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The likelihood ratio theory contributes tremendous success to para-
metric inferences. Yet, there is no general applicable approach for non-
parametric inferences based on function estimation. Maximum likelihood
ratio test statistics in general may not exist in nonparametric function
estimation setting. Even if they exist, they are hard to find and can not
be optimal as shown in this paper. We introduce the generalized likeli-
hood statistics to overcome the drawbacks of nonparametric maximum
likelihood ratio statistics. New Wilks phenomenon is unveiled. We demon-
strate that a class of the generalized likelihood statistics based on some
appropriate nonparametric estimators are asymptotically distribution free
and follow x2-distributions under null hypotheses for a number of useful
hypotheses and a variety of useful models including Gaussian white noise
models, nonparametric regression models, varying coefficient models and
generalized varying coefficient models. We further demonstrate that gen-
eralized likelihood ratio statistics are asymptotically optimal in the sense
that they achieve optimal rates of convergence given by Ingster (1993).
They can even be adaptively optimal in the sense of Spokoiny (1996)
by using a simple choice of adaptive smoothing parameter. Our work in-
dicates that the generalized likelihood ratio statistics are indeed general
and powerful for the nonparametric testing problems based on function
estimation.

1. Introduction.

1.1. Background. One of the most celebrated results in statistics is the likeli-
hood ratio theory. It forms a useful principle that is generally applicable to most
parametric hypothesis testing problems. An important fundamental property that
contributes significantly to the success of the maximum likelihood ratio tests is
that their asymptotic null distributions are independent of nuisance parameters.
This property will be referred to as the Wilks phenomenon throughout this paper.
A few questions arise naturally how such a useful principle can be extended to infi-
nite dimensional problems, whether the Wilks type of results continue to hold and
whether the resulting procedures possess some optimal properties.
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An effort of extending the scope of the likelihood inferences is the empirical
likelihood due to Owen (1988). The empirical likelihood is applicable to a class
of nonparametric functionals. These functionals are usually so smooth that they
can be estimated at root-n rate. See also Owen (1990), Hall and Owen (1993),
Chen and Qin (1993), Li, Hollander, McKeague and Yang (1996) for applications
of the empirical likelihood. A further extension of the empirical likelihood, called
the “random-sieve likelihood”, can be found in Shen, Shi and Wong (1999). The
random-sieve likelihood allows one to deal with the situations where stochastic er-
rors and observable variables are not necessarily one-to-one. Nevertheless, it cannot
be directly applied to a nonparametric function estimation setting. Zhang and Gij-
bels (1999) incorporated the idea of local modeling into the framework of empirical
likelihood and proposed an approximate empirical likelihood, called “sieve empiri-
cal likelihood”. The sieve empirical likelihood can efficiently handle the estimation
of nonparametric functions even with inhomogeneous error.

Nonparametric modeling techniques have been rapidly developed due to the
availability of modern computing power that permits statisticians exploring pos-
sible nonlinear relationship. This raises many important inference questions such
as if a parametric family adequately fits a given data set. Take for instance additive
models (Hastie and Tibshrani 1990)

(1.1) Y=m(X1)+ - +mp(X,) +e

or varying coefficient models (Cleveland, Grosse and Shyu 1992)

(1.2) Y=a1(U)X:i 4+ +a,(U)X, +¢,

where U and X7, -- -, X, are covariates. After fitting these models, one often asks if

certain parametric forms such as linear models fit the data adequately. This amounts
to testing if each additive component is linear in the additive model (1.1) or if the
coefficient functions in (1.2) are not varying. In both cases, the null hypothesis is
parametric while the alternative is nonparametric. The empirical likelihood and
random sieve likelihood methods can not be applied directly to such problems. It
also arises naturally if certain variables are significant in the models such as (1.1)
and (1.2). This reduces to testing if certain functions in (1.1) or (1.2) are zero
or not. For these cases, both null and alternative hypotheses are nonparametric.
While these problems arise naturally in nonparametric modeling and appear often
in model diagnostics, we do not yet have a generally acceptable method that can
tackle these kinds of problems.

1.2. Generalized likelihood ratios. An intuitive approach to handling the afore-
mentioned testing problems is based on discrepancy measures (such as the Lo and
Lo, distances) between the estimators under null and alternative models. This is
a generalization of the Kolmogorov-Smirnov and the Cramér-von Mises types of
statistics. We contend that such a kind of method is not as fundamental as likeli-
hood ratio based tests. Firstly, choices of measures and weights can be arbitrary.
Take for example the problem of testing Hy : mi(-) = ma(:) = 0 in model (1.1).
The test statistic based on a discrepancy method is T' = ¢ ||/ || + c2||2]|. One has
not only to choose the norm || -|| but also to decide the weights ¢; and ¢y. Secondly,
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the null distribution of the test statistic 7" is in general unknown and depends crit-
ically on the nuisance functions mg, - - -, m,. This hampers the applicability of the
discrepancy based methods.

To motivate the generalized likelihood ratio statistics, let us begin with a simple
nonparametric regression model. Suppose that we have n data {(X;,Y;)} sampled
from the nonparametric regression model:

(1.3) Y =m(X;) + &4, i=1,---,n,

where {g;} are a sequence of i.i.d. random variables from N(0,0?) and X; has a
density f with support [0, 1]. Suppose that the parameter space is

(1.4) Fr = {m e L*[0,1] : /1 m®) (2)2dx < C},

for a given C. Consider the testing problem:
(1.5) Hy:m(z) =ag+aiz  «—— Hy:m(z) # oo+ arz.

Then, the conditional log-likelihood function is
1< 5
n(m) = —nlog(v2mo) — 252 ;(Yi - m(X;))"

Let (&o, &) be the maximum likelihood estimator (MLE) under Hy, and mympe(-)
be the MLE under the full model:

n 1
min Z(Yz —m(X;))?, subject to / m®) (z)?dx < C.
i=1 0

The resulting estimator MmyLg is a smoothing spline. Define the residual sum of
squares RSSy and RSS; as follows:
(1.6) RSSo =) (Yi—do—aX;)’,  RSS; = (¥;—rmwe(X,))*

i=1 i=1
Then it is easy to see that the logarithm of the conditional maximum likelihood
ratio statistic for the problem (1.5) is given by

RSSy _ nRSSy — RSS;
RSS; 2RSS,

Interestingly, the maximum likelihood ratio test is not optimal due to its restric-
tive choice of smoothing parameters. See Section 2.2. It is not technically convenient
to manipulate either. In general, MLEs (if exist) under nonparametric regression
models are hard to obtain. To attenuate these difficulties, we replace the maximum
likelihood estimator under the alternative nonparametric model by any reasonable
nonparametric estimator, leading to the generalized likelihood ratio

)\n = én(ﬁLMLE) — fn(Ho) = glog

where ¢,,(H;) is the log-likelihood with unknown regression function replaced by a
reasonable nonparametric regression estimator. A similar idea appears in Severini
and Wong (1992) for construction of semi-parametric efficient estimators. Note that
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we do not require that the nonparametric estimator belongs to Fj. This relaxation
extends the scope of applications and removes the impractical assumption that the
constant C'in (1.4) is known. Further, the smoothing parameter can now be selected
to optimize the performance of the likelihood ratio test. For ease of presentation,
we will call \,, as a generalized likelihood ratio statistic.

The above generalized likelihood method can readily be applied to other sta-
tistical models such as additive models, varying-coefficient models, and any non-
parametric regression model with a parametric error distribution. One needs to
compute the likelihood function under null and alternative models, using suitable
nonparametric estimators. We would expect the generalized likelihood ratio tests
are powerful for many nonparametric problems with proper choice of smoothing
parameters. Yet, we will only verify the claim based on the local polynomial fitting
and some sieve methods, due to their technical trackability.

1.3. Wilks phenomenon. We will show in Section 3 that based on the local
linear estimators (Fan, 1993), the asymptotic null distribution of the generalized
likelihood ratio statistic is nearly x? with large degrees of freedom in the sense that

(18) T)\n }L Xgn

for a sequence b, — oo and a constant r, namely, (2b,)~/2(rA, — bn) - N(0,1).
The constant r is shown to be near 2 for several cases. The distribution N (b,,, 2b,)
is nearly the same as the 2 distribution with degrees of freedom b,,. This is an ex-
tension of the Wilks type of phenomenon, by which, we mean that the asymptotic
null distribution is independent of the nuisance parameters ag, a; and o and the
nuisance design density function f. With this, the advantages of the classical like-
lihood ratio tests are fully inherited: one makes a statistical decision by comparing
likelihood under two competing classes of models and the critical value can easily
be found based on the known null distribution N (b,,,2b,) or x%n. Another impor-
tant consequence of this result is that one does not have to derive theoretically
the constants b, and r in order to be able to use the generalized likelihood ratio
test. As long as the Wilks type of results hold, one can simply simulate the null
distributions and hence obtains the constants b,, and r. This is in stark contrast
with other types of tests whose asymptotic null distributions depend on nuisance
parameters. Another striking phenomenon is that the Wilks type of results hold in
the nonparametric setting even though the estimators under alternative models are
not MLE. This is not true for parametric likelihood ratio tests.

The above Wilks phenomenon holds by no coincidence. It is not monopolized by
the nonparametric model (1.3). In the exponential family of models with growing
number of parameters, Portnoy (1988) showed that the Wilks type of result contin-
ues to hold in the same sense as (1.8). Furthermore, Murphy (1993) demonstrated
a similar type of result for the Cox proportional hazards model using a simple sieve
method (piecewise constant approximation to a smooth function). We conjecture
that it is valid for a large class of nonparametric models, including additive models
(1.1). To demonstrate its versatility, we consider the varying-coefficient models (1.2)
and the testing problem Hy : ay(-) = 0. Let a9(-),---,a%(-) be nonparametric esti-
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mators based on the local linear method under the null hypothesis and let ¢,,(Hp)
be the resulting likelihood. Analogously, the generalized likelihood under H; can be
formed. If one wishes to test if X is significant, the generalized likelihood ratio test
statistic is simply given by (1.7). We will show in Section 3 that the asymptotic null
distribution is independent of the nuisance parameters and nearly y2-distributed.
The result is striking because the null hypothesis involves many nuisance functions
as(-),---,ap(-) and the density of U. This lends further support of the generalized

likelihood ratio method.
The above Wilks phenomenon holds also for testing homogeneity of the coefficient

functions in model (1.2), namely, for testing if the coefficient functions are really
varying. See Section 4.

