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Abstract

Recently, empirical industrial organization economists have proposed
estimators for dynamic games of incomplete information. In these mod-
els, agents choose from a finite number actions and maximize expected
discounted utility in a Markov perfect equilibrium. Previous economet-
ric methods estimate the probability distribution of agents’ actions in a
first stage. In a second step, a finite vector of parameters of the period
return function are estimated. In this paper, we develop semiparametric
estimators for dynamic games allowing for continuous state varaibles and
a nonparametric first stage. The estimates of the structural parameters
are T1/2 consistent (where T is the sample size) and asymptotically nor-
mal even though the first stage is estimated nonparametrically. We also
propose sufficient conditions for identification of the model.
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1 Introduction.

In economic theory it is common place, if not standard, to model market equilib-
rium as a game. Game theory has profoundly influenced how economic theorists
conceptualize markets and regularly influences policy debates. By comparison,
the impact of game theory on most applied fields in economics has been much
less significant. While there is a large empirical literature that tests the pre-
dictions of certain games, there is by comparison much less work that formally
models the relationship between endogenous and exogenous variables in light of
game theory. Rigorously understanding the econometric implications of game
theory is clearly a necessary condition for coherence between theoretical and
empirical work in economics.

Over the past decade, structural estimation of game theoretic models has
been a topic of active research within the subfield of empirical industrial orga-
nization. See Ackerberg, Benkard, Berry, and Pakes (2005) for an excellent
survey. In particular, researchers have recently proposed two-step estimation
methods for dynamic games. Like the models surveyed in Rust (1994) or stud-
ied in Keane and Wolpin (1997), agents choose from a finite set of actions and
utility at a particular point in time is a function of covariates and stochastic pref-
erence shocks. Agents are forward looking and maximize expected discounted
utility. However, unlike Rust, agents interact strategically and play a Markov
perfect equilibrium to a dynamic game. See Pakes, Ostrovsky and Berry (2003),
Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-Dengler (2003) and
Bajari, Benkard and Levin (2003). Substantive applications of dynamic games
estimators include Jenkins, Liu, McFadden, and Matzkin (2004) to the browser
war and Ryan (2005) to regulation in a concentrated industry. The problem of
equilibrium existence is also considered in Jenkins et. al. (2004) as well.

Like Hotz and Miller (1993) or Guerre, Perrigne and Vuong (2000), estima-
tion in these models essentially takes place in two steps. In the first step, the
economist flexibly estimates agents’ reduced form policy functions. In many
cases, this involves estimating the probability that each of the finite set of ac-
tions is played conditional on a finite vector of state variables. In the second
step, the structural parameters of the model are estimated. Typically, these
are a finite vector that parameterize the period utility as a function of actions
and states. These estimators are attractive for applied work since they impose
a relatively low computational burden and are straightforward to program.

The formal econometric arguments used in these papers are based standard
methods for the analysis of parametric models. Such methods are appropriate
for problems where (i) there are a finite number of discrete state variables or (ii)
there are continuous state variables but the parametric first stage is correctly
specified. However, the econometric theory has not been worked out for the
case of a nonparametric first stage and continuous state variables. This case is
important since many problems have state variables that are naturally modeled
as continuous. For instance, the state variable in models of strategic firm
entry/exit usually includes productivity which the literature usually models as
continuous.
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One could of course ignore the fact that the state variables are continuous
and discretize the state space. However, increasing the number of grids in
estimating the first stage choice probabilities has two offsetting effects. It re-
duces the bias in the first stage estimation but on the other hand increases the
variance. When the dimension of the continuous state variables is larger than
four, it is impossible to obtain

√
T consistent (where T is the sample size) and

asymptotically normal estimators for the second stage parameters through dis-
cretization. It can be shown that the variance of the discretization procedure is
of the magnitude of 1/

√
Thd where d is the dimension of the continuous state

variables and h is the window size used in the discretization. The bias, on the
hand, is of the magnitude of

√
Th2.

√
T consistency of the parameter estimator

requires than both the variance and the bias decrease to zero as the sample size
increases to ∞. It can easily be shown that this is impossible, however, when d
is larger than 4.

In this paper, we consider the problem of semiparametric estimation of a
dynamic game of incomplete information similar to models discussed by Pakes,
Ostrovsky and Berry (2003), Aguirregabiria and Mira (2002), Pesendorfer and
Schmidt-Dengler (2003) and Bajari, Benkard and Levin (2003). As in these
earlier papers, the goal of estimation is the recovery of a finite number of pa-
rameters in the players’ period utility functions. Estimation takes place in four
steps and, like the earlier literature imposes a fairly low computational burden.
In the first step, the econometrician uses sieve methods to nonparametrically
estimate choice probabilities as a function of the state variables. (See Ai and
Chen (2003) and Chen (2005)). In the second step, using standard formulas
that relate choice probabilities to choice-specific value functions, the econome-
trician recovers an estimate of the choice-specific value function. (See Hotz and
Miller (1993) and Aguirregabiria and Mira (2002)). In the third step, the econo-
metrician generates choice-specific value functions consistent with a guess about
the parameters of the period utility function. In the final step, the econometri-
cian minimizes the distance between the choice-specific value functions derived
in the second and third steps.

