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Abstract

We address the issue of using a set of covariates to categorize or predict a binary

outcome. This is a common problem in many disciplines including economics. In

the context of a prespecified utility (or cost) function we examine the construction of

forecasts suggesting an extension of the Manski (1975,1985) maximum score approach.

We provide analytical properties of the method and compare it to more common ap-

proaches such as forecasts or classifications based on conditional probability models

and discrminant analysis. The results are informative for both forecasting environ-

ments as well as program allocation where the value of including the participant in the

program depends on how useful the program turns out to be for that participant.

∗Graham Elliott is grateful to the NSF for financial assistance under grant SES 0111238.
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1 Introduction

In a great many fields of study observations must be classified into two groups on the basis of

some observed characteristics. In decision sciences, quite commonly we must make decisions

which are binary in character – the loan is granted or it is not, the student is admitted to

the school or not, the candidate is hired or not hired, the surgery is undertaken or it is not. In

biology observations are taken and then it is determined on the basis of these characteristics

if the subject is of a certain species or not. In forecasting, directional forecasts for prices

are often made hence making the classification that the price goes up or they do not. In

corporate finance predictions of solvency or not are based on a set of firm characteristics.

The prevalence of this problem has led to a large number of different approaches with

some favored in certain fields and other methods favored in other fields. In the physical

sciences methods such as discriminant analysis have been used greatly. In economics it is

more likely that a logit or probit model is employed to estimate the probability of some

event, with the decision being made in a two step nature following the estimation of this

probability. The relative costs and benefits of various decisions and errors are typically an

afterthought when it comes to estimating these probability models.

The relative costs of making errors - false negatives and false positives – are rarely

balanced in the way that could be used to motivate the typical two step approaches to

the problem. In detecting credit card fraud, wasting some time and resources on calling a

customer that has full control over their credit card is not nearly as costly as failing to do

so when their credit card number has been stolen. Similarly, not allowing a good candidate

into a program might be quite different in cost to allowing in a poor one.

It is common in the statistical literature to introduce estimation with reference to loss

functions (see Lehmann (1983)), however in practice nearly all estimation proceeds through

approximations to maximum likelihood methods or minimizing least squared error. In the

binary decision making problem the statement of preferences, which we will refer to through-

out as the utility function, takes a particularly simple form as there are only four possible

categories that require enumeration.

This paper seeks to understand how models should be specified and estimated in the
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framework of a full description of the utility function. The purpose of the excersize is

threefold. First, to provide a general flexible framework for prediction that fully takes into

account the relative weights on potential losses incurred by the decision maker. We extend

the types of utility functions previously examined in this literature through allowing the

utility function to depend on observed data that may be useful in determining the probability

that the outcome in question would have been successful given this data. Such results are

neccessary to allow for decision problems that correspond to realistic situations where the

point of the forecasting excercise is to take some action. Second, the general formulation

will show precisely the assumptions that underly methods currently used in practice (they

will be special cases, appropriate in some but not all situations). There are many papers

that attempt to get at the question of which method to use, often through Monte Carlo

methods or alternatively by seeing which method worked best for a particular dataset. The

theoretical results presented here allow a clear understanding of the features of the model

that either invalidate or suggest the use of each of these special case methods. Third, the

results show potential problems that can arise using common ’off the shelf’ methods. The

theoretical understanding gained allows us to construct experiments to show the magnitude

of such problems. This paper thus unifies the literature and extends it.

The method we propose is an extension of the Manksi (1975,1985) maximum score ap-

proach. We extend the method in two ways. First we show how this method fits within the

general utility approach. Second, we do not restrict ourselves to linear indexes - indeed it

will be seen that linear indexes typically lack the flexibility required for complicated decision

making problems. We are in a sense able to extend to nonlinear functions because of our

different focus to that of Manski – we do not seek to make statements about the underlying

parameters of the models, which is difficult to do in these highly nonlinear models. Instead,

since we are more interested in the actual utility that arises out of these estimates, we are

able to establish results that show for nonlinear specifications that we can consistently ar-

rive at the optimal utility given the data and functional form. We establish that the rate of

convergence is of the order of the square root of the sample size.

It turns out that the typical two step approach of estimating a logit or probit function
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and then using the estimated probabilities to classify the data is an example of a method

of forecasting where the conditional distribution of the variable to forecast is constructed

and then this is employed in the decision making process. This approach, known as forecast

density estimation, as garnered a large amount of attention recently with many proponents

arguing that this approach is more sensible than having forecasts that are fine tuned to

particular loss functions. Hence we are able in the context of a precise simple special case

show the inherent pitfalls of this two step approach.

It should be noted that there are different ways to view the areas in which these results

are useful. In forecasting, we can consider the decision the forecast (or alternatively that our

forecasting problem admits a one to one relationship between the two possible forecasts and

the two possible actions). Hence one might use the methods for forecasting bankruptcy (as

often attempted in the corporate finance literature) or price change directions (as in finance).

The methods could be used to forecast credit card fraud and the like. An alternative use is

program design. Problems such as credit granting, admission to schools, allowing a potential

participant into a program etc. also fit the general setup of the problem.

The next section describes the utility setup and optimal forecasting/classification problem

in general. It is in this section that the main insights as to what is important in this problem

are gained. The third section examines the estimation approach we are proposing, and

establishes analytic results that suggest it will have reasonable properties in practice. In

section four we review the alternate approaches. By contrasting these methods with the

theory of optimal forecasting developed in the second section we are able to show the pitfalls

that can occur in using these approaches. Finally, some numerical work is presented to show

the magnitudes of the effects.

2 The Forecasting Framework and General Results

The binary decision we are making can be written as setting the action a to either one or

minus one for the two possible decisions respectively. Hence we could assign a = 1 to be

the decision to make a loan, or to go long in a particular security. Whether or not this

decision is a good one depends on some unobserved binary random variable Y. For example,
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the decision to extend the loan is good if the loan is paid back. Hence in this situation we

set Y = 1 for the loan being repaid and Y = −1 otherwise. This random variable is not

observed at the time the loan is made, hence the decision maker must predict or forecast

this outcome based on a number of observables. These observed data for each individual are

denoted by the k−dimensional vector X. The utility function of the decision maker depends

on both the action and the outcome of the variable to be forecast, as well as potentially all

or some subset of the observed covariates X, denoted

U(a, Y,X)

Since Y is not observable at the time of the decision the decision maker will maximize

expected utility conditional on the observed data X = x, i.e. provided that expectations

exist the decision maker chooses the action to solve the maximization problem

max
a

EU(a, Y,X|X).

A number of problems fit this framework. The decision to extend a loan to an applicant

under the uncertainty over whether or not they will repay the loan we have mentioned

above. In such situations, it may well be that the utility function depends directly on some

of the aspects of the individual seeking the loan. In a recent article in the Financial Times

the head of the International Finance Corporation, "the private sector arm of the World

Bank", discusses their dilemma of how to balance the conflict between making loans that

are profitable and at the same time contribute to the development of certain target groups

(regions, industries etc.). Here the value of a successful loan to the IFC depends on how

needy the recipient was in the first place, which no doubt affects the chances of being repaid.

Training programs often are required to assign individuals to a limited number of spaces

in the program with the twin aims of maximizing the number of successful outcomes (say

employed individuals after a job retraining scheme) but also to target particular groups (say

poorer unemployed). This results in a decision making environment where the outcome

Y = 1 becomes the as yet unmeasured ’successful completion’ of the program, the action is

whether or not to enroll the individual. The covariates X enter both the prediction function

as they affect the chances of success in the program and they enter the utility function of
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the program director due to the requirement that individuals with certain characteristics are

targeted. This problem also fits ’time series’ forecasting environments. Suppose that the IMF

is forecasting currency crises (Y = 1) and wants to take action when a country is in danger

of having a crisis. The IMF utility function presumably includes not just the successful

forecasting of the crisis (usually represented by the forecast error) but also characteristics

of the country that make it more or less likely that the crisis will cause severe problems

for international financial institutions. The same additional factors are likely to be useful

for forecasting the crisis event. In each of these examples the role of the X covariates is

twofold – entering through the utility function and as information useful for predicting the

outcome.

Since the action and outcome are both binary, we have for any X just four possibilities.

These can be described as

U(a, y, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u1,1(x) if a = a1 and y = 1

u1,−1(x) if a = a1 and y = −1

u−1,1(x) if a = a−1 and y = 1

u−1,−1(x) if a = a−1 and y = −1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
We will maintain the following assumption throughout the paper

Condition 1 (a) u1,1(x) > u−1,1(x) and u−1,−1(x) > u1,−1(x) for all x in the support of X,

(b) uk,l is Borel measurable and E|uk,l(X)|2 <∞ for k, l ∈ {−1, 1}.

