), τ(s)) = 0.

Moreover, τ(s) is a monotone function.

Remark: Theorem 2 establishes the regularity and path finiteness conditions for the homotopy (26)

in areas that are not close to the pure imaginary subspace in the complex domain CnK . The ho-

motopy system can become irregular along the pure imaginary subspace, because the denominator

in the system can approach zero and the system will become nonanalytic in the case. However,

the next theorem shows that there exists a sequence q such that homotopies with initial system of

order q will have paths that stay away from the imaginary subspace. Homotopies with these orders

will be able to trace out all the solutions of the original system.

Theorem 3 For given τ one can pick the power qi,ai of the initial function (25) such that the

homotopy system is regular and path finite given some sequence of converging polyhedra ℘ε, ε→ 0.

Theorem 3 implies that if we continue to increase the power qi,ai of the initial system (25) of

the homotopy, we will eventually be able to find all the solutions to the original system. This also
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implies, however, we might lose solutions when we continue to increase qi,ai . But Theorem 3 does

imply that for sufficiently large qi,ai , no new solutions will be added for larger powers. In the monte

carlo simulation that we will report in the next section, we do find this to be the case.

5.3 A Numerical Example

We perform several Monte-Carlo simulations for an entry game with a small number of potential

entrants. Player’s payoff functions for each player i were constructed as linear functions of the

indicator of the rival’s entry (ai = 1), market covariates and a random term:

ui(ai = 1, a−i) = θ1 − θ2

∑
j 6=i

1(aj = 1)

+ θ3x1 + θ4x2 + εi(a), i = 1, . . . , n.

The payoff of staying out is equal to Ui(ai = 0, a−i) = εi(a), where the εi (a) have i.i.d extreme

value distributions across both a and i. The coefficients in the model are interpreted as: θ1 is the

fixed benefit of entry, θ2 is the loss of utility when one other player enters, θ3, θ4 are the sensitivities

of the benefit of entry to market covariates.

The game can be solved to obtain ex-ante probabilities of entry in the market. The solution to

this problem is given by:

Pi =
eθ1−θ2(

P
j 6=i Pj)+θ3x1+θ4x2

1 + eθ1−θ2(
P

j 6=i Pj)+θ3x1+θ4x2
, i = 1, . . . , n.

Here Pi is the ex-ante probability of entry for the player i, Pi = p (ai = 1|x). Both coefficients of

the model and market covariates were taken from independent Monte-Carlo draws. The parameters

of generated random variables are presented in Table 5.1. The means and variances of parameter

values and market covariates were chosen so to have a fair percentage of cases with more then one

equilibrium. For the games with 3,4 and 5 players 400 independent parameter combinations for

every player were taken. The modification of the HOMPACK algorithm was run to solve for all

equilibria in each game.

Throughout the Monte-Carlo runs both coefficients and covariates x1 and x2 were changing.

So, every equilibrium was calculated for a specific set of parameters. Summary statistics for the

results of computations are presented in Table 5.1. It is possible to see from Table 5.1 that in the

constructed games the players have approximately same average parameters in every type of game.

This agrees with the symmetric form of underlying data generating process for the coefficients and

market covariates.

Table 5.2 and 5.3 tabulate the frequencies of different number of equilibria that are being ob-

served in the simulations, classified according to the number of players in the market. Interestingly,
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a dominant number of simulations have only a single equilibrium. In addition, the frequency of

observing multiple equilibria seems to decrease with the number of players in the market. In other

words, we observe a large number of multiple equilibria in the two player case but only observe a

handful of them in the five player case.

Table 5.4 tabulates the probability of entry of the first player classified by the number of

equilibria and the number of players in the market. In general, what we see from this table is that

there is no clear correlation pattern between the entry probability and the numbers of equilibria

and players in the market.

6 Application to stock market analysts’ recommendations and

peer effects

Next, we discuss an application of our estimators to the problem of analyzing the behavior of

equity market analysts and the stock recommendations that they issue (e.g. strong buy, buy,

hold sell). There is a fairly sizeable empirical literature on this topic. However, the literature

does not allow for strategic interactions between analysts. We believe that this is a very strong

assumption. Accurate forecasts and recommendations are highly valued, of course. But the penalty

for issuing a poor recommendation depends on whether competitor analysts also made the same

poor recommendation. Therefore, the utility an analyst receives from issuing a recommendation is

a function of the recommendations issued by other analysts. Therefore, we apply the framework

discussed in the previous sections to allow payoffs to be interdependent.

There has been a revival of interest on the determinants of analyst recommendations as re-

searchers have tried to explain the remarkable behavior of the analysts in the run-up and subsequent

collapse of the NASDAQ in 2000. 4 The focus in this paper is on the recommendations generated

for firms in the high tech sector, which includes the firms most affected by the excitement surround-

ing the development of e-commerce and the spread of the Internet. Given the great uncertainty

surrounding the demand for new products and new business models, the late 1990’s would seem to

have been the perfect environment for equity analysts to add value. Yet analyst recommendations

were not particularly helpful or profitable during this period. For example, the analysts were ex-

tremely slow to downgrade stocks, even as it was apparent that the market had substantially revised

its expectations about the technology sector’s earnings potential. Barber, Lehavey, McNichols, and

Trueman (2003) show that the least recommended stocks earned an average abnormal return of
4See for example Barber, Lehavey, McNichols, and Trueman (2003) and Chan, Karceski, and Lakonishok (2003).

Research prior to the NASDAQ collapse includes Womack (1996), Lin and McNichols (1998), and Michaely and

Womack (1999).
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13% in 2000-2001, while the most highly recommended stocks earned average abnormal returns of

-7%. Observations like this have led commentators to wonder whether the analysts had ulterior

motives for keeping their recommendations unjustifiably optimistic, such as the pressure to win

investment banking business. Allegedly, this conflict of interest took the form of analysts keeping

recommendations on stocks high in order to appease firms, who would then reward the analyst’s

company by granting it underwriting business or other investment advisory fees.5 Indeed, these

suspicions came to a head when then New York State Attorney General Elliot Spitzer launched an

investigation into conflicts of interest in the securities research business.

In this application we develop an empirical model of the recommendations generated by stock

analysts from the framework outlined in section 1. We quantify the relative importance of four

factors influencing the production of recommendations in a sample of high technology stocks during

the time period between 1998 and 2003.

6.1 Data

Our data consist of the set of recommendations on firms that made up the NASDAQ 100 index

as of year-end 2001. The recommendations were collected from Thomson I/B/E/S. The I/B/E/S

data is one of the most comprehensive historical data sources for analysts’ recommendations and

earnings forecasts, containing recommendations and forecasts from hundreds of analysts for a large

segment of the set of publicly traded firms. It is common for analysts to rate firms on a 5 point

scale, with 1 denoting the best recommendation and 5 denoting the worst. When this is not the

case, these nonstandard recommendations are converted by Thomson to the 5 point scale (see Table

6.1).

