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SUMMARY

In this paper we specify a semi-nonparametric competing risks (SNP-CR)
model of recidivism, for misdemeanors and felonies. The model is a bi-
variate mixed proportional hazard model with Weibull baseline hazards and
common unobserved heterogeneity. The distribution of the latter is modeled
semi-nonparametrically, using orthonormal Legendre polynomials on the unit
interval, and integrated out to make the two durations dependent, conditional
on the covariates. The SNP-CR model involved corresponds to a Logit model
for felony arrest, hence the validity of the SNP-CR model can be tested by
testing the validity of the implied Logit model. The latter will be done by us-
ing the integrated conditional moment (ICM) test. In first instance we have
estimated and tested two versions of the SNP-CR model, without and with
fixed state effects. However, the ICM test rejects these models. Therefore,
we have estimated and tested the model for each state separately. These
state models are not rejected by the ICM test. Indeed, the estimation results
vary substantially per state.
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1 INTRODUCTION
In 1998, according to a press release from the Department of Justice, the
recidivism rate in the United States showed great variation. Where the state
of Montana showed the lowest rate of 11%, Utah reported the highest rate
of 67%. Within those two extremes, for example, New York appeared with
43.8%, Florida recorded 18.8% and Illinois closed that year with 39.9%. Al-
though these figures are difficult to compare, because of different criteria
used to measure recidivism, this variation in recidivism rates is an important
issue, especially for those concerned with the justice system. It appears to
be a crucial issue for this study as well.
Recidivism, as observed by Maltz (1984), can be understood as a sequence

of failures: failure of the correction system in “correcting” the ex-inmate,
failure of the ex-inmate in being able to live in a society and failure of the
society in completely reintegrating the ex-inmate into a law abiding environ-
ment. Besides the important psychological, sociological and criminological
impacts related to recidivism, there are also economic effects, for instance,
the forgone labor market earnings, the costs of keeping inmates in prison and
jails, the obsolescence of the inmate’s human capital because of incarcera-
tion. It is not surprising that economists, and specifically econometricians
have turned their attentions to issues related to recidivism.
Any attempt to make recidivism an operational concept must pay atten-

tion to the fact that recidivism is an interval time between to events: a release
event and a failure event. The release event could be from incarceration, from
parole supervision, from a halfway house or any other type of official custody.
So, the choice of the first event is dependent on the objectives of the study,
and to a lesser extent on data availability. The second event deserves more
discussion, though. Actually, a great part of the controversy in defining re-
cidivism rests upon it. The modern tendency in criminology has shown that
there are three possible definitions for recidivism: rearrest, reconviction and
re-incarceration1. It seems that rearrest has been proven to be the most re-
liable among the three possible measures, as reported in Beck and Shipley
(1989) and Maltz (1984). Also Blumstein and Cohen (1979) used rearrest
as their measure of recidivism. In this study we will therefore use the time
between release from prison and the first rearrest after release as the measure

1Those are just broad categories, and admit finer classifications. For a more detailed
discussion, see Maltz (1984).
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of recidivism, regardless whether or not a conviction followed the arrest. Be-
sides, our data set does not contain sufficient information about reconviction
or re-incarceration.
From an econometric perspective, the process of recidivism is best ap-

proached by the use of survival models. That was the route followed by
Schmidt and Witte (1988). They estimated a set of models of recidivism
using state data from the North Carolina Department of Corrections. They
concluded by noting that the proportional model performed better both in
terms of fit as well as prediction than other models used by criminologists,
sociologists and statisticians.
The use of survival models to study criminal recidivism dates back to

the end of the nineteen seventies. The pioneering works of Partanen (1969),
Carr-Hill and Carr-Hill (1972), and Stollmack and Harris (1974) are rep-
resentative of the early literature. Two decades later, a host of important
questions have been addressed related to the use of survival models. These
include prediction, evaluation of programs and estimation of the effects of
regressors on failure times. A good example is Barton and Turnbull (1981),
who evaluated a program impact on the process of recidivism, controlling for
explanatory variables. Also, Schmidt and Witte (1989) is a relevant appli-
cation that includes not only regressors but also a “split” parameter repre-
senting the probability that recidivism will not occur. The split model can
be generalized to include the effect of regressors in the splitting parameter
as in Schmidt and Witte (1989). They assumed a Logit model for the split
probability.
There is a reasonable appeal to the use of split models in studies of re-

cidivism. Contrary to a model of machine failure, where a component will
eventually fail, or in a study of cancer survival, where the patient will even-
tually die, the assumption that all released prisoners will eventually commit
another crime seems inappropriate. Indeed, such an assumption denies any
effect of prison treatment on ex-inmates. Another point in favor of split
models is made clear in Schmidt and Witte (1989): different regressors affect
both the split probability and the time of failure in different ways, and this
is important for policy purposes.
Despite the considerations made about split models, its successful use is

largely dependent on the availability of data sets with very long follow up
periods. Even with quite long periods in the range of 70− 81 months, as is
the case in Schmidt and Witte (1989), the fit presents some difficulties. Only
with much longer follow up periods, such as the 21 years in Escarela et. al.
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(2000), the split model seems feasible.
In their survey of survival analysis applied to recidivism, Chung et. al.

(1991) made a point about the potential of using competing risks models
for explaining recidivism. At that time, they argued that few papers had
explored this approach. The few exceptions are Rhodes (1986) and Visher
and Linster (1990). Rhodes (1986) consider competing risks, but the applica-
tion is to alternative reasons for removal from probation. Visher and Linster
(1990) use a bivariate proportional hazard model for misdemeanor and felony
recidivism, but they assume that the two durations are independent condi-
tional on the covariates. Some recent examples of this still growing literature
are Copas and Heydari (1997) and Escarela et. al. (2000). Except for the
latter paper, these papers consider recidivism and/or other durations such
as the time between reconviction and sentencing (Copas and Heydary 1997).
Escarela et. al. (2000) consider three types of crimes: sex offenses, nonsexual
violent crimes, and other offences. They specify exponential distributions for
these recidivism durations, conditional on covariates, and link then together
as a mixture distribution with multinomial Logit probabilities as weights.
There is also a substantial body of literature on structural modeling of

criminal behavior. See for example Imai and Krishna (2004) and the refer-
ences therein. The advantage of the structural approach is that it allows for
policy experiments, however at the expense of strong behavioral assumptions.
Our paper is in the reduced form tradition, but in various aspects different
from the literature involved.
First, we use the Bureau of Justice Statistics (BJS) data set, which aims

to be a nationally representative data set about recidivism.2 Moreover, we
consider two different categories of crime: a misdemeanor or a felony. Alone
this is not a novelty; Escarela et. al. (2000) consider three types of crimes
but they use a different fully parametric model. The actual novelty is the
way we model the two recidivism durations involved. Apart from the unob-
served heterogeneity distribution, the survival models of the two categories
of recidivism are fully specified as mixed proportional hazard models with
Weibull baseline hazards. However, we cannot include split probabilities,
because in the BJS data set the follow up period, about 60 months, is too
short for that.
The methodological novelties in this paper are two-fold. The first one is

2However, we will argue in the next section that the representativeness of the BJS data
set is questionable.