This condition is not restrictive and gives content to the problem. Part (a) merely states

that the utility gained from matching the correct action to the correct outcome results in

higher utility than an incorrect matching. >From the perspective of forecasting, this is sim-

ply the analog that making no forecast error is better than making a forecast error, which is

typically considered to be a ’property’ of loss functions (see Granger (1969)). In the training

program example it means that letting in those who would end up successfully completing

the program is better than keeping them out, and vice versa. The second condition ensures

that the expected values of quantities used below actually exist. This must hold for all

possible realizations of the covariates x.
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Denote the conditional distribution that Y = 1 given X as p(X). In general, when p(X),

is known, the optimal decision can be simply calculated from this optimization problem, by

integrating out the unknown value for Y . The simplicity of the structure of this particular

problem leads it to admit a simple theoretical optimum. The optimal action becomes one of

choosing action a = 1 if the conditional probability exceeds a ’cutoff’ that depends on the

utility function, i.e.choose a = 1 if

p(x) >
u−1,−1(x)− u1,−1(x)

(u1,1(x)− u−1,1(x)) + (u−1,−1(x)− u1,−1(x))

= c(x)

The interpretation of this result follows from noting that u1,1(x)− u−1,1(x) is the gain from

getting the decision correct when Y = 1 and u−1,−1(x) − u1,−1(x) is the gain from getting

the decision right when Y = −1. The cutoff c(X) is higher the greater the relative gain in

getting the decision correct when Y = −1 compared to when Y = 1. Hence we will choose

a higher cutoff, more often taking the decision that bears fruit when Y = −1, as the gain

from being correct in this case is larger. Thus a higher value to being correct when Y = −1

biases us towards forecasting this outcome more often. By construction c(x) is between zero

and one for any x.

Knowing the conditional probability is sufficient for making the optimal decision, one

needs merely to use the utility function to decide the cutoff point. This calculation, when

the utility function does not depend on X, has been made in many previous papers, see

Boyes et. al (1989), Granger and Pesaran (2000), Pesaran and Skouros (2001). The deci-

sion/forecasting problem can be pictured according to Graph 1 when X is univariate.
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Figure 1: The bold line is p(x), the downward sloping line is c(x).
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It is apparent from both the graph and the nature of the forecasting rule given above

that the model that underlies the optimal forecast is not unique. The optimal problem can

be rewritten as

max
a(x)∈{1,−1}

EY,XU [a(X), Y,X] (1)

resulting in an optimal action or forecast Y ∗f = a∗(X) being a function of the observables X.

The binary decision rule partitions the support of X into two parts, that which corresponds

to a positive action and that for a negative action. Define the set of possible functions that

give this mapping as G. Suppose that Condition 1 holds. Then it is possible to show that

the set of all predictors of Y can be written in the form

P (G) = {sign[g(X)] : g ∈ G}

where G is the set of measurable functions from Rk to R.The set of optimal predictors will

be the subset G∗ of G that solves (1).

Rewriting (1) we have that the optimization that must be undertaken is

max
g∈G

EY,X [δ(X)[Y + 1− 2c(X)]sign[g(X)]]

where δ(X) = (u1,1(X) − u−1,1(X)) + (u−1,−1(X) − u1,−1(X)). The role of δ(X) is to give

higher weight to regions of X where the gain in utility is greater than other areas whether or

not the outcome is positive or negative (it is the sum of the gains in each case). The optimal

prediction involves choosing a candidate for g∗(X) amongst possible functions. The optimal

forecast can then be written as Y ∗f = sign[g∗(X)]. A number of points follow directly.

First, consider the situation when the the density of Y given X is known. Then from the

workings above we have that one possible solution to the optimization problem is to choose

g∗(X) = p(X)− c(X). This solution to the problem is an element of G∗, the set of optimal

predictors. It is this insight that motivates the use of a two step approach to the decision

problem in practice - first estimate p(X) and then examine if it is above or below the chosen

cutoff point. The result shows how the cutoff point should be chosen. An examination of

applications of this method shows that often the choice of the cutoff function is unrelated to
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any specifics of the loss function, often because the researcher has not bothered to specify

the loss function in the first place.

The second point is that although knowledge of p(X) is sufficient to determine the optimal

forecast Y ∗f it is not necessary. This can be most easily seen from Figure 2. Figure 2 shows

the conditional probability that Y = 1 along with the cutoff c(X) as a function of a single

covariate X. As noted the optimal forecast simply involves knowing which side p(X) is of

c(X). But consider the function g̃(x) = a(x) − c(x). This function differs from p(x) − c(x)

almost everywhere in x – everywhere except that they are equal at the points where p(x)

cuts c(x) and is always above c(x) when p(x) is above c(x). As such, the forecasts that result

from using g̃(x) are identical to those constructed using p(x) − c(x), or more simply that

sign[g̃(x)] = sign[p(x) − c(x)]. Hence a fundamental result in considering a model for the

optimal forecast is that the models that lead to the optimal forecast are not unique. Rather

than considering the existence of an optimal model it is more correct to consider that there

is a set of optimal models, denoted G∗, of which g̃(x) and p(x) − c(x) are members. The

decision maker is indifferent over the possible models since the decision remains the same.
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Figure 2: The bold line gives p(x), the downward sloping line c(x) and the upward sloping

straight line a(x).

The existence of a multiplicity of possible models suggests that as far as providing optimal

decisions there is a greater degree of flexibility in modelling than if one were estimating p(X).

This insight suggests that models that may not be all that useful as models of the conditional

probability over the entire support of X – models such as the linear probability model –

may still provide very good decisions by getting the ’crossing point’ correct. That is they
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may be very good approximations of the conditional probability in the regions where p(x)

and c(x) are similar. This extra flexibility may be useful in selecting a modelling approach.

This insight may also explain why in practice many researchers have found that a large

number of different approaches tend to give very similar answers. This understanding also

will allow us to understand when the procedures may differ.

A fourth point is that in the general problem both the optimal model and the cutoff

point depends on the covariates in a potentially nonlinear manner. This means that models

which a not sufficiently flexible as functions of the covariates so as to capture the possibility

of multiple crossings between the cutoff and conditional probability will perform poorly in

cases where we have multiple crossings. This can be seen in Figure 3. Here p(x), given by the

heavier line, varies over x. But the cutoff function, given by the thinner downward sloping

line, cuts this function at a number of points in x, creating three times that the function

must vary in a way that leads to a change in the sign forecast. The function used must be

flexible enough to capture this. Another way to see this is to consider the logit and probit

when based on linear indexes (so the models are written as γ(X 0β)). In such cases they have

partial derivatives with respect to any covariate that are monotonically increasing (if the

corresponding β is positive) or monotonically decreasing. Thus they have functional forms

that are quite restrictive in their ability to cross the cutoff, and hence they will almost never

be able to approximate an optimal model that is not monotonic. A similar story is true for

maximum score estimators based on linear indexes. This suggests avoiding these methods

for problems where there is likely to be more than one crossing. More flexible functional

forms can avoid this problem.
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Figure 3: The curved line gives p(x), straight line is c(x).

Fifth, since the ’distance’ of any estimator of the model between p(x) and c(x) is imma-

terial to the quality of the decision, it would seem reasonable to ignore this dimension in

modelling the decision making process. Consider the (completely general) class of functions

g(x) = r(x) − c(x). As we have noted, so long as r(x) and p(x) have the properties that

sign[r(x) − c(x)] and sign[p(x) − c(x)] are identical then the forecasts are equivalent and

optimal. The distance between r(x) and c(x) can be removed from the optimization by

simply setting r(x) so that r(x) − c(x) = 1 when r(x) > c(x) and negative one otherwise.

We show this function along with p(x) and c(x) in Figure 4. This subset of the possible

functions will include the optimal function as a point in the set of all functions of this form,

hence reducing the problem in the sense of reducing the number of functions to search over

and also ensuring that a single optimum exists.
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Figure 4: As in Figure 1. The step function gives sign(r(x)− c(x)).

A final consideration of this paper is estimation of forecasting models designed to utilize
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the information in the covariates efficiently give the utility function. The formulation above

restricts the type of loss function that is appropriate for both estimation and evaluation.

Many researchers have made the reasonable conjecture that estimation should be based on

the loss function (see Weiss (1986) in the context of forecasting). A number of different

loss functions have been suggested or examined. Manski and Thompson (1989) suggest

the maximum score approach but rather than basing the loss function on the maximal

utility consider arbitrary loss functions based on absolute and squared forecast errors. The

different approaches examined in section 4 all use loss functions that are equivalent to the

family of utility based loss functions only for very special cases. For example Wang and

Witten (2002) argue for minimizing Kullback Leibler distance between the true conditional

probability model and the estimated one, which does not correspond in any obvious way to

the loss functions that arise from utility maximization. Even more peculiar than not using

the loss function suggested by the problem at hand is that many researchers estimate models

based on arbitrary loss functions and then evaluate the methods based on special cases of

the loss function presented above. We will suggest sample analog methods based on the loss

function, which in effect is an extension of the ideas and methods of Manski (1975,1985) to

our more general forecasting problem.

We now turn to the practical concern of estimating the model. This is undertaken in the

next section.
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3 Estimating Binary Prediction Models

As we have noted the optimal forecast/allocation method chooses a function g∗(·) that solves

max
g∈G

EY,X {δ(X)[Y + 1− 2c(X)]sign[g(X)]} .

To actually find a solution for this optimization problem, the forecaster must search over

a function space. More reasonably in practical situations the set of possible functions will

be restricted in some way and a constrained optimization will be undertaken. Suppose that

instead of considering all possible functions we restrict ourselves to a subset H of G and

work with predictors with the form

P [H] = {sign[h(X)] : h ∈ H} .

We will parameterize the elements of H as h(X) = h(X, θ), where θ ∈ Θ ⊆ Rp, p ∈ N.

