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Abstract

An active area of research in macroeconomics is to take DSGE models to the data. These models
are often solved and estimated under specific assumptions about how the exogenous variables grow
over time. In this paper, we first show that if the trends assumed for the model are incompatible
with the observed data, or that the detrended data used in estimation are inconsistent with the
stationarity concepts of the model, the estimates can be severely biased even in large samples. Esti-
mates of parameters governing transmission mechanisms can be severely biased. We then consider
four estimators that are robust to whether shocks in the model are assumed to be permanent or
transitory and do not require the researcher to take a stand on the dynamic properties of the data.
Simulations show that when the shocks are not persistent, the proposed estimators are as precise
as estimators that correctly impose the stationarity assumption. But when the shocks are highly
persistent yet stationary, the proposed estimators are much more precise. These properties hold
even when there are multiple persistent shocks.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now accepted as the primary framework

for macroeconomic analysis. Until recently, counterfactual experiments were conducted by assigning

the parameters of the models with values that are loosely calibrated to the data. More recently, serious

efforts have been made to estimate the model parameters using classical and Bayesian methods. This

permits researchers to assess how well the models fit the data both in and out of samples. Formal

estimation also permits errors arising from sampling or model uncertainty to be explicitly accounted

for in counterfactual policy simulations. Arguably, DSGE models are now taken more seriously as a

tool for policy analysis because of such serious econometric investigations.

As is well known, economic data are highly persistent and possibly non-stationary. It is common

practice to allow shocks in DSGE models to have persistent effects. When one or more forcing processes

in a DSGE model are non-stationary, the model variables in level form have to be first normalized

by appropriate trending variables. The variables in the log-linearized model are then interpreted as

deviations from the steady state or balanced growth path. In order to take the model to the data, a

researcher must construct data analogs of the model concepts, and in doing so, must choose a method

for detrending the data. This paper points out two potential problems specific to the estimation of

DSGE models when either the data and/or the model variables are persistent or non-stationary. The

first problem arises when the method of detrending does not agree with the definition of the trends in

the model. The second problem arises when the data are detrended to match the model concepts but

that the empirically detrended data remain non-stationary or are over-differenced. Both issues can

pose problems for estimation and inference. Hereafter, we refer to these issues as Data Detrending

(DD) and Model Trend Specification (MTS) problems. A concise overview of the issues associated

with estimating DSGE models is as follows:

Step 1 Step 2 Step 3
Model Specification → Data Detrending → Estimation

Problems: MTS DD

Problem (DD) is concerned with how the observed data are filtered. The issue can arise when the

detrended data do not have the same properties as those implicit in the model. For example, the model

may specify the shock process to be a random walk, but the data may be detrended by a two-sided

symmetric filter. Whereas the stationary component in the model is white noise, the filtered series

can be serially correlated. In this case, the error term associated with the empirical Euler equations
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can be serially correlated. The moment conditions used to estimate the parameters will not be zero

even in the population.

Problem (MTS) is concerned with whether the assumption about the trend in the model is consis-

tent with the trend in the data. This issue can arise if, for example, the model assumes that technology

is trend stationary and the data are linearly detrended accordingly, but the data contain stochastic

trends. In consequence, the detrended data will still be non-stationary. As is well known, spurious

detrending can invalidate classical inference. The problem that confronts researchers is that in finite

samples, it is very difficult to ascertain whether the data are stationary or not. Yet, estimation of

DSGE models typically require that the researcher takes a stand on trend specification both for the

model and the data. Discrepancies between the properties of the cyclical component in the model and

in the data can induce bias estimates of the structural parameters.

Table 1 is a non-exhaustive listing of how trends are treated in some notable papers. While there

are exceptions, the majority of the analysis assumes that non-stationarity in the models is due to a

deterministic trend. The empirical analysis then proceeds to estimate the models on linearly detrended

data. Stochastic trends are assumed in some studies and the first differenced data are then used in

estimation. But since the seminal work of Nelson and Plosser (1982), there has been ongoing debate

whether trend or difference stationary is a better characterization of macroeconomic variables. While

much is known about estimation and inference of linear models with non-stationary data, little is

known about how the treatment of trends affects non-linear estimation of DSGE models. This paper

sheds some light on this issue.

In an early contribution, Nelson and Kang (1981) showed that linear detrending a unit root process

can generate spurious cycles. Subsequent studies found that improper filtering can alter the persistence

and the volatility of the series as discussed in Cogley and Nason (1995), induce spurious correlations

in the filtered data as found in Harvey and Jaeger (1993), change error structure as shown in Singleton

(1988)), and distort inference as illustrated in Christiano and den Haan (1996). However, much of this

literature is focused on single equation analysis. Fukac and Pagan (2006) consider how the treatment

of trends might affect estimation of DSGE models, but the analysis is also confined to a single equation

framework. But DSGE models consists of a system of equations, misspecification in one equation can

affect estimates in other equations even though the estimates should be more efficient if the model is

correctly specified. King and Rebelo (1993) simulate an RBC model and show that the HP (Hodrick-

Prescott) filtered data are qualitatively different from the raw data. Gregory and Smith (1996) use a

calibrated business cycle model to see what type of trend can produce a cyclical component in the data

similar to the cyclical component in the model. Although these authors do not estimate the model on

filtered data, they hint that the estimates of the structural parameters can be adversely affected by
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filtering.

We use a basic stochastic growth model to illustrate the problems under consideration. When the

trends assumed for the model agree with the trends present in the data and the same filter is applied

to the model and the data, the estimated parameters are mean and median unbiased. Otherwise,

the estimates can deviate significantly from the true values. Estimates of parameters governing the

propagation and amplification mechanisms in the model can be greatly distorted or poorly identified.

We propose a robust strategy to handle uncertainty as to whether the data are trend or difference

stationary. The proposed approach consists of applying the same transformation (filter) to both

the data and the model variables, and making sure that the transformed series are stationary when

evaluated at the true parameter vector. We illustrate this approach with four transformations: quasi-

differencing, first differencing, and HP filter. The approach is shown to be effective even when there

are multiple shocks, a subset of which may be permanent. Although our analysis is motivated as

classical estimator, it can be adapted into a Bayesian framework.

The structure of the paper is as follows. In the next section, we lay out a standard neoclassical

growth model. We linearize the model and show how one can solve it under different assumptions

about trends in the forcing variables. We present the estimation procedure and illustrate Problems

(DD) and (MTS) with a few specific examples. In Section 3, we report simulation results. We then

illustrate how the two problems can yield misleading inference about the propagation mechanisms and

extend the analysis to multiple structural shocks.

2 An Example: Neoclassical Growth Model

We use the stochastic growth model to illustrate the problems under investigation. The general

problem facing the central planner is:

maxEt

∞∑
t=0

βt

(
lnCt − θ(Lt/Qt)

)
subject to

Yt = Ct + It = Kα
t−1(ZtLt)(1−α)

Kt = (1− δ)Kt−1 + It

Zt = exp(ḡt) exp(uz
t ), uz

t = ρzu
z
t−1 + ezt , |ρz| ≤ 1

Qt = exp(uq
t ), uq

t = ρqu
q
t−1 + eqt , |ρq| ≤ 1.

where Yt is output, Ct is consumption, Kt is capital, Lt is labor input, Zt is the level of technology,

and Qt is a labor supply shock. We allow ρq and ρz to be on the unit circle. The first order conditions
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are:

θCt = (1− α)Kα
t−1Z

(1−α)
t L−α

t Qt

1 = Et

[
β
Ct

Ct+1

(
αKα−1

t (Zt+1Lt+1)(1−α) + (1− δ)
) ]

Kα
t−1(ZtLt)(1−α) = Ct +Kt − (1− δ)Kt−1

If ḡ = 0 and |ρz|, |ρq| < 1, then under regularity conditions, a solution for the model log-linearized

around the steady state values exists. But once technology is allowed to grow over time, the model

solution as well as the estimation approach depends on the properties of Zt and Qt.

