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The likelihood ratio theory contributes tremendous success to para-

metric inferences. Yet, there is no general applicable approach for non-

parametric inferences based on function estimation. Maximum likelihood
ratio test statistics in general may not exist in nonparametric function

estimation setting. Even if they exist, they are hard to find and can not
be optimal as shown in this paper. We introduce the generalized likeli-

hood statistics to overcome the drawbacks of nonparametric maximum

likelihood ratio statistics. New Wilks phenomenon is unveiled. We demon-
strate that a class of the generalized likelihood statistics based on some

appropriate nonparametric estimators are asymptotically distribution free
and follow χ2-distributions under null hypotheses for a number of useful
hypotheses and a variety of useful models including Gaussian white noise

models, nonparametric regression models, varying coefficient models and
generalized varying coefficient models. We further demonstrate that gen-
eralized likelihood ratio statistics are asymptotically optimal in the sense
that they achieve optimal rates of convergence given by Ingster (1993).
They can even be adaptively optimal in the sense of Spokoiny (1996)
by using a simple choice of adaptive smoothing parameter. Our work in-
dicates that the generalized likelihood ratio statistics are indeed general

and powerful for the nonparametric testing problems based on function
estimation.

1. Introduction.

1.1. Background. One of the most celebrated results in statistics is the likeli-
hood ratio theory. It forms a useful principle that is generally applicable to most
parametric hypothesis testing problems. An important fundamental property that
contributes significantly to the success of the maximum likelihood ratio tests is
that their asymptotic null distributions are independent of nuisance parameters.
This property will be referred to as the Wilks phenomenon throughout this paper.
A few questions arise naturally how such a useful principle can be extended to infi-
nite dimensional problems, whether the Wilks type of results continue to hold and
whether the resulting procedures possess some optimal properties.
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An effort of extending the scope of the likelihood inferences is the empirical
likelihood due to Owen (1988). The empirical likelihood is applicable to a class
of nonparametric functionals. These functionals are usually so smooth that they
can be estimated at root-n rate. See also Owen (1990), Hall and Owen (1993),
Chen and Qin (1993), Li, Hollander, McKeague and Yang (1996) for applications
of the empirical likelihood. A further extension of the empirical likelihood, called
the “random-sieve likelihood”, can be found in Shen, Shi and Wong (1999). The
random-sieve likelihood allows one to deal with the situations where stochastic er-
rors and observable variables are not necessarily one-to-one. Nevertheless, it cannot
be directly applied to a nonparametric function estimation setting. Zhang and Gij-
bels (1999) incorporated the idea of local modeling into the framework of empirical
likelihood and proposed an approximate empirical likelihood, called “sieve empiri-
cal likelihood”. The sieve empirical likelihood can efficiently handle the estimation
of nonparametric functions even with inhomogeneous error.

Nonparametric modeling techniques have been rapidly developed due to the
availability of modern computing power that permits statisticians exploring pos-
sible nonlinear relationship. This raises many important inference questions such
as if a parametric family adequately fits a given data set. Take for instance additive
models (Hastie and Tibshrani 1990)

Y = m1(X1) + · · ·+mp(Xp) + ε(1.1)

or varying coefficient models (Cleveland, Grosse and Shyu 1992)

Y = a1(U)X1 + · · ·+ ap(U)Xp + ε,(1.2)

where U and X1, · · · , Xp are covariates. After fitting these models, one often asks if
certain parametric forms such as linear models fit the data adequately. This amounts
to testing if each additive component is linear in the additive model (1.1) or if the
coefficient functions in (1.2) are not varying. In both cases, the null hypothesis is
parametric while the alternative is nonparametric. The empirical likelihood and
random sieve likelihood methods can not be applied directly to such problems. It
also arises naturally if certain variables are significant in the models such as (1.1)
and (1.2). This reduces to testing if certain functions in (1.1) or (1.2) are zero
or not. For these cases, both null and alternative hypotheses are nonparametric.
While these problems arise naturally in nonparametric modeling and appear often
in model diagnostics, we do not yet have a generally acceptable method that can
tackle these kinds of problems.

1.2. Generalized likelihood ratios. An intuitive approach to handling the afore-
mentioned testing problems is based on discrepancy measures (such as the L2 and
L∞ distances) between the estimators under null and alternative models. This is
a generalization of the Kolmogorov-Smirnov and the Cramér-von Mises types of
statistics. We contend that such a kind of method is not as fundamental as likeli-
hood ratio based tests. Firstly, choices of measures and weights can be arbitrary.
Take for example the problem of testing H0 : m1(·) = m2(·) = 0 in model (1.1).
The test statistic based on a discrepancy method is T = c1‖m̂1‖+c2‖m̂2‖. One has
not only to choose the norm ‖ · ‖ but also to decide the weights c1 and c2. Secondly,
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the null distribution of the test statistic T is in general unknown and depends crit-
ically on the nuisance functions m3, · · · ,mp. This hampers the applicability of the
discrepancy based methods.

To motivate the generalized likelihood ratio statistics, let us begin with a simple
nonparametric regression model. Suppose that we have n data {(Xi, Yi)} sampled
from the nonparametric regression model:

Yi = m(Xi) + εi, i = 1, · · · , n,(1.3)

where {εi} are a sequence of i.i.d. random variables from N(0, σ2) and Xi has a
density f with support [0, 1]. Suppose that the parameter space is

Fk = {m ∈ L2[0, 1] :
∫ 1

0

m(k)(x)2dx ≤ C},(1.4)

for a given C. Consider the testing problem:

H0 : m(x) = α0 + α1x ←→ H1 : m(x) 6= α0 + α1x.(1.5)

Then, the conditional log-likelihood function is

`n(m) = −n log(
√

2πσ)− 1
2σ2

n∑
i=1

(Yi −m(Xi))2.

Let (α̂0, α̂1) be the maximum likelihood estimator (MLE) under H0, and m̂MLE(·)
be the MLE under the full model:

min
n∑
i=1

(Yi −m(Xi))2, subject to
∫ 1

0

m(k)(x)2dx ≤ C.

The resulting estimator m̂MLE is a smoothing spline. Define the residual sum of
squares RSS0 and RSS1 as follows:

RSS0 =
n∑
i=1

(Yi − α̂0 − α̂1Xi)2, RSS1 =
n∑
i=1

(Yi − m̂MLE(Xi))2.(1.6)

Then it is easy to see that the logarithm of the conditional maximum likelihood
ratio statistic for the problem (1.5) is given by

λn = `n(m̂MLE)− `n(H0) =
n

2
log

RSS0

RSS1
≈ n

2
RSS0 − RSS1

RSS1
.

Interestingly, the maximum likelihood ratio test is not optimal due to its restric-
tive choice of smoothing parameters. See Section 2.2. It is not technically convenient
to manipulate either. In general, MLEs (if exist) under nonparametric regression
models are hard to obtain. To attenuate these difficulties, we replace the maximum
likelihood estimator under the alternative nonparametric model by any reasonable
nonparametric estimator, leading to the generalized likelihood ratio

λn = `n(H1)− `n(H0),(1.7)

where `n(H1) is the log-likelihood with unknown regression function replaced by a
reasonable nonparametric regression estimator. A similar idea appears in Severini
and Wong (1992) for construction of semi-parametric efficient estimators. Note that
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we do not require that the nonparametric estimator belongs to Fk. This relaxation
extends the scope of applications and removes the impractical assumption that the
constant C in (1.4) is known. Further, the smoothing parameter can now be selected
to optimize the performance of the likelihood ratio test. For ease of presentation,
we will call λn as a generalized likelihood ratio statistic.

The above generalized likelihood method can readily be applied to other sta-
tistical models such as additive models, varying-coefficient models, and any non-
parametric regression model with a parametric error distribution. One needs to
compute the likelihood function under null and alternative models, using suitable
nonparametric estimators. We would expect the generalized likelihood ratio tests
are powerful for many nonparametric problems with proper choice of smoothing
parameters. Yet, we will only verify the claim based on the local polynomial fitting
and some sieve methods, due to their technical trackability.

1.3. Wilks phenomenon. We will show in Section 3 that based on the local
linear estimators (Fan, 1993), the asymptotic null distribution of the generalized
likelihood ratio statistic is nearly χ2 with large degrees of freedom in the sense that

rλn
a∼ χ2

bn(1.8)

for a sequence bn →∞ and a constant r, namely, (2bn)−1/2(rλn − bn) L−→ N(0, 1).
The constant r is shown to be near 2 for several cases. The distribution N(bn, 2bn)
is nearly the same as the χ2 distribution with degrees of freedom bn. This is an ex-
tension of the Wilks type of phenomenon, by which, we mean that the asymptotic
null distribution is independent of the nuisance parameters α0, α1 and σ and the
nuisance design density function f . With this, the advantages of the classical like-
lihood ratio tests are fully inherited: one makes a statistical decision by comparing
likelihood under two competing classes of models and the critical value can easily
be found based on the known null distribution N(bn, 2bn) or χ2

bn
. Another impor-

tant consequence of this result is that one does not have to derive theoretically
the constants bn and r in order to be able to use the generalized likelihood ratio
test. As long as the Wilks type of results hold, one can simply simulate the null
distributions and hence obtains the constants bn and r. This is in stark contrast
with other types of tests whose asymptotic null distributions depend on nuisance
parameters. Another striking phenomenon is that the Wilks type of results hold in
the nonparametric setting even though the estimators under alternative models are
not MLE. This is not true for parametric likelihood ratio tests.

The above Wilks phenomenon holds by no coincidence. It is not monopolized by
the nonparametric model (1.3). In the exponential family of models with growing
number of parameters, Portnoy (1988) showed that the Wilks type of result contin-
ues to hold in the same sense as (1.8). Furthermore, Murphy (1993) demonstrated
a similar type of result for the Cox proportional hazards model using a simple sieve
method (piecewise constant approximation to a smooth function). We conjecture
that it is valid for a large class of nonparametric models, including additive models
(1.1). To demonstrate its versatility, we consider the varying-coefficient models (1.2)
and the testing problem H0 : a1(·) = 0. Let â0

2(·), · · · , â0
p(·) be nonparametric esti-
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mators based on the local linear method under the null hypothesis and let `n(H0)
be the resulting likelihood. Analogously, the generalized likelihood under H1 can be
formed. If one wishes to test if X1 is significant, the generalized likelihood ratio test
statistic is simply given by (1.7). We will show in Section 3 that the asymptotic null
distribution is independent of the nuisance parameters and nearly χ2-distributed.
The result is striking because the null hypothesis involves many nuisance functions
a2(·), · · · , ap(·) and the density of U . This lends further support of the generalized
likelihood ratio method.

The above Wilks phenomenon holds also for testing homogeneity of the coefficient
functions in model (1.2), namely, for testing if the coefficient functions are really
varying. See Section 4.

1.4. Optimality. Apart from the nice Wilks phenomenon it inherits, the gener-
alized likelihood method based on some special estimator is asymptotically optimal
in the sense that it achieves optimal rates for nonparametric hypothesis testing ac-
cording to the formulation of Ingster(1993) and Spokoiny (1996). We first develop
the theory under the Gaussian white noise model in Section 2. This model ad-
mits simpler structure and hence allows one to develop deeper theory. Nevertheless,
this model is equivalent to the nonparametric regression model shown by Brown
and Low (1996) and to the nonparametric density estimation model by Nussbaum
(1996). Therefore, our minimax results and their understanding can be translated
to the nonparametric regression and density estimation settings. We also develop an
adaptive version of the generalized likelihood ratio test, called the adaptive Neyman
test by Fan (1996), and show that the adaptive Neyman test achieves minimax op-
timal rates adaptively. Thus, the generalized likelihood method is not only intuitive
to use, but also powerful to apply.