Hence we have a parametric model for the predictor function that is known up to the

p−dimensional vector of unknown coefficients θ. The optimal predictor is then obtained

by solving

max
θ∈Θ

S(θ) ≡ max
θ∈Θ

EY,X {δ(X)[Y + 1− 2c(X)]sign[h(X, θ)]} ,

where the definition of S(θ) is apparent. There is if course a cost to restricting the form of

the predictors considered. It may well be that the set of functions that maximize expected

utility in the constrained problem, H∗, is mutually exclusive of the set of optimal functions

in the unrestricted case; i.e., H∗ ∩ G∗ = ∅. Nevertheless, if there exists θ∗ ∈ Θ such that

sign[h(x, θ∗)] = sign[p(x) − c(x)] for all x in the support of X, then H∗ ∩ G∗ is nonempty.

In standard econometric language this means that for the model H to be optimal from a

forecasting or classification standpoint, it does not have to be fully correctly specified for

p(x)− c(x); it is enough for it to be correctly specified for the sign of p(x)− c(x). Obviously,

this is a much weaker requirement than fully correct specification.

To estimate a member of H∗, we suggest using the sample analog of the utility function

that results under the model H, i.e. choosing θ to solve

max
θ

Ŝn(θ) = max
θ

n−1

n∑
i=1

δ(xi) [yi + 1− 2c(xi)] sign [h(xi, θ)]. (2)
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Notice that the “reduction” in the space of functions to search over to ones that focus solely

on the direction of h(x, θ) and not on the distance between p(x) and c(x) away from the cutoff

points is built into the estimation procedure through the sign function. Hence the search

procedure abstracts from the actual shape of say the conditional probability function and

focuses the search to getting the important parts of the estimation correct, namely being on

the correct side of the cutoff at the correct points. The term in front of the sign function, i.e.

δ(xi) [yi + 1− 2c(xi)], is a weight assigned to each of the sign functions that is independent

of the parameters of the model and differs as the utility function differs. Recall that δ(x) is

larger when the gain from being correct is larger. Hence the weight is larger for observations

which we are more interested in classifying correctly than for those which are less important

to “get right”. The role of c(x) is to direct the weights towards more highly valuing positive

outcomes (if c(x) < 0.5) or negative ones (if c(x) > 0.5). The utility function plays a direct

role in the estimation of the parameters through reweighting the observations.

Given the observed data, Ŝn(θ) can at most take on 2n possible values as a function of

θ, regardless of the specification of h(x, θ) and the dimension of the parameter vector. For

each θ, Ŝn(θ) is a sum of n terms; the absolute values of these terms do not depend on θ,

only their signs do. Each component of the vector of signs

(sign[h(X1, θ)], sign[h(X2, θ)], . . . , sign[h(Xn, θ)]) (3)

is either −1 or 1; thus, if each component could be set independently of the others, the

whole vector would have 2n distinct settings. However, given the shape of h(·, ·) and the

realized sample points, there may not exist a value of θ to support some of these settings.

Furthermore, if the form of the weights δ(Xi)[Yi + 1 − 2c(Xi)] is such that they are equal

over many observations, there is a greater possibility that in the sum of the weighted ones

and negative ones we obtain the same sum even for different settings of the sign vector (3).

Thus, in practice the function Ŝn could take on fewer than 2n values.

Because the range of Ŝn is finite over Θ, a maximum must always exist and in fact

multiple maxima will exist under general conditions. Suppose θ∗ solves (2) and h(xi, θ
∗) > 0

or h(xi, θ
∗) < 0 for each i. If h(x, θ) is continuous at θ∗, then for all θ† sufficiently close to θ∗,

sign[h(xi, θ
∗)] = sign[h(xi, θ

†)] for each i. Thus, θ† will also solve (2). This argument shows
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in general that Ŝn has “plateaus” around those continuity points of the function θ 7→ h(x, θ)

which satisfy h(xi, θ) 6= 0 for each i. Hence, Ŝn is basically a step function of θ. Multiple

maxima can however arise not only because the local neighborhood of θ∗ is flat—Ŝn may

very well be constant over large or disconnected regions (two different values of θ may give

rise to the same sign vector even if they are not “close” and even different sign vectors could

produce steps of the same height).

It is clear that maximization of Ŝn in practice cannot be undertaken by methods that

use the gradient vector to calculate the direction of fastest ascent. Given the specification

of h(x, θ), it may be possible to come up with “tricks” that facilitate the search for maxima;

see Manski (1985) for the case when h(x, θ) = x′θ. In general, the simulated annealing

algorithm has been shown to successfully maximize multimodal functions with flat regions

or other “unpleasant” properties (Corana et al. 1987, Goffe et al. 1984). The Monte Carlo

studies presented in Section 5 demonstrate that the algorithm is robust enough to handle

the nonstandard nature of the objective function under consideration.

We turn now to the properties of the estimation technique. Taking the utility maxi-

mization problem literally means that the primary motivation for the methods is to maxi-

mize utility and as such we are indifferent between two parameter vectors θ′ and θ′′ where

S(θ′) = S(θ′′). Multiple maxima of S are then of no concern here as since utility is identical

for all maxima the decision maker will be indifferent between the possible solutions. In such a

case it makes sense that we focus more on the properties of the optimand function itself than

the more usual econometrics focus on the parameters, which could be considered as nuisance

parameters of the problem. We can consider two types of multiple maxima. The first occurs

when the function h(X, θ) is homogenous in θ, i.e. if we can write h(X, aθ′) = h1(a)h2(X, θ′′)

where h1(a) > 0. In the case of a linear model this is the familiar result that θ can only be

estimated up to scale, i.e. h(X, θ′) = Xθ′ = aXθ′′ where θ′′ = θ′/a for a > 0 (see Manski

(1985)). The second type of lack of identification occurs when the support of the covariates

X is not “rich” enough to distinguish between different values for θ. This will generally occur

for discrete covariates.

Each of the maxima correspond to a different estimate for the model. In many prediction
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situations the forecaster may be called on to justify (tell a story) about the generation of

the prediction. Hence the claim above that we are not interested in the values for θ may

not strictly be true. Some models may be easier to justify than others, even if all lead to

the same result from a utility perspective. The same is true for program design, decisions

based on one potential estimated vector may be much easier to defend than another. But

this is really only a problem for the second of these types of lack of identification. In the

first, although we cannot identify the actual parameters, we have that the relative marginal

effects of different covariates is equivalent for all values for a, hence the “story” behind the

estimation will be similar. In the second we may be able to constrain the parameter vectors

in such a way as to allow for reasonable stories to be told.

A basic existence and convergence result will be proven under the following set of as-

sumptions.

Condition 2 (Estimation: existence and convergence)

(a) Θ is a compact subset of Rp.

(b) (x, θ) 7−→ h(x, θ) is measurable with respect to B(Rk)⊗ B(Rp).

(c) {(Yi, X
′
i)}∞i=1 is a (strictly) stationary, ergodic sequence of observations on (Y,X ′).

(d) (i) The function θ 7−→ h(x, θ) is continuous on Θ for all x in the support of X.

(ii) P [h(X, θ) = 0] = 0 for each θ ∈ Θ.

The assumptions are quite unrestrictive. Condition 2(c) allows estimation based on

dependent observations recorded over time provided that the distribution of (Y,X ′) remains

stable. Of course the condition includes iid observations as a special case. Condition 2(d)

ensures that the discontinuity of the sign function does not cause undue problems. The main

restriction here is that part (ii) effectively rules out the possibility that the covariates X are

all discrete and may also constrain the parameter space. For example, in the context of the

linear model h(xi, θ) = x′iθ, it is not enough to assume that xi has one or more continuous

components. While maintaining compactness, one must also eliminate those points from

the parameter space that would put zero coefficients on all the continuous components (cf.

Manski 1985 Assumption 2c).
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First, we establish that an optimal predictor for the constrained problem exists. This is

done in Proposition 3.

Proposition 3 Suppose that Condition 1 and Condition 2 parts (a), (b) and (d) are sat-

isfied. Then the set arg maxθ∈Θ S(θ) is nonempty and so for any θ∗ ∈ arg maxθ∈Θ S(θ) the

predictor sign[h(X, θ∗)] is optimal in the class P [HΘ].

This result establishes that there is at least one value for θ that maximizes the function

S and hence can be used to construct an optimal predictor where the sense of optimality

is over the constrained set of functions considered. Effectively Condition 2(d) delivers the

continuity of the objective function (see Lemma 8 in the Appendix), which, coupled with the

compactness of the parameter space, guarantees a maximum. Notice that whilst a maximum

exists it need not correspond to a unique point θ∗ in the parameter space. This is not a

major concern if maximizing the utility function is the true objective of the analysis. What

it will mean of course is that when there are multiple maxima of the expected utility then

we will not be able to say which maximum any estimator converges to.

Now that the maximal utility S(θ∗) is defined and shown to exist it is possible to show

that the estimation procedure delivers this maximal utility asymptotically. Let θ̂n denote

the sequence of estimators of θ obtained by solving (2) based on a sample of size n, where n

tends to infinity. Then these estimators have the following properties:

Proposition 4 Suppose that in addition to the assumptions of Proposition 3, Condition 2

part (c) is satisfied. Then Ŝn(θ̂n) −→a.s. S(θ∗).

The result shows that under fairly unrestrictive assumptions the forecast generated by

using θ̂n converges almost surely to an optimal forecast where optimality is in the sense of

providing the highest possible utility. Such a consistency result provides a basic justifica-

tion of the proposed method—it will be difficult to establish the same property for other

estimators even though these other estimators are popularly used in practice.