Let lower case letters denote the natural logarithm of the variables, e.g. ct = logCt. Let c∗t , be

such that ct − c∗t is stationary; k∗t and z∗t are similarly defined. We assume labor Lt is stationary for

all |ρz| ≤ 1 and thus l∗t = 0. Hereafter, we let mt = (ct, kt, lt), and m∗
t = (c∗t , k

∗
t , l

∗
t ). Note that m∗

t are

model concepts. Where appropriate, we will drop Qt to simplify the analysis.

2.1 The One Shock Model

To fix ideas, suppose for now that technology is the only shock in the system. Hence, Qt is suppressed.

We we use DT and ST to refer to the case when |ρz| < 1 and |ρz| = 1, respectively.

The DT Model When |ρz| < 1, let c∗t = k∗t = ḡt, and thus m∗
t = (ḡt, ḡt, 0). The detrended model

variables are m̂t = mt −m∗
t . The log-linearized model in terms of m̂t is

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0
A1 A2 α− 1

ĉtk̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1

 +

 0
−A0

0

Etu
z
t+1 +

1− α
0

α− 1

uz
t

where we have suppressed the constants terms and the matrices are defined as follows

A∗0 = 1− β
1− δ

1 + ḡ
, A0 = (α− 1)A∗0, A4 = −α− (1− δ)A3,

A3 =
αβ

(1 + ḡ)A∗0
, A2 = (1 + ḡ)A3, 1 = A1 +A2 − (1− δ)A3.

Since a shock to technology has temporary effects, m̂t is stationary. We can compactly write (1) as

EtΓD
2 m̂t+1 = ΓD

0 m̂t + ΓD
1 m̂t−1 + ΨD

1 Etu
z
t+1 + ΨD

0 u
z
t .

We will refer to (1) as the trend stationary (DT) representation of the model. The QZ decomposition

or similar methods can be used to solve the system of expectation equations for the reduced form.

Denote this solution by

m̂t = ΠDT m̂t−1 +BDTu
z
t (1)

with uz
t = ρzut−1 + ezt .
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The ST Model When |ρz| = 1, let c∗t = k∗t = zt and thus m∗
t = (zt, zt, 0). Let m̃t = mt−m∗

t denote

the stationary model variables for the ST model. The log-linearized model expressed in terms of m̃t

is:

Et

0 0 0
1 0 A0

0 0 0

c̃t+1

k̃t+1

l̃t+1

 =

−1 0 −α
1 A0 0
A1 A2 α− 1

c̃tk̃t

l̃t

 +

0 α 0
0 0 0
0 A4 0

c̃t−1

k̃t−1

l̃t−1

 +

 0
−A0

0

Ete
z
t+1 +

 1− α
0

α− 1

 ezt
or more compactly

EtΓS
2 m̃t+1 = ΓS

0 m̃t + ΓS
1 m̃t−1 + ΨS

1Ete
z
t+1 + ΨS

0 e
z
t .

We will refer to (2) as the stochastic trend (ST) representation of the model. The solution takes the

form

m̃t = ΠST m̃t−1 +BST e
z
t . (2)

Now m̃t and m̂t are related as follows:

m̃t = m̂t − (uz
t , u

z
t , 0).

Effectively, subtracting uz
t from appropriate variables as in the ST model changes the object of interest

from m̂t (which is not stationary under ST) to m̃t (which is stationary under ST).

The system of equations (1) and (2) both correspond to the same stochastic growth model. As

one would expect, the rational expectations solution for variables in levels is the same irrespective

of which model we solve. Although not expressed in the usual state-space representation form, the

equations and system matrices make it clear that the models are distinguished only in what variables

we analyze, i.e., m̂t for DT, and m̃t for ST. The distinction between m̃t, mt and m̂t is important

because the former is stationary when ρz = 1 while m̂t is not. Importantly, it is these normalized

variables that are linked through a measurement equation to the filtered data. As classical estimation

assumes that the data are stationary, we should map m̃t and not m̂t to the data when ρz = 1.

The ∆1 DT Model When ρz = 1, the VAR in m̂t is non-stationary because uz
t is non-stationary.

However, first differencing gives

∆1m̂t = Π∆1∆1m̂t−1 +B∆1ezt (3)

is a stationary VAR. Here the superscript ”1” in ∆1 emphasizes that ρz is constrained to be equal to

one. Clearly, first differencing removes the permanent shock in m̂t, while m̃t subtracts the permanent

shock from m̂t. Not surprisingly, (2) and (3) both yield stationary solutions to the ST model. Thus,

when ρz = 1, we can work with ∆m̂t or m̃t. One may also express the model in terms of stationary
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linear combinations of the non-stationary variables. For example, ct − yt is stationary for all |ρz| ≤ 1.

Imposing cointegration and unit root restrictions as in the ∆1DT model can be efficient when ρz = 1

but is not appropriate when ρz is close to but is not exactly equal to one.

2.2 Estimation Procedure

Suppose we observe the data for dt = (ct, kt, lt). Let dc
t = dt − dτ

t denote the data after the trend dτ
t

is removed. Three commonly used alternatives are:

• Linear Trend (LT): dc
t = dt − dτ

t with dτ
t = (ḡt, ḡt, 0);

• HP Trend (HP): dc
t = (HP (L)ct,HP (L)kt, 0)

• First Difference (FD): dc
t = ∆dt.1

Typically, linearly detrended and HP filtered data would replace the unobserved model variable

m̂t when |ρz| < 1, while the HP filtered and first differenced data would stand in for m̃t and ∆m̂t

when ρz = 1.

Likelihood based approaches (e.g. Fernandez-Villaverde and Rubio-Ramirez (2006) and Ireland

(1997)), two-step minimum distance approach (e.g., Sbordone (2006)), as well as simulation estimation

(e.g., Altig et al. (2004)) have been used to estimate DSGE models. Ruge-Murcia (2005) provides a

review of these methods. We use a method of moments estimator that minimizes the distance between

data moments and model-implied moments (e.g., Christiano and den Haan (1996), Christiano and

Eichenbaum (1992)). The procedure can be summarized as follows:

1: Compute Ω̂d(j) = cov(dc
t), the covariance matrix of the filtered series at lag j.

2: Solve the rational expectations model for a guess of the structural parameters, Θ. Use (1), (2),

or (3) to analytically compute Ωm(j), the model implied autocovariances of mc
t , which can be

m̂t, m̃t, or ∆m̂t.

3: Let

ω̂d = (vech(Ωd(0))′ vec(Ωd(1))′ vec(Ωd(L))′)′

ωm(Θ) = (vech(Ωm(0))′ vec(Ωm(1))′ vec(Ωm(L))′)′.

Estimate the structural parameters as Θ̂ = argminΘ

∥∥ω̂d − ωm(Θ)
∥∥.

1Even though the model predicts that labor is stationary, we first difference all series in the data because we solve
the ∆1DT model in first differences for all variables.
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Problem (MTS) arises when m∗
t does not agree with dτ

t , while Problem (DD) arises when the

dynamic properties of dc
t does not agree with the implied properties of mc

t . The consequence is that

ωd−ω(Θ) will not be mean zero. To illustrate, consider the following combinations of model variables

and data filtering techniques:

True Assumed
Model Model Variables Filter Problems

1. DT DT m̂t LT -
2. ST ST ∆1m̂t FD -
3. DT DT m̂t HP (DD)
4. ST ST m̃t HP (DD)
5. DT ST m̃t HP (DD),(MTS)
6. ST DT m̂t LT (MTS)

Of the six configurations, both (1) and (2) assume a model trend that is identical to the trend in

the data and, thus, there is no Problem (MTS). Because the researcher applies the same filter to the

model variables and the data series, Problem (DD) is not an issue. In case (3), the model assumes,

and the data exhibit, deterministic trends, and there is no Problem (MTS). However, the HP filter

applied to the data series produces cycles different from those that emerge from linear detrending.

