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Abstract

This paper is concerned with the problem of isolating the effect of a randomly assigned
binary treatment on an outcome when the actual treatment intake in the treatment arm is
not necessarily the same as the assignment; in the control arm, however, assignment and
intake are the same. In general, the analysis of data from such designs is not straightforward
because of likely observed and unobserved confounders. In one approach for dealing with
this problem, developed by Sommer and Zeger (1991), the unobserved confounder is modeled
as a discrete indicator variable representing compliance with the assignment. In this paper,
this approach is first reformulated in Bayesian terms, without involving the counterfactual
outcomes in the modeling and estimation. The approach is then contrasted with a new
approach in which the confounder is modeled as a continuous variable without reference
to compliance. This opens up the possibility of fitting eligibility design data under each
framework, leading to a sort of global sensitivity analysis. We also show that the two
frameworks can be compared via marginal likelihoods that are estimated by the method
of Chib (1995). Our studies show that, when the data come from the discrete confounder
model, the continuous confounder model is preferred when the sample size is small but less
preferred as the sample size is increased. On the other hand, when the data come from the
continuous confounder model, the discrete confounder model is rarely the better supported
model.

Keywords: Confounding; Eligibility Designs; Heterogeneity; Instrumental variable; Marginal
likelihood; Markov Chain Monte Carlo; Non-Compliance; Non-randomly assigned treatment;
Potential outcomes; Treatment Effect.

1 Introduction

This paper is concerned with the problem of isolating the effect of a randomly assigned binary

treatment on an outcome of interest when the actual treatment intake in the treatment arm

is not necessarily the same as the assignment; in the control arm, however, assignment and

intake are the same. The equality of treatment assignment and intake in the control arm is the

defining feature of this experimental design and distinguishes it from randomized trials where

treatment intake is determined by the subject in both the treatment and the control arms. We

refer to the former design as an eligibility design, since actual intake of the treatment rests



on prior eligibility, i.e., randomization into the treatment arm, and the latter design as a non-

eligibility design. Eligibility designs often arise in the context of clinical trials and social science

experiments. For example, in the study of Sommer and Zeger (1991), Vitamin A supplementation

was randomly given to children in rural Indonesia in an effort to determine its effect on child

mortality. Children assigned to the treatment arm, however, did not necessarily receive the

supplementation.

In general, the analysis of data from eligibility trials is not straightforward. The principal

reason for this is that the factors that determine the intake (beyond assignment) are likely to

be correlated with the outcome. In such a case, the effect of the treatment on the outcome

cannot be obtained, for example, by regressing the outcome on the treatment. If the factors, or

confounders, are observed, then it is possible in principle to make adjustments and to obtain the

effect of the treatment by various techniques. However, when the confounders are unobserved, as

for example due to unmeasured, unmeasurable, or hidden variables, it is not possible to find the

treatment effect without auxiliary, untestable assumptions about the unobserved confounders

and a model of their effect on the intake and the outcome. The challenge therefore is to isolate

assumptions and models that are appropriate and meaningful.

This challenge has been addressed in a number of recent papers. Sommer and Zeger (1991),

for example, provide an approach that has been actively pursued in the subsequent literature.

In their approach, the unobserved confounder is a discrete quantity representing compliance,

where compliance is a subject-specific attribute. In the nomenclature of Imbens and Rubin

(1997), non-compliers are of two types, never-takers and always-takers. In these terms, subjects

in the control arm are of two types, compliers or never-takers, those in the treatment arm who

forgo the treatment are never-takers, whereas those in the treatment arm who take the treatment

are compliers or always-takers. The problem is that in the eligibility design always-takers cannot

be identified. Provided we are willing to make the (non-testable) assumption that there are no

always-takers in the population or the sample it is possible to infer the compliers in the control

arm and to compare them with those in the other arm.

The discrete confounder approach for eligibility trials has been further pursued by Albert

2003, Ten Have et al (2003), Frangakis and Rubin (1999), Levy et al (2004), Mealli et al (2004),

and Yau and Little (2001), mostly from a non-Bayesian perspective. Generally, these papers

deal with binary outcomes and do not include covariates beyond assignment. These points are
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worth noting because in this paper we reformulate the discrete confounder approach in fully

Bayesian terms for continuous outcomes and allow for a full set of covariates. We develop the

appropriate Markov chain Monte Carlo (MCMC) approach for making inferences and test the

performance of the methods in simulation experiments. A key aspect of our formulation is that

it does not need the missing counterfactuals in either the modeling or subsequent estimation of

the model.

The latter reformulation is not the main objective of the paper but is needed as part of

our larger objective - to compare the virtues of the discrete confounder approach with a new

alternative approach in which the confounder is modeled without reference to compliance. We

refer to this alternative approach as the continuous confounder approach.

This continuous confounder approach, which has not been considered before in this context,

is a natural outgrowth of our previous work on non-eligibility designs (Chib, 2004 and Chib and

Jacobi, 2005). But unlike our previous work, the framework here is different on account of the

fact that intake in the control arm is non-stochastic. Although this change may at first glance

appear to be minor, the resulting analysis is substantially different. In particular, in the control

arm, the modeling only requires the marginal distribution of the outcome. In addition, the

fact that subjects who take the treatment are only observed under one level of the assignment

makes it difficult to estimate the extent of confounding in the intake state. Taken together,

these features necessitate a different prior-posterior analysis and a different MCMC approach

for summarizing the posterior distribution. In experiments we show that our approach is efficient

in learning about the parameters, and in separating out the treatment effect in the presence of

various levels of confounding.

Needless to say, our work opens up the possibility of fitting and comparing eligibility design

data under each framework, leading to a sort of global sensitivity analysis that is likely to be

quite useful in practice. To pin things down, this support for the models is computed via the

Bayes factor, which we show can be computed from the MCMC output by the approach of Chib

(1995). We also examine in simulation studies to what extent each framework is supported by

the data when the data comes from one or the other model. Our studies show that, when the

data come from the discrete confounder model, the continuous confounder model is preferred

when the sample size is small but less preferred as the sample size is increased. On the other

hand, when the data come from the continuous confounder model, the discrete confounder model
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is rarely the better supported model.

The remainder of the paper is organized as follows. In Section 2 we reformulate the discrete

confounder approach for eligibility trials in Bayesian terms and supply an inferential methodol-

ogy for summarizing the posterior distribution and extracting treatment effects. We also test the

performance of these methods in simulation experiments. In Section 3 we develop the continuous

confounder approach and supply the relevant details of the prior-posterior analysis along with

simulation evidence on the performance of our inferential procedures. Section 4 is concerned

with the problem of model comparisons through marginal likelihoods and Bayes factors. Section

5 focuses on a real data example in which the question is to find the effect of job-training for the

unemployed on subsequent depression scores. We conclude the paper with remarks in Section 6.

2 Preliminaries: Discrete Confounder Approach

2.1 Modeling

We begin our analysis by reformulating the discrete confounder approach in fully Bayesian

terms, with allowance for a full set of covariates. We provide this reformulation to set the

stage for an alternative approach to confounding that we present in Section 3. Suppose that

we have a random sample of n individuals. Let i denote the ith subject in the sample, and

let y = (y1, ..., yn) and x = (x1, ..., xn) denote the random sample of n observations on the

continuous outcome and the binary treatment intake. Also let wi : p × 1 indicate a set of

covariates, and let zi ∈ {0, 1} indicate the random treatment assignment (or alternatively, the

instrumental variable). The objective is to model for each individual the joint density of the

observed data

p(yi, xi = j|wi, zi = l) , l = 0, 1

such that xi ∈ (0, 1) if z = 1 and xi = 0 otherwise. We state the problem in these terms and,

unlike the previous literature, avoid the so-called counterfactuals in either the modeling or in

the subsequent estimation of the model.

To model the joint density p(yi, xi = j|wi, zi = l), let si = k indicate a discrete confounder

random variable that affects both the intake xi and the outcome yi. Now imagine that this

discrete confounder takes two possible values that represent subject type, namely {c, n}, for

complier and never-taker, respectively. Formally, subject i is of the type complier if xi0 = 0
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and xi1 = 1, and of the type never-taker if xi0 = 0 and xi1 = 0, where xil is the (potential)

treatment under the assignment zi = l. It is important to note that we are restricted to these two

subject-types because under this design it is not possible to identify always-takers (individuals

for whom xi0 = 1 and xi1 = 1) from compliers. The assumption that always-takers are absent

is non-testable.