The above optimality results can be extended to nonparametric regression and
the varying coefficients models. The former is a specific case of the varying coefficient
models with p = 1 and X1 = 1. Thus, we develop the results under the latter
multivariate models in Section 3. We show that under the varying coefficient models,
the generalized likelihood method achieves the optimal minimax rate for hypothesis
testing. This lends further support for the use of the generalized likelihood method.

1.5. Related literature. Recently, there are many collective efforts on hypothesis
testing in nonparametric regression problems. Most of them focus on one dimen-
sional nonparametric regression models. For an overview and references, see the
recent book by Hart (1997).

An early paper on nonparametric hypothesis testing is Bickel and Rosenblatt
(1973) where the asymptotic null distributions were derived. Azzalini, Bowman
and Härdle (1989) and Azzalini and Bowman (1993) introduced to use F-type of
test statistic for testing parametric models. Bickel and Ritov (1992) proposed a
few new nonparametric testing techniques. Härdle and Mammen (1993) studied
nonparametric test based on an L2-distance. In the Cox’s hazard regression model,
Murphy (1993) derived a Wilks type of result for a generalized likelihood ratio
statistic based on a simple sieve estimator. Various recent testing procedures are
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motivated by the seminal work of Neyman (1937). Most of them focus on selecting
the smoothing parameters of the Neyman test and studying their properties of the
resulting procedures. See for example Eubank and Hart (1992), Eubank and LaRic-
cia (1992), Inglot, Kallenberg and Ledwina (1997), Kallenberg and Ledwina (1994),
Kuchibhatla and Hart (1996), among others. Fan (1996) proposed simple and pow-
erful methods for constructing tests based on Neyman’s truncation and wavelet
thresholding. It was shown in Spokoiny (1996) that wavelet thresholding tests are
nearly adaptively minimax. The asymptotic optimality of data-driven Neyman’s
tests was also studied by Inglot and Ledwina (1996).

Hypothesis testing for multivariate regression problems is difficult due to the
curse of dimensionality. In bivariate regression, Aerts et al. (1999) constructed tests
based on orthogonal series. Fan and Huang (1998) proposed various testing tech-
niques based on the adaptive Neyman test for various alternative models in multiple
regression setting. These problems become conceptually simple by using our gener-
alized likelihood method.

1.6. Outline of the paper. We first develop the generalized likelihood ratio test
theory under the Gaussian white noise model in Section 2. While this model is
equivalent to a nonparametric regression model, it is not very convenient to trans-
late the null distribution results and estimation procedures to the nonparametric
regression model. Thus, we develop in Section 3 the Wilks type of results for the
varying-coefficient model (1.2) and the nonparametric regression model (1.3). Lo-
cal linear estimators are used to construct the generalized likelihood ratio test. We
demonstrate the Wilks type of results in Section 4 for model diagnostics. In partic-
ular, we show that the Wilks type of results hold for testing homogeneity and for
testing significance of variables. We also demonstrate that the generalized likelihood
ratio tests are asymptotically optimal in the sense that they achieve optimal rates
for nonparametric hypothesis testing. The results are also extended to generalized
varying coefficient models in Section 5. The merits of the generalized likelihood
method and its various applications are discussed in Section 6. Technical proofs are
outlined in Section 7.

2. Maximum likelihood ratio tests in Gaussian white noise model.
Suppose that we have observed the process Y (t) from the following Gaussian white
noise model

dY (t) = φ(t)dt+ n−1/2dW (t), t ∈ (0, 1)(2.1)

where φ is an unknown function and W (t) is the Wiener process. This ideal model
is equivalent to models in density estimation and nonparametric regression (Nuss-
baum 1996 and Brown and Low 1996) with n being sample size. The minimax results
under model (2.1) can be translated to these models for bounded loss functions.

By using an orthonormal series (e.g. the Fourier series), model (2.1) is equivalent
to the following white noise model:

Yi = θi + n−1/2εi, εi ∼i.i.d. N(0, 1), i = 1, 2, · · ·(2.2)
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where Yi, θi and εi are the i-th Fourier coefficients of Y (t), φ(t) and W (t), respec-
tively. For simplicity, we consider testing the simple hypothesis:

H0 : θ1 = θ2 = · · · = 0,(2.3)

namely, testing H0 : φ ≡ 0 under model (2.1).

2.1. Neyman test. Consider the class of functions, which are so smooth that
the energy in high frequency components is zero, namely

F = {θ : θm+1 = θm+2 = · · · = 0},

for some given m. Then twice the log-likelihood ratio test statistic is

TN =
m∑
i=1

nY 2
i .(2.4)

Under the null hypothesis, this test has a χ2 distribution with degrees of freedom
m. Hence, TN ∼ AN(m, 2m). The Wilks type of results hold trivially for this simple
problem even when m tends to ∞. See Portnoy (1988) where he obtained a Wilks
type of result for a simple hypothesis of some pn dimensional parameter in a regular
exponential family with p

3/2
n /n→ 0.

By tuning the parameter m, the adaptive Neyman test can be regarded as a
generalized likelihood ratio test based on the sieve approximation. We will study
the power of this test in Section 2.4.

2.2. Maximum likelihood ratio tests for Sobolev classes. We now consider the
parameter space Fk = {θ :

∑∞
j=1 j

2kθ2
j ≤ 1} where k > 1/2 is a positive constant.

By the Parseval identity, when k is a positive integer, this set in the frequency
domain is equivalent to the Sobolev class of functions {φ : ‖φ(k)‖ ≤ c} for some
constant c. For this specific class of parameter spaces, we can derive explicitly
the asymptotic null distribution of the maximum likelihood ratio statistic. The
asymptotic distribution is not exactly χ2. Hence, the traditional Wilks theorem
does not hold for infinite dimensional problems. This is why we need an enlarged
view of the Wilks phenomenon.

It can easily be shown that the maximum likelihood estimator under the param-
eter space Fk is given by

θ̂j = (1 + ξ̂j2k)−1Yj ,

where ξ̂ is the Lagrange multiplier, satisfying the equation
∑∞
j=1 j

2kθ̂2
j = 1. The

function F (ξ) =
∑∞
j=1 j

2k(1+ξj2k)−2Y 2
j is a decreasing function of ξ in [0,∞), sat-

isfying F (0) =∞ and F (∞) = 0, almost surely. Thus, the solution F (ξ̂) = 1 exists
and is unique almost surely. The asymptotic expression of ξ̂ depends on unknown
θ and is hard to obtain. However, for deriving the asymptotic null distribution of
the maximum likelihood ratio test, we need only an explicit asymptotic expression
of ξ̂ under the null hypothesis (2.3).
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Lemma 2.1. Under the null hypothesis (2.3),

ξ̂ = n−2k/(2k+1)

{∫ ∞
0

y2k

(1 + y2k)2
dy

}2k/(2k+1)

{1 + op(1)}.

The maximum likelihood ratio statistic for the problem (2.3) is given by

λ∗n =
n

2

∞∑
j=1

(
1− j4k ξ̂2

(1 + j2k ξ̂)2

)
Y 2
j .(2.5)

In Section 7 we show the following result.

Theorem 1. Under the null hypothesis (2.3), the normalized maximum likeli-
hood ratio test statistic has the asymptotic χ2 distribution with degree of freedom an:
rkλ
∗
n
a∼ χ2

an , where

rk =
4k + 2
2k − 1

, an =
(2k + 1)2

2k − 1

[
π

4k2 sin( π2k )

]2k/(2k+1)

n1/(2k+1).

Table 1

Constants rk (r′k in Theorem 3) and degrees of freedom in Theorem 1

k 1 2 3 4 5

rk 6.0000 3.3333 2.8000 2.5714 2.4444
an, n = 50 28.2245 6.5381 3.8381 2.8800 2.4012
an, n = 200 44.8036 8.6270 4.6787 3.3596 2.7237
an, n = 800 71.1212 11.3834 5.7034 3.9190 3.0895

r′k 3.6923 2.5600 2.3351 2.2391 2.1858

It is clear from Theorem 1 that the classical Wilks type of results do not hold
for infinite dimensional problems because rk 6= 2. However, an extended version
holds: asymptotic null distributions are independent of nuisance parameters and
nearly χ2-distributed. Table 1 gives numerical values for constant rk and degrees
of freedom an. Note that as the degree of smoothness k tends to ∞, rk → 2.

Surprisingly, the maximum likelihood ratio test can not achieve the optimal
rate for hypothesis testing (see Theorem 2 below). This is due to the fact the
smoothing parameter ξ̂ determined by

∑∞
j=1 j

2kθ̂2
j = 1 is too restrictive. This is

why we need generalized likelihood ratio tests which allow one the flexibility of
choosing smoothing parameters.

Theorem 2. There exists a θ ∈ Fk satisfying ‖θ‖ = n−(k+d)/(2k+1) with d >
1/8 such that the power function of the maximum likelihood ratio test at the point θ
is bounded by α, namely,

lim supPθ{rkλ∗n > an + zα(2an)1/2} ≤ α,

where zα is the upper α quantile of the standard normal distribution.
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Thus, the maximum likelihood ratio test λ∗n can detect alternatives with a rate
no faster than n−(k+d)/(2k+1). When k > 1/4, by taking d sufficiently close to 1/8,
the rate n−(k+d)/(2k+1) is slower than the optimal rate n−2k/(4k+1) given in Ingster
(1993).

2.3. Generalized likelihood ratio tests. As demonstrated in Section 2.2, maxi-
mum likelihood ratio tests are not optimal due to restrictive choice of smoothing
parameters. Generalized likelihood tests remove this restrictive requirement and
allow one to tune the smoothing parameter. For testing problem (2.3), we take the
generalized likelihood ratio test as

λn =
n

2

∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
Y 2
j ,(2.6)

with ξn = cn−4k/(4k+1) for some c > 0. This ameliorated procedure achieves the
optimal rate of convergence for hypothesis testing, which is stated as follows.

Theorem 3. Under the null hypothesis (2.3), r′kλn
a∼ χ2

a′n
, where

r′k =
2k + 1
2k − 1

· 48k2

24k2 + 14k + 1
,

a′n =
(2k + 1)2

2k − 1
· 24k2c−1/(2k)

24k2 + 14k + 1

[
π

4k2 sin( π2k )

]
n2/(4k+1).

Furthermore, for any sequence cn → ∞, the power function of the generalized like-
lihood ratio test is asymptotically one:

inf
θ∈Fk: ‖θ‖≥cnn−2k/(4k+1)

Pθ

{
r′kλn − a′n√

2a′n
> zα

}
→ 1.

2.4. Adaptive minimaxity. The maximum likelihood ratio statistic (2.5) and
the generalized likelihood statistic (2.6) depend critically on the value of k. Can
we construct an adaptive version that achieves adaptively the optimal rates of
convergence? The answer is affirmative and the construction is simple.