The researcher faces Problem (DD). A similar problem arises in case (4). In case (6), the assumed

trend and the choice of detrending technique are consistent and Problem (DD) does not arise. On the

other hand, the assumed DT model is not consistent with the true data generating process (ST) and,

consequently, Problem (MTS) applies to this case. Likewise, in case (5), the choice of the trend in the

model (DT) does not agree with the trend in the data (ST). In addition, the choice of the filtering

technique in the data is not consistent with the assumed trend in the model. It follows that Problem

(MTS) is further complicated by Problem (DD).

How can these problems be resolved? Given that Problem (DD) arises when mc
t of a given model

solution is mapped to the data dc
t , the problem can be circumvented by applying the same filtering

technique to the model variables and the data series. Problem (MTS) concerns the appropriate choice

of the model solution. The problem can be avoided if there is a flexible framework that nests DT

and ST so that the researcher does not have to take a stand on whether ρz < 1 or ρz = 1. These

two observations suggest that to address both Problems (DD) and (MTS), the researcher needs an

approach that i) transforms the data and the model variables in the same way and ii) yields stationary

series for all |ρz| ≤ 1.
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3 Four Robust Approaches

In this section, we consider four approaches that are robust to whether shocks are permanent or tran-

sitory. The key to robustness is to filter both the model variables and the observed data consistently

so that filtered series are stationary and have the same properties. The starting point of all methods

is the reduced form solution of the DT model:

m̂t = ΠDT m̂t−1 +BDTu
z
t

where uz
t = ρzut−1 + ezt .

3.1 The QD Estimator

Let ∆ρz = 1 − ρzL be the quasi-differencing operator. Multiplying both sides of the reduced form

solution by ∆ρz and using uz
t = ρzu

z
t−1 + ezt gives

∆ρzm̂t = ΠDT ∆ρzm̂t−1 +BDT e
z
t (4)

where ∆ρzm̂t = (∆ρzct,∆ρzkt,∆ρz lt). Note that the error term in the quasi-differenced model is an

i.i.d. innovation and therefore ∆ρzm̂t is stationary for all |ρz| ≤ 1. The appeal of the quasi-differenced

representation is that, in contrast to m̂t, the moments of ∆ρmt are well defined for all |ρz| ≤ 1. In

addition, first differencing is just a special case of quasi-differencing with ρz = 1. If we partition

Θ = (Θ−, ρz), the deep parameters can be estimated as follows:

Initialize ρz.

1: Quasi-difference the observed data with ρz to obtain ∆ρzdc
t = (cct , k

c
t , l

c
t ).

2 where

cct = ∆ρz(ct − ḡt), kc
t = ∆ρz(kt − ḡt), lct = ∆ρz lt. (5)

2: Compute Ω̂d
∆ρz (j) = cov(∆ρzdc

t), the autocovariance matrix at lag j. Define

Ωd
∆ρz (j) = Ω̂d

∆ρz (j)− Ω̂d
∆ρz (0)

and let ωd
∆ρz = (vec(Ωd

∆ρz (1))′ . . . , vec(Ωd
∆ρz (L))′)′;

3: For a given ρz and Θ−, solve the DT model to yield m̂t. Use

∆ρm̂t = ΠDT ∆ρm̂t−1 +BDT ∆ρzuz
t (6)

2Since projecting series on linear trend yields super-consistent estimates of the coefficient on the time trend, one
can ignore the error induced by removing the linear time trend when he or she applies standard asymptotic inference.
Likewise, one can introduce structural breaks in a trend directly at this step.
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to compute Ωm
∆ρz (j), j = 1, . . . L, the model implied covariance and autocovariance matrices of

the quasi-differenced variables. Let

Ωm
∆ρz (j) = Ω̂m

∆ρz (j)− Ω̂m
∆ρz (0)

Define ωm
∆ρz = (vec(Ωm

∆ρz (1))′ . . . , vec(Ωm
∆ρz (L))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ωd
∆ρz − ωm

∆ρz (Θ)
∥∥.

The QD estimator is based on the difference between the model and the sample autocovariances,

normalized with respect by the variance, Ω̂m
∆ρz (0). As shown in the Appendix, this is necessary

to obtain an asymptotic distribution that is well behaved. Hereafter, the non-normalized estimator

where Ω∆ρj (j) = Ω̂∆ρj (j) will be denoted QD0. Note that ρz and Θ− are estimated simultaneously.

The quasi-differenced estimator differs from the covariance estimator of the previous section in one

important respect. The parameter ρz now affects both the moments of the model and the data since

the latter are computed for the quasi-transformed data. Conceptually, the crucial feature is that the

quasi-transformed data are stationary when evaluated at the true ρz, whether or not the true ρz is

inside or on the unit circle. Thus, the QD estimator resolves Problem (DD) by applying the same

transformation (filter) to the data and model and tackles Problem (MTS) by using a transformation

that yields stationary series for any |ρz| ≤ 1.

At this point it is useful to relate our approach with other methods considered in the literature.

Fukac and Pagan (2006) propose using Beveridge-Nelson decomposition to estimate and remove per-

manent component in the data series. Apart from the fact that the permanent component in the

Beveridge-Nelson decomposition may be different from actual trend and is subject to stringent as-

sumptions, the clear advantage of our approach is that it is a one-step procedure that can handle

multiple I(1) shocks.

In a study closely related to ours, Cogley (2001) investigates how an inappropriate choice of trend

can lead to strong biases in the parameter estimates. He considers several alternative estimation

strategies and finds that using cointegration relationships in unconditional Euler equations works

quite well, as the moments used in GMM estimation remain stationary irrespective of whether the

data are trend or difference stationary. Our method is similar to Cogley’s (2001) in that neither

requires the researcher to take a stand on the properties of the trend dynamics before estimation,

but there are important differences. First, quasi-differencing can easily handle multiple I(1) or highly

persistent shocks. In contrast, using cointegration relationships works only for certain types of shocks.

For example, if the shock to disutility of labor supply is an I(1) process, there is no cointegration

vector to nullify a trend in hours. Second, cointegration often involves estimating identities and
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therefore the researcher has to add an error term (typically measurement error) to avoid singularity.

Our approach does not estimate specific equations and hence does not need to augment the model

with additional, atheoretical shocks. Finally, using unconditional cointegration vectors may make

estimation of some structural parameters such as adjustment costs impossible because adjustment costs

are zero by construction in the steady state. In contrast, our approach utilizes short-run dynamics

in estimation and thus can estimate the parameters affecting short-run dynamics of the variables.

Overall, our approach can be used in a broader array of situations and we exploit different properties

of the model in estimation.

3.2 The ∆DT Estimator

If the elements of ∆ρzm̂t are stationary concepts when |ρz| ≤ 1, they are also stationary when the

data are quasi-differenced at ρz = 1. This suggests the following estimation procedure:

1: First difference the observed data to obtain ∆dc
t = (cct , k

c
t , l

c
t ) where

cct = ∆ct − ḡ, kc
t = ∆kt − ḡ, lct = ∆lt. (7)

2: Compute Ω̂d
∆(0) = cov(∆dc

t), the covariance matrix of ∆dc
t , and the autocovariance matrix

Ω̂d
∆(1). Define ω̂d

∆ = (vech(Ωd
∆(0))′ vec(Ωd

∆(1))′)′;

3: For a given Θ, solve the DT model. Use the representation

∆m̂t = ΠDT ∆m̂t−1 +BDT ∆uz
t (8)

to compute Ωm
∆(0) and Ω̃m

∆(1), the model implied covariance and autocovariance matrices of the

first differenced variables. Define ω̂m
∆ = (vech(Ωm

∆(0))′ vec(Ωm
∆(1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ω̂d
∆ − ωm

∆ (Θ)
∥∥.