Then, conditional on zi = l and si = k, the joint density of (yi, xi) factors as

p(yi, xi = j|wi, zi = l, si = k) = pj(yi|wi, si = k) Pr(xi = j|wi, zi = l, si = k) (1)

where the first expression is the density of yi conditional on the latent subject type in the jth

treatment state and the second expression is the mass-function of xi = j. The marginal density

of the outcome does not involve zi = l on account of the so-called exclusion restriction. Notice,

too, that the second term in this expression is either zero or one. This can be seen from Table

1 which gives the distribution of type by treatment arm and intake. For example, if zi = 0 and

xi = 0 xi = 1

zi = 0 c, n —

zi = 1 n c

Table 1: Distribution of types by treatment arm and intake

si = c, then xi = 0, so that Pr(xi = 0|wi, zi = 0, si = c) = 1 and zero otherwise. In addition,

if zi = 1 and si = n, then xi = 0, implying that Pr(xi = 0|wi, zi = 1, si = n) = 1 and zero

otherwise. Thus, given zi = l and si = k, the intake is fully determined. This implication of the

model is evidently strong. It can be avoided, however, if we model the confounder differently,

without reference to si, as we do in Section 3.

Let Ilj = {i : zi = l and xi = j} denote the sample indices of the subjects in each of the

three non-empty cells of Table 1. Also let Pr(si = c|zi = l) = qc denote the probability of

subject type c, which is independent of zi because of the random assignment of subjects to the

treatment arms. It follows now that the joint density of yi and xi = j conditional on zi = l but
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marginalized over si is given by

p(yi, xi = j|wi, zi = l) =





qc p0(yi|wi, si = c) + (1− qc) p0(yi|wi, si = n) if i ∈ I00

(1− qc) p0(yi|wi, si = n) if i ∈ I10

qc p1(yi|wi, si = c) if i ∈ I11

(2)

which does not involve the mass function of the intake due to the discussion surrounding (1).

We see that for i ∈ I00, the density is a mixture of the outcome densities p0(yi|wi, si = k),

k = (c, n), because subjects in this cell can be one of these two types. The other two cases are

justified in a similar way.

Thus, from (2) we see that the modeling of (yi, xi = j) requires three type and treatment

state specific distributions, p0(yi|wi, si = n), and pj(yi|wi, si = c), for j = 0, 1. For specificity,

we assume that these are student-t with known degrees of freedom ν and of the form

p0(yi|wi, si = n) = tν(yi|w′
iβ0,n, η2

0,n)

pj(yi|wi, si = c) = tν(yi|w′
iβj,c, η

2
j,c), j = 0, 1 (3)

where β0,n and βj,c are type and treatment state-specific p-dimensional vectors of regression

parameters, η2
0,n and η2

j,c are the corresponding dispersion parameters and tν(·|µ, s2) is the

student-t density function with ν degrees of freedom, mean µ and variance νs2/(ν − 2). The

student-t assumption is a generalization of the common Gaussian assumption in the literature.

To complete the model specification we formulate a prior density for the model parameters

ψ = (β,η2, qc) with β = (β0,n,β0,c, β1,c) and η2 = (η2
0,n, η2

0,c, η
2
1,c). Also let ψj,k = (βj,k, η

2
j,k).

We assume that the parameters are mutually independent and that the prior density is of the

form

π(ψ) = π(qc)
∏

j=0,1

∏

k∈Kj

π(ψj,k)

where π(qc) = B(qc|a0, b0), a beta density with hyperparameters a0 and b0, K0 = {c, n}, K1 = {c}
and

π(ψj,k) = Np(βj,k|βjk,0,Bjk,0)IG
(

η2
j,k|

njk,0

2
,
djk,0

2

)

where IG is the inverse-gamma density.

6



2.1.1 Fitting

In the Bayesian approach we take all information about the model parameters ψ = (β,η2, qc) is

summarized in the posterior distribution π(ψ|y,x, z,W) ∝ f(y,x|z,W)π(ψ), which is propor-

tional to the product of the likelihood f(y,x|z,W) of the observed data and the prior distri-

bution π(ψ). The posterior distribution is not tractable because of the mixture distribution in

the control arm. We achieve tractability, however, by treating si for these subjects as additional

unknown parameters. In addition, we rewrite the student-t density tν(·|µ, s2) in familiar form as

N (·|µ, λ−1
i s2), where λi ∼ G(ν

2 , ν
2 ), and then augment the parameter space to include λi, i ≤ n.

Under these assumptions and augmentations, π(ψ, {λi}, {si : i ∈ I00}|y,x, z,W) is the

posterior density of interest, which is proportional to

π(ψ)
n∏

i=1

G
(
λi|υ2 ,

υ

2

) ∏

i∈I00

∑

k∈{c,n}
qk ×N (yi|w′

iβ0,k, λ
−1
i η2

0,k)

×
∏

i∈I10

(1− qc)×N (yi|w′
iβ0,n, λ−1

i η2
0,n)

∏

i∈I11

qc ×N (yi|w′
iβ1,c, λ

−1
i η2

1,c) (4)

where qk = Pr(si = k).

In the remainder of this section we briefly describe a 4-block MCMC algorithm we have

developed to efficiently sample the posterior distribution. In the first step of the algorithm we

jointly update the latent subject types si, i ∈ I00, and the scale parameters λi, i ≤ n. This joint

sampling strategy helps to enhance the mixing of the chain and is executed by first sampling

si = c with probability

Pr(si = c|yi, xi, qc,β0,c, β0,n, η2
0,c, η

2
0,n) ∝ qctν(yi|w′

iβ0,c, η
2
0,c)

where the normalizing constant is [qc tν(yi|w′
iβ0,c, η

2
0,c) + (1 − qc) tν(yi|w′

iβ0,n, η2
0,n)]. Then,

given si = k (i ≤ n), the first step is completed by sampling the latent scale parameters from

the gamma density

π(λi|yi, xi = j,wi, si = k,β, η2) = G
(

λi

∣∣∣∣∣
ν + 1

2
,
ν + (yi −w′

iβj,k)η
−2
j,k (yi −w′

iβj,k

2

)

In the second and third steps, conditional on {si} and the sub-samples of individuals i ∈ Ijk,

we sample the regression parameters βj,k and the variance parameters η2
j,k. Specifically, let
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yjk = {yi : i ∈ Ijk}, xjk = {xi : i ∈ Ijk}, Wjk = {wi : i ∈ Ijk} and λjk = {λi : i ∈ Ijk} denote

the sub-sample of observations, by intake state j and type k, on the outcome, intake, covariates

and latent scale, respectively. Then, our sampling of βjk is from

π(βjk|yjk,xjk,Wjk, η
2
j,k,λjk)

= N (βjk|Bjk{B−1
jk,0βjk,0 +

∑

i∈Ijk

λiw′
iη
−2
j,kyi}, {B−1

jk,0 +
∑

i∈Ijk

λiw′
iη
−2
j,kwi}−1) (5)

and η2
j,k from

π(η2
j,k|yjk,xjk,Wjk, βjk, λjk) = IG

(
η2

j,k

∣∣∣∣∣
njk,0 + nj,k

2
,
djk,0 +

∑
i∈Ijk

λi(yi −w′
iβj,k)2

2

)
(6)

where njk denotes the number of individuals in the set Ijk.

Finally, in the fourth step, we sample qc from the beta density

π(qc|y,x,W, β,η2, {λi}, {si}) = B(qc|a0 +
∑

i≤n

I[si = c], b0 +
∑

i≤n

I[si = n]) (7)

where I[si = k] is the indicator function that takes the value one if si = k and zero otherwise.

2.1.2 Inferring Treatment Effects for Compliers

We now discuss a particular approach for ascertaining the causal effect that is appropriate in this

context. The general idea, as discussed by Sommer and Zeger (1991), is to compare the potential

outcomes for the sub-sample of compliers. In our Bayesian context, a rather informative solution

to this quest can be constructed by focusing on the predictive distribution (for compliers) of each

potential outcome, marginalized over the covariates and the parameters. (Note that the potential

outcomes are involved in this computation but did not arise in the estimation of the model). A

number of interesting treatment effects can then be obtained from these predictive distributions,

including something we call the predictive average causal effect (PACE) and predictive quantile

causal effects.

Specifically, letting yjc,n+1 denote the potential outcome for subject n+1 who is a complier,

we calculate the marginal predictive densities p(yjc,n+1|y,x,W, z) given by

∫
p(yjc,n+1|wn+1, βjc, η

2
jc)π(βjc, η

2
jc, {si},wn+1|y,x,W, z)dβjcdη2

jcd{si}dwn+1 (8)
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where p(yjc,n+1|wn+1, βjc, η
2
jc) is tν(yjc,n+1|w′

n+1βjc, η
2
jc) and the unknowns are marginalized

with respect to the posterior distribution.