Based on power considerations, Fan (1996) proposed the following adaptive ver-
sion of the generalized likelihood ratio statistic (2.4):

T ∗AN = max
1≤m≤n

m∑
i=1

(nY 2
i − 1)/

√
2m.(2.7)

He called the testing procedure as the adaptive Neyman test. Note that the adaptive
Neyman test is simply the maximum of the normalized likelihood ratio statistic
(2.4). It does not depend on the degree of smoothness. Following Fan (1996), we
normalize the test statistic as

TAN =
√

2 log log nT ∗AN − {2 log log n+ 0.5 log log log n− 0.5 log(4π)}.

Then, under the null hypothesis (2.3), we have

P (TAN < x)→ exp(− exp(−x)), as n→∞.
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Thus, the critical region

TAN > − log{− log(1− α)}

has asymptotic significance level α. The power of the adaptive Neyman test is given
as follows. A similar version was presented in Fan and Huang (1998).

Theorem 4. The adaptive Neyman test can detect adaptively the alternatives
with rates

δn = n−2k/(4k+1)(log log n)k/(4k+1)

when the parameter space is Fk with unknown k. More precisely, for any sequence
cn →∞, the power function

inf
θ∈Fk: ‖θ‖≥cnδn

Pθ[TAN > − log{− log(1− α)}]→ 1.

The rate given in Theorem 4 is adaptively optimal in the sense that no testing
procedure can detect adaptively the alternative with a rate faster than δn, accord-
ing to Spokoiny (1996). Hence, the generalized likelihood ratio test achieves this
adaptive optimality.

Remark 2.1. By choosing the parameter m = O(n2/(4k+1)) when the parame-
ter space is Fk, the Neyman test can also detect alternatives with the optimal rate
O(n−2k/(4k+1)). This follows from the proof of Theorem 4. By choosing m to maxi-
mize (2.7), we obtain an adaptive version of the Neyman test, which is independent
of the degree of smoothness k. This test achieves the adaptive optimal rate because
the maximum of the partial sum process in (2.7) grows very slowly. This is why we
pay only a price of order (log log n) to achieve the adaptive minimax rate.

3. Generalized likelihood ratio tests in varying coefficient models. In
this section we develop asymptotic theory on the generalized likelihood ratio statis-
tics which are based on the local polynomial estimators and derive the optimal
minimax rates of the corresponding tests under model (1.2). Wilks phenomenon is
unveiled in this general setting.

Suppose {(Yi,Xi, Ui)}ni=1 are a random sample from the varying-coefficient
model (1.2). Namely,

Y = A(U)τX + ε, ε ∼ N(0, σ2),

with X = (X1, · · · , Xp)τ , U = (U1, · · · , Uq)τ , and A(U) = (a1(U), · · · , ap(U))τ . For
simplicity, we consider only q = 1. Extensions to the multi-dimensional case are
similar. Consider the simple null hypothesis testing problem:

H0 : A = A0, ←→ H1 : A 6= A0.(3.1)

We use the local linear approach to construct a generalized likelihood ratio statistic.
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For each given u0, let β(u0) = (A(u0)τ , hA′(u0)τ )τ . Let β = (A∗, hBτ )τ . where
A∗ and B are vectors of p-dimensions. Then, the local log-likelihood at the given
point u0 is given by

l(β) = −n log(
√

2πσ)− 1
2σ2

n∑
i=1

(Yi − βτZi)2Kh(Ui − u0),

where Zi = Zi(u0) = (Xτ
i , (Ui − u0)/hXτ

i )τ and Kh(·) = K(·/h)/h with K be-
ing a symmetric probability density function and h a bandwidth. Then, the local
maximum likelihood estimator, denoted by β̂(u0), is defined as argmax l(β). The
corresponding estimator of A(u0) is denoted by Â(u0). Using this nonparametric
estimator, the likelihood under model (1.2) is

−n log(
√

2πσ)− RSS1/(2σ2),

where RSS1 =
∑n
k=1(Yk − Â(Uk)τXk)2. Maximizing over the parameter σ2 leads

to the generalized likelihood under model (1.2):

`n(H1) = −(n/2) log(2π/n)− (n/2) log(RSS1)− n/2.

Similarly, the maximum likelihood under H0 can be expressed as

`n(H0) = −(n/2) log(2π/n)− (n/2) log(RSS0)− n/2,

where RSS0 =
∑n
k=1(Yk − A0(Uk)τXk)2. Now, the generalized likelihood ratio

statistic is

λn(A0) = [`n(H1)− `n(H0)] =
n

2
log

RSS0

RSS1
≈ n

2
RSS0 − RSS1

RSS1
,(3.2)

In general, the above approach can often be extended to the composite null
hypothesis testing problem:

H0 : A ∈ A0, ←→ H1 : A 6∈ A0(3.3)

where A0 is a set of functions. As before, we can use the local linear estimator
to construct the log-likelihood `n(H1) for H1. Assume that we can use MLE or
some local linear estimators to build the log-likelihood `n(H0). Let A′0 denote the
true value of the parameter A. Then the generalized likelihood ratio λn(A0) for the
testing problem (3.3) can be decomposed as

λn(A0) = λn(A′0)− λ∗n(A′0),(3.4)

where λn(A′0) = `n(H1)− `n(H ′0) is the generalized likelihood ratio for the hypoth-
esis testing problem

H ′0 : A = A′0, ←→ H1 : A 6= A′0

and λ∗n(A′0) = `n(H0)−`n(H ′0) is the likelihood ratio for another hypothesis testing
problem

H ′0 : A = A′0, ←→ H ′1 : A ∈ A0.
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The above two hypothesis problems are fabricated because A′0 is unknown. There-
fore the generalized likelihood ratio for the composite null hypothesis can be decom-
posed into two generalized likelihood ratios for two fabricated simple null hypothesis
problems. As in the proof of Theorem 5, generally the asymptotic representation
of the generalized likelihood ratio for the composite null hypothesis can be de-
rived from those of the above fabricated simple null hypothesis problems. Then,
the asymptotic theory for composite null hypothesis can be easily obtained (see the
proofs of Theorems 6 and 9, Remark 3.4 and the results in Fan and Zhang (1999)).
Thus, we focus first on the simple null hypothesis testing problem (3.2). In order
to include the above fabricated testing problems, we assume that A0 is unknown.
We should point out that for model (1.2), when A0 is known, the testing problem
(3.2) is equivalent to the problem H0 : A = 0 by a simple transform.

3.1. Asymptotic null distribution. To derive the asymptotic distribution of
λn(A0) under H0, we need the following conditions.
Condition (A)

(A1) The marginal density f(u) of U is Lipschitz continuous and bounded away
from 0. U has a bounded support Ω.

(A2) A(u) has the continuous second derivative.

(A3) The function K(t) is symmetric and bounded. Further, the functions t3K(t)
and t3K ′(t) are bounded and

∫
t4K(t)dt <∞.

(A4) E|ε|4 <∞.

(A5) X is bounded. The p× p matrix E(XXτ |U = u) is invertible for each u ∈ Ω.
(E(XXτ |U = u))−1 and E(XXτσ2(X, U)|U = u) are both Lipschitz contin-
uous.

These conditions are imposed to facilitate the technical arguments. They are not
weakest possible. In particular, (A5) in Condition (A) can be relaxed by using the
method in Lemma 7.4 in Zhang and Gijbels (1999). For example, we can replace the
assumption that X is bounded in (A5) by the assumption that E exp(c0||X||) <∞
for some positive constant c0. The following results continue to hold.

Note that in the above conditions, the normality of ε is not needed. Define

Γ(u) = E[XXτ |U = u]f(u), w0 =
∫ ∫

t2(s+ t)2K(t)K(s+ t)dtds.

Let εi = Yi −A0(U)τXi. Set

Rn10 =
1√
n

n∑
i=1

εiA
′′
0(Ui)τXi

∫
t2K(t)dt(1 +O(h) +O(n−1/2)),

Rn20 =
1
2

1√
n

n∑
i=1

εiXτ
i Γ(Ui)−1A′′0(Ui)τE(Xi|Ui)w0,

Rn30 =
1
8
EA′′0(U)τXXτA′′0(U)w0(1 +O(n−1/2)),
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µn =
p|Ω|
h

(K(0)− 1
2

∫
K2(t)dt),

σ2
n =

2p|Ω|
h

∫
(K(t)− 1

2
K ∗K(t))2dt,

d1n = σ−2{nh4Rn30 − n1/2h2(Rn10 −Rn20)} = Op(nh4 + n1/2h2),

where K ∗ K denotes the convolution of K. Note that both Rn10 and Rn20 are
asymptotically normal and hence are stochastically bounded.

We now describe our generalized Wilks type of theorem as follows:

Theorem 5. Suppose Condition (A) holds. Then, under H0, as h → 0,
nh3/2 →∞,

σ−1
n (λn(A0)− µn + d1n) L−→ N(0, 1).

Furthermore, if A0 is linear or nh9/2 → 0, then as nh3/2 →∞, rKλn(A0) a∼ χ2
rKµn ,

where

rK =
K(0)− 1

2

∫
K2(t)dt∫

(K(t)− 1
2K ∗K(t))2dt

.

Remark 3.1. As pointed out before, for model (1.2), when A0 is known, the
testing problem (3.2) is equivalent to the problem H0 : A = 0 ←→ H1 : A 6= 0
by a simple transform. Hence, the condition in the second part of the theorem always
holds and so does the Wilks phenomenon. Further, when nh5 → 0, the mean and
variance of λn is free of nuisance parameters up to the first order because d1n =
o(µn). In this relaxed sense, even if A0 is unknown, the Wilks phenomenon is valid
when the condition nh9/2 → 0 is relaxed as nh5 → 0.

Remark 3.2. The degree of freedom in the asymptotic distribution depends on
p|Ω|/h. This can intuitively be understood as follows. If one partitions the support
of U into intervals of length h and uses piecewise constant functions to model the
functions in A, then we have total number of parameters p|Ω|/h under model (1.2).
In this view, local linear fits can also be regarded as sieve approximation to nonpara-
metric functions with effective number of parameters rKµn.

Remark 3.3. If local polynomial estimators of degree v instead of the local linear
estimators are used to construct the above generalized likelihood ratio, then the result
holds when K is replaced by its equivalent kernel induced by the local polynomial
fitting (Fan and Gijbels, 1996). In this case, the second part of Theorem 5 is replaced
by the condition that either A0 is a polynomial of degree v or nh(4v+5)/2 → 0.

Remark 3.4. Suppose Condition (A) holds and the second term in (3.4) is
op(h−1/2) (for example, in testing a parametric model, under some regularity con-
ditions this term equals Op(1)). Then it follows directly from Theorem 5 that under
the null hypothesis (3.3) the result in Theorem 5 continues to hold.
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We now consider the more challenging and more interesting case where null
hypotheses depend on many nuisance functions. Nevertheless, we will show that
asymptotic null distributions are independent of the nuisance functions. Write

A0(u) =
(
A10(u)
A20(u)

)
, A(u) =

(
A1(u)
A2(u)

)
, Xk =

(
X(1)
k

X(2)
k

)
, Zk =

(
Z(1)
k

Z(2)
k

)

where A10(u), A1(u), X(1)
k and Z(1)

k are p1(< p) dimensional. Consider the testing
problem

H0u : A1 = A10 ←→ H1u : A1 6= A10(3.5)

with A2(·) completely unknown. For the same purpose mentioned above, (3.5) is
allowed to be a fictitious testing problem in which the function A10 is unknown.
Following the same derivations, the logarithm of the generalized likelihood ratio
statistic is given by

λnu(A10) = λn(A0)− λn2(A20|A10)

with λn(A0) the full likelihood ratio defined in (3.2) and

λn2(A20|A10) =
n

2
log

RSS0

RSS2

where

RSS2 =
n∑
k=1

(Yk −A10(Uk)τX(1)
k − Ã2(Uk)τX(2)

k )2.