Observe that when ∆uz
t = (ρz − 1)uz

t−1 + ezt , and ρz < 1, ρz remains a parameter of the model

(3) unless it is constrained to be one. To stress that ρz is a free parameter and contrast it with the

constrained specification, we do not put a superscript on the first difference operator. The difference

between the constrained ∆1DT and unconstrained ∆DT models is that the unconstrained model is

valid whether or not ρz = 1, while the constrained model is an alternative representation of the ST

model and is thus correctly specified only when ρz = 1. Note that the QD estimator and ∆DT

estimator are equivalent when ρz = 1.
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3.3 The Hybrid Estimator

One drawback of the ∆DT estimator is that when ρz is less than unity, over-differencing induces a

non-invertible moving-average component. The estimates obtained by matching a small number of

lagged autocovariances may be inefficient. The QD estimator does not have this problem but it is

based on the second moments of the quasi-differenced variables which themselves depend on ρz. As

the Jacobian matrix is a function of ρz, the QD objective function can be highly non-linear in ρz and

the QD estimates can be computationally more difficult to obtain. The above considerations suggest

a hybrid estimator:

1: Transform the observed data to obtain ∆ρzdc
t (as in QD) and ∆dc

t (as in ∆DT).

2: Compute Ω̂d
QD,∆(j) = cov(∆ρzdc

t ,∆d
c
t−j), the covariance between ∆ρzdc

t and ∆dc
t−j . Define

ω̂d
QD,∆ = (vec(Ωd

QD,∆(0))′ vec(Ωd
QD,∆(1))′)′;

3: For a given Θ, solve the DT model. Use the solution to compute model implied covariance

and autocovariance between the quasi-differenced and the first differenced variables. Define

ω̂m
QD,∆ = (vec(Ωm

QD,∆(0))′ vec(Ωm
QD,∆(1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥∥ω̂d
QD,∆ − ωm

QD,∆(Θ)
∥∥∥.

We denote this estimator with HD (hybrid differencing). HDm̂t means that one uses both quasi

and first differencing to construct moments.

3.4 The HP-HP Estimator

The final robust method is based on the linear filters that can also remove stochastic trends, such

as the HP filter and bandpass filters, seeBaxter and King (1999). A desirable feature of these filters

is that they can remove deterministic as well as stochastic trends. As discussed in King and Rebelo

(1993), the data can be rendered stationary without the user deciding a priori the specific type of

non-stationarity that is to be handled.

The HP filter is heavily used in empirical analysis, and a HP detrended series is defined as

dc
t = HP (L)dt =

λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
dt

= HP+(L)∆dt =
λ(1− L)(1− L−1)2

1 + λ(1− L)2(1− L−1)2
∆dt.

As seen earlier, the common practice of estimating either the DT or the ST model using HP filtered

the data can lead to substantial bias in the parameter estimates. The reason is that the HP filter

changes the autocovariance structure of the data. It follows that if we were to filter the data, we
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would also need to simultaneously HP filter the model variables. The procedure can be summarized

as follows:

1: Let d̆c
t be the HP filtered data. Compute Ωd

HP (0) and Ωd
HP (1), the variance and autocovariance

matrix of d̆c
t . Define ωd

HP = (vech(Ωd
HP (0))′ vec(Ωd

HP (1))′)′;

2: For a given guess of Θ, solve the DT model for m̂t. Compute Ωm(j), j = 1, . . .M , the au-

tocovariances of m̂t. Apply the fourier transform to obtain the spectrum for m̂t at frequen-

cies 2πj/T , j = 0, . . . T − 1 . Multiply the spectrum by the gain of the HP filter. Inverse

Fourier transform to obtain ΩHP (j), the autocovariances of the HP(L)m̂t. Define ωm
HP =

(vech(Ωm
HP (0))′ vec(Ωm

HP (1))′)′.

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ωd
HP − ωm

HP (Θ)
∥∥.3

In practice, we have found that using HP+(L) and the autocovariances for ∆dt to give more stable

results when ρz is close to one. By construction of the HP filter, both d̆t and m̆t are stationary for all

|ρz| ≤ 1. Under the DT model, ρz is a free parameter. Thus, adding deterministic terms back to the

DT model yields a model that can potentially have both deterministic and stochastic trends.

The four robust methods can be summarized as follows:

True Solved Filters Used Estimator
ST, DT DT ∆ρz QD
ST, DT DT ∆ ∆DT
ST, DT DT ∆ρz ,∆ Hybrid (HD)
ST, DT DT HP HP-HP

All four methods do not require the researcher to take a stand on whether ρz < 1 or ρz = 1 before

estimation. The ST and DT are nested within QD, ∆DT and HP-HP framework.

4 Simulations

4.1 Setup and Calibration

We generate the data as either DT (deterministic trends) or ST (stochastic trends) using the model

equations for the stationary (i.e., normalized) variables. The model variables are then rescaled back

to non-stationary form and treated as observed data dt = (ct, kt, yt, lt) that the researcher takes as

given. The researcher then decides (i) whether to use the model equations implied by DT or ST for

estimation, and (ii) how to detrend the data.
3We experimented with a simulation procedure. For each Θ, we simulated the model to generate j = 1, ..., N samples

of size T . For each j we computed moments. Then we averaged moments over j and used this average for ωm
HP . This

procedure is much slower and the results are very similar to the procedure we present in the text.
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We estimate Θ = (α, ρ, σ) and treat parameters (β, δ, θ, ḡ) as known. We calibrate the model as

follows: capital intensity α = 0.33; disutility of labor θ = 1; discount factor β = 0.99; depreciation

rate δ = 0.1; gross growth rate in technology ḡ = γ̄ = 1.005. We restrict the admissible range of

the estimates of α to [0.01,0.99]. We vary the persistence of shocks to technology uz
t . The parameter

ρz takes values (0.5, 0.95, 0.99, 1). Since for now we have only one shock in the model, we set the

standard deviation of ezt to σ = 1 without loss of generality. We perform 2,000 replications for each

choice of parameter values. For each replication, we create series with T=200 observations which is a

typical sample size in applied macroeconometric analysis.

In all simulations and for all estimators, we set starting values in optimization routines equal to the

true parameter values. As is common in covariance structure estimation, we use an identity weighting

matrix in our method of moments estimator. The model is solved using the Anderson and Moore

(1985) algorithm. A rational expectations solution is said to be stable if the number of unstable

eigenvalues of the system equals the number of forward looking variables. Stability in this context

refers to the internal dynamics of the system to return to the steady state which can grow over time.

This is distinct from covariance stationarity of the time series data, which in the base case model

obtains when ρz < 1. It is possible for ρz to be mildly explosive and yet the system has a stable,

unique rational expectations equilibrium. We admit such mildly explosive estimates as solutions for

otherwise ρ̂z will be truncated to the right at one, making the distribution of ρ̂z highly skewed. We do,

however, restrict ρ̂z to include only values consistent with a unique rational expectations equilibrium.

4.2 Results for the Baseline Model

We report simulation results for the baseline one-shock model in Table 2. The last five columns,

labeled, QD0, QD, ∆DT, HD, HP/HP corresponds to the new estimators considered. The first four

columns are reports for the non-robust estimators and are labeld as (XX,YY), XX stands for the filter

used to compute the autocovariances of the data, while YY stands for filtered model variables from

which analytical covariances are computed. Thus, (LT, m̂t) means that the sample autocovariances

are computed for the linearly detrended data, and model autocovariances are computed for m̂t with

|ρz| ≤ 1. The DGP is given in the first column.

Our simulations suggest that the estimates reported in columns (5)-(8), which correspond to the

QD, unconstrained ∆DT, the hybrid (HD), and the HP-HP estimators respectively are generally

centered at the true values. These point estimates are quite stable as ρz approaches one, though

the HP-HP estimates are noticeably more variable. This pattern is recurrent in all simulations. In

contrast, other estimators exhibit significant biases and larger dispersion of estimates especially when

ρz is close to a unit circle.
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Consider first the (LT,m̂t) combination reported in column (1), Table 2. For small to moderate

values of ρz, the parameter estimates are centered at true values. However, there is a significant

upward bias in α̂ that increases with ρz to the point that at ρz = 1, the mean of α̂ is close to one.

Similar bias can be observed for σ̂. The estimates of ρz tend to be relatively close to true the values

up to ρz = 0.95. As ρz approaches one, however, there is a strong downward bias in ρ̂z. For example

at ρz = 1, the mean of ρ̂z is approximately 0.7.