4



that the common unobserved heterogeneity is modeled semi-nonparametrically
(SNP), using orthonormal Legendre polynomials on the unit interval, similar
to the approach in Bierens (2006c), and then integrated out in order to make
the two durations dependent conditional on covariates. The second novelty
is the finding that the competing risks model involved corresponds to a Logit
model for felony arrest, hence the validity of the competing risks model can
be tested by testing the validity of the implied Logit model. The latter will
be done consistently, using the Integrated Conditional Moment (ICM) test
of Bierens (1982, 1990) and Bierens and Ploberger (1997).
In the next section we will discuss the BJS data set. In Section 3 we

discuss the semi-nonparametric competing risks (SNP-CR) model. This dis-
cussion includes the role of common unobserved heterogeneity in making
the durations dependent conditional on covariates, identification issues, the
semi-nonparametric specification of the unobserved heterogeneity distribu-
tion, the link between the SNP-CR model and a particular Logit model for
felony arrest, and the way to test the validity of this Logit model using the in-
tegrated conditional moment (ICM) test of Bierens (1982, 1990) and Bierens
and Ploberger (1997). Section 4 contains the estimation results. In first in-
stance we have included state dummy variables in the model to capture the
heterogeneity of recidivism rates across states, as mentioned above. However,
the ICM test rejects this model. Therefore, we also estimate and test the
models for each state separately. These state models are not rejected by the
ICM test. It appears that the model parameters vary substantially across
states. Finally, in Section 5 we summarize our results and methodological
contributions to the literature.

2 THEBUREAUOF JUSTICE STATISTICS
DATA ON RECIDIVISM

The data set used in our analysis comes from the Inter-University Consor-
tium for Political and Social Research, henceforth ICPSR, and was originally
collected by the Bureau of Justice Statistics, BJS. This data collection rep-
resents a major effort by the US. Department of Justice to systematically
improve the measurement of recidivism. The complexity of the data gath-
ering, its coverage and reach, makes it unique amongst other available data
sources on recidivism.
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After noticing that one major deficiency in information about the be-
havior of persons leaving prisons was the lack of nationwide data, the BJS
initiated a program to overcome this problem. So, in 1983, the Bureau
started a new National Corrections Reporting Program, NCRP, which fol-
lows a convict from admission to prison up to either unconditional release
or successful completion of a conditional release or parole. Also, guided by
another deficiency, say, the lack of data for states as well as FBI data for
each individual, the BJS implemented in 1985 a study to asses the viability
of linking state and federal correctional data. Hence, by May, 1987, initial
results were published by the BJS, and by the Winter of 1989, the ICPSR
made the data set available to the public. See ICPSR (1989).
The BJS data set contains records of 16,355 prisoners from whom both

state and FBI rap sheets were found, out of a total population of 108,580 ex-
inmates. The data set is a stratified sample of released prisoners from eleven
states who survived up to the follow-up period. Only released prisoners with
sentences of at least one year were included. Administrative releases, pris-
oners who were absent without leave, escapees, releases on appeal, transfers,
and those who died in prison were excluded. So, contrary to other studies
that understated recidivism, the data set contains criminal behavior infor-
mation at both the state and federal level. This represents an improvement
in terms of national representativeness, since past studies were restricted to
single states or cities. The total number of records is 299,897, and there is
information on numerous factors that affect recidivism.
Our point of departure to choose a set of regressors of recidivism is

Schmidt and Witte (1988). However, we also pay close attention to the crim-
inology literature on recidivism, for instance Gendreau et. al. (1996). The
regressors used in Schmidt and Witte (1988) are age at release, time served
before the sample sentence, gender, education, marital status, race, drug use,
supervision status, participation in programs, and dummies that characterize
the type of recidivism. Also, and more importantly from a econometric point
of view, we exclude some variables from even initial consideration because
of a potential high correlation with other already included variables. This
appears to be the case of variables such as past criminal history and sentence
length, given the clear movement in the State’s sentencing structure to tie
past behavior to length of sentence.
We have selected the following covariates:
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Table 1: Covariates
MALE Gender indicator,
BLACK Race indicator,
RELEASE = 0 if released on parole or probation, = 1 otherwise
AGE Age, in days/1000,
SENT Actual time served, in days/1000, before release.

The rescaling of AGE and SENT is done for numerical reasons.
Also, we will use dummy variables for the states represented in the BJS

sample: California, Florida, Illinois, Michigan, Minnesota, New Jersey, New
York, North Carolina, Ohio, Oregon, and Texas.
There were a few other covariates available in the sample, in particular

education indicators3, but they contained too many missing values to be
usable.
These covariates will be used to explain the following dependent variables:

Table 2: Dependent variables
T = min (T1, T2) , in days/1000, where

T1 = time between release and rearrest for a misdemeanor,
T2 = time between release and rearrest for a felony,

C = 1 if not rearrested before the follow-up date 04/16/88,
= 0 if rearrested before the follow-up date 04/16/88,

F = 1 if rearrested for a felony,
= 0 if rearrested for a misdemeanor.

Again, the rescaling of T is done for numerical reasons. The dummy variable
C indicates right-censoring. If C = 1, the duration T corresponds to the time
T between release from prison and the follow-up date 04/16/88. Since the
release dates vary slightly per ex-inmate, so does T . The classification of the
type of rearrest, F , is based on the assessment of the arresting officers rather
than of a judge or jury. Therefore, a suspected felony arrest may lead to
a misdemeanor conviction, or even acquittal. Moreover, in some cases after
a misdemeanor arrest the authorities may find out that the ex-inmate was
guilty of a felony4, but we do not have information about this.

3These education indicators were included in a previous version of this paper, which
reduced the effective sample size by about 45%. In particular, in California, Ohio and
Oregon no information about education is available.

