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Abstract
The existing literature on testing moment inequalities has focused on �nding

appropriate critical values for tests based on a given objective function, but the
objective functions themselves are chosen in an ad hoc manner, and the power
of a test depends on the objective function that was used. In contrast, we apply
a general algorithm to approximate tests that maximize weighted average power
against the alternative hypothesis. The general algorithm is computationally
feasible only for low-dimensional problems, but we present another test that is
feasible in higher dimensions. This test exactly satis�es an intuitive optimality
condition, and simulations show that it outperforms other tests in the literature
and comes close to the maximum weighted average power.
JEL classi�cations: C12, C30.

1 Introduction

Many econometric models are only partially identi�ed, meaning that not just a single
value of the parameter of interest �0, but rather many values, are consistent with
the distribution underlying the data. Examples of partially identi�ed models include
treatment e¤ects models and other models involving endogenous variables, missing
data, or multiple equilibria. Often partially identi�ed models can be written as a set
of moment inequalities

E [m (Y; �0)] � 0; (1)

where Y is the random variable from which the data is sampled, and m is a known
vector-valued function. We are interested in testing whether a particular value of �0
satis�es (1).

�I would like to thank Andrés Aradillas-López, Bo Honoré, Ulrich Müller, Sam Schulhofer-Wohl,
Neşe Y¬ld¬z, and participants at the Copenhagen Microeconometrics Summer Workshop for helpful
comments.
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While the literature on inference for moment-inequality models is growing rapidly,
little attention has been paid thus far to �nding most powerful tests, which we de-
�ne as tests that maximize weighted average power against a given distribution over
the alternative hypothesis; typically no test is uniformly most powerful against all
alternatives. Instead, the available tests are based on ad-hoc objective functions.

Rosen (2007) de�nes a test for moment inequalities based on computing the worst-
case critical value within the null hypothesis (1) of a particular objective function.
Typically the worst-case distribution of the objective function within the null occurs
at the point where the maximal number of inequalities (1) are satis�ed with equality.
The usage of this worst-case critical value often makes Rosen�s test unnecessarily
conservative away from the worst-case point.
Andrews and Soares (2007) improve the power of Rosen�s test using a technique

called generalized moment selection (GMS), which selects particular inequalities that
are very likely satis�ed by a wide margin and recomputes the worst-case critical value
without those inequalities. This works because non-binding inequalities are unlikely
to contribute to the value of a certain class of objective functions. However, Andrews
and Soares do not consider the optimal choice of objective function. Furthermore,
Andrews and Soares show that their test has uniformly asymptotically correct size,
whereas Rosen�s test is only pointwise asymptotically valid. As shown by Imbens
and Manski (2004), tests that are not uniformly justi�ed are often undersized in �nite
samples. While Andrews and Soares�test is also undersized in �nite samples because
with small probability some inequalities may be dropped from the objective function
incorrectly, the magnitude of this error appears to be negligible.
Chernozhukov, Hong, and Tamer (2007) develop moment inequality tests based

on critical values computed via subsampling. For a given objective function, subsam-
pling can improve upon the worst-case critical value because it captures the behavior
of the objective function locally to the actual data. However, Andrews and Soares
provide local asymptotic results showing that GMS is more powerful than subsam-
pling, even asymptotically. Again, the tests that are compared are based on a
particular ad-hoc objective function.
We also consider conditional moment inequality models, in which the data can be

separated into two random variables X and Y such that

�(x) � 0 for all x 2 X ; (2)

where �(x) = E [m(X;Y; �0) j X = x].
Semiparametric models that are partially identi�ed often can be written in terms

of conditional moment inequalities. Manski and Tamer (2002) study a regression
model with an interval observed outcome:

E [Yi j Xi = x] = x
0�0.

The econometrician observes Xi and bounds YLi; YUi such that YLi � Yi � YUi. Then
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we have two conditional moment inequalities:

E [YLi �X 0
i�0 j Xi = x] � 0 for all x 2 X

E [YUi �X 0
i�0 j Xi = x] � 0 for all x 2 X .

Chiburis (2008) shows that a semiparametric model for bounds on treatment ef-
fects reduces to a system of conditional moment inequalities.
A time-series example is submartingale testing. Testing whether a stochastic

process is a submartingale can also be viewed as a single conditional moment in-
equality:

E [Yi �Xi j Xi = x] � 0 for all x 2 X
where Yi = Xi+1.

The usual �rst step in approaching conditional moment inequalities is to observe
that (2) implies in�nitely many unconditional moment inequalities:

E
�
m(X; Y; �0)

>h(X)
�
� 0 (3)

for any nonnegative function h(x). Existing tests for conditional equalities or in-
equalities are all based on (3) for a particular set of functions h. However, if only a
�nite, �xed set of functions h is used, the resulting test will be inconsistent against
some alternatives.
For the case of conditional moment equalities, Bierens (1990) proposes a test based

on an in�nite class of functions h, such as exponential functions (similar to a Fourier
transform) or polynomials of various degrees. Also for equalities, Domínguez and
Lobato (2004) present an estimator using indicator functions h for intervals over the
empirical dataset. Conditional moment inequalities are more di¢ cult to test than
conditional moment equalities because h must be nonnegative for inequalities, which
precludes the use of an orthogonal class of h functions, and also because there are
many di¤erent functions � that satisfy (2).
Both Khan and Tamer (2006) and Kim (2008) adapt Domínguez and Lobato�s

approach to inequalities, although Khan and Tamer focus on a particular application
and the special case in which their model is point-identi�ed. Kim�s test uses an ob-
jective function based on sums of modi�ed-�2 test statistics over all possible intervals
of the empirical dataset. The intuition for this is that he wants to have power against
localized violations �(x) > 0 for each possible range of x. De�ne mi = m(Xi; Yi; �).
The population version of Kim�s objective function for scalar m and X is

Q(�) = EXj ;Xk

"
EXi [mi1 fXj � Xi � Xkg]2+
V ar[mi1 fXj � Xi � Xkg]

#
;

and the sample objective function is

3



Q̂n(�) =
1

n(n�1)

X
j 6=k

" �
1
n

Pn
i=1mi1 fxj � xi � xkg

�2
+

1
n

Pn
i=1 (mi1 fxj � xi � xkg)2 �

�
1
n

Pn
i=1mi1 fxj � xi � xkg

�2
#
:

(4)
This sum emphasizes local deviations by dividing each term by its variance.
The critical value of Q̂n under the null (2) actually depends on the particular

function �(x) = E [m(X; Y; �0) j X = x] within the null hypothesis. The worst case
is usually �(x) = 0 for all x 2 X . For standard normal disturbances, the 5% worst-
case critical value of nQ̂n is approximately 1:7 for n su¢ ciently large (� 100). To do
better than using the worst-case critical value, Kim adapts the subsampling approach
of Chernozhukov, Hong, and Tamer (2007), but no results are presented. Kim also
considers estimation of the model, de�ning a set estimator of the identi�ed set and
computing its convergence rate in the Hausdor¤ metric.
Khan and Tamer (2006) and Kim (2008) do not show why their particular choice

of objective function is the best one. For example, it seems arbitrary to check for
deviations over all intervals of the data but not over the set complements of these
intervals. The relative weightings of the intervals are also ad hoc.
In this paper, we present in Section 2 an algorithm for approximating most power-

ful tests for moment inequalities against a particular distribution over the alternative
hypothesis. The algorithm is very general but only computationally feasible for
low-dimensional data. To remedy this problem, in Section 3 we develop a test for
moment inequalities that can be computed for high-dimensional data. In a subset of
cases we demonstrate uniform convergence in size and show that the test satis�es an
intuitive optimality condition. In Section 4 we show how the test can be applied to
conditional moment inequalities, and we compare �nite-sample size and power of our
test with other available tests. Section 5 concludes.