We use the method of composition to generate draws from p(yjc,n+1|y,x,W, z). Specifically,

we append the following steps at the end of each MCMC iteration. First, we form the nc ×
p-dimensional covariate matrix W(g)

c = {wi : s
(g)
i = c} for the set of compliers in the gth

iteration, where n
(g)
c is the number of subjects with s

(g)
i = c, and then sample the covariate

vector w(g)
n+1 by assigning probability 1/n

(g)
c to each row of W(g)

c . We then draw y
(g)

jc,n+1 from

tν(yjc,n+1|w′
n+1

(g)β
(g)
jc , η2(g)

jc ). The resulting draws (y
(1)

0c,n+1, ..., y
(G)

0c,n+1) and (y
(1)

1c,n+1, ..., y
(G)

1c,n+1)

are stored and used to compute several treatment effects of interest. For example, the PACE

average causal effect

PACE = E(y1c,n+1|y,x,W, z)− E(y0c,n+1|y,x,W, z) (9)

can be computed from the simulated draws in an obvious manner.

2.1.3 Simulation Study

Before proceeding to our further methodological developments we examine the performance of

our fitting approach in a simulation study. We consider a general design with one continuous

covarariate wi that we generate from a N (2, 4) distribution. The coefficient vectors are taken

to be β0c = (1, 2), β0n = (−0.5, 1) and β1c = (2, 3), and the variances are fixed at η2 =

(4.00, 4.00, 4.00). Finally, qc is set in turn to 0.4, 0.6 and 0.8. For each design, we consider

sample sizes of 250, 500 and 1,000. In all 20 replications of each design are considered. To get a

feel for the data, we report in Table 2 the distribution of compliers and never takers under the

different designs. One obvious consequence of the eligibility design, noticeable from Table 2, is

Sample Distribution of Types
n = 250 n = 500 n = 1000

qc: .4 .6 .8 .4 .6 .8 .4 .6 .8
n0c 30 47 60 61 92 123 124 190 251
n0n 150 99 50 202 200 100 606 398 199
n1c 70 104 140 137 208 277 270 412 550

Table 2: Discrete confounder model: Number of compliers and never takers under different values
of qc and different sample sizes, averaged over 20 replications.

the smaller number of compliers in the control arm relative to the treatment arm. For example,
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when qc = 0.4 and the sample size is 250 we have that n0c = 30 and n1c = 70.

In each experiment, our prior-posterior analysis is conducted under the prior assumption

that βjk ∼ Np(0, 25 × Ip) and qc ∼ B(3, 5) while the hyper-parameters of the inverse gamma

distribution for η2
j,k are set to have a prior mean of 2 and standard deviation of 6.

In Table 3 we report the posterior means and standard deviations of β0c, β0n, β1c and qc,

averaged over the 20 replications. The average inefficiency factors (a measure of the mixing of

the MCMC chain) when qc = 0.6 are given in Table 4. In general the results in Tables 3 and 4

qc Sample Size β̂0c β̂0n β̂1c q̂c

.4 n = 250 1.28(0.82) 1.96(0.27) -0.67(0.27) 1.04(0.09) 2.06(0.35) 2.95(0.12) 0.40(0.03)
n = 500 1.10(0.60) 1.92(0.19) -0.62(0.19) 1.02(0.07) 1.94(0.26) 3.01(0.09) 0.40(0.03)
n = 1000 1.23(0.43) 1.93(0.13) -0.48(0.14) 0.99(0.05) 1.93(0.18) 3.01(0.07) 0.39(0.02)

.6 n = 250 1.22(0.61) 1.97(0.20) -0.57(0.35) 1.02(0.12) 1.945(0.29) 3.01(0.10) 0.59(0.03)
n = 500 0.88(0.43) 2.06(0.14) -0.38(0.24) 0.95(0.08) 2.04(0.21) 2.98(0.07) 0.60(0.03)
n = 1000 1.00(0.30) 2.00(0.10) -0.43(0.17) 1.00(0.06) 2.03(0.15) 2.97(0.05) 0.60(0.02)

.8 n = 250 1.04(0.48) 1.94(0.16) -0.54(0.50) 1.02(0.17) 1.96(0.25) 2.99(0.09) 0.78(0.03)
n = 500 1.00(0.31) 2.04(0.11) -0.44(0.35) 1.00(0.12) 1.98(0.18) 2.99(0.06) 0.79(0.02)
n = 1000 0.98(0.23) 2.00(0.08) -0.51(0.24) 1.03(0.08) 2.02(0.13) 3.01(0.05) 0.80(0.02)

Table 3: Discrete confounder model: Simulation study with β0c = (1, 2), β0n = (−0.5, 1),
β1c = (2, 3). Reported are the average of the posterior means and standard deviations from the
20 replications of each design.

show that the MCMC algorithm performs well. We should note the higher posterior standard

errors of β0c, in particular the intercept. It appears that β0c is the more difficult parameter

to estimate, especially when n0c is relatively small. On the other hand, β0n is more precisely

estimated even when n0n is small because we effectively obtain a clean estimate of β0n from the

subjects in the set I10.

Inefficiency Factors
Sample Size β0c β0n β1c η2

0c η2
0n η2

1c qc

250 3.54 2.87 2.03 1.76 1.20 1.23 3.92 1.992 1.39 1.81
500 3.23 2.41 2.09 1.77 1.20 1.18 3.60 1.88 1.36 1.83
1000 3.42 2.44 2.01 1.85 1.20 1.16 3.73 1.82 1.35 1.94

Table 4: Discrete confounder model: Inefficiency factors from the sampled MCMC output for the
case qc = 0.6. The results are averaged over 20 replications.

For a more detailed analysis of the performance of the algorithm we graph in Figure 1 the

posterior means of the model parameters across the 20 replications when the data is generated

with qc = 0.6. In line with the results above, we observe higher variation in the posterior mean
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of β0c,0 and larger variation in the estimates of the variance parameter η2
0c when n0c is smaller.
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Figure 1: Discrete confounder model: Simulation study with β0c = (1, 2), β0n = (−0.5, 1), β1c = (2, 3)
and qc = 0.6. Posterior means of the model parameters across the 20 replications.

Given the above results we would expect that our inference of the average treatment effect

for compliers would improve when the sample contains a larger number of compliers. This is
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Figure 2: Discrete confounder model: Difference between the estimated PACE and true average treatment
effects for compliers across different designs and across the 20 replications.

borne out in Figure 2 where we plot the difference between the estimated PACE and the true

treatment effect for compliers by sample size and proportion of compliers. The figure reveals
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that an increase in the sample size improves inferences about the treatment effect but that the

extent of improvement depends on the proportion of compliers in the sample. Specifically, an

increase in the sample size leads to a smaller improvement in inferences about the treatment

effect when the sample contains a smaller proportion of compliers. Conversely, the improvement

is more pronounced when the sample has a larger proportion of compliers.

3 Continuous Confounder Approach

3.1 Modeling

We now consider an alternative way of modeling confounding that does not involve the latent

subject type si. We provide the needed modeling and inferential techniques and discuss the

effectiveness of our methods. Then in Section 4 we consider how the discrete and continuous

confounder approaches can be compared in terms of marginal likelihoods and Bayes factors.

The modeling we describe is an outgrowth of our previous work on non-eligibility designs

(Chib (2004) and Chib and Jacobi (2005)) but unlike our previous work, the framework here

takes account of the fact that intake in the control arm is non-stochastic. This change has a

substantial effect on the subsequent analysis and on our Markov chain Monte Carlo (MCMC)

approach for fitting the model.

As before, the objective is to model for each individual the joint density of the observed data

p(yi, xi = j|wi, zi = l)

for l = 0, 1. The first requirement we impose on this joint density is the exclusion restriction

that zi, the instrumental variable, does not affect the implied marginal distribution of yi. The

second requirement we impose is that the treatment intake in the control arm is non-stochastic.

Finally, we require that the form of this joint distribution varies by intake. These considerations

lead us to the model

p(yi, xi = j|wi, zi = l) =





p0(yi|wi) if i ∈ I0

pj(yi, xi = j|wi, zi = 1), j = 0, 1 if i ∈ I1

(10)

where Il = {i : zi = l} denotes the sample indices of a subject with zi = l. Thus, for subjects in

the control arm the model is specified in terms of the marginal density of the outcome p0(yi|wi).
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Naturally, this marginal density is deduced from the joint density p0(yi, xi = 0|wi, zi = 1) of

subjects in the treatment arm who forgo the treatment.

