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Abstract

We consider the situation when there is a large number of series, N , each with T
observations, and each series has some predictive ability for the variable of interest, y.
A methodology of growing interest is to first estimate common factors from the panel
of data by the method of principal components, and then augment an otherwise stan-
dard regression or forecasting equation with the estimated factors. In this paper, we
show that the least squares estimates obtained from these factor augmented regressions
are

√
T consistent if

√
T/N → 0. The factor forecasts for the conditional mean are

min[
√

T ,
√

N ] consistent, but the effect of “estimated regressors” is asymptotically neg-
ligible when T/N goes to zero. We present analytical formulas for predication intervals
that take into account the sampling variability of the factor estimates. These formulas
are valid regardless of the magnitude of N/T , and can also be used when the factors are
non-stationary. The generality of these results is made possible by a covariance matrix
estimator that is robust to weak cross-section correlation and heteroskedasticity in the
idiosyncratic errors. We provide a consistency proof for this CS-HAC estimator.
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1 Introduction

The use of factors to achieve dimension reduction has been found to be empirically useful

in analyzing macroeconomic time series, and adding factors to an otherwise standard re-

gression or forecasting model is being used by an increasing number of researchers1. Several

institutions, including the Treasury and the European Central Bank, are experimenting with

real time use of these factor forecasts.2 However, the theoretical properties of the method

are not fully understood and important issues remain to be addressed. In particular, how to

construct confidence intervals remains unknown. This is a nontrivial problem as the regres-

sion model involves “estimated regressors.” In this paper, we derive the rate of convergence

and the limiting distribution of the parameter estimates as well as the forecasts, enabling

the construction of prediction confidence intervals.

The object of interest is the h-period ahead forecast of a series yt. The information

available includes a large number of predictors xit (i = 1, 2, ..., N ; t = 1, 2, ..., T ) and a

smaller set of other observable variables Wt. For example, Wt might be lags of yt. We

consider a single forecasting equation

yt+h = α′Ft + β′Wt + εt+h, (1)

where h is the forecast horizon. The vector Ft is unobservable. When h = 0, we simply have

a regression model with a vector of latent regressors. Instead of Ft, we observe a panel of

data xit which contains information about Ft. We refer to

xit = λ′iFt + eit (2)

as the factor representation of the data, where Ft is a r × 1 vector of common factors, λi

is the corresponding vector of factor loadings, and eit is an idiosyncratic error. Equations

(1) and (2) above constitute what is referred to by Stock and Watson (2002a) as a ‘diffusion

index forecasting model’ (DI). Its defining characteristic is that information about xit is

parsimoniously summarized in a low dimensional vector, Ft. In economic analysis, these

generate comovements in economic time series.

If Ft is observable, and assuming the mean of εt conditional on past information is zero,

the (mean-squared) optimal forecast of yt is the conditional mean and is given by

yT+h|T = E(yT+h|zT ) = α′FT + β′WT ≡ δ′zT ,

1See, for example, Stock and Watson (2002b), Stock and Watson (2001), Cristadoro et al. (2001), Forni
et al. (2001b), Artis et al. (2001), Banerjee et al. (2004), and Shintani (2002).

2See, for example, Angelini et al. (2001).
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where zt = (F ′
t , W ′

t)
′. But such a forecast is not feasible because α, β, and Ft are all

unobserved. The feasible forecast that replaces the unknown objects by their estimates is:

ŷT+h|T = α̂′F̃T + β̂′WT = δ̂′ẑT ,

where ẑt = (F̃ ′
t , W ′

t)
′. We use a ‘tilde’ for estimates of the factor model of xit, while hatted

variables are estimated from the forecasting equation. To be precise, α̂ and β̂ are the least

squares estimates obtained from a regression of yt+h on F̃t and Wt, t = 1, . . . T − h. The

factors, Ft, are estimated from xit by the method of principal components using data up to

period T and will be discussed further below.

It is clear that α̂ and β̂ are functions of “estimated regressors” F̃1, F̃2, ..., F̃T−h, and the

forecast ŷT+h|T itself also depends on F̃T . Thus, to study the behavior of the forecasts, we

must examine the statistical properties of the estimated parameters (α̂, β̂) as well as those of

the estimated factors. Stock and Watson (2002a) showed that (α̂, β̂) is consistent for (α, β)

and ŷT+h|T is consistent for yT+h|T . To construct confidence intervals, we must obtain the

rate of convergence and the limiting distributions of these quantities.

We are specifically interested in the case of large dimensional panels. By a ‘large panel’,

we mean that our theory will allow both N and T to tend to infinity, and N possibly

larger than T . We begin in Section 2 with an intuitive discussion of the problem to be

investigated and of the results to follow. Section 3 presents the asymptotic theory and

discusses how terms necessary for predictive inference can be constructed. A by-product

of the present exercise is estimation of the error covariance matrix when heteroskedasticity

and cross-section correlation are of unknown form. This is presented in Section 4. Section 5

presents simulation results to assess the adequacy of the asymptotic approximations in finite

samples. Empirical applications are considered in Section 6. The analysis is extended to

non-stationary factors in Section 7. Proofs are given in the Appendix.

2 Motivation and Overview

We first provide some intuition for the appeal of diffusion index forecasts. For ease of

exposition, consider the one-step ahead forecast:

yt+1 = αFt + εt+1

where εt are iid (0, σ2
ε). Furthermore, assume that the scalar series Ft is an AR(1) process

Ft = ρFt−1 + ut
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where ut are iid (0, σ2
u) and us and εt are independent for all t and s. Suppose also for the

moment that the model parameters are known.

If Ft is observable, the one-step ahead forecast of yt+1 at time t is given by αFt so that

the forecast error is εt+1, and the forecast error variance is σ2
ε . If Ft is not observable, then

yt is an unobserved components model. The univariate time series forecast is based on the

ARMA representation of yt. In this case, yt is an ARMA(1,1) process:

yt+1 = ρyt + zt+1 + θzt

where zt is a white noise process. Assuming the infinite past history of yt (...., yt−2, yt−1, yt)

is available, the one-step ahead forecast of yt+1 at time t is ρyt + θzt. The forecast error

is zt+1 and the forecast error variance is σ2
z = E(z2

t+1). It can be shown that σ2
z > σ2

ε , so

smaller forecasting error variance is obtained when Ft is observable. This is not surprising

and conforms to the intuition that more information permits a better forecast.

The assumption that Ft is observable is of course not realistic. Nevertheless, if we observe

a large number of indicators that have Ft as their common sources of variation, we can exploit

this commonality to estimate the process Ft very well by the method of principal components

(up to a transformation). This is the essence of the diffusion index forecasting. In the limit

when N goes to infinity, the DI forecasts are the same as when Ft is observable. In this

example, the reduction in forecast error is σ2
z − σ2

ε , which is strictly positive. In cases with

more complex dynamics and/or when Wt are present, knowledge of Ft can still be expected

to yield better forecasts, because one can, in general, do no worse with more information.

In practice, the model parameters are also unknown. Parameter uncertainty contributes

an O(T−1) term to the forecast error variance. So if we observe Ft but α is being estimated,

the variance of yT+1 − ŷT+1|T is simply σ2
ε + O(T−1). However, when the factors have to be

estimated, we first need to show that α̂ remains
√

T consistent. Furthermore, estimating the

factor process Ft will contribute another O(N−1) term to the forecasting error variance. One

of our findings is that when α and Ft both have to be estimated, the variance of yT+1− ŷT+1|T
is σ2

ε +O(T−1)+O(N−1). This is less than σ2
z when T and N are both large (because σ2

ε < σ2
z)

so one can expect the diffusion index approach to yield better forecasts even when Ft is not

observed. Our main contribution is to show that the forecast for the conditional mean is

min[
√

N,
√

T ] consistent and asymptotically normal, where the precise rate will depend on

whether T/N is bounded. In the event when T and N are both large and are such that

T/N goes to zero, we can further show that uncertainty in Ft is dominated by parameter

uncertainty so that Ft can be treated as though it is observable. We will make precise how
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to estimate the error covariance matrices so that valid predictive inference can be conducted.

The importance of a large N must be stressed, however, because when N is fixed, consistent

estimation of the factor process Ft is not possible even if the λis are observed. We now turn

to the theory underlying these results.

3 Inference with Estimated Factors

In matrix notation, the factor model is X = FΛ′ + e, where X is a T × N data matrix,

F = (F1, ..., FT )′ is T × r, r is the number of common factors, Λ = (λ1, ..., λN)′ is N × r, and

e is a T ×N error matrix. The principal component estimates are denoted F̃ = (F̃1, ..., F̃T )′

and Λ̃ = (λ̃1, . . . , λ̃N)′, where F̃ is the matrix consisting of the r eigenvectors (multiplied by√
T ) associated with the r largest eigenvalues of the matrix XX ′/(TN) in decreasing order,

and Λ̃ = X ′F̃ /T . For future reference, we also let Ṽ be the r× r diagonal matrix consisting

of the r largest eigenvalues of XX ′/(TN). We need the following assumptions:

Assumption A: Common factors

1. E‖Ft‖4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p−→ ΣF for a r × r positive definite matrix ΣF .

Assumption B: Heterogeneous factor loadings

The loading λi is either deterministic such that ‖λi‖ ≤ M or it is stochastic such that

E‖λi‖4 ≤ M . In either case, Λ′Λ/N
p−→ ΣΛ as N → ∞ for some r × r positive definite

non-random matrix ΣΛ.

Assumption C: Time and cross-section weak dependence and heteroskedasticity

1. E(eit) = 0, E|eit|8 ≤ M ;

2. E(eitejs) = τij,ts, |τij,ts| ≤ τij for all (t, s) and |τij,ts| ≤ πts for all (i, j) such that

1

N

N∑
i,j=1

τij ≤ M,
1

T

T∑
t,s=1

πts ≤ M, and
1

NT

∑
i,j,t,s=1

|τij,ts| ≤ M

3. For every (t, s), E|N−1/2
∑N

i=1

[
eiseit − E(eiseit)

]
|4 ≤ M .