2 Approximately most powerful tests

We observe n i.i.d. draws f(Yi)gni=1 of the random variable Y 2 Y. Our goal is to
construct a powerful test of the moment inequality hypothesis E [m (Y; �)] � 0 for a
given value of �, where m : Y � � ! RK is a known function. De�ning the K � 1
vector � = E [m (Y; �)], we can rewrite the null hypothesis as

H0 : �k � 0 for all k 2 f1; : : : ; Kg : (5)

To start, we set the alternative hypothesis to be the set complement of H0:

Ha : There exists k 2 f1; : : : ; Kg such that �k > 0.

Moment inequalities make for a di¢ cult testing problem because both the null
and alternative hypotheses are composite; there are many vectors � which satisfy the
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null hypothesis with varying degrees of tightness in various coordinates, and there
are also many ways in which the null hypothesis can be violated. But even when
the null and alternative hypotheses are composite and there is no uniformly most
powerful test, a most powerful test is still well-de�ned for a given weighting �(�) over
Ha (Andrews and Ploberger 1994). We then consider the most powerful test of the
null (5) against the simple alternative

H� : � � �: (6)

We want to maximize power over the alternative such that proper size over all points
in the null is maintained. There is no known way to solve this analytically, but we
can approximate the solution numerically in some simple cases.

2.1 Algorithm for approximating a most powerful test

We present a general algorithm can be used to approximate the most powerful test
if K is small. While other general algorithms for most powerful tests exist based on
�nding the least favorable distribution over the null, e.g. Müller and Watson (2008),
Algorithm 2.1 has the advantage of being a linear program rather than a nonlinear
optimization. We discuss a duality connection to these other algorithms in Appendix
A.1, and in Appendix A.2 we develop a faster, linear-program version of Müller and
Watson�s algorithm.
We add the following assumption:

Assumption 1 Assume that m (Y; �) has �nite variance.

De�ne � = Var [m (Y; �)]. An unbiased, consistent estimator of � is

�̂ =
1

n� 1

nX
i=1

(m(Yi; �)� �m)(m(Yi; �)� �m)>;

where the K � 1 random vector �m is de�ned as

�m =
1

n

nX
i=1

m(Yi; �):

Since a central limit theorem yields

p
n ( �m� �)) N (0;�); (7)

we will use the asymptotic approximation

�m � N (�; ��) (8)
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for the distribution of �m, where �� = 1
n
�̂. We now present a general algorithm that

approximates the most powerful test of H0 (5) based on the value of �m:1

Algorithm 2.1 Algorithm for approximating the most powerful size-� test of the
composite null hypothesis H0 (5) against the simple alternative H� (6) under the
distributional assumption (8).

1. Partition RK into a grid composed of a �nite set S of regions s. This may be
done by de�ning a �nite rectangular grid covering the area of interest near the
origin and adding an additional region that encompasses all of the space outside
of the grid.

2. De�ne a �nite grid of points f�jgJj=1 over H0 for the purpose of checking size
at those points.2

3. Compute the probability �s under H� that �m would have fallen within each grid
region s. Use H� for the distribution of � and approximate �m � N (�; ��).

4. Compute the probability �j;s under each null hypothesis point �j that mi would
have fallen within each grid region s. Use the approximation �m � N (�j; ��).

5. Solve the linear program

max
f�sg

X
s2S

�s�s (9)

s.t.
X
s2S

�j;s�s � � for all j 2 f1; : : : ; Jg

0 � �s � 1 for all s 2 S.

6. Let ŝ be the region that contains the actual �m observed in the data. Reject H0
with probability �ŝ.

In words, the linear program assigns a rejection probability �s to each square s to
maximize the power against H� such that the size at each �j in the null is at most
�. Since this is a linear programming problem, the maximum can be found easily,
and the only source of approximation is the discrete grid. The idea of Algorithm 2.1
is quite general, and it can easily be adapted to many applications beyond moment
inequalities.

1The optimality of this test is based on the asymptotic normal approximation (7) and the assump-
tion that �̂ = �, in which case the likelihood of � is a function only of �m. If the exact distribution
of m(Yi; �) � � is known, then the algorithm can be improved by using the exact distribution to
compute likelihoods.

2In fact, simulations show that it su¢ ces to check size only on the boundary of H0, as long as
H� has no overlap with H0.
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2.2 Approximate optimality

Due to the discretization and the normal approximation, Algorithm 2.1 only approx-
imates the most powerful test of H0 against H�. The three sources of error in the
approximation are (1) that the size is only controlled at a �nite set of points, (2)
that there could be a more powerful test if the rejection probability were not held
constant within each region s, and (3) the asymptotic normal approximation for the
distribution of �m� �.

2.2.1 Size control

Algorithm 2.1 controls size explicitly only at certain grid points. What about the
rest of the points in H0 within the area covered by the grid?3 First consider any
two grid points �; �0 2 H0 and a point between them ~� = �� + (1 � �)�0 for some
� 2 (0; 1). If the size at � and �0 is �, the size for a simple null � with weight � on
� and 1 � � on �0 is also �, since E� [�( �m)] = �E� [�( �m)] + (1 � �) E�0 [�( �m)]. We
want to �nd a bound on E~� [�( �m)]. We use the fact that the di¤erence between the
two sizes cannot exceed the total variation distance between the distributions of �m in
the two scenarios. The total variation distance between two distributions F1 and F2
is the maximum di¤erence in the probabilities that the two distributions can assign
to the same event, and it is equal to

R
[F1(z)� F2(z)]+ dz, where [x]+ = max fx; 0g.

The following lemma bounds this total variation distance:

Lemma 2.1 The total variation distance between N (~�; ��) and the mixture of nor-
mals �N (�; ��) + (1 � �)N (�0; ��) is bounded above by �0(1)

4!
k�� �0k2, where �(�) is

the standard univariate Gaussian distribution function, ! is the smallest eigenvalue
of ��, and k�k is the Euclidean norm.

Proof. Let d = k�� �0k. Since �, �0, and ~� lie on a line, it is su¢ cient to consider
variation along the dimension of that line. The marginal distribution of ( �m� �) along
any line is univariate normal with variance at least !. Without loss of generality we
may use � = �(1 � �)d and �0 = �d, so that ~� = 0, and we assume the worst-case
variance !. Then the total variation distance � between N (0; !) and the mixture
�N (�(1� �)d; !) + (1� �)N (�d; !) is

� =
1p
2�!

Z 1

�1

h
e�

1
2!
z2 � �e� 1

2!
(z+(1��)d)2 � (1� �)e� 1

2!
(z��d)2

i
+
dz

=
1p
2�!

Z b�;d

a�;d

�
e�

1
2!
z2 � �e� 1

2!
(z+(1��)d)2 � (1� �)e� 1

2!
(z��d)2

�
dz

3Outside of the grid, there is no guarantee of size control, but this problem can be remedied by
forcing the test to accept in the outer region described in step 1 of Algorithm 2.1. This ensures
that the test is conservative away from the region covered by the grid.
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for some a�;d; b�;d. The derivative with respect to d is4

�(1� �)p
2�!