4This was suggested by a referee.
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The BJS data set is not a random sample. From each but one of the
eleven participating states a separate, representative sample of male and
female prisoners was drawn. The exception is Minnesota, where all prisoners
were selected. Then, within each group, prisoners were grouped into 24 strata
that were defined based on race, age, and type of past offense5. Finally, an
i.i.d. sample was selected within each stratum. Therefore, at first sight the
BJS data set seems to be a standard stratified sample (in the terminology of
Wooldridge 2002).
In the BJS data set, however, no ex-inmate in California was released

on parole or probation, and in North Carolina and Texas no ex-inmate was
rearrested for a felony! Therefore, the representativeness of the stratification
is questionable!
It is known that certain types of sample stratification can render esti-

mators inconsistent and/or inefficient. According to Wooldridge (2001), the
stratification issue can be ignored if the strata are constructed entirely based
on exogenous variables. However, it seems that in North Carolina and Texas
the strata were (directly or indirectly) selected on the basis of the depen-
dent variable F , because it is inconceivable that felony recidivism is absent
in these states. Moreover, the sample averages of the variables in Table 3
below do not reveal substantial differences between North Carolina, Texas
and the other nine states, except for the absence of felony rearrests in North
Carolina and Texas:

Table 3: Sample averages
Variables N. Carolina Texas Other states
F | C = 0 (%) 0 0 47
C (%) 41 25 33
T | C = 0, F = 0 (months) 15 15 14
T | C = 0, F = 1 (months) 13
MALE (%) 85 83 87
BLACK (%) 51 38 44
RELEASE (%) 76 91 86
AGE (years) 27 28 28
SENT (months) 22 24 20

On the other hand, it is possible that the absence of felony rearrests in North

5The offense for which incarceration ended somewhere in 1983. After release, the
prisoner belongs to the population under study.
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Carolina and Texas is due to incomplete record keeping, or that potential
felons have left these states without a trace.

3 SEMI-NONPARAMETRICCOMPETING
RISKS MODELS

3.1 Bivariate mixed proportional hazard models

Consider two durations, T1 and T2. Conditional on a vector X of covariates,
and a common unobserved (heterogeneity) variable V , which is assumed to
be independent ofX, the durations T1 and T2 are assumed to be independent:

P [T1 ≤ t1, T2 ≤ t2|X, V ] = P [T1 ≤ t1|X, V ]P [T2 ≤ t2|X, V ] .

This is a common assumption in bivariate survival analysis. See Van den
Berg (2000).
Next, let

Fi(t|X, V ) = P [Ti ≤ t|X,V ] = 1− exp (−V exp (β0iX)Λi (t)) (1)

Si(t|X, V ) = 1− Fi(t|X, V ) = exp (−V exp (β 0iX)Λi (t)) , (2)

i = 1, 2, where Λ1 (t) =
R t
0
λ1 (τ) dτ and Λ2 (t) =

R t
0
λ2 (τ ) dτ are the inte-

grated baseline hazards depending on parameter vectors α1 and α2, respec-
tively. For notational convenience the dependence of Λ1 (t1) and Λ2 (t2) on
parameters is suppressed. Moreover, let

fi(t|X, V ) = ∂Fi(t|X,V )/∂t (3)

= V exp (−V exp (β 0iX)Λi (t)) exp (β 0iX)λi (t) ,

We only observe T = min (T1, T2) and a discrete variable D which is 1 if
T2 > T1 and 2 if T2 < T1:

D = 1 + I (T2 < T1) ,

where I(.) is the indicator function. In our case, D = 2 corresponds to
rearrests for a felony (F = 1), and D = 1 corresponds to rearrest for a mis-
demeanor (F = 0). Also, in our case the duration T is only observed over a
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period [0, T ], where T varies only slightly per ex-inmate, so that there is right-
censoring. This will be indicated by the dummy variable C = I

¡
T > T

¢
.

The observed duration T is assumed to be equal to T if C = 1.
Then conditional on X and V ,

P [T > t,D = d, C = 0|X, V ] (4)

=

Z T

t

V exp (−V (exp (β01X)Λ1 (τ ) + exp (β 02X)Λ2 (τ)))
× exp (β0dX)λd (τ ) dτ, d = 1, 2.

and

P [C = 1|X, V ] = S1
¡
T |X, V ¢S2 ¡T |X, V ¢ (5)

= exp
¡−V ¡exp (β 01X)Λ1 ¡T¢+ exp (β02X)Λ2 ¡T¢¢¢ .

3.2 Integrating the unobserved heterogeneity out

Let G(v) be the distribution function of V , and let

H (u) =

Z ∞

0

uvdG(v), (6)

h(u) =

Z ∞

0

vuv−1dG(v). (7)

The function H (u) is a distribution function on the unit interval [0, 1], and
h(u) is its density function, provided that E[V ] <∞.6 Then it follows from
(5), (6) and the assumption that X and V are independent that

P [C = 1|X] = H ¡exp ¡− exp (β 01X)Λ1 ¡T¢− exp (β 02X)Λ2 ¡T¢¢¢ , (8)

and from (4) and (7) that

P [T > t,D = d, C = 0|X] (9)

=

Z T

t

h (exp (− (exp (β 01X)Λ1 (τ) + exp (β 02X)Λ2 (τ ))))
× exp (− (exp (β01X)Λ1 (τ ) + exp (β02X)Λ2 (τ ))) exp (β0dX)λd (τ ) dτ,
d = 1, 2

6Given the condition E[V ] < ∞, it follows from the dominated convergence theorem
that h(u) = H 0 (u) pointwise in u ∈ (0, 1].
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Therefore, the conditional density of T given D = d(= 1, 2) and C = 0 is

f (t|X,D = d, C = 0)
= h (exp (− (exp (β01X)Λ1 (t) + exp (β 02X)Λ2 (t))))
× exp (− (exp (β01X)Λ1 (t) + exp (β 02X)Λ2 (t)))
× exp (β 0dX)λd (t) /P [D = d, C = 0|X] if t ≤ T
= 0 elsewhere

Given i.i.d. observations {Tj ,Dj , Cj}Nj=1 on (T,D,C) , the log-likelihood
function now takes the form

ln (LN (α1,α2, β1,β2, h))

=
NX
j=1

Cj ln (H (exp (− (exp (β01Xj)Λ1 (Tj|α1) + exp (β02Xj)Λ2 (Tj|α2)))))

+
NX
j=1

(1− Cj) ln (h (exp (− (exp (β01Xj)Λ1 (Tj|α1) + exp (β02Xj)Λ2 (Tj|α2)))))

−
NX
j=1

(1− Cj) (exp (β 01Xj)Λ1 (Tj|α1) + exp (β 02Xj)Λ2 (Tj|α2))

+
NX
j=1

(1− Cj) ((2−Dj)β 01Xj + (Dj − 1)β 02Xj)

+
NX
j=1

(1− Cj) ((2−Dj) ln (λ1 (Tj|α1)) + (Dj − 1) ln (λ2 (Tj|α2)))

At this point the density h(u) representing the distribution of the unob-
served heterogeneity is treated as a parameter.

3.3 Semi-nonparametric modeling of the unobserved
heterogeneity distribution

The unknown density h will be modeled in a flexible way, but involving only
a finite number of parameters, similar to the approach in Bierens (2006c). In
particular, we will assume that
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Assumption 1. The true density h0(u) =
R∞
0
vuv−1dG(v) belongs to the

space of density functions of the type

hq(u) = hq(u|δ) = (1 +
Pq

k=1 δkρk(u))
2

1 +
Pq

k=1 δ
2
k

, δ = (δ1, ..., δq)
0 , (10)

where q is an unknown but fixed natural number, and the ρk(u)’s are or-
thonormal Legendre polynomials of order k on the unit interval. Thus,
h0(u) = hq(u|δ0) a.e. for some finite q and a δ0 ∈ Rq.
The Legendre polynomials form a complete orthonormal basis for the

Hilbert space L2[0, 1] of square-integrable Borel measurable functions on
[0, 1]. Consequently, for any density function h(u) on [0, 1] there exists a
sequence of density functions of the type (10) such that

lim
q→∞

Z 1

0

|hq(u)− h(u)| du = 0.