4. For each t, 1√
N

∑N
i=1 λteit

d−→N(0, Γt), where Γt = limN→∞ 1
N

∑N
i=1

∑N
j=1 E(λiλj

′eitejt).

Assumption D: {λi}, {Ft}, and {eit} are three groups of mutually independent stochastic

variables.
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Assumption E: Let zt = (F ′
t W ′

t)
′, E‖zt‖4 ≤ M , and zt is independent of the idiosyncratic

errors eit. Furthermore,

1. 1
T

∑T
t=1 ztz

′
t

p−→Σzz =

[
ΣFF ΣFW

ΣWF ΣWW

]
> 0;

2. 1√
T

∑T
t=1 ztεt+h

d−→N(0, plim 1
T

∑T
t=1(ε

2
t+hztz

′
t)).

Assumptions A and B together imply r common factors. Assumption C allows for limited

time series and cross section dependence in the idiosyncratic component. Heteroskedasticity

in both the time and cross section dimensions is also allowed. Given Assumption C1, the

remaining assumptions in C are easily satisfied if the eit are independent for all i and t. The

allowance for weak cross-section correlation in the idiosyncratic components leads to the

approximate factor structure of Chamberlain and Rothschild (1983). It is more general than

a strict factor model which assumes eit is uncorrelated across i. Assumption D is standard in

factor analysis. Assumption E ensures that the forecasting model is well specified and that

the parameters of the model can be identified.

3.1 Estimation

We begin by establishing the sampling properties of the least squares estimates when the

estimated factors are used as regressors.

Theorem 1 (Estimation) Suppose Assumptions A to E hold. Let F̃t be the factor estimates

obtained by the method of principal components, and let α̂ and β̂ be the least squares estimates

from a regression of yt+h on ẑt = (F̃ ′
t W ′

t)
′. Let H = Ṽ −1(F̃ ′F/T )(Λ′Λ/N). If

√
T/N → 0,

√
T

([
α̂

β̂

]
−

[
H−1′α

β

])
d−→N

(
0, Avar

([
α̂

β̂

]))
,

where

Avar

([
α̂

β̂

])
= plim

( 1

T

T−h∑
t=1

ẑtẑ
′
t

)−1( 1

T

T−h∑
t=1

ε̂2
t+hẑtẑ

′
t

)( 1

T

T−h∑
t=1

ẑtẑ
′
t

)−1

. (3)

As is well known, the factor model is unidentified because α′LL−1Ft = α′Ft for any

invertible matrix L. Theorem 1 is a result pertaining to the difference between α̂ and the

space spanned by α. Consistency of the parameter estimates follows from the fact that the

averaged squared deviations between F̃t and HFt vanish as N and T both tend to infinity,

see Bai and Ng (2002). The consequence of having generated regressors in the forecasting
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equation has no effect on consistency of the parameter estimates. Letting δ̂ = (α̂′ β̂′)′, and

δ = (α′H−1 β′)′, Theorem 1 can be compactly stated as

√
T (δ̂ − δ)

d−→N(0, Avar(δ̂)).

Stock and Watson (2002a) showed consistency of δ̂ for δ. Here we establish the rate of

convergence and the limiting distribution. Asymptotic normality of δ̂ follows from that fact

that 1√
T

∑T
t=1 ztεt+h obeys a central limit theorem. Because F̃t is close to Ft, the same

asymptotic result holds when zt is replaced by ẑt.

Since Avar(δ̂) is the probability limit of (3), it can be consistently estimated as follows:

Âvar(δ̂) =

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1[
1

T

T−h∑
t=1

ε̂2
t+hẑtẑ

′
t

](
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1

(4a)

Âvar(δ̂) = σ̂2
ε

[
1

T

T−h∑
t=1

ẑtẑ
′
t

]−1

. (4b)

Formula (4a) is the White-Eicker estimate of asymptotic variance and is robust to het-

eroskedasticity. However, if we assume homoskedasticity so that E(ε2
t+h|zt) = σ2

ε ∀t, a con-

sistent estimate of Avar(δ̂) can be obtained using (4b), where σ̂2
ε = 1

T

∑T−h
t=1 ε̂2

t+h. As stated,

the asymptotic variance is valid when ztεt+h is serially uncorrelated. Extension of (4a) to

allow for serial correlation in ztεt+h is straightforward. As shown in Newey and West (1987)

and Andrews (1991), a heteroskedastic-autocorrelation consistent variance covariance (HAC)

matrix that converges to the population covariance matrix can be constructed provided the

bandwidth is chosen appropriately. It is noted, however, when εt is serially correlated, yT+h|T
defined earlier will cease to be the conditional mean, given past information.

Theorem 1 is useful in rather broader contexts, as having to conduct inference when

the latent common factors are replaced by estimates is not uncommon. The estimated

common factors are natural proxies for the unobserved state of the economy. In Phillips

curve regressions, yt+h would be inflation, Wt would be lags of inflation, and Theorem 1

provides the inferential theory for assessing the trade-off between inflation and the state of

the economy.

A new tool in empirical work is factor-augmented vector autoregressions (FVAR), which

amounts to including the principal component estimates of the factors to an otherwise stan-

dard VAR.3 More specifically, if yt is a vector of q series, and Ft is a vector of r factors, a

3See, for example, Bernanke and Boivin (2002), Bernanke et al. (2002), and Giannone et al. (2002), and
Marcellino et al. (2004).
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FVAR(p) is defined as

yt+1 =
∑p

k=0 a11(k)yt−k +
∑p

k=0 a12(k)Ft−k + v1t+1

Ft+1 =
∑p

k=0 a21(k)yt−k +
∑p

k=0 a22(k)Ft−k + v2t+1,

where a11(k) and a21(k) are coefficients on lags of yt+1, while a12(k) and a22(k) are coefficients

on lags of Ft−k. Consider estimation of the FVAR with Ft replaced by F̃t. Theorem 1 covers

estimation of those equations of the VAR with yt+1on the left hand side, Wt and F̃t on the

right hand side, where in the present context, Wt are the lags of yt. The following theorem

provides the limiting distribution of δ̂j for those equations with F̃t+1 on the left hand side.

Theorem 2 (FVAR) Consider a p-th order vector autoregression in q observable variables

yt and r factors, F̃t, estimated by the method of principal components. Let ẑt = (yt . . . yt−p,

F̃t, . . . , F̃t−p)
′, and let ẑjt be the j-th element of ẑt. For j = 1, . . . q + r, let δ̂j be obtained

by least squares from regressing ẑjt+1 on ẑt, with ε̂jt+1 = ẑjt+1 − δ̂′j ẑt. If
√

T/N → 0 as

N, T →∞,

√
T (δ̂j − δj)

d−→N

(
0, plim(

1

T

T∑
t=1

ẑtẑ
′
t)
−1

(
1

T

T∑
t=1

(ε̂jt)
2ẑtẑ

′
t

)
(
1

T

T∑
t=1

ẑtẑ
′
t)
−1

)
.

Theorem 2 states that the parameter estimates for these equations remain
√

T consistent

provided
√

T/N → 0. Although this condition is not stringent, it puts discipline on when

estimated factors can be used in regression analysis. Having N and T both large is not

enough. Once this condition is granted, the expression for asymptotic variance is the same

whether yt or F̃t is the regressand (compare with Theorem 1). Thus, if homoskedasticity is

assumed, as is common in the VAR literature, the asymptotic variance can be evaluated using

(4b). Since impulse response functions are based upon estimates of the FVAR, Theorem 2

enables calculation of the standard errors.

3.2 Forecasting

Suppose now (1) is the forecasting equation and the objective is the forecast error distribu-

tion. From

(ŷT+h|T − yT+h|T ) = (δ̂ − δ)′ẑT + α′H−1(F̃T −HFT ),

we see that the forecast error has two components. The first term arises from having to

estimate α and β. Theorem 1 makes clear that what this error is asymptotically. The
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second term arises from having to estimate Ft. Under Assumptions A-D, Bai (2003) showed

that if
√

N/T → 0, then for each t,

√
N(F̃t −HFt)

d−→ N

(
0, V −1QΓtQ

′V −1

)
(5)

≡ N

(
0, Avar(F̃t)

)
,

where Q = plim F̃ ′F/T , V = plim Ṽ , and Γt = limN→∞ 1
N

∑N
i=1

∑N
j=1 E(λiλj

′eitejt).

We are now in a position to state the asymptotic properties of the DI forecasts.

Theorem 3 Let ŷT+h|T = δ̂′ẑT be the feasible h-step ahead forecast of yT+h. Under the

assumptions of Theorem 1,

(ŷT+h|T − yT+h|T )

BT

d−→N(0, 1)

where B2
T = 1

T
ẑ′T Avar(δ̂) ẑT + 1

N
α̂′ Avar(F̃T ) α̂.

Because the two terms in B2
T vanish at different rates, the overall convergence rate is

min[
√

T ,
√

N ]. More precisely, it depends on whether or not T/N is bounded.
√

T con-

vergence to the normal distribution follows from considering the limit distribution of

√
T (ŷT+h|T − yT+h|T ) =

√
T (δ̂ − δ)′ẑT + (T/N)1/2α′H−1

√
N(F̃T −HFT ).

When T/N is bounded, the estimation error associated with δ̂ and F̃t both contribute to the

asymptotic forecast error variance. However, the cost of having to estimate Ft is negligible

when T/N → 0 because
√

N(F̃t − HFt) is Op(1). Intuitively, when N is large, the factors

can be estimated so precisely that estimation error can be ignored. On the other hand, when

N/T is bounded, the convergence rate is
√

N . This follows from the fact that

√
N(ŷT+h|T − yT+h|T ) = (

√
N/T )

√
T (δ̂ − δ)′ẑT + α′H−1

√
N(F̃T −HFT ).

If N/T → 0, the error from having to estimate δ is dominated by the error from having to

estimate Ft.

In a standard setting, the forecast error variance falls at rate T , and for a given T , it

increases with the number of predictors through a loss in degrees of freedom. In contrast,

the error variance of the factor forecasts decreases at rate min[N, T ], and for a given T ,

forecast efficiency improves with the number of predictors. This is because in the present
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setting, a large N enables more precise estimation of the common factors and thus results

in more efficient forecasts. This property of the factor estimates is also in sharp contrast to

that obtained in standard factor analysis that assumes a fixed N . With the sample size fixed

in one dimension, consistent estimation of the factor space is not possible however large T

becomes.