Z b�;d

a�;d

�
z + (1� �)d

!
e�

1
2!
(z+(1��)d)2 � z � �d

!
e�

1
2!
(z��d)2

�
dz

=
�(1� �)p
2�!

�
e�

1
2!
(z��d)2 � e� 1

2!
(z+(1��)d)2

����b�;d
a�;d

=
�(1� �)p

!

h�
�0
�
b�;d��dp

!

�
� �0

�
b�;d+(1��)dp

!

��
�
�
�0
�
a�;d��dp

!

�
� �0

�
a�;d+(1��)dp

!

��i
� 2�(1� �) j�00(1)j d

!
, since j�00(z)j is maximized at z = �1

� �0(1)d

2!
, since �(1� �) � 1

4
and j�00(1)j = �0(1).

Integrating this from 0 to d, we get � � �0(1)d2

4!
.

If K > 1, then not all points in H0 are directly between grid points at which
Algorithm 2.1 controls size. However, we can still bound size at all points in H0 by
applying Lemma 2.1 repeatedly, as shown in the following lemma:

Lemma 2.2 Suppose that a rectangular grid with distance d between adjacent grid
points is set up over H0, and a test � has size at most � at all grid points. Then �
has size at most

�+
K�0(1)d2

4!
(10)

over all of H0.

Proof. Let � be any point in H0. We prove the lemma by induction on K.
If K = 1, then � must lie between two grid points, at which the size is �, so by

Lemma 2.1, the size at � is at most �+ �0(1)d2

4!
.

IfK > 1, de�ne � such that �i = �i for all i 2 f1; : : : ; K � 1g, and �K is the largest
grid coordinate that satis�es �K � �K . Similarly, de�ne � such that �i = �i for all
i 2 f1; : : : ; K � 1g, and �K is the smallest grid coordinate that satis�es �K > �K .
By induction, we can apply the lemma along the �rst K�1 dimensions to obtain that
the power at each of � and � is �+ (K�1)�0(1)d2

4!
. Since � lies between � and �, which

are distance d apart, Lemma 2.1 tells us that the size at � is at most �+ K�0(1)d2

4!
.

In most cases, the K factor in Lemma 2.2 can be replaced by (K � 1), since often
it is only necessary to check size on the boundary of H0, and the boundary is (K�1)-
dimensional. Lemma 2.2 assumes that we can set up a grid over all of H0, but in fact
it is only possible to set up a grid over a �nite region of H0. However, it is usually
possible to deduce the shape of the optimal test over all of H0 by examining the

4The terms related to the di¤erentiation of the limits of integration a�;d and b�;d disappear since
the integrand is zero at those points.
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optimal test over a �nite grid near the origin, since the interesting behavior typically
occurs near the origin.
Note that these results are uninformative when �� is singular, so that the minimum

eigenvalue ! is zero. In such cases, one can still transform the problem by de�ning
the grid in the step 1 of Algorithm 2.1 over the domain Y of Y rather than the
domain RK of �m. Often the covariance matrix of Y will be nonsingular even when
the covariance matrix of �m is singular.
While it may seem problematic in (10) that ! moves in proportion with 1=n, the

variance of �m shrinks as well. Hence the boundaries of the grids may be shrunk in
proportion with 1=

p
n with no loss in precision, and d may be set in proportion to

1=
p
n without losing computational speed. The net result is that the computation

time necessary to achieve a given precision in the size does not depend on n.

2.2.2 Power approximation

Let g� be the probability density of �m under �. Algorithm 2.1 computes the power
of tests against a discretized version ~g�;d of g�. How does the power of a test against
~g�;d compare to the power of a test against g�? Once again, the di¤erence in the
powers is at most the total variation distance between the two distributions.
Let � be the test produced by Algorithm 2.1, and let ~� be any size-� test of H0.

By the construction of �, no size-� test has better power against ~g�;d than �, soZ
RK
�(z)~g�;d(z)dz �

Z
RK
~�(z)~g�;d(z)dz: (11)

Furthermore, since � is constant within each grid cube, and ~g�;d(z) is de�ned so that
the integral of ~g�;d(z) within each cube equals the integral of g�(z) within that cube,Z

RK
�(z)~g�;d(z)dz =

Z
RK
�(z)g�(z)dz: (12)

Combining (11) and (12),Z
RK
�(z)g�(z)dz �

Z
RK
~�(z)~g�;d(z)dz:

By the de�nition of total variation distance,Z
RK
�(z)g�(z)dz � ��~g�;d;g� +

Z
RK
~�(z)g�(z)dz;

where �~g�;d;g� is the total variation distance between g� and ~g�;d.
All that remains is to approximate �~g�;d;g� . Suppose that the grid RK is composed

of cubical regions with side length d.5 If g� is smooth, then for su¢ ciently small d,
5In practice we have suggested creating a �nite number of grid regions by partitioning a bounded

area of RK into a grid, and then add one more region that includes everything outside the grid.
The total variation distance given here will be approximately valid if the probability under g� on
the outer region is small.
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the total variation distance between g� and a �at (uniform) distribution within a
cube is well approximated by the area of a triangle with height d

2
kg0�(z)k and base

dK

2
, which is d

K+1

8
kg0�(z)k. Integrating this over the entire grid, we get the following

approximation for the total variation distance �~g�;d;g� between ~g�;d and g�:

�~g�;d;g� �
d

8

Z
RK
kg0�(z)k dz:

For example, if g� is standard univariate normal, �~g�;d;g� � d
4
p
2�
, and if g� is stan-

dard bivariate normal, �~g�;d;g� � d
p
2�
16
. Note that this is an approximation rather

than an upper bound, but numerical calculations for the standard bivariate normal
distribution show that the approximation is quite good.
Therefore, the power of � against g� is within �~g�;d;g� � d

8

R
RK kg

0
�(z)k dz of the

power of the most powerful size-� test against g�.

2.2.3 Normal approximation

All of our analysis so far has been based on the asymptotic approximation �m �
N (�; ��). Let Fn be the true distribution of �m� �.

Lemma 2.3 The total variation distance between N (�; ��) and Fn approaches zero
as n!1.

Proof. By (7), the total variation distance between
p
nFn and N (0;�) approaches

zero as n ! 1. Since �̂
p! �, the total variation distance between N (0;�) and

N (0; �̂) approaches zero as well. Then by the triangle inequality, the total variation
distance between

p
nFn and N (0; �̂) approaches zero. This is equal to the total

variation distance between Fn and N (0; ��), since total variation distance is invariant
to multiplication by a constant.
It follows from Lemma 2.3 that any error due to the asymptotic normal approx-

imation in the size or power of the test produced by Algorithm 2.1 approaches zero
as n!1.