1.4. Optimality. Apart from the nice Wilks phenomenon it inherits, the gener-
alized likelihood method based on some special estimator is asymptotically optimal
in the sense that it achieves optimal rates for nonparametric hypothesis testing ac-
cording to the formulation of Ingster(1993) and Spokoiny (1996). We first develop
the theory under the Gaussian white noise model in Section 2. This model ad-
mits simpler structure and hence allows one to develop deeper theory. Nevertheless,
this model is equivalent to the nonparametric regression model shown by Brown
and Low (1996) and to the nonparametric density estimation model by Nussbaum
(1996). Therefore, our minimax results and their understanding can be translated
to the nonparametric regression and density estimation settings. We also develop an
adaptive version of the generalized likelihood ratio test, called the adaptive Neyman
test by Fan (1996), and show that the adaptive Neyman test achieves minimax op-
timal rates adaptively. Thus, the generalized likelihood method is not only intuitive

to use, but also powerful to af)ply. ] ]
The above optimality results can be extended to nonparametric regression and

the varying coeflicients models. The former is a specific case of the varying coefficient
models with p = 1 and X; = 1. Thus, we develop the results under the latter
multivariate models in Section 3. We show that under the varying coefficient models,
the generalized likelihood method achieves the optimal minimax rate for hypothesis
testing. This lends further support for the use of the generalized likelihood method.

1.5. Related literature. Recently, there are many collective efforts on hypothesis
testing in nonparametric regression problems. Most of them focus on one dimen-
sional nonparametric regression models. For an overview and references, see the

recent book by Hart (1997). ) ) L
n early paper on nonparametric hypothesis testing is Bickel and Rosenblatt

(1973) where the asymptotic null distributions were derived. Azzalini, Bowman
and Hérdle (1989) and Azzalini and Bowman (1993) introduced to use F-type of
test statistic for testing parametric models. Bickel and Ritov (1992) proposed a
few new nonparametric testing techniques. Hardle and Mammen (1993) studied
nonparametric test based on an Lo-distance. In the Cox’s hazard regression model,
Murphy (1993) derived a Wilks type of result for a generalized likelihood ratio
statistic based on a simple sieve estimator. Various recent testing procedures are
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motivated by the seminal work of Neyman (1937). Most of them focus on selecting
the smoothing parameters of the Neyman test and studying their properties of the
resulting procedures. See for example Eubank and Hart (1992), Eubank and LaRic-
cia (1992), Inglot, Kallenberg and Ledwina (1997), Kallenberg and Ledwina (1994),
Kuchibhatla and Hart (1996), among others. Fan (1996) proposed simple and pow-
erful methods for constructing tests based on Neyman’s truncation and wavelet
thresholding. It was shown in Spokoiny (1996) that wavelet thresholding tests are
nearly adaptively minimax. The asymptotic optimality of data-driven Neyman’s
tests was also studied by Inglot and Ledwina (1996).

Hypothesis testing for multivariate regression problems is difficult due to the
curse of dimensionality. In bivariate regression, Aerts et al. (1999) constructed tests
based on orthogonal series. Fan and Huang (1998) proposed various testing tech-
niques based on the adaptive Neyman test for various alternative models in multiple
regression setting. These problems become conceptually simple by using our gener-
alized likelihood method.

1.6. Qutline of the paper. We first develop the generalized likelihood ratio test
theory under the Gaussian white noise model in Section 2. While this model is
equivalent to a nonparametric regression model, it is not very convenient to trans-
late the null distribution results and estimation procedures to the nonparametric
regression model. Thus, we develop in Section 3 the Wilks type of results for the
varying-coefficient model (1.2) and the nonparametric regression model (1.3). Lo-
cal linear estimators are used to construct the generalized likelihood ratio test. We
demonstrate the Wilks type of results in Section 4 for model diagnostics. In partic-
ular, we show that the Wilks type of results hold for testing homogeneity and for
testing significance of variables. We also demonstrate that the generalized likelihood
ratio tests are asymptotically optimal in the sense that they achieve optimal rates
for nonparametric hypothesis testing. The results are also extended to generalized
varying coefficient models in Section 5. The merits of the generalized likelihood
method and its various applications are discussed in Section 6. Technical proofs are
outlined in Section 7.

2. Maximum likelihood ratio tests in Gaussian white noise model.
Suppose that we have observed the process Y (¢) from the following Gaussian white
noise model

(2.1) dY (t) = ¢(t)dt +n~1/2dW (t),  te(0,1)

where ¢ is an unknown function and W (t) is the Wiener process. This ideal model
is equivalent to models in density estimation and nonparametric regression (Nuss-
baum 1996 and Brown and Low 1996) with n being sample size. The minimax results
under model (2.1) can be translated to these models for bounded loss functions.

By using an orthonormal series (e.g. the Fourier series), model (2.1) is equivalent
to the following white noise model:

(2.2) Yi=0;+n""%, & ~iia N0, i=12-
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where Y;, 0; and ¢; are the i-th Fourier coefficients of Y (t), ¢(t) and W (t), respec-
tively. For simplicity, we consider testing the simple hypothesis:

(23) H0191=02:---=O,
namely, testing Hy : ¢ = 0 under model (2.1).

2.1. Neyman test. Consider the class of functions, which are so smooth that
the energy in high frequency components is zero, namely

F:{9:9m+1:9m+2:"':0}a

for some given m. Then twice the log-likelihood ratio test statistic is
m

(2.4) Ty = nY?.
i=1

Under the null hypothesis, this test has a x? distribution with degrees of freedom
m. Hence, Ty ~ AN (m,2m). The Wilks type of results hold trivially for this simple
problem even when m tends to co. See Portnoy (1988) where he obtained a Wilks
type of result for a simple h]ypothesis of some p,, dimensional parameter in a regular
exponential family with pi 2 /n— 0.

By tuning the parameter m, the adaptive Neyman test can be regarded as a
generalized likelihood ratio test based on the sieve approximation. We will study
the power of this test in Section 2.4.

2.2. Mazimum likelihood ratio tests for Sobolev classes. We now consider the
parameter space Fi, = {0 : Z;’;lj%H? < 1} where k > 1/2 is a positive constant.
By the Parseval identity, when k is a positive integer, this set in the frequency
domain is equivalent to the Sobolev class of functions {¢ : ||¢(®)|| < ¢} for some
constant c. For this specific class of parameter spaces, we can derive explicitly
the asymptotic null distribution of the maximum likelihood ratio statistic. The
asymptotic distribution is not exactly x2. Hence, the traditional Wilks theorem
does not hold for infinite dimensional problems. This is why we need an enlarged
view of the Wilks phenomenon.

It can easily be shown that the maximum likelihood estimator under the param-
eter space Fy, is given by

0, = (1+ &%)ty

where é is the Lagrange multiplier, satisfying the equation Z;il j%éjz = 1. The
function F(§) = 3772, j2F(14£5°%) 7Y} is a decreasing function of £ in [0, 00), sat-
isfying F(0) = oo and F(c0) = 0, almost surely. Thus, the solution F(£) = 1 exists
and is unique almost surely. The asymptotic expression of é depends on unknown
# and is hard to obtain. However, for deriving the asymptotic null distribution of
the maximum likelihood ratio test, we need only an explicit asymptotic expression

of € under the null hypothesis (2.3).
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LEMMA 2.1.  Under the null hypothesis (2.3),
ook 2k /(2k+1)
S —2k/(2k+1
ez [Tt )

The maximum likelihood ratio statistic for the problem (2.3) is given by
o0 4k 2
(2.5) =2y (1 - %) Y2,
2 j=1 (1 +7J 2 5)2
In Section 7 we show the following result.
THEOREM 1. Under the null hypothesis (2.3), the normalized mazimum likeli-

hood ratio test statistic has the asymptotic x2 distribution with degree of freedom ay, :
TN & in, where

L Akt2 L (k1) 77 2k/(2k+1) k)
P op -1 T2k —1 |4k%sin(E) '
TABLE 1

Constants r, (v}, in Theorem 3) and degrees of freedom in Theorem 1

k 1 2 3 4 5

Tk 6.0000 3.3333  2.8000 2.5714 2.4444
an,m = 50  28.2245 6.5381 3.8381 2.8800 2.4012
an,n =200 44.8036 8.6270 4.6787 3.3596  2.7237
an,n=2800 71.1212 11.3834 5.7034 3.9190 3.0895

7 3.6923 2.5600 2.3351 2.2391 2.1858

It is clear from Theorem 1 that the classical Wilks type of results do not hold
for infinite dimensional problems because rp # 2. However, an extended version
holds: asymptotic null distributions are independent of nuisance parameters and
nearly x2-distributed. Table 1 gives numerical values for constant r, and degrees
of freedom a,,. Note that as the degree of smoothness k tends to oo, rp, — 2.

Surprisingly, the maximum likelihood ratio test can not achieve the optimal
rate for hypothesis testing (see Theorem 2 below). This is due to the fact the
smoothing parameter ¢ determined by Py jZkéJQ- = 1 is too restrictive. This is
why we need generalized likelihood ratio tests which allow one the flexibility of
choosing smoothing parameters.

THEOREM 2. There exists a 0 € Fy, satisfying ||0]] = n~F+D/CE+D) with d >
1/8 such that the power function of the mazimum likelihood ratio test at the point 6
s bounded by o, namely,

lim sup Py{re A5 > an 4 24(2a,)'/?} < a,

where z,, 18 the upper a quantile of the standard normal distribution.
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Thus, the maximum likelihood ratio test A}, can detect alternatives with a rate
no faster than n~(*+4/Ck+1) When k > 1/4, by taking d sufficiently close to 1/8,
the rate n~(*+d)/(k+1) j5 slower than the optimal rate n—=2%/(*4+1) given in Ingster
(1993).

2.3. Generalized likelihood ratio tests. As demonstrated in Section 2.2, maxi-
mum likelihood ratio tests are not optimal due to restrictive choice of smoothing
parameters. Generalized likelihood tests remove this restrictive requirement and
allow one to tune the smoothing parameter. For testing problem (2.3), we take the
generalized likelihood ratio test as

e j*e 2
(2.6) An =5 ; (1 ol +j2k£n)2) Y7,

with &, = en=*/(#k+1) for some ¢ > 0. This ameliorated procedure achieves the
optimal rate of convergence for hypothesis testing, which is stated as follows.

THEOREM 3. Under the null hypothesis (2.3), ;.\, 2 X2, , where

, 2%k+1 A8K?

"R T Ok 1 24k2 4 14k 4 1

o = (2k+1)* 24k>c /0 { 7T } 2/ (4k+1)
" 2k —1  24k2 4 14k + 1 [4k?sin(gy) ’

Furthermore, for any sequence ¢, — oo, the power function of the generalized like-
lihood ratio test is asymptotically one:

!/ i

inf g{w—_a">za}—>1.

OEF: ||6]|>cnn—2k/(4k+1) 2al,

2.4. Adaptive minimazity. The maximum likelihood ratio statistic (2.5) and

the generalized likelihood statistic (2.6) depend critically on the value of k. Can

we construct an adaptive version that achieves adaptively the optimal rates of
convergence? The answer is affirmative and the construction is simple.