The case of ρz = 1 is of empirical relevance because technology shocks tend to be highly persistent.

As seen from Table 1, linear detrending is commonly used in estimation of DSGE models. But results

in the last row of the (LT,m̂t) suggest linear detrending data with stochastic trends can lead to

extremely strong biases in the estimates of the structural parameters. This resembles the univariate

finding of Nelson and Kang (1981) that projecting a series with a unit root on time trend can lead to

spurious cycles.

Turning to the (HP,m̂t) combination in column (2), the estimates of ρz have a strong downward

bias. On the other hand, there is a strong upward bias in α̂ and σ̂.4 Taken at face value, these

estimates suggest a significant role for capital as a mechanism for propagating shocks in the model.

Results of Cogley and Nason (1995), King and Rebelo (1993) and Harvey and Jaeger (1993) indicate

that the HP filter changes not only the persistence of the series but also the relative volatility and

serial correlation of the series. This translates into biased estimates of all parameters because the

estimator is forced to match the properties of the filtered data that are inconsistent with the model

variables.

Under (HP,m̃t), ρz is fixed at 1 and the model variables are m̃t. As seen from column (3), the

estimates of α and σ seem to be poorly determined. However, the very large standard deviations simply

reflect that the estimates converge to two ”corner” solutions. One solution is associated with α̂ = 0.01

and σ̂ ≈ 8 and the other solution is α̂ = 0.99 and σ̂ ≈ 0.05. Consider the latter solution which occurs

in three quarters of the simulations. Note that in the ST model, shocks to m̃t are transitory. Thus,

the endogenous variables such as consumption adjust quickly to the permanent technology shock. But

the HP filtered data are serial correlated. Thus, the estimator is forced to produce parameter values

that can generate a stronger serial correlation in cyclical behavior of the model variables.

To get a sense of the consequence of over-differencing, consider the combination (FD,∆1m̂t), re-

ported in column 4, Table 2. While the estimates are fairly precise when ρz is indeed equal to one, as

ρz departs from one, Problem (MTS) manifests in an upward bias in σ̂. Note that despite the fact that

the estimates based on (FD,∆1mt) exhibit sizable biases when ρz moves away from one, (FD,∆1mt)
4Note that we do not HP-filter labor series as labor is stationary irrespective of whether ρz < 1 or ρz = 1. Results do

not change qualitatively when we estimate the model using HP-filter labor series.
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clearly dominates (HP,m̃t). This pattern is typical in our simulations.

4.3 Spurious Propagation Mechanisms

Clearly, the large estimates of α will alert the researcher that the model is likely misspecified and he or

she must make adjustments to the model. One possible and popular modification is to introduce serial

correlation in the growth rate of shocks to technology. Specifically, one might estimate the following

process for ut : ut = (ρz + κ)ut−1 − κρzut−2 + ezt . This specification generates serial correlation κ

in growth rate of technology when ρz ≈ 1. Our baseline model corresponds to κ = 0. When we

simulate data with κ = 0 and allow this more general specification for ut to be estimated, (QD,∆ρm̂t),

(HD,HDm̂t), (FD,∆m̂t), and (HP,HPm̂t) correctly find that κ = 0 and estimates of other structural

parameters are unaffected. The non-robust methods yield estimates of α around 0.4-0.5, which seem

more plausible than when κ was assumed zero. However, these estimates are achieved by having

κ̂ large and statistically significant even when the true κ is zero. We report these results in Panel

A, Table 3. The non-robust methods (LT,m̂t), (HP,m̂t) and (HP,m̃t) tend to generate negative and

significant estimates of κ. For (FD,∆1m̂t), a strong negative κ is estimated when ρz is much less than

one. This negative correlation is necessary to dampen the responses of endogenous variables and make

them less persistent.

Internal habit in consumption is another popular way to introduce greater persistence in business

cycle models. Specifically, consider an alternative utility function:

max
∑

βt

[
ln(Ct − φCt−1)− Lt

]
where φ measures the degree of habit in consumption. We set φ = 0 and estimate (α, φ, ρ, σ) to

investigate how the treatment of the trends affects estimates of internal propagation mechanisms. We

report results in Panel B, Table 3.

The robust estimators perform well for all values of ρz. The bias in the estimates is generally

negligible. This is not the case for the other estimators. The combination (LT,m̂t) has a downward bias

in the estimates of φ, but the large standard deviation of the estimates suggests that the distribution

of the estimates is fairly flat. In contrast, (HP,m̂t) and (HP,m̃t) have a strong upward bias in the

estimates of φ. As we discussed above, HP filtering retain substantial serial correlation in the data

and a strong habit formation is necessary to capture this persistence. Finally, (FD,∆1m̂t) produces

a negative bias in φ̂ when ρz departs from one. This ”negative” habit formation serves to reduce

persistence and increases volatility which is necessary to match the properties of the data when ρz is

is one.

In both cases of considered, the fit of the misspecified models improves relative to the correctly
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specified model. However, these modifications should not have been undertaken as they do not exist

in the data generating process. These examples indicate how the treatment of trends can motivate the

researcher to augment correctly specified models with spurious propagation mechanisms to match the

moments of the data.5 The estimates can yield misleading inference about the relative importance of

habit and persistence of technology shocks.

4.4 Statistical Properties

The above simulations indicate that the robust estimates are close to the true value. Recall that ωd

are the sample moments of the filtered variables while ωm(Θ) are the model implied moments based

on the same filter. Define
1
T

T∑
t=1

gt(Θ) = ḡ = ωd − ωm(Θ).

Thus, Θ̂ = minΘ ḡ(Θ)′g(Θ) is a non-linear GMM estimator with an identity weighting matrix. Let G

be the matrix of derivatives of g with respect to Θ. Standard asymptotic theory suggests that

√
T (Θ̂−Θ0)

d−→A ·N(0, S)

where A = (G′
0G0)−1G′

0 and
√
T ḡ(Θ0)

d−→N(0, S). It remains to address whether our robust estimators

have these properties.

To shed some light on the large sample properties of the estimators, Figure 1 presents the stan-

dardized distribution of α̂, denoted tα̂ when ρz = 0.95, with the normal distribution is super-imposed.

Figure 2 presents the results for ρz = 1.0. These t-statistics are computed for T = 1000 using Newey-

West standard errors. Notably, the linear detrending yields strongly biased estimates. The sampling

distributions for the standardized robust estimators appear symmetric. The approximate normality

of the finite sample distributions, especially that of ρ̂z when ρz is so close to one is totally unexpected,

given that the literature on integrated regressors prepared us to expect super consistent estimators

with Dickey-Fuller type distributions that are skewed.

An important feature of our estimators is that the sample moments are stationary when evaluated

at the true parameter vector. This permit application of central limit theory. When ρz < 1, the

estimators are simply
√
T consistent and asymptotically normal. Whether the estimator is normal or

is mixed normal when ρz = 1 depends whether G0 is random or not. For the FD and the HP-HP, G0

has non-random limits. The estimators are thus
√
T consistent and asymptotically normal. For the

hybrid estimator, G0 is random when ρz = 1. Thus, the matrix A in the asymptotic distribution is
5For example, Doorn (2006) shows in simulations that HP filtering can significantly alter the parameter estimates

governing dynamic properties in his inventory model.
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non-random only if the data are stationary, so that the hybrid estimator is mixed normal when ρz = 1.

However, the t statistics remain approximately normal.

Although the G0 for QD and QD0 is non-random when ρz = 1, the quasi-transformed data remain

non-stationary except when the QD filter is evaluated at the true ρz of 1. Furthermore, the quadratic

term in the expansion of ḡ(Θ) is Op(T ) instead of Op(1). Because of this, we have been unable to

derive the asymptotic distribution of the QD0, even though it may be well defined. We can, however,

obtain the asymptotic distribution of the QD, where the elements of ḡ∗(Θ) are defined by subtracting

γ̂0(ρz) − γ0(Θ) from each γ̂j(ρz) − γj(Θ). In a nutshell, the ill-behaved terms in γ̂j(ρz) and γ̂j(ρ)

cancel out, resulting in the rather unexpected property that Θ̂ is asymptotically normal. A sketch

of the argument for the QD is given in the Appendix for the model with inelastic supply, because

the closed-form solution for that model is known. The properties of the robust estimators are further

investigated in Gorodnichenko and Ng (2007) in the context simpler linear regression models.