Here Ã2(Uk)τ is the local linear estimator at Uk when A10 is given.
Recall that Γ(u) = E[XXτ |U = u]f(u). Write

Γ =
(

Γ11 Γ12

Γ21 Γ22

)
, and Γ11,2 = Γ11 − Γ12Γ−1

22 Γ21,

where Γ11,Γ12,Γ21,Γ22 are p1 × p1, p1 × p2, p2 × p1 and p2 × p2 matrices and
p2 = p − p1. Define µnu and σnu the same as µn and σn except replacing p by p1.
Similarly, define d1nu by replacing X and Γ respectively by X(1) − Γ12Γ22X(2) and
Γ11,2 in the definition of d1n.

Theorem 6. Suppose Condition (A) holds. Then, under H0u in (3.5), as
nh3/2 →∞ and h→ 0, we have

σ−1
n (λnu(A0)− µnu + d1nu) L−→ N(0, 1).

In addition, if A0 is linear or nh9/2 → 0, then

rKλnu(A0) a∼ χ2
rKµnu .

Theorem 6 provides convincing evidence that the Wilks type of phenomenon
holds for generalized likelihood ratio tests with composite hypotheses.
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3.2. Power approximations and minimax rates. We now consider the power of
generalized likelihood ratio tests based on local linear fits. For simplicity of our
discussion, we focus only on the simple null hypothesis (3.1). As noted in Remark
3.1, one can assume without loss of generality that A0 = 0. But, we don’t take this
option because we want to examine the impact of biases on generalized likelihood
ratio tests. This has implications to the case of composite hypothesis (3.5) because
the biases inherited in that problem are genuine.

When A0 is linear, the bias term in Theorem 5 will be zero. When A0 is not linear,
we will assume that hn = o(n−1/5) so that the second term in the definition of d1n is
of smaller order than σn. As to be seen in Theorem 8, the optimal choice of h for the
testing problem (3.1) is h = O(n−2/9), which satisfies the condition h = o(n−1/5).
Under these assumptions, if nh3/2 → ∞, by Theorem 5, an approximate level α
test based on the generalized likelihood ratio statistic is

φ ≡ φh = I{λn(A0)− µn + v̂n ≥ zασn},

where with σ̂2 = RSS1/n,

v̂n =
1
8
nh4σ̂−2EA′′0(U)τXXτA′′0(U)

∫ ∫
t2(s+ t)2K(t)K(s+ t)dtds.

The power of the test under the contiguous alternative of form

H1n : A(u) = A0(u) +Gn(u),

can be approximated by using the following theorem, whereGn(u) = (g1n(u), · · · , gpn(u))τ )
is a vector-valued function.

Theorem 7. Suppose that Condition (A) hold and that A0 is linear or nh5 → 0.
If

nhEGτn(U)XXτGn(U)→ C(G) and E(Gτn(U)XXτGn(U)ε2)2 = O((nh)−3/2),

for some constant C(G), then under H1n

(λn(A0)− µn + v̂n + v2n − d2n)/σ∗n
L−→ N(0, 1),

where

d2n =
n

2
EGτn(U)XXτGn(U),

σ∗n =
√
σ2
n + nσ−2EGτn(U)XXτGn(U),

v2n =
nh4

8σ2
EG′′n(U)τXXτG′′n(U)

∫ ∫
t2(s+ t)2K(t)K(s+ t)dtds.

Theorem 7 can be extended readily to generalized likelihood ratio tests based on
local polynomial estimators of degree v and to the case with nuisance parameter
functions. It allows functions Gn of forms not only gn(u) = (nh)−1/2g(u), but
also gn(u) = a−2

n g(anu) with an = (nh)−1/5. The former function has a second
derivative tending to zero, which is restrictive in nonparametric applications. The
latter function has also a bounded second derivative, which does not always tend to
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zero, when g is twice differentiable. This is still not the hardest alternative function
to be tested. A harder alternative can be constructed as follows. Let {uj} be a grid of
points with distance a−1

n apart and g be a twice differentiable function with support
[0, 1]. Then, Theorem 7 also allows functions of form gn(u) = a−2

n

∑
j g(an(u−uj))

with an = (nh)−1/4.
We now turn to studying the optimal property of the generalized likelihood ratio

test. We first consider the class of functions Gn, satisfying the following regularity
conditions:

var(Gτn(U)XXτGn(U)) ≤M(EGτn(U)XXτGn(U))2,

nEGτn(U)τXXτGn(U) > Mn →∞,(3.6)

EG′′n(U)τXXτG′′n(U) ≤M,

for some constants M > 0 and Mn →∞. For a given ρ > 0, let

Gn(ρ) = {Gn ∈ Gn : EGτn(U)XXτGn(U) ≥ ρ2}.

Then the maximum of the probabilities of type II errors is given by

β(α, ρ) = sup
Gn∈Gn(ρ)

β(α,Gn),

where β(α,Gn) = P (φ = 0|A = A0 +Gn) is the probability of type II error at the
alternative A = A0 +Gn. The minimax rate of φ is defined as the smallest ρn such
that

(i) for every ρ > ρn, α > 0, and for any β > 0, there exists a constant c such
that β(α, cρ) ≤ β + o(1);

(ii) for any sequence ρ∗n = o(ρn), there exist α > 0, β > 0 such that for any c > 0,
P (φ = 1|A = A0) = α+ o(1) and lim infn β(α, cρ∗n) > β.

It measures how close the alternatives that can be detected by the generalized likeli-
hood ratio test φh. The rate depends on the bandwidth h. To stress its dependence,
we write it as ρn(h).

Theorem 8. Under Condition (A), the generalized likelihood can detect alter-
natives with rate ρn(h) = n−4/9 when h = c∗n

−2/9 for some constant c∗.

Remark 3.5. When p = 1 and X ≡ 1, the varying-coefficient model becomes an
ordinary nonparametric regression model. In this case, Lepski and Spokoiny (1995)
proved the optimal rate for testing H0 is n−4/9. Thus the generalized likelihood ratio
test is optimal in the sense that it achieves the optimal rate of convergence. Similarly,
we can show the generalized likelihood ratio test, constructed by using local polynomial
of order v, can detect alternatives with rate n−2(v+1)/(4v+5), uniformly in the class
of functions satisfying

E[G(v+1)
n (U)τX]2 < M,

for some M < ∞. The corresponding optimal bandwidth is c∗n−2/(4v+5) for some
constant c∗.
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Remark 3.6. In the proof of Theorem 8, we in fact show that the bandwidth h =
c∗n
−2/9 is optimal, optimizing the rate of ρn(h), subject to the following constrains:

(a) h→ 0 and nh3/2 →∞, if A0 is linear.

(b) nh→∞ and nh5 → 0, if A0 is non-linear with continuous second derivatives.

4. Model diagnostics. In this section, we demonstrate how the generalized
likelihood ratio tests can be applied to check the goodness-of-fit for a family of
parametric models. This kind of problems occur very often in practice. Our results
apply readily to this kind of problems. We also note that the Wilks phenomenon
continue to hold under general heteroscedastic regression models.

4.1. Testing linearity. Consider the nonparametric regression model (1.3) and
the testing problem

H0 : m(x) = α0 + α1x ←→ H1 : m(x) 6= α0 + α1x,

where α0 and α1 are unknown parameters. Following the same derivations as in
Section 3, generalized likelihood ratio tests based on local linear fits are given by

λn = [`n(H1)− `n(H0)] =
n

2
log

RSS0

RSS1
,

where RSS0 =
∑n
i=1(Yi − α̂0 − α̂1Xi)2 and RSS1 =

∑n
i=1(Yi − m̂h(Xi))2. By

using Remark 3.4, one can easily see that Wilks type of results hold under the null
hypothesis:

rKλn
a∼ χ2

rKcK |Ω|/h,(4.1)

where Ω denotes the support of X, and

cK = K(0)− 2−1‖K‖22.

Note that when K(0) = max
x

K(x), we have K(0) ≥ ‖K‖22, cK ≥ 2−1K(0) and
whence rK > 0.

To help one determine the degree of freedom in (4.1), the values of rK and
cK are tabulated in Table 2 for a few commonly-used kernels. Among them, the
Epanechnikov kernel has the closest rK to 2.

Table 2

Values of rK and cK in (4.1)

Kernel Uniform Epanechnikov Biweight Triweight Gaussian

rK 1.2000 2.1153 2.3061 2.3797 2.5375
cK 0.2500 0.4500 0.5804 0.6858 0.7737

Two inter-relationships concerning the degrees of freedom will be exposed. If we
define a “smoothing matrix” H based on local linear estimates just as a projection
matrix P in the linear regression model, then under H0, RSS0−RSS1 = ετ (Hτ+H−
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HτH−P )ε. Denoting the bracket matrix as A, we have tr(A) ≈ 2cK |Ω|/h following
the proof of Theorem 5. Thus, tr(A) is approximately the degree of freedom only
when rK ≈ 2. The second one is to note that K(0) ≥ K ∗ K(0) = ‖K‖22 implies
approximately tr(HτH) ≤ tr(H) ≤ 2tr(H)− tr(HτH), a property holding exactly
for H based on smoothing splines in fixed designs [Hastie and Tibshirani (1990),
section 3.5].

Remark 4.1. When one wishes to test parametric families other than the linear
model such as H0 : m(x) = m(x, θ), then one can apply generalized likelihood ratio
tests to the residuals {Yi−m(Xi, θ̂)}, where m(Xi, θ̂) is a fitted value under the null
hypothesis. The Wilks type of result (4.1) continues to hold.

Remark 4.2. For more general regression model (1.3), where we assume only
E(ε|X = x) = 0 and E(ε2|X = x) = σ2(x), one can use the weighted residual sum
of squares:

RSS0 =
n∑
i=1

(Yi − α̂0 − α̂1Xi)2w(Xi), RSS1 =
n∑
i=1

(Yi − m̂h(Xi))2w(Xi).

If the weight function w(·) is continuous with a compact support contained in {x :
f(x) > 0}, then we can show that under H0, a generalized version of (4.1):

r′Kλn
a∼ χ2

a′n
,

where

r′K = rK [Eσ2(X)w(X)]
∫
σ2(x)w(x)dx

[∫
σ4(x)w2(x)dx

]−1

,

a′n = rKcKh
−1

[∫
σ2(x)w(x)dx

]2 [∫
σ4(x)w2(x)dx

]−1

.

When σ2(x) = v(x)σ2 for a known function v(x), the generalized likelihood ratio
test corresponds to using w(x) = v(x)−1. In this case, the Wilks type of result (4.1)
continues to hold.

4.2. Testing homogeneity. Consider the varying-coefficient model defined in
Section 3. A natural question arises in practice is if these coefficient functions are
really varying. This amounts to testing the following problem:

H0 : a1(U) = θ1, · · · , ap(U) = θp.