Based on power considerations, Fan (1996) proposed the following adaptive ver-

sion of the generalized likelihood ratio statistic (2.4):

m

(2.7) Thn = max (nY7? —1)/vV2m.

1<m<n P
He called the testing procedure as the adaptive Neyman test. Note that the adaptive
Neyman test is simply the maximum of the normalized likelihood ratio statistic
(2.4). It does not depend on the degree of smoothness. Following Fan (1996), we

normalize the test statistic as
Tan = /2loglognTy — {21loglogn + 0.5logloglogn — 0.5log(4m)}.
Then, under the null hypothesis (2.3), we have

P(Tan < z) — exp(—exp(—x)), asn — oo.
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Thus, the critical region
Tan > —log{—log(l —a)}

has asymptotic significance level a. The power of the adaptive Neyman test is given
as follows. A similar version was presented in Fan and Huang (1998).

THEOREM 4. The adaptive Neyman test can detect adaptively the alternatives
with rates

5, = n 2K/ (4k+1) (log log n)k/(4k+1)

when the parameter space is Fi with unknown k. More precisely, for any sequence
cp, — 00, the power function

inf Py|T —1 — log(1 — 1.
per s o[Tan > —log{—log(l —a)}] —

The rate given in Theorem 4 is adaptively optimal in the sense that no testing
procedure can detect adaptively the alternative with a rate faster than §,,, accord-
ing to Spokoiny (1996). Hence, the generalized likelihood ratio test achieves this
adaptive optimality.

REMARK 2.1. By choosing the parameter m = O(n2/(4k+1)) when the parame-
ter space is Fy,, the Neyman test can also detect alternatives with the optimal rate
O(n=2k/(4k+1))  This follows from the proof of Theorem 4. By choosing m to mazi-
mize (2.7), we obtain an adaptive version of the Neyman test, which is independent
of the degree of smoothness k. This test achieves the adaptive optimal rate because
the mazimum of the partial sum process in (2.7) grows very slowly. This is why we
pay only a price of order (log log n) to achieve the adaptive minimaz rate.

3. Generalized likelihood ratio tests in varying coefficient models. In
this section we develop asymptotic theory on the generalized likelihood ratio statis-
tics which are based on the local polynomial estimators and derive the optimal
minimax rates of the corresponding tests under model (1.2). Wilks phenomenon is
unveiled in this general setting.

Suppose {(Y;,X;,U;)}?, are a random sample from the varying-coefficient
model (1.2). Namely,

Y =AU)X+¢e, e~ N(0,0%),

with X = (X1, -+, Xp)", U= (Uy,---,Uy)7, and A(U) = (a1 (U),---,a,(U))". For
simplicity, we consider only ¢ = 1. Extensions to the multi-dimensional case are
similar. Consider the simple null hypothesis testing problem:

(31) HoIA:Ao, — H1 A%AO

We use the local linear approach to construct a generalized likelihood ratio statistic.
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For each given g, let B(ug) = (A(ug)™, hA (up)™)". Let 8 = (A., hB"™)". where
A, and B are vectors of p-dimensions. Then, the local log-likelihood at the given
point ug is given by

1 n
1(B) = —nlog(V2no) — 257 (Y; — B7Z:)* K, (U; — o),
i=1
where Z; = Z;(uo) = (X7, (U; — up)/hX])™ and Kj(-) = K(-/h)/h with K be-
ing a symmetric probability density function and h a bandwidth. Then, the local
maximum likelihood estimator, denoted by ((up), is defined as argmax I(3). The

corresponding estimator of A(ug) is denoted by A(ug). Using this nonparametric
estimator, the likelihood under model (1.2) is

—nlog(v2ro) — RSS: /(20?),

where RSS; = >0, (Vi — A(Uk)TXk)Q. Maximizing over the parameter o2 leads
to the generalized likelihood under model (1.2):

L, (Hy) = —(n/2)log(2m/n) — (n/2)log(RSS1) — n/2.
Similarly, the maximum likelihood under Hy can be expressed as
L, (Ho) = —(n/2)log(2m/n) — (n/2)log(RSSy) — n/2,

where RSSy = >_7_, (Vi — Ao(Ur)"Xy)? Now, the generalized likelihood ratio
statistic is

n RSSO n RSSO — RSSl
3.2 An(Ag) = [0 (Hy) — 0, (Hp)] = = 1 ~— ,
(32) (Ao) = [€n(H) (Ho)] 9 0g RSS, B RSS,
In general, the above approach can often be extended to the composite null
hypothesis testing problem:

(33) H()ZAGA(), — H12A€A0

where Ag is a set of functions. As before, we can use the local linear estimator
to construct the log-likelihood ¢, (H;) for Hy. Assume that we can use MLE or
some local linear estimators to build the log-likelihood £, (Hp). Let A} denote the
true value of the parameter A. Then the generalized likelihood ratio A, (Ap) for the
testing problem (3.3) can be decomposed as

(3-4) An(Ao) = An(Ap) — A% (A),

where A\, (A}) = €, (Hy) — £, (HY{) is the generalized likelihood ratio for the hypoth-
esis testing problem

Hj: A=A, — Hy: A+ A

and N (Ap) = €, (Ho) — €, (Hy) is the likelihood ratio for another hypothesis testing
problem

H{: A= Aj, — Hi: A€ A.
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The above two hypothesis problems are fabricated because Aj, is unknown. There-
fore the generalized likelihood ratio for the composite null hypothesis can be decom-
posed into two generalized likelihood ratios for two fabricated simple null hypothesis
problems. As in the proof of Theorem 5, generally the asymptotic representation
of the generalized likelihood ratio for the composite null hypothesis can be de-
rived from those of the above fabricated simple null hypothesis problems. Then,
the asymptotic theory for composite null hypothesis can be easily obtained (see the
proofs of Theorems 6 and 9, Remark 3.4 and the results in Fan and Zhang (1999)).
Thus, we focus first on the simple null hypothesis testing problem (3.2). In order
to include the above fabricated testing problems, we assume that Ag is unknown.
We should point out that for model (1.2), when Ay is known, the testing problem
(3.2) is equivalent to the problem Hy : A = 0 by a simple transform.

3.1. Asymptotic null distribution. To derive the asymptotic distribution of
An(Ag) under Hy, we need the following conditions.
Condition (A)

(A1) The marginal density f(u) of U is Lipschitz continuous and bounded away
from 0. U has a bounded support ().

(A2) A(u) has the continuous second derivative.

(A3) The function K(t) is symmetric and bounded. Further, the functions ¢3K (t)
and t3K’(t) are bounded and [t*K(t)dt < occ.
(A4) Elel* < c0.

(A5) X is bounded. The p x p matrix E(XX"|U = u) is invertible for each u € €.
(BE(XXT|U = u))~" and E(XX"0%(X,U)|U = u) are both Lipschitz contin-
uous.

These conditions are imposed to facilitate the technical arguments. They are not
weakest possible. In particular, (A5) in Condition (A) can be relaxed by using the
method in Lemma 7.4 in Zhang and Gijbels (1999). For example, we can replace the
assumption that X is bounded in (A5) by the assumption that E exp(co||X]|) < oo
for some positive constant ¢g. The following results continue to hold.

Note that in the above conditions, the normality of € is not needed. Define

[(u) = EXX"|U = ulf(u), wo= //t2(s+t)2K(t)K(s+t)dtds.
Let E; = }/7 — Ao(U)TXZ Set
Rnio = % Z;EiAg(Ui)TXz‘/tQK(t)dt(l + O(h) +O(n~Y/?)),

_ 11 T —1 qn
R0 = 5 Un ;&?ixir(Ui) Ag(Us)" E(X;|U; )wo,

1
Ru30 = gEAg(U)TXXTAg(U)wo(l +0(n"1?)),
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o= Pk 0) - [ o,

o2 = @ /(K(t) - %K « K ()2,

dln = 0'72{1’Lh4Rn30 — nl/ZhZ(Rnlo — Rngo)} = Op(nh4 + n1/2h2),

where K % K denotes the convolution of K. Note that both R,19 and R,2o are
asymptotically normal and hence are stochastically bounded.
We now describe our generalized Wilks type of theorem as follows:

THEOREM 5. Suppose Condition (A) holds. Then, under Hy, as h — 0,
nh3/2 — 00,
o (An(Ao) — pn + duy) 5 N(0,1).

Furthermore, if Ag is linear or nh?/? — 0, then as nh®/? — oo, 7 An(Ap) ~ X%Kﬂ'n7
where

_ K(0)— 5 [ K*(t)dt
T () - 1K < K ()2t

REMARK 3.1. As pointed out before, for model (1.2), when Aq is known, the
testing problem (3.2) is equivalent to the problem Hy : A=0 «+— H;:A#0
by a simple transform. Hence, the condition in the second part of the theorem always
holds and so does the Wilks phenomenon. Further, when nh® — 0, the mean and
variance of A\, is free of nuisance parameters up to the first order because dy, =
o(pn). In this relazed sense, even if Ag is unknown, the Wilks phenomenon is valid
when the condition nh®/? — 0 is relazed as nh® — 0.

REMARK 3.2. The degree of freedom in the asymptotic distribution depends on
p|Q/h. This can intuitively be understood as follows. If one partitions the support
of U into intervals of length h and uses piecewise constant functions to model the
functions in A, then we have total number of parameters p|Q|/h under model (1.2).
In this view, local linear fits can also be regarded as sieve approximation to nonpara-
metric functions with effective number of parameters rg i, .

REMARK 3.3. Iflocal polynomial estimators of degree v instead of the local linear
estimators are used to construct the above generalized likelihood ratio, then the result
holds when K 1is replaced by its equivalent kernel induced by the local polynomial
fitting (Fan and Gijbels, 1996). In this case, the second part of Theorem 5 is replaced
by the condition that either A is a polynomial of degree v or nh(**1+5)/2 — (.