We have 51,194 recommendations from analysts at 297 brokerage firms (see Table 6.2) submitted

between March of 1993 and June of 2006 for firms in the NASDAQ 100. In a given quarter, for

a given stock, we also merge a quarterly earnings forecast with a recommendation from the same

brokerage firm.6 This merge will allow us to determine if analysts that are more optimistic than the

consensus tend to give higher recommendations. In the I/B/E/S data, quarterly earnings forecasts

are frequently made more than a year in advance. In order to have a consistent time frame, we

limit analysis to forecasts that were made within the quarter that the forecast applies.7 We chose
5In 1998, Goldman Sachs estimated that Jack Grubman, a prominent telecommunications industry analyst, would

bring in $100 to $150 million in investment banking fees. This estimate was based on the fees generated by 32 of

the stocks he covered that also had banking relationships with Citigroup, including WorldCom, Global Crossing and

Winstar Communications. (Wall Street Journal, October 11, 2002).
6When there were multiple recommendations by the same analyst within a quarter, we chose to use the last

recommendation in the results that we report.
7We chose to merge the brokerage field, instead of the analysts field, because the names and codes in the analysts
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to merge the brokerage field, instead of the analysts field, because the names and codes in the

analysts field were not recorded consistently across I/B/E/S data sets for recommendations. It was

possible to merge at the level of the brokerage. Note that not every recommendation can be paired

with an earnings forecast made in the contemporaneous quarter. However, qualitatively similar

results were found for a data set where this censoring was not performed. We choose not to report

these results in the interests of brevity. The variables in our data include:

• REC-Recommendation from 1-5 for a stock listed in the NASDAQ 100 recorded by I/B/E/S.

• QUARTER- Quarter during which the recommendation was submitted.

• STOCK-Name of the stock for which the recommendation applies.

• BROKERAGE-The brokerage employing the analyst.

• EPS-Earnings per share forecast submitted by the analyst’s brokerage associated with the

recommendation. Submitted during the same quarter as the recommendation.

• AEPS-Average of the earnings per share forecasts submitted for that quarter.

• %DEV-(EPS-APS)/APS, the percent deviation of an individual broker’s earnings forecast

from the average earning’s forecast.

• RELATION-A dummy variable that is one if the analyst’s brokerage engages in investment

banking business with the company to which the recommendation applies.

• IBANK-A dummy variable that is equal to one if the brokerage does any investment banking

business with stocks in the NASDAQ 100.

The investment banking relationship was identified from several different sources. First, we

checked form 424 filings in the SEC’s database for information on the lead underwriters and syn-

dicate members of debt issues. When available, we used SEC form S-1 for information on financial

advisors in mergers. We also gathered information on underwriters of seasoned equity issues from

Securities Data Corporation’s Platinum database. To be sure, transaction advisory services (merg-

ers), and debt and equity issuance are not the only services that investment banks provide. However,

these sources contribute the most to total profitability of the investment banking side of a brokerage

firm.

field were not recorded consistently across I/B/E/S data sets for recommendations. It was possible to merge at the

level of the brokerage.
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The average recommendation in our data set is 2.2, which is approximately a buy recommenda-

tion (see Table 6.2). About six percent of the analyst-company pairs in the sample were identified

as having a potential conflict of interest due to some kind of investment banking activity for the

stock in question. A full 78 percent of the recommendations come from brokerage firms that had

an investment banking relationship with at least one firm in the NASDAQ 100. Both of these

variables are potentially useful measures of potential conflict of interest. The variable RELATION

is more direct, since it indicates that the brokerage is engaged in investment banking with the same

company it is making recommendations about, during the same quarter the recommendation was

issued. However, brokerages might view any company it is giving a recommendation to as a poten-

tial client, particularly in the NASDAQ 100, where many of the companies generated considerable

investment banking fees.

We also make use of analyst earnings forecasts. In a given quarter, for a given stock, we

merge the quarterly earnings forecast with the recommendation from the same brokerage. This

allows us to determine if analysts that are more optimistic than the consensus tend to give higher

recommendations.

6.2 Empirical model

An observation is a recommendation submitted for a particular stock during a specific quarter. We

will let t = 1, ..., T denote a quarter, j = 1, ..., J a stock and i = 1, ..., I an analyst. We will denote

a particular recommendation by ai,j,t. The recommendation can take on integer values between 1

and 5, where 1 is the highest recommendation and 5 the lowest. Since the dependent variable can

be naturally ranked from highest to lowest, we will assume that the utilities come from an ordered

logit. Let s(i, j, t) denote a set of covariates that influence the recommendation for analyst i for

stock j during quarter t. Let s(j, t) denote a vector of (s(i, j, t)) of payoff relevant covariates that

enter into the utility of all the analysts who submit a recommendation for stock j during quarter q.

Let z(j, t) denote a set of covariates that shift the equilibrium, but which do not influence payoffs.

Define the utility or payoff to analyst i for a recommendation on stock j in quarter t to be,

πi,j,t = β′s(i, j, t) + ηE(a|s(j, t), z(j, t)) + εi,j,t (27)

In equation (27), the term E(a|s(j, t), z(j, t)) is the expected recommendation for stock j during

quarter t and εi,j,t is an error term drawn from an extreme value model. Thus, conforming to

the expected actions of peers enters into an individual analyst’s utility. The model is the familiar

ordered logit, where the probability that a particular recommendation is observed is determined as
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follows:

P (a = 1) = Λ(−β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))
P (a = 2) = Λ(µ1 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))

−Λ(−β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))
P (a = 3) = Λ(µ2 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))

−Λ(µ1 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))
P (a = 4) = Λ(µ3 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))

−Λ(µ2 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))
P (a = 5) = 1− Λ(µ3 − β′s(i, j, t)− ηE(a|s(j, t), z(j, t)))

(28)

In equations (28), the likelihood that determines the probability that the recommendation is a

depends on the latent estimated covariates β and η along with the cut points µ1 − µ3.

The analysis of the previous section suggests that identification depends crucially on having ap-

propriate exclusion restrictions. First, we need covariates that influence the payoffs of one particular

agent, but not other agents. In our analysis, the covariates will include IBANK and RELATION.

This assumption would imply, for instance, that the amount of investment banking done by Mer-

rill Lynch should not directly influence the recommendations submitted by analysts working for

Goldman Sachs. We believe that this is a reasonable assumption.

In addition, we have attempted to control for unobserved heterogeneity in several ways. First,

in many specifications, we include a full set of stock and quarter fixed effects to control for factors

that remain fixed in a quarter that influence recommendations. Second, we have controlled for

unobserved heterogeneity using both a fixed effects and random effects specification.

6.3 Monte Carlo Simulation

Before discussing the empirical results, we report a small scale monte carlo simulation in which we

examine the small sample properties of the two-step semiparametric estimation procedure using a

simplified version of the ordered probit model in (27). The coefficient β is set to 2, η takes one of

the five values 0, .025, .05, .075, and 0.1, sequentially. The cutoff points µ1, µ2 and µ3 are fixed

at .75, 1.5 and 2.25 respectively. We generate data for 100 stocks, each representing one market.

There are 100 analysts in each market. The state variable s is generated independently from a

uniform distribution, U (0, 2). We run the simulation 1000 times.