If the error distribution is homogeneous normal, then the generalized likelihood test
based on local linear fits is given by (3.2) with RSS0 =

∑n
i=1(Yi − θ̂τXi)2 where θ̂

is the least-square estimate under the null hypothesis.
To examine the property of the generalized likelihood ratio statistic (3.2) under

the general heteroscedastic model, we now only assume that

E(ε|X = x, U = u) = 0, E(ε2|X = x, U = u) = σ2(x, u),
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with a continuous function σ2(x, u). Strictly speaking, the statistic (3.2) is no longer
a generalized likelihood ratio test under this heteroscedastic model. The generalized
likelihood ratio test in this heteroscedastic case should involve weighted residual
sum of squares when σ2(x, u) = σ2v(x, u) for a given v. See Remark 4.2. Let

Γ∗(u) = E[XXτσ2(X, U)|U = u]f(u).

Then, we have the following result.

Theorem 9. Assume Condition (A). Then under H0, as h→ 0, nh3/2 →∞,

r′′Kλn
a∼ χ2

a′′n
,

where

r′′K = rK [Eσ2(X, U)]
∫

Ω

tr(Γ∗(u)Γ(u)−1)du
[∫

Ω

tr(Γ∗(u)Γ(u)−1)2du

]−1

,

a′′n = rKcKh
−1

[∫
Ω

tr(Γ∗(u)Γ(u)−1)du
]2 [∫

Ω

tr(Γ∗(u)Γ(u)−1)2du

]−1

.

It is clear that when σ2(x, u) = σ2, Theorem 9 reduces to Theorem 5 and (3.2)
is a generalized likelihood statistic. Hence the Wilks type of result continues to
hold for testing homogeneity. It can also be shown that the Wilks phenomenon
is still valid for the generalized likelihood ratio in the heteroscedastic model with
σ2(x, u) = σ2v(x, u), bearing in mind that generalized likelihood ratio statistics are
now based on weighted residual sum of squares.

5. Extensions. The Wilks type of results hold not only for the various prob-
lems that we have studied. They should be valid for nearly all regular nonparametric
testing problems. In this section, we mention various possible extensions to indicate
their versatility.

5.1. Generalized varying coefficient models. The inferences on generalized vary-
ing coefficient models have been empirically studied by Hastie and Tibshirani (1993)
and Cai, Fan and Li (2000). The results in the previous sections can be directly
extended to this setting.

Consider a generalized varying-coefficient model with the following log-likelihood
function

l{g−1(η(x, u)), y} = g0(g−1(η(x, u)))y − b(g0(g−1(η(x, u))))

where η(x, u) = g(m(x, u)) = A(u)τx, g is called a link function and g0 = b′

is the canonical link. Poisson regression and logistic regression are two prototype
examples.

Define

l(g−1(s), y) = g0(g−1(s))y − b(g0(g−1(s))),
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q1(s, y) =
∂l{g−1(s), y}

∂s
=
g′0(s)
g′(s)

(y − b′(s)),

q2(s, y) =
∂2l{g−1(s), y}

∂s2
= (g′′0/g

′ − g′0g′′/(g′2))(y − g−1(s))− g′0/(g′)2,

q3(s, y) =
∂3l{g−1(s), y}

∂s3

= (g′′′0 /g
′ − g′′0 g′′/g′2 − (g′′0 g

′′ + g′′′g′0)/g′2 + 2g′0g
′′2/g′3)(y − g−1(s))− 2g′′0/g

′2 − g′0g′′/g′3.

In particular, when g = g0 is the canonical link, we have

q2(s, y) = −b′′(s), q3(s, y) = −b′′′(s).

As in Section 3, we can define a local linear estimator Â for A. Lemma 7.5 yields
the following asymptotic representation for Â :

Â(u0)−A(u0) = r2
nΓ̃(u0)−1

n∑
i=1

εiXiK((Ui−u0)/h)(1+op(1))+Hn(u0)(1+op(1)),

where

Γ̃(u0) = −E[q2(Aτ (u0)X, Y )XXτ |U = u0]f(u0), εi = q1(A(Ui)τXi, Yi),

Hn(u0) = r2
nΓ̃(u0)−1

n∑
i=1

[q1(β(u0)τZi, Yi)− q1(A(Ui)τXi, Yi)]XiK((Ui − u0)/h).

The generalized likelihood ratio for testing the null hypothesis H0 : A = A0 is
defined as

λng(A0) = −
n∑
i=1

[l{g−1(Â(Ui)TXi), Yi} − l{g−1(Ai(Ui)τXi), Yi}].

Denote

qn∗ = qn∗(U,X, Y ) = sup
u0,||α||≤c1rn

|q2(β(u0)τZ(u0) + ατZ(u0), Y )|K(
U − uo
h

)

where rn = 1/
√
nh. For j = 1, 2, 3 and c1 > 0, define

Φnj = Φnj(U,X, Y ) = sup
uo,||α||≤c1rn

|q2(β(u0)τZ(u0)+ατZ(u0), Y )||U − u0

h
|j−1K(

U − u0

h
).

The following technical conditions are needed:
Condition (B)

(B1) E|q1(A(U)τX, Y )|4 <∞.

(B2) E[q2(A(U)τX)XXτ |U = u] is Lipschitz continuous.
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(B3) The function q2(s, y) < 0 for s ∈ R and y in the range of the response variable.
For some function q∗(y), si ∈ C, i = 1, 2, |q2(s1, y)−q2(s2, y)| ≤ q∗(y)|s1−s2|.
Further, for some constant ξ > 2,

E{Φnj(U,X, Y ) ||XXτ ||}ξ = O(1), j = 1, 2, 3,

Eqn∗(U,X, Y )||X||2 = O(1), Eq∗(Y )||X||3 <∞,

sup
u0,||α||≤c1rn

Eq2
2(β(u0)τZ(u0) + ατZ(u0), Y )K2((U − u0)/h)/h||XXτ ||2 = O(1), j = 1, 2, 3.

Set

Rn10g =
1√
n

n∑
i=1

εiA
′′
0(Ui)τXi

∫
t2K(t)dt(1 +O(h) +O(n−1/2)),

Rn20g = −1
2

1√
n

n∑
i=1

εiXτ
i Γ̃(Ui)−1A′′0(Ui)τE(q2(Aτ0(U)τX)X|Ui)w0,

Rn30g = −1
8
EA′′0(U)τq2(A0(U)τX, Y )XXτA′′0(U)w0(1 +O(n−1/2)),

where w0 =
∫ ∫

t2(s + t)2K(t)K(s + t)dtds. Note that both Rn10g and Rn20g are
asymptotic normal and hence stochastically bounded. Let d1ng = nh4Rn30g −
n1/2h2(Rn10g − Rn20g). Then, d1ng = nh4Rn30g(1 + op(1)) if n1/2h2 → ∞. The
following theorem shows that the Wilks type of results continue to hold for gener-
alized varying coefficient models.

Theorem 10. Under Conditions (A1) – (A3) and (B1) – (B3), as h → 0,
nh3/2 → ∞ and n(ξ−1)/ξh ≥ c0(log n)δ for some δ > (ξ − 1)/(ξ − 2), we have the
following asymptotic null distribution:

σ−1
n (λng(A0)− µn + d1ng)

L−→ N(0, 1).

Furthermore, if A is linear or nh9/2 → 0, then as nh → ∞, rKλng(A0) a∼ χ2
rKµn ,

where µn and rK are given in Theorem 5.

Extensions of the other theorems and the remarks in Section 3 are similar. In
particular the optimal minimax rate and the optimal bandwidth are the same as
those in Section 3. The generalized likelihood ratio tests can be employed to check
the inhomogeneity of the coefficient functions and significance of variables in the
generalized varying-coefficient models. The related theorems in Section 4 hold true
after some mild modifications. The details are omitted.

5.2. Empirical likelihoods. As pointed out in the introduction, neither Owen’s
empirical likelihood nor its extension, random sieve likelihood [Shen, Shi and Wong
(1999)] can be directly used to make inferences on a nonparametric regression func-
tion. However, the idea of sieve empirical likelihood [Zhang and Gijbels (1999)] can
be effective in this situation. In a forthcoming manuscript, Fan and Zhang (1999)
have developed the corresponding theory. The advantages of sieve empirical like-
lihood ratios include that no parametric models are needed for stochastic errors
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and that it adapts automatically for inhomogeneous stochastic errors. The main
disadvantage is that it requires intensive computation.

6. Discussion.

6.1. Other tests. There are many nonparametric tests designed for certain spe-
cific problems. Most of them are in univariate nonparametric regression setting. See
Section 1.5 for an overview of the literature. While they can be powerful for their
problems where the tests were designed, extensions of these tests to multivariate
setting can pose some challenges. Further, these tests are usually not distribution
free, when null hypotheses involve nuisance functions. This would hamper their
applicability.

Nonparametric maximum likelihood ratio tests are a natural alternative. Usually,
they do usually exist. If they do, they are hard to find. Further, as shown in Section
2.2, they are not optimal. For this reason, they can not be a generic and powerful
method.

6.2. Conclusions. The generalized likelihood method is widely applicable. It
applies not only to univariate setting, but also to multivariate nonparametric prob-
lems. It is ready to use because of the Wilks phenomenon. It is powerful since
it achieves optimal rates of convergence. It can also be adaptively minimax when
tuning parameters are properly tuned (Section 2.4). The tuning method for lo-
cal polynomial based generalized likelihood ratio test can be surprisingly simple.
Motivated by the adaptive Neyman test constructed in Fan (1996), when the null
hypothesis is linear, an adaptive construction of the generalized likelihood would
naturally be

T ∗ASL = max
h∈[n−a,n−b]

rλn(h)− d(h)√
2d(h)

, for some a, b > 0,(6.1)

where r is the normalizing constant, λn(h) is the generalized likelihood ratio test
and d(h) is the degrees of freedom. Therefore, the generalized likelihood is a very
useful principle for all nonparametric hypothesis testing problems.

While we have observed the Wilks phenomenon and demonstrated it for a few
useful cases, it is impossible for us to verify the phenomenon for all nonparametric
hypothesis testing problems. The Wilks phenomenon needs to be checked for other
problems that have not been covered in this paper. More work is needed in this
direction.

7. Proofs.

Proof of Lemma 2.1. For each given ξn,c = cn−2k/(2k+1) (c > 0), under the
null hypothesis (2.3), by using the mean-variance decomposition, we have

F (ξn,c) = n−1
∑ j2k

(1 + j2kξn,c)2
+Op

[
n−1{

∑ j4k

(1 + j2kξn,c)4
}1/2

]
.(7.1)
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Note that gn(x) = x2k

(1+x2kξn,c)2 is increasing for 0 ≤ x ≤ ξ−1/(2k)
n,c and decreasing for

x ≥ ξ
−1/(2k)
n,c . By using the unimodality of gn and approximating discrete sums by

their corresponding integrals, one can show that

n−1
∑ j2k

(1 + j2kξn,c)2
= c−(2k+1)/(2k)

∫ ∞
0

y2k

(1 + y2k)2
dy +O(n−1/(2k+1)).(7.2)

Using the same arguments as those obtaining (7.2), we have

n−1{
∑

j4k(1 + j2kξn,c)−4}1/2 = O[n−1/{2(2k+1)}].