In view of (5), an estimate of Avar(F̃t) (for any given t) can be obtained by first substitut-

ing F̃ for F , and noting that Q̃ = F̃ ′F̃ /T is an r-dimensional identity matrix by construction

(Q̃ is an estimate for QH ′ whose limit is an identity). We can then consider the estimator

̂
Avar(F̃t) = Ṽ −1Γ̃tṼ

−1,

where Γ̃t can be one of the following:

Γ̃t =
1

N

N∑
i=1

ẽ2
itλ̃iλ̃

′
i (6a)

Γ̃t = σ̃2
e

1

N

N∑
i=1

λ̃iλ̃
′
i (6b)

Γ̃t =
1

n

n∑
i=1

n∑
j=1

λ̃iλ̃
′
j

1

T

T∑
t=1

ẽitẽjt. (6c)

The various specifications of Γ̃t accommodate flexible error structures in the factor model.

Both (6a) and (6b) assume that eit is cross-sectionally uncorrelated with ejt. Consistency of

both estimators was shown in our earlier work. The estimator (6b) further assumes E(e2
it) =

σ2
e for all i and t. Under regularity conditions, σ̃2

e = 1
NT

∑N
i=1

∑T
t=1 ẽ2

it

p−→σ2
e . Although

(6a) and (6b) both assume the idiosyncratic errors are cross-sectionally uncorrelated, it is

not especially restrictive because much of the cross-correlation in the data is presumably

captured by the common factors. At an empirical level, allowing for cross-section correlation

in the errors would entail estimation of N(N − 1)/2 additional parameters. Because N

is large by assumption, sampling variability could generate non-trivial efficiency loss. For

small cross-section correlation in the errors, constraining them to be zero could sometimes be

desirable. The estimators defined in (6a) and (6b) are useful even if residual cross-correlation

is genuinely present.

When it is deemed inappropriate to assume zero cross-section correlation in the errors,

the asymptotic variance of F̃t can be estimated by (6c). Consistency of Γ̃t will be established

below and it requires nontrivial argument. Suffice it to note for now that the estimator, which
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we will refer to as CS-HAC, is robust to cross-section correlation and heteroskedasticity in eit

of unknown form, but requires covariance stationarity with E(eitejt) = σij for all t, and that

n = n(N, T ) satisfies the conditions of Theorem 4 (see Section 5 below). Loosely speaking,

covariance stationarity of eit implies that Γt does not depend on t so that the residuals from

other periods, not just t, can be used to estimate Γt. This, however, is not sufficient, as we

will also require that n
min[N,T ]

→ 0 to avoid excess sampling variability of λ̃i on Γ̃t.

Once appropriate estimators for Avar(δ̂) and Avar(F̃T ) are chosen, the above results

allow us to construct prediction intervals. This exercise is straightforward given asymptotic

normality of the forecasts errors. For example, the 95% confidence interval for the yT+h|T is
(

ŷT+h|T − 1.96
√

v̂ar(ŷT+h|T ), ŷT+h|T + 1.96
√

v̂ar(ŷT+h|T )

)
,

where v̂ar(ŷT+h|T ) is equal to B2
T , as defined in Theorem 3, with Avar(δ̂) and Avar(F̃t)

replaced by their consistent estimates.

Although the conditional mean is a useful benchmark for the theoretical properties of

forecasts, it is not observable. Thus, in practice, forecast comparisons are inevitably made

in terms of yT+h. Since yT+h = yT+h|T + εT+h, it follows that

ŷT+h|T − yT+h = (ŷT+h|T − yT+h|T ) + εT+h.

So if εt is normally distributed, ŷT+h|T − yT+h is also approximately normal with

var(ŷT+h|T − yT+h) = σ2
ε + var(ŷT+h|T ),

which in large samples will be dominated by σ2
ε , since var(ŷT+h|T ) vanishes at rate min[T, N ].

The result that σ2
e dominates in large samples, which is standard in the forecasting literature,

continues to hold when the factors are estimated. It should, however, be stressed that the

error arising from using F̃t is asymptotically negligible only if Theorems 1 and 3 hold. It is

thus essential that N and T are both large, with
√

T/N → 0.

Theorem 3 fills an important void in the diffusion index forecasting literature, as it goes

beyond the consistency result to establish asymptotic normality. The result has uses beyond

forecasting, as it provides the basis of testing economic hypothesis that involves fundamental

factors. Observed variables are often used in place of the latent factors when testing various

theories of asset returns. Using Theorem 3, tests can be developed to determine whether

the observables are good proxies for the latent factors. An application was considered in Bai

and Ng (2004). That analysis, which amounts to assessing the in-sample predictability of

the latent factors, makes use of the results presented here, with h set to zero.
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4 Covariance Matrix Estimator: the CS-HAC

The CS-HAC estimator introduced earlier is robust to cross-section correlation and cross-

section heteroskedasticity. As a general matter, correcting for cross-section correlation is

not an easy task because unlike time series data, a natural ordering of cross-section data

rarely arises. Exceptions are spatial models and analysis in which economic distance can

be meaningfully defined as in Conley (1999). More generally, neither economic theory nor

intuition can be expected to be of much help in obtaining a ’mixing condition’ type ordering of

the data. Since any permutation of the data is an equally valid representation of information

available, the different orderings also cannot be ranked. Instead of truncating terms ’far from’

an observation, the common practice in cross-section regressions is to impose restrictions on

the off-diagonal elements, or to parameterize Ω in terms of a finite number of parameters.

Both approaches serve the purpose of reducing the number of unknowns in Ω from O(N2)

to something more manageable.

A third alternative is to make use of the availability of observations on the cross-section

units over time. The basic intuition is as follows. Under covariance stationarity, time series

observations allow us to consistently estimate the cross-section correlation matrix. Thus,

although the cross-section regressions do not permit consistent estimation of the covariance

matrix of interest, this is possible with T large. An estimator along these lines was considered

in Driscoll and Kraay (1998). Their estimator is consistent if information from some n < N

terms are used, with n = n(T ). They place no other restriction on n, nor do they limit the

amount of cross-section correlation. In their setup, the regressors are observable.

We also seek to estimate the covariance matrix from panel data, but our analysis is

complicated by the fact that λi is not observed, and consistent estimation of the factor

space necessitates that the cross-section correlation in eit is weak. The notion of cross-

section correlation, as defined in Chamberlain and Rothschild (1983) puts bounds on the

eigenvalues of Ω. Assumption C restates the condition in terms of the column sum of a

matrix. A key condition for “weak” cross section correlation is 1
N

∑N
i=1

∑N
j=1 |σij| ≤ M ,

where σij = E(eitejt).

Theorem 4 Suppose Assumptions A-D hold. Let n = n(N, T ) and define

Γ̃t =
1

n

n∑
i=1

n∑
j=1

λ̃iλ̃
′
j

1

T

T∑
t=1

ẽitẽjt.

Then
∥∥∥Γ̃t −H−1′ΓtH

−1
∥∥∥ p−→0 if n

min[N,T ]
→ 0.

12



In the factor model setup, ẽit are the regression residuals associated with the regressors

λ̃i, which are the principal component estimates. Accordingly, the number of correlated pairs

we can consider, n, is primarily determined by the convergence rate of the factor estimates.

Importantly, the estimator Γ̃t is inconsistent if n = N because use of too many λ̃i will

introduce excess variability to Γ̃t. Note that Γ̃t is an estimate for H−1′ΓtH
−1 not for Γt.

The end result is correct because the asymptotic variance depends on QΓtQ
′. We use λ̃i to

estimate H−1′λi, and we also estimate QH ′ instead of Q, where Q is the limit of F̃ ′F/T .

From QΓtQ
′ = QH ′H ′−1ΓtHH−1Q, the matrix H is effectively canceled out.

The conditions that n/N → 0 and n/T → 0 are not restrictive. The simple rule we

use in the simulations below is n = min[
√

N,
√

T ]. Once n is defined, an estimator can be

constructed upon picking n out of N series from the sample. In practice, we first randomly

select n series to obtain Γ̃
(1)
t . Another n series is picked randomly to obtain Γ̃

(2)
t ), and so

forth. Averaging over Γ̃
(k)
t , k = 1, . . . K gives Γ̃t. For the DGPs considered below, the results

are not sensitive to K. We report results for K = min[
√

N,
√

T ].

5 Finite Sample Properties

We now use simulations to assess the finite sample properties of the procedures. Data are

generated as follows:

xit = λ′iFt + eit, i = 1, . . . N, t = 1, . . . , T

Fjt = ρjFjt−1 + (1− ρ2
j)

1/2ujt j = 1, . . . , r

eit = (1 + b2)vit + bvi+1,t + bvi−1,t.

ρj = (.8)j,

where ujt and vit are mutually uncorrelated N(0, 1) random variables.4 Cross section cor-

relation is allowed when b 6= 0. We draw λi from the standard normal distribution. In the

simulations, we set r = 2 and assume that it is known. The series to be forecasted is

yt+h = 1 + F1t + F2t + εt+h.

That is, Wt = 1 ∀t, α is the unit vector, and β equals 1. The simulation design follows Stock

and Watson (2002a) closely. Configurations that include additional Wt series yield similar

results and will not be presented.

4The results are very similar if the innovation variance of ut is not scaled by 1−ρ2
j . The scaling is enables

us to control the size of the common to the idiosyncratic component.
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Our main interest is in the coverage of the confidence intervals. Three types of confidence

intervals will be presented:

Model (A): (6b) +(4b) ; Model (B): (6a) + (4a) ; Model (C): (6c) + (4a).

For each model, the coverage rates are reported for (i) the diffusion index forecast for the

conditional mean, ŷT+h|T ; (ii) the infeasible forecast of the conditional mean ŷ0
T+h|T ; (iii) the

diffusion index forecast for yT+h, and (iv) the infeasible forecast y0
T+h. By infeasible forecast,

we mean that Ft is used, and estimation of the factors is not necessary. A comparison of the

feasible and infeasible forecasts gives an indication of the error arising from the estimation

of Ft.