From a practical perspective, the primary advantage of the robust estimators is that when properly

studentized, the estimators are normally distributed whether or not ρz is less, which greatly facilitates

inference. It should also be noted that the estimators except the QD are linear in ρz, and non-linear

estimation for the FD, Hybrid, and HP-HP is necessary only because of cross-equation constraints. The

QD is genuinely a non-linear estimator, and it estimates ρz through variation in the quasi-transformed

sample moments. With the other estimators, the moments of the filtered data are unaffected by ρz.

Which estimator is more efficient?

5 The General Formulation

Extension of the robust estimators to more general cases is straightforward. Let mt be a vector of

q (predetermined, non-predetermined, plus exogenous) model variables and let m̂t be the vector of

zero-mean variables that are deviations of mt from the steady state values. Let dt be a vector of r

observed variables. The general solution in state space representation is

dt = δ0 + δ1t+B m̂t (9)

The measurement equation (9) links dt to the q model variables m̂t through the matrix B (r × q).6

The parameter vectors δ0 and δ1 are restricted constants that can be estimated along with the other

parameters. Or, we can linearly detrend the data prior to estimation as in Ireland (2004a). Then

d̂t = dt− δ̂0− δ̂1t is the detrended data. If the model is correctly specified for the data, both methods

of detrending are asymptotically equivalent. From

d̂t = dt − δ̂0 − δ̂1t = B m̂t (10)
6A vector of r measurement errors ηt can be added to the measurement equation as in Edge et al. (2005).
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we can define dc
t = ∆d̂t − δ1 = B ∆m̂t if the ∆DT estimator is to be used. Implementation of the

HP-HP filter can be obtained upon replacing the first difference filter by the HP filter. The important

point is that whatever filter we apply to d̂t to arrive at a dc
t that is stationary, the same filter should

be applied to m̂t. Estimation then proceeds by matching the moments of the filtered model variables

and the filtered data.

Extension of the estimators to handle multiple shocks is straightforward. Suppose there are J

shock processes ujt with

(1− ρjL)ujt = ejt, j = 1, . . . J

where some of the ρj may be on the unit circle. Define

∆ρ(L) =
J∏

j=1

(1− ρjL).

Now the quasi-differencing operator is the product of the J polynomials in lag operator that describes

the dynamics of the J shocks. Once the DT model is solved, we can compute moments for the

quasi-differences of m̂t. Whether none, one, or both shocks are permanent, the autocovariances of the

transformed variables are well defined. It is also possible to perform partial quasi-differencing. For

example, if one knows that shocks to tastes dissipate quickly while technology shocks zt are highly

persistent, the researcher can use only (1− ρzL) in the ∆ρ operator.

To illustrate the multiple shock case, we re-introduce shocks to hours in the model so that the

system is given by

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0
A1 A2 α− 1

ĉtk̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1


+

 0 0
−A0 0

0 0

Et

[
uz

t+1

uq
t+1

]
+

1− α 1
0 0

α− 1 0

[
uz

t

uq
t

]

In this model, the parameters are (α, ρz, σz, ρq, σq). We fix σz = 1 and let σq take values (0.5,1,1.5).

We set ρq = 0.8 and vary ρz from 0.95 to 1 so that in our exercise technology shocks are generally

more persistent than shocks to hours. To preserve space, we report only selected results for α̂ in Table

4. Additional results are available upon request.

The robust estimators perform well for all values of ρz. For the non-robust methods, The com-

bination (FD,∆1mt) performs well when technology shocks have a unit root but not when ρz is far

from one. The (LT,m̂t) combination produces imprecise estimates throughout and the biases are more

pronounced when shocks to hours become more persistent. The combinations (HP, m̂t) has larger
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biases than (HP, m̃t), which seems to be sensitive to σq. In some cases, the non-robust estimates

suggest σ̂q > σ̂z, so that the researcher may be tempted to conclude that shocks to hours have larger

volatility than shocks to technology while the opposite is true.

To compare the properties of the estimators, Figures 3 to 5 show T×MSE of the five estimators for

the baseline model for T ranging from 100 to 2000. Several features are of note. The estimators are

evidently consistent, since T times the MSE is fairly constant. For all three parameters considered, the

QD is the most efficient of the five estimators. The estimates produced by the HP and the ∆DT have

much larger MSE, especially for ρ̂. Although the QD0 performs quite well, we cannot establish that

its distribution is asymptotic normal, as in the case of the QD. Figure 6 (ρz = .95) and 7 (ρz = 1.0)

show T ×MSE for (i) the model that estimates the habit parameter when it is in fact zero, (ii) the

model that allows for correlated shocks when they are in fact uncorrelated, and (iii) the two shock

model. To conserve space, we only report results for α̂. The HP again has the largest while the QD

has smallest errors. The robustness of the QD across models and parameters make it appealing in

empirical work.

6 Concluding Remarks

This paper has several substantive findings. First, we show that Problems (DD) and (MTS) can

lead to distorted estimates. Researchers can be misled to non-existent propagating mechanisms to

be statistically significant. Second, we consider robust approaches that essentially let the data decide

whether the model should specify deterministic or stochastic trends. This is done by transforming the

model variables and the data using the same filter, and the filter must produce stationary series when

evaluated at the parameter vector. We consider four such transformations, though other methods such

as band-pass filter can also be used. As the filtering takes place within the state-space framework,

likelihood based estimation can also be used in place of the covariance estimator considered here. We

leave such an analysis for future research.
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7 Appendix

To study the analytical properties of the QD, we consider the one sector model with inelastic labor
supply, since its closed form solution is known.

kt = vkkkt−1 + vkzzt
rt = vrkkt−1 + vrzzt
ct = vckkt−1 + vczzt
yt = zt + αkt−1

zt = ρzt−1 + et

Suppose the variable of interest is y. From

yt = zt + αkt−1

yt = zt + α
vkzzt−1

1− vkkL
yt = vkkyt−1 + zt − vkkzt−1 + αvkzzt−1

= vkkyt−1 + zt(1− aL)

= vkkyt−1 +
(1− θyL)
1− ρL

et =
1− θyL

(1− vkkL)(1− ρL)
et.

Thus yt is an ARMA(2,1)
yt(1− vkkL)(1− ρL) = (1− θyL)et

where θy = vkk − αvkz. Note that vkk does not depend on ρ, but vkz depends on ρ.
Similarly, for consumption,

ct = vckkt−1 + vczzt

= vkkct−1 + vczzt − vczvkkzt−1 + vckvkzzt−1 =
1− θcL

(1− vkkL)(1− ρL)
vczet.

Let θc = vkk − vck
vcz
vkz. Then ct is also an ARMA(2,1):

ct(1− vkkL)(1− ρL) = (1− θcL)vczet.

The moving average representation for an ARMA(2,1) (assuming ρ > vkk)

ψ0 = 1
ψ1 = θ + ρ

ψj = ψj−1ρ
j−1 + ψj−2vkk, j ≥ 2.

Generically, write the DGP as

(1− ρ0L)(1− v0
kkL)yt = et + b(ρ0, v0

kk)et−1

where b(ρ, vkk) is continuous in ρ, vkk. Let ỹ0
t = (1− ρ0L)yt be the data quasi-differenced at the true

ρ. Then
ỹ0

t = v0
kkỹ

0
t−1 + et + b(ρ0, v0

kk)et−1
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is an ARMA(1,1) with

γ̃0(ρ0) = σ2 1 + b(ρ0, v0
kk)

2 + 2v0
kkb(ρ

0, v0
kk)

1− v2
kk

γ̃1(ρ0) = σ2 (1 + v0
kkb(ρ

0, v0
kk))(v

0
kk + b(ρ0, v0

kk))
1− v2

kk

γ̃j(ρ0) = v0,j−1
kk γ̃1(ρ0), j ≥ 2

The derivatives of γ̃j(ρ) with respect to ρ, σ2, and vkk exist and are well defined. To focus on the
issue, we fix σ2 and vkk in the derivations to follow.