See Bierens (2006c). This result is the primary motivation for Assumption
1.
The order q may be unknown, but the assumption that q is finite is

crucial because it allows us to use standard maximum likelihood results. In
particular, the parameter vector δ0 ∈ Rq is unique, in the following sense.
Let q0 be the smallest natural number for which there exists a δ0 ∈ Rq0 such
that h0(u) = hq0 (u|δ0) a.e., and suppose that for some q ≥ q0 and δ ∈ Rq,
hq0 (u|δ0) = hq(u|δ) a.e. on a set with positive Lebesgue measure. Then
δ = δ0 if q = q0 and δ0 = (δ00, 0

0) if q > q0 . See Bierens and Carvalho (2006,
Theorem A.2).
The minimal order q0 can be estimated consistently on the basis of the

well-known Hannan-Quinn (1979) and/or Schwarz (1978) information crite-
ria.

3.4 Nonparametric identification

It has been shown by Heckman and Honore (1989) that the competing risks
model with unobserved heterogeneity is identified. In particular they consider
the more general case where the unobserved heterogeneity is different for
each of the two durations, but dependent, which gives rise to a joint survival
function of the type
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P [T1 > t1, T2 > t2|X] = H (exp (− exp (β 01X)Λ1(t1)) ,
exp (− exp (β02X)Λ2(t2))

¢
,

where H(u1, u2) is a distribution function on the unit square [0, 1] × [0, 1]
representing the unobserved heterogeneity.
In principle it is possible to model the corresponding bivariate density

h(u1, u2) semi-nonparametrically, using Legendre polynomials. It can be
shown, similar to Bierens (2006c), that for any density h(u1, u2) on (0, 1] ×
(0, 1] there exists a SNP density function of the form

hq(u1, u2) =
(
Pq

k=0

Pq
m=0 γk,mρk(u1)ρm(u2))

2Pq
k=0

Pq
m=0 γ

2
k,m

,

such that limq→∞
R 1
0

R 1
0
|hq(u1, u2)− h(u1, u2)| du1du2 = 0.However, the num-

ber of nuisance parameters γk,m involved grows quadratically with q, which
renders the SNP approach impractical. Therefore, multivariate unobserved
heterogeneity is usually modeled parametrically. See Hougaard (1987) for a
review and An et. al. (2004) for a recent example. In the latter paper the
durations are interval censored but observed separately, so that similar to
Bierens (2006c) there is no need to specify the baseline hazards parametri-
cally; they take the form of non-negative step functions. However, in our
case we only observe the minimum of two durations, so that this trick is not
applicable.
It is not hard to verify (see Bierens and Carvalho 2006) that under As-

sumption 1 and some regularity conditions our SNP-CR model with Weibull
baseline hazards,

λ1 (t) = α1,1α1,2t
α1,2−1, λ2 (t) = α2,1α2,2t

α2,2−1, (11)

is nonparametrically identified. These regularity conditions are:
Assumption 2. The common unobserved heterogeneity distribution G(v)
satisfies

R∞
0
vdG(v) = 1.

Assumption 3. The variance matrix Σx of X is finite and nonsingular.
The actual condition in Assumption 2 is that the expectation of the com-

mon heterogeneity variable V is finite: E[V ] =
R∞
0
vdG(v) <∞. The condi-

tion E[V ] = 1 is then merely a normalization, because the baseline hazards
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(11) contain scale parameters. Note that E[V ] = 1 is equivalent to h0(1) = 1,
which can be imposed by restricting δ1 in (10) to

δ1 =
1

2

vuut2Ã1 + qX
k=2

δ2k

!
+

Ã
1 +

qX
k=2

δk
√
2k + 1

!2
(12)

−
√
3

2

Ã
1 +

qX
k=2

δk
√
2k + 1

!
.

See Bierens (2006c).
Implicitly, Assumption 3 excludes that one of the components of X is a

constant, which is fine because the scale parameters are already incorporated
in the Weibull baseline hazards (11).
In the case of non-Weibull baseline hazards we need more conditions.

However, since we will adopt the Weibull specification, these additional con-
ditions are not listed here, but can be found in Bierens and Carvalho (2006).

3.5 Model verification via Logit analysis

The results (9) imply that for ε > 0 and d = 1, 2,

P [T ∈ [t, t+ ε) , D = d, C = 0|X]
=

Z t+ε

t

h (exp (− (exp (β01X)Λ1 (τ ) + exp (β 02X)Λ2 (τ))))
× exp (− (exp (β 01X)Λ1 (τ) + exp (β02X)Λ2 (τ ))) exp (β0dX)λd (τ) dτ.

Hence,

P [D = d|X,C = 0, T = t] = lim
ε↓0
P [T ∈ [t, t+ ε) ,D = d, C = 0|X]

P [T ∈ [t, t+ ε) , C = 0|X]
=

exp (β0dX)λd (t)
exp (β 01X)λ1 (t) + exp (β

0
2X)λ2 (t)

=

In our case D = 2 corresponds to F = 1, where F is the indicator for felony
arrest, so that our competing risks model of recidivism implies

P [F = 1|X,C = 0, T ] = L
µ
ln

µ
λ2 (T )

λ1 (T )

¶
+ (β2 − β1)

0X
¶
, (13)
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where
L(x) = (1 + exp(−x))−1

is the Logistic distribution function. In particular, if λ1 (t) and λ2 (t) are the
Weibull baseline hazards (11), then (13) becomes a standard Logit model:

P [F = 1|X,C = 0, T ] (14)

= L
µ
ln

µ
α2,1α2,2
α1,1α1,2

¶
+ (α2,2 − α1,2) ln(T ) + (β2 − β1)

0X
¶
.

The conditioning on the event C = 0 can be implemented by fitting the
model to the sub-sample of non-censored data only.
Given the Weibull specification (11), this result enables us to verify the

correctness of the competing risks model and its assumptions. If the func-
tional form of the latter model is correctly specified, and if it is true that
the common unobserved heterogeneity is independent of the covariates, the
estimated parameters of the Logit model (14) should be close to the corre-
sponding parameters computed on the basis of the ML estimation results of
the competing risks model. This comparison is in the spirit of the Hausman
(1978) test, but only in spirit. Because the conditioning variables in the two
models are different, the Hausman (1978) test is not directly applicable.