The results are presented in Tables 1, 2, and 3 respectively. The top panel are coverage

rates when the forecasting model is correctly specified (in terms of the number of factors).

Overall, the coverage rates are excellent. The probability that yT+h|T or yT+h lies inside the

estimated prediction intervals is always close to the nominal coverage rate of .95, even when

N and T are only 50.

The idiosyncratic errors are cross-sectionally uncorrelated when b = 0, in which case all

three estimators of Avar(F̃t) are valid. Although (6c) should be less efficient, comparing the

results in Table 1 and 2 with those in 3 reveal that estimating the cross-section correlation

when none is present seems to have little effect on coverage. In the simulations, the errors are

homoskedastic by design. The results using the heteroskedastic robust estimator in Tables

2 and 3 are also similar to those in Table 1 with homoskedasticity imposed.

When b 6= 0, use of (6c) is appropriate. Omitting cross-section correlation tends to weaken

coverage marginally. This should not be taken as indication that cross-section correlation in

the errors does not need to be dealt with. In situations when the cross-correlation is more

prevalent, the effect will be amplified.

The bottom panel of Tables 1 to 3 consider situations when too few factors are used. In

these cases, the coverage for the conditional mean is well below .95. This problem is not

specific to diffusion index forecasting, however, as inference cannot be expected to be correct

when the object of interest is misspecified. Nonetheless, the coverage for yT+h remains

accurate because the misspecification in the conditional mean leads to a correspondingly

larger unconditional prediction error variance. Inference on yT+h is not significantly affected

by whether the error comes from the conditional mean, or from the residual component.
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6 Empirical Application

Although diffusion index forecasts have been found to yield improvements over simple models,

a major shortcoming is that only point forecasts are available. There exist no tools to assess

uncertainty around the forecasts. With the distribution of the forecast errors presented in

the previous section, it is now possible to compute prediction intervals.

To illustrate, we use as predictors the 150 series as in Stock and Watson (2002b).5 We

consider h = 12 period ahead forecast of the annual growth rate of industrial production,

DIP, and inflation, DP. Thus, yt+12 is either DIP = log(IPt+12) − log(IPt), or DP =

log(PUNEWt+12)− log(PUNEWt). For Wt, we include lags of the monthly first difference

of the series, plus a constant. The forecasting exercise begins by estimating the factors

using data on xit from 1959:1 to 1969:1. We then obtain α̂ and β̂ from a regression of

yt on F̃t−12 and Wt−12, for t=1959:1 to 1969:1. The forecast for y1970:1 is computed as

α̂′F̃1969:1 + β̂′W1969:1. The sample is then extended by one month, the factors and all the

parameters are re-estimated, and the forecast for y1970:2 is formed. The procedure is repeated

until the forecast for 1996:12 is made in 1995:12.

For the sake of comparison, we also consider the autoregressive forecast β̂′W1969:1. We

first select the order of this autoregression using the BIC. The diffusion index model then

augments this autoregression with the estimated factors. If the factors have no useful infor-

mation, α should be zero, and the autoregressive forecast will be the optimal forecast.

Because the two series to be forecasted are one of the xits, the number of factors in yt is

the same as the number of common factors in the panel of data. This is determined using

r̂ = argmaxk=0,...kmax ICP (k) where

ICP (k) = log σ̃2(k) + k · g(N, T ),

where σ̃2(k) = 1
NT

∑N
i=1

∑T
t=1 ẽ2

it. In Bai and Ng (2002), we showed that any penalty sat-

isfying g(N, T ) → 0 and min[N, T ]g(N, T ) → ∞ is theoretically valid. Stock and Watson

(2002b) used g1(N, T ) = log(min[N,T ])
min[N,T ]

. This penalty tends to favor a larger number of factors

than g2(N, T ) = (N + T ) log(NT )
NT

, an equally valid penalty except in the unusual case that

N = exp(T ). Obviously, the larger the number of factors, the less likely will the errors be

cross-sectionally correlated. Thus, we consider two sets of confidence intervals. Configura-

tion A uses g1(N, T ) with Avar(F̃t) specified by (6a). Configuration B uses g2(N, T ) with

Avar(F̃t) specified by (6c). In both cases, (4a) is used for Avar(δ̂). As it turns out, the

5The data are taken from Mark Watson’s web site http://www.princeton.edu/ mwatson.
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results are quite similar, with results for configuration B slightly better. We will only report

results for configuration B. It uses a smaller number of estimated factors, but correct for

cross-section correlation in the idiosyncratic errors.

Industrial Production Figure 1a presents the autoregressive (AR) and the diffusion in-

dex forecasts for industrial production. Because DIP is only mildly serially correlated, the

AR forecast (broken line) is roughly constant. The diffusion index forecast (dotted line) is

more volatile, but tracks the actual data more closely. The average mean-squared error for

the diffusion index and AR forecasts are 24.95 and 26.46, respectively. Figures 2a and 2b

present the series to be forecasted, along with the 95% prediction interval as suggested by

the diffusion index and the AR forecasts, respectively. The mean length of the confidence

interval is 17.17 for the diffusion index model, and is 20.48 for the AR model. This agrees

with the visual impression that the confidence interval is narrower when the factors are used.

Inflation The inflation forecasts are presented in Figures 3. As inflation displays stronger

persistence, the AR forecast mirrors lagged inflation. The factors add information beyond

what is in lagged inflation, reducing the MSE from 5.09 to 3.98. The data along with the

95% prediction interval are given in Figure 4. The prediction interval for the diffusion index

forecasts are again tighter, with an average length of 5.19 compared to 7.41.

A notable feature of the two applications considered is the reduced adherence of the factor

forecasts to the lags of the data, even when the autoregressive structure is built in. This

illustrates that diffusion index forecasts add information in the large panel not contained in

the history of the series itself, and in a very parsimonious way.

7 Non-Stationary Factors

The preceding analysis can be extended to nonstationary factors. Although nonstationary

factors imply different rates of convergence for the estimated model parameters, we will now

show that for the purpose of constructing confidence intervals for forecasts, the formula for

stationary factors remains valid, at least under conditional homoskedasticity.

Assume again that the forecasting equation is yt+h = α′Ft + β′Wt + εt+h, and the data

have a factor representation xit = λ′iFt + eit. Instead of assuming Ft is covariance stationary,

we now assume

Ft = Ft−1 + ut,

16



where ut is a sequence of I(0) processes. To analyze this case of non-stationary factors, all

previous assumptions are maintained, except for the following:

Assumption A′: (1) E‖ut‖4+δ ≤ M and 1
T 2

∑T
t=1 FtF

′
t

d−→ΣF , where ΣF is positive defi-

nite (random) matrix with probability 1, and (2) εt is an iid sequence with zero mean and

variance σ2
ε , where εs is independent of zt = (F ′

t ,W
′
t)
′ for all t and s.

Assumption A′(1) rules out cointegration among the components of Ft, although the

results are applicable for this case. Cointegration among Ft is equivalent to the existence

of both I(1) and I(0) factors, see Bai (2004). This case would require more complicated

notation and will not be presented to simplify the exposition.

Assumption A′(2) imposes conditional homoskedasticity on εt. As a result, the following

mixture normality is a reasonable assumption:

D−1
T

T∑
t=1

ztεt+h
d−→MN(0, σ2

εΩ) (7)

where MN(0, σ2
εΩ) is shorthand notation for conditional normal distribution with covariance

matrix σ2
εΩ, conditional on Ω, where Ω is the limiting random matrix of D−1

T z′zD−1
T where

DT = TIr+p if Wt is also I(1), and DT = (TIr,
√

TIp) if Wt is I(0). If some components of Wt

are I(1), and others are I(0), DT is adjusted accordingly. By definition, if ξ ∼ MN(0, σ2
εΩ),

then σ−1
ε Ω−1/2ξ ∼ N(0, I).

Let F̃ be a T × r matrix consisting of r eigenvectors (multiplied by T ) of the matrix

XX ′/(T 2N), corresponding to the first r largest eigenvalues (in deceasing order). Let Ṽ

be the diagonal matrix consisting of these eigenvalues. Define Λ̃ = X ′F̃ /T 2 and H =

Ṽ −1(F̃ ′F/T 2)(Λ′Λ/N).

Theorem 5 Suppose assumptions A′, B-E and (7) hold.

(i) Let α̂ and β̂ be the least squares estimators from a regression of yt+h on ẑt = (F̃ ′
t W ′

t)
′.

As N, T →∞ with
√

T/N → 0,

(D−1
T ẑ′ẑD−1

T )1/2DT

([
α̂

β̂

]
−

[
H ′−1α

β

])
d−→N

(
0, σ2

εI
)

(8)

where ẑ = (ẑ1, ..., ẑT−h)
′.

(ii) Let ŷT+h|T = α̂′F̃T + β̂′WT be the feasible h-step ahead forecast of yT+h. Under the

assumptions of Theorem 5
ŷT+h|T − yT+h|T

CT

d−→N(0, 1) (9)

where C2
T = σ̂2

ε ẑ
′
T (ẑ′ẑ)−1ẑT + 1

N
α̂′ Ṽ −1Γ̃tṼ

−1 α̂.
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The theorem shows that α̂ converges to H ′−1α at rate T and β̂ converges to β at rate
√

T

when Wt is I(0). These are the same rates as known F . Of course, for known F , we will

directly estimate α instead of H ′−1α. When the estimator is weighted by the random matrix

(D−1
T ẑ′ẑD−1

T )1/2, the limiting distribution is normal. The unweighted limiting distribution is

mixture normal.

The forecast error variance once again has two components. The first term of C2
T comes

from the estimation of δ and is Op(T
−1). The second term comes from the estimation of Ft

and is Op(N
−1). If T/N is bounded, both errors remain asymptotically (unless T/N → 0)

and the convergence rate is
√

T . If T/N is unbounded, asymptotic normality continues to

hold, but convergence is at rate
√

N . The overall convergence rate of ŷT+h|T to yT+h|T is

min[
√

N,
√

T ], as in the case of I(0) regressors.