2.2.4 Summary

We now combine the results of Sections 2.2.1, 2.2.2, and 2.2.3. Let � be the test
produced by Algorithm 2.1. We know that � has size at most � + �0(1)Kd2

4!
, and

power within approximately d
8

R
RK kg

0
�(z)k dz of the most powerful size-� test against

g�. Therefore, by making making the grid width d smaller, one can use Algorithm
2.1 to get arbitrarily close to an optimal test, except for error due to the normal
approximation (8), but this error vanishes as n!1.
Unfortunately, Algorithm 2.1 is only computationally feasible for small K (usu-

ally K � 3) because the number of grid points needed for a given grid width d is
proportional to d�K , which grows exponentially with K.
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2.3 Examples

We now provide some examples of Algorithm 2.1 in practice. In our examples we
use K = 2 and �� = IK , in which case the disturbances �m � � are assumed to be
spherical. To apply Algorithm 2.1, we need to choose a reasonable weighting � on
the alternative against which we maximize power. We start by setting � to be a
nearly �at (improper) distribution over Ha:

� � N (0; V ) \Ha; (13)

where

V =

�
104 0
0 104

�
:

The acceptance region for an approximate most powerful test ofH0 (5) againstH� (6)
is shown by the dark region in Figure 1. Note that this region is well approximated
by the union of a circle and the region bounded by two lines, as indicated in white in
the �gure.
Suppose instead that we have some prior belief that �1 and �2 are close to each

other, which for example might be the case if we started with a conditional moment
inequality model E [m (Y; �0) j X = x] � 0 and reduced it to an unconditional model
using �1 = E [m (Y; �0) j X = x1] and �2 = E [m (Y; �0) j X = x2]. Then we might
choose to maximize power against the distribution (13) with V chosen to have higher
weight for �1 � �2:

V =

�
1 0:75
0:75 1

�
: (14)

The resulting approximately optimal test is shown by the dark region in Figure 2.
The circular region is now replaced by roughly an elongated ellipse. Although the
white ellipse and lines now look like a fairly bad approximation, we will discuss the
test that accepts in the region bounded by the ellipse and two lines in Section 3 and
show it has power close to the most powerful test.

3 A feasible test for moment inequalities

Algorithm 2.1 and other general algorithms for approximating most powerful tests
are only computationally feasible for small K. In this section we present a faster
algorithm that produces tests with power very close to the maximum power. We
also show that these tests are exactly optimal within an intuitively reasonable class
of tests.
The inspiration for the algorithm is the roughly elliptical shapes in Figures 1 and

1. To derive where these elliptical shapes come from, consider a test of the simple
null hypothesis � = 0 against the alternative H� (6) with

� � N (0; V ) (15)
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for some positive de�nite matrix V . Note that unlike in (13), this is not a true
�alternative�to H0 since it overlaps H0 with probability greater than zero. However,
we will use (15) here as an approximation to the actual alternative (13) because (15)
yields a simple formula for the likelihood ratio and hence is easier to analyze. When
we run simulations to compare the power of tests, we will always compute power
against the actual alternative (13).
We continue to use the asymptotic normal approximation (8) for �m � �. Then

under the null � = 0, the likelihood is proportional to exp
�
�1
2
�m0 ���1 �m

�
, and under

the alternative, the likelihood is proportional to exp
�
�1
2
�m0(V + ��)�1 �m

�
. The log

likelihood ratio, ignoring an additive constant, is

` =

�
�1
2
�m0 �V + ����1 �m�� ��1

2
�m0 ���1 �m

�
= �m0L �m; (16)

where
L =

1

2

�
���1 �

�
V + ��

��1�
:

In order for the contours of the likelihood ratio to be ellipses, L must be positive
semide�nite, which is a direct consequence of the following lemma given by Bhatia
(2007):

Lemma 3.1 Suppose that A and B are positive de�nite matrices and A�B is positive
semide�nite. Then B�1 � A�1 is positive semide�nite.

By the lemma, the acceptance region of a likelihood-ratio test at any critical value
is an ellipse for K = 2, or an ellipsoid for K = 3. In the special case that V and
�� are both scalar multiples of the identity matrix, it is easy to see that L will be
a scalar multiple of the identity matrix as well, and hence the acceptance region for
K = 2 is a circle, which is what we see in Figure 1.
The likelihood-ratio test based on ` in (16) is the most powerful test against H�

that controls size for � = 0 by the Neyman-Pearson lemma, but it may not have
correct size for other parameter values in our null hypothesis H0 (5). This is why
Figures 1 and 2 have larger acceptance regions than just the ellipse.
To attempt to create a test that controls size everywhere in H0 (5), we constrain

the test to always accept whenever a test on a subset of the constraints accepts and
there is no �evidence�that the other constraints are violated, in a sense that we will
formalize shortly. For example, for the case K = 2 and �� = IK , if �m2 < 0 we add
in a test of the univariate hypothesis �1 � 0, and if �m1 < 0 we add in a test of the
univariate hypothesis �2 � 0. These two additional tests correspond to the regions
to the left of the vertical white line and below the horizontal white line in Figures
1 and 2. Then, if we construct a likelihood-ratio test for the null hypothesis � = 0
under the constraint that it must accept in those regions, we add an ellipse to the
acceptance region to get the test that accepts in the whole region enclosed by the
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ellipse and lines in 1 and 2. If this likelihood-ratio test has correct size � over all
of H0 (5), it is also a most powerful test under the constraint by Theorem 3.8.1 of
Lehmann and Romano (2005).
This technique can be formalized and generalized recursively to higher dimensions.

We construct a test of H0 against any distribution � as follows:

Algorithm 3.1 Algorithm for size-� test �K( �m;�; ��; �) of H0 (5) against alternative
H� (6) under the approximation �m � N (�; ��):

1. If K = 1, �1( �m;�; ��; �) = 1
�
�
�

�m
��1=2

�
> 1� �

	
.

2. If K > 1, then for each k 2 f1; : : : ; Kg such that

�mk � E [ �mk j �m�k;� = 0] (17)

and
�1( �mk;�; ��k;k; �k) = 0; (18)

compute �K�1( �m�k;�; ���k;�k; ��k), where �m�k denotes �m with coordinate k
excluded, ���k;�k denotes �� with row k and column k excluded, and ��k is the
marginal distribution of � over all coordinates except k. If any of these tests
accepts the null hypothesis, return �K( �m;�; ��; �) = 0.

3. Otherwise, compute the log likelihood ratio `, evaluated at �m, for the test of
the simple null � = 0 against the simple alternative � � �.6 Compare ` to
the critical value c obtained by running this algorithm on a large number of
simulated draws of �m � N (0; ��). Return �K( �m;�; ��; �) = 1 f` > cg.

The key step of the algorithm is step 2. Roughly, it states that if the test
accepts the null if it would have accepted the null based on any K� 1 of the moment
conditions and the other moment condition provides no additional evidence that the
null is violated. Note that if �� is diagonal, (17) and (18) simplify to mk � 0. As
a result of the recursive nature of step 2, the algorithm must compute up to 2K � 1
critical values. Later, we will present a faster approximation of the algorithm that
only requires computing up to K critical values.
The acceptance region of Algorithm 3.1 for � = 0:05, �� = I3, and a �at alternative

� over R3 is shown graphically in Figure 3. It is the union of a sphere (test for
K = 3), three cylinders (tests for K = 2), and an area bounded by three planes (tests
for K = 1).
We analyze Algorithm 3.1 by examining the actual size and power of tests pro-

duced by the algorithm.