First we compute an equilibrium in the above model. To do so, we use the fsolve procedure in

Matlab to find the fixed point function in the expected recommendation as a function of the state

variable, and hence the fixed point functions in the probabilities of each recommendation category.
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Next we simulate the data using the computed equilibrium, and run the two-step semiparametric

estimator on each of the simulated data sets. Two implementations are used for the first stage of

the two-step estimator. In the first implementation we us a polynomial spline with degree 3 and

scale 5. In the second implementation, we use a local linear regression.

Table 6.12 reports the results from the monte carlo simulations, which shows that the two-step

estimator has desirable finite sample statistical properties in the sense that the estimated parameters

are fairly precisely estimated. Figures 6.1 and 6.2 visually illustrate the empirical distribution of

the estimates of the interaction parameters when the first stage nonparametric regressions are

performed using a polynomial spline regression and a local linear regression, respectively.

6.4 Results

6.4.1 Fundamentals

The first question that we ask is the extent to which recommendations were determined by publicly

observable information about the stocks. In our data, these fundamentals correspond to time

fixed effects, stock fixed effects, and the difference between an individual analyst’s beliefs about

earnings and beliefs in the market as whole. In Table 6.4, we run an ordered logit to explore these

questions. The variable %DEV is the percentage deviation of an analyst’s recommendation from

the average recommendation and ABS. DEV is the algebraic difference. In both cases, a more

optimistic earnings forecast has the anticipated sign; a better earnings outlook is associated with

a lower (i.e., better) recommendation. However, the estimated coefficients are not significant at

conventional levels in any of the specifications that we have tried. On the other hand, quarterly and

stock fixed effects are almost all statistically significant (not reported in this Table). If quarter and

stock fixed effects proxy for publicly available information about the stock, then this information is

considerably more important than measures of an individual analyst’s optimism. We note, however,

that there could be other interpretations of these variables.

In Table 6.5, we compare the estimated quarterly fixed effects to the NASDAQ Index and

NASDAQ 100 (ticker QQQ). The estimated quarterly effects are highly correlated with the both

NASDAQ index and with the QQQ over the 1998-2003 period when stock prices were highly

volatile. We take these results as evidence that the quarterly effects can reasonably be interpreted

as reflecting publicly observed information about the firms that is embedded in the share prices, as

opposed to some other latent effects.
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6.4.2 Conflicts of Interest

In Table 6.6 we run an ordered logit model of recommendations as a function of our conflict of

interest measures. The coefficient on RELATION indicates that potential conflicts of interest

are statistically significant at conventional levels, except for the third column where quarterly

and stock fixed effects are included, and the fourth column where the full set of fixed effects are

included along with the more inclusive IBANK variable. The coefficient sign on RELATION is

also consistent with our a priori beliefs that conflicts of interest could lead to the issuance of more

favorable recommendations. Consistent with the work of prior researchers and market regulators,

the results in Table 6.6 do suggest that a potential conflict of interest exists when a brokerage

engaged in investment banking business with a company that quarter. However, these results

must be interpreted with some caution. Since brokerage firms are expected to cover companies

with whom they have significant investment banking business, the firms have an incentive to select

brokerages that already view them favorably. It would be hard to imagine that a rational manager

would want to hire an investment banking firm that views her company in an unfavorable manner.

Interestingly, we note (column 4 of table 6.6) that when we include the IBANK variable denoting

that the brokerage firm has investment banking relationships with at least one firm in the index,

the coefficient is positive and significant. Evidently, analysts at investment banking firms tend to

issue slightly more conservative recommendations. This is consistent with a view of the world that

companies tended to select investment banking firms that were more favorably disposed towards

them. Alternatively, our results could be interpreted as suffering from a bias due to some omitted

variable. We will see later that when we add our peer effects variable to the specification, the

importance of the investment banking relationship variable is diminished.

Our results suggest that even though investment banking relationships may generate potential

conflicts of interest for equity analysts, the magnitude of the effects on recommendations may be

small in practice. Notice that measures of the goodness of fit are very low when only investment

banking relationship is included. This overall finding is not consistent with the prosecutors belief

that “unbiased” research, separate from investment banking, will generate recommendations less

tainted by potential conflicts of interest.

6.4.3 Peer Effects

The final question we consider is whether peer effects come into play when analysts submit their

recommendations. We explore this question in Tables 6.7 - 6.10 by using the two-stage procedure

described in the previous sections. First, we regress the recommendations on a broker fixed effect,

a full set of stock and quarterly dummies, and IBANK. In Table 6.7, these first-stage regressions
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are done using linear regression, while in the later tables we included stock-time interactions as

a more flexible first stage. We experimented with other functional forms, such as a 3rd-order

spline, and the results were little changed. We will let BELIEF for an analyst-broker i denote

the expected average recommendation from the first-stage model, where the average excludes the

predicted recommendation of that broker i. If the coefficient on BELIEF is positive, this means

that broker i has an incentive to conform to the recommendations of the other brokers. If it is

negative, it means there is a return from submitting a dissenting recommendation.

In all of the specifications that we examine in Table 6.7, peer effects seem to be important.

An individual analyst will raise his recommendation proportionally to the recommendation that he

expects from other analysts. This is intuitive. A recommendation does not make sense in isolation,

but only in comparison to the recommendations of other analysts. If no one else in the market is

issuing recommendations of “market underperform” or “sell”, an individual analysts may give the

wrong signal by issuing such a recommendation even if he believes the recommendation is literally

true. It is worth noting that the results for our measure of peer effects are not only statistically

significant, but peer effects also explain the results quite well compared to the other covariates.

The Pseudo-R2 suggests that quarterly dummies, stock dummies and BELIEF explain most of the

variation in the data. Adding the additional conflict of interest variables does not do much to

improving the model fit.

We note that the presence of the peer effect is robust to allowing for a more flexible first

stage (see Tables 6.8 - 6.10). Also, the peer effect remains significant allowing for unobserved

heterogeneity in the form of a stock/quarter-specific random effect in Table 6.9 and stock/quarter

fixed effect in Table 6.10. For these specifications, the investment banking relationship coefficient is

no longer significant. In the random effect specification, the individual effect component is assumed

to be drawn from a normal distribution with mean zero and a constant variance. The validity of

the random effect model requires the strong assumption that the random effects are orthogonal to

the regressors and the errors.

With estimates of the model’s key parameters in hand, it is possible to simulate the model

and find the set of equilibria to the analyst recommendation game. In keeping with the static

nature of our analysis, we solve for all possible equilibria at two points in time: the first, just prior

to the regulatory regime change in 2000.Q1, and then again in 2003.Q1 after the Spitzer inquiry

was well-underway. These results are based on assuming that there are two analysts making a

recommendation and that the recommendations are determined as in (28). All of the variables

are set to their sample averages for 2000.Q1 and 2003.Q1 respectively. The parameter values were

set equal to the estimates in the last column of Table 6.7. Since we are interested in the effect of

investment banking on recommendations, we consider two cases: the first where IBANK is 0 for
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both players, and the second case when IBANK is set to 1 for both players.

Evidently, the pre-Spitzer era was characterized by an across-the-board tendency to grant higher

ratings (see Table 6.11). This is not surprising given the very different outlook for technology

stocks that characterized these two time periods. We note that the average recommendation tends

to fall when the analyst’s firm engages in investment banking business at some scale. This is

because the coefficient on IBANK is positive in our estimates. This could be because analysts

at firms with an investment banking operation are systematically different or possess different

information. Thus, our model suggests that, contrary to the allegations made by the prosecutor

and in the press, on average, the potential conflict of interest for firms offering both investment

recommendations of firms and investment banking services to those firms did not necessarily lead

to better recommendations.