The result relies on the function we are maximizing and the target function getting close

asymptotically, however does not rely on the actual maximized parameter vector getting

close to any “true” set of coefficients. The assumptions are accordingly weaker than if we
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also wish to interpret the coefficients themselves in any way other than as maximizers of

utility. We will examine this below. The extra flexibility allows the result to be shown with

very weak assumptions on the model h(x, θ).

We require some stronger assumptions to nail down the rate of convergence. With as-

sumptions on the support of the functions examined and specializing to the case of iid

observations, this rate is shown be of order n1/2.

Condition 5 (Rate of convergence)

(a) The collection of support sets {x : h(x, θ) > 0}, θ ∈ Θ form a VC (Vapnik-

Chervonenkis) class of subsets of Rk.

(b) {(Yi, X
′
i)}∞i=1 is an iid sequence of observations on (Y,X ′).

Proposition 6 Suppose that in addition to the assumptions of Proposition 3, Condition 5

parts (a) and (b) are satisfied. Then Ŝn(θ̂n)− S(θ∗) = Oa.s.(n
−1/2).

If Condition 2 part (a) or (d) does not hold, but arg max S(θ) is still nonempty, then the

result holds with convergence in probability replacing almost sure convergence.

The definition of a VC class (see, e.g., Pollard 1984) is based on combinatorial notions

and it is not clear how (or if) it is related to the continuity assumptions of Condition 2. The

assumption of iid observations is necessary for the application of the empirical process result

of Kim and Pollard (1990), upon which the proof of Proposition 6 is based (see the Appendix

for more details). Recent developments in empirical process techniques (Dehling et al 2002)

could permit an extension to the stationary ergodic case—this is work in progress.

Even though we are generally not interested in the parameters θ, we mentioned above

that in some cases it may be reasonable to want to interpret them as estimates of some

underlying truth. The following proposition gives a special case in which we can make some

comments.

Proposition 7 Suppose that Condition 1 and Condition 2 hold. Then any convergent subse-

quence of θ̂n converges almost surely to some point in arg max S(θ). If arg max S(θ) consists

of a single point then θ̂n −→a.s. θ∗ (i.e. the sequence θ̂n itself converges to θ∗).
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Proposition 7 establishes consistency results for the parameter estimates when they are

available. The first (rather weak) conclusion obtains under the same conditions as those in

Proposition 4. The second part of the result shows that if indeed the model is identified,

i.e. that θ∗ is the unique optimal parameter vector, then the parameter estimates using the

proposed method are consistent estimators for this parameter vector. Of course, additional

conditions are required on the family of functions HΘ and/or the distribution of (Y,X ′) to

ensure identification. These identifying assumptions can potentially be quite restrictive.

These results provide grounds for using the utility based estimator in practice. In most

applications other methods have been employed. We now examine these other methods.
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4 Alternative Methods for Estimating Decision Func-

tions

>From the vantage point of understanding what the optimal forecast looks like and having

an estimator with useful approximation properties, we can now examine the properties of

other more commonly used approaches to formulating an estimate of the optimal decision

rule for this problem. The most popular methods are the use of logit and probit models

to estimate p(X), followed by the use of an arbitrary (non loss function) motivated cutoff

choice. One could also of course use linear probability models to approximate the conditional

probability. Other models and estimation techniques for the conditional probability such as

neural nets have also been entertained. Popular in biological sciences and also corporate

finance, the method of discriminant analysis first introduced by R.A. Fisher (1936) can be

used for this problem. Finally, the Manski maximum score method is closely related to the

method suggested above – it is a special case.

4.1 Parametric Estimation of p(X)

The most common approach to estimating the conditional probability is through the esti-

mation of a probit or logit regression of Y on X. These methods estimate the conditional

probability that Y takes the value 1 through choosing a parametric function γ(X 0β) for the

model of the conditional probabilities where β are unknown parameters to be estimated from

the available dataset. Thus under the assumption that the cutoff is chosen appropriately the

set of models considered here can be written in the form

{sign[γ(X 0β)− c(X)], β ∈ Rk}

Typically the logit specification for γ(.) is preferred over probit in application. Dimitris et.

al (1996) survey business failure prediction models and find that 17 of 66 of the studies

surveyed employed this method. Boyes et. al. (1989) use these logit models to predict credit

default. Leung et. al (2000) use both probit and logit models to predict the direction of the

stock market. Martin (1977) and Ohlsen (1980) use this approach to predict the bankruptcy
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of corporations. The choice of a cutoff probability – above which we assign a forecast of

a one – tends to be arbitrary in these studies. Leung et. al. (2000), Min and Sha (2003)

each choose one half as the cutoff. Boyes et. al (1989) suggest a loss based cutoff.

First, suppose that the parametric form for the conditional probability is correctly spec-

ified up to the unknown parameters β. In this case the MLE β̂ is consistent for β and hence

p̂(x) coverges to p(x) (in what sense??). Provided that the correct cutoff function is used

then p(x)− c(x) ∈ G∗ and so asymptotically these methods are able to provide the correct

decision rule. This all happens despite the fact that the implicit loss function underlying

the estimation procedure does not correspond to the actual loss function for the problem

except in very simple cases. This is an unusual coincidence, and follows from the fact that

p(x) plays two roles in this particular problem, one as the reduced form statistic required

to obtain the forecasts and secondly it is the predictive density. In its second role, the loss

function is not required asymptotically since we are able to estimate the density and then

construct the decision. In the first role, it is one of the possible sufficient statistics for the

problem. This does not occur for most decision rule problems, typically the forecast based on

an incorrect loss function is not asymptotically equivalent to knowing the predictive density.

In the more likely situation that the parametric model is misspecified, there is no reason

why the MLE should asymptotically find a function in H∗ even when the cutoff is correctly

specified. The intuition for this follows from considering what the maximum likelihood pro-

cedure does versus what is required for a good decision. The method of maximum likelihood

will attempt to find the best global fit for p(.). So the method will attempt to fit the true

conditional probability not only at the points where it matters for decision making – namely

at the cutoff point – but also at other irrelevant points where good decision making requires

only the side of the cutoff and information about the conditional probability other than this

is not informative. Depending on the nature of the conditional probability function and the

densities of the data it may well be that the method of maximum likelihood places all its ef-

fort on fitting the conditional probability at points far from the cutoff. Figure 5 depicts with

the solid line p(x) for a single covariate. No Probit or Logit model based on a linear index

can approximate this well over the entire range of x. Here, with X uniformly distributed,
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the population probit estimates lead to the lighter shaded dashed line. We see that it does

provide a good approximation at a number of points (i.e. the points at which it crosses p(x)

and is hence equal to the conditional probability), however at many other points it does not.

If the cutoff happened to be at 0.5, the method would have done well. If it is at 0.4 (as in

the figure denoted by the horizontal dotted line) then it is a very poor approximation.

Figure 5: Misspecified Probit model and p(x)

Finally, parametric models for the conditional probability may not be flexible enough to

capture the number of crossing points, i.e. points where p(x) cuts c(x). This is a particular

type of misspecification, where the optimal classification scheme may break up the region

over the covariates into more parts than the parametric form of the model will allow. The

models may then be not flexible enough to optimally classify over all regions. This problem

can be seen in the Figure 6, where now p(x) first rises then falls to an asymptote. Any cutoff

independent of x between about 0.38 and 0.81 will result in two crossings of c with p(x).

However parametric models based on a linear index are monotone, hence will not be able to

pick both points. They could pick two points, however this would mean that at least one

point for the crossing is misspecified.
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Figure 6: An example of p(x) where there may be multiple ’crossings’

4.2 Nonparametric Estimation of p(X)

An alternative approach to probit or logit estimation is to construct an estimate of p̂(x)

using less parametric methods. Use of probit or logit results in models that are restricted

in the form of the function G(.). The motivations for less parametric methods are driven

by the lack of any basic theoretical basis for a particular model specification of p(x) and a

desire to avoid the problems discussed above when the parametric form is prespecified. A

large number of less parametric approaches are available. Many of the available methods

arise from methods designed to semi or nonparametrically estimate β (which is not the

direct problem of the forecaster, but arises in many other areas). With a consistent estimate

for β then the functional form can be estimated conditionally on the parameter vector

estimate (Powell (1994) has a review of these methods). Such methods have not to our

knowledge been employed for forecasting. Most semi or nonparametric methods actually

employed for forecasting tend to be applications of neural network methods or other model

search procedures. Examples in predicting bankruptcy include Wilson and Sharda (1994).

Theoretically then these methods are more likely to avoid the problem of specifying a set

of possible models that excludes the optimal model, at the cost empirically of the need for

greater model search and the potential for overfitting.
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4.3 Linear Probability Model

The linear probability model simply fits the usual regression of Ỹ on X where Ỹ is equal to

Y for positive outcomes and zero otherwise. It does this without regard to the binary nature

of the dependent variable and the sensible requirement that the model not predict numbers

other than one or zero. Because of the nature of the dependent variable the least squares

residuals must be heteroskedastic, so it is typical to employ weighted least squares based on

initial OLS estimates.

This method has not been too often used in the prediction problem. The linear probability

model cannot provide a good fit of the entire conditional probability p(x). However as we

have demonstrated above, for it to provide useful predictions it need only give a good estimate

of the conditional probability at the point where it cuts the cutoff function c(x). Hence we

may well expect it to provide good forecasts in some situations. As with the other methods

described in this section above, it fails to utilize any information in the utility function and

hence whether or not the performance of this method is good or bad is difficult to determine

a priori.