6If � is of the form (15), then ` can be computed using (16).
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3.1 Size control

We discuss the �nite-sample size of the test �K(�;�; ��; �) under the assumption that
the asymptotic normal approximation (8) is correct. Showing that the test has correct
size � in �nite samples under this approximation implies that the size converges to �
as n!1 since the total variation distance between the approximate (8) and actual
distributions of �m�� goes to zero by Lemma 2.3. If that total variation distance goes
to zero uniformly over � then the convergence of size is uniform over �. The need
for uniform convergence has been emphasized recently by many authors, including
Imbens and Manski (2004), because tests whose size do not converge uniformly may
sometimes signi�cantly overreject the null in �nite samples.
Step 3 of Algorithm 3.1 guarantees that all tests produced by the algorithm have

size � at � = 0. We present a theorem that gives conditions su¢ cient to prove that
�K( �m;�; ��; �) has correct size. Although the conditions are quite restrictive, we
will next provide simulation evidence that Algorithm 3.1 controls size properly over
a much wider range of parameter values than covered in the theorem.

Theorem 3.2 Suppose that �� is diagonal and that �K(�;�; ��; �) satis�es the follow-
ing condition: For any �m; �m0 2 RK such that 0 � �m0

k � �mk and �m0
�k = �m�k for some

k 2 f1; : : : ; Kg,
�K( �m;�; ��; �) � �K( �m0;�; ��; �): (19)

Then the test �K(�; ��; �) produced by Algorithm 3.1 does indeed have size �, as-
suming that the critical values in step 3 are computed exactly.

The theorem is proven in the Appendix.
The condition (19) requires a particular type of convexity of the acceptance region

of �K(�;�; ��; �). Note that if �� is diagonal and � is an (improper) �at distribution
over RK , or � has the form (15) with diagonal V , then the acceptance region of
�K(�;�; ��; �) must satisfy the condition (19) since it is a union of spherical and
cylindrical regions centered at the origin and along the axes; see the region outlined
in white in Figure 1 for an example. Even in Figure 2, in which V (14) is not close
to diagonal, (19) is satis�ed. However, if the ellipse becomes a bit more slanted, as
will be the case if the correlation in V is raised, then (19) will no longer be satis�ed,
but simulations show that �K(�;�; ��; �) still has correct size.
As an example, we plot the size of the test along one of the boundaries of H0 for

� = 0:05, �� = I2, and � � N (0; V ) with

V =

�
1 ��
�� 1

�
:

In Figure 4, �� = 0, and �2(�;�; ��; �) satis�es the conditions of Theorem 3.2, so the
test has size at most � everywhere as expected. In Figure 5, �� = 0:9, and the test
still has correct size despite that (19) is not satis�ed. In fact, the size is far less than
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� in many places. Note, though, that non-similarity does not imply that the test
has suboptimal power; for many problems no test exists that is similar.
Next, we try varying ��. Here, the actual size of the test can be greater than �,

but only for very large negative correlations in ��. We use � � N (0; I2), and suppose

�� =

�
1 �m
�m 1

�
:

If �m = �0:9, then the test still has valid size as shown in Figure 6. However, for
�m = �0:99, then the test has size 0:064 for nominal size � = 0:05, as shown in
Figure 7. In the worst case, �m = �1, the actual size is 2�. Unfortunately, the case
�m = �1 occurs for some applications of interest, such as regressions with interval
outcomes, in which the error term in one inequality is equal to the negative of the
error term in the other inequality.
Even in such cases, the test has correct size at most � in H0, and size converges

pointwise to � everywhere in H0, which is stated in the theorem below and proven in
the Appendix.

Theorem 3.3 Under Assumption 1, for any �� 2 H0 and distribution � on Ha,

lim
n!1

E
�
�K(�;�; ��; �) j � = ��

�
� �;

with equality if �� is on the boundary of H0 (i.e. ��k = 0 for some k), where �� is
given by (8).

We will provide evidence of �nite-sample size control for larger K in Section 4.2.

3.2 Power

For small K, we can directly compare the power of tests generated by Algorithm 3.1
with the approximately optimal tests constructed in Section 2. In the example of
Figure 1, in which � = 0:05, �� = I2, and � is a nearly �at distribution given by (13),
the two tests look very similar, and indeed, their powers are very similar. Algorithm
3.1 has power 0:4585 over the region shown in the �gure, compared to 0:4591 for the
approximately optimal test.
Figure 8 compares the acceptance region of Algorithm 3.1 with the acceptance

regions of other tests in the literature. Note that the acceptance region for our test
narrows away from the origin similarly to the generalized moment selection approach
of Andrews and Soares (2007).
For the example of Figure 2, we conduct the same analysis for � given by (14),

which assigns strong correlation to �1 and �2. While the two tests appear graphically
to be quite di¤erent far away from the origin, there is little weight on the alternative
in these regions, and hence the powers are similar: Algorithm 3.1 has power 0:2625,
compared to 0:2701 for the approximately optimal test.
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In Section 4.2, we will compare the power of Algorithm 3.1 to other tests for much
larger K.
While we can only provide simulation evidence that tests generated by Algorithm

3.1 come close to the maximum power against �, there is a di¤erent sense in which
the tests are exactly optimal. Whenever a test produced by Algorithm 3.1 controls
size correctly, it is the most powerful within a reasonable class of tests, as expressed
in the following theorem:

Theorem 3.4 For a given �� and �, if each member of the family of tests f�k : k 2 f1; : : : ; Kgg
produced by Algorithm 3.1 does indeed have size �, then each of the tests maximizes
power, subject to the following conditions:

1. When k = 1, �1( �m;�; ��; �) has the form 1 f �m > cg for some c 2 R.

2. When k � 2, �k(Y ) = 0 if there exists k� 2 f1; : : : ; kg such that �mk �
E [ �mk j �m�k;� = 0] and �1( �mk;�; ��k;k; �k) = 0 and �k�1( �m�k� ;�; ���k�;�k� ; ��k�) =
0

Proof. The proof of the theorem is by induction on k.
For k = 1, a test is most powerful in the class given by condition 1 as long as the

critical value c is chosen to yield exact size �. This is ensured by Step 1 of Algorithm
3.1.
For k � 2, assume �k�1 satis�es the theorem. Step 2 of the algorithm ensures

that �k satis�es condition 2. Then by the construction in Step 3 of the algorithm
and the Neyman-Pearson Lemma, �k is the most powerful test satisfying condition 2
for the simple null � = 0. But since �k has size � across all of H0, by Theorem 3.8.1
of Lehmann and Romano (2005) it is a most powerful test for H0 as well.
Condition 2 of Theorem 3.4 is closely linked to Step 2 of Algorithm 3.1 and is

quite intuitive: It says that if we would not reject H0 based on a k�1 of the moment
conditions, then we still do not reject H0 after checking one additional moment if that
moment condition provides no additional evidence that the null is violated.

3.3 A faster algorithm

Algorithm 3.1 may require the computation of up to 2K � 1 critical values, one for
each subset of the moment conditions, and therefore it may be quite slow. The
following algorithm produces the same results for the special case that �� and V (15)
are both symmetric with respect to all coordinates (as is the case if they are multiples
of IK), but only needs K critical values need to be computed.

Algorithm 3.2 Faster algorithm for size-� test �K( �m;�; ��; �) of H0 (5) against
alternative H� (6) under the approximation �m � N (�; ��):

1. If K = 1, �1( �m;�; ��; �) = 1
�
�
�

�m
��1=2

�
> 1� �

	
.
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2. If K > 1, among all k 2 f1; : : : ; Kg that satisfy (17) and (18), choose k̂ to
minimize the log likelihood ratio, evaluated at �m�k̂, for the test of the simple
null ��k̂ = 0 against the simple alternative � � ��K. If k̂ exists, compute
�K�1( �m�k̂;�;

���K;�K ; ��K). If this test accepts the null hypothesis, return
�K( �m;�; ��; �) = 0.