The task at hand is to specify the form of pj(yi, xi = j|wi, zi = 1), j = 0, 1. Letting

yji indicate the response in treatment state j, we specify these joint densities in terms of the

generating process

yji = wiβj + εji , j = 0, 1

x∗i = w′
iγ + ui

xi = I {x∗i > 0}

where x∗i is a latent variable and I(·) is the indicator function. To model continuous unobserved

confounders we assume that (εji, ui) given λi have the distribution

(εji, ui)|λi ∼ N2

(
0, λ−1

i Ωj

)

where

Ωj =




η2
j ωj

ωj 1


 ,

is upto scale the conditional covariance matrix between the yji and x∗i . Here λi is a positive

random-variable that is assumed to be iid gamma
(

ν
2 , ν

2

)
for some known value ν > 0. We could

entertain other possible mixing distributions but our choice of the gamma distribution leads to

the bivariate student-t distribution which is simple to work with and reasonably flexible.

If we let β = (β0, β1, γ), σ2
j = η2

j − ω2
j (for reasons presented below) and ψj = (βj , ωj , σ

2
j ),

it follows that the joint density of yi and x∗i for subjects in I1 is

p∗j (yi, x
∗
i |wi, zi = 1,ψj , γ, λi) = N2(yi, x

∗
i |Xj,iβ, λ−1

i Ωj) (11)

where

Xj,i =




w′
i × (1− j) w′

i × j 0

0 0 w′
i




Therefore, marginal of λi, the joint densities p∗0(yi, x
∗
i |wi, zi = 1, ψj , γ) and p∗1(yi, x

∗
i |wi, zi =

1, ψj ,γ) are bivariate student-t. From here, on integrating out the latent scale, paying particular
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attention to the interval of integration, we get that for i ∈ I1,

pj(yi, xi|wi, zi = 1, ψj , γ) = pj(yi|wi,βj , η
2
j )

∫

Aj

p∗j (x
∗
i |wi, zi = l, yi,βj , η

2
j , ωj)dx∗i

= tν(yi|w′
iβj , η

2
j )Tν

(
(2j − 1)

µji

hjiψj

)
(12)

where Aj is the set (−∞, 0) if j = 0 and (0,∞) if j = 1, tν is the student-t density with ν

degrees of freedom, Tν+1 is the cdf of the standard t-density and

µji = w′
iγ + ωjη

−2
j (yi −w′

iβj)

h2
ji = [ν(ν + 1)][1− ω2

j /η2
j ]

ψ2
j = 1− ω2

j /η2
j

Accordingly, for subjects in i ∈ I0 this implies that

pj(yi, xi|wi, zi = 0, β0, η
2
0) = tν(yi|w′

iβ0, η
2
0) (13)

To complete the model specification we now supply a prior density for the model parameters

ψ = (γ, ψ0, ψ1). Specifically, we assume that σ2
j is distributed inverse-gamma and βj and ωj

are Gaussian:

π(ψj) = IG
(

σ2
j |

nj,0

2
,
dj,0

2

)
Np(βj |βj,0,Bj,0)N (ωj |mj,0,Mj,0)

where the quantities indexed by zero are the prior hyperparameters, and p is the dimension of

βj . We assume that ψ0 and ψ1 are apriori independent. Notice that σ2
j is the determinant of Ωj

and our choice of an inverse-gamma distribution for it ensures that Ωj is positive definite. We

note for future use that these assumptions imply that the prior density of the p + 1-dimensional

vector β̃1 = (β1, ω1) is Np+1(β̃1|β̃1,0, B̃1,0) with mean β̃1,0 = (β1,0|m1,0) and covariance matrix

B̃1,0 =




B1,0 0

0 M1,0


 .

We further assume that γ is distributed as Np(γ|γ0,G0), independent of ψj . Putting these
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assumptions together, the prior on ψ = (β, ψ0,ψ1) is of the form

π(ψ) = Np(γ|γ0,G0)
1∏

j=0

IG
(

σ2
j |

nj,0

2
,
dj,0

2

)
Np(βj |βj,o,Bj,0)N (ωj |mj,0,Mj,0) (14)

3.1.1 Fitting

We now formulate an efficient approach for summarizing the posterior density of ψ. From Bayes

theorem this density is given by π(ψ|y,x) ∝ π(ψ)f(y,x|ψ). Because this posterior density

is analytically intractable, we utilize MCMC methods along with ideas from Albert and Chib

(1993) to summarize it numerically. In particular, we augment the parameter space with the

latent treatment variables {x∗i }, for i ∈ I1, and the scale parameters {λi}, for all i, and work

with the joint density

p(yi, x
∗
i , xi = j|wi, zi = l,β,ψj , λi)

= p∗j (yi, x
∗
i |wi, zi = l,β,ψj , λi)

{
I(x∗i < 0)1−j + I(x∗i > 0)j

}

where p∗j (yi, x
∗
i |wi, zi = l,β,ψj , λi) is the bivariate normal density given in expression (11).

Therefore, the posterior distribution of interest π(ψ, {x∗i }, {λi}|y,x) is proportional to:

π(ψ)
n∏

i=1

G
(
λi|υ2 ,

υ

2

) ∏

i∈I0

N (yi|w′
iβ0, λ

−1
i , η2

0)

×
∏

i∈I10

N2(yi, x
∗
i |X0,iβ, λ−1

i Ω0)I(x∗i < 0)
∏

i∈I11

N2(yi, x
∗
i |X1,iβ, λ−1

i Ω1)I(x∗i > 0) (15)

Thus, the contribution of the subjects in the control arm (i ∈ I0) is from a product of univariate

normal densities, whereas the contribution of the subjects in the treatment arm (i ∈ I1) is from

a product of bivariate normals, according to I10 and I11. The fact that some subjects with intake

xi = 0 contribute through the marginal density of the outcome and others contribute through

the joint density of the outcome and the intake is a consequence, of course, of the eligibility

design.

There are two key points to consider when designing an MCMC algorithm to sample from

the posterior density in (15). First, the update of σ2
0 and ω0 requires an M-H step since the

posterior density of these parameters conditional on the observed data and the remaining model

parameters is not tractable due to form of the likelihood function for the subset of subjects
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with xi = 0. Second, we must also recognize that the degree of confounding when x = 1 is

more difficult to estimate because subjects in this case are only observed under one level of the

assignment. We address this issue by updating ω1 and β1 together. Note that this problem does

not occur for ω0 and β0 since the data in the set I0 supplies information about β0, independent

of ω0.

Following these considerations we propose a five-block algorithm to sample ψ, x∗ = {x∗i }
and λ = {λi}. This algorithm bears only distant resemblance to the algorithm described in

Chib (2005) for non-eligibility models.

In the first block of the algorithm we jointly sample the latent treatment variables x∗i , for

i ∈ I0 and the scale parameters λi, for i ≤ n. We begin by sampling xi marginalized over

λi from tv+1(x∗i |mji, ψ
2
ji)

{
I(x∗i < 0)1−j + I(x∗i > 0)j

}
, where mji = w′

iγ + ωjη
−2
j (yji − w′

iβj)

and ψ2
ji = 1 − ωj/η2

j . This is followed by the update of λi for these subjects (i ∈ I1) from a

gamma density G(λi|ν1
2 , d1

2 ), where ν1 = ν0 + 2 and d1 = ν0 + (y∗i − X1iβ)′Ω−1
j (y∗i − X1iβ).

In the final step of the first block we update λi for subjects in the control group (i ∈ I0)

from a gamma density, where the parameters ν1 and d1 are now given by ν1 = ν0 + 1 and

d1 = ν0 + (yi −w′
iβ0)η

−2
0 (yi −w′

iβ0).

Next we sample γ based on the observations in the sets I10 and I11 from

π(γ|y,x,W, {x∗i }, β0, β1, σ
2
0, ω0, σ

2
1, ω1, {λi}) = Np(γ|γ̂,G) (16)

with mean γ̂ = G{G−1
0 γ0 +

∑
i∈I10

λiwi(1 − ω2
0η
−2
0 )x̄∗i0 +

∑
i∈I11

λiwi(1 − ω2
1η
−2
1 )x̄∗i1}, where

x̄∗ij = (x∗i − ωjη
−2
j (yi − w′

iβj)), and covariance G = {G−1
0 +

∑
i∈I10

λiwi(1 − ω2
0η
−2
0 )wi +

∑
i∈I11

λiwi(1− ω2
1η
−2
1 )wi}−1.

We continue by updating β0, β1 and ω1 in one block, sampling β0 from

π(β0|y,x,W, {x∗i }, γ, σ2
0, ω0, {λi}) = Np(β0|β̂0,B0) (17)

with mean β̂0 = B0{B−1
0,0β0,0 +

∑
i∈I0

λiwiη
−2
0 yi +

∑
i∈I10

λiwiσ
−2
0 (yi − ω0x̂

∗
i )} and covariance

B0 = {B−1
1,0 +

∑
i∈I0

λiwiη
−2
0 w′

i +
∑

i∈I10
λiwiσ

−2
0 w′

i}−1, and β̃1 = (β1, ω1) from

π(β̃1|y,x,W, {x∗i }, γ, σ2
1, {λi}) =

Np+1(β̃1|B̃1{B̃−1
1,0β̃1,0 +

∑

i∈I11

λiw̃iσ
−2
1 yi}, B̃1 = {B̃−1

1,0 +
∑

i∈I11

λiw̃iσ
−2
1 w̃′

i}−1) (18)
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where w̃i = wi ∼ ui.