REMARK 3.4. Suppose Condition (A) holds and the second term in (3.4) is
op(h*I/Z) (for example, in testing a parametric model, under some regularity con-
ditions this term equals Op(1)). Then it follows directly from Theorem 5 that under
the null hypothesis (3.83) the result in Theorem 5 continues to hold.
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We now consider the more challenging and more interesting case where null
hypotheses depend on many nuisance functions. Nevertheless, we will show that
asymptotic null distributions are independent of the nuisance functions. Write

_ (Ao (M) _ (X _(z)
o = (Gf)) A= (00). %=X ) 2= (z0
where Ajg(u), Aq(u), X,(Cl) and Zg) are p1(< p) dimensional. Consider the testing
problem
(35) H()u : Al = AIO — Hlu : Al 75 AlO

with As(-) completely unknown. For the same purpose mentioned above, (3.5) is
allowed to be a fictitious testing problem in which the function A;g is unknown.
Following the same derivations, the logarithm of the generalized likelihood ratio
statistic is given by

Anu(A10) = An(Ao) — An2(Az20[A10)
with A\, (Ag) the full likelihood ratio defined in (3.2) and

n RSS
An2(Azo|Arg) = ) log RSSZ

where

RSSy = > (Vi — Auo(U) XL — A (U)X (D)2,
k=1

Here A/Q(Uk)q— is the local linear estimator at U, when Aqq is given.
Recall that I'(u) = E[XX"|U = u|f(u). Write

= (11:; £$> , and T'yyo=T4; — 1205, oy,
where I'11,1'12,T91, 99 are p1 X p1, p1 X p2, P2 X p1 and pa X pp matrices and
p2 = p — p1. Define p,, and o, the same as u, and o, except replacing p by p;.
Similarly, define di,, by replacing X and I respectively by xM F12F22X(2) and
F1172 in the definition of d1n~

THEOREM 6. Suppose Condition (A) holds. Then, under Hy, in (3.5), as
nh3/? — 0o and h — 0, we have

0_1()\nu(A0) — Mnu + dlnu) i’ N(07 1)

In addition, if Agy is linear or nh%/? — 0, then

TK )\nu (AO) L2

~ X""K Hnu®

Theorem 6 provides convincing evidence that the Wilks type of phenomenon
holds for generalized likelihood ratio tests with composite hypotheses.
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3.2. Power approximations and minimax rates. We now consider the power of
generalized likelihood ratio tests based on local linear fits. For simplicity of our
discussion, we focus only on the simple null hypothesis (3.1). As noted in Remark
3.1, one can assume without loss of generality that Ay = 0. But, we don’t take this
option because we want to examine the impact of biases on generalized likelihood
ratio tests. This has implications to the case of composite hypothesis (3.5) because
the biases inherited in that problem are genuine.

When Ay is linear, the bias term in Theorem 5 will be zero. When Ay is not linear,
we will assume that h,, = o(n*1/5) so that the second term in the definition of dy,, is
of smaller order than o,,. As to be seen in Theorem 8, the optimal choice of h for the
testing problem (3.1) is h = O(n~2/?), which satisfies the condition h = o(n~=1/%).
Under these assumptions, if nh3/2 — oo, by Theorem 5, an approximate level a
test based on the generalized likelihood ratio statistic is

O=¢n= I{)\n(AO) — oy 4 Dy > Zon'n}a
where with 62 = RSS; /n,

1
O = gnh4&’2EAg(U)TXXTA3(U)//t2(5+t)2K(t)K(s+t)dtds.
The power of the test under the contiguous alternative of form

Hyp, o A(u) = Ap(u) + Gr(u),

can be approximated by using the following theorem, where G,,(v) = (g1 (®), - -, gpn(u))7)
is a vector-valued function.

THEOREM 7. Suppose that Condition (A) hold and that Ay is linear or nh® — 0.
If
nhEGT(U)XX"G,(U) — C(G) and E(GL(U)XX"G,(U)e?)? = O((nh)~3/?),
for some constant C(G), then under Hy,
(\n(A0) = fin + B + V30 = dan) /5 = N(0,1),
where

dyy, = gEG;(U)XXTGn(U),

o =\/02 + no2EGTL(U)XX" G, (U),

4
Vo = ;‘iEG”( )y XXTG (U //t2 (s + )2 K (t)K (s + t)dtds.

Theorem 7 can be extended readily to generalized likelihood ratio tests based on
local polynomial estimators of degree v and to the case with nuisance parameter
functions. It allows functions G,, of forms not only g,(u) = (nh)~*/2g(u), but
also gn(u) = a;2g(anu) with a, = (nh)~'/%. The former function has a second
derivative tending to zero, which is restrictive in nonparametric applications. The
latter function has also a bounded second derivative, which does not always tend to
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zero, when g is twice differentiable. This is still not the hardest alternative function
to be tested. A harder alternative can be constructed as follows. Let {u; } be a grid of
points with distance a,, ! apart and g be a twice differentiable function with support
[0,1]. Then, Theorem 7 also allows functions of form g, (u) = a,? > 9(an(u—uy))
with a,, = (nh)~1/4,

We now turn to studying the optimal property of the generalized likelihood ratio
test. We first consider the class of functions G,,, satisfying the following regularity
conditions:

var(G(U)XX7 G (U)) < M(EGH(U)XXT G, (U))?,
(3.6) nEG] (U)"XX"G,(U) > M,, — oo,

EGIU)XXTGI(U) < M,
for some constants M > 0 and M,, — oco. For a given p > 0, let

Gn(p) = {Gn € Gn : BGL(U)XX"G,(U) > p*}.
Then the maximum of the probabilities of type II errors is given by
Bla,p) = sup  fla, G,
Grn€Gn(p)

where B(a, G,) = P(¢ = 0|A = Ay + G,,) is the probability of type II error at the
alternative A = Ag + G,,. The minimax rate of ¢ is defined as the smallest p,, such
that

(i) for every p > pnp, @ > 0, and for any 8 > 0, there exists a constant ¢ such
that B(a, cp) < B+ o(1);

(ii) for any sequence p = o(py,), there exist & > 0, 5 > 0 such that for any ¢ > 0,
P(¢p=1|A = Ap) = a + o(1) and liminf, B(a, cpl) > B.

It measures how close the alternatives that can be detected by the generalized likeli-
hood ratio test ¢;. The rate depends on the bandwidth h. To stress its dependence,
we write it as p,(h).

THEOREM 8. Under Condition (A), the generalized likelihood can detect alter-
natives with rate p,(h) = n=*? when h = c¢,n=2/° for some constant c,.

REMARK 3.5. Whenp =1 and X = 1, the varying-coefficient model becomes an
ordinary nonparametric regression model. In this case, Lepski and Spokoiny (1995)
proved the optimal rate for testing Hy is n=*/°. Thus the generalized likelihood ratio
test is optimal in the sense that it achieves the optimal rate of convergence. Similarly,
we can show the generalized likelihood ratio test, constructed by using local polynomial
of order v, can detect alternatives with rate n~=2(v+1/(4v+5) “yniformly in the class
of functions satisfying

E[GYD(U)X]? < M,

for some M < co. The corresponding optimal bandwidth is c,n=2/ 45 for some
constant cy.
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REMARK 3.6. In the proof of Theorem 8, we in fact show that the bandwidth h =
c.n~2/9 is optimal, optimizing the rate of pn(h), subject to the following constrains:

(a) h — 0 and nh®/? — oo, if Ag is linear.

(b) nh — oo and nh® — 0, if Ag is non-linear with continuous second derivatives.

4. Model diagnostics. In this section, we demonstrate how the generalized
likelihood ratio tests can be applied to check the goodness-of-fit for a family of
parametric models. This kind of problems occur very often in practice. Our results
apply readily to this kind of problems. We also note that the Wilks phenomenon
continue to hold under general heteroscedastic regression models.

4.1. Testing linearity. Consider the nonparametric regression model (1.3) and
the testing problem

Hy:m(z) =ap+ oz «—— Hp:m(x)# a+ oz,
where ay and «; are unknown parameters. Following the same derivations as in
Section 3, generalized likelihood ratio tests based on local linear fits are given by
RSSo
RSS;’
where RSSO = Z;n:l(yvl — d() - lei)Q and RSSl = Z?:l(Y; - mh(Xl))2 By
using Remark 3.4, one can easily see that Wilks type of results hold under the null
hypothesis:

An = 0n(Hy) = € (Ho)| = 3 log

(4.1) K An ~ XchK\m/hv
where 2 denotes the support of X, and
cx = K(0) = 27| K|3.

Note that when K(0) = max K(z), we have K(0) > ||K||3, cx > 271K (0) and
whence rg > 0. ’

To help one determine the degree of freedom in (4.1), the values of rx and
ck are tabulated in Table 2 for a few commonly-used kernels. Among them, the
Epanechnikov kernel has the closest rx to 2.

TABLE 2
Values of r and cx in (4.1)

Kernel Uniform Epanechnikov Biweight Triweight Gaussian
rK 1.2000 2.1153 2.3061 2.3797 2.5375
CK 0.2500 0.4500 0.5804 0.6858 0.7737

Two inter-relationships concerning the degrees of freedom will be exposed. If we
define a “smoothing matrix” H based on local linear estimates just as a projection
matrix P in the linear regression model, then under Hy, RSSq—RSS; =" (H"+H —
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H™H — P)e. Denoting the bracket matrix as A, we have tr(A4) = 2ck|Q2|/h following
the proof of Theorem 5. Thus, tr(A) is approximately the degree of freedom only
when rx = 2. The second one is to note that K(0) > K * K(0) = || K||3 implies
approximately tr(H™H) < tr(H) < 2tr(H) — tr(H™H), a property holding exactly
for H based on smoothing splines in fixed designs [Hastie and Tibshirani (1990),
section 3.5].

REMARK 4.1. When one wishes to test parametric families other than the linear
model such as Hy : m(z) = m(z,0), then one can apply generalized likelihood ratio
tests to the residuals {Y; —m(X;,0)}, where m(X;,0) is a fitted value under the null
hypothesis. The Wilks type of result (4.1) continues to hold.

REMARK 4.2. For more general regression model (1.3), where we assume only
E(e|X =) =0 and E(£?|X = x) = 0(x), one can use the weighted residual sum
of squares:

RSSo = Y (Vi — do — a1 Xi)*w(X;), RSSy = (Vi — 1in(Xi))*w(Xi).
i=1 i=1
If the weight function w(-) is continuous with a compact support contained in {z :
f(z) > 0}, then we can show that under Hy, a generalized version of (4.1):

/ a
TK>\n ~ Xi;/v

where

rie = il Bo(Xu(X)] [ o*@)u(a)do [ / o4<x>w2<x>dx]

-1

d = ricoxch™! { / UQ(x)w(x)dx] : { / 04(x)w2(x)d4

When o?(z) = v(x)o? for a known function v(x), the generalized likelihood ratio
test corresponds to using w(z) = v(z)~t. In this case, the Wilks type of result (4.1)
continues to hold.

4.2. Testing homogeneity. Consider the varying-coefficient model defined in
Section 3. A natural question arises in practice is if these coefficient functions are
really varying. This amounts to testing the following problem:

Hozal(U):91,~~~,ap(U):9p.

If the error distribution is homogeneous normal, then the generalized likelihood test
based on local linear fits is given by (3.2) with RSSg = > | (Y; — 07X;)? where 0
is the least-square estimate under the null hypothesis.

To examine the property of the generalized likelihood ratio statistic (3.2) under
the general heteroscedastic model, we now only assume that

EEX=x,U=u)=0, EBE(EX=x,U=u)=0c%x,u),
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with a continuous function o%(x, u). Strictly speaking, the statistic (3.2) is no longer
a generalized likelihood ratio test under this heteroscedastic model. The generalized
likelihood ratio test in this heteroscedastic case should involve weighted residual
sum of squares when o2(x,u) = o?v(x,u) for a given v. See Remark 4.2. Let

I'*(u) = B[XX"0?(X,U)|U = u]f(u).