7 Conclusion

In this paper we propose a method for estimating static games of incomplete information. The

method we propose is semiparametric and does not require the covariates to lie in a discrete set.

Perhaps most importantly, the method is both flexible and easy to implement using standard

statistical packages. We also introduce an algorithm for computing all equilibria to a game, which

is useful for policy simulations using the estimated model.

We apply these methods to the problem of determining the factors that govern the assignment

of stock recommendations by equity analysts for a set of high tech stocks between 1998 and 2003.

Two factors seem to be most important for explaining the production of stock recommendations.

First, publicly observable information about the stocks under recommendation, as reflected in our

time and quarter dummies, plays a large role in explaining the distribution of recommendations.

Simply put, recommendations improved in 1999-2000 as the stock market rose, and then deterio-

rated as the market fell in the ensuing years. The second and most important factor for explaining

recommendations is the peer group effect. Individual analysts appear to raise their recommenda-

tions proportionally to the recommendations they expect from their peers. Investment banking

relationships are shown to be statistically significant in the recommendations regressions, but the

economic effect of the investment banking relationship is estimated to be small. Additionally, when

the investment banking relationship variables are included alongside our measure of peer effects,

the banking relationships tend to be insignificant.
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A Proof for Theorem 2

In order to clarify manipulations and mathematical notations, in the following we will focus on the multi-

nomial logit case which is the most widely used discrete choice model in the empirical literature. Similar

results can be obtained for other multinomial choice models, including the ordered logit model.

Before we set out to prove the theorem we need to introduce some notations. Collapse the indexation

for i = 1, . . . , n and ai = 1, . . . ,K to a single index j = 1, . . . , nK. In other words, each j represents a (i, ai)

pair. First we will rewrite the expression (23) for the case of multinomial choice probability as:

σj =
exp (Pj(σ))

1 +
∑
k∈Ii

exp (Pk(σ))
, (29)

where Ii = {(i, ai) , ai = 1, . . . ,K} is the set of all indices j = (i, ai) that corresponds to the set of strategies

available to player i, and Pj (σ) is the expected utility associated with player i for playing ai when j = (i, ai):

Pj (σ) = Pi,ai
(σ) =

∑
a−i

σ−i (a−i|s) Φi (ai, a−i, s)
′
θ,

which is in general a polynomial function in σj . Let P(·) denote the vector-function of polynomials of size

nK × 1 that collects all the elements Pj(·) for j = 1, . . . , nK. Let Q be the product of the degrees of the

polynomial over all elements of the vector P(·). In other words, Q =
∏nK
j=1Qj where Qj is the degree of

polynomial Pj(·). For each complex argument ξ ∈ CnK the system of polynomials has exactly Q solutions.

Because of this, for each ξ ∈ CnK we can find Q vectors σ∗ such that P(σ∗) = ξ. Let us denote each

particular vector σ∗ by P−1
(k)(ξ).

The complex-valued vector P(·) of dimension nK × 1 can be transformed into a real-valued vector of

dimension 2nK×1 by considering separately real and complex part of vector P(·). Because of the polynomial

property, each P−1
(k) (ξ) is a continuously differentiable function of ξ for almost all ξ. It is possible that for

some range of the argument ξ, two (or more) solution paths P−1
(k) (ξ) and P−1

(k′) (ξ) for k 6= k′ might coincide

with each other. In this case we will relabel the paths k so that the merged paths create a total Q of smooth

solution paths P−1
(k) (ξ).

The following analysis will apply to each individual branch P−1
(k) (ξ), which we will just denote by P−1 (ξ)

without explicit reference to the path indice k. For j = 1, . . . , nK introduce the following notations: ξj =

xj + iyj , ρj = ‖ξj‖, ϕj = arctan
(
yj

xj

)
. Then a homotopy system can be constructed for (29) as:

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{
Re{P−1(ξ)}−

− e2xj +exj cos(yj)+
P

k 6=j e
xj+xk cos(yj−yk)

1+
P

k∈Ii
e2xk+2

P
k∈Ii

exk cos(yk)+
P

l∈Ii

P
k 6=l e

xk+xl cos(yl−yk)

}
and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{
Im{P−1(ξ)}−

− exj sin(yj)+
P

k 6=j e
xk+xj sin(yj−yk)

1+
P

k∈Ii
e2xk+2

P
k∈Ii

exk cos(yk)+
P

l∈Ii

P
k 6=l e

xk+xl cos(yl−yk)

}
If the system P(·) is polynomial, P−1 (ξ) is smooth and has a Jacobian of full rank for almost all ξ.

Therefore, we can locally linearize it so that P−1(ξ) ≈ Λξ + C. (This expansion is used only for the purpose
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of clarity. A sufficient fact for the validity of the proof is that there exist Λ and C such that |P−1(ξ)| ≤ Λ|ξ|+C
which is true if P(·) is a polynomial.) The homotopy system can then be written as:

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{
Λjxj−

− e2xj +exj cos(yj)+
P

k 6=j e
xj+xk cos(yj−yk)

1+
P

k∈Ii
e2xk+2

P
k∈Ii

exk cos(yk)+
P

l∈Ii

P
k 6=l e

xk+xl cos(yl−yk)

}
(30)

and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{
Λjyj−

− exj sin(yj)+
P

k 6=j e
xk+xj sin(yj−yk)

1+
P

k∈Ii
e2xk+2

P
k∈Ii

exk cos(yk)+
P

l∈Ii

P
k 6=l e

xk+xl cos(yl−yk)

}
(31)

where Λj is the jth row of the nK×nK matrix Λ. Without loss of generality we will let C = 0 in subsequent

analysis for the sake of brevity because all the results will hold for any other given C. To simplify notation

we will denote:

Θi(x, y) =
∑
k∈Ii

e2xk + 2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)

Now given some index k ∈ {1, . . . , Q}, we consider the solutions of the system {H(x, y, τ)} = 0 for all possible

real values of the vectors of x and y.

Now we set out to prove the statements of Theorem 2. First we will prove statement (2). Define ρ = ‖ξ‖
to be the Euclidean norm of the entire nK × 1 vector ξ. We need to prove that there will not be a sequence

of solutions along a path where ρ→∞. We will show this by contradiction. Consider a path where ρ→∞.