In the next block we jointly update ζ0 = (σ2
0, ω0) in an MH-step. Using the approach in Chib

and Greenberg (1995), we generate the proposal values for σ2′
0 and ω′0 from a tailored student-t

density tν(µ, V ), where µ is the (approximate) mode of the likelihood function for the subjects

in the sets I0 and I10 and V is the inverse Hessian of this likelihood evaluated at the mode. We

accept the proposal values with probability of move α = α(ζ0, ζ
∗
0|y,x,W, β, σ2

1, ω1,x∗, λ) where

α = min

{
1,

π(ζ′0)
∏

i∈I0
N (yi|w′

iβ0, λ
−1
i η2′

0 )
∏

i∈I10
N2(yi, x

∗
i |X0,iβ, λ−1

i Ω′
0)× tν(ζ0|µ, V )

π(ζ0)
∏

i∈I0
N (yi|w′

iβ0, λ
−1
i η2

0)
∏

i∈I10
N2(yi, x∗i |X0,iβ, λ−1

i Ω0)× tν(ζ′0|µ, V )

}
,

(19)

η2′
0 = σ2′

0 + ω2′
0 and η2

0 = σ2
0 + ω2

0.

Finally, we sample σ2
1 conditional on ω1 and the remaining parameters from

π(σ2
1|y,x,W, {x∗i }, β, {λi}) = IG

(
σ2

1

∣∣∣∣∣
ν1,0 + n11

2
,
d1,0 +

∑
i∈I11

λi(yi −w′
iβ1 − ω1ui)2

2

)
(20)

where n11 is the number of subjects in the set I11.

We run our MCMC sampler for M iterations after an initial burn-in period of m0 iterations.

3.1.2 Inferring Treatment Effects

For the estimation of treatment effects we follow the predictive approach outlined in Section

2.1.3, but focus now on the marginal densities of the potential outcomes p(yj,n+1|y,x,W, z),

j = 0, 1, where the subscript n+1 refers to a subject randomly drawn from the entire population.

We generate draws from these densities by performing the following steps at each iteration g ≤ M

of the algorithm. First, we randomly sample w(g)
n+1 from the full set of covariates. We then draw

y
(g)
j,n+1 from tν(y

(g)
j,n+1|w(g)′

n+1β
(g)
j , η2(g)

j ), where (β(g)
j , η2(g)

j ) are the values of the parameters at the

gth iteration of the chain. The simulated samples (y(1)
1,n+1, ..., y

(M)
1,n+1) and (y(1)

0,n+1, ..., y
(M)
0,n+1) can

be used to compute various effects of interest, including the predictive average causal effect.

3.1.3 Simulation Study

To examine the quality of our inferences about the model parameters and the treatment effects

we consider a number of simulation designs, with and without covariates, with varying degrees

of confounding, and different sample sizes. We first consider a design with one continuous

covarariate wi. In particular, we assume that wi ∼ N (2, 4) and let β0 = (1.00, 2.00), β1 =
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(2.00, 3.00) and γ = (−1.00, 1.00). In addition, we let η2 = (4.00, 4.00). To investigate the

inference under different degrees of confounding we set the covariance parameters ωj at values

between −1.6 and 1.6. Given the values of η2
j this implies correlation coefficients ρj between

−0.8 and 0.8. For each setting of these parameters, we generate 20 replications of sample size

250, 500 and 1,000.

In our fitting we assume that γ ∼ Np(0, 25×Ip), βj ∼ Np(0, 25×Ip) and ωj ∼ Np(0, 16), for

j = 0, 1. In addition, we specify the hyper-parameters ν0,j and d0,j of the inverse gamma prior

on η2
j in such a way that the prior mean and standard deviation are 2 and

√
20 respectively.

Table 5 contains results for β0, β1, ρ0 and ρ1 from the fitting to the different simulated data

sets. The first column of the table refers to the specific combination of ρ0 and ρ1 and the second

Sample Size β̂0 β̂1 ρ̂0 ρ̂1

ρ = (−.5, .5) n = 250 0.95(0.22) 2.00(0.08) 1.96(0.87) 3.00(0.23) -0.60(0.16) 0.42(0.35)
n = 500 1.00(0.15) 1.97(0.06) 2.17(0.61) 2.97(0.16) -0.48(0.14) 0.38(0.27)
n = 1000 0.99(0.11) 2.01(0.04) 1.93(0.37) 3.01(0.10) -0.51(0.10) 0.55(0.15)

ρ = (.5,−.5) n = 250 0.93(0.22) 2.00(0.08) 2.28(0.77) 2.95(0.21) 0.47(0.19) -0.58(0.26)
n = 500 0.97(0.15) 1.98(0.06) 1.85(0.63) 3.04(0.17) 0.45(0.14) -0.43(0.27)
n = 1000 0.10(.11) 2.01(0.04) 2.00(0.43) 2.99(0.11) 0.49(0.10) -0.46(0.19)

ρ = (.5, .5) n = 250 1.00(0.23) 2.00(0.08) 2.00(0.87) 2.99(0.23) 0.47(0.20) 0.40(0.35)
n = 500 0.97(0.15) 1.98(0.06) 2.16(0.61) 2.98(0.16) 0.45(0.14) 0.38(0.27)
n = 1000 1.00(0.11) 2.01(0.04) 1.93(0.37) 3.01(0.10) 0.49(1.00) 0.55(0.15)

ρ = (−.5,−.5) n = 250 0.95(0.22) 2.00(0.08) 1.67(0.88) 3.09(0.23) -0.60(0.16) -0.42(0.37)
n = 500 1.00(0.15) 1.97(0.06) 1.86(0.63) 3.03(0.17) -0.48(0.14) -0.44(0.27)
n = 1000 0.99(0.11) 2.01(0.04) 1.99(0.42) 2.99(0.11) -0.51(0.10) -0.46(0.19)

ρ = (−.8, .8) n = 250 1.00(0.10) 2.01(0.04) 2.04(0.29) 2.99(0.08) -0.79(0.06) 0.79(0.08)
n = 500 0.99(0.21) 2.00(0.08) 2.16(0.66) 2.95(0.18) -0.81(0.09) 0.70(0.23)
n = 1000 1.01(0.15) 1.97(0.06) 2.19(0.47) 2.97(0.13) -0.78(0.08) 0.69(0.17)

ρ = (.8,−.8) n = 250 0.98(0.22) 2.00(0.08) 1.64(0.67) 3.11(0.19) 0.76(0.12) -0.71(0.23)
n = 500 0.96(0.15) 1.98(0.06) 1.86(0.45) 3.03(0.13) 0.75(0.09) -0.75(0.14)
n = 1000 1.01(0.10) 2.01(0.04) 2.04(0.29) 2.99(0.08) 0.79(0.06) -0.80(0.08)

ρ = (.8, .8) n = 250 0.98(0.22) 2.00(0.08) 2.16(0.70) 2.95(0.19) 0.76(0.12) 0.68(0.25)
n = 500 0.96(0.15) 1.98(0.06) 2.18(0.47) 2.97(0.13) 0.75(0.09) 0.69(0.17)
n = 1000 1.00(0.10) 2.01(0.04) 2.04(0.29) 2.99(0.08) 0.79(0.06) 0.79(0.08)

ρ = (−.8,−.8) n = 250 0.99(0.21) 2.00(0.08) 1.56(0.67) 3.12(0.19) -0.81(0.09) -0.71(0.23)
n = 500 1.01(0.15) 1.97(0.06) 1.86(0.44) 3.03(0.12) -0.78(0.08) -0.76(0.14)
n = 1000 1.00(0.11) 2.01(0.04) 2.03(0.29) 2.99(0.09) -0.79(0.06) -0.80(0.08)

Table 5: Continuous confounder model: Posterior means and standard deviations, averaged over
20 replications to data simulated under different values of ρ and n.

column to the sample size. The remaining columns provide the posterior means and standard
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deviations averaged over the 20 replications. We find that the parameters are well estimated for

the different degrees of confounding and sample size. As expected, the parameters are better

estimated across all designs as the sample size is increased. Note, however, that the posterior

distribution of β1 is more dispersed than that of β0. Also, the posterior mean of ρ1, and to a

smaller extent β1, are less well estimated than ρ0 and β0, especially when the sample size is

small (n ≤ 500).

These findings reflect the point made earlier in our discussion, that the particular structure

of the eligibility design makes it more difficult to separate the effect of β1 from the effect of ω1.