3.6 The integrated conditional moment test

However, the correctness of the specification of the competing risks model
can be tested indirectly by testing the correctness of the implied Logit model
(14), using the Integrated Conditional Moment (ICM) test of Bierens (1982,
1990) and Bierens and Ploberger (1997). The ICM test is a consistent test
of the correctness of a nonlinear regression model, and can be applied to the
Logit model (14) via the corresponding nonlinear regression model

Fj = L
µ
ln

µ
α2,1α2,2
α1,1α1,2

¶
+ (α2,2 − α1,2) ln(Tj) + (β2 − β1)

0Xj

¶
+ Uj

= L (γ0 + γ01Yj) + Uj , (15)

for example, where Yj = (Y1,j , ..., Ym,j)
0 =

¡
ln(Tj),X

0
j

¢0
and

P (E [Uj | Yj] = 0) = 1. (16)
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This model applies to the sub-sample {(F1, Y1) , ..., (Fn, Yn)} of non-censored
data (Cj = 0).
The null hypothesis (16) can be tested consistently against the alternative

hypothesis
P (E [Uj | Yj ] = 0) < 1 (17)

by the ICM test, as follows. Let bUj be the residuals of the nonlinear regression
(15), and denote

eYj = ³eY1,j , ..., eYm,j´0 = µatanµY1,j − Y 1
S1

¶
, ..., atan

µ
Ym,j − Y m

Sm

¶¶0
,

where Y i = (1/n)
Pn

j=1 Yi,j , Si =
q
(n− 1)−1Pn

j=1

¡
Yi,j − Y i

¢2
, i = 1, ...,m,

and atan(.) is the arctangents function. The reasons for these transforma-
tions are given in Bierens (1982, 1990). Next, let

bz (ξ) = 1√
n

nX
j=1

bUjw ³ξ0eYj´ , ξ ∈ Ξ,

where w(.) is a non-polynomial analytical function satisfying the conditions
in Stinchcombe and White (1998), and Ξ is a compact subset of Rm.We will
choose7 w(.) = cos(.) + sin(.) and Ξ = Ξ(c), where Ξ(c) = [−c, c]m for some
c > 0.
Under the null hypothesis (16), bz (.) converges weakly to a zero-mean

Gaussian process z(.) on Ξ(c), hence by the continuous mapping theorem,R
Ξ(c)

bz (ξ)2 dµ (ξ) →d

R
Ξ(c)

z (ξ)2 dµ (ξ) as n → ∞, for any probability mea-
sure µ (.) on Ξ(c).Moreover, given that µ (.) is absolutely continuous with re-
spect to Lebesgue measure, it follows that under alternative hypothesis (17),
p limn→∞ 1

n

R
Ξ(c)

bz (ξ)2 dµ (ξ) > 0, hence p limn→∞ RΞ(c) bz (ξ)2 dµ (ξ) =∞. Fur-
thermore, it has been shown by Boning and Sowell (1999) that the uniform
measure µ (ξ) is optimal, in the sense that then the ICM test has the greatest
weighted average local power as defined in Andrews and Ploberger (1994).
Consequently, the ICM statistic

bB1(c) = (2c)−m Z
Ξ(c)

bz (ξ)2 dξ
7These are the default options in EasyReg International. See Bierens (2006a-b).
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yields a consistent test of the null hypothesis (16) with optimal local power
properties.
The null distribution involved takes the form

(2c)−m
Z
Ξ(c)

z (ξ)2 dξ =
∞X
i=1

λiε
2
i ,

where the εi’s are i.i.d. N(0, 1) distributed, and the λi’s are the positive
eigenvalues of the covariance function Γ (ξ1, ξ2) = E [z (ξ1) z (ξ2)] relative
to the uniform probability measure on Ξ(c). Therefore, these eigenvalues
depend on the distribution of the explanatory variables and the functional
form of the nonlinear regression model involved, as well as on the constant c.
Consequently, the limiting null distribution of bB1(c) is case-dependent and
cannot be tabulated. Therefore, Bierens and Ploberger (1997) propose to use
the use the ICM test in the form

bB(c) = bB1(c)/ bB2(c), (18)

where bB2(c) = (2c)−m
R
Ξ(c)

bΓ (ξ, ξ) dξ, with bΓ (ξ, ξ) a uniformly consistent
estimator of the variance function Γ (ξ, ξ) ,8 because then

bB(c)→d

P∞
i=1 λiε

2
iP∞

i=1 λi
≤ sup

n≥1

1

n

nX
i=1

ε2i = B,

say. The latter distribution can now be used to derive upper bounds of the
critical values. In particular,

P
£
B > 3.23

¤
= 0.10, P

£
B > 4.26

¤
= 0.05. (19)

Moreover, it is not hard to verify that under the null hypothesis the ran-
dom process bB(c) is tight on a given interval [c, c] ⊂ (0,∞), hence the upper
bounds (19) of the critical values also apply to maxc≤c≤c bB(c). Although in
our case it is too much of a computational burden to compute this maximum
exactly, this result motivates to conduct the ICM test for various values of
c, and use the maximum of bB(c) for these values as the actual ICM test.

8See Bierens (2006b) for the computational details.
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4 COMPETINGRISKS ANALYSIS OF RE-
CIDIVISM

4.1 Initial model specification

In first instance we have only used the covariates listed in Table 1, without
state fixed effects. The order q of the Legendre polynomials on which the
density hq(u|δ) in (10) is based has been determined by estimating the model
for q = 1, 2, 3, ..., 10, and selecting the order q for which the Schwarz informa-
tion criterion is minimal. The identification condition hq(1|δ) = 1 has been
imposed by (12), so that only δ2, ..., δq are estimated. However, the estima-
tion results for these parameters are not informative and are therefore not
reported. The ICM test (18) has been conducted in threefold, for c = 0.1, c =

0.5, and c = 1, and is reported as ICM test = max
n bB(.1), bB(.5), bB(1)o ,with

critical values given by (19). The econometric analysis involved has been con-
ducted using the software package EasyReg International9 developed by the
first author. See Bierens (2006a).
The detailed estimation results for the semi-nonparametric competing

risks (SNP-CR) model involved and its implied Logit model are presented
in Bierens and Carvalho (2006). As to the results, the estimates of the
parameters of the Logit model (14) derived from the SNP-CR parameter
estimates are well within the 95% confidence intervals of the corresponding
Logit estimates, except the constant term ln

¡
α−11,1α2,1α

−1
1,2α2,2

¢
. The Logit

estimate involved is −1.405182, with standard error 0.125351, whereas the
estimate of this coefficient on the basis of the SNP-CR parameter estimates
takes the value −1.125284. This signals a possible specification error. Indeed,
the ICM test indicates that the model is misspecified: The value of the ICM
test statistic, 6.73, is larger than the 5% critical value 4.26.
Since the Logit estimate −0.092903 of α2,2 − α1,2, with standard error

0.016157, is not too far off from the value−0.061848 based on the correspond-
ing SNP-CR estimates, and the misspecification problem seems to affect only
the constant ln

¡
α−11,1α2,1α

−1
1,2α2,2

¢
, the misspecification may be due to possi-

ble heterogeneity of the scale parameters α1,1 and α2,1 in (11). Therefore, we
have included state dummy variables in the model to control for fixed state
effects.