4.4 Discriminant Analysis

The method of discriminant analysis splits the joint distribution of the X covariates into two

different populations, one group for when Y = 1 and the other for when Y 6= 1. The deriva-

tion of this method arises from considering a hypothesis test between these two covariate

populations. Defining these population joint densities parametrically, we can compute the

likelihoods that any subsequent observed set of covariates are generated from the density

associated with the Y = 1 group or the alternative group. A likelihood ratio test between

two groups results in the rule of forecasting that Y = 1 if the likelihood evaluated for this

group at X = x exceeds that for the other group. When the assumption that X is jointly

normally distributed with common variance covariance matrices across groups is made, this

rule is linear in the observed x0s and hence leads to decisions based on linear ’scores’ that

have a one to one correspondence with decisions based on the underlying likelihoods. Rather

than weight both likelihoods evenly, the researcher can weight one higher than the other re-
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sulting in a procedure that alters the balance between false positives and false negatives

made by the forecast procedure. In this way the loss function can be brought to bear on the

decision making through these weights. It may seem odd that the focus of these methods is

on the distribution of the covariates rather than the conditional distribution of the outcome

variable to be forecast – the methods are best understood as getting to this conditional

distribution via the complete joint distribution of Y and X.

This method is often criticized because of their parametric assumptions (joint normality

of the covariates) however this really amounts to the same thing as choosing a parametric

model for the conditional probability. This becomes clear through their relationship with the

logit model. Amemiya (1985) shows that under the normality assumption for the distribution

of X conditional on Y that the discriminant analysis model is equivalent to a logit model

that includes the X covariates linearly but also quadratically. If the assumption that the

variance covariance matrices are equivalent for the sub populations then the quadratic terms

drop out. There is in population a one to one relationship between the logit specification

based on a linear index and the method of discriminant analysis when the variances are

assumed equal. Discriminant analysis methods have been popular in statistics and applied

fields other than economics, and date back to work by R.A. Fisher (1936). For reviews of

the methods in general (as opposed to forecasting) see Amemiya (1981) or Maddala (1983).

Since for the special (but common in applications) case where the variance covariances of the

two covariate populations are held to be the same decisions based on discriminant analysis

and decisions based on linear probability models will both be based on linear functions of the

data. Dimitris et. al (1996) note the similarity of predictions using these two methods, where

differences arise due to different estimation methods for the unknown parameter weights.

This method has been employed for detecting credit granting (Srinivasan, V. and Y.H.

Kim (1987)) and bankruptcy prediction (Dimitras et. al. (1996)) amongst many other

applications.
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4.5 Manski Maximum Score Approach

The Manski maximum score method (Manski (1985), Manski and Thompson (1989)) also fits

into this set of approaches. Define the ’score’ as the proportion of correct matchings between

the model and the binary outcomes (for any set of parameters chosen, the model gives only

two outcomes and hence is a step function). The method here is to choose parameters so

that the score is maximized. The estimation procedure described above is a generalization

of the one introduced in Manski (1985), which is identical to the above approach when (i)

δ(x) and c(x) are independent of x and (ii) h(x, θ) = x0θ.

This method has been less used in forecasting than other methods1 described above,

which is somewhat strange since in many applications of the above methods researchers

then often compare models based on the proportion of correct predictions – i.e. they use

as a performance criterion the exact loss function that the most common form of the maxi-

mum score estimator maximizes. One potential reason for its underuse is that evaluating the

sample distribution of the estimated parameters is somewhat difficult due to the discontin-

uous objective function (Horowitz (1992)), and whilst this is a problem for model selection

it is not a problem for estimation and actually using the model to construct forecasts is

straightforward.

5 Large Sample Properties of Classification Techniques

We will examine a number of the ’population’ effects discussed above using simulations with

large samples. We will demonstrate how failure to utilize the utility function in misspec-

ified models results in inferior classification when using two step procedures, showing the

situations in which this is more of a problem or less of a problem. We will first start with

linear models, typically the more popularly used type of specification. We will then give a

nonlinear example.

When the model for the conditional probability p(X) is correctly specified then in large

1Indeed, we know of only one application. Caudill (2003) uses the method to predict the outcome of

basketball games.
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samples classifications using the correct cutoff will of course maximize utility. As we have

discussed above there is then no difference between the two step procedure and the one

step procedures in this special case. Because of this, in this section we focus on a situation

where the conditional probability is not correctly specified by any of the models. The data

generating process is given by

Y = sign[1 +X + eXv]

where X is a univariate scalar random variable and the innovation term v is mean zero and

independent of the covariate X. In particular we model the innovation as being lognormal,

i.e. v ∼ exp[N(0, σ2)]− exp(σ2/2). The conditional probability is given in Figure 6 above.

For this data generating process, linear probit or logit models based on the index β1+β2x

will be misspecified, they are not flexible enough to capture the features of the conditional

probability over the full range of conditional probabilities. This does not mean that they are

not able to capture some of the features of the conditional probability, maximum likelihood

estimation will attempt to fit this curve as well as possible over the range of observed X

variables.

Since the ability of the two step methods for approximating the conditional probability

depend on the relevant range over which the approximation is made, we will consider three

distributions of the X covariate to bring out the points to be made. The distributions are

(i) X ∼ χ22 − 2, (ii) X ∼ U(−2, 8) and (iii) X ∼ N(2, 1). The first of these concentrates

the mass of X at the far left of Figure 6, the second spreads it evenly across the horizontal

axis, and the third places most mass in the center and less at each end of the horizontal

axis. From the perspective of the estimation methods that do not use information in the

utility function (i.e. ignore where the cutoff point will be in the classification procedure),

this corresponds to the methods attempting to approximate p(X) over the initial upswing

for the first distribution for X, the whole curve for the second distribution and the middle

of the graph for the third distributional choice.

How useful these approximations will be (and how costly the mistakes will be) depend

on the utility function. We will employ a number of different assumptions. For the initial

set of demonstrations, we simplify the utility function so that it does not depend on X and
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hence the cutoff function will be a constant (a horizontal line in the Figure). For utility

functions that lead to cutoff points between about 0.35 and 0.8, there will be three regions

for the classification – the first and third being where p(x) < c(x) with a middle region over

x where the reverse is true. Hence a single linear index will not have any chance of getting

all of the regions correct. With c < 0.35 there are only two regions and hence it is possible

for the misspecified model to cleave the regions correctly.

Each experiment was run as follows. In a sample of 1000 observations, we estimate

β = (β1, β2) using a probit model by maximum likelihood (ML) and the same probit model

using the method suggested above which maximizes utility (i.e. set h(X,β) = Φ(β1 + β2x))

which we denote UM. We then draw an additional 1000 observations and examine how

well, using the cutoff c from the utility maximization problem, each model forecasts the

outcomes. The columns entitled KP are for known conditional probabilities used to forecast

the outcomes. We report the breakdown of percentage of the observations classified into

each correct and incorrect group as well as the total proportion correct and the utility level2

where the numbers are averaged over 10 replications of the experiment.

Table 1 reports the results for c = 0.5 for each of the distributions for X. In the first

panel, we see that the UM estimates for β provide for a better classification and higher

utility. The UM method results in correctly classifying the observations 73% as opposed

to 58% when ML estimation is employed. Notice that the breakdown of which particular

observations each classified correctly differs considerably between the methods. When y = 1,

we have that the ML approach correctly classified the observation about one in every seven

times, whereas for the UM method this was over three quarters of the time. In contrast

when y = −1 we see that the ML estimates provided the correct classification about five

times in every six, whereas the UM method obtained the correct answer for just under 4 of

every six. Both methods did relatively well for the more prevalent (60% of the time) negative

outcomes but the UM method did very well for the positive outcomes. The reason for the

difference is evident from Figure 7. In this figure we plot p(x) along with one of the draws of

the estimated models for both UM and ML. Also included is a histogram of the covariate to

2Arbitrary rescalings of utility would allow the utility values to change, hence in the tables we provide

the utlity one would acheive if p(x) were known as a benchmark.
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show where the mass lies. Both estimators attempt to find index models that approximate

p(x) in the area where x has positive mass. Over the relevant range p(x) rises steeply then

falls, slowly flattening out. Since p(x) starts low and ends high, both methods estimate

upward sloping functions. However the ML method is much flatter, attempting to capture

p(x) in the right hand part of the distribution. This causes it to misclassify the observations

for x around the hump – precisely the observations where we are more likely to see positive

outcomes. The UM method by contrast uses the cutoff point and hence fits better around

the best cutoff point for a single crossing model. So it ignores the second crossing (in a

region where there are few observations) and gets the first crossing point correct. Hence it

outperforms the probit ’density estimation’ approach.

Table 1.
Method True +ve False -ve False +ve True -ve Correct Average Utility

(i)

UM 0.329 0.066 0.202 0.403 0.732 0.127

ML 0.056 0.338 0.082 0.524 0.580 -0.025

KP 0.275 0.120 0.116 0.490 0.764 0.159

(ii)

UM 0.185 0.240 0.170 0.404 0.590 0.016

ML 0.017 0.409 0.062 0.513 0.530 -0.045

KP 0.184 0.242 0.082 0.493 0.676 0.102

(iii)

UM 0.289 0.224 0.184 0.303 0.592 0.105

ML 0.325 0.188 0.217 0.270 0.595 0.108

KP 0.270 0.243 0.161 0.326 0.596 0.109
In the second panel the mass for the covariate is evenly spread across the entire x axis.