3. Otherwise, compute the log likelihood ratio `, evaluated at �m, for the test of
the simple null � = 0 against the simple alternative � � �. Compare ` to
the critical value c obtained by running this algorithm on a large number of
simulated draws of �m � N (0; ��). Return �K( �m;�; ��; �) = 1 f` > cg.

There are two shortcuts involved in Algorithm 3.2. First, in the recursive steps,
we use the distributions ���K;�K and ��K rather than ���k̂;�k̂ and ��k̂. That is, we
only have to consider one pair of distributions for each K, and hence we only need
to compute K critical values. If �� and V are both symmetric with respect to all
coordinates, then this shortcut is justi�ed. Second, the algorithm makes only one
recursive call in Step 2, so it is �greedy�in the sense that it does not check all subsets
of the constraints but instead eliminates constraints one-by-one without backtracking.
If �� and V are both symmetric with respect to all coordinates, then by (16) the log
likelihood is symmetric with respect to all coordinates of �m, so removing the most
negative elements of �m one-by-one is guaranteed to minimize the log-likelihood at
each step subject to (17) and (18).
Algorithm 3.2 can be used for speed purposes even if �� and V are not multiples

of IK , but one should run simulations to check that the algorithm has valid size for
the chosen parameters.

4 An application to conditional moment inequali-
ties

We run large-scale simulations of Algorithm 3.2 in the context of testing the condi-
tional moment inequality model

�(x) � 0 for all x 2 X ; (20)

where �(x) = E [m(X;Y; �) j X = x] at a given parameter value �.
We observe n i.i.d. draws f(Xi; Yi)gni=1 of the random variables X 2 X and Y 2 Y.

We will deal with the case where � is a scalar-valued function, so that we are testing
one conditional moment inequality. There are several ways that we might adapt
this model to the unconditional framework of Sections 2 and 3. One possibility is
to partition the n samples into K =

p
ngroups I1; : : : ; IK of

p
n samples, where

the clustering is done based on Xi.7 Grouping based on Xi makes sense if we
7More generally, the number of groups might be given by any function f(n) such that

limn!1 f(n) =1 and limn!1
n

f(n) =1.
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believe that the function �(x) is smooth and we want our test to have power against
local violations of (20). We then can use Algorithm 3.2 for the K inequalities
E [m(Xi; Yi; �) j i 2 Ik] � 0 for k 2 f1; : : : ; Kg, and we know that �� will be diagonal
due to the i.i.d. assumption.

4.1 A smoothness prior on the alternative

Another possibility is to create one inequality for each distinct observed value of
X. If X is a continuous random variable, then with probability one this will yield
one inequality per observation. The advantage of this approach is that we are not
throwing out any information by averaging observations, but the disadvantage is that
we can no longer use a central-limit theorem as in (7) if X is continuously distributed
because we will have only one observation per inequality, even as n!1. However, if
we knew the distribution of m(Xi; Yi; �)��(Xi), then we could still apply Algorithm
3.1.
De�ne the vectors � = (�(Xi))

n
i=1 and �m = (m(Xi; Yi; �))

n
i=1. Assume that we

know that �m � N (�; ��) where �� = IK . Intuitively, one would usually expect the
function �(x) to be smooth, and hence we choose our prior � to favor smoothness.8

One way to favor smoothness is impose a high correlation of �i and �j when Xi is
close to Xj.
Speci�cally, we choose

H� : � � N (0; V ),
where for all i; j 2 f1; : : : ; ng,

Vi;j = �
2�di;j (21)

for some constants � 2 [0; 1] and �2 > 0 of our choice. While changing the parameters
of the alternative distribution does not a¤ect the size of a resulting test, it does alter
the power against various alternatives.

4.2 Simulations and comparisons to other tests

We compare the power and size of various tests of conditional moment inequalities.
We choose n = 100, and run tests of H0 : E[m(Y; �) j X = x] � 0 for all x, where

m(Y; �) = y � �:

In all simulations, X is drawn from the uniform distribution on [0; 1], and Y j X �
N (f(X); 1) for some function f(X) = E[Y j X = x]. We try out a few di¤erent
functions for the true f(X), and the results are shown in Tables 1-4 below.

8When we split the sample into larger groups, it was not necessary to choose � to favor smoothness
because we locally smoothed the data by averaging the samples within each group.
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The �rst test considered is the test of Müller and Watson (2008), with the sample
broken into

p
n groups based on the ordering of Xi. Rosen�s test statistic is

KX
k=1

(max f �mk; 0g)2 ;

and the critical value is computed at the worst-case point � = 0. The GMS method
of Andrews and Soares (2007) improves the power of Rosen�s test by decreasing the
critical value whenever some inequalities are determined to be satis�ed with very high
probability. We also run Algorithm 3.2 with the samples grouped in this way against
a �at distribution � over the alternative.
Among methods that are designed particularly for conditional moment inequali-

ties, we apply Kim�s (2008) test (4) using the worst-case critical value, and we run
Algorithm 3.2 with one inequality per data point as described in Section 4.1 using
the alternative � given by (21) with �2 = 4 and three di¤erent values of �: � = 0,
� = 1

2
, and � = 1. It is important to note the tests of Section 4.1 �cheat� rela-

tive to the other tests because they assume knowledge of the distribution N (0; 1) of
m(Y; �)� E [m(Y; �)].
In Table 1, we set f(x) = 1 for all x. In this case the null hypothesis is true for

� = 1 and false for � < 1. Since E[Y j X] is constant, an unconditional test on Y � �
actually works best here. In fact, Algorithm 3.2 with the alternative (21) with � = 1
assumes that �(x) is constant over x and hence produces a test that is nearly identical
to the unconditional test; it performs well in this case. Using the alternative � = 0
always works poorly because then the test is not tailored for smooth �(x). All of the
tests using grouped data signi�cantly overreject for � = 1, when H0 is true. This is
because with the grouping, we e¤ectively are using n = 10, which is too small for a
normal approximation to work. Since all three tests overreject equally, the power of
these tests can be compared with each other but not with the other tests.
The test with � = 1

2
outperforms all other correctly-sized tests in Tables 2 and 3.

In these examples, f(x) varies with x so that some inequalities are closer to binding
than others, and only our test and the GMS test of Müller and Watson (2008) are
designed to have good power in such situations. However, the variation of f(x) with
x is insu¢ cient for GMS to detect it for individual observations, so GMS does not
work well.
In Table 4, the variation of f(x) with x is drastic enough that GMS does detect

it well and performs similarly to Algorithm 3.2.

5 Conclusions and future work

We have used a general algorithm to approximate the most powerful test for a set of
moment inequalities against a chosen weighting over the alternative hypothesis. Such
general algorithms are only computationally feasible for small-dimensional problems,
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but we have developed a faster test that has power close to the maximum power
in low dimensions but also generalizes to high dimensions as well. The test�s size
converges to the nominal size uniformly for many models and pointwise for the rest.
It is shown to be the most powerful test within a reasonable class of tests whenever it
has correct size. The test can be adapted to conditional moment inequality models,
and simulations for those models show that in most cases our algorithms produce
tests that are more powerful than other tests in the literature.
One direction for future work is to �nd a way to modify Algorithm 3.1 so that

it has correct size given ��, even in the di¢ cult cases in which �� has large negative
correlation. Such a test would have asymptotically correct size uniformly.
Another extension is to derive approximately most powerful tests for a subset of

the parameters �, treating the other parameters as nuisance parameters. The algo-
rithms in this paper can be used as the �rst step in an procedure for testing a subset
of the parameters, but one must design the entire procedure to be approximately
most powerful.