9In particular EasyReg module SNPSURVIVAL2, which was especially developed for
the SNP competing risks model in this paper.

18



Recall that in North Carolina and Texas no ex-inmate in the sample was
rearrested for a felony. Therefore, the dummy variables involved cannot be
used in a competing risks model. Moreover, since the state dummy variables
add up to 1, another state dummy variable has to be excluded. We have
chosen to exclude the dummy variable for California.
Again, the detailed estimation and test results are presented in Bierens

and Carvalho (2006), because the extended SNP-CR model is even more
misspecified than the previous one without state dummy variables! As to
the results, all but one the estimates of the parameters of the Logit model
(14) derived from SNP-CR parameter estimates are well within the 95%
confidence intervals of the corresponding Logit estimates. The exception
is now the parameter α2,2 − α1,2. The Logit estimate of this parameter is
−0.111763, with standard error 0.017140, whereas the estimate derived from
the SNP-CR results is −0.065289. This indicates that the SNP-CR model
with state fixed effects is misspecified as well, which is corroborated by the
ICM test. The ICM test has been conducted in the same way as before, and
its value is now 46.55, which is far beyond the 5% critical value 4.26. Thus,
the ICM test firmly rejects the SNP-CR model with fixed state effects.
The reasons may be that the Weibull specification is incorrect, or that

some or all of the parameters are not constant across states, or that the
common unobserved heterogeneity is not independent of the covariates, or
all of the above. Other reasons may be sample selection and/or endogeneity
biases, because the ex-inmates in North Carolina and Texas have not been
removed from the data set, despite the fact that for these two states F = 0.
However, even if we remove these observations the ICM test rejects the model:
The ICM test statistic involved is then 11.75.
To explore the source of the misspecification, we will now estimate and

test the model for each state separately, excluding North Carolina and Texas,
and retaining the Weibull specification for the baseline hazards. Recall that
for California we have to exclude the variable RELEASE because no ex-
inmate from California in the sample was released on parole or probation.
The estimation and testing procedures are the same as before: First, we

estimate the SNP-CR model for Legendre polynomial orders q = 1, .., 10,
and then re-estimate the model for the polynomial order selected by the
Schwarz information criterion. Next, we estimate the implied Logit model,
compare its parameter estimates with the corresponding values implied by
the SNP-CR model, and test the validity of the Logit model using the ICM
test.
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4.2 Estimation results per state

In the following tables, q is the order of the density hq(u|δ) representing
the distribution of the common unobserved heterogeneity, estimated via the
Schwarz information criterion, L.L. denotes the log-likelihood value and N
the effective sample size. The p-values correspond to the Wald test of the
hypothesis indicated between brackets, where for example (∗ = 0) denotes
the null hypotheses that the parameters indicated by an asterix (∗) are jointly
zero.
The estimates of the parameters of the density hq(u|δ) are not informative

and are therefore not reported. The plots of these densities are presented in
Bierens and Carvalho (2006). The null hypothesis that these coefficients are
jointly zero, which is equivalent to the hypothesis that the two durations are
independent conditional on the covariates, is strongly rejected for all states.
As to the results, for each state the Logit results are now in tune with

the ML estimation results for the SNP-CR model, and the ICM tests accept
the models. All the parameters vary substantially per state, including the
Weibull parameters.
Gender is an insignificant factor for misdemeanor recidivism in Califor-

nia, Michigan, Minnesota, New Jersey, New York, Ohio and Oregon. The
same applies to felony recidivism in Florida, Illinois, Michigan, Minnesota
and Ohio. The significant coefficients are all positive, which means that
males have a higher risk of recidivism than females. Race is insignificant for
misdemeanor recidivism in California, Michigan, Minnesota, New York and
Oregon, but matters for felony recidivism in all nine states. The significant
coefficients are all positive. Thus, in these cases African-Americans have a
higher risk of recidivism than other races. Being released on parole or proba-
tion does not significantly affect recidivism in New Jersey and Oregon, and
in Michigan this applies to felony recidivism only. However, when signifi-
cant, the directions of the effects are mixed. One would expect that being
on parole or probation is a deterrent for recidivism, because if an ex-convict
commits a crime while on parole, he or she has to sit out the rest of the
last prison term, and will face a new prison time on top of that. However,
in Minnesota and Ohio the effects are the other way around. Parolees in
Minnesota have a higher risk of felony recidivism, although the effect is not
strongly significant, and in Ohio for misdemeanors (for felonies the coefficient
involved is also positive but only borderline significant). As to misdemeanor
recidivism, a possible explanation may be that minor parole violations such
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as not showing up for a scheduled meeting with the parole officer are classi-
fied in Ohio as misdemeanor offences. Therefore, parolees may have a higher
risk of being arrested for a misdemeanor offence than non-parolees, ceteris
paribus. However, the higher risk of felony arrest for parolees in Minnesota
is puzzling.
Age reduces recidivism, i.e., the older the ex-inmate, the lower the risk

of recidivism. Explanations for the age effect may be that wisdom comes
with age, or with age comes the experience to avoid being caught. In all
but one state the effect of age is significant; the exception is Illinois. Finally
the last sentence length seems a deterrent for felony recidivism, except in
Michigan, New York and New Jersey, where the effects are not significant.
In California, Illinois, New Jersey and Oregon the sentence length is also a
deterrent for misdemeanor recidivism.
It is conceivable that the past sentence length is endogenous for the type

of crime, F , even though the crime is committed after the past sentence is
completed.10 The reason is that in a dynamic structural model of criminal
behavior the (potential) criminal will weigh dynamically the decision to com-
mit a crime, and if so what type of crime to commit and when to commit
it, and the risk of being caught and sentenced for that crime. Therefore, in
such a model future crime decisions and past sentences are (to some extent)
determined jointly. If so, the crime type variable F will not only depend
on the past sentence length but also the other way around. However, if this
were the case the Logit models for felony arrest would be misspecified, but
the ICM tests do not reject either of the models. Therefore, this endogeneity
hypothesis is not supported by the data.
As to the Weibull baseline hazards, they are in most states decreasing,

except the baseline hazards for felony arrest in Michigan and misdemeanor
arrest in New Jersey, where the baseline hazards involved are constant.
Apart from the effect of parole in Minnesota and Ohio, the covariates

have the expected effect on recidivism. However, what is striking is the
heterogeneity of the effects across states, in significance as well as magnitude.
In the next section we will have a closer look at the magnitude of the effects
of the covariates on recidivism.