Then, we have the following result.

THEOREM 9. Assume Condition (A). Then under Hy, as h — 0, nh3/? — oo,
T/}/()\n 2’ XZ"{a

where

P = v [Bo?(X,U)] / (T ()T ()~ du { /Q tr(r*(u)r(u)—lfdur,

Q

al =rxeh™! [/Q tr(F*(u)l"(u)_l)dur [/Q tr(F*(u)F(u)_l)Qdu}_l.

It is clear that when o?(x,u) = 02, Theorem 9 reduces to Theorem 5 and (3.2)
is a generalized likelihood statistic. Hence the Wilks type of result continues to
hold for testing homogeneity. It can also be shown that the Wilks phenomenon
is still valid for the generalized likelihood ratio in the heteroscedastic model with
o%(x,u) = o%v(x, u), bearing in mind that generalized likelihood ratio statistics are

now based on weighted residual sum of squares.

5. Extensions. The Wilks type of results hold not only for the various prob-
lems that we have studied. They should be valid for nearly all regular nonparametric
testing problems. In this section, we mention various possible extensions to indicate
their versatility.

5.1. Generalized varying coefficient models. The inferences on generalized vary-
ing coefficient models have been empirically studied by Hastie and Tibshirani (1993)
and Cai, Fan and Li (2000). The results in the previous sections can be directly
extended to this setting.

Consider a generalized varying-coefficient model with the following log-likelihood
function

Ho™ ' (n(,w)),y} = g0(g™" (=, w)))y = blgo(g™" (n(x, w))))

where n(z,u) = g(m(z,u)) = A(u)"z, g is called a link function and gy = b’
is the canonical link. Poisson regression and logistic regression are two prototype
examples.

Define

g~ "(s),y) = g0(g~ " (s))y — blgo(g"(s))),
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Mg~ (s),y}  gb(s)

Q1(57y) = s = g/(S) (y_b/(s))a
2 —1 s

a(s,y) = W =(90/9" — 909" /(g )W — 97"(3)) — 90/(9)?,
3 —1 s

n 1 n_/

=(96'/9 — 909" /9% — (969" + 9" 96)/9"* + 299" /9"*) (y — 97" (s)) — 290 /9" —

In particular, when g = gg is the canonical link, we have

q2(57y) = _b//(3)7 qg(s,y) = _bm(s)'

As in Section 3, we can define a local linear estimator A for A. Lemma 7.5 yields
the following asymptotic representation for A :

Alug) — A(ug) =12 I‘ (up)™ ZElX K((Ui—wu0)/h)(1+0p(1))+ Hy,(uo)(14+0p(1)),

where

I'(uo) = —Elg2(A" (u0) X, Y)XXT|U = uol f(uo), & = q1(A(Ui)"X4,Y5),

Hy, (o) = r2T (ug) ™" Z q1(B(u0)"Zi, Ys) — qu(A(U:) "Xy, Vi) | X K (Ui — wo) /h).

The generalized likelihood ratio for testing the null hypothesis Hy : A = Ag is
defined as

n

Ang(Ao) = = [Hg ™ (AUNTX)), Yi} = g~ (Ai(Ui) X)), Yi}].

i=1
Denote

U—uo)
h

Gne = ans(U, X, Y) = sup  |q2(B(uo)" Z(uo) + " Z(uo), Y)| K (

uo,||a]|[<errn

where 7, = 1/vnh. For j = 1,2,3 and ¢; > 0, define

U-—wug,;
Bpj = Boj(U.X,Y) = sup  |ga(B(u0)" Z(uo)+a" Z(uo), V) || =1 K

Uo| ||| Serrn

U—UO
h )

The following technical conditions are needed:
Condition (B)

(B1) E|q:(AU)X,Y)]* < .

(B2) E[q2(A(U)™X)XX"|U = u) is Lipschitz continuous.

/i

909

/g/3 .
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(B3) The function ¢a(s,y) < 0 for s € R and y in the range of the response variable.
For some function ¢.(y), s; € C,i = 1,2, [g2(s1,y) —q2(52,y)| < g« (y)[s1 —s2]-
Further, for some constant £ > 2,
E{®,;(U.X,Y) | XX7[[} =0(1), j=1,23,
EQH*<U7X7Y)||X||2 = 0(1)7 Eq*(Y)HX||3 < o0,
sup  Eq3(B(uo)"Z(uo) + " Z(ug), Y)K*(U — ug)/h) /M| XX7||* = O(1),5 = 1,2,3.

uo, ||| <errn

Set
1 n
Rniog = Jn ZEiAg(Ui)TXi/tQK(t)dt(l +0(h) + O(n~1/?Y),
i=1

n

11 ~
Rung =~ = D X (U) A (U7 Blas (A5 (V) X)X,
i=1

Rnzog = —%EAg(U)qu(AO(U)TX,Y)XXTAg(U)wo(l +0(n~?)),
where wg = [ [t*(s +t)?K(t)K (s + t)dtds. Note that both R,10, and Ry, are
asymptotic normal and hence stochastically bounded. Let di,, = nh4Rn309 —
nl/QhQ(Rnu)g — Rngog). Then, dlng = nh4Rn309(1 + Op(l)) if n1/2h2 = oo. The
following theorem shows that the Wilks type of results continue to hold for gener-
alized varying coefficient models.

THEOREM 10. Under Conditions (A1) — (A8) and (B1) — (B3), as h — 0,
nh3/? — oo and n€=Y/¢h > ¢o(logn)® for some § > (€ —1)/(€ — 2), we have the
following asymptotic null distribution:

7 (Mg (Ao) — pin + ding) —= N(0,1).

Furthermore, if A is linear or nh%? — 0, then as nh — oo, Tk Ang(Ao) ~x
where wy, and ri are given in Theorem 5.

2
TKHMHn’

Extensions of the other theorems and the remarks in Section 3 are similar. In
particular the optimal minimax rate and the optimal bandwidth are the same as
those in Section 3. The generalized likelihood ratio tests can be employed to check
the inhomogeneity of the coefficient functions and significance of variables in the
generalized varying-coefficient models. The related theorems in Section 4 hold true
after some mild modifications. The details are omitted.

5.2. Empirical likelihoods. As pointed out in the introduction, neither Owen’s
empirical likelihood nor its extension, random sieve likelihood [Shen, Shi and Wong
(1999)] can be directly used to make inferences on a nonparametric regression func-
tion. However, the idea of sieve empirical likelihood [Zhang and Gijbels (1999)] can
be effective in this situation. In a forthcoming manuscript, Fan and Zhang (1999)
have developed the corresponding theory. The advantages of sieve empirical like-
lihood ratios include that no parametric models are needed for stochastic errors
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and that it adapts automatically for inhomogeneous stochastic errors. The main
disadvantage is that it requires intensive computation.

6. Discussion.

6.1. Other tests. There are many nonparametric tests designed for certain spe-
cific problems. Most of them are in univariate nonparametric regression setting. See
Section 1.5 for an overview of the literature. While they can be powerful for their
problems where the tests were designed, extensions of these tests to multivariate
setting can pose some challenges. Further, these tests are usually not distribution
free, when null hypotheses involve nuisance functions. This would hamper their
applicability.

Nonparametric maximum likelihood ratio tests are a natural alternative. Usually,
they do usually exist. If they do, they are hard to find. Further, as shown in Section
2.2, they are not optimal. For this reason, they can not be a generic and powerful
method.

6.2. Conclusions. The generalized likelihood method is widely applicable. It
applies not only to univariate setting, but also to multivariate nonparametric prob-
lems. It is ready to use because of the Wilks phenomenon. It is powerful since
it achieves optimal rates of convergence. It can also be adaptively minimax when
tuning parameters are properly tuned (Section 2.4). The tuning method for lo-
cal polynomial based generalized likelihood ratio test can be surprisingly simple.
Motivated by the adaptive Neyman test constructed in Fan (1996), when the null
hypothesis is linear, an adaptive construction of the generalized likelihood would
naturally be

6.1 Trqp, = max ——————" for some a,b > 0,
( ) ASL he[n—a,n-?] Qd(h)

where r is the normalizing constant, A, (h) is the generalized likelihood ratio test
and d(h) is the degrees of freedom. Therefore, the generalized likelihood is a very
useful principle for all nonparametric hypothesis testing problems.

While we have observed the Wilks phenomenon and demonstrated it for a few
useful cases, it is impossible for us to verify the phenomenon for all nonparametric
hypothesis testing problems. The Wilks phenomenon needs to be checked for other
problems that have not been covered in this paper. More work is needed in this
direction.

7. Proofs.

PRrROOF OF LEMMA 2.1. For each given &, . = cn™2/(2k+1) (¢ > (), under the
null hypothesis (2.3), by using the mean-variance decomposition, we have

(71) €nr = 712 1+]2k€ |: I{Z +]2k5 }1/2
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Note that g,(z) = L)z is increasing for 0 <z < f;é/(%) and decreasing for

(1+x2F¢,,
x> Ene 1/2k) . By using the unimodality of g,, and approximating discrete sums by

their corresponding integrals, one can show that

2k 2k

_ J _ <y _
(7.2)n 1 I — (2k+1)/(2k)/ d 1) 1/(2k+1)y
2T o [y O

Using the same arguments as those obtaining (7.2), we have
RS (L 4 kg, )12 = O L 2@kDY,

This together with (7.1) and (7.2) yield

(7.3) F(éne) = (co/c)ZFHD/CR) L O (n=1/12Ck+1D}

where ¢y = fo 2k (1 4 y2k)=2gy)2k/ (2k+1)
For any ¢ > O since the function F'(x) is strictly decreasing,

P([n2k/ D (E ¢, ] > €) = P(F(€) < F€pcyre))FP(F(E) > F(Enco—2)) = o(1),
which implies £ — &, ¢, = 0,(n~2k/(2k+1)),

PROOF OF THEOREM 1. Define the j-th coefficients in F'(£) and A} as

] -2k ) 1_,_22’(?5
F(J;ﬁ)z(l_&—.ng)g» A(J;f)zm«
Th
o 2J4k 2j4k§
(7.4) F'(j;6) = T e N(j;6) = NENEE = EF'(5;6).

Let ¢y be defined the same as in Lemma 2.1. For any 7, ; between ¢ and &ncos
it can easily be shown that

F/(j.nn ) _F/(j'gnc )
7.5 LI R = 0,(1
7o) it F' (55 &n.eo) (D)
and that for any (, ; between é and &, ¢,

AI(j?Cn ) - )\/(Jgn ¢ )
7.6 sup ] 1R =0, (1).
(7.6) j>1 N (73 nseo) p()

Let A (&) = 3 Ly~ -1 %52 By using Taylor’s expansion together with (7.4),
(7.