A Appendix

A.1 The dual linear program

Algorithm 2.1 has a duality connection to algorithms for optimal tests such as that
of Müller and Watson (2008) that approximate the least favorable prior on the null
and use a likelihood-ratio test of the simple null based on the least favorable prior.
We show here that the dual problem of (9) is in fact a search for the least favorable
prior on the null. Kra¤t and Witting (1967) derive a similar duality result for an
algorithm for �nding maximin-power tests.
The dual problem of (9) is

minf�jg;fgsg �
JX
j=1

�j +
X
s2S

gs (22)

s.t.
JX
j=1

�j;s�j + gs � �s for all grid squares s

�j � 0 for all j 2 f1; : : : ; Jg ; gs � 0 for all s 2 S.

Let c =
PJ

j=1 �j, and for each j de�ne ~�j = �j=c, so that
PJ

j=1
~�j = 1. We will

see that
n
~�j

o
can be interpreted as a prior over the null points f�jg, and c can be

interpreted as a critical value of a likelihood-ratio test.
In the optimal solution, we will have gs = 0 when c

PJ
j=1 �j;s

~�j � �s; this is
equivalent to the ratio of likelihood under the alternative to likelihood under the
null with prior � being at most c, or the acceptance region of a likelihood-ratio
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test of the simple null ~� against the simple alternative �. In the rejection region,
gs = �s �

PJ
j=1 �j;sc

~�j. Then we can write the objective function as

�c+
X

s rejected

(�s �
JX
j=1

�j;sc~�j)

= �c+
X

s rejected

�s � c
JX
j=1

 
~��

X
s rejected

�j;s

!
= �c+

X
s rejected

�s � c(size of LR test of ~� against �). (23)

We claim that c is chosen so that the size of the likelihood-ratio test in (23) is �.
For any particular ~�, the optimal value of c is determined by

min
c
�c+

X
s2S

 
1

(
JX
j=1

�j;sc~�j < �s

)�
�s � �j;sc~�j

�!
:

The �rst-order condition is (we actually need to be more careful and use left and right
derivatives at discontinuities of the indicator function)

�+
X
s2S

�
1 frejectg

�
��j;s~�j

��
= 0

�� (size of LR test of ~� against �) = 0:

Plugging this into (23), we get that the objective function of (22) is equal toX
s rejected

�s = power of LR test of ~� against �.

That is, the dual program �nds the prior ~� on the null such that the size-� LR test
of the simple null ~� against the simple alternative � has least power, i.e. it �nds the
least favorable prior on the null.

A.2 Approximating the least favorable prior using impor-
tance sampling

As shown in Appendix A.1, Algorithm 2.1 approximates the least favorable distrib-
ution on the null. However, Algorithm 2.1 requires creating a grid for Y, and the
number of grid squares required to attain a given level of precision grows exponen-
tially with K. Other algorithms exist that approximate the least favorable prior,
that do not divide Y into a grid but instead sample from Y, e.g. Müller and Watson
(2008). Although these algorithms su¤er from the curse of dimensionality as well

21



because the number of points in a least favorable prior also grows exponentially with
K, it is less severe.
We present here an algorithm that uses importance sampling:

Algorithm A.1 Algorithm for computing least favorable prior over null points f�jgJj=1
against alternative �:

1. Let � �m be the density on �m obtained by convolving the distribution � of � with
the distribution (8) of �m � �. Draw a large number K of samples

�
�mk
	K
k=1

from � �m. This may be done using a Markov chain Monte Carlo method.

2. For each j; k, compute

�j;k =
exp

�
�n
2
( �mk � �j)0�̂�1( �mk � �j)

�
Tj� �m( �mk)

where

Tj =
KX
k=1

exp
�
�n
2
( �mk � �j)0�̂�1( �mk � �j)

�
� �m( �mk)

This is an importance-sampling approximation to the distribution of �m when
�j is the true value of �.

3. Solve the linear program

max
f�kg

1

K

KX
k=1

�k

s.t.
KX
k=1

�j;k�k � � for all j 2 f1; : : : ; Jg

0 � �k � 1 for all k 2 f1; : : : ; Kg.

4. The resulting Lagrange multipliers on the J size constraints are the least favor-
able prior over the null points f�jgJj=1, with respect to the importance-sampling
approximation of the null distributions and alternative distribution, by the du-
ality argument of Appendix A.1.

To get an even better approximation, one can run this algorithm several times,
adjusting the set f�jg after each iteration as Müller and Watson (2008) do with their
algorithm.
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A.3 Proof of Theorem 3.2

Without loss of generality, assume that �� = IK , since this can be achieved via a
rescaling of ��, �m, and � given that �� is diagonal. We prove the theorem by induction
on K.
For K = 1, �1( �m;�; ��; �) = 1 f� ( �m) > 1� �g has size � at � = 0 because

Pr [ �m > z j � = 0] = � (z). Since Pr [ �m > z j �] is increasing with �, it has size at
most � for all � < 0 as well.
For K > 1, assume that for each k 2 f1; : : : ; Kg,

�K�1(�; ��k) has size �: (24)

Consider any � � 0. We perform another induction on the smallest k such that
�k < 0.
If there is no such k, then �k = 0 for all k. In that case, the test has size � by

step 3 of the algorithm.
Otherwise, �nd the smallest k such that �k < 0. We assume the following

inductive hypothesis: For all �� such that ��j � 0 for all j 2 f1; : : : ; k � 1g and
��j = 0 for all j 2 fk; : : : ; Kg, �K(�;�; ��; �) has size at most � at ��.
De�ne �� such that ��k = 0 and �

�
j = �j for all j 6= k. For each z 2 R, de�ne

r(z) = E
�
�K( �m;�; ��; �) j �mk = z and �m�k � N (��k; IK�1)

�
:

Then the size at �� is given by

�(��) =

Z 1

�1
r(z)�0(z)dz; (25)

and the size at � is

�(�) =

Z 1

�1
r(z)�0(z � �k)dz: (26)

We know that �(��) � � by the inductive hypothesis, and our goal is to show that
�(�) � �. To get there, we establish two facts about r(�).
First, by step 2 of Algorithm 3.1, �K( �m;�; IK ; �) = 0 if �mk � 0 and �K�1( �m;�; IK�1; �) =

0, so for all z � 0,

r(z) � E
�
�K�1( �m;�; IK�1; �) = 0 j �m � N (��k; IK�1)

�
= size of �K�1(�;�; IK�1; �) at ��k
� � (27)

by (24).
Second, we want to establish that r(�) is increasing on the interval [0;1). This

follows immediately from the condition (19) given in the statement of the theorem.