This is mirrored in the lower panel of Figure 3 which shows the scatter plot of the draws of ω1
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Figure 3: Continuous confounder model: Scatter plots from the MCMC output of each element of
βj = (βj0, βj1) and ωj, for the case ρ = (0.5, 0.5) and n = 500.

and the elements in β1 in the case when ρ = (0.5, 0.5) and n = 500. The scatter plots of ω0 and

the elements in β0 that are in the upper panel of Figure 3 display less dependence.

Naturally, the dependence in the joint distribution of β1 and ω1 manifests itself in higher

inefficiency factors for these parameters, as shown in Table 6 for the designs with ρ = (0.5, 0.5)

and ρ = (0.8, 0.8). Notice that the inefficiency factors for γ are also relatively higher.

For a more detailed analysis of the performance of our MCMC algorithm we focus on the

19



Inefficiency Factors
Sample Size β0 β1 γ σ2

0 σ2
1 ω0 ω1

n = 250 3.26 1.80 34.66 28.82 31.28 63.17 9.59 26.88 10.06 48.28
3.28 2.19 20.78 16.83 20.31 35.76 8.96 32.92 7.62 32.70

n = 500 2.49 1.42 31.12 26.09 29.51 57.23 6.90 28.31 7.89 44.68
2.51 1.88 27.39 23.46 20.81 36.54 10.91 24.01 9.97 34.18

n = 1000 2.28 1.43 20.32 15.96 25.68 54.95 7.25 28.99 8.07 31.03
3.03 1.82 28.54 17.73 34.53 72.83 20.12 52.46 20.20 50.59

Table 6: Continuous confounder model: Inefficiency factors for designs with ρ = (0.5, 0.5) and
ρ = (0.8, 0.8) (second line), averaged over 20 replications.

results by replication when the data is generated with ρ = (0.5, 0.5). The three panels in
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Figure 4: Posterior means of the model parameters for the 20 replications, by sample size.

Figure 4 display the posterior means of the model parameters from the 20 replications for each

sample size. We see that the variation across replications is generally small and tends to decline

considerably with an increase in the sample size.

We next turn to the estimation of the PACE. Our results are given in Table 7 where we

report our estimates of this effect, averaged over the 20 replications, for each of the simulation

designs in Table 5. To see how well our method performs we compare these results to the true

average treatment effect. We compute the true effect as the sample mean from the draws of
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the potential outcomes under both treatment states for all individuals in the sample. Averaging

these results over the 20 replications of each design, the true values of the treatment effect are

found to be 3.00, 3.01 and 2.93 for n = 250, 500 and 1000 respectively. These effects do not

vary by ρ because, by definition, the causal effect is computed from the marginal distribution

of the potential outcomes. The results in Table 7 indicate that the estimated PACE is close to

Predictive Average Causal Effect (PACE)
ρ0 :
ρ1 :

−0.5
0.5

0.5
−0.5

0.5
0.5

−0.5
−0.5

−0.8
0.8

0.8
−0.8

0.8
0.8

−0.8
−0.8

n = 250 3.07 3.28 3.06 2.96 3.13 2.94 3.13 2.91
n = 500 3.16 2.99 3.17 2.98 3.18 2.99 3.19 2.97
n = 1000 2.94 2.99 2.93 2.96 3.00 2.98 2.99 2.98

Table 7: Continuous confounder model: Estimated PACE, averaged over 20 replications.

the true average treatment effect. Our results also indicate that the estimate PACE is slightly

larger than the true effect though the deviations are under 10% even for the smaller sample size.

As expected, the estimate improves with the sample size.

To complete the analysis we look at the difference between the estimated PACE and the

true average causal treatment effect, by replication. These differences are given in Figure 5, by

sample size, for data generated under the designs ρ = (.5, .5) and ρ = (.8,−.8). We observe that
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(c) n = 1000

Figure 5: Continuous confounder model: Difference between the estimated PACE and the true causal
effect, by sample size, and different degrees of confounding, across replications.

the true treatment effect is not as well estimated when the sample size is small and the degree of

confounding is low. However, our estimates improve considerably with sample size and degree

of confounding.
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4 Model Comparison

4.1 Estimation of the Marginal Likelihood

The developments in the previous sections open up the possibility of fitting eligibility design

data under each framework, with the aim of appraising which model and assumptions are better

supported by the data. With this in mind, we compute the support for each model in terms of

the Bayes factor, which we compute from the MCMC output by the approach of Chib (1995).

We begin with the basic marginal likelihood identity in Chib (1995) and express the marginal

likelihood of the model M in terms of the likelihood function, the joint prior and the posterior

as

lnm(y,x|M) = ln f(y,x|z,W, ψ∗,M) + lnπ(ψ∗|M)− ln π(ψ∗|y,x,W,M) (21)

each evaluated at ψ∗ (the posterior mean of the parameter vector ψ). Clearly, the first two terms

in this expression can be found directly. For instance, the likelihood ordinate of the discrete

confounder model comes from (2) and (3) whereas that of continuous confounder model from

expressions (12) and (13). To estimate the posterior ordinate we proceed as follows.

Consider first the case of the discrete confounder model. In this case, the parameter vector

is ψ = (β, η2, qc), where β = (β0c, β0n, β1c) and η2 = (η2
0c, η

2
0n, η2

1c). To estimate π(ψ∗|y,x,W)

we utilize the decomposition

π(ψ∗|y,x,W) = π(η2∗ |y,x,W)π(β∗|y,x,W, η2∗)π(q∗c |y,x,W, η2∗ , β∗)

where η2 = (η2
0c, η

2
0n, η2

1c). The marginal posterior ordinate of η2∗ can be estimated from ex-

pression (6) as

π(η2∗ |y,x,W) = M−1
M∑

g=1

∏

j=0,1

∏

k∈Kj

π(η2(g)

j,k |yjk,xjk,Wjk,β
(g)
jk ,λ

(g)
jk , qc(g)

)

where K0 = {c, n}, K1 = c and (β(g)
jk ,λ

(g)
jk , qc(g)

) is the gth draw from the MCMC run. Next, we

estimate π(β∗|y,x,W, η2∗) from the output of a reduced run of the MCMC algorithm in which

η2 is set at η2∗ . This output is used to average the conditional densities in (5) for j = 0, 1 and

k ∈ Kj . Finally, we get the reduced ordinate π(q∗c |y,x,W, η2∗ , β∗) by averaging expression (7)

over the output of a second reduced run with (η2, β2) fixed at (η2∗ , β2∗).
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In the case of the continuous confounder model the parameter is ψ = (γ, ψ0, ψ1), where as

before ψj = (βj , σ
2
j , ωj). We decompose the posterior ordinate into a product of marginal and

reduced posterior ordinates as

π(ψ∗|y,x,W) = π(ζ∗0|y,x,W)π(γ∗|y,x,W, ζ∗0)π(σ2∗
1 |y,x,W, ζ∗0, γ

∗)π(β∗0,β
∗
1, ω

∗
1|y,x,W, ζ∗0,γ

∗, σ2∗
1 )

where ζ∗0 = (σ2∗
0 , ω∗0).

In this case we cannot average the conditional ordinate of ζ0 to obtain π(ζ∗0|y,x,W) because

the normalizing constant of the conditional ordinate is not known. Nonetheless, π(ζ∗0|y,x,W)

can be estimated by the method of Chib and Jeliazkov (2001). An application of their method

shows that

π(ζ∗0|y,x,W) =
E1[α(ζ0, ζ

∗
0|y,x,W, β, σ2

1, ω1,x∗, λ)q(ζ∗0|y,x,W, β, σ2
1, ω1,x∗,λ)]

E2[α(ζ∗0, ζ0|y,x,W, β, σ2
1, ω1,x∗, λ)]

where the expectation E1 in the numerator is taken with respect to the posterior distribution

π(ζ0, β, σ2
1, ω1,x∗, λ|y,x,W) and the expectation E2 in the denominator is taken with respect

to the conditional product measure π(β, σ2
1, ω1,x∗, λ|y,x,W, ζ∗0)q(ζ0|y,x,W, β, σ2

1, ω1,x∗, λ).

Thus, to estimate the numerator we use the output of the full MCMC run average expression

α(ζ0, ζ
∗
0|y,x,W,β, σ2

1, ω1,x∗,λ)q(ζ∗0|y,x,W, β, σ2
1, ω1,x∗, λ). To estimate the expectation in

the denominator we average α(ζ∗0, ζ0|y,x,W, β, σ2
1, ω1,x∗, λ), where the draws on the parame-

ters are from a reduced run where ζ0 is fixed at ζ∗0, and ζ0 is drawn from q(ζ0|y,x,W, β, σ2
1, ω1,x∗, λ).