10This was suggested by a referee.
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Table 4: ML results for California:
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.056302 0.362 ∗ 0.337355 3.201
βi,2 (BLACK) −0.071429 −0.531 ∗ 0.604948 7.027
βi,3 (RELEASE) N.A. N.A N.A. N.A.
βi,4 (AGE) −0.118506 −5.139 −0.083446 −4.670
βi,5 (SENT ) −0.463093 −3.971 −0.516239 −4.488
αi,1 1.284243 2.634 1.016099 3.072
αi,2 0.812813 12.188 0.766816 13.662
q = 6 N = 1090 L.L. = −1017.6 ICM test: 1.45
p-value (∗ = 0) = 0.80108

Table 5: ML results for Florida
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.367249 3.365 0.259021 1.382 ∗
βi,2 (BLACK) 0.222282 2.877 0.660441 5.392
βi,3 (RELEASE) −0.349623 −4.208 −0.474973 −3.684
βi,4 (AGE) −0.091084 −7.563 −0.170236 −8.202
βi,5 (SENT ) −0.130811 −1.438 ∗ −0.412475 −3.047
αi,1 1.339054 5.012 1.068018 3.285
αi,2 0.698974 21.830 0.778942 13.710
q = 3 N = 1586 L.L. = −1555.9 ICM test: 1.31
p-value (∗ = 0) = 0.13679
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Table 6: ML results for Illinois
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.290479 2.088 −0.087012 −0.546 ∗#
βi,2 (BLACK) 0.312487 3.498 0.346372 2.947
βi,3 (RELEASE) −0.297202 −2.747 −0.709990 −4.536
βi,4 (AGE) −0.026067 −1.893 ∗ −0.029936 −1.401 ∗#
βi,5 (SENT ) −0.315515 −5.134 −0.204034 −2.630
αi,1 0.745434 4.144 0.715380 3.051
αi,2 0.833115 21.143 0.782421 15.853
q = 4 N = 1090 L.L. = −1017.6 ICM test: 0.93
p-value (∗ = 0) = 0.10136 p-value (# = 0) = 0.34518

Table 7: ML results for Michigan
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.240017 1.157 ∗# 0.285942 1.735 ∗
βi,2 (BLACK) −0.159765 −1.298 ∗# 0.489985 5.374
βi,3 (RELEASE) −0.624128 −3.134 −0.027477 −0.191 ∗&
βi,4 (AGE) −0.067750 −2.831 −0.096653 −4.485
βi,5 (SENT ) −0.138314 −1.804 ∗ −0.096984 −1.628 ∗&
αi,1 0.973963 2.687 0.825761 3.358
αi,2 0.927313 17.292 1.002110 22.417
q = 4 N = 1423 L.L. = −1591.0 ICM test: 1.06
p-value (∗ = 0) = 0.07682 p-value (# = 0) = 0.15315
p-value (& = 0) = 0.26486 p-value (α2,2 = 1) = 0.96236
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Table 8: ML results for Minnesota
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.151388 0.396 ∗ 0.102218 0.443 ∗
βi,2 (BLACK) −0.099756 −0.506 ∗ 0.734322 6.465
βi,3 (RELEASE) −0.327000 −1.517 ∗ 0.353047 2.003
βi,4 (AGE) −0.080347 −3.214 −0.106106 −5.876
βi,5 (SENT ) −0.273047 −1.842 ∗ −0.447216 −3.875
αi,1 0.730462 1.977 1.074081 2.945
αi,2 0.936775 14.833 0.779501 17.535
q = 3 N = 1220 L.L. = −1395.0 ICM test: 1.06
p-value (∗ = 0) = 0.20394

Table 9: ML results for New Jersey
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) −0.022564 −0.148 ∗ 0.744489 3.296
βi,2 (BLACK) 0.391423 3.728 0.415205 3.671
βi,3 (RELEASE) 0.010225 0.032 ∗ −0.216446 −0.617 ∗
βi,4 (AGE) −0.090985 −4.968 −0.160315 −7.205
βi,5 (SENT ) −0.206865 −1.964 −0.192679 −1.833 ∗
αi,1 1.257366 2.312 1.009467 2.027
αi,2 0.988073 18.898 0.815743 15.652
q = 5 N = 1280 L.L. = −1450.5 ICM test: 1.54
p-value (∗ = 0) = 0.45476 p-value (α1,2 = 1) = 0.81955
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Table 10: ML results for New York
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.110116 0.777 ∗ 0.696240 3.496
βi,2 (BLACK) 0.048690 0.493 ∗ 0.327048 3.066
βi,3 (RELEASE) −0.405187 −1.936 −0.601890 −2.394
βi,4 (AGE) −0.089260 −4.765 −0.134151 −6.288
βi,5 (SENT ) 0.014752 0.228 ∗ −0.090108 −1.196 ∗
αi,1 1.153498 3.214 0.988492 2.493
αi,2 0.892737 19.476 0.889562 16.191
q = 4 N = 1365 L.L. = −1658.0 ICM test: 1.70
p-value (∗ = 0) = 0.65495 p-value (α1,2 = α2,2) = 0.95605

Table 11: ML results for Ohio
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.210361 1.373 ∗ 0.112386 0.663 ∗
βi,2 (BLACK) 0.372557 3.196 0.971069 7.139
βi,3 (RELEASE) 0.571839 3.079 0.369154 1.964
βi,4 (AGE) −0.054033 −2.582 −0.135771 −5.268
βi,5 (SENT ) −0.098486 −0.971 ∗ −0.252231 −1.975
αi,1 0.197856 3.311 0.319868 2.930
αi,2 0.678135 14.686 0.888214 12.474
q = 3 N = 1551 L.L. = −1753.6 ICM test: 1.44
p-value (∗ = 0) = 0.43364
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Table 12: ML results for Oregon
Parameters F = 0 F = 1
(i = 1 + F ) Estimates t-values Estimates t-values
βi,1 (MALE) 0.087272 0.408 ∗ 0.507848 2.380
βi,2 (BLACK) −0.326902 −1.455 ∗ 0.597358 4.138
βi,3 (RELEASE) −0.327291 −1.458 ∗ −0.296063 −1.161 ∗
βi,4 (AGE) −0.081210 −3.949 −0.128634 −6.756
βi,5 (SENT ) −0.500197 −3.560 −0.298155 −2.500
αi,1 1.353617 2.023 1.038569 1.998
αi,2 0.839171 12.612 0.681702 9.377
q = 5 N = 1017 L.L. = −1041.0 ICM test: 1.84
p-value (∗ = 0) = 0.18865

4.3 Marginal quantile effects

A convenient way to analyze the numerical effect of the covariates on the
durations T1 and T2 is to fix the marginal conditional survival function to a
particular quantile θ:

1− θ = P [Ti > ti|X = x] = H0
¡
exp

¡− exp (β 0ix)αi,1tαi,2i

¢¢
, i = 1, 2,

which yields a linear relationship between ln(ti) and x:

ln(ti) =
ln (ln (1/uθ))− ln(αi,1)

αi,2
− 1

αi,2
β0ix, i = 1, 2,

where 1− θ = H0 (uθ) . Thus, a change ∆x in the vector of covariates results
in a relative change