Let γ̃Tj(ρ) be the sample autocovariance of the quasi-transformed variable.

γ̃Tj(ρ) =
1
T

T∑
t=1

ỹ0
t ỹ

0
t−j − (ρ− ρ0)yt−1ỹ

0
t−j − (ρ− ρ0)yt−j−1ỹ

0
t + (ρ− ρ0)2yt−1yt−j−1.

This implies

γ̃′Tj(ρ) =
∂γ̃Tj(ρ)
∂ρ

= − 1
T

T∑
t=1

(
yt−1ỹ

0
t−j + yt−j−1ỹ

0
t

)
+ 2

1
T

(ρ− ρ0)
T∑

t=1

yt−1yt−j−1 (11)

γ̃′′Tj(ρ) =
∂2γ̃Tj(ρ)
∂ρ2

=
2
T

T∑
t=1

yt−1yt−j−1 (12)

Furthermore, ∂γ̃Tj(ρ)
∂vkk

= 0. Let
gj(ρ) = γ̃Tj(ρ)− γ̃j(ρ)

be the difference between the sample and model autococovariance at lag j. The corresponding gradient
and Hessian are

GTj(ρ) =
∂γ̃Tj(ρ)
∂ρ

− ∂γ̃j(ρ)
∂ρ

HTj(ρ) =
∂2γ̃Tj(ρ)
∂ρ2

− ∂2γ̃j(ρ)
∂ρ2

,

The quadratic expansion of ḡ(ρ) around ḡ(ρ0) is

ḡ(ρ) = ḡ(ρ0) +G′
T (ρ0)(ρ− ρ0) +

1
2
HT (ρ̄)(ρ− ρ0)2.

Case 1: ρ0 < 0 Note first that g̃Tj(ρ) = Op(1) and g̃j(ρ) = O(1) for all ρ < 1. From (11)
GT (ρ0) = Op(1). From (12) HT (ρ) = Op(1). The first order condition GT (ρ̂)ḡ(ρ̂) = 0 becomes

0 = G′
T (ρ̂)

(
ḡ(ρ0) +GT (ρ0)(ρ̂− ρ0) +

1
2
HT (ρ̂− ρ0)2

)
= G′

T (ρ̂)ḡ(ρ0) +G′
T (ρ̂)GT (ρ0)(ρ̂− ρ0) +G′

T (ρ̂)
1
2
HT (ρ̄)(ρ̂− ρ0)2

= G′
T (ρ̂)ḡ(ρ0) +G′

T (ρ̂)GT (ρ0)(ρ̂− ρ0) +Op(T−1).
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By assumption,
√
T ḡ(ρ0) d−→N(0, S). Thus when ρ < 1,

√
T (ρ̂− ρ) = −(G′

T (ρ̂)Ḡ(ρ̂))−1G′
T (ρ̂)

√
T ḡ(ρ0) + op(1) = KT ḡ(ρ0) + op(1)

d−→ K(ρ0) ·N(0, S) = N(0,K0SK
′
0).

Case 2. When ρ0 = 1, we can write the DGP as

∆yt = v0
kk∆yt−1 + et + b(ρ0)et−1

∆yt =
et + b(ρ0)et−1

1− v0
kkL

= ut

ut = v0
kkut−1 + et + b(ρ0)et−1

where ut is stationary and 2πfu(0) = ω2. Thus, yt has a unit root, and the functional central limit
theory holds that 1√

Tω

∑t
j=0 uj ⇒W (r), where W (r) is a standard Brownian motion.

Using yt−1 = yt−j + ut−1 + ut−2 + . . . ut−j+1 for j > 1,

y2
t−1 = yt−1yt−j−1 + yt−1(ut−1 + ut−2 + . . . ut−j+1)

Thus, with γ̃′′T0(ρ) = 1
T

∑T
t=1 y

2
t−1 which does not depend on j or ρ

γ̃′′Tj(ρ) ≈ γ̃′′T0(ρ)−
1
T

T∑
t=1

yt−1(ut−1 + ut−2 + . . . ut−j−1).

where 1
T

∑T
t=1 yt−1(ut−1 + ut−2 + . . . ut−j+1) = Op(1). For j = 1, . . . L,

ḡ∗Tj(ρ) = ḡTj(ρ)− ḡT0(ρ).

The first order condition is G∗′
T (ρ̂)ḡ∗(ρ̂) = 0 and

√
T ḡ∗(ρ̂) =

√
T ḡ∗(ρ0) +G∗′

T (ρ0)
√
T (ρ̂− ρ0) +

1
2

√
TH∗

T (ρ̄)(ρ̂− ρ0)2

where ρ̄ ∈ [ρ̂, ρ0]. The last term is op(1) if
√
T (ρ̂− ρ) = Op(1). Thus

0 = G∗′
T (ρ̂)

(√
T ḡ(ρ0) +G∗

T (ρ0)
√
T (ρ̂− ρ0) + op(1)

)
G∗′

T (ρ̂)G∗
T (ρ0) = −G∗′

T (ρ0)
√
T ḡ∗(ρ0) + op(1).

Thus
√
T (ρ̂− ρ0) = −(G∗′

T (ρ̂)G∗
T (ρ0)−1G∗′

T (ρ0)
√
T ḡ∗(ρ0) + op(1)

= K∗
0N(0, S∗) = N(0,K∗

0S
∗K∗′

0 ).
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Table 1: Summary of Selected Work
Paper zt Equations Filter Estimator

Ireland (2001) AR system linear trend MLE

Del Negro et al. (2007) unit root system first difference Bayesian

Bouakez et al. (2005) AR system linear trend MLE

Faia (2007) AR system HP calibration

Clarida et al. (2000) AR equation HP and CBO GMM

Christiano et al. (2005) not specified system VAR GMM

Dib (2003) AR system linear trend MLE

Smets and Wouters (2003) AR system HP Bayesian

Smets and Wouters (2007) AR system first difference Bayesian

Kim (2000) AR system linear trend MLE

McGrattan et al. (1997) AR system linear trend and
HP

MLE

Altug (1989) AR system First difference MLE (freq. domain)

Fuhrer and Rudebusch (2004) random walk system HP, BP, CBO,
trend breaks,
quadratic trends

MLE, GMM

Fuhrer (1997) not specified equaton HP, linear and
quadratic trends

GMM

Kydland and Prescott (1982) permanent
and transitory.
shocks

system HP calibration

Altig et al. (2004) unit root system first difference GMM

Ireland (2004b) random walk system stationary MLE

Christiano and Eichenbaum (1992) random walk system HP GMM

Burnside et al. (1993) AR system HP GMM

Burnside and Eichenbaum (1996) AR system HP GMM

CBO denotes actual series minus the CBO measure of potential output.
unit root means ρz = 1, and ∆zt is serially correlated.

random walk means ρz = 1 and ∆zt is serially uncorrelated.
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Table 2. One-shock model: Base Case.