Choose the component j of the homotopy system for which ρqj cos(q ϕj) → ∞ at the fastest rate among all

the possible indexes j where ρj →∞. 8

Consider the real part of the homotopy function, H1j(·, ·, ·). The equation H1j(x, y, τ) = 0 is equivalent

to the equation H1j(x,y,τ)

τ(ρq
j cos(q ϕj)−1) = 0 for ρj > 1. The last equation can be rewritten as:

1 +
(1− τ)

τ
(
ρqj cos(q ϕj)− 1

) {Λjx−
e2xj + exj cos(yj) +

∑
k 6=j e

xj+xk cos(yj − yk)
1 + Θi(x, y)

}
= 0. (32)

We will show that the second term in the curly bracket of the previous equation is uniformly bounded from

above in absolute terms:∣∣∣∣e2xj + exj cos(yj) +
∑
k 6=j e

xj+xk cos(yj − yk)
1 + Θi(x, y)

∣∣∣∣ ≤ C and for a constant C, (33)

8In case when instead of ρq
j cos(q ϕj)→∞ we have that ρq

j sin(q ϕj)→∞, the proof can be appropriately modified

by considering the imaginary part of the j-th element of the homotopy system without any further changes. The logic

of the proof can be seen to hold as long as there is a slower growing element of x or y. In case when all components

of x and y grow at the same rate to infinity in such a way that the second terms inside the curly brackets of (30) and

(31) explode to infinity, one can take a Laurent expansion around the values of yk’s such that the denominators are

close to zero. Then one can see that these terms in (30) and (31) explode to infinity at quadratic and linear rates in

1/(y − y∗), respectively. Therefore (30) and (31) can not both be zero simultaneously for large x and y.
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where the constant C can depend on ε. Therefore the term in the curly bracket in the homotopy (32) will

grow at most at a linear rate |x| ≤ Cρj . On the other hand, denominator τ
(
ρqj cos (qϕj)− 1

)
outside the

curly bracket grows at a much faster polynomial rate for large q. Hence the second term in (32) is close to 0

for large q for large values of ξ, and equation (32) can not have a sequence of solutions that tends to infinity.

In other words, there exists R0 > 0 such that for any ξ = (x, y) outside ℘ε with ‖ξ‖ ≥ R0 and any

τ ∈ (0, 1] we have that H1(x, y, τ) 6= 0, that is, homotopy system does not have solutions. This implies that

H−1(τ) ∩ ℘ε ⊂ BτR0
= {(x, y, τ) ∈ R2nK \ ℘ε × (0, 1] ∩ ‖ξ‖ < R0}.

This proves the statement 2).

Finally, we will prove both statements 1) and 3) of Theorem 2. Again we consider the above homotopy

system on the compact set BτR0
. The homotopy function is analytic in this set so Cauchy - Riehmann

theorem holds. This implies that

∂H1j

∂xk
=
∂H2j

∂yk
and

∂H1j

∂yk
= −∂H2j

∂xk
, for all j, k = 1, . . . , 2nK.

This means that if the Jacobian is considered:

Ji =

(
∂H1j

∂x′
∂H1j

∂y′
∂H1j

∂τ
∂H2j

∂x′
∂H2j

∂y′
∂H2j

∂τ

)
,

then it contains at least one 2×2 submatrix with nonnegative determinant
[
∂H1j

∂xk

]2
+
[
∂H1j

∂yk

]2
. Calculating the

derivatives directly due to the fact that ε < ρ < R0 this determinant is strictly positive for all (x, y, τ) ∈ BτR0
.

Therefore, the implicit function theorem verifies that the pair (x, y) can be locally parameterized by τ .

Moreover, this representation is locally unique and continuous. This proves the first statement. The same

arguments above, which show that the determinant is positively almost everywhere, also immediately implies

the third statement. 2

Proof of equation (33):

We are to bound the left hand side of equation (33) by a given constant. First of all we can bound the

denominator from below by

‖1 + Θi(x, y)‖ ≥

∥∥∥∥∥1 +
∑
k∈Ii

e2xk

∥∥∥∥∥−
∥∥∥∥∥∥2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)

∥∥∥∥∥∥ ,
as ‖a+ b‖ ≥ ‖a‖ − ‖b‖. Then we can continue to bound:

‖1 + Θi(x, y)‖ ≥ 1 +
∑
k∈Ii

e2xk − 2
∑
k∈Ii

exk −
∑
l∈Ii

∑
k 6=l e

xk+xl . (34)

The last expression was obtained taking into account the fact that

max
yk, k∈Ii

‖2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)‖

is attained at the point cos(yk) ≡ cos(yk − yl) = 1,∀k, l ∈ Ii.

43



For the same reason, we can bound the numerator from above by∥∥∥e2xj + exj cos(yj) +
∑
k 6=j e

xj+xk cos(yj − yk)
∥∥∥ ≤ e2xj + ‖exj cos(yj)

+
∑
k 6=j e

xj+xk cos(yj − yk)
∥∥∥ ≤ e2xj + exj +

∑
k 6=j e

xj+xk .

Recall that j - th component was assumed to be the fastest growing x component as ρ→∞. Then from

equation (34) for some small but positive constant ψ we can write:

‖1 + Θi(x, y)‖ ≥ 1 + ψe2xj

Collecting terms we have that:

‖e2xj +exj cos(yj)+
P

k 6=j e
xj+xk cos(yj−yk)‖

‖1+Θi(x,y)‖ ≤ 1+e2xj +exj +
P

k 6=j e
xj+xk

1+ψe2xj
.

which is clearly uniformly bounded from above by a large constant.

The same arguments can be used by looking at the imaginary part of the homotopy system when there

exists a yj that converges to infinity at the fastest rate. 2

B Proof for Theorem 3

For the clarify of exposition we will present the proof in the case of two strategies for each player. In the

case with more than two strategies for each player, the expansions for the homotopy system will be more

complex and will involve more terms in the denominator. But the proof strategy is very similar, except it

involves more points around which expansions have to be taken.

In the two strategy case, we can rewrite the homotopy system (30) and (31) as

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{

Λjxj − e2xj +exj cos(yj)

1+e2xj +2exj cos(yj)

}
,

and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{

Λjyj − exj sin(yj)

1+e2xi+2exj cos(yj)

}
.

We need to check the presence of solutions in the small vicinity of the imaginary axis. Now consider

positive increments of xj such that xj is equal to some small value ε. If we linear the above homotopy system

around xj = 0, we can approximate them linearly by

H1j =τqεyq−1
j − (1− τ)ε

2
1

1 + cos(yj)
− 1 + τ

2
+ λjj(1− τ)ε+

∑
k 6=j

λjkxk(1− τ)

H2j =τyqj + (1− τ)
∑
k

λjkyk −
1− τ

2
sin(yj)

1 + cos(yj)
− τ

(35)

where λjj is the j, jth element of the Λ matrix.

One can see that these two functions are continuous everywhere except for the set of points {yj =

π + 2πk, k ∈ Z} where cos (yj) = −1.
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We will prove that for appropriate large values of q this system has no solutions in the vicinity of this

set. First of all note that if we take a second order expansion of 1 + cos (yj) around some y∗j = π + 2πk we

can approximate 1 + cos (yj) ≈ 1
2

(
yj − y∗j

)2. Then we can further linearize these two equations in (35) to:

H1j =τqεy∗ q−1
j − λjj(1− τ)ε+

∑
k 6=j

λkjxk(1− τ)− 1 + τ

2
− (1− τ)ε

(yj − y∗j )2

H2j =τy∗ qj + (1− τ)λjjy∗j −
∑
k 6=j

λkjyk(1− τ)− τ + (1− τ)
1

(yi − y∗i )

(36)

where we have also used sin (yj) ≈ −
(
yj − y∗j

)
.