If Ft is observed, it is known that it has to be normalized differently depending on whether

it is I(1) or I(0)6. Although less obvious, the triple (Ṽ , F̃ , Λ̃) also has to be normalized

differently, depending on the stationarity property of F̃t. One would then expect confidence

intervals for stationary and non-stationary factors to be constructed differently. However,

the expression
(ŷT+h|T−yT+h|T )

BT
in Theorem 3 under homoskedasticity and

(ŷT+h|T−yT+h|T )

CT
in

Theorem 5 are in fact mathematically identical. As shown in the Appendix, this is because

C2
T is invariant to normalization. Although Theorem 5 is stated under the assumption of

conditional homoskedasticity, the forecast confidence intervals derived for stationary common

factors are also valid for nonstationary factors. The practical implication is that knowledge

concerning the stationarity property of Ft is not essential for predictive inference.

8 Conclusion

The factor approach to forecasting is extremely useful in situations when a large number

of indicator or predictor variables are present. The factors provide a significant reduction

in the number of variables entering the forecasting equation while exploiting information in

all available data. This latter aspect is important because it is by using information in all

data available that permits consistent estimation of the factors. This paper contributes to

the small but growing literature on factor forecasting by (i) showing that the conditional

mean forecasts are min[
√

N,
√

T ] consistent, and (ii) presenting formulas to permit predictive

inference. As a by product, we suggest how the covariance matrix of cross-correlated errors

can be consistently estimated.

6Different scalings are used to derive proper rates of convergence and suitable limiting distributions.
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Appendix

We make use of the following identity throughout:

F̃t −HFt = Ṽ −1

(
1

T

T∑
s=1

F̃sγst +
1

T

T∑
s=1

F̃sζst +
1

T

T∑
s=1

F̃sηst +
1

T

T∑
s=1

F̃sξst

)
, (A.1)

where γst = E( 1
N

∑N
i=1 eiseit), ζst = 1

N

∑N
i=1 eiseit − γst, ηst = 1

N

∑N
i=1 λ′iFseit, and ξst =

1
N

∑N
i=1 λ′iFt eis. Note that M will represent a general positive constant, not depending on

N and T and not necessarily the same in different expressions.

Lemma A1 Let z′t = (F ′
t W ′

t)
′, and ẑt = (F̃ ′

t W ′
t)
′. Let δ2

NT = min[N, T ]. Under

Assumptions A-E,

(i) δ2
NT ( 1

T

∑T
t=1 ‖F̃t −HFt‖2) = Op(1);

(ii) 1
T

∑T
t=1(F̃t −HFt)z

′
t = Op(δ

−2
NT );

(iii) 1
T

∑T
t=1(F̃t −HFt)ẑ

′
t = Op(δ

−2
NT );

(vii) 1
T

∑T
t=1(F̃t −HFt)εt+h = Op(δ

−2
NT ).

Proof: Part (i) is proved in Bai and Ng (2002). Consider (ii). ¿From A.1,

1

T

T∑
t=1

(F̃t −HFt)z
′
t = Ṽ −1

[
T−2

T∑
t=1

[
T∑

s=1

F̃sγst]z
′
t

+T−2

T∑
t=1

[
T∑

s=1

F̃sζst]z
′
t + T−2

T∑
t=1

[
T∑

s=1

F̃sηst]z
′
t + T−2

T∑
t=1

[
T∑

s=1

F̃sξst]z
′
t

]

= Ṽ −1[I + II + III + IV ],

We begin with I. We have

T−2

T∑
t=1

T∑
s=1

F̃sz
′
tγst = T−2

T∑
t=1

T∑
s=1

(F̃s −HFs)z
′
tγst + T−2

T∑
t=1

T∑
s=1

HFsz
′
tγst.

The first term is bounded by

T−1/2
( 1

T

T∑
s=1

‖F̃s −HFs‖2
)1/2(

T−1

T∑
t=1

T∑
s=1

|γst|2T−1

T∑
t=1

‖zt‖2
)1/2

= Op(T
−1/2δ−1

NT )

by part (i) and Assumption C. Note that Assumption C implies |γst| ≤ M , 1
T

∑T
t=1

∑T
s=1 |γst| ≤

M and 1
T

∑T
s=1

∑T
s=1 |γst|2 ≤ M . The expected value of the second term is bounded by (ig-

nore H)

T−2

T∑
t=1

T∑
s=1

|γst|(E ‖Fs‖2)1/2(E ‖zt‖2)1/2 ≤ MT−2

T∑
t=1

T∑
s=1

|γst| = O(T−1)
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by Assumption C and E.1. Thus, (I) = Op(T
−1/2δ−1

NT ).

For (II),

T−2

T∑
t=1

T∑
s=1

F̃sζstz
′
t = T−2

T∑
t=1

T∑
s=1

HFsζstz
′
t + T−2

T∑
t=1

(F̃s −HFs)ζstz
′
t.

The first term can be written as H 1√
NT

1
T

∑T
t=1 mtz

′
t, where mt = 1√

NT

∑T
s=1

∑N
i=1 Fs[eiseit−

E(eiseit)]. But E ‖mt‖2 < M by Assumptions C3, and E ‖mtz
′
t‖ ≤ (E(‖mt‖2 E(‖zt‖2))1/2 ≤

M . Thus, 1
T

∑T
t=1 mtz

′
t = Op(1), and the first term is Op(1/

√
NT ). For the second term,

∥∥∥T−2

T∑
t=1

T∑
s=1

(F̃s −HFs)ζstz
′
t

∥∥∥ ≤
( 1

T

T∑
s=1

∥∥∥F̃s −HFs

∥∥∥
2)1/2( 1

T

T∑
s=1

∥∥∥ 1

T

T∑
t=1

ζstz
′
t

∥∥∥
2)1/2

.

But 1
T

∑T
t=1 ζstz

′
t = 1√

N
1
T

∑T
t=1(

1√
N

∑N
i=1[eiseit − E(eiseit)])z

′
t = Op(N

−1/2). Combining the

results, (II) = Op(1/
√

NT ) + Op(δ
−1
NT ) ·Op(N

−1/2) = Op(N
−1/2δ−1

NT ).

For (III), we have

T−2

T∑
t=1

T∑
s=1

F̃sz
′
tηst = T−2

T∑
t=1

T∑
s=1

HFsz
′
tηst + T−2

T∑
t=1

T∑
s=1

(F̃s −HFs)z
′
tηst.

The first term on the right hand side can be rewritten as

T−2

T∑
t=1

T∑
s=1

HFsz
′
tηst = H(

1

T

T∑
s=1

FsF
′
s)

1

NT

T∑
t=1

N∑
i=1

λiz
′
teit,

which is Op(1)Op(
1√
NT

). The treatment of the second term is similar to that of the second

term of (II). The proof for (IV) is similar to (III). Thus,

I + II + III + IV = Op(
1√

TδNT

) + Op(
1√

NδNT

) + Op(
1√
NT

) = Op(
1

min[N, T ]
) = Op(δ

−2
NT )

proving part (ii). Next, consider part (iii). Let z̄t = (HF ′
t ,W

′
t)
′. Then T−1

∑T
t=1(F̃t −

HFt)ẑ
′
t = T−1

∑T
t=1(F̃t − HFt)z̄

′
t + T−1

∑T
t=1(F̃t − HFt)(ẑt − z̄t)

′. ¿From ẑt − z̄t = ((F̃t −
HFt)

′, 0)′, the second term is Op(δ
−2
NT ) by part (i). The first term is Op(δ

−2
NT ) by part (iii)

in view of the definition of z̄t and zt. Finally, the proof for (iv) is similar to (ii), with εt

replacing zt.

Proof of Theorem 1

Adding and subtracting terms, the forecasting model can be written as:

yt+h = α′Ft + β′Wt + εt+h

= α′H−1F̃t + β′Wt + εt+h + α′H−1(HFt − F̃t).
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This implies, for Y = (yh, yh+1, ..., yT )′, ε = (εh, ..., εT )′, and ẑ = (ẑ1, ..., ẑT−h)
′,

Y = ẑ

[
H−1′α

β

]
+ ε + (FH ′ − F̃ )H−1′α. (A.2)

Consider the regression yt+h = α′F̃t + β′Wt + error. The least squares estimates are
[
α̂

β̂

]
= (ẑ′ẑ)−1ẑ′Y.

Replacing Y by the right hand side of (A.2)
[
α̂

β̂

]
−

[
H−1′α

β

]
= (ẑ′ẑ)−1ẑ′ε + (ẑ′ẑ)−1ẑ′(FH ′ − F̃ )H−1α.

Or √
T

([
α̂

β̂

]
−

[
H−1′α

β

])
=

( ẑ′ẑ
T

)−1 ẑ′ε√
T

+
( ẑ′ẑ

T

)−1 ẑ′(FH ′ − F̃ )√
T

H−1α.

The second term on the right hand side is op(1). This follows from T−1/2ẑ′(FH ′ − F̃ ) =

Op(T
1/2δ−2

NT ) = Op(T
1/2/ min(N, T )) = op(1) if

√
T/N → 0, by Lemma A1. Consider the

first term.

ẑ′ε√
T

=

[
F̃ ′ε√

T
W ′ε√

T

]
=

[
(F̃−HF ′)ε√

T
+ HF ′ε√

T
W ′ε√

T

]
.

By Lemma A1, (F̃−FH′)′ε√
T

p−→0 if
√

T/N → 0. Therefore,

√
T

([
α̂

β̂

]
−

[
H−1′α

β

])
=

(
ẑ′ẑ
T

)−1
[

HF ′ε√
T

W ′ε√
T

]
+ op(1)

=

(
ẑ′ẑ
T

)−1 [
H 0
0 I

] [
F ′ε
W ′ε

]
1√
T

+ op(1)

=

(
ẑ′ẑ
T

)−1 [
H 0
0 I

]
z′ε/

√
T + op(1).