23



Since r(z) � � for all z � 0 by (27), and r(�) is increasing on [0;1), there exists
ẑ 2 R such that r(z) � � for all z � ẑ, and r(z) > � for all z > ẑ. Now, we rewrite
(26) as

�(�)� � =
Z ẑ

�1
(r(z)� �)�0(z � �k)dz +

Z 1

ẑ

(r(z)� �)�0(z � �k)dz:

Let

c =
�0(ẑ � �k)
�0(ẑ)

:

It is easy to verify that �
0(z��k)
�0(z) is a decreasing function of z. Therefore,

�(�)� � �
Z ẑ

�1
c(r(z)� �)�0(z)dz +

Z 1

ẑ

c(r(z)� �)�0(z)dz

= c (�(��)� �) :

By the inductive hypothesis, �(��) � �. It follows that �(�) � �.

A.4 Proof of Theorem 3.3

Let K0 = fk 2 f1; : : : ; Kg : ��k = 0g, and let K1 = fk 2 f1; : : : ; Kg : ��k < 0g. Sup-
pose that K0 6= ?, so that �� is on the boundary of H0. Algorithm 3.1 includes a test
of the lower-dimensional hypothesis �k � 0 for all k 2 K0; this test is used whenever
�1( �mk;�; ��k;k; �k) = 0 for all k 2 K1, which occurs with probability approaching 1 as
n!1 since ��

p! 0, and if there exists an ordering (ki) of K1 such that

�mki � E
�
�mki j

�
�mkj : j > i

	
[ f �mk : k 2 K0g ;� = 0

�
for all i. To obtain this, we simply order K1 in increasing order of �mk=��k;k. This
works because limn!1 Pr [ �mk � 0 for all k 2 K1] = 1 since ��

p! 0, and hence the
order is decreasing in unlikeliness. Therefore, Algorithm 3.1 includes a test of the
lower-dimensional hypothesis �k � 0 for all k 2 K0 with probability 1. By con-
struction, this test will have size � at �k = 0 for all k 2 K0 under the normal
approximation (8). Since the acceptance region of the entire algorithm includes the
acceptance region of this test, the size of �K(�;�; ��; �) at �� is at most � under (8)
with probability approaching 1: By Lemma 2.3, the total variation distance between
the approximation (8) for the distribution of �m and the true distribution goes to 0 as
n!1, so any error in the size due to the normal approximation goes to zero.
We still need to consider the case K0 = ?. In this case, by the same reasoning as

above, with probability approaching 1 as n ! 1, Algorithm 3.1 will consider a test
of a single-dimensional hypothesis. Since ��

p! 0, step 1 of the algorithm accepts all
single-dimensional hypotheses with probability approaching 1 as n!1. Therefore,
limn!1 E

�
�K(�;�; ��; �) j � = ��

�
= 0.
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Table 1: Rejection probabilities, in percentages, for the data-generating process
E [Y j X = x] = 1 for all x 2 [0; 1].

� 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0
Rosen (grouped) 100 100 100 100 100 100 97 85 59 32 13
GMS (grouped) 100 100 100 100 100 100 97 85 59 33 14

Alg. 3.2 (grouped) 100 100 100 100 100 99 94 78 53 30 14
Kim worst-case 100 100 100 100 100 100 96 85 56 23 5
Sec. 4.1, � = 1 100 100 100 100 100 100 99 91 64 26 6
Sec. 4.1, � = 1

2
100 100 100 100 100 100 96 82 50 20 4

Sec. 4.1, � = 0 100 100 100 99 94 81 59 40 23 12 4

Table 2: Rejection probabilities, in percentages, for the data-generating process
E [Y j X = x] = x for all x 2 [0; 1].

� 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0
Rosen (grouped) 100 99 95 84 63 39 22 8 3 1 0
GMS (grouped) 100 99 95 85 66 44 26 13 5 2 1

Alg. 3.2 (grouped) 100 98 93 82 65 44 28 16 9 5 2
Kim worst-case 100 98 90 68 38 14 24 1 0 0 0
Sec. 4.1, � = 1 100 99 90 64 27 6 0 0 0 0 0
Sec. 4.1, � = 1

2
100 99 94 80 57 30 14 4 1 0 0

Sec. 4.1, � = 0 90 77 59 42 24 12 4 1 0 0 0

Table 3: Rejection probabilities, in percentages, for the data-generating process
E [Y j X = x] = 1

�
x > 1

2

	
for all x 2 [0; 1].

� 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0
Rosen (grouped) 100 100 99 97 90 76 59 36 18 7 2
GMS (grouped) 100 100 99 98 92 81 66 50 30 16 7

Alg. 3.2 (grouped) 100 100 99 97 93 83 71 53 34 18 9
Kim worst-case 100 100 96 86 71 47 22 6 1 0 0
Sec. 4.1, � = 1 100 98 88 63 28 7 1 0 0 0 0
Sec. 4.1, � = 1

2
100 100 100 98 90 76 54 31 13 3 1

Sec. 4.1, � = 0 98 94 84 70 53 33 15 4 1 0 0
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Table 4: Rejection probabilities, in percentages, for the data-generating process
E [Y j X = x] = 1� 10

�
1
�
x > 1

2

	�
for all x 2 [0; 1].

� 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0
Rosen (grouped) 100 100 98 96 88 74 56 34 17 8 4
GMS (grouped) 100 100 100 98 96 90 78 60 38 20 9

Alg. 3.2 (grouped) 100 100 100 98 96 89 75 56 35 19 9
Kim worst-case 87 77 66 50 32 17 7 2 1 0 0
Sec. 4.1, � = 1 0 0 0 0 0 0 0 0 0 0 0
Sec. 4.1, � = 1

2
100 100 100 100 98 91 78 56 30 14 5

Sec. 4.1, � = 0 100 99 98 93 83 68 46 30 16 8 3
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Figure 1: The red (dark) region is a discrete approximation of the acceptance region
for the optimal test of H0 : �1; �2 � 0 against a very �at prior on the alternative.
This is well approximated by the area under the white lines and circle.
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Figure 2: The red (dark) region is a discrete approximation of the acceptance region
for the optimal test of H0 : �1; �2 � 0 against a Gaussian alternative (13) with high
correlation coe¢ cient (V given by (14)). The area under the white ellipse and lines
is the acceptance region of the test of Algorithm 3.1. Although there is disagreement
in the two tests far from the origin, this makes little di¤erence in terms of power since
the weight under the alternative there is small.
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Figure 3: Acceptance region for Algorithms 3.1 and 3.2, for � = I3 and �at distribu-
tion on the alternative.
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Figure 4: Size of test generated by Algorithms 3.1 and 3.2, for � = I2, V = I2, and
nominal size � = 0:05, at �2 = 0 and various values of �1.
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Figure 5: Size of test generated by Algorithms 3.1 and 3.2, for � = I2, V =�
1 0:9
0:9 1

�
, and nominal size � = 0:05, at �2 = 0 and various values of �1.
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Figure 6: Size of test generated by Algorithms 3.1 and 3.2, for � =
�

1 �0:9
�0:9 1

�
,

V = I2, and nominal size � = 0:05, at �2 = 0 and various values of �1.
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Figure 7: Size of test generated by Algorithms 3.1 and 3.2, for � =
�

1 �0:99
�0:99 1

�
,

V = I2, and nominal size � = 0:05, at �2 = 0 and various values of �1.
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Figure 8: Acceptance regions for Rosen�s (2007) test (cyan), Kim�s (2008) test (blue)
using the worst-case critical value, the Andrews and Soares�s (2007) generalized mo-
ment selection adaptation of Rosen�s test (red dotted lines), and the approximation
to the optimal test against a �at prior shown in Figure 1 (green).
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