∆ti
ti
= exp

µ
− 1

αi,2
β 0i∆x

¶
− 1 (20)

in the quantile value of ti, regardless the value of θ. We will call (20) the
marginal quantile effect. These effects will be presented below, together with
their 95% confidence intervals, in whole percentages. The confidence intervals
involved have been computed using the well-known ∂-method.
To highlight the heterogeneity of our empirical results across states, we

will present the marginal quantile effects per covariate.
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Table 13: Marginal quantile effects of x =MALE
with 95% confidence intervals [a, b]

∆x = 1 F = 0 F = 1
State 100∆t1

t1
a b 100∆t2

t2
a b

California −7 −42 28 −36 −52 −19
Florida −41 −59 −23 −28 −62 5
Illinois −29 −53 −6 12 −33 56
Michigan −23 −57 11 −25 −49 0
Minnesota −15 −83 53 −12 −63 39
New Jersey 2 −29 33 −60 −82 −38
New York −12 −39 16 −54 −74 −34
Ohio −27 −59 6 −12 −45 21
Oregon −10 −55 35 −53 −82 −23

Clearly, there is substantial variation in the gender effect. For example, in
Michigan the time between release and felony arrest is about 25% shorter for
males than for females, whereas in New Jersey it is about 60% shorter.

Table 14: Marginal quantile effects of x = BLACK
with 95% confidence intervals [a, b]

∆x = 1 F = 0 F = 1
State 100∆t1

t1
a b 100∆t2

t2
a b

California 9 −26 45 −55 −65 −44
Florida −27 −43 −11 −57 −71 −43
Illinois −31 −46 −16 −36 −55 −16
Michigan 19 −12 50 −39 −50 −27
Minnesota 11 −35 57 −61 −73 −49
New Jersey −33 −47 −19 −40 −57 −23
New York −5 −26 15 −31 −47 −14
Ohio −42 −62 −23 −66 −77 −56
Oregon 48 −31 126 −58 −76 −41

The race effect is even more heterogenous across states than the gender effect,
to the point where some confidence intervals do not overlap. For example,
this is the case in Illinois and Ohio. In Illinois the time between release
and felony arrest is, with probability 95%, between 16% and 55% shorter for
African Americans than for other races, whereas in Ohio this time is between
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56% and 77% shorter.

Table 15: Marginal quantile effects of x = RELEASE
with 95% confidence intervals [a, b]

∆x = 1 F = 0 F = 1
State 100∆t1

t1
a b 100∆t2

t2
a b

California N.A. N.A.
Florida 65 27 103 84 25 143
Illinois 43 6 80 148 49 247
Michigan 96 13 179 3 −26 32
Minnesota 42 −23 106 −36 −65 −8
New Jersey −1 −65 63 30 −80 140
New York 57 −15 130 97 −13 206
Ohio −57 −79 −35 −34 −61 −7
Oregon 48 −30 125 54 −59 168

The deterrent of parole or probation is the strongest in Illinois. In this state
parolees have an almost three times (148%) longer time between release and
felony arrest than other ex-convicts, although the 95% confidence interval is
wide. As noted before, in Ohio the effect of parole on both types of arrests
is reversed, and in Minnesota the same applies to felony arrest. Parolees in
Ohio are about 57% more earlier arrested for a misdemeanor and 35% more
earlier for a felony than other ex-convicts. The latter effect is about the same
for Minnesota. A possible explanation for the difference of these effects may
be differences in effectiveness of parole officers. If a parole officer has the time
to closely monitor his clients, he may observe signs indicating that a parolee
is involved in illegal activities (for example, if the parolee shows up in an
expensive car), and report this to the police, whereas an overworked parole
officer with too many clients may miss these signs. Another explanation may
be that the criteria used by parole boards for granting parole vary per state.
Tables 16 and 17 measure the quantile effects of an increase of age by five

years, and of sentence length by one year.11

11Recall that AGE and SENT are measured in days per 1000, so that an increase by
one year corresponds to an increase of 0.365 in these variables.
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Table 16: Marginal quantile effects of x = AGE
with 95% confidence intervals [a, b]

∆x = 5 (y) F = 0 F = 1
State 100∆t1

t1
a b 100∆t2

t2
a b

California 30 17 44 22 12 32
Florida 27 19 35 49 34 64
Illinois 6 0 12 7 −3 18
Michigan 14 4 25 19 10 29
Minnesota 17 6 28 28 17 39
New Jersey 18 11 26 43 29 58
New York 20 11 29 32 20 44
Ohio 16 3 28 32 18 46
Oregon 19 9 29 41 28 55

Again, there is a substantial variation in age effects, even to the point where
some 95% confidence intervals do not overlap, for example in the case of
felony arrests in California and Florida.

Table 17: Marginal quantile effects of x = SENT
with 95% confidence intervals [a, b]

∆x = 1 (y) F = 0 F = 1
State 100∆t1

t1
a b 100∆t2

t2
a b

California 23 11 35 28 15 41
Florida 7 −3 17 21 6 37
Illinois 15 9 21 10 2 18
Michigan 6 −1 12 4 −1 8
Minnesota 11 −1 24 23 10 37
New Jersey 8 0 16 9 −1 19
New York −1 −6 5 4 −3 10
Ohio 5 −6 17 11 0 22
Oregon 24 9 39 17 3 31

In quite a few states an increase in the sentence length reduces recidivism, in
particular for felonies. The effect is the strongest in California: an increase
of the sentence length by one year increases the time between release and
arrest by about 23% in the case of misdemeanor arrest, and by about 28%
in the case of felony arrest. On the other hand, in some states the effect is
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not significant, in particular in Michigan and New York.

5 CONCLUSIONS
Regarding the empirical results, the directions of the effects of the covariates
on recidivism are not surprising, except for the effect of release on parole
or probation. What surprised us, however, is the extent of the variation
of the impact of these covariates on recidivism across states. Due to this
heterogeneity, it is difficult to draw policy conclusions. The only covariates
with potential policy relevance are the release type and sentence length.
However, the effect of release type is ambiguous, and although an increase in
sentence length reduces recidivism in quite a few states, in other states the
effect is insignificant.
As to the analysis itself, our approach and results are novel in various

aspects. The first novelty is the BJS data set itself, which to the best of our
knowledge has not been used in this way. Previous research on recidivism
have used local data sets. Indeed, the very reason for the Bureau of Justice
Statistics to collect this data is the common need in the profession for better
data on recidivism; see Maltz (1984). A lesser novelty is the disaggregation of
rearrests in two types, misdemeanor and felony arrests. Since Schmidt and
Witte (1988), the econometric approach to the analysis of recidivism has
mainly focused on proportional hazard models without distinction between
types of crime. An exception is Escarela et. al. (2000), but they consider
different types of offences. Consequently, it is not possible to compare our
estimation results with similar results in the literature.
Our main methodological contributions are the incorporation of common

unobserved heterogeneity in a semi-nonparametric way, which eliminates pos-
sible misspecification of that distribution, and the new approach for testing
the validity of the models via the implied Logit models for felony arrest.
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