Again, the UM method outperforms the ML method in classification Here the proportion

of the sample classified correctly into positives and negatives is very similar between the

methods, however this masks large differences in exactly which types of observations are

correctly specified. When y = 1 the UM method gets it right about half the time, whereas

the ML method gets it correct about 10% of the time. Figure 7(ii) shows what is going on

29



Figure 1: Figure 7: Example of the estimated models – Probit and UM – for each of the

three models for X.
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here. The MLmethod tries to approximate p(x) over the full range of the graph, so effectively

ignores the hump and estimates a downward sloping line that captures the general features

except for the features when x is small. Because most of p(x) is below the cutoff value it too

is mostly under the cutoff value, and hence nearly always predicts y = −1. But for values of

x near the hump, the majority of observations are positive and hence these are misclassified.

Since it nearly always predicts y = −1 it does well when this is indeed true. The UM

method, constrained to a single crossing, finds a crossing that leads to a good classification

from a utility point of view. Hence it chooses to misclassify the first area where p(x) < c but

there are relatively few observations and hence relatively few classification errors. It picks

the second crossing point well and hence gets it right (on average) at the area of the hump

and also for large x.

Finally, for the third example for the distribution of the covariates the x0s are clustered

around the second crossing point and there is no mass in the first region where p(x) < c.

Hence this is a single crossing problem with both models being constrained to have a single

crossing of c. As such, both models correctly estimate the crossing point and both models

perform very similarly. The UM model still outperforms slightly the ML method.

Table 2 examines these results when we change c, setting c = 0.4 and 0.6 respectively.

The higher the cutoff the less strongly the utility function values matching the positives

correctly. Hence for each estimator and each design for the covariate the proportion of

positive outcomes in the sample predicted falls. Since the number of positive values in the

sample is the same within each design this means that the methods tradeoff losses through

predicting positive outcomes less often with gains from predicting negative outcomes more

often.

Note that the ML estimates for β do not change when we change the utility function. The

mapping from these estimates to predictions of one or minus one does change, as it changes

the points at which Φ(x0iβ̂ML) > c, .so the tradeoff as c rises depends on the estimates but

the estimates do not use the information in the tradeoff. For the first design for X, since

p(x) is upward sloping, this has the effect of increasing the value of x for which the method

switches from predicting negative outcomes to positive outcomes. This effect can be seen
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in Figure 8. The optimal region over x for which a positive prediction should be made is

exactly these moderate values for x, so the effect is not only to reduce the proportion of

positive values but also strongly increase the number of false negatives. In each case though

we can see that the method does not capture either of the points where p(x) cuts c.

Table 2.
Model Method True +ve False -ve False +ve True -ve Correct Average Utility

(i)

UM c=0.4 0.351 0.049 0.220 0.379 0.730 0.204

c=0.5 0.329 0.066 0.202 0.403 0.732 0.127

c=0.6 0.224 0.175 0.135 0.466 0.690 0.021

ML c=0.4 0.166 0.234 0.143 0.457 0.623 0.071

c=0.5 0.056 0.338 0.082 0.524 0.580 -0.025

c=0.6 0.017 0.382 0.036 0.565 0.582 -0.036

(ii)

UM c=0.4 0.352 0.061 0.421 0.167 0.518 0.071

c=0.5 0.185 0.240 0.170 0.404 0.590 0.016

c=0.6 0.000 0.422 0.000 0.578 0.578 0.000

ML c=0.4 0.324 0.088 0.411 0.176 0.501 0.050

c=0.5 0.017 0.409 0.062 0.513 0.530 -0.045

c=0.6 0.000 0.422 0.000 0.578 0.578 0.000

(iii)

UM c=0.4 0.423 0.085 0.365 0.128 0.550 0.179

c=0.5 0.289 0.224 0.184 0.303 0.592 0.105

c=0.6 0.171 0.335 0.086 0.408 0.579 0.042

ML c=0.4 0.445 0.062 0.391 0.102 0.547 0.185

c=0.5 0.325 0.188 0.217 0.270 0.595 0.108

c=0.6 0.150 0.356 0.065 0.429 0.579 0.052
The UM method for estimation of β again does better in all cases in terms of utility

maximization, as it should by construction. The estimates do change as we change c. For

each case, as in the ML estimation method, the UM method forecasts a positive outcome for
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Figure 2: Figure 8: Asymptotic Performance of the Methods when c(x) = 0.4.
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large x and a negative outcome for small x. However unlike the ML method as we increase

c the estimates of the model parameters change so that the choice of this cutoff decreases

as c increases. Indeed, at each value for c it is at the point where p(x) first cuts c. Hence

for each utility function it forecasts negative outcomes where x is small and p(x) < c and

positive outcomes over the ’hump’ in p(x). The method thus outperforms the ML method

more strongly for utility functions that correspond to higher cutoffs.

For the second design the ML method estimates a downward sloping curve, as discussed

above. The effects of changing the cutoff are pictured in Figure 8, where now a higher cutoff

means that positive outcomes are predicted over a smaller range of x below this cutoff.

The method thus predicts more negative outcomes over an increasing range where this is

the optimal prediction. The UM estimator changes dramatically over the different cutoffs,

including changing sign. As c gets large, both methods predict only negative outcomes.

We can also analyze in large samples the other methods discussed. We make two com-

parisons, the first based on a data generating process where p(X) is generated according to

a logit specification where p(x) = exp(x)/(1 + exp(x)) and the covariate is such that X is

distributed as a standard normal covariate. The second accords to case (i) of the results

above. We examine the discriminant analysis where we impose that the covariance estima-

tors are the same for each group and the groups are weighted evenly, the linear probability

model where we have estimated the linear coefficients by weighted least squares to take into

account heteroskedasticity, the logit model and also a maximum score model with a linear

index. Results are contained in Table 3.
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Table 3
Method Cutoff True +ve False -ve False +ve True -ve Correct Average Utility

Logit

UM c=0.4 0.400 0.091 0.257 0.252 0.651 0.229

c=0.5 0.332 0.160 0.164 0.345 0.676 0.168

c=0.6 0.232 0.264 0.081 0.424 0.656 0.111

Logit c=0.4 0.396 0.095 0.250 0.258 0.655 0.230

c=0.5 0.334 0.157 0.163 0.346 0.680 0.171

c=0.6 0.244 0.252 0.085 0.419 0.663 0.117

LPM c=0.4 0.435 0.057 0.328 0.180 0.615 0.216

c=0.5 0.333 0.159 0.162 0.347 0.680 0.171

c=0.6 0.225 0.271 0.075 0.429 0.654 0.112

DA c=0.4 0.320 0.172 0.156 0.353 0.672 0.216

c=0.5 0.336 0.155 0.166 0.343 0.680 0.171

c=0.6 0.340 0.156 0.163 0.341 0.681 0.097

(i)

UM c=0.4 0.351 0.049 0.220 0.379 0.731 0.205

c=0.5 0.329 0.066 0.202 0.404 0.733 0.127

c=0.6 0.224 0.175 0.135 0.466 0.689 0.021

Logit c=0.4 0.171 0.230 0.144 0.456 0.626 0.074

c=0.5 0.062 0.333 0.085 0.521 0.582 -0.023

c=0.6 0.020 0.379 0.038 0.563 0.583 -0.038

LPM c=0.4 0.114 0.286 0.123 0.477 0.591 0.032

c=0.5 0.025 0.369 0.048 0.558 0.583 -0.023

c=0.6 0.005 0.394 0.013 0.588 0.593 -0.014

DA c=0.4 0.218 0.177 0.153 0.452 0.670 0.064

c=0.5 0.224 0.177 0.156 0.443 0.667 0.119

c=0.6 0.219 0.180 0.156 0.445 0.664 -0.014
For the model based on the logit specification, there is a single cutoff and so for all models

there exists a set of parameters where they can provide optimal forecasts. In addition, since
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the logit model is correctly specified we expect that it will be able to classify as well as the

UMmethod based on a linear model. This is indeed the case, where the differences amount to

imperfections in the optimization procedure for the UM approach. Further, the discriminant

analysis (DA) method and linear probability model (LPM) also do well, especially when the

cutoff is at one half. However this good performance is deceiving – costs further away from

near where the LPM and DA models cut p(x) will do quite poorly. They are essentially

hit or miss, hence much of the similar performance in applications probably revolves around

choosing loss functions that balance false positives and false negatives (i.e. the common

choice of using one half as a cutoff). When the model of the conditional probability is

misspecified, as in the case of model (i), the results are quite different. As with the probit

above, the logit now has a far inferior classification even with the correct cutoff. In all of

the experiments we ran the logit and probit were almost indistinguishable in their predictive

ability. The LPM also does not give great forecasts, although it is now different from the

logit model (and slightly better in these experiments). The discriminant analysis method

also works better than logit for this experiment, the good performance of this method when

the cutoff is at 0.5 is due in part to the choice of the weighting on false positives and false

negatives (even for all of these experiments).

We now examine the effects of adjusting the cost function so that it is not simply a

constant everywhere. To this end we consider the experiment underlying model (i) and

allow c(x) to be a linear function of x. We choose the functions so that (approximately) it

cuts p(x) at the second crossing point that would occur if c = 0.5. We consider four models,

where c(x) has slopes -0.05,0,0.05 and 0.1. The cost functions are pictured in Figure 9. Recall

that the higher is the cutoff function the relatively more valuable are correct predictions of

the negative outcome. The negatively sloped c(x) thus puts a greater weight relative to the

constant c = 0.5 on predicting negative outcomes at lower values for x and a smaller weight

on predicting negatives at higher values. The positively sloped cutoff functions have the

opposite effect, the greater the slope the more useful it will be from a utility perspective to

predict the high frequency of positive values that occurs near the ’hump’ in p(x).