(7.5) and (7.6), under the null hypothesis (2.3),
1l — .
Ny = 52[ i) + (€ = ) X (s )] €2
o Z 1)‘/ j 6" Co) 2
=X n,co F - F n,co 2 = = 1 1
(é‘, )+[ (5) (g, )}12] 1F/(] gnco)?( +Op( ))
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n
- )‘n(fn,co> + [1 - F<§nyco)]§§n,co + 0P<n1/(2(2k+1)))

R 1 1
77 = — 752 J'_ _Conl/(2k+1) _|_ o nl/(2(2k+1)) .
( ) 2 j; (1 +‘72k€n7c0) ] 2 P( )

Define A, 1 = 3 Z] 1452k, o0} e2in (7.7) and V,, = %Z?zl{lﬂ—j%{n,co}*l 2

we have

<n 1+ 2k n,c -1 " . —27—
max1§ng§ { 'Jk Eneo t < {Z(1+32k§n,co) 2} 1/2 :O(&’/C(fk)) -0
\/Zj:l{l + 52 gn,Co}_z j=1

which implies that Y/% N(0,1) by Lemma 2.1 of Huber (1973). Note that
1 [ dz 1 [ dzx
A1 —V,) < = - < e —2 . —(dk—1))
V) <5 [ g <1, e, OGET )

Hence
var(Ap1 — Vi)

_ 2 (4k—1) je—1/(2k)
var(Ap,1) o " /&, ) 0.

n,co n,co
This implies that

A1 — E(X
n,1 (n,l) L N(O,l)

var(Ap,1)

[by Theorem 3.2.15 of Randles and Wolfe (1979)], where

E(\n) =276, 1 2k)/o m+0(1)7 var(A,1) = 271¢, ié(%)/o m‘*‘o(l)-
This together with (7.7) yield
Af = 271 /R 1/ (k1) I 142y%* o

ryzz %
=

\/2_1051/(%)"1/(%“) fo (1+gzljz"“)2

N(0,1).

Namely, 7, A% & Xiw where
0 1 4 2y | !
e [T ()
o (1+y?)? o (1+y?)?
_ - 14 2y%
an =27 ke, 1/(%)/ — 2 dy n!/ R,
ooy ey
Finally, by using

/°¢ 1 /°° dy 2k —1)
. ) T,
o (1+ y% ok sin(g) o (1+y2k)2 ~Ak2 sin(g)

/°° _(2k—1)(4k —1) >y (2k — 1)(4k — 1)(6k — 1)
= s = v
o (1+ y% 16k3sin(Z) Sy (1+y2)d 96k sin( L) ’
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we obtain

4k +2 (2k +1)?

Tok—1 T T2k [4kzsin(%)

P/ (@k+1)

2k/(2k+1)
TEk :|

PROOF OF THEOREM 2. Take j % = n~(:+d)/Ck+1) Tet 9 be a vector whose
Jn-th position is j, % and the rest are zero. Then, § € Fj, and |0 = n—(k+d)/(k+1),
For &, . = en™2F/ (k1) e have

§2RE, o = cn?d/(RED),

Under this specific alternative, by using model (2.2), we have for d > 1/8

2k
F(gn,c) = F(gn,c|HO)+(1_~_.}-]2+5)2(er?knil/zejn,+j;2k) = F(gn,c|H0)+0p(n71/{2(2k+1)})7
where F(&,.c|Ho) = n™' 3002, ma? By the arguments as those in the

proof of Lemma 2.1, one can see that

é = &n,eo (14 0p(1)),

where € solves F(€) = 1.
Next, consider the likelihood ratio statistic A}, under the alternative hypothesis.

Let
1 PN
Ano = = 1———— ¢
22 ( 1+ 7 )
Then for d > 1/8,

A= Ao+ n 1— ﬁ (Qj*kn’l/ze- Jrj—zk) = A\o+o (nl/{2(2k+1)})'
20 agzeer) e S
By similar proof of Theorem 1, 71\, o N Xg", which entails that

PG{Tk)‘:; > an + Zoz(Qan)l/2} =+ 0(1)

PrOOF OF THEOREM 3. This first part of result follows directly from the cen-
tral limit theory using similar arguments to those in the proof of Theorem 1 for
An,1. We now establish the power of the test. Under the alternative hypothesis,

> A4k ¢2
3 I
j=1 "

and

varg(ri,\,) = 2a., + b, + O(1),
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] Ak 2
where b, = ri2 (1Af(fg;§§7§) nf2. Thus, it follows from the Chebychev’s
j=1 "

inequality that
Py(riAn > al, 4 24(2a],)Y?)

_p T An — 7. Eo(An)
varg (rjA,)/?

>1-d,?

z@%+%+ouan%+%c%ﬂﬂ_¢@@w%

if (2a!, + 0, + O(1))"Y?{al, + 24(2a},)'/? — v} Eg(\n)} < —d,, for some d,, > 0.
Thus, Theorem 3 holds, if we show that

0 ‘41%2
7.8 inf n 1/ (4k+1) < > no? — 00,
( ) 0€F: HQHchn*Qk/(‘lk#’l) ]:Zl 1 + ]Qké‘ ) 7
and
0 Ak 2
(7.9) inf ey (- Ik Yo
OEFy: ||0]|>cnn—2k/(4k+1) O = (1+j2k¢,)2 J

Note that for each 6 € Fy,

& Ak ¢2
76 2 2 —d4k/(4k+1) _ 2k 2 —4k/(4k+1

a:>0
=1
(7.10)
Hence, (7.8) holds.

To show (7.9), we note that (1 - %) € (0,1). It follows from (7.10) that

p—1/2 i 1_ jthe 0?2
n i (1 +j2k5n)2 J

1—1,1/2 = jHher 2
>r.n E 1——2" ) 0;

k =~ ( (1 +32k£n)2) J
> T;lnl/zcnn—%/(4k+1)/27

which tends to oco.

PRrROOF OF THEOREM 4. For any given m, when n is sufficiently large, we have

Py[Tan > —log{—1log(1 — a)}] > Po{Thin > 2(loglog n)1/2}

(7.11) > P@{i(an —1)/vV2m > 2(loglogn)/?}.

j=1
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Note that the sequence of random variables

{Em:(nyf —1-nb?)/(2m+ 4n§m: 02)1/2}

Jj=1 Jj=1

have means zero and variance one. By normalizing the random variables in (7.11),
one can easily see that the power of the adaptive Neyman test is at least

m

Py > (nY7 —1—nb3)/(2m+4n > 63)'/2 > {2v2m/loglogn —n Y _07}/(2m +4n Y 63)'/?

j=1 j=1 j=1 j=1
Thus Theorem 4 holds via Chebychev inequality if we show that

(7.12) inf mfl/Q{nZH? — 2v2m+/loglogn} — oo,
j=1

0EF: ||10]|>cndn

and
(7.13) inf (n29§)—1/2{n29§ —2v2m+/loglogn} — oo
— =

O€Fk: [10>cndn
Jj=1

for some choice of m.
Note that for any 6 € Fy,

oo o0
j=m+1 j=m+1

Thus,

m
m-1/2 29]2 > m_1/2(cn(5n)2 g 2k-1/2
j=1

Maximizing the above expression with respect to m leads to the choice of m =
O((cndp)~ %), we have

(7.14) m~1/? Z 9]2 > Ol +1/ k) =1 (log log n)'/?},
j=1
and
715032 > n(endn)? - =) = O{nein™/ 3541 loglog n)?H/ (541}
j=1

Since ¢, — 00, the conclusion (7.12) holds from (7.14). And (7.13) follows from
(nz 9?—)_1/2{712 07 — 2v2my/loglogn} = (nz 9?—)1/2(1 +0(1))
j=1 j=1 j=1

and (7.15).
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The following four lemmas are used in the proofs for the theorems in Sections 3,
4, and 5.

LEMMA 7.1. Suppose the matriz ¥ = (1/)”)” 1 1§ symmetric, wy, -, Wy, are
mdependent random variables, with 1 ~ 4th moments Ew; = 0, Bw? = us (i),
Ew} = us(i), Bw} = u4(i). Let W = (wq,---,w,)7. Then

n

E(WTUW)? = 42 [ua(i) — 3u3(i)

i=1

2 n
+2> " g (i)ua(j).

i,j=1

Z % u2

PrOOF. This can be shown by modifying the proof of Theorem 1.8 in Seber
(1977), where only w;(i) =w; (i =1,---,n; 1 =1,2,3,4) were considered.

Let r, = 1/v/nh. Denote by

(7.16) an(ug) = 12T (ug) ™ ZEXK U; —up)/h),
(7.17)  Rp(uo) Z Ui)"Xi = B(u0)" Zi) X K ((Us = uo)/h),

Rpi =Y exRn(Up)" Xy,
k=1

Rz =3 an(Up) XX} R (Ug),
k=1

1 n
Ruz = 5 > Ry (Ui) Xi X} R (Uy).

k=1

LEMMA 7.2.  Under Condition (A), as h — 0, nh — oo,
Rny =n'?h* R0 + O(n™'/2h),
Rpa = n*?h%R,00 + O(n~/2h),
Rz = nh*Ru30 + O(h®).
Furthermore, for any § > 0, there exists M > 0 such that

sup P(|(n'/?h*) 7 R,;| > M) <§,j =1,2, sup P(|(nh*)"'R,3| > M) < 4.
nEg’VL G’ILEg'Vl
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ProoF. It follows from some direct but tedious calculations.
Using Lemma 7.5, we can easily show the following Lemma.

LEMMA 7.3. Let A be the local linear estimator defined in Section 8. Then,
under Condition (A), uniformly for uy € Q,
Auo) — A(ug) = (an(uo) + Rn(u0))(1 + 0p(1))
where o, (ug) and Ry (uo) are defined in (7.16) and (7.17).

Denote by

T, =1}y e X[T(Uy) "' XK (Ui — Uy) /h),
ki

S =1t S e XIS (U)X XED (U)K (U — U) WK (U — Ue)/)}X

ij k=1

LEMMA 7.4. Under Condition (A), as h — 0, nh®/? — oo,

1 o1 , _ _
T, = 3 pK(0)*Ef(U) " + ~ > ere XD (Ur) " Xp K (Ui — Us) + 0, (h /),
ki

S, = o B H0) [ KA+ 2 Y 0o XIT UK ¢ K((W: = Up) /)X + 0(h™12),

i<j

with Kp(-) = K(-/h)/h.