Since z′ε/
√

T
d−→N(0, plim 1

T

∑T
t=1 ε2

t+hztz
′
t) by Assumption D2, the above is asymptotically

normal. The asymptotic variance matrix is the probability limit of

(
ẑ′ẑ
T

)−1 [
H 0
0 I

](
1

T

T∑
t=1

ε2
t+hztz

′
t

)[
H ′ 0
0 I

](
ẑ′ẑ
T

)−1

.

Since HFt = F̃t + op(1) and zt = (F ′
t ,W

′
t)
′, the product of the middle three matrices is

( 1
T

∑T
t=1 ε2

t+hẑtẑ
′
t) + op(1). The asymptotic variance is thus given by (3), proofing Theorem

1.
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Proof of Theorem 2

Consider augmenting an q variable VAR in yt with r factors. Without loss of generality,

consider a FVAR(1). Define zt = (y′t F ′
t)
′. The infeasible FVAR is zt+1 = Azt + εt+1, or

(
yt+1

Ft+1

)
=

(
a11 a12

a21 a22

)(
yt

Ft

)
+

(
ε1t+1

ε2t+1

)
.

Left multiplying the second block equations by H and then adding and subtracting terms,

the FVAR expressed in terms of F̃t is

(
yt+1

F̃t+1

)
=

(
b11 b12

b21 b22

)(
yt

F̃t

)
+

(
ε1t+1

Hε2t+1

)
+

(
−b12(HFt − F̃t)

b21(HFt − F̃t)

)
+

(
0m×r

−(HFt+1 − F̃t+1)

)

=

(
b11 b12

b21 b22

)(
yt

F̃t

)
+ u1

t+1 + u2
t+1 + u3

t+1

where b11 = a11, b12 = a12H
−1, b21 = Ha21, and b22 = Ha22H

−1. Let ẑt = (y′t, F̃ ′
t)
′. The j-th

equation of the feasible FVAR is thus

ẑjt+1 = δ′j ẑt + u1
jt+1 + u2

jt+1 + u3
jt+1.

The least squares estimator for δj is

√
T (δ̂j − δj) =

(
1

T

T∑
t=1

ẑtẑ
′
t

)−1(
1√
T

T∑
t=1

ẑt(u
1
jt+1 + u2

jt+1 + u3
jt+1)

)
.

By Lemma A1, 1√
T

∑T
t=1 ẑtu

2
jt+1 = Op(

√
T

min[N,T ]
) and 1√

T

∑T
t=1 ẑtu

3
jt+1 = Op(

√
T

min[N,T ]
). Thus,

√
T (δ̂j − δj) =

(
1

T

T∑
t=1

ẑtẑ
′
t

)−1(
1√
T

T∑
t=1

ẑtu
1
jt+1

)
+ op(1)

d−→ N

(
0, plim(

1

T

T∑
t=1

ẑtẑ
′
t)
−1

(
1

T

T∑
t=1

(u1
jt+1)

2ẑtẑ
′
t

)
(
1

T

T∑
t=1

ẑtẑ
′
t)
−1

)
.

This can be consistently estimated with upon replacing u1
jt+1 by û1

jt+1 = ẑjt+1 − δ̂′j ẑt.

Proof of Theorem 3

Begin by rewriting

ŷT+h|T − yT+h|T = α̂′F̃T + β̂′WT − α′FT − β′WT

= (α̂−H−1′α)′F̃T + α′H−1(F̃T −HFT ) + (β̂ − β)′WT .
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Equivalently,

ŷT+h|T − yT+h|T =

[
α̂−H−1′α

β̂ − β

]′ [
F̃T

WT

]
+ α′H−1(F̃T −HFT )

= ẑ′T (δ̂ − δ) + α′H−1(F̃T −HFT )

=
1√
T

ẑ′T
√

T (δ̂ − δ) +
1√
N

α′H−1
√

N(F̃T −HFT )

Thus, if T/N is bounded,
√

T (ŷT+h|T−yT+h|T ) = Op(1) and is asymptotically normal because√
T (δ̂−δ) and

√
N(F̂T−HFT ) are asymptotically normal. Similarly, if N/T is bounded, then√

N(yT+h|T −yT+h|T ) = Op(1) and is asymptotically normal. Furthermore, note that
√

T (δ̂−
δ) and

√
N(F̃T −HFT ) are asymptotically independent because the limiting distribution of√

T (δ̂ − δ) is determined by (ε1, ..., εT ) and the limiting distribution of
√

N(F̃T − HFT )

is determined by cross-section disturbances at period T , eiT for i = 1, 2..., N . Due to this

asymptotic independence, the sum of the variances of the right hand side terms is an estimate

for the variance of ŷT+h|T − yT+h|T . Let B2
T = 1

T
ẑ′T Avar(δ̂)ẑT + 1

N
α̂′Avar(F̃T )α̂, which is an

estimate for the variance of ŷT+h|T − yT+h|T . Thus (ŷT+h|T − yT+h|T )/BT
d−→N(0, 1).

Proof of Theorem 4

Let σij = E(eitejt), and σ̃ij = 1
T

∑T
t=1 ẽitẽjt. Recall,

Γt = lim
n→∞

1

n

n∑
i=1

n∑
j=1

σijλiλ
′
j.

The proposed estimator is Γ̃t = 1
n

∑n
i=1

∑n
j=1 σ̃ijλ̃iλ̃j. Also let Γ̄t = 1

n

∑n
i=1

∑n
j=1 σ̃ijλiλ

′
j. It

follows that

Γ̃t −H−1′ΓtH
−1 = Γ̃t −H−1′Γ̄tH

−1 + H−1′(Γ̄t − Γt)H
−1.

We will show (i) that Γ̄t − Γt
p−→0 if n

N
→ 0 and n

T
→ 0, and (ii) that Γ̃t − H−1′Γ̄tH

−1 =

Op(T
−1/2) + Op(min[N, T ]−1).

(i) Γ̄t − Γt
p−→0. ¿From ẽit = xit − c̃it and eit = xit − cit, where cit = λ′iFt and c̃it = λ̃′iF̃t,

we have ẽit = eit − (cit − c̃it). Thus,

ẽitẽjt = eitejt − eit(cjt − c̃jt)− ejt(cit − c̃it) + (cit − c̃it)(cjt − c̃jt).

23



It follows that

Γ̄t − Γt =
1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

(eitejt − σij)λiλ
′
j −

1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

eit(cjt − c̃jt)λiλ
′
j

− 1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

ejt(cit − c̃it)λiλ
′
j +

1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j

= I + II + III + IV.

We will now show that I
p−→0 as T → ∞; II and III tend to zero if

√
n/T → 0; IV tends

to zero if n/T → 0 and n/N → 0.

We begin with I. Define ξt = n−1/2
∑n

i=1 λieit. Then I = 1
T

∑T
t=1[ξtξ

′
t − E(ξtξ

′
t)]. Each

element of the r × r matrix ξtξ
′
t − E(ξtξ

′
t) is a zero mean process, thus each entry of I is

Op(T
−1/2).

Now consider II. Rewrite cjt − c̃jt = (H−1′λj − λ̃j)
′F̃t + λ′jH

−1(HFt − F̃t). We will use

the fact that each term is a scalar and thus equals to its transpose and is commutable with

any vector or matrix and hence λi. Rewrite II accordingly,

II =
1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

eit(H
−1′λj − λ̃j)

′F̃tλiλ
′
j +

1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

eit(HFt − F̃t)
′H−1′λjλiλj

′

= A + B

=

(
1

n

n∑
i=1

λi
1

T

T∑
t=1

eitF̃
′
t

)( n∑
j=1

(H−1′λj − λ̃j)λ
′
j

)
+ B

= (A.a)(A.b) + B.

Now ‖A.a‖ =
∥∥∥ 1

T

∑T
t=1(

1
n

∑n
i=1 λieit)F̃t

∥∥∥. Thus,

‖A.a‖ ≤
( 1

T

T∑
t=1

∥∥∥1

n

n∑
i=1

λieit

∥∥∥
2)1/2( 1

T

T∑
t=1

∥∥∥F̃t

∥∥∥
2 )1/2

= Op(n
−1/2) ·Op(1)

because 1
n

∑n
i=1 λieit = Op(n

−1/2) and 1
T

∑T
t=1

∥∥∥F̃t

∥∥∥
2

= Op(1). For A.b, by Lemma A2 below

‖A.b‖ =
∥∥∥n

1

n

n∑
j=1

(H−1′λj − λ̃j)λ
′
j

∥∥∥ = n
[
·Op(

1√
nT

) + Op(
1

min[N, T ]
)
]
.

It follows from A=(A.a)(A.b) that

A = Op(n
−1/2)n

[
Op(

1√
nT

) + Op(
1

min[N, T ]
)
]

= Op(
1√
T

) + Op(

√
n

min[N, T ]
) → 0
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if
√

n/T → 0.

For B, it is bounded in norm by

∥∥∥ 1

T

T∑
t=1

(
n∑

i=1

λieit)(HFt − F̃t)
′
∥∥∥
( 1

n

n∑
j=1

‖λj‖2
)
‖H‖ = Op(n

1/2δ−2
NT )Op(1)

by Lemma A2(ii) below. Thus, B → 0 if
√

n/T → 0. Analogously, III → 0 if
√

n/T → 0.

For IV, note first that this term can be written as

1

n

n∑
i=1

n∑
j=1

1

T

T∑
t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j =

1

T

T∑
t=1

∥∥∥ 1√
n

n∑
i=1

(cit − c̃it)λi

∥∥∥
2

.