36



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4 5 6

Figure 9: The heavy nonmonotonic line is p(x), the remaining lines are c(x) for slopes

-0.05,0,0.05 and 0.1.

Table 4 shows results for the probit estimation and the linear maximum score approach.

Each entry is for a single replication (single Monte Carlo run with 1000 observations in the

evaluation sample). Recall again that the estimated ML model is exactly as in the first

panel in Figure 7 above, as they are not affected by the change in the cost function. What is

affected is the mapping of these to positive and negative outcomes. The UM method adjusts

to best use the information in the cost function conditional on the specified linear functional

form. For c(x) negatively sloped and constant the classification for the probit model does

not change, this is because p(x) > c(x) for exactly the same values for x.What does change

is how these count – with the negative slope the common negative outcomes at very low x,

predicted this way by the probit, have a greater value and hence utility rises. Utility also

goes up for the UM method.

For a slight positive slope to c(x) we see that the probit method alters the classification

slightly. This is due to the relative slopes of the probit estimated model and the cutoff

function, which results in a slightly smaller range over which positive predictions are made.

The loss function now weights correct positive predictions more highly relative to incorrect

positive values. Since the ML method mainly predicts negative values over this range, it

fares poorly in terms of utility. The UM method reacts to the now relatively higher weight

on getting the positive predictions correct for smaller values by predicting more positive

values and we see a large increase in utility. Finally, when the cutoff function c(x) is steep
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enough, it is below the ML model for small values of x and hence the classification changes

dramatically – the ML method now predicts many more positive outcomes. The UM model

also reacts to this. Overall we see that the ML method, by virtue of ignoring the utility

function in the estimation, can perform very poorly even when both models are similarly

misspecified.

Table 4: c(x) a linear function in x.

Slope True +ve False -ve False +ve True -ve Correct Average Utility

-0.05 UM 0.324 0.067 0.158 0.451 0.775 0.109

ML 0.061 0.330 0.067 0.542 0.603 0.015

0 UM 0.334 0.057 0.175 0.434 0.768 0.159

ML 0.061 0.330 0.067 0.542 0.603 -0.006

0.05 UM 0.343 0.048 0.192 0.417 0.760 0.251

ML 0.055 0.336 0.060 0.549 0.604 -0.027

0.10 UM 0.368 0.023 0.261 0.348 0.716 0.436

ML 0.329 0.062 0.542 0.067 0.396 0.425

6 Conclusion

It is often the case that some binary decision – a choice of yes or no – need be made in

the presence of uncertainty. In the economics literature this can be credit granting choices,

predicting bankruptcy, predicting the sign of asset price movements, predicting credit card

fraud, predicting economic crises etc. In each of these cases there is uncertainty, i.e. whether

or not the loan will be paid back, whether or not the firm actually goes bankrupt. The

same problem arises in program design problems such as college admission, job programs

etc. where the value of admission depends on how well the program is used by the individual,

i.e. do they complete the program successfully, do they get a job afterwards?

Many popular methods can be thought of as conducting the two step approach of first

estimating the conditional forecast density – here the probability that the outcome is ’suc-

cessful’ – and then basing the decision on this density estimate. However this approach

raises two concerns. First, is it reasonable to ignore the loss function in estimation? Second,
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many of the applications of this approach then evaluate the success or lack thereof of the

procedure through the proportion of a sample which corresponds to correct predictions. This

then is a situation of estimation under one loss function and evaluation under another. If

this strategy is to provide good results then it is more through luck than design.

This paper considers both design and estimation of models that directly incorporates

the utility function. In the binary decision problem the utility function takes a convenient

simple form, where the function to be optimized is an extension of the types of maximum

score functions analysed by Manksi (1975,1985). The extension arises through placing this

method within a utility maximization framework. Econometrically the extensions amount

to (i) the presence of variables that affect utility entering as weights on the scores, and

(ii) extending beyond linear functions of the data in specifying the scores. The first of these

extensions is motivated by the utility setup, there is in principle no reason why utility should

be the same over all situations. The second arizes through the need for flexible functions to

adequately capture the richness of the classification. We provide analytic properties of the

estimators.

Finally, we show that the density forecast approach is as suggested by its construction

essentially a ’hit or miss’ affair. The second step in these two step approach is to use the

utility function to provide a cutoff for which conditional probabilites which are above this

cutoff become forecasts of a success. Thus success of the method relies on estimating well

the conditional probability at points around this cutoff, and otherwise being the correct side

of the cutoff. However in misspecified models we show that this will not neccessarily be the

case, and that the properties of this approach can be far inferior to the one we suggest. In

essence the method we suggest abstracts from the unneccessary fitting of the conditional

probability in regions where doing so is not useful in providing useful forecasts.
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Appendix: Proofs

Notation Throughout the appendix we will use the following notation:

s(y, x, θ) = δ(x)[y + 1− 2c(x)]sign[h(x, θ)].

Hence,

S(θ) = EY,X [s(Y,X, θ)] and Ŝn(θ) = n−1

n∑
i=1

s(Yi, Xi, θ).

Lemma 8 If Conditions 1 and 2 parts (b) and (d) hold then the function θ 7→ S(θ) is

continuous at all θ ∈ Θ.

Proof. Conditions 1 and 2(b) ensure that S(θ) is well defined. Fix any θ ∈ Θ and

consider an arbitrary sequence θm ⊂ Θ such that θm → θ. Continuity follows from showing

that S(θm) → S(θ) as m → ∞. Let F+
θ = {ω : h(X, θ) > 0}. If ω ∈ F+

θ , then by θm → θ

and the continuity of h(·, θ) (the first part of Condition 2(d)), we can find an integer M such

that h(X, θm) > 0 for all m > M. Thus for such an m

s(Y,X, θm) = δ(X){Y + 1− 2c(X)}sign[h(X, θm)]

= δ(X){Y + 1− 2c(X)}sign[h(X, θ)]

= s(Y,X, θ).

Defining F−
θ = {ω : h(X, θ) < 0} and choosing ω ∈ F−

θ leads by the same argument to the

above result holding. By the second part of Condition 2(d) we have P (F+
θ ∪ F−

θ ) = 1 so we

have that s(Y,X, θm) →a.s. s(Y, X, θ) where the exception occurs on θ but not θm.

Since |s(Y,X, θm)| ≤ 2δ(X) and δ(X) is integrable by Condition 1 then application of

the dominated convergence theorem results in

S(θm) = E[s(Y,X, θm)] → E[s(Y,X, θ)] = S (θ) .

as m →∞.

Lemma 9 Let (X,d) be a metric space and let f : D → R and fn : D → R, n = 1, 2, . . ., be

functions defined on the set D ⊂ X. Let M0 ⊂ D denote the set of maximizers of f on D

and Mn ⊂ D the set of maximizers of fn on D. Suppose
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(i) M0 is nonempty.

(ii) Mn is nonempty for each n = 1, 2, . . ..

(iii) fn converges uniformly to f on D, i.e. limn→∞ supx∈D |fn(x)− f(x)| = 0.

Let x0 ∈ M0 and let xn ∈ Mn. Then

(a) f(xn) → f(x0) and (b) fn(xn) → f(x0).

Proof. Since x0 maximizes f(x) then

0 ≤ f(x0)− f(xn)

= f(x0)− fn(x0) + fn(x0)− f(xn)

≤ f(x0)− fn(x0) + fn(xn)− f(xn)

where the last line follows as xn maximizes fn(x). Hence

|f(xn)− f(x0)| ≤ |f(x0)− fn(x0) + fn(xn)− f(xn)|

≤ |f(x0)− fn(x0)|+ |fn(xn)− f(xn)|

≤ 2 sup
x∈D

|fn(x)− f(x)|

which goes to zero by assumption (iii). Also

|fn(xn)− f(x0)| = |fn(xn)− f(xn) + f(xn)− f(x0)|

≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)|

≤ 3 sup
x∈D

|fn(x)− f(x)|

and hence this also goes to zero by assumption (iii).

Corollary 10 Under the conditions of lemma 1 and if supx∈D |fn(x)− f(x)| = O(an) then

f(xn)− f(x0) = O(an) and fn(xn)− f(x0) = O(an). The assertion remains true if O(an) is

replaced by Op(an).

Lemma 11 Suppose conditions (ii) and (iii) of Lemma 9 are satisfied. Suppose, in addition,

that D is compact and f is continuous on D. Let xn ∈ Mn and let x̃n be a convergent

subsequence of xn. Then x̃n → x0 for some x0 ∈ M0. If x0 is the only point in M0 then

xn → x0.
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Proof. By the continuity of f and the compactness of D, M0 is nonempty. As {xn} ⊂ D,

a compact set, xn has a convergent subsequence x̃n. Suppose the claim of the lemma is false,

i.e. x̃0 ≡ limn→∞ x̃n is not contained in M0. By D compact, x̃0 ∈ D. Let f ∗ = maxx∈D f(x).