ProOOF. The first equality is obvious. Here we focus on the second one. We use
the following decomposition: S,, = S,1 + Sp2 with

Sp1 = 22 QXT{ZF Up) ™ X XD (UR) T K2 (Ui = Un) /W)X

(nh =

Spo = ZezanT{Z T(Up) ' X XET(Us) L Kn(Us — U Kn(Uy, — U;)}X;.
i#]
It is easy to see that as h — 0,
1

(718)  Sp1 = 0,(h"Y2) +0,(n~3?h72) + %Vn(l o(1)) + O (nh2)
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=——— > CXT(U) XX (Ur) " X+ X5 (U)X XTT(U) ™ X)) K (U =T
nn—1) -
1<i<k<n
Using Hoeffding’s decomposition for the variance of U-statistics [see, e.g., Ko-
roljuk and Borovskich (1994)] we obtain
1

var(Vy,) = O(ﬁ)ai

with
op < B{E[(X{T(U2) " XoXIT(U2) ' Xy
FXIT(U) X X T () Xa) K3 (U — U)Xy, U)])2)2
—o(n™?).
Thus, V,, = EV,, + 0,(h~'/2?) as nh — oo and h — 0. This gives that

1
(7.19) Sp1 = EpUQEf_l(U)/KQ(t)dt + 0, (h™1/%).
We now deal with the term S,,5. Decompose Sy,2 = Sy21 + Spoo with
2 L1 _ .
Spr == > ;X[ = > AT(UR) XX (Uk) Kn(Ux — Us) Kn (U — Uj) } X5,
" 1<i<j<n n k4,5
K(O) T - T — T — T —
Suz2 = 37 > e {XIT(U) XX (U)X + XTT(U;) 7 X XD (U)X LK (Ui = U)).

i#]
It can easily be shown that
var(Spas) = O(1/(n*h3)) = o(1/h)
which implies
(7.20) Spaz = op(h71/?).
Let
Qijin = TN (Up) X XD (Ur) ™ Kn (Uy, — Uy Ky (Uy, — Uj).
Note that
BIXT, 3 (@ = E(@al 1)) %
i,J

n

< trace{n™> E(QiarnX2X3Qu2rnX1XT]} = O(1/(nh?)),
k#1,2

which leads to
2(n —2) T —~1/2
(7.21)  Spo1 = o Z €i€; X E(Qijin|(Ui, Uj)) X + 0p(h™ /7).
1<i<j<n

Combining (7.18) ~ (7.21), we complete the proof.
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PROOF OF THEOREM 5. Note that
RSS;

n
Then it follows from the definition that

=o*(1+ Op(n_l/Q) +O0p(h™1)).

“Mn(Ag)o® = =12 > e ) & X{T(Uk) Xk K ((Us — uo) /h)
k=1 i=1

ard SO e XTI (U)X XX T (U)K (U — U)W (U — U) /1)

k=1i=1 j=1

1
—Ru1 + Rpo + Rps + OP(W)

Applying Lemmas 7.2, 7.3 and 7.4, we get
A (Ao) = —pn + dip — W(n)h™V2/2 4 0, (h71/2)

Vh . _
W(n) = —3 > eja2Kn(U; — Uh) — K+ Kn(U; — U)IXGT(U) ' X,
L
It remains to show that
W(n) -5 N(0,v)

with v = 2||2K — K * K||3pEf~Y(U
Define Wj; = % bn(4,D)ejer/o? (
form

).
Jj <), where b, (j,1) is written in a symmetric

bn (4, 1) = a1(4, 1) + a2(4,1) — az(4,1) — as(j,1),
with
a1(j, 1) = 2K (U; = UDXID(U) ' Xy, as(h 1) = aa(l, ),
as(j,1) = Ky * Kp(U; = U)XID(U) ' Xy, aa(f, 1) = as(l, ).
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where
1<i<j<n
Gu= Y, ABWSW3)+EW, W)+ EWEWE)},
1<i<j<k<n
Grv = Z {EWi i Wi Wiy Wi) + E(Wi i Wy Wi jWia) + EWuWa Wi W)}

1<i<j<k<I<n

We now check each of the following conditions. Condition (1) follows directly
from the definition.
To prove (2), we note that

var(W(n)) = ZE(Wfl)
Jj<li
Denote K(t,m) = K *---*x K(t) as the m—th convolution of K(-) at t for m =
1,2, --. Then it follows that

4

B[V (j, 1)e2e3] = % [16K(0,2) — 16K(0,3) + 4K (0,4)] pEf = (U)(1 + O(h))

which entails
v = 2/ 2K (z) — K * K(2))* do pEf = (U).

Condition (3) is proved by noting that
Elai(1,2)e1e2) = O(h™3),  Elas(1,2)e120]" = O(h~3),

which implies that E(W,) = Z—jO(h*?’) = O(n~*h™1). Hence G; = O(n2h71) =
o(1).
Condition (4) is proved by the following calculation:
E(WjHWH) = O(EWy) = O(n™*h™1),

which implies that G;; = O(1/(nh)) = o(1).
To prove (5), it suffices to calculate the term E(W1oWo3W34Wy). By straight-
forward calculations,

F{a1(1,2)a1(2,3)a1(3,4)a; (4, 1)e2e3e2e2} = O(h™Y),
E{ai(1,2)a1(2,3)a1(3,4)as(4, 1)e3e3e3e3t = O(h ™),
E{a1(1,2)a1(2,3)a3(3,4)as(4, 1)eleieded} = O(h™1),
BE{a1(1,2)a3(2,3)az(3,4)az(4, 1)efezeiei} = O(h™1),
Efas(1,2)a3(2,3)az(3,4)az(4,1)etezeiel} = O(h™1),
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and similarly for the other terms. So
E(WiaWasWssWy1) = n~*h20(h™1) = O(n~*h)
which yields
Gry = O(h) = o(1).

PROOF OF THEOREM 6. Analogously to the arguments for A, we get

(A2(u0) — Az(uo)) = 12155 (uo) Y_{¥i — A1 (U)X
k=1

T3 (o, X}, U)X K ((Uk = o) /B)(1 + 0,(1))
where 7, (uo, Xff), Up) = AQ(UO)TXECQ) + z‘l’z(uo)TX,(f)(U;C — up). Note that
Anu(A10) = An(Ao) — An2(A20|A10)

Similarly to the proof of Theorem 5, under Hy,,, we have

SN K (U - U)/W)XPT5 (U)X e,

An2(Ago|Arg)o? = 72
k=1 i

n

.
=

1 n n . o
~5n 2 S (U= U WX (XX T (U)
k=1 i=1

n

<[> K (Ui = uo) /W)X + 0, (hY2) = dys,

i=1

where dy,. is defined by replacing X and I by X () and Ty in d1p. Consequently,

—Anu(Ai0)o” = —’"ZZWE ~Tia(U)To3 (U)X, T
x(kaX( ) ruwk)r;;<Uk>X§f>>K<<Ui ~ Uy)/h)
ZEZEJ Z — D1 (U T3 (U)X ()"

xr;1,2<Uk><XS> — Dip(U)D35 (U)X D)
X(Xl(gl) —T12(Ug)Tay (Uk)X(z))TFulz(Uk)
x(X{Y = Dy (U T35 (U)X )

+Rps + Rus + 0,(h™Y2) + dyy, — dips
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where

Ry = —Ze & Z — T (U)o (Un) X2 T (U)

k=1
x(XEJ—ru(Uk)r;;(Uk)x,?)) P (U)X
K((U; — U /WK (U; - Uy)/h),

Rps = 2 zsajz — T12(Un)T3 (U)XP) T, (U)
x(xw—ru(Uk) o (Un) X)X P15 (U)X P

XK (Ui = Ug) [0 K((Uj = Ug)/h).

A simple calculation shows that as nh®/? — oo,

1
2 _ _ -1
ER.y = O0(—55) =o(h™")
which yields Rya=o0 (h_l/g). Similarly, we can show R,5 = op(h_l/Q). Therefore,
“Anu(Arg)o? = —r2 Z epei(X; — F12(Uk)F§21(Uk)Xl('Q))TFﬁl,Q(Uk)

x<x< ) Do (Un) o (U)X K ((U; — Ur) /) + 0, (h=1/?)

+ ZE €j Z Xz(‘ ) F12(Uk)F22 (Uk)X(Q))TIH 5(Uk)
k=1

x(X{" = Dua (U5 (U)X ()
X(Xl(fl) — T12(Up)Ta (U)X (2))TF1112(UI€>(X§'1) - F12(Uk)F§21<Uk)X§'2))
XK (U — Up) /R K ((U; = U) /h) + dinu + 0, (h~1/2).

The remaining proof follows the same lines as those in the proof of Theorem 5.

PROOF OF THEOREM 7. Under H,; and Condition (B), applying Theorem 5,
we have

A (Ag) = —pin vy 02 —day—[W (n) 1/2/2+ch (U)Xper /o] +o,(h~1/2)

where W (n) is defined in the proof of Theorem 5. The rest of the proof is similar
to the proof of Theorem 5. The details are omitted.
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PRrROOF OF THEOREM 8. For brevity, we only present case I in Remark 3.5. To
begin with, we note that under Hy,, : A = Ay + G,, and under Condition (C), it
follows from the Chebychev inequality that uniformly for h — 0, nh3/?2 — oo,

“M(Ag)o? = —pno® — a*W(n)h =2 /2 — \/nEGT(U) XX G, (U)O,(1)

_gEGyUyXXTGn(U)(l +0p(1)) = Rn1 + Rua + Rus,

where p,, W(n), Ry, i = 1,2,3 are defined in the proof of Theorem 5 and its
associated lemmas, and o,(1) and O,(1) are uniform in G,, € G,, in a sense similar
to that in Lemma 7.2. Thus,

Bla, Gr) = P{og ' (=Aa(Ao) + pn) 2 c(a)}
= P{o [-W(n)h~Y2/2 — (Rp1 — Rz — Rz + gEG;(U)TXXTGn(U)
(1 +0p(1)))/0%] > ()}
= Pip+ Po
with
Pi, = P{o; (=W (n)h=Y2/2) + n/2h% 2by,, + nh® %bs,, — nh/?bs, > c(a),
bin| < M, |bas| < M},
Py, = P{o; (=W (n)h=Y2/2) + n/20% 2by,, + nh® ?by,, — nh/?bs, > c(a),
|b15| > M, |ban| > M},
and
bin = (n'/?h%/%0,6%) " (=Rp1 + Rn2),

bay, = (nh9/20n02)71Rn3,

b3y = (hl/%na?)*l%EG;(U)TXXTGn(U)(l + 0,(1))

When h < cal/Zn_l/‘l, we have
nl/2p5/2 > conhg/Q, nl/2p5/2 _, 0, nhd2 0.