Now we can construct a sequence of homotopies with the order q increasing to infinity at appropriate

rate such that these homotopies do not have solutions with extraneous solution of |yj | → ∞. This sequence

of q is constructed by letting q = 1+1/ε, as ε→ 0. Along this sequence, we will see below that the solutions

yj − y∗j to H1j and H2j will be of different orders of magnitude. Therefore there can not solutions yj − y∗j

that simultaneously satisfy both equations H1j = 0 and H2j = 0.

To see this, consider the first part H1j = 0 of (36). For small ε only the first term τqεy∗ q−1
j = O

(
y
∗ 1

ε
j

)
and the last term (1−τ)ε

(yj−y∗j )2 dominate. Therefore the solution yj − y∗j has to have the order of magnitude

O
(√

1
ε y

∗− 1
2ε

j

)
. On the other hand, for the second part H2j = 0 of (36). For small ε only the first term

τy∗ qj = O
(
y
∗ 1

ε
j

)
and the last term (1− τ) 1

(yi−y∗i ) dominate. Therefore the solution yj − y∗j has to have the

order of magnitude O
(
y
∗− 1

ε
j

)
which increases to ∞ much slower than O

(√
1
ε y

∗− 1
2ε

j

)
as ε →∞. Therefore

there can be no solution yj to both H1j and H2j simultaneously for the sequence of q chosen above. This

proves that the homotopy is path finite along that sequence of q.

The considered homotopy function is analytic outside the balls of fixed radius around the members of

countable set of points {xj = 0, yj = π + 2πk}, k ∈ Z 9. Therefore a monotone smooth parametrization is

available except for the interior of these balls because the determinant of the Jacobian is strictly positive

everywhere else.

This establishes regularity of the homotopy and concludes the proof. 2

Proof of equation (35): We consider each term individually. First of all

ϕ = arctan (y/ε) =
π

2
− arctan (ε/y) ≈ π

2
− ε

y
.

Hence, as long as q is chosen so that qπ/2 is 2kπ + π
2 for some k,

cos (qϕ) = cos (q arctan (y/ε)) ≈ cos

(
q
π

2
− q

ε

y

)
= sin

(
qε

y

)
≈ qε

y
.

Together with ρq ≈ yqj , this gives the first term in H1j .

Secondly, a first order expansion around ε = 0 gives

exj sin(yj)
1 + e2xi + 2exj cos(yj)

≈ 1
2

+
1
2
ε

1
1 + cos (yj)

.

9Moreover, it is possible to check that the homotopy system has no solutions when all arguments are purely

imaginary in case if q is an arbitrary odd number.
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Therefore the H1j is proved in (35).

The second part of H2j follows similarly, noting that given the choice of q where sin(qϕ) = 1, and

ρqj ≈ yqj , and the first Taylor expansion term for exj sin(yj)

1+e2xi+2exj cos(yj)
vanishes.

End of proof for equation (35).

C Semiparametric Variance

To derive Ω, we need to follow Newey (1990) and derive the asymptotic linear influence function of the left

hand side of the above relation. For this purpose, note that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (yt − σ (st,Φ0, θ0))−
1√
T

T∑
t=1

A (st)
(
σ
(
st, Φ̂, θ0

)
− σ (st,Φ0, θ0)

)
.

Since Φ̂ depends only on the nonparametric estimates of choice probabilities σ̂j (k|s) , j = 1, . . . , n, k =

1, . . . ,K in (18) through (15), the second part can also be written as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s))− Γ (st, θ0;σ0 (s))) ,

where σ̂ (s) is the collection of all σ̂j (k|s) for j = 1, . . . , n and k = 1, . . . ,K, and the function Γ (·) is

defined in (17). Then using the semiparametric influence function representation of Newey (1994), as long

as Γ (st, θ, σ (s)) is sufficiently smooth in σ (s) and as long as the nonparametric first stage estimates satisfy

certain regularity conditions regarding the choice of the smoothing parameters, we can write this second

part as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s))− Γ (st, θ0;σ0 (s)))

=
1√
T

T∑
t=1

A (st)
∂

∂σ
Γ (st, θ0;σ0 (s)) (yt − σ (st, θ0)) + op (1) .

In other words, if we write Γσ (s) = ∂
∂σΓ (st, θ0;σ0 (s)), we can write

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .

Therefore we can derive the asymptotic distribution of the two-step semiparametric θ̂ defined through

(19) as

√
T
(
θ̂ − θ0

)
= − (EA (st) Γθ (st))

−1 1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .
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Hence

√
T
(
θ̂ − θ0

)
d−→ N (0,Σ)

where Σ is equal to

E (A (st) Γθ (st))
−1 [

EA (st) (I − Γσ (st))Ω (st) (I − Γσ (st))
′
A (st)

′]
E
(
Γθ (st)

′
A (st)

′)−1
.

In the above, we have defined

Γθ (st) =
∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ0

,

and

Ω (st) = V ar (yt − σ (st, θ0) |st) .

The efficient choice of the instrument matrix (which can be feasibly estimated in preliminary steps without

affecting the asymptotic variance) is then given by

A (st) = Γθ (st)
′ (I − Γσ (st))

−1 Ω (st)
−1 (I − Γσ (st))

−1′
.

With this efficient choice of the instrument matrix, the asymptotic variance of θ̂ becomes(
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1′ Γθ (st)

)−1

. (37)

C.1 Efficiency Considerations

We present two efficiency results in this section. First of all, we show that with the above efficient choice of

the instrument matrix A (st), the semiparametric two-step estimation procedure above is as efficient as the

full maximum likelihood estimator where the fixed point mapping in (17) is solved for every parameter value

θ which is then nested inside maximum likelihood optimization to obtain choice probabilities as a function

of θ. Secondly, we show that estimating σ̂ (st) may even improves efficiency over the hypothesis case where

σ (st) is known and the pseudo MLE in (20) is used to estimate θ (but using Φ0 instead of Φ̂).

C.1.1 Efficiency comparison with full maximum likelihood

Consider a full maximum likelihood approach where a fixed point calculation (assuming the solution is

unique) of (17) is nested inside the numerical optimization. For each θ, (17) is solved to obtain σ (st, θ) as

a function of θ, which is then used to form the likelihood function as in (20). Define the total derivative of

(17) as

d

dθ
σ (st, θ0) =

d

dθ
Γ (st, θ, σ (st; θ))

∣∣∣∣
θ=θ0

=Γθ (st) + Γσ (st)
d

dθ
σ (st, θ0)
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which can be used to solve for

d

dθ
σ (st, θ0) = (I − Γσ (st))

−1 Γθ (st) . (38)

Following the same logic as the discussions of pseudo MLE after (20), but with the pseudo log likelihood

function replaced by the full maximum likelihood function, it is easy to show that the asymptotic distribution

of the full maximum likelihood estimator, which is the same as an iv estimator with the instruments chosen

optimally, satisfies

√
T
(
θ̂FMLE − θ0

)
d−→ N (0,ΣFMLE)

where

ΣFMLE =
(
E
d

dθ
σ (st, θ0)

′ Ω (s)−1 d

dθ
σ (st, θ0)

′
)−1

.

Using (38), we can also write

ΣFMLE =
[
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1 Γθ (st)

]−1

.

This is identical to (37) for the asymptotic variance of the two-step semiparametric iv estimator when the

instrument matrix is chosen optimally.