This together with (7.1) and (7.2) yield

F (ξn,c) = (c0/c)(2k+1)/(2k) +Op(n−1/{2(2k+1)}),(7.3)

where c0 = (
∫∞

0
y2k(1 + y2k)−2dy)2k/(2k+1).

For any ε > 0, since the function F (x) is strictly decreasing,

P (|n2k/(2k+1)(ξ̂−ξn,c0)| > ε) = P (F (ξ̂) < F (ξn,c0+ε))+P (F (ξ̂) > F (ξn,c0−ε)) = o(1),

which implies ξ̂ − ξn,c0 = op(n−2k/(2k+1)).

Proof of Theorem 1. Define the j-th coefficients in F (ξ) and λ∗n as

F (j; ξ) =
j2k

(1 + j2kξ)2
, λ(j; ξ) =

1 + 2j2kξ

(1 + j2kξ)2
.

Then

F ′(j; ξ) = − 2j4k

(1 + j2kξ)3
, λ′(j; ξ) = − 2j4kξ

(1 + j2kξ)3
= ξF ′(j; ξ).(7.4)

Let c0 be defined the same as in Lemma 2.1. For any ηn,j between ξ̂ and ξn,c0 ,
it can easily be shown that

sup
j≥1

∣∣∣∣F ′(j; ηn,j)− F ′(j; ξn,c0)
F ′(j; ξn,c0)

∣∣∣∣ = op(1)(7.5)

and that for any ζn,j between ξ̂ and ξn,c0 ,

sup
j≥1

∣∣∣∣λ′(j; ζn,j)− λ′(j; ξn,c0)
λ′(j; ξn,c0)

∣∣∣∣ = op(1).(7.6)

Let λn(ξ) = 1
2

∑∞
j=1

1+2j2kξ
(1+j2kξ)2 ε

2
j . By using Taylor’s expansion together with (7.4),

(7.5) and (7.6), under the null hypothesis (2.3),

λ∗n =
1
2

∞∑
j=1

[
λ(j; ξn,c0) + (ξ̂ − ξn,c0)λ′(j; ζn,j)

]
ε2
j

= λn(ξn,c0) + [F (ξ̂)− F (ξn,c0)]
1
2

∑∞
j=1 λ

′(j; ξn,c0)ε2
j

1
n

∑∞
j=1 F

′(j; ξn,c0)ε2
j

(1 + op(1))
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= λn(ξn,c0) + [1− F (ξn,c0)]
n

2
ξn,c0 + op(n1/(2(2k+1)))

=
1
2

∞∑
j=1

1
(1 + j2kξn,c0)

ε2
j +

1
2
c0n

1/(2k+1) + op(n1/(2(2k+1))).(7.7)

Define λn,1 = 1
2

∑∞
j=1{1+j2kξn,c0}−1ε2

j in (7.7) and Vn = 1
2

∑n
j=1{1+j2kξn,c0}−1ε2

j ,
we have

max1≤j≤n{1 + j2kξn,c0}−1√∑n
j=1{1 + j2kξn,c0}−2

≤ {
n∑
j=1

(1 + j2kξn,c0)−2}−1/2 = O(ξ1/(4k)
n,c0 )→ 0,

which implies that Vn−E(Vn)√
var(Vn)

L−→ N(0, 1) by Lemma 2.1 of Huber (1973). Note that

var(λn,1 − Vn) ≤ 1
2

∫ ∞
n

dx

(1 + x2kξn,c0)2
≤ 1

2

∫ ∞
n

dx

x4kξ2
n,c0

= O(ξ−2
n,c0n

−(4k−1)).

Hence
var(λn,1 − Vn)

var(λn,1)
= O(ξ−2

n,c0n
−(4k−1)/ξ−1/(2k)

n,c0 )→ 0.

This implies that

λn,1 − E(λn,1)√
var(λn,1)

L−→ N(0, 1)

[by Theorem 3.2.15 of Randles and Wolfe (1979)], where

E(λn,1) = 2−1ξ−1/(2k)
n,c0

∫ ∞
0

dy

(1 + y2k)
+O(1), var(λn,1) = 2−1ξ−1/(2k)

n,c0

∫ ∞
0

dy

(1 + y2k)2
+O(1).

This together with (7.7) yield

λ∗n − 2−1c
−1/(2k)
0 n1/(2k+1)

∫∞
0

1+2y2k

(1+y2k)2 dy√
2−1c

−1/(2k)
0 n1/(2k+1)

∫∞
0

dy
(1+y2k)2

L−→ N(0, 1).

Namely, rkλ∗n
a∼ χ2

an , where

rk = 2
∫ ∞

0

1 + 2y2k

(1 + y2k)2
dy

(∫ ∞
0

1
(1 + y2k)2

dy

)−1

,

an = 2−1rkc
−1/(2k)
0

∫ ∞
0

1 + 2y2k

(1 + y2k)2
dy n1/(2k+1).

Finally, by using∫ ∞
0

dy

(1 + y2k)
=

1
2k sin( π2k )

π,

∫ ∞
0

dy

(1 + y2k)2
=

(2k − 1)
4k2 sin( π2k )

π,∫ ∞
0

dy

(1 + y2k)3
=

(2k − 1)(4k − 1)
16k3 sin( π2k )

π,

∫ ∞
0

dy

(1 + y2k)4
=

(2k − 1)(4k − 1)(6k − 1)
96k4 sin( π2k )

π,
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we obtain

rk =
4k + 2
2k − 1

, an =
(2k + 1)2

2k − 1

[
π

4k2 sin( π2k )

]2k/(2k+1)

n1/(2k+1).

Proof of Theorem 2. Take j−kn = n−(k+d)/(2k+1). Let θ be a vector whose
jn-th position is j−kn and the rest are zero. Then, θ ∈ Fk and ‖θ‖ = n−(k+d)/(2k+1).
For ξn,c = cn−2k/(2k+1), we have

j2k
n ξn,c = cn2d/(2k+1).

Under this specific alternative, by using model (2.2), we have for d > 1/8

F (ξn,c) = F (ξn,c|H0)+
j2k
n

(1 + j2k
n ξn,c)2

(2j−kn n−1/2εjn+j−2k
n ) = F (ξn,c|H0)+op(n−1/{2(2k+1)}),

where F (ξn,c|H0) = n−1
∑∞
j=1

j2k

(1+j2kξn,c)2 ε
2
j . By the arguments as those in the

proof of Lemma 2.1, one can see that

ξ̂ = ξn,c0(1 + op(1)),

where ξ̂ solves F (ξ̂) = 1.
Next, consider the likelihood ratio statistic λ∗n under the alternative hypothesis.

Let

λn,0 =
1
2

∑
j

(
1− j4k ξ̂2

(1 + j2k ξ̂)2

)
ε2
j .

Then for d > 1/8,

λ∗n = λn,0 +
n

2

(
1− j4k

n ξ̂2

(1 + j2k
n ξ̂)2

)
(2j−kn n−1/2εjn + j−2k

n ) = λn,0 + op(n1/{2(2k+1)}).

By similar proof of Theorem 1, rkλn,0
a∼ χ2

an , which entails that

Pθ{rkλ∗n > an + zα(2an)1/2} = α+ o(1).

Proof of Theorem 3. This first part of result follows directly from the cen-
tral limit theory using similar arguments to those in the proof of Theorem 1 for
λn,1. We now establish the power of the test. Under the alternative hypothesis,

Eθ(r′kλn) = a′n +O(1) + r′k

∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
nθ2

j/2

and

varθ(r′kλn) = 2a′n + b′n +O(1),
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where b′n = r′2k
∞∑
j=1

(
1− j4kξ2

n

(1+j2kξn)2

)2

nθ2
j . Thus, it follows from the Chebychev’s

inequality that

Pθ(r′kλn > a′n + zα(2a′n)1/2)

= Pθ

{
r′kλn − r′kEθ(λn)

varθ(r′kλn)1/2
≥ (2a′n + b′n +O(1))−1/2{a′n + zα(2a′n)1/2 − r′kEθ(λn)}

}
≥ 1− d−2

n ,

if (2a′n + b′n + O(1))−1/2{a′n + zα(2a′n)1/2 − r′kEθ(λn)} ≤ −dn for some dn > 0.
Thus, Theorem 3 holds, if we show that

inf
θ∈Fk: ‖θ‖≥cnn−2k/(4k+1)

n−1/(4k+1)
∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
nθ2

j →∞,(7.8)

and

inf
θ∈Fk: ‖θ‖≥cnn−2k/(4k+1)

b′−1/2
n

∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
nθ2

j →∞.(7.9)

Note that for each θ ∈ Fk,
∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
θ2
j ≥ c2nn−4k/(4k+1)−ξn max

x≥0

x

(1 + x)2

∞∑
j=1

j2kθ2
j ≥ c2nn−4k/(4k+1)/2.

(7.10)
Hence, (7.8) holds.

To show (7.9), we note that
(

1− j4kξ2
n

(1+j2kξn)2

)
∈ (0, 1). It follows from (7.10) that

b′−1/2
n

∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
nθ2

j

≥ r′−1
k n1/2

 ∞∑
j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
θ2
j

1/2

≥ r′−1
k n1/2cnn

−2k/(4k+1)/2,

which tends to ∞.

Proof of Theorem 4. For any given m, when n is sufficiently large, we have

Pθ[TAN > − log{− log(1− α)}] ≥ Pθ{T ∗AN > 2(log log n)1/2}

≥ Pθ{
m∑
j=1

(nY 2
j − 1)/

√
2m ≥ 2(log log n)1/2}.(7.11)
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Note that the sequence of random variables

{
m∑
j=1

(nY 2
j − 1− nθ2

j )/(2m+ 4n
m∑
j=1

θ2
j )

1/2}

have means zero and variance one. By normalizing the random variables in (7.11),
one can easily see that the power of the adaptive Neyman test is at least

Pθ


m∑
j=1

(nY 2
j − 1− nθ2

j )/(2m+ 4n
m∑
j=1

θ2
j )

1/2 ≥ {2
√

2m
√

log log n− n
m∑
j=1

θ2
j}/(2m+ 4n

m∑
j=1

θ2
j )

1/2

 .

Thus Theorem 4 holds via Chebychev inequality if we show that

inf
θ∈Fk: ‖θ‖≥cnδn

m−1/2{n
m∑
j=1

θ2
j − 2

√
2m
√

log log n} → ∞,(7.12)

and

inf
θ∈Fk: ‖θ‖≥cnδn

(n
m∑
j=1

θ2
j )
−1/2{n

m∑
j=1

θ2
j − 2

√
2m
√

log log n} → ∞(7.13)

for some choice of m.
Note that for any θ ∈ Fk,

∞∑
j=m+1

θ2
j ≤ m−2k

∞∑
j=m+1

j2kθ2
j ≤ m−2k.

Thus,

m−1/2
m∑
j=1

θ2
j ≥ m−1/2(cnδn)2 −m−2k−1/2.

Maximizing the above expression with respect to m leads to the choice of m =
O((cnδn)−1/k), we have

m−1/2
m∑
j=1

θ2
j ≥ O{c(4k+1)/(2k)

n n−1(log log n)1/2},(7.14)

and

n

m∑
j=1

θ2
j ≥ n((cnδn)2 −m−2k) = O{nc2nn−4k/(4k+1)(log log n)2k/(4k+1)}.(7.15)

Since cn →∞, the conclusion (7.12) holds from (7.14). And (7.13) follows from

(n
m∑
j=1

θ2
j )
−1/2{n

m∑
j=1

θ2
j − 2

√
2m
√

log log n} = (n
m∑
j=1

θ2
j )

1/2(1 + o(1))

and (7.15).
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The following four lemmas are used in the proofs for the theorems in Sections 3,
4, and 5.