Thus for h — 0 and nh — oo, it follows from Lemma 7.2 that («, p) — 0 only
when nh'/2p? — —oo. Tt implies that p2 = n~'h~'/? and the possible minimum
value of p, in this setting is n~7/16. When nh* — oo, for any 6 > 0, applying
Lemma 7.2, we find a constant M > 0 such that Py, < §/2 uniformly in G,, € G,.
Then

Note that supg, () Pin — 0 only when B(h) = nh®2M — nh'/?p?> — —oco. B(h)
attains the minimum value —8(9M)~1/8np%* at h = (p*/(9M))/*. Now it is easily
shown that in this setting the corresponding minimum value of p, is n=*? with
h = c*n_2/9 for some constant c,.
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PRrROOF OF THEOREM 9. Let ¢ denote a generic constant. Then, under H,
RSSg — RSS; = —-D; — Ds

where Dy = e"Px e, Xp is the design matrix with the i-th row X7 (i=1,---,n)
and PXD is the projection matrix of X p and

Dy = En:(A(Uz‘) — A(U) XX (A(U:) — A(U3) + 2 zn:&-(A(Ui) —A(U))X;

=1

The proof will be completed by showing the following four steps.
(1) Dy = 0,(1),
(2) —VhDz = 2+ W(n) + 0p(1),

(3) W(n) =YL S je 2K (U; — U) — K + K3, (U; — U)] XID(U) 71X -5

N(0,V),
(4) RSS;/n = Ec?(X,U) + O (%) + Op(ﬁ),
with
D = [2K(0) = K « K(O0)] [ 6T (D)™ )du = KO B[(XTT(0)7' X0 (X, )]

V= 2/[2[((1‘) — K« K(m)]Qdm‘/ tr(T* (w)T (u) ™) du.
Q
It follows from Lemma 7.1 that

B((e7Px ,e)*|(X1,Uh), -+, (X, Un)] S c tr(Pg ) + ¢ [tr(PxD>} C = p(p+1)c,

which implies (1). The proofs of (2) and (3) are the same as the proof of Theorem
5. The details are omitted. The last step follows from RSS; = Y"1 &3 2 + D,. Using
the inequality 1 <log(l +z) <z for z > —1, we have

N\ — E RSSO — RSSl - n RSSO — RSSl

) _n —1; -2
5| Rss, +Op(n~%h )} 5 RSS, + Op(n™"h™%).

Before proving Theorem 10, we introduce the following lemma.

LEMMA 7.5. Under Condition (A1)-(A3) and (B1) — (B3), n'¢=V/¢p >
co(logn)® and § > (€ —1)/(& — 2), we have

A(ug)—Aug) = r2T(ug) ™ 291 )X, Yi) X K ((Ui—uo)/h)(1+0p(1))+Hp (uo),
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where v, = 1/v/nh,

Hy(uo) = riT(uo) ™" D _la1(B(uo) Zi, Yi)—qu (A(U:) X, V)| X K (Ui—u) /1) (140,(1)
=1

and o,(1) is uniform with respect to ug.

Proor. It follows from some arguments similar to Carroll, Fan, Gijbels and
Wand (1997) and Zhang and Gijbels (1999).

PROOF OF THEOREM 10. Let g; = q1(Ao(U;)"X;,Y;). Using the Taylor expan-
sion of A\, 4(Ap) and Lemma 7.5, we obtain

n
Z&ké‘zx F uk 1Xk — Rnlg

/\ng(AO Z
4 n -
E"ZZ (Ao(Up)™X4), Y )ewe; D(U) " XX XET (U)X K (Us — Uy) /h)
k=1 i,
K((Uj = Ux)/h) + Ruzg + Rusg,
where

n
Rnlg = 7‘/,2L Z 5an(Uk)Xk7
k=1
Zsing(Uk)—lxkxan(Uk),

1i=1

M:

n2g 'I’

ST
s i

Rpzg = — q2(Ao(U)"Xk), Yi) Hy (Ur)" X3 X} Hy (Ug).
k=1
The remaining proof is almost the same as that of Theorem 5 if we invoke the

following equalities:

Elei|(Xi, U;)] =0, E[e}(Xi,Us)] = —Elq2(Ao(Ui)"Xs), Vo) (X4, Uy)].

Acknowledgments. The authors would like to thank to the anonymous asso-
ciate editor and referee for their constructive comments. The work of C. Zhang
was based on part of her dissertation at University of North Carolina-Chapel Hill
under J. Fan’s direction. She appreciates his kind guidance and encouragement. J.
Zhang’s research was partially conducted while J. Zhang was visiting Department
of Statistics, University of California at Los Angeles. He is grateful to Professor
Wing-Hung Wong’s support.

REFERENCES



38 J. FAN, C. ZHANG AND J. ZHANG

Aerts, M., Claeskens, G. & Hart, J.D. (1999). Testing the fit of a parametric function. J. Amer.
Statist. Assoc., 94, 869-879.

Azzalini, A. & Bowman, A.N. (1993). On the use of nonparametric regression for checking linear
relationships. J. Roy. Statist. Soc. Ser.B 55, 549-557.

Azzalini, A., Bowman, A.N. & Héardle, W. (1989). On the use of nonparametric regression for
model checking. Biometrika 76, 1-11.

Bickel, P.J. & Ritov, Y. (1992). Testing for goodness of fit: a new approach. In Nonparametric
Statistics and Related Topics, Ed. A.K.Md.E. Saleh, pp.51-7. North-Holland, New
York.

Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the deviation of density
function estimates. Ann. Statist., 1, 1071-1095.

Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and
white noise. Ann. Statist., 24, 2384-2398.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient
models. Jour. Ameri Statist., to appear.

Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1997). Generalized partially linear single-index
models. J. Amer. Statist. Assoc., 92, 477-489.

Chen, J. H. and Qin, J. (1993). Empirical likelihood estimation for finite populations and the
effective usage of auxiliary information. Biometrika, 80, 107-116.

Cleveland, W.S. and Devlin, S.J. (1988). Locally-weighted regression: an approach to regression
analysis by local fitting. J. Amer. Statist. Assoc., 83, 597—610.

Cleveland, W.S., Grosse, E. and Shyu, W.M. (1992). Local regression models. In Statistical
Models in S (Chambers, J.M. and Hastie, T.J., eds), 309-376. Wadsworth & Brooks,
Pacific Grove.

de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory
Related Fields, 75, 261-277.

Eubank, R.L. and Hart, J.D. (1992). Testing goodness-of-fit in regression via order selection
criteria. Ann. Statist., 20, 1412-1425.

Eubank, R.L. and LaRiccia, V.M. (1992). Asymptotic comparison of Cramér-von Mises and
nonparametric function estimation techniques for testing goodness-of-fit. Ann. Statist.,
20, 2071-86.

Fan, J. (1993). Local linear regression smoothers and their minimax efficiency. Ann. Statist., 21,
196-216.

Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J.
Amer. Statist. Assoc., 91, 674-88.

Fan, J. and Gijbel, I. (1996). Local Polynomial Modeling and Its Applications. Chapman & Hall,
London.

Fan, J. and Huang, L. (1998). Goodness-of-fit test for parametric regression models. Technical
report, Department of Statistics, UCLA.

Fan, J. and Zhang, J. (1999). Sieve empirical likelihood ratios for nonparametric functions.
manuscript.

Hall, P. and Owen, A. B. (1993). Empirical likelihood confidence bands in density estimation.
J. Comput. Graph. Statist., 2, 273—289.

Héardle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression
fits. Ann. Statist., 21, 1926-47.

Hart, J.D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer-Verlag, New York.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman & Hall, London.

Hastie, T.J. and Tibshirani, R.J. (1993). Varying-coefficient models (with discussion). Journal
of the Royal Statistical Society, B, 55, 757-796.

Huber, P.J. (1973). Robust regression : asymptotics, conjectures and Monte Carlo. Ann. Statist.,
1, 799-821.

Inglot, T., Kallenberg, W.C.M. & Ledwina, T. (1994). Power approximations to and power
comparison of smooth goodness-of-fit tests. Scand. J. Statist. 21, 131-45.

Inglot, T. and Ledwina, T. (1996). Asymptotic optimality of data-driven Neyman’s tests for
uniformity. Ann. Statist., 24, 1982—2019.



GENERALIZED LIKELIHOOD RATIO STATISTICS 39

Ingster, Yu. I. (1993). Asymptotic minimax hypothesis testing for nonparametric alternatives
I-III. Math. Methods Statist, 2, 85-114; 3, 171-189; 4 249-268.

Kallenberg, W.C.M. and Ledwina, T. (1997). Data-Driven smooth tests when the hypothesis is
composite. Jour. Ameri. Statist. Assoc., 92, 1094 —1104.

Koroljuk, V.S. and Borovskich, Yu.V. (1994). Theory of U- Statistics. Kluwer Academic Pub-
lisher, Amsterdam.

Kuchibhatla, M. & Hart, J.D. (1996). Smoothing-based lack-of-fit tests: variations on a theme.
Jour. Nonpara. Statist., 7, 1-22.

Lepski, O.V. and Spokoiny, V.G. (1999). Minimax nonparametric hypothesis testing: the case of
an inhomogeneous alternative. Bernoulli, 5, 333-358.

Li, G., Hollander, M., McKeague, I. W. and Yang, J. (1996). Nonparametric likelihood ratio
confidence bands for quantile functions from incomplete survival data. Ann. Statist.,
24, 628-640.

Murphy, S. A. (1993). Testing for a time dependent coefficient in Cox’s regression model. Scand.
J. Statist., 20, 35-50.

Neyman, J. (1937). Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift, 20, 149-99.

Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise.
Ann. Statist., 24, 2399-2430.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika, 75, 237-249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist., 18, 90-120.

Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the
number of parameters tends to infinity. Ann. Statist., 16, 356-366.

Randle, D.H. and Wolfe, D.A. (1979). Introduction to the Theory of Nonparametric Statistics.
John Wiley & Sons, New York-Chichester-Brisbane.

Seber, G.A.F. (1977). Linear Regression Analysis. John Wiley & Sons, New York-London-Sydney.

Shen, X., Shi, J. and Wong, W.H. (1999). Random sieve likelihood and general regression models.
J. Amer. Statist. Assoc., 94, 835-846.

Severini, T.A. and Wong, W.H. (1992). Generalized profile likelihood and conditional parametric
models. Ann. Statist., 20, 1768—-1802.

Silverman, B.W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist.,
12, 898-916.

Spokoiny, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist., 24, 2477-2498.

Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing composite
hypotheses. Ann. Math. Stat., 9, 60-62.

Zhang, J. and Gijbels, 1. (1999). Sieve empirical likelihood and extensions of generalized least
squares. Discussion paper, Institute of Statistics, Universite Catholique de Louvain.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
CHINESE UNIVERSITY OF HONG KONG UNIVERSITY OF WISCONSIN
SHATIN, HONG KONG MabpisoN, WI 53706

E-MAIL: JFANQSTA.CUHK.EDU.HK E-MAIL: CMZHANG@STAT.WISC.EDU
EURANDOM

DEN DOLECH 2

5612 AZ, EINDHOVEN

THE NETHERLANDS

E-MAIL: JZHANGQEURIDICE.TUE.NL