Notice that the output from this reduced run can also be used to obtain the reduced ordinate

of γ as

π(γ∗|y,x,W, ζ∗0) = M−1
M∑

g=1

π(γ∗|y,x,W, ζ∗0, {x∗
(g)

i }, β(g)
0 , β

(g)
1 , σ2(g)

1 , ω
(g)
1 , {λ(g)

i })

where the summand is the density given in (16).

Next, to estimate π(σ2∗
1 |y,x,W, ζ∗0, γ∗) we fix (ζ0, γ) at (ζ∗0,γ∗) and continue the MCMC

iterations. The draws from this reduced run produce the estimate

M−1
M∑

g=1

π(σ2∗
1 |y,x,W, ζ∗0, γ

∗, β(g)
0 , β

(g)
1 , σ2(g)

1 , ω
(g)
1 , {x∗(g)

i }, {λ(g)
i })
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where the conditional density of σ2
1 is given (20).

Finally, we compute the reduced ordinate of (β∗0,β
∗
1, ω

∗
1) from the output of the final reduced

run, now with (ζ0, γ, σ2
1) fixed at (ζ∗0,γ∗, σ2∗

1 ), to yield

M−1
M∑

g=1

π(β∗0|y,x,W, ζ∗0, γ
∗, σ2∗

1 , {x∗(g)

i }, {λ(g)
i })π(β∗1, ω

∗
1|y,x,W, ζ∗0,γ

∗, σ2∗
1 , {x∗(g)

i }, {λ(g)
i })

where the first conditional density is given in equation (17) and the second in equation (18).

4.1.1 Simulation Example

We now examine in simulation studies to what extent each of the two frameworks is supported

by the data when the data comes from one or the other model. We consider the performance

of each modeling approach in terms of inferences about the treatment effect and in terms of the

model marginal likelihoods (which we estimate by the methods just outlined).

For consistency, our simulation designs are based on those in Sections 2.1.3 and 3.1.3. In

particular, we restrict our attention to models with no covariates. Furthermore, in the discrete

confounder model we let β0c = 2, β0n = −1 and β1c = 5 and set the variance parameters ηjk at

4. Last we fix the proportion of compliers at 0.8. For the continuous confounder model, we let

β0 = 2, β1 = 5, γ = .5, η2
j = 4 and fix the vector of correlation coefficients at ρ = (−0.8, 0.8).

We generate 20 data sets under each design with sample sizes of 250, 500 and 1000. In the

fitting we adopt the prior distributions given in Sections 2.1.3 and 3.1.3.

Our first set of results appear in Figure 6 where, for each of the 20 replications, we give

the true average treatment effect (solid line) together with the estimates of this effect from the

discrete confounder approach (dotted line) and the continuous confounder approach (dashed

line). The upper panel of this figure contains the results when the data is generated from

the discrete confounder model and the lower panel when the data comes from the continuous

confounder model. Not surprisingly, the best estimates of the treatment effect arise when the

correct model is fit to the data. We can also see (on contrasting the graphs in the top and

bottom panels) that the fit from the discrete confounder model is especially good when it is used

in the correct circumstance though it does much less well when it is applied to the wrong data.

This problem persists even when the sample size is large. On the other hand, the continuous

confounder model appears to be more resistant to departures from its assumptions, at least as
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Figure 6: Cross Fitting: True average treatment effects by replication (solid line) and the estimates from
the discrete confounder model (dotted line) and the continuous confounder model (dash-dot line) when
the data is generated from the discrete confounder model with qc = .8 (upper panel) and the continuous
confounder model with ρ = (−.8, .8) (lower panel), for each of three different sample sizes.

long as the sample size is moderately large.

We next examine the support for the two approach in terms of the model marginal likelihoods.

Our results are summarized in Table 8. In particular, columns 4 and 5 provide the log marginal

likelihood estimates averaged over 20 replications. The next two columns give the total number

of replications (out of 20) in which a particular model is favored by the data according to the

marginal likelihood criterion. These summaries are provided for four alternative designs and

three different sample sizes. The first two of the four designs are the designs utilized thus far.

In the remaining two designs we examine to what extent inferences depend on the two key

parameters in each framework: the proportion of compliers in the discrete confounder model

and the degree of confounding in the continuous confounder model. In particular, in our third

design we generate data with a lower proportion of compliers and in the last design with a lower

degree of confounding.

The results in Table 8 show that in the two initial designs the continuous confounder model

is essentially always picked when the data comes from this model. Interestingly, even when the
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Log Marg. Lik. Successes
True Model Disc Cont Disc Cont

Discrete qc = .8 n = 250 -663.11 -660.73 0 20
n = 500 -1306.71 -1305.55 7 13
n = 1000 -2586.81 -2573.34 14 6

Continuous ρ = (−.8, .8) n = 250 -611.03 -608.30 1 19
n = 500 -1207.46 -1188.77 1 19
n = 1000 -2404.00 -2395.92 0 20

Discrete qc = .4 n = 250 -693.08 -693.77 14 6
n = 500 -1371.96 -1374.18 19 1
n = 1000 -2720.58 -2722.77 16 4

Continuous ρ = (−.5, .5) n = 250 -635.70 -634.58 3 17
n = 500 -1246.17 -1241.03 4 16
n = 1000 -2475.21 -2470.65 6 14

Table 8: Results from the cross-fitting: Columns 3 and 5 give the number of replications (out of
the total of 20 replications) in which this model wins according to the marginal likelihood criterion.
Columns 4 and 6 show the estimate of the log marginal likelihood averaged over 20 replications.

data originates from the discrete confounder model, the continuous confounder model is favored

in the majority of cases, except with a sample size of n = 1000 when the discrete confounder

model is picked in 14 out of the 20 replications.

Moreover, based on the lower half of Table 8, we see that the support for the continuous

confounder model over the discrete confounder model is not affected by a lowering of the degree

of confounding. On the other hand, when the data comes from a discrete confounder design

with a smaller, more balanced proportion of compliers, the discrete confounder model becomes

the favored model.

Thus, these experiments point to the conclusion that the continuous confounder model is

almost always the better supported model when the data comes from that model, regardless of

the sample size or the extent of confounding, and that when the data originate from the discrete

confounder model, the discrete confounder model is favored over the continuous model only

when the sample size is large and the proportion of compliers and never-takers in the sample is

more or less equal.

5 Job Training and Depression

We now illustrate the twin approaches for dealing with unobserved confounders on a real data

set from the JOBS II Intervention Project at the University of Michigan (see Vinokur et al 1995).
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From this trial, a study sample of 502 “high risk” subjects who had become unemployed in the

preceding 13 weeks and were searching for new employment were selected and 335 subjects were

randomized into a training program that consisted of five half-day sessions designed to enhance

job search skills, self esteem and sense of control. The goal of the study was to see if such

training causally affected the change in a depression score from baseline to six months after the

training, with a negative outcome representing an improvement in mental health.

In Table 9 we present a summary of the study data in terms of the sample mean and sample

standard deviation for the outcome y, the assignment z, the intake x and the nine covariates.

The summary stratified according to the intake is in the last two columns of the table. Overall,

Variable Explanation Means (Standard Deviations)
All x = 0 x = 1

y change in depression score -0.43 (0.78) -0.39 -0.51
z assignment Control: 167 0.67

Treatment: 335
x treatment intake Control: 0 0.36

Treatment: 183
Covariates

Basedep baseline depression score 2.45 (0.30) 2.46 2.42
Baserisk baseline risk score 1.68 (0.21) 1.69 1.67
Age age in years 36.58 (9.96) 34.81 39.68
Motivate motivation to attend 5.33 (0.81) 5.24 5.50
Educ school grade completed 13.37 (2.02) 13.13 13.77
Assert assertiveness 3.07 (0.92) 3.13 2.96
Single dummy 0.62 0.61 0.65
Econ economic hardship 3.61 (0.87) 3.62 3.60
Nonwhite dummy 0.19 0.21 0.15

Table 9: Sample summary statistics of the study data from the JOBS II Intervention Project

the sample mean of the outcome is -0.43 whereas by intake the mean is -0.39 for those who had

x = 0 and −0.51 for those with x = 1. This unpolished comparison points to (but not does

not of course establish) an improvement in mental health due to the training because some of

this improvement is perhaps due to unobserved confounders (only 183 of the 335 subjects in the

treatment arm chose to participate in the training) and observed confounders (the distribution

of the covariates by intake being somewhat different - for example, program participants were

older, more educated, less assertive and more likely white).

In previous analyses of these data, Jo (2002) and Skrondahl and Rabe-Hesketh (2004) utilized

the assumption of a discrete compliance confounder and estimated the complier average causal

effect of the training. We now re-examine these data, focusing on what was previously not

possible, namely, the comparison of the discrete and continuous modeling approaches in order
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to isolate the sensitivity of the inferential predictions to these key modeling assumptions.