DGP ρz XX LT HP HP FD ∆DT QD0 QD HD HP
YY m̂t m̂t m̃t ∆1m̂t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Estimate of α

DT 0.50 mean 0.350 0.417 0.014 0.337 0.337 0.348 0.345 0.334 0.336
sd 0.033 0.010 0.059 0.023 0.026 0.034 0.027 0.022 0.077

DT 0.95 mean 0.477 0.676 0.794 0.398 0.366 0.323 0.323 0.336 0.349
sd 0.121 0.023 0.392 0.082 0.110 0.051 0.053 0.061 0.103

DT 0.99 mean 0.825 0.789 0.674 0.375 0.368 0.318 0.319 0.332 0.358
sd 0.189 0.024 0.458 0.107 0.111 0.053 0.054 0.067 0.119

ST 1.00 mean 0.906 0.818 0.603 0.351 0.333 0.317 0.315 0.320 0.347
sd 0.190 0.022 0.479 0.110 0.088 0.055 0.054 0.062 0.110

Estimate of ρ

DT 0.50 mean 0.452 0.248 1.000 1.000 0.497 0.476 0.483 0.495 0.479
sd 0.075 0.051 0.103 0.064 0.070 0.091 0.142

DT 0.95 mean 0.914 0.541 1.000 1.000 0.950 0.940 0.950 0.949 0.951
sd 0.042 0.048 0.017 0.021 0.006 0.014 0.014

DT 0.99 mean 0.864 0.486 1.000 1.000 0.990 0.988 0.989 0.990 0.991
sd 0.094 0.041 0.007 0.008 0.002 0.005 0.011

ST 1.00 mean 0.686 0.461 1.000 1.000 0.997 1.000 0.999 0.999 1.000
sd 0.129 0.039 0.005 0.005 0.001 0.003 0.015

Estimate of σ

DT 0.50 mean 1.057 1.203 11.094 1.689 1.027 1.045 1.039 1.016 1.057
sd 0.121 0.088 0.982 0.108 0.151 0.117 0.103 0.123 0.344

DT 0.95 mean 1.131 1.950 1.593 1.326 1.151 0.970 0.990 1.024 1.076
sd 0.278 0.164 3.093 0.279 0.439 0.156 0.125 0.187 0.296

DT 0.99 mean 4.424 2.907 2.209 1.172 1.133 0.978 0.984 1.015 1.105
sd 2.751 0.391 3.152 0.319 0.336 0.138 0.117 0.173 0.301

ST 1.00 mean 22.634 3.287 2.565 1.084 1.022 0.980 0.976 0.985 1.082
sd 15.592 0.472 3.136 0.310 0.226 0.143 0.111 0.149 0.858

Note: The number of simulations is 2,000. Sample size is T=200. In the top-row label (XX,YY),
XX denotes the method of detrending and YY indicates the model concept of the observed variables.
LT is linear detrending, HP is Hodrick-Prescott filter, FD is first differencing, QD is quasi differencing,
HD is hybrid differencing. ∆1 denotes the restriction ρz = 1. ∆ρ = 1−ρzL denotes quasi differencing.
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Table 3. The extended One-shock model

DGP ρz XX LT HP HP FD ∆DT QD0 QD HD HP
YY m̂t m̂t m̃t ∆1m̂t

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A:
estimate of κ

DT 0.50 mean 0.075 0.111 -0.554 -0.497 0.030 -0.002 0.017 0.024 -0.007
sd 0.163 0.038 0.025 0.038 0.154 0.203 0.194 0.148 0.315

DT 0.95 mean -0.179 -0.224 -0.369 -0.099 -0.001 -0.006 -0.005 -0.001 -0.017
sd 0.162 0.039 0.107 0.035 0.050 0.067 0.063 0.058 0.159

DT 0.99 mean 0.405 -0.257 -0.425 -0.021 0.004 -0.003 -0.007 0.002 -0.015
sd 0.700 0.038 0.075 0.030 0.039 0.046 0.045 0.045 0.153

ST 1.00 mean -0.599 -0.256 -0.447 -0.002 0.002 -0.007 -0.008 -0.001 -0.018
sd 0.031 0.038 0.058 0.027 0.035 0.041 0.039 0.039 0.160

Panel B:
estimate of φ

DT 0.50 mean -0.042 0.037 0.463 -0.325 0.029 0.075 0.027 0.061 0.057
sd 0.222 0.281 0.050 0.039 0.118 0.269 0.205 0.192 0.473

DT 0.95 mean -0.264 0.177 0.676 -0.087 0.002 -0.017 0.009 0.003 -0.046
sd 0.341 0.419 0.074 0.062 0.076 0.071 0.084 0.079 0.278

DT 0.99 mean -0.366 0.503 0.635 -0.016 0.007 0.000 0.013 0.007 0.028
sd 0.375 0.402 0.069 0.083 0.073 0.071 0.074 0.079 0.283

ST 1.00 mean -0.366 0.611 0.619 0.011 0.006 0.002 0.014 0.009 0.023
sd 0.376 0.371 0.067 0.092 0.076 0.069 0.068 0.083 0.257

Note: Other parameters fixed at α = 0.33 and σ = 1. The number of simulations is 2,000. Sample
size is T=200. In the top-row label (XX,YY), XX denotes the method of detrending and YY indicates
the model concept of the observed variables. LT is linear detrending, HP is Hodrick-Prescott filter,
FD is first differencing, QD is quasi differencing, HD is hybrid differencing. ∆1 denotes the restriction
ρz = 1. ∆ρ = 1− ρzL denotes quasi differencing.
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Table 4. The Two-shock model: estimates of α.

DGP ρz XX LT HP HP FD ∆DT QD0 QD HD HP
YY m̂t m̂t m̃t ∆1m̂t

(1) (2) (3) (4) (5) (6) (7) (8)

σq = 0.5

DT 0.950 mean 0.465 0.591 0.337 0.299 0.361 0.348 0.344 0.335 0.329
sd 0.126 0.037 0.137 0.043 0.080 0.051 0.040 0.025 0.075

DT 0.990 mean 0.561 0.651 0.453 0.339 0.359 0.356 0.351 0.339 0.332
sd 0.326 0.048 0.250 0.060 0.078 0.062 0.049 0.032 0.075

ST 1.000 mean 0.508 0.665 0.485 0.352 0.352 0.361 0.353 0.342 0.335
sd 0.357 0.050 0.265 0.063 0.067 0.067 0.052 0.034 0.072

σq = 1.0

DT 0.95 mean 0.431 0.504 0.344 0.316 0.349 0.339 0.339 0.341 0.331
sd 0.103 0.031 0.022 0.022 0.049 0.025 0.023 0.030 0.060

DT 0.99 mean 0.565 0.528 0.359 0.335 0.353 0.344 0.345 0.344 0.336
sd 0.233 0.036 0.022 0.024 0.048 0.029 0.026 0.031 0.056

ST 1.00 mean 0.611 0.529 0.364 0.341 0.357 0.348 0.347 0.347 0.340
sd 0.257 0.036 0.023 0.025 0.050 0.035 0.028 0.034 0.055

σq = 1.5

DT 0.95 mean 0.399 0.469 0.378 0.326 0.349 0.337 0.338 0.343 0.333
sd 0.078 0.020 0.024 0.017 0.042 0.023 0.021 0.030 0.053

DT 0.99 mean 0.474 0.477 0.387 0.336 0.353 0.341 0.341 0.345 0.336
sd 0.171 0.021 0.023 0.017 0.040 0.021 0.020 0.030 0.050

ST 1.00 mean 0.515 0.477 0.391 0.338 0.353 0.342 0.341 0.346 0.338
sd 0.203 0.021 0.023 0.017 0.038 0.022 0.020 0.029 0.049

Note: The true value of α = 0.33. In all simulations, ρq = 0.8 and σz = 1. The number of
simulations is 2,000. Sample size is T=200. In the top-row label (XX,YY), XX denotes the method of
detrending and YY indicates the model concept of the observed variables. LT is linear detrending, HP
is Hodrick-Prescott filter, FD is first differencing, QD is quasi differencing, HD is hybrid differencing.
∆1 denotes the restriction ρz = 1. ∆ρ = 1− ρzL denotes quasi differencing.
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Figure 1: ρz = 0.95
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Figure 2: ρz = 1.00
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Figure 3: Base Case: T× MSE, ρ = 0.5
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Figure 4: Base Case: T× MSE, ρ = 0.95
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Figure 5: Base Case: T× MSE, ρ = 1.0
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Figure 6: Other Models : T× MSE, ρ = 0.95
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Figure 7: Other Models: T× MSE, ρ = 1.0
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