C.1.2 Efficiency comparison with infeasible pseudo MLE

Consider an infeasible pseudo MLE, which is similar to (20) except with Φ̂ replaced by the true but unknown

Φ0:

T∑
t=1

n∑
i=1

[
K∑
k=1

yikt log σi (k|st,Φ0, θ) +

(
1−

K∑
k=1

yikt

)
log

(
1−

K∑
k=1

σi (k|st,Φ0, θ)

)]
. (39)

The asymptotic variance of this estimator is similar to that of ΣFMLE except with d
dθσ (st, θ0)

′ replaced by

Γθ (st). In other words,

ΣIPMLE =
[
EΓθ (st)

′ Ω (st)
−1 Γθ (st)

]−1

.

where IPMLE stands for infeasible pseudo MLE.

The relation between ΣFMLE and ΣIPMLE is obviously ambiguous and depends on the response matrix

Γσ (st). It is clear possible that ΣFMLE < ΣIPMLE , in which case estimating Φ̂ may improve efficiency over

the case where Φ0 is known.

48



Table 5.1: Characteristics of the Parameters 

 

PARAMETER MEAN VARIANCE DISTRIBUTION 

1 2.45 1 Normal 

2 5.0 1 Normal 

3 1.0 1 Normal 

4 -1.0 1 Normal 

x1 1.0 0.33 Uniform 

X2 1.0 0.33 Uniform 

 

 

Table 5.2 (i): Results of Monte-Carlo Simulations, n=3. 

 

PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.592 1.175 7 1 

P1 0.366 0.362 0.998 0 

P2 0.360 0.367 0.995 0 

P3 0.363 0.348 0.993 0.003 

 

 

Table 5.2 (ii): Results of Monte-Carlo Simulations, n=4. 

 

PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.292 0.777 5 1 

P1 0.278 0.328 0.981 0.001 

P2 0.246 0.320 0.981 0.003 

P3 0.276 0.338 0.999 0.001 

P4 0.280 0.338 0.987 0.002 

 

 

Table 5.2 (iii): Results of Monte-Carlo Simulations, n=5. 

 

PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.106 0.505 5 1 

P1 0.104 0.201 0.964 0 

P2 0.138 0.252 0.975 0 

P3 0.315 0.338 0.992 0 

P4 0.356 0.385 0.983 0 

P5 0.319 0.344 0.982 0 

 

 

 

 

 



Table 5.3 (i): Frequencies for the number of equilibria, n=3. 

 

# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 

n=1 192 47.93 

n=3 132 33.06 

n=5 64 16.12 

n=7 12 2.89 

Total 400 1.00 

 

 

Table 5.3 (ii): Frequencies for the number of equilibria, n=4. 

 

# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 

n=1 287 71.84 

n=3 93 23.30 

n=5 20 4.85 

Total 400 1.00 

 

 

Table 5.3 (iii): Frequencies for the number of equilibria, n=5. 

 

# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 

n=1 373 93.16 

n=3 25 6.21 

n=5 2 0.62 

Total 400 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5.4 (i): Entry Probability of First Player, n=3. 

 

# OF EQUILIBRIA MEAN STD 

n=1 0.375 0.386 

n=3 0.337 0.341 

n=5 0.353 0.322 

n=7 0.601 0.367 

 

 

Table 5.4 (ii): Entry Probability of First Player, n=4. 

 

# OF EQUILIBRIA MEAN STD 

n=1 0.211 0.300 

n=3 0.431 0.328 

n=5 0.129 0.235 

 

 

Table 5.4 (iii): Entry Probability of First Player, n=5. 

 

# OF EQUILIBRIA MEAN STD 

n=1 0.116 0.216 

n=3 0.080 0.206 

n=5 0.007 0.232 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6.1 

Recommendation Variables 

 

RECOMMENDATION NUMERICAL VALUE RECORDED BY 

I/B/E/S 

Strong Buy 1 

Buy 2 

Hold 3 

Underperform 4 

Sell 5 

 

 

 

 

Table 6.2 

Summary Statistics 

 

VARIABLE MEAN STD. MIN. MAX. NOBS 

Rec 2.2251 0.9457 1 5 51,194 

Relation 0.0589 0.2355 0 1 51,194 

Ibank 0.7778 0.4157 0 1 51,194 

Rec-Recommendation from 1-5 for a stock listed in the NASDAQ 100 recorded by I/B/E/S.  

RELATION-A dummy variable that is one if the analyst's brokerage engages in investment banking 

business with the company to which the recommendation applies.   

IBANK-A dummy variable that is equal to one if the brokerage does any investment banking business with 

stocks in the NASDAQ 100. 

 

 

 

 

 

 

Table 6.3 

Tabulation of Recommendations by Quarter 

 

VARIABLE/TIME 

PERIOD 

Q1 1998 Q1 2000 Q2 2003 

% Recs. Equal to 1 34.2% 47.8% 12.8% 

% Recs. Equal to 2 37.8% 39.7% 21.1% 

% Recs. Equal to 3 27.3% 11.9% 51.5% 

% Recs. Equal to 4 .3% 0.3% 9.9% 

% Recs. Equal to 5 .4% 0.3% 4.6% 

 

 



Table 6.4 

Ordered Logit Estimates of the Effect of Fundamentals 

 

VARIABLE COEF. COEF. COEF. COEF. 

%DEV -.0038 (-1.12) -.0044 (-1.24) - - 

ABS. DEV   -.0194 (-6.33) .0114 (-3.73) 

     

Log Likelihood -16082.6 -15211.7 -14861.218 -14861.352 

Pseudo-R
2
 0.0 0.054 0.001 0.054 

Fixed Effects none quarterly, stock none quarterly, stock 

%DEV and ABS. DEV-the percent and absolute deviations of an individual broker's earnings forecast from 

the average earning's forecast. In the ordered logit model, the dependent variable is the analyst’s 

recommendation as coded by I/B/E/S. This takes on discrete values from one to five.  In the table above, t-

statistics are included in parentheses.  Most of the quarterly and stock fixed effects are significant in the 

specifications that we study. 

 

 

Table 6.5  

Regression of Dummies on Market Indexes 

 

 SAMPLE: 1993.Q1 – 2006.Q2 SAMPLE: 1998.Q2 – 2003.Q2 

Variable Coefficient Coefficient Coefficient Coefficient 

Constant .734 (3.51) 0.789 (4.29) 1.793 (5.22) 1.502  (5.06) 

Nasdaq Index -.0001 (-1.20) - -.0006 (-4.27) - 

QQQ Index - -0.0001 (-1.70) - -.0005 

     

Observations 54 50 21 21 

R
2
-adjusted

 
0.008 0.037 0.463 .432 

 

 

 

Table 6.6  

Ordered Logit Estimates of the Effect of Conflicts of Interest 

 

VARIABLE COEF. COEF. COEF. COEF. 

RELATION -.2787 (-8.37) -.2215 (-6.51)    -.1695 (4.66)   -.2083 (-5.68) 

IBANK    .1849 (8.71) 

     

Log Likelihood -65716.65       -62683.54 -61465.44       -61427.48 

Pseudo-R
2
 0.0005 0.0467 0.0652 0.0658 

Fixed Effects none quarterly quarterly, stock quarterly, stock 

In the ordered probit model, the dependent variable is the analyst’s recommendation as coded by I/B/E/S.  