Since x̃0 ∈ M c
0 , f(x̃0) < f ∗. Let ε = [f ∗ − f(x̃0)]/2 > 0. By the continuity of f , there is

δ > 0 such that

f(x̃0)− ε < f(x) < f(x̃0) + ε = f ∗ − ε ∀x ∈ B(x̃0, δ) ∩D,

where B(x̃0, δ) denotes the open ball with radius δ centered on x̃0. Since x̃n → x̃0, there

exists an integer N such that x̃n ∈ B(x̃0, δ) for all n > N , i.e.

f(x̃n) < f ∗ − ε ∀n > N. (4)

By uniform convergence (condition (iii) of Lemma 9), there exists an integer K such that

supx∈D |fn(x)− f(x)| < ε/2 for all n > K. In particular, for x̃n and x0 ∈ M0,

f̃n(x̃n) < f(x̃n) + ε/2 and f̃n(x0) > f(x0)− ε/2 = f ∗ − ε/2 ∀n > K, (5)

where f̃n denotes the subsequence of fn corresponding to x̃n. For n > max{N, K} we can

combine (4) and (5) to obtain

f̃n(x̃n) < f(x̃n) + ε/2 < (f ∗ − ε) + ε/2 = f ∗ − ε/2 < f̃n(x0).

This contradicts the fact that x̃n is a maximizer of f̃n and hence proves the first assertion of

the lemma.

Now suppose M0 = {x0}. Let x̂n be an arbitrary subsequence of xn ∈ Mn and let f̂n

denote the corresponding subsequence of fn. As x̂n ∈ D, a compact set, x̂n has a convergent

subsequence, say, ˆ̂xn. By the assertion just proven above, ˆ̂xn → x0. We conclude that all

subsequences of xn must contain a further subsequence converging to x0. But then xn → x0.

Proof. Proposition 3

Existence of maxθ∈Θ S(θ) follows from continuity of the objective function in θ and com-

pactness of Θ. Continuity follows from Lemma 8 given Condition 1 and Condition 2(b) and

(d). Compactness is Condition 2(a).
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Proof. Proposition 4

We first show that Ŝn(θ) −→a.s. S(θ) uniformly in θ. This follows through application of

the results in Andrews (1987). We will show that assumptions A1, A2 and A6 of Andrews

(1987) hold for the result to be shown. Assumption A1 is that the parameter space be

compact, which we assumed directly (Condition 2(a)).

Let B(θ0, ε) denote an open ball with radius ε > 0 centered on θ0 ∈ Θ and suppose that

the random variables {(Yi, Xi)}∞i=1 are defined on a complete probability space (Ω,F , P) (the

assumption of completeness is without loss of generality). Andrews’ A2(a) requires that

{ sup
θ∈B(θ0,ε)∩Θ

s(Yi, Xi, θ)} (6)

be a sequence of random variables, i.e. F/B(R)-measurable functions, for all θ0 ∈ Θ, ε > 0.

This follows from Appendix C of Pollard (1984) given the measurability of s(·, ·, ·) which

follows in turn from Condition 1 and Condition 2 part (b), the fact that B(θ0, ε) ∩Θ is a

Borel subset of Rp for all ε > 0, θ0 ∈ Θ and that (Yi, Xi) is defined on a complete probability

space. Now for A2(b),∣∣∣∣∣ sup
θ∈B(θ0,ε)∩Θ

s(Yi, Xi, θ)

∣∣∣∣∣ = |δ(Xi)[Yi + 1− 2c(Xi)]| ≤ 2δ(Xi),

which by Condition 1 part (b) ensures integrability. This, along with Condition 2 part (c)

and Thm. 3.35 of White (2000), allows the application of the “pointwise” LLN for stationary

ergodic sequences (Thm. 3.34, White 2000) to (6). The same holds for the infinum, which

obtains A2.

To show the first part of A6 note that the almost sure continuity of the mapping θ 7−→

s(Yi, Xi, θ) was established in the proof of Lemma 8 and required Condition 1 and Condition

2 parts (b) and (d). Part (b) of A6 follows as

E sup
i≥1,θ∈Θ

|s(Yi, Xi, θ)| = E sup
θ∈Θ

|s(Y1, X1, θ)|

≤ 2Eδ(X1)

which is finite. The first equality follows from Condition 2 part (c).

Extending this result to showing that Ŝn(θ̂n) −→a.s. S(θ∗) involves applying Lemma 9

above where we have that θ̂n maximizes Ŝn(θ) and θ∗ maximizes S(θ).
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Proof. Proposition 6

We will make use of the following two definitions in the proof.

Definition 1. For a function f : Rk → R, u 7→ f(u), the subgraph of f , denoted by

SG(f), is defined as the set of points “under” the graph of f that are on the same side of

the u-hyperplane as f(u). Formally,

SG(f) = {(u, v) : 0 ≤ v ≤ f(u) or f(u) ≤ v ≤ 0} ⊂ Rk+1.

Definition 2. Let C be a collection of subsets of Rl. C is said to shatter a finite collection

of points F in Rl if all subsets of F can be written as F ∩ C for some C ∈ C. C is called a

VC class if there exists an integer N < ∞ such that C shatters no collection of N points in

Rl (Pollard 1984, 1989, Yukich et al 1995).

For example, the collection of all intervals (open, close, half-open, finite, infinite, etc)

forms a VC class of subsets of the real line. This is because these sets cannot shatter any

collection of three discrete points on the real line. (Choose the subset consisting of the

leftmost and rightmost two points.)

We are now ready to prove Proposition 6. We will verify the conditions of Corollary 3.2

of Kim and Pollard (1990), which is essentially a uniform weak LLN, with a proven n1/2 rate

of convergence, for iid random variables.

We need to show that the class of functions {s(·, ·, θ) : θ ∈ Θ} is “permissible” and

“manageable” in the sense of ibid. The former follows from Pollard (1984) Appendix C

given Condition 1 part (a) and Condition 2 parts (a) and (b). Define the subgraph of

s(x, y, θ) as

SG(θ) = {(y, x, z) : 0 ≤ z ≤ s(y, x, θ) or s(y, x, θ) ≤ z ≤ 0} ⊂ {−1, 1} × Rk × R.

Manageability will follow from showing that the collection of subgraphs SG(θ), θ ∈ Θ is a

VC class of subsets of {−1, 1} × Rk × R under Condition 5 (a).
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First we note that (y, x, z) ∈ SG(θ) if and only if one of the following (mutually exclusive)

conditions is satisfied:

a. {y = 1, h(x, θ) > 0, 0 ≤ z ≤ 2δ(x)[1− c(x)]}

b. {y = −1, h(x, θ) > 0, −2δ(x)c(x) ≤ z ≤ 0}

c. {y = 1, h(x, θ) ≤ 0, −2δ(x)[1− c(x)] ≤ z ≤ 0}

d. {y = −1, h(x, θ) ≤ 0, 0 ≤ z ≤ 2δ(x)c(x)}

Now suppose that Condition 5 (a) holds, but the collection of subgraphs SG(θ), θ ∈ Θ

is not a VC class. Then for each integer N there exists a collection of N points FN =

{(y1, x1, z1), . . . , (yN , xN , zN)} such that the subgraphs shatter this collection. This has sev-

eral implications: (1) zi 6= 0 for all i; otherwise (yi, xi, 0) would be in SG(θ) for all θ and

subsets of FN not containing (yi, xi, 0) could not be picked out by the subgraphs. (2) yi = 1,

zi > 0 implies zi ≤ 2δ(xi)[1 − c(xi)]; otherwise (yi, xi, zi) would not be in SG(θ) for any θ

(see condition a. above). Similar bounds apply to the remaining cases: yi = −1, zi > 0

implies zi ≤ 2δ(xi)c(xi), etc.

Let I be an arbitrary subset of {1, . . . , N}. Because the subgraphs shatter FN , we can

choose θ so that h(xi, θ) > 0 for i ∈ I and h(xi, θ) ≤ 0 for i /∈ I. For example, if y1 = 1

and z1 < 0, then from condition c. above (and the argument in the previous paragraph) we

know that (y1, x1, z1) /∈ SG(θ) if and only if h(x1, θ) > 0. Thus, for each i we can specify

(yi, xi, zi) ∈ SG(θ) or (yi, xi, zi) /∈ SG(θ) so that we obtain the desired sign for h(xi, θ).

The fact that the subgraphs SG(θ), θ ∈ Θ shatter FN means that there exists some θ ∈ Θ

satisfying these inclusion/exclusion conditions. Since I is arbitrary, this construction implies

that the support sets {x : h(x, θ) > 0} shatter {x1, . . . , xN}. Since N was also arbitrary, this

contradicts the assumption that the support sets form a VC class (Condition 5 part (a)).

This establishes manageability.

Given permissibility and manageability of {s(·, ·, θ) : θ ∈ Θ}, Corollary 3.2 of Kim and

Pollard (1990) and Lemma 9 gives Ŝn(θ̂n)−S(θ∗) = Op(n
−1/2) for iid data provided that the

maximizer θ∗ exists. If the conditions of Proposition 4 are satisfied, existence is guaranteed

and the convergence is in fact a.s., as demonstrated in the proof of Proposition 4.

45



Proof. Proposition 7

Apply Lemma 11 with D = Θ, f = S, fn = Ŝn, x0 = θ∗ and xn = θ̂n. The compactness

of Θ is directly assumed, continuity of S(θ) is shown by Lemma 8 and maxθ Ŝn(θ) always

exists. Almost sure uniform convergence of Ŝn(θ) to S(θ) is shown in the proof of Proposition

4 above.
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