To start with we analyze these data from the discrete confounder perspective. Letting yi

denote the change in the depression score over the 6 month period, we assume that

p0(yi|wi, si = n) = t15(yi|w′
iβ0,n, η2

0,n)

pj(yi|wi, si = c) = t15(yi|w′
iβj,c, η

2
j,c), j = 0, 1 (22)

where, following Skrondahl and Rabe-Hesketh (2004), w′
i = [1, basedep, baserisk]. We further

assume that apriori βj,k ∼ N3(0, 25× I3), that η2
j,k is distributed as inverse gamma with a prior

mean of 1 and standard deviation of 2, and that qc ∼ B(2, 2) with a mean of 0.5 and standard

deviation of 0.2. A summary of the results from this fitting is given in Table 10. The first three

Discrete C. Model Continuous C. Model

Outcome model
β0c β0,n β1,c β0 β1

Intercept 1.39(1.00) 1.93(0.44) 0.92(0.43) 1.82(0.35) 0.69(0.43)
Basedep -1.68(0.67) -1.39(0.29) -1.24(0.30) -1.46(0.22) -1.20(0.30)
Baserisk 1.45(0.93) 0.61(0.41) 0.92(0.42) 0.82(0.32) 0.86(0.43)

η2
0c η2

0,n η2
1,c η2

0 η2
1

0.53(0.14) 0.43(0.06) 0.42(0.05) 0.47(0.04) 0.33(0.08)

Intake model
Intercept 0.28(0.05)
Age - 20 0.04(0.01)
Motivate 0.41(0.10)
Educ 0.18(0.04)
Assert -0.22(0.09)
Single 0.35(0.16)
Econ -0.09(0.10)
Nonwhite -0.29(0.19)

Compliance Confounding
qc ρ0 ρ1

0.54(0.03) 0.17(0.13) 0.49(0.21)

Log Marginal Likelihoods
-804.86 -791.03

Table 10: Estimation results from the discrete and the continuous confounder models. The results
are based on 10,000 runs of the MCMC algorithms (1,000 burn-in cycles). Table entries are the
posterior means (standard deviation in parentheses), along with the log marginal likelihoods.

columns of the table, under the heading “outcome model,” contain the posterior means and

standard deviations of β0,c, β0,n and β1,c. In conformity with the evidence provided in Section
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2.1.3, one notices that the posterior standard deviation of each element of β0,c is nearly two

times that of the corresponding element in β0,n and β1,c, a consequence of the fact that the

proportion of compliers is not large (the posterior mean of qc is .54 with a posterior standard

deviation of .03). Unfortunately, this relative paucity of compliers is not compensated by a

larger sample size (the sample size in the control arm is 167).

One also notices a certain overlap in the marginal posterior distributions of β0,c, β0,n. This

overlap, if pronounced, would be an informal challenge to the assumption of two types and to

the presence of confounding through this route. With this in mind, we report in Figure 7 the

kernel-smoothed posterior density plots for each component of β0c (solid line), β0n (dashed line)

and β1c (dotted line). Although the marginal posterior densities of β0c and β0n are different,
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Figure 7: Posterior density plots of β0c, β0n and β1c.

the overlap is visible.

We conclude this analysis by noting that the imprecision in the estimation of β0c carries over

into inferences about the treatment effect. Following the approach outlined in Section 2.1.2, we

compute the marginal predictive densities of each potential outcome, confined to compliers, from

which we compute the predictive quantile effects, and the PACE. The results are given in Table

5. We see that the estimated quantile treatment effects of the training vary from -0.12 to -0.55,

Treatment Effects Estimates
Quantile Effects

Model PACE 0.05 0.25 0.5 0.75 0.95
Discrete C. Model -0.31 -0.12 -0.23 -0.31 -0.39 -0.55

Table 11: Estimates of the predictive average and quantile causal effects for the discrete confounder
model. The results are based on 10,000 runs of the MCMC algorithms (1,000 burn-in cycles).

whereas the estimate of the PACE is -0.31. Quite remarkably the latter effect is identical to the

complier average causal effect found previously by Skrondahl and Rabe-Hesketh (2004) from a
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non-predictive perspective and a different estimation framework.

Turning to the continuous confounder model we assume that the marginal distribution of

the outcome in intake state j is

pj(yi|wi, βj , η
2
j ) = t15(yi|w′

iβj , η
2
j )

where, as before, the change in depression score depends on the covariates “basedep” and

“baserisk.” In addition, the marginal distribution of the intake is specified in terms of the

process

xi = I[w̃′
iγ + ui > 0] , ui ∼ t15(0, 1),

where the covariates w̃i are [1, age− 20, motivate, educ, assert, single, econ, nonwhite], in keep-

ing with a model suggested by Skrondahl and Rabe-Hesketh (2004) for compliance. Finally, the

errors (εj , ui) are modeled jointly in terms of a student-t density with 15 degrees of freedom with

covariance parameter ωj . In our fitting we assume that βj ∼ N3(0, 25× I3), γ ∼ N8(0, 25× I8),

ωj ∼ N (0, 4), for j = 0, 1 and let the hyperparameters ν0,j and d0,j in the prior of η2
j be such

that the implied mean and standard deviation are 1 and 2, respectively.

A summary of the results from this fitting appear in Table 10. One thing to notice is that

the posterior standard deviations of the elements of β0 are lower than those of β0,c and β0,n,

while those of β1 are about the same size as those of β1,c. In agreement with the findings of

Section 3.1.3, we see that the β1 is less precisely estimated than β0, however, it appears that

for these data the effect of the covariates on the outcome is not obscured by the effect of the

confounders (that the confounders are present is revealed in the posterior distribution of the

correlation coefficients ρ0 and ρ1 whose means are 0.17 and 0.49, and standard deviations are

0.13 and 0.21, respectively). To show this, we have plotted in Figure 8 the bivariate scatter plots

of ωj against each element of βj . Although it is clear from this graph that the joint distribution

of ω1 and β1 is more dispersed than that of ω0 and β0, there is reassuringly little evidence of

extreme pairwise dependence. In fact, these parameters are effectively aposteriori uncorrelated.

That such limited dependence between ωj and βj can be a feature of the posterior distribution

in such models is quite interesting.

Given these positive findings, the estimates of the treatment effect under this model take on

some added importance. These causal effects, after accounting for the unobserved confounders,
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Figure 8: Scatter plots of the draws of ωj and the elements in βj.

are reported in Table 12. We see from the table that the estimate of the PACE is -0.45, a larger

effect than that from the discrete confounder model, and that the various quantile effects are

Treatment Effects Estimates
Quantile Effects

Model PACE 0.05 0.25 0.5 0.75 0.95
Continuous C. Model -0.45 -0.48 -0.44 -0.44 -0.46 -0.45

Table 12: Estimates of predictive average and quantile causal effects for the continuous confounder
model. The results are based on 10,000 runs of the MCMC algorithms (1,000 burn-in cycles).

almost identical.

In summary, the evidence from the separate fitting of these two models appears to infor-

mally support the view that the continuous confounder framework is more appropriate for these

data. For substantiation of this view we calculate the log marginal likelihood of each model

by the method described in Section 4. We find that the log marginal likelihood of the discrete

confounder model and the continuous confounder models are -804.86 and -791.03, respectively,

an indication of strong support on Jeffreys’ scale in favor of the continuous confounder model.
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6 Conclusion

There are many problems in practice, with unobserved confounders, which share the structure

of the eligibility design that we have studied in this paper. Our work is broadly relevant to such

problems. Particularly useful for future work in this area is our reformulation of the discrete

confounder approach and the development of the continuous confounder approach. In practice

both approaches can now be applied and compared via marginal likelihoods, Bayes factors, and

inferential predictions in a way that was not possible before.

Our extensive simulation experiments elucidate the strengths and weaknesses of each ap-

proach. In particular, we find that the continuous confounder approach offers a viable approach

for modeling confounding, one that appears more resistant to model perturbations than the

discrete confounder approach. We also find that the discrete confounder model despite its ap-

parent simplicity is not necessarily easy to fit, especially when the sample size is small and/or

the proportion of compliers is high. In these circumstance, our studies show that even when the

data originate from the discrete confounder model, it is generally not favored over the continu-

ous confounder model. On the other hand, when the data arise from the continuous confounder

model, the continuous confounder model is almost always the better supported model, regardless

of the sample size or the extent of confounding.

We conclude by mentioning that the analysis described in this paper extends readily to other

settings. These extensions, for example involving clustered outcomes and binary responses, are

ongoing and will be reported elsewhere.
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