This takes on discrete values from one to five.  In the table above, t-statistics are included in parentheses.  

We do not report ancillary parameters, such as the cut values and values of the fixed effects. 

 

 



Table 6.7 

Ordered Logit Estimates including Peer Effects (Parametric First Stage) 

 

VARIABLE COEF. COEF. COEF. COEF. 

BELIEF 1.5937 

(71.33) 

 

1.5807 

(66.6) 

.1437 

(2.98) 

.1507 

(3.20) 

IBANK 

 

- - - .1845 

(8.16) 

RELATION 

 

- 

 

- - -.2036 

(-4.84) 

 

     

Log Likelihood -62370.95 -62078.41 -61315.78 -61267.88 

Pseudo-
2R  0.049 0.053 0.065 0.066 

Fixed Effects none Stock quarterly, stock quarterly, stock 

 
In the ordered logit model, the dependent variable is the analyst’s recommendation as coded by I/B/E/S. 
This takes on discrete values from one to five. In the table above, t-statistics are included in parentheses 
(the t-statistic for the variable BELIEF is corrected using bootstrap). BELIEF is constructed by subtracting 
the individual fitted values (divided by the number of the other analysts for a specific stock in a specific 
quarter) from the conditional expectations of fitted values (conditional on quarter and stock), with these 
fitted values being from the parametric first stage regression. Most of the quarterly and stock fixed effects are 
significant in the specifications that we study. 

 

Table 6.8   

Ordered Logit Estimates including Peer Effects (Semiparametric First Stage) 

 

VARIABLE COEF. COEF. COEF. COEF. 

BELIEF 1.5982 

(81.82) 

 

1.5872 

(62.73) 

.1867 

(4.58) 

.1938 

(3.95) 

IBANK 

 

- - - .1851 

(7.16) 

RELATION 

 

- - -       -.2033 

(-5.22) 

     

Log Likelihood -62344.15 -62050.64 -61311.79 -61263.72 

Pseudo-
2R  0.049 0.054 0.065 0.066 

Fixed Effects none Stock quarterly, stock quarterly, stock 

 
In the ordered logit model, the dependent variable is the analyst’s recommendation as coded by I/B/E/S. This 
takes on discrete values from one to five. In the table above, t-statistics are included in parentheses (the t-statistic 
for the variable BELIEF is corrected using bootstrap). BELIEF is constructed by subtracting the individual fitted 
values (divided by the number of the other analysts for a specific stock in a specific quarter) from the conditional 
expectations of fitted values (conditional on quarter and stock), with these fitted values being from the first stage 
semiparametric sieve regression. Most of the quarterly and stock fixed effects are significant in the specifications 
that we study. 

 



Table 6.9   

Random Effect Estimates including Peer Effects (Semiparametric First Stage) 

 

VARIABLE COEF. COEF. COEF. COEF. COEF. 

BELIEF  1.1717 

(39.43) 

 

- 

 

- 

 

1.1732 

(40.35) 

  1.1961 

   (43.96) 

IBANK 

 

- .3229 

(8.67) 

- - .3832 

(18.67) 

RELATION - - -.0070 

(-.07) 

.0681 

(1.74) 

-.0281 

(-.57) 

      

Log 

Likelihood 

-27951.79 -28987.57 -29077.37 -27950.68 27832.87 

 

The dependent variable is equal to zero if the analyst’s recommendation is recorded as 1 (i.e. strong buy) in 

I/B/E/S and one otherwise. BELIEF is constructed by subtracting the individual fitted values (divided by 
the number of analysts for a specific stock in a specific quarter) from the conditional expectations of fitted 
values (conditional on quarter and stock), with these fitted values being from the first stage semiparametric 

sieve regression. In the table above, t-statistics are included in parentheses (the t-statistic for the variable 

BELIEF is corrected using bootstrap). There was a unique fixed effect for each stock during each quarter. 

 

 

Table 6.10 

Fixed Effect Estimates including Peer Effects (Semiparametric First Stage) 

 

VARIABLE COEF. COEF. COEF. 

BELIEF 1.1731 

(36.22) 

 

1.1747 

(36.22) 

1.1978 

(41.39) 

IBANK 

 

- - .3859 

(14.62) 

RELATION - .0787 

(1.87) 

-.0191 

(-.38) 

    

Log 

Likelihood 

-27500.96 -27499.50 27380.41 

 

The dependent variable is equal to zero if the analyst’s recommendation is recorded as 1 (i.e. strong buy) in 

I/B/E/S and one otherwise. BELIEF is constructed by subtracting the individual fitted values (divided by 
the number of analysts for a specific stock in a specific quarter) from the conditional expectations of fitted 
values (conditional on quarter and stock), with these fitted values being from the first stage semiparametric 

sieve regression. In the table above, t-statistics are included in parentheses (the t-statistic for the variable 

BELIEF is corrected using bootstrap). There was a unique fixed effect for each stock during each quarter. 

 

 

 

 



 

 

Table 6.11  

Equilibrium Simulations 

 

 REC=1 REC=2 REC=3 REC=4 REC=5 

Quarter 25 

IBANK=0 

0.3516 0.3735 0.2499 0.01654 0.8457E-2 

Quarter 25 

IBANK=1 

0.3986 0.3646 0.2162 0.01361 0.6998E-2 

Quarter 41 

IBANK=0 

0.07230 0.2026 0.5741 0.09545 0.05556 

Quarter 41 

IBANK=1 

0.08691 0.2296 0.5564 0.08115 0.04594 

 

The first row corresponds to the first quarter in 2000, where IBANK is 0 for all players. 

The second row corresponds to the first quarter in 2000, where IBANK is 1 for all 

players. The third row corresponds to the first quarter in 2003, where IBANK is 0 for all 

players. The fourth row corresponds to the first quarter in 2003, where IBANK is 1 for all 

players. The first quarter in 2000 is just prior to the regulatory regime change. In the third 

quarter in 2003 the Spitzer inquiry was well-underway. 

 

 

 
 

Table 6.12 

Results of Monte-Carlo Simulations 

 

Mean ˆ   Var. ˆ   Mean ˆ   Var. ˆ   true  Method (first stage) 

2.0353 0.11354 -0.024387 0.055506 0 spline 

1.758 0.072536 0.17097 0.034616 0 local linear 

2.0305 0.085441 0.0043688 0.041443 0.025 Spline 

1.8037 0.065475 0.1641 0.030893 0.025 local linear 

2.0219 0.066703 0.034266 0.032597 0.5 Spline 

1.8337 0.053847 0.16705 0.025816 0.5 local linear 

2.0273 0.058545 0.055379 0.028256 0.075 Spline 

1.8675 0.047997 0.16839 0.022664 0.075 local linear 

2.0235 0.048579 0.084208 0.023454 0.1 Spline 

1.8894 0.044436 0.17945 0.021039 0.1 local linear 
 

 

 

 

 

 



         Figure 6.1 Empirical Distribution of  interaction parameter  

    First stage: polynomial splines 

               
 

 

         First Stage: local linear regression 

 

               