Using cit − c̃it = (H−1′λi − λ̃i)
′F̃t + λ′iH

−1(HFt − F̃t), we have

1√
n

n∑
i=1

(cit − c̃it)λi =
1√
n

n∑
i=1

(H−1′λi − λ̃i)
′F̃tλi +

1√
n

n∑
i=1

λ′iH
−1(HFt − F̃t)λi,

and
∥∥∥∥∥

1√
n

n∑
i=1

(cit − c̃it)λi

∥∥∥∥∥

2

≤ 2

∥∥∥∥∥
1√
n

n∑
i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥∥∥

2

‖F̃t‖2

+2‖H−1‖2
( 1

n

n∑
i=1

‖λi‖2
)2

· n · ‖Ft −HFt‖2

Thus

IV ≤ 2
( 1

T

T∑
t=1

∥∥∥F̃t

∥∥∥
2 ) ∥∥∥∥∥

1√
n

n∑
i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥∥∥

2

+2‖H−1‖2
( 1

n

n∑
i=1

‖λi‖2
)2

· n · 1

T

T∑
t=1

∥∥∥HFt − F̃t

∥∥∥
2

= Op(1)

∥∥∥∥∥
√

n
1

n

n∑
i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥∥∥

2

+ Op(n)Op(min[N, T ]−1)Op(1)

= a + b

By Lemma A2 below, a → 0 if
√

n/T → 0. Furthermore, b → 0 if n/N → 0 and n/T → 0.¤
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ii. Γ̃t −H−1′Γ̄tH
−1 p−→0. By the definition of Γ̃t and Γ̄t, we have

Γ̃t −H−1′Γ̄tH
−1 =

1

n

n∑
i=1

n∑
j=1

σ̃ij(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1)

=
1

n

n∑
i=1

n∑
j=1

(σ̃ij − σij)(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1) +
1

n

n∑
i=1

n∑
j=1

σij(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1)

= I + II.

We begin with II. Now

λ̃iλ̃
′
j −H−1′λiλjH

−1 = (λ̃i −H−1′λi)λ̃
′
j + H−1′λi(λ̃j −H−1′λj)

′.

Thus,

II =
1

n

n∑
i=1

n∑
j=1

σij(λ̃i −H−1′λi)λ̃
′
j +

1

n

n∑
i=1

n∑
j=1

σijλiH
−1(λ̃j −H−1′λj)

′

= a + b.

By Lemma A3 below,

|a| ≤
(

1

n

n∑
j=1

∥∥∥λ̃j

∥∥∥
2
)1/2(

1

n

n∑
j=1

∥∥∥
n∑

i=1

σij(λ̃i −H−1′λi)
∥∥∥

2
)1/2

= Op(1)
[
Op(

1√
T

) + Op(
1

min[N, T ]
)
]
→ 0.

Similarly, b = Op(
1√
T
) + Op(

1
min[N,T ]

). The proof of I being op(1) is analogous to that of part

(i). This completes the proof of Theorem 4. ¤.

Lemma A2 (i) 1
n

∑n
j=1(H

−1′λi − λ̃i)λ
′
i = Op((nT )−1/2) + Op(min[N, T ]−1).

(ii) The r × r matrix 1
T

∑T
t=1[(HFt − F̃t)(

∑n
i=1 λ′ieit)] = Op(

√
n

min[N,T ]
).

Proof of (i). From the identity

λ̃i −H−1′λi = T−1HF ′ei + T−1F̃ ′(F − F̃H−1′)λi + T−1(F̃ − FH ′)′ei,

where ei = (ei1, ei2, . . . eiT )′, we have

1

n

n∑
i=1

(λ̃i −H−1′λi)λ
′
i = T−1HF ′(

1

n

n∑
i=1

eiλ
′
i) + T−1F̃ ′(F − F̃H−1′)(

1

n

n∑
i=1

λiλ
′
i)

+T−1(F̃ − FH ′)′(
1

n

n∑
i=1

eiλ
′
i) = a + b + c.
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Now (a) equals H 1
Tn

(
∑n

i=1

∑T
t=1 Ftλ

′
ieit) = Op(

1√
nT

). (b) equals T−1F̃ ′(F − F̃H−1′) ·
Op(1) = Op(min[N, T ]−1) by Lemma B.3 of Bai (2003). (c) is Op([

√
n min[N, T ]]−1) following

Lemma B.1 of Bai (2003), replacing eit with 1
n

∑n
i=1 λieit = Op(

1√
n
). The lemma follows since

(c) is dominated by (a) and (b). For part (ii), the expression is equal to (c) multiplied by n,

thus it is equal to Op(
√

n/ min[N, T ]]).

Lemma A3 For each j,
∑n

i=1 σij(λ̃i −H−1′λi) = Op(T
−1/2) + Op(min[N, T ]−1).

Using the expression for λ̃i −H−1′λi above, we have

n∑
i=1

σij(λ̃i −H−1′λi) = T−1H ′(
n∑

i=1

σijF
′ei)

+T−1F̃ ′(F − F̃H−1)(
n∑

i=1

σijλi) + T−1(F̃ − FH)′(
n∑

i=1

σijei)

= (a) + (b) + (c).

Now (a) is Op(T
−1/2) because 1

T
F ′ei = 1

T

∑T
t=1 Fteit is Op(T

−1/2) for each i, and by Assump-

tion C, |∑n
i=1 σij| ≤ M . (b) is Op(min[N, T ]−1) because T−1F̃ ′(F−F̃H−1) = Op(min[N, T ]−1)

and ‖∑n
i=1 σijλi‖ ≤ M . (c) is Op(min[N, T ]−1) following the argument of Lemma A.2 (ii),

replacing
∑n

i=1 λieit = Op(
√

n) with
∑n

i=1 σijeit = Op(1). ¤

Proof of Theorem 5

The argument for Theorem 5 is almost identical to that of Theorems 1 and 3. The details are

omitted. We next argue that it is not necessary to know if the underlying factors are I(0) or

I(1), as far as prediction interval is concerned. The expression C2
T is equal to B2

T when (4b)

is used in estimating Avar(δ̂) of Theorem 3. Nevertheless, the triple (Ṽ , F̃ , Λ̃) in Theorem 5

are estimated (or are scaled) differently, depending on whether Ft is I(1) or I(0).7 It might

appear that it is essential to know the stationarity property of Ft. It turns out that C2
T

is invariant to different scalings. First consider the first term of C2
T , which is ẑ′T (ẑ′ẑ)−1ẑT .

From ẑt = (F̃ ′
t ,W

′
t)
′, it is clear that F̃t appears twice in the numerator and twice in the

denominator, thus immune to scaling. Next consider α̂′Ṽ −1Γ̃tṼ
−1α̂. Given a data matrix X,

let (Ṽ s, F̃ s, Λ̃s) be the estimated triple assuming Ft to be I(0), and let (Ṽ n, F̃ n, Λ̃n) be the

corresponding triple assuming Ft to be I(1). Then (Ṽ n, F̃ n, Λ̃n) = (Ṽ s/T,
√

T F̃ s, Λ̃s/
√

T ),

by the definition of the estimation procedures. This implies that α̂n = α̂s/
√

T (note α̂n is the

7Different scalings are used to derive proper rates of convergence and suitable limiting distributions.
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estimated regression coefficient when F̃ n is the regressor, and likewise for α̂s). Furthermore,

the panel residuals ẽit are invariant to scalings because F̃ nΛ̃n′ is equal to F̃ sΛ̃s′, it follows

that Γ̃n
t = Γ̃s

t/T in view of λ̃n
i = λ̃s

i/
√

T , see equations (6a)-(6c). From these relationships,

it is easy to see that

α̂n′(Ṽ n)−1Γ̃n
t (Ṽ n)−1α̂n = α̂s′(Ṽ s)−1Γ̃s

t(Ṽ
s)−1α̂s.

Thus, C2
T is the same whether Ft is assumed to be I(0) or I(1). The above argument is valid

for Ft being I(2) or other processes. This result has the practical implication that forecasting

confidence intervals derived for I(0) common factors are valid for nonstationary factors.
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Table 1: Coverage Rates and MSE:

Âvar(δ̂) = σ̂2
ε

[
1
T

∑T
t=1 ẑtẑ

′
t

]−1

,

Γ̃t = σ̃2
e

1
N

∑N
i=1 λ̃iλ̃i ∀ t.

Coverage Probability MSE
N T b k ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h

50 50 0.00 2 0.94 0.93 0.93 0.92 0.15 0.09 1.17 1.15
100 50 0.00 2 0.94 0.92 0.94 0.94 0.12 0.09 1.09 1.07
200 50 0.00 2 0.95 0.92 0.93 0.93 0.09 0.08 1.16 1.16
50 100 0.00 2 0.95 0.92 0.94 0.94 0.10 0.04 1.17 1.09
50 200 0.00 2 0.96 0.94 0.96 0.95 0.07 0.02 1.07 1.03
200 100 0.00 2 0.96 0.94 0.95 0.94 0.05 0.04 1.07 1.07
100 200 0.00 2 0.96 0.94 0.95 0.94 0.04 0.02 1.04 1.02
200 200 0.00 2 0.95 0.94 0.95 0.95 0.03 0.02 1.03 1.03
100 400 0.00 2 0.97 0.95 0.96 0.96 0.03 0.01 0.95 0.91
50 50 0.50 2 0.91 0.93 0.94 0.92 0.23 0.09 1.22 1.15
100 50 0.50 2 0.93 0.92 0.94 0.94 0.16 0.09 1.12 1.07
200 50 0.50 2 0.94 0.92 0.93 0.93 0.10 0.08 1.16 1.16
50 100 0.50 2 0.93 0.92 0.94 0.94 0.15 0.04 1.24 1.09
50 200 0.50 2 0.94 0.94 0.96 0.95 0.13 0.02 1.14 1.03
200 100 0.50 2 0.96 0.94 0.95 0.94 0.06 0.04 1.08 1.07
100 200 0.50 2 0.95 0.94 0.95 0.94 0.07 0.02 1.09 1.02
200 200 0.50 2 0.96 0.94 0.96 0.95 0.04 0.02 1.03 1.03
100 400 0.50 2 0.97 0.95 0.96 0.96 0.06 0.01 0.99 0.91
50 50 0.00 1 0.55 0.93 0.90 0.92 1.13 0.09 2.22 1.15
100 50 0.00 1 0.52 0.92 0.92 0.94 0.99 0.09 1.97 1.07
200 50 0.00 1 0.53 0.92 0.93 0.93 0.90 0.08 2.01 1.16
50 100 0.00 1 0.52 0.92 0.94 0.94 1.05 0.04 2.14 1.09
50 200 0.00 1 0.50 0.94 0.94 0.95 0.93 0.02 2.01 1.03
200 100 0.00 1 0.44 0.94 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.00 1 0.43 0.94 0.94 0.94 0.94 0.02 2.03 1.02
200 200 0.00 1 0.38 0.94 0.95 0.95 0.90 0.02 1.80 1.03
100 400 0.00 1 0.40 0.95 0.96 0.96 0.86 0.01 1.78 0.91
50 50 0.50 1 0.57 0.93 0.91 0.92 1.15 0.09 2.24 1.15
100 50 0.50 1 0.54 0.92 0.92 0.94 1.00 0.09 1.99 1.07
200 50 0.50 1 0.53 0.92 0.93 0.93 0.91 0.08 2.02 1.16
50 100 0.50 1 0.55 0.92 0.93 0.94 1.09 0.04 2.21 1.09
50 200 0.50 1 0.53 0.94 0.94 0.95 0.96 0.02 2.05 1.03
200 100 0.50 1 0.47 0.94 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.50 1 0.45 0.94 0.93 0.94 0.96 0.02 2.07 1.02
200 200 0.50 1 0.39 0.94 0.96 0.95 0.91 0.02 1.81 1.03
100 400 0.50 1 0.43 0.95 0.96 0.96 0.86 0.01 1.79 0.91
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Table 2: Coverage Rates and MSE:

Âvar(δ̂) =
(

1
T

∑T
t=1 ẑtẑ

′
t

)−1[
1
T

∑T−h
t=1 ε̂2

t+hẑtẑ
′
t

](
1
T

∑T
t=1 ẑtẑ

′
t

)−1

,

Γ̃t = σ̃2
e

1
N

∑N
i=1 λ̃iλ̃i ∀ t.

Coverage Probability MSE
N T b k ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h

50 50 0.00 2 0.92 0.85 0.93 0.92 0.15 0.09 1.17 1.15
100 50 0.00 2 0.92 0.85 0.94 0.94 0.12 0.09 1.09 1.07
200 50 0.00 2 0.94 0.86 0.93 0.92 0.09 0.08 1.16 1.16
50 100 0.00 2 0.93 0.89 0.94 0.94 0.10 0.04 1.17 1.09
50 200 0.00 2 0.93 0.91 0.96 0.95 0.07 0.02 1.07 1.03
200 100 0.00 2 0.95 0.90 0.95 0.94 0.05 0.04 1.07 1.07
100 200 0.00 2 0.94 0.92 0.95 0.94 0.04 0.02 1.04 1.02
200 200 0.00 2 0.94 0.92 0.95 0.95 0.03 0.02 1.03 1.03
100 400 0.00 2 0.95 0.94 0.96 0.96 0.03 0.01 0.95 0.91
50 50 0.50 2 0.88 0.85 0.94 0.92 0.23 0.09 1.22 1.15
100 50 0.50 2 0.91 0.85 0.94 0.94 0.16 0.09 1.12 1.07
200 50 0.50 2 0.93 0.86 0.93 0.92 0.10 0.08 1.16 1.16
50 100 0.50 2 0.92 0.89 0.94 0.94 0.15 0.04 1.24 1.09
50 200 0.50 2 0.92 0.91 0.96 0.95 0.13 0.02 1.14 1.03
200 100 0.50 2 0.95 0.90 0.95 0.94 0.06 0.04 1.08 1.07
100 200 0.50 2 0.92 0.92 0.94 0.94 0.07 0.02 1.09 1.02
200 200 0.50 2 0.94 0.92 0.96 0.95 0.04 0.02 1.03 1.03
100 400 0.50 2 0.94 0.94 0.96 0.96 0.06 0.01 0.99 0.91
50 50 0.00 1 0.51 0.85 0.90 0.92 1.13 0.09 2.22 1.15
100 50 0.00 1 0.50 0.85 0.92 0.94 0.99 0.09 1.97 1.07
200 50 0.00 1 0.51 0.86 0.93 0.92 0.90 0.08 2.01 1.16
50 100 0.00 1 0.48 0.89 0.94 0.94 1.05 0.04 2.14 1.09
50 200 0.00 1 0.46 0.91 0.94 0.95 0.93 0.02 2.01 1.03
200 100 0.00 1 0.42 0.90 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.00 1 0.40 0.92 0.94 0.94 0.94 0.02 2.03 1.02
200 200 0.00 1 0.34 0.92 0.95 0.95 0.90 0.02 1.80 1.03
100 400 0.00 1 0.34 0.94 0.96 0.96 0.86 0.01 1.78 0.91
50 50 0.50 1 0.52 0.85 0.90 0.92 1.15 0.09 2.24 1.15
100 50 0.50 1 0.52 0.85 0.92 0.94 1.00 0.09 1.99 1.07
200 50 0.50 1 0.50 0.86 0.93 0.92 0.91 0.08 2.02 1.16
50 100 0.50 1 0.51 0.89 0.94 0.94 1.09 0.04 2.21 1.09
50 200 0.50 1 0.49 0.91 0.94 0.95 0.96 0.02 2.05 1.03
200 100 0.50 1 0.45 0.90 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.50 1 0.42 0.92 0.93 0.94 0.96 0.02 2.07 1.02
200 200 0.50 1 0.36 0.92 0.96 0.95 0.91 0.02 1.81 1.03
100 400 0.50 1 0.39 0.94 0.96 0.96 0.86 0.01 1.79 0.91
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Table 3: Coverage Rates and MSE, h = 4:

Âvar(δ̂) =
(

1
T

∑T
t=1 ẑtẑ

′
t

)−1[
1
T

∑T−h
t=1 ε̂2

t+hẑtẑ
′
t

](
1
T

∑T
t=1 ẑtẑ

′
t

)−1

,

Γ̃t = 1
n

∑n
i=1

∑n
j=1 λ̃iλ̃

′
j

1
T

∑T
t=1 ẽitẽjt ∀ t.

Coverage Probability MSE
N T b‘ k ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h ŷT+h|T ŷ0

T+h|T ŷT+h ŷ0
T+h

50 50 0.00 2 0.91 0.85 0.93 0.92 0.15 0.09 1.17 1.15
100 50 0.00 2 0.91 0.85 0.94 0.94 0.12 0.09 1.09 1.07
200 50 0.00 2 0.94 0.86 0.93 0.92 0.09 0.08 1.16 1.16
50 100 0.00 2 0.92 0.89 0.94 0.94 0.10 0.04 1.17 1.09
50 200 0.00 2 0.92 0.91 0.96 0.95 0.07 0.02 1.07 1.03
200 100 0.00 2 0.95 0.90 0.95 0.94 0.05 0.04 1.07 1.07
100 200 0.00 2 0.94 0.92 0.95 0.94 0.04 0.02 1.04 1.02
200 200 0.00 2 0.94 0.92 0.95 0.95 0.03 0.02 1.03 1.03
100 400 0.00 2 0.95 0.94 0.96 0.96 0.03 0.01 0.95 0.91
50 50 0.50 2 0.88 0.85 0.94 0.92 0.23 0.09 1.22 1.15
100 50 0.50 2 0.90 0.85 0.94 0.94 0.16 0.09 1.12 1.07
200 50 0.50 2 0.92 0.86 0.93 0.92 0.10 0.08 1.16 1.16
50 100 0.50 2 0.91 0.89 0.94 0.94 0.15 0.04 1.24 1.09
50 200 0.50 2 0.90 0.91 0.96 0.95 0.13 0.02 1.14 1.03
200 100 0.50 2 0.94 0.90 0.95 0.94 0.06 0.04 1.08 1.07
100 200 0.50 2 0.91 0.92 0.94 0.94 0.07 0.02 1.09 1.02
200 200 0.50 2 0.93 0.92 0.96 0.95 0.04 0.02 1.03 1.03
100 400 0.50 2 0.93 0.94 0.96 0.96 0.06 0.01 0.99 0.91
50 50 0.00 1 0.51 0.85 0.90 0.92 1.13 0.09 2.22 1.15
100 50 0.00 1 0.50 0.85 0.92 0.94 0.99 0.09 1.97 1.07
200 50 0.00 1 0.51 0.86 0.93 0.92 0.90 0.08 2.01 1.16
50 100 0.00 1 0.47 0.89 0.94 0.94 1.05 0.04 2.14 1.09
50 200 0.00 1 0.46 0.91 0.94 0.95 0.93 0.02 2.01 1.03
200 100 0.00 1 0.42 0.90 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.00 1 0.40 0.92 0.94 0.94 0.94 0.02 2.03 1.02
200 200 0.00 1 0.34 0.92 0.95 0.95 0.90 0.02 1.80 1.03
100 400 0.00 1 0.35 0.94 0.96 0.96 0.86 0.01 1.78 0.91
50 50 0.50 1 0.52 0.85 0.91 0.92 1.15 0.09 2.24 1.15
100 50 0.50 1 0.52 0.85 0.92 0.94 1.00 0.09 1.99 1.07
200 50 0.50 1 0.50 0.86 0.93 0.92 0.91 0.08 2.02 1.16
50 100 0.50 1 0.50 0.89 0.93 0.94 1.09 0.04 2.21 1.09
50 200 0.50 1 0.48 0.91 0.94 0.95 0.96 0.02 2.05 1.03
200 100 0.50 1 0.44 0.90 0.94 0.94 1.01 0.04 2.11 1.07
100 200 0.50 1 0.41 0.92 0.93 0.94 0.96 0.02 2.07 1.02
200 200 0.50 1 0.36 0.92 0.96 0.95 0.91 0.02 1.81 1.03
100 400 0.50 1 0.41 0.94 0.96 0.96 0.86 0.01 1.79 0.91
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Figure 1: 12−Step Ahead Forecast:  Growth Rate of Industrial Production 
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Figure 2a: Diffusion Index Forecast and Confidence Intervals: Growth Rate of Industrial Production

1960 1965 1970 1975 1980 1985 1990 1995
−15

−10

−5

0

5

10

15
Figure 2b: AR Forecast and Confidence Intervals: Inflation
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Figure 3: 12−Month Ahead  Forecast: Inflation 
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Figure 4a: Diffusion Index Forecast and Confidence Intervals: Inflation
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Figure 4b: AR Forecast and Confidence Intervals: Inflation
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