Lemma 7.1. Suppose the matrix Ψ = (ψij)ni,j=1 is symmetric, w1, · · · , wn are
independent random variables, with 1 ∼ 4th moments Ewi = 0, Ew2

i = u2(i),
Ew3

i = u3(i), Ew4
i = u4(i). Let W = (w1, · · · , wn)τ . Then

E(WτΨW)2 =
n∑
i=1

ψ2
ii

[
u4(i)− 3u2

2(i)
]

+

[
n∑
i=1

ψiiu2(i)

]2

+ 2
n∑

i,j=1

ψ2
iju2(i)u2(j).

Proof. This can be shown by modifying the proof of Theorem 1.8 in Seber
(1977), where only ul(i) ≡ ul (i = 1, · · · , n; l = 1, 2, 3, 4) were considered.

Let rn = 1/
√
nh. Denote by

αn(u0) = r2
nΓ(u0)−1

n∑
i=1

εiXiK((Ui − u0)/h),(7.16)

Rn(u0) = r2
n

n∑
i=1

Γ(u0)−1(A(Ui)τXi − β(u0)τZi)XiK((Ui − u0)/h),(7.17)

Rn1 =
n∑
k=1

εkRn(Uk)τXk,

Rn2 =
n∑
k=1

αn(Uk)τXkXτ
kRn(Uk),

Rn3 =
1
2

n∑
k=1

Rn(Uk)τXkXτ
kRn(Uk).

Lemma 7.2. Under Condition (A), as h→ 0, nh→∞,

Rn1 = n1/2h2Rn10 +O(n−1/2h),

Rn2 = n1/2h2Rn20 +O(n−1/2h),

Rn3 = nh4Rn30 +O(h3).

Furthermore, for any δ > 0, there exists M > 0 such that

sup
Gn∈Gn

P (|(n1/2h2)−1Rnj | > M) ≤ δ, j = 1, 2, sup
Gn∈Gn

P (|(nh4)−1Rn3| > M) ≤ δ.
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Proof. It follows from some direct but tedious calculations.

Using Lemma 7.5, we can easily show the following Lemma.

Lemma 7.3. Let Â be the local linear estimator defined in Section 3. Then,
under Condition (A), uniformly for u0 ∈ Ω,

Â(u0)−A(u0) = (αn(u0) +Rn(u0))(1 + op(1))

where αn(u0) and Rn(u0) are defined in (7.16) and (7.17).

Denote by

Tn = r2
n

∑
k,i

εkεiXτ
i Γ(Uk)−1XkK((Ui − Uk)/h),

Sn = r4
n

∑
i,j

εiεjXτ
i {

n∑
k=1

Γ(Uk)−1XkXτ
kΓ(Uk)−1K((Ui − Uk)/h)K((Uj − Uk)/h)}Xj .

Lemma 7.4. Under Condition (A), as h→ 0, nh3/2 →∞,

Tn =
1
h
pK(0)σ2Ef(U)−1 +

1
n

∑
k 6=i

εkεiXτ
i Γ(Uk)−1XkKh(Uk − Ui) + op(h−1/2),

Sn =
1
h
pσ2Ef−1(U)

∫
K2(t)dt+

2
nh

∑
i<j

εiεjXτ
i Γ−1(Ui)K ∗K((Ui − Uj)/h)Xj + op(h−1/2),

with Kh(·) = K(·/h)/h.

Proof. The first equality is obvious. Here we focus on the second one. We use
the following decomposition: Sn = Sn1 + Sn2 with

Sn1 =
1

(nh)2

n∑
i=1

ε2
iX

τ
i {

n∑
k=1

Γ(Uk)−1XkXτ
kΓ(Uk)−1K2((Ui − Uk)/h)}Xi

Sn2 =
1
n2

∑
i 6=j

εiεjXτ
i {

n∑
k=1

Γ(Uk)−1XkXτ
kΓ(Uk)−1Kh(Uk − Ui)Kh(Uk − Uj)}Xj .

It is easy to see that as h→ 0,

Sn1 = op(h−1/2) +Op(n−3/2h−2) +
1
2
Vn(1 + o(1)) +Op(

1
nh2

)(7.18)
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where

Vn =
2

n(n− 1)

∑
1≤i<k≤n

σ2(Xτ
i Γ(Uk)−1XkXτ

kΓ(Uk)−1Xi+Xτ
kΓ(Ui)−1XiXτ

i Γ(Ui)−1Xk)K2
h(Uk−Ui).

Using Hoeffding’s decomposition for the variance of U-statistics [see, e.g., Ko-
roljuk and Borovskich (1994)] we obtain

var(Vn) = O(
1
n

)σ2
n

with

σ2
n ≤ E{E[(Xτ

1Γ(U2)−1X2Xτ
2Γ(U2)−1X1

+Xτ
2Γ(U1)−1X1Xτ

1Γ(U1)−1X2)K2
h(U2 − U1)|(X1, U1)])2}2

= O(h−2).

Thus, Vn = EVn + op(h−1/2) as nh→∞ and h→ 0. This gives that

Sn1 =
1
h
pσ2Ef−1(U)

∫
K2(t)dt+ op(h−1/2).(7.19)

We now deal with the term Sn2. Decompose Sn2 = Sn21 + Sn22 with

Sn21 =
2
n

∑
1≤i<j≤n

εiεjXτ
i

1
n

∑
k 6=i,j

{
Γ(Uk)−1XkXτ

kΓ−1(Uk)Kh(Uk − Ui)Kh(Uk − Uj)
}
Xj ,

Sn22 =
K(0)
n2h

∑
i 6=j

εiεj
{
Xτ
i Γ(Ui)−1XiXτ

i Γ(Ui)−1Xj + Xτ
i Γ(Uj)−1XjXτ

jΓ(Uj)−1Xj

}
Kh(Ui − Uj).

It can easily be shown that

var(Sn22) = O(1/(n2h3)) = o(1/h)

which implies

Sn22 = op(h−1/2).(7.20)

Let

Qijkh = Γ−1(Uk)XkXτ
kΓ(Uk)−1Kh(Uk − Ui)Kh(Uk − Uj).

Note that

E[Xτ
i

1
n

∑
k 6=i,j

(Qijkh − E(Qijkh|(ui, uj))))Xj ]2

≤ trace
{
n−2

n∑
k 6=1,2

E(Q12khX2Xτ
2Q12khX1Xτ

1

}
= O(1/(nh2)),

which leads to

Sn21 =
2(n− 2)
n2

∑
1≤i<j≤n

εiεjXτ
iE(Qijkh|(Ui, Uj))Xj + op(h−1/2).(7.21)

Combining (7.18) ∼ (7.21), we complete the proof.
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Proof of Theorem 5. Note that
RSS1

n
= σ2(1 +Op(n−1/2) +Op(h−1)).

Then it follows from the definition that

−λn(A0)σ2 = −r2
n

n∑
k=1

εk{
n∑
i=1

εiXτ
i Γ(Uk)−1}XkK((Ui − u0)/h)

+
1
2
r4
n

n∑
k=1

n∑
i=1

n∑
j=1

εiεjXτ
i Γ(Uk)−1XkXτ

kXjΓ(Uk)−1K((Ui − Uk)/h)K((Uj − Uk)/h)

−Rn1 +Rn2 +Rn3 +Op(
1
nh2

).

Applying Lemmas 7.2, 7.3 and 7.4, we get

−λn(A0) = −µn + d1n −W (n)h−1/2/2 + op(h−1/2)

where

W (n) =

√
h

nσ2

∑
j 6=l

εjεl[2Kh(Uj − Ul)−Kh ∗Kh(Uj − Ul)]Xτ
jΓ(Ul)−1Xl.

It remains to show that

W (n) L−→ N(0, v)

with v = 2||2K −K ∗K||22pEf−1(U).
Define Wjl =

√
h
n bn(j, l)εjεl/σ2 (j < l), where bn(j, l) is written in a symmetric

form

bn(j, l) = a1(j, l) + a2(j, l)− a3(j, l)− a4(j, l),

with

a1(j, l) = 2Kh(Uj − Ul)Xτ
jΓ(Ul)−1Xl, a2(j, l) = a1(l, j),

a3(j, l) = Kh ∗Kh(Uj − Ul)Xτ
jΓ(Ul)−1Xl, a4(j, l) = a3(l, j).

Then W (n) =
∑
j<lWjl. To apply Proposition 3.2 in de Jong (1987), we need to

check :

(1) W (n) is clean [see de Jong (1987) for the definition];

(2) var(W (n))→ v;

(3) GI is of smaller order than var(W (n));

(4) GII is of smaller order than var(W (n));

(5) GIV is of smaller order than var(W (n)),
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where

GI =
∑

1≤i<j≤n

E(W 4
ij),

GII =
∑

1≤i<j<k≤n

{E(W 2
ijW

2
ik) + E(W 2

jiW
2
jk) + E(W 2

kiW
2
kj)},

GIV =
∑

1≤i<j<k<l≤n

{E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl)}.

We now check each of the following conditions. Condition (1) follows directly
from the definition.

To prove (2), we note that

var(W (n)) =
∑
j<l

E(W 2
jl).

Denote K(t,m) = K ∗ · · · ∗ K(t) as the m−th convolution of K(·) at t for m =
1, 2, · · ·. Then it follows that

E[b2n(j, l)ε2
jε

2
l ] =

σ4

h
[16K(0, 2)− 16K(0, 3) + 4K(0, 4)] pEf−1(U)(1 +O(h))

which entails

v = 2
∫

[2K(x)−K ∗K(x)]2 dx pEf−1(U).

Condition (3) is proved by noting that

E [a1(1, 2)ε1ε2]4 = O(h−3), E [a3(1, 2)ε1ε2]4 = O(h−2),

which implies that E(W 4
12) = h2

n4O(h−3) = O(n−4h−1). Hence GI = O(n−2h−1) =
o(1).

Condition (4) is proved by the following calculation:

E(W 2
12W

2
13) = O(EW 4

12) = O(n−4h−1),

which implies that GII = O(1/(nh)) = o(1).
To prove (5), it suffices to calculate the term E(W12W23W34W41). By straight-

forward calculations,

E{a1(1, 2)a1(2, 3)a1(3, 4)a1(4, 1)ε2
1ε

2
2ε

2
3ε

2
4} = O(h−1),

E{a1(1, 2)a1(2, 3)a1(3, 4)a3(4, 1)ε2
1ε

2
2ε

2
3ε

2
4} = O(h−1),

E{a1(1, 2)a1(2, 3)a3(3, 4)a3(4, 1)ε2
1ε

2
2ε

2
3ε

2
4} = O(h−1),

E{a1(1, 2)a3(2, 3)a3(3, 4)a3(4, 1)ε2
1ε

2
2ε

2
3ε

2
4} = O(h−1),

E{a3(1, 2)a3(2, 3)a3(3, 4)a3(4, 1)ε2
1ε

2
2ε

2
3ε

2
4} = O(h−1),
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and similarly for the other terms. So

E(W12W23W34W41) = n−4h2O(h−1) = O(n−4h)

which yields

GIV = O(h) = o(1).

Proof of Theorem 6. Analogously to the arguments for Â, we get

(Ã2(u0)−A2(u0)) = r2
nΓ−1

22 (u0)
n∑
k=1

{
Yk −A1(Uk)τX(1)

k

−η2(u0,X
(2)
k , Uk)

}
X(2)
k K((Uk − u0)/h)(1 + op(1))

where η2(u0,X
(2)
k , Uk) = A2(u0)τX(2)

k +A′2(u0)τX(2)
k (Uk − u0). Note that

λnu(A10) = λn(A0)− λn2(A20|A10)

Similarly to the proof of Theorem 5, under H0u, we have

λn2(A20|A10)σ2 = r2
n

n∑
k=1

n∑
i=1

εiK((Ui − Uk)/h)X(2)
i Γ−1

22 (Uk)X(2)
k εk

−1
2
r4
n

n∑
k=1

[
n∑
i=1

εiK((Ui − Uk)/h)X(2)τ
i ](Γ−1

22 (Uk)X(2)
k X(2)τ

k Γ−1
22 (Uk))

×[
n∑
i=1

εiK((Ui − u0)/h)X(2)
i ] + op(h−1/2)− d1n∗,

where d1n∗ is defined by replacing X and Γ by X(2) and Γ22 in d1n. Consequently,

−λnu(A10)σ2 = −r2
n

∑
k,i

εkεi(X
(1)
i − Γ12(Uk)Γ−1

22 (Uk)X(2)
i )τΓ−1

11,2

×(Uk)(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )K((Ui − Uk)/h)

+
r4
n

2

∑
i,j

εiεj

n∑
k=1

(X(1)
i − Γ12(Uk)Γ−1

22 (Uk)X(2)
i )τ

×Γ−1
11,2(Uk)(X(1)

k − Γ12(Uk)Γ−1
22 (Uk)X(2)

k )

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )τΓ−1

11,2(Uk)

×(X(1)
j − Γ12(Uk)Γ−1

22 (Uk)X(2)
j )

+Rn4 +Rn5 + op(h−1/2) + d1n − d1n∗
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where

Rn4 =
r4
n

2

n∑
i,j

εiεj

n∑
k=1

(X(1)
i − Γ12(Uk)Γ−1

22 (Uk)X(2)
i )τΓ−1

11,2(Uk)

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )X(2)τ

k Γ−1
22 (Uk)X(2)

j

×K((Ui − Uk)/h)K((Uj − Uk)/h),

Rn5 =
r4
n

2

n∑
i,j

εiεj

n∑
k=1

(X(1)
j − Γ12(Uk)Γ−1

22 (Uk)X(2)
j )τΓ−1

11,2(Uk)

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )X(2)τ

k Γ−1
22 (Uk)X(2)

i

×K((Ui − Uk)/h)K((Uj − Uk)/h).

A simple calculation shows that as nh3/2 →∞,

ER2
n4 = O(

1
n2h4

) = o(h−1)

which yields Rn4 = op(h−1/2). Similarly, we can show Rn5 = op(h−1/2). Therefore,

−λnu(A10)σ2 = −r2
n

∑
k,i

εkεi(X
(1)
i − Γ12(Uk)Γ−1

22 (Uk)X(2)
i )τΓ−1

11,2(Uk)

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )K((Ui − Uk)/h) + op(h−1/2)

+
r4
n

2

∑
i,j

εiεj

n∑
k=1

(X(1)
i − Γ12(Uk)Γ−1

22 (Uk)X(2)
i )τΓ−1

11,2(Uk)

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )

×(X(1)
k − Γ12(Uk)Γ−1

22 (Uk)X(2)
k )τΓ−1

11,2(Uk)(X(1)
j − Γ12(Uk)Γ−1

22 (Uk)X(2)
j )

×K((Ui − Uk)/h)K((Uj − Uk)/h) + d1nu + op(h−1/2).

The remaining proof follows the same lines as those in the proof of Theorem 5.

Proof of Theorem 7. Under Hn1 and Condition (B), applying Theorem 5,
we have

−λn(A0) = −µn+vn+v2n−d2n−[W (n)h−1/2/2+
n∑
k=1

cnG
τ
n(Uk)Xkεk/σ

2]+op(h−1/2)

where W (n) is defined in the proof of Theorem 5. The rest of the proof is similar
to the proof of Theorem 5. The details are omitted.
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Proof of Theorem 8. For brevity, we only present case I in Remark 3.5. To
begin with, we note that under H1n : A = A0 + Gn and under Condition (C), it
follows from the Chebychev inequality that uniformly for h→ 0, nh3/2 →∞,

−λn(A0)σ2 = −µnσ2 − σ2W (n)h−1/2/2−
√
nEGτn(U)τXXτGn(U)Op(1)

−n
2
EGτn(U)τXXτGn(U)(1 + op(1))−Rn1 +Rn2 +Rn3,

where µn, W (n), Rni, i = 1, 2, 3 are defined in the proof of Theorem 5 and its
associated lemmas, and op(1) and Op(1) are uniform in Gn ∈ Gn in a sense similar
to that in Lemma 7.2. Thus,

β(α,Gn) = P{σ−1
n (−λn(A0) + µn) ≥ c(α)}

= P{σ−1
n [−W (n)h−1/2/2− (Rn1 −Rn2 −Rn3 +

n

2
EGτn(U)τXXτGn(U)

×(1 + op(1)))/σ2] ≥ c(α)}

= P1n + P2n

with

P1n = P{σ−1
n (−W (n)h−1/2/2) + n1/2h5/2b1n + nh9/2b2n − nh1/2b3n ≥ c(α),

|b1n| ≤M, |b2n| ≤M},

P2n = P{σ−1
n (−W (n)h−1/2/2) + n1/2h5/2b1n + nh9/2b2n − nh1/2b3n ≥ c(α),

|b1n| > M, |b2n| > M},

and

b1n = (n1/2h5/2σnσ
2)−1(−Rn1 +Rn2),

b2n = (nh9/2σnσ
2)−1Rn3,

b3n = (h1/2σnσ
2)−1 1

2
EGτn(U)τXXτGn(U)(1 + op(1))

When h ≤ c−1/2
0 n−1/4, we have

n1/2h5/2 ≥ c0nh9/2, n1/2h5/2 → 0, nh9/2 → 0.

Thus for h → 0 and nh → ∞, it follows from Lemma 7.2 that β(α, ρ) → 0 only
when nh1/2ρ2 → −∞. It implies that ρ2

n = n−1h−1/2 and the possible minimum
value of ρn in this setting is n−7/16. When nh4 → ∞, for any δ > 0, applying
Lemma 7.2, we find a constant M > 0 such that P2n < δ/2 uniformly in Gn ∈ Gn.
Then

β(α, ρ) ≤ δ/2 + P1n.

Note that supGn(ρ) P1n → 0 only when B(h) = nh9/2M − nh1/2ρ2 → −∞. B(h)
attains the minimum value − 8

9 (9M)−1/8nρ9/4 at h = (ρ2/(9M))1/4. Now it is easily
shown that in this setting the corresponding minimum value of ρn is n−4/9 with
h = c∗n

−2/9 for some constant c∗.
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Proof of Theorem 9. Let c denote a generic constant. Then, under H0,

RSS0 − RSS1 = −D1 −D2

where D1 = ετPXD
ε, XD is the design matrix with the i-th row Xτ

i (i = 1, · · · , n)
and PXD

is the projection matrix of XD and

D2 =
n∑
i=1

(A(Ui)− Â(Ui))τXiXτ
i (A(Ui)− Â(Ui)) + 2

n∑
i=1

εi(A(Ui)− Â(Ui))τXi

The proof will be completed by showing the following four steps.

(1) D1 = Op(1),

(2) −
√
hD2 = D√

h
+W (n) + op(1),

(3) W (n) =
√
h
n

∑
j 6=l εjεl [2Kh(Uj − Ul)−Kh ∗Kh(Uj − Ul)] Xτ

jΓ(Ul)−1Xl
L−→

N(0, V ),

(4) RSS1/n = Eσ2(X, U) +Op( 1√
n

) +Op( 1
nh ),

with

D = [2K(0)−K ∗K(0)]
∫

Ω

tr(Γ∗(u)Γ(u)−1)du− 1
nh
K2(0)E[(XτΓ(U)−1X)2σ2(X, U)],

V = 2
∫

[2K(x)−K ∗K(x)]2dx
∫

Ω

tr(Γ∗(u)Γ(u)−1)2du.

It follows from Lemma 7.1 that

E[(ετPXD
ε)2|(X1, U1), · · · , (Xn, Un)] ≤ c tr(P 2

XD
) + c

[
tr(PXD

)
]2

= p(p+ 1)c,

which implies (1). The proofs of (2) and (3) are the same as the proof of Theorem
5. The details are omitted. The last step follows from RSS1 =

∑n
i=1 ε

2
i +D2. Using

the inequality x
1+x ≤ log(1 + x) ≤ x for x > −1, we have

λn =
n

2

[
RSS0 − RSS1

RSS1
+Op(n−2h−2)

]
=
n

2
RSS0 − RSS1

RSS1
+Op(n−1h−2).

Before proving Theorem 10, we introduce the following lemma.

Lemma 7.5. Under Condition (A1)–(A3) and (B1) – (B3), n(ξ−1)/ξh ≥
c0(log n)δ and δ > (ξ − 1)/(ξ − 2), we have

Â(u0)−A(u0) = r2
nΓ̃(u0)−1

n∑
i=1

q1(A(Ui)τXi, Yi)XiK((Ui−u0)/h)(1+op(1))+Hn(u0),
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where rn = 1/
√
nh,

Hn(u0) = r2
nΓ̃(u0)−1

n∑
i=1

[q1(β(u0)τZi, Yi)−q1(A(Ui)τXi, Yi)]XiK((Ui−u0)/h)(1+op(1))

and op(1) is uniform with respect to u0.

Proof. It follows from some arguments similar to Carroll, Fan, Gijbels and
Wand (1997) and Zhang and Gijbels (1999).

Proof of Theorem 10. Let εi = q1(A0(Ui)τXi, Yi). Using the Taylor expan-
sion of λng(A0) and Lemma 7.5, we obtain

λng(A0) = −r2
n

n∑
k=1

n∑
i=1

εkεiXτ
i Γ̃(uk)−1Xk −Rn1g

−r
4
n

2

n∑
k=1

∑
i,j

q2(A0(Uk)τXk), Yk)εiεjΓ̃(Uk)−1XiXkXτ
kΓ̃(Uk)−1XjK((Ui − Uk)/h)

×K((Uj − Uk)/h) +Rn2g +Rn3g,

where

Rn1g = r2
n

n∑
k=1

εkHn(Uk)Xk,

Rn2g = −r2
n

n∑
k=1

n∑
i=1

εiXτ
i Γ̃(Uk)−1XkXτ

kHn(Uk),

Rn3g = −r
4
n

2

n∑
k=1

q2(A0(Uk)τXk), Yk)Hn(Uk)τXkXτ
kHn(Uk).

The remaining proof is almost the same as that of Theorem 5 if we invoke the
following equalities:

E[εi|(Xi, Ui)] = 0, E[ε2
i |(Xi, Ui)] = −E[q2(A0(Ui)τXi), Yi)|(Xi, Ui)].
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