While the construction of our estimator is in many ways inspired by insights
from the earlier literature, our approach to establishing the asymptotic proper-
ties of the estimator is quite distinct. Building on the analysis of Newey (1994),
we prove that our estimators are

√
T consistent and asymptotically normal even

if the first stage is estimated nonparametrically. For expositional simplicity, we
consider the case of period utility functions that are linear in the parameters
as in Bajari, Benkard and Levin (2003). However, we demonstrate in the last
section that our methods can be generalized to models that do not impose this
assumption.

Finally, we consider the problem of identification. Nonparametric identifi-
cation results for dynamic discrete games are developed by Aguirregabiria and
Mira (2002) and Pesendorfer and Schmidt-Dengler (2003) in the context of dis-
crete state space models. Recent works by Heckman and Navarro (2005) and
Aguirregabiria (2005) present identification results for dynamic discrete choice
models allowing for continuous state variables. In general, the class of models
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we study is not identified for general period return functions. We follow Bajari,
Hong and Ryan (2004) and Bajari and Krainer (2004), we demonstrate that if
appropriate exclusion restrictions are made on payoffs identification is possible
under fairly weak assumptions about the nature of payoffs.

2 The Model.

The model is an infinitely repeated game of incomplete information. We restrict
attention to stationary environments and Markov perfect equilibrium.1 In the
model, there are a finite number of players i = 1, ..., n and an infinite number
of discrete time periods T = 1, ...,∞. During each time period, players simul-
taneously choose an action ai ∈ {0, 1, . . . ,K} out of a finite set. We restrict
players to have the same set of actions for notational simplicity. However, all of
our results will generalize to the case where all players have different finite sets
of actions. Let A = {0, 1, . . . ,K}n denote the vector of possible actions for all
players and let a = (a1, ..., an) denote a generic element of A. As is common
in the literature, we shall let a−i = (a1, ...ai−1, ai+1, ..., an) denote a vector of
strategies for all players excluding player i. There are no mixed strategies since
with probability one players will have a unique best response.

Let si ∈ Si denote the state variable for player i which is common knowledge
to all players in the game. The state variable is assumed to be a real valued
vector, but unlike most of the previous literature, Si is not required to be a
finite set. Let S = ΠiSi and let s = (s1, ..., sn) ∈ S denote a vector of state
variables for all n players. For each agent, there are also K + 1 state variables
which we label as εi(ai) which are private information. These state variables
are distributed i.i.d. across time periods, agents and actions. Let εi denote
the 1 × (K + 1) vector of the individual εi(ai). The density of εi(ai) will be
denoted as f(εi(ai)), however, we shall sometimes abuse notation and denote
the density for εi = (εi(0), ..., εi(K)) as f(εi). Let g(s′|s, a) denote the density
for the realization of next periods state, s′, conditional on the current state, s,
and the vector of actions, a.

The period utility function for player i is:

ui(a, s, εi; θ) = Πi(ai, a−i, s; θ) + εi(ai). (1)

The utility (1) is identical to commonly used discrete choice models such as the
multinomial logit. Player i’s utility is the sum of two terms. The first term,
Πi(ai, a−i, s; θ) is a deterministic function of the players’ actions a = (ai, a−i),
the state, s = (s1, ..., sn) which depends on the parameters θ. In the previous
literature, Πi(ai, a−i, s; θ) has been a parameterized as a linear combination of
the actions and states. The second term, εi(ai), is i’s private information which
is commonly interpreted as an unobserved state variable (see Rust (1994)). In
many applications, this will be drawn from an extreme value distribution as in
the logit model.

1Certain aspects of the notation will follow Rust (1994) and Pesendorfer and Schmidt-
Dengler (2003).
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In what follows, we shall assume that Πi(a, st; θ) is a linear function of θ.
Suppose that the “deterministic” part of utility takes the form:

Πi(a, st; θ) = Φi(ai, a−i, s)′θ (2)

where Φi(ai, a−i, s) = (µ1(ai, a−i, s), ..., µl(ai, a−i, s)) is a collection of l basis
functions and Πi(a, st; θ) is formed as the linear combination of this basis. This
assumption may initially seem quite restrictive. We shall impose this restriction
for three reasons. The first is that this will generate a considerable savings in
terms of both our notation. The second is that in almost all related applications
in the literature payoffs are assumed to be linear. Indeed, if the set of basis
functions is sufficiently rich, (2) can approximate a continuous utility function
arbitrarily well. We invoke the linearity assumption primarily to simplify the
exposition of the estimator. In Section 5, we formally discuss extensions of the
estimator to the case where utility is nonlinear in θ.

Player i’s decision rule is a function ai = δi(s, εi). Note that the decision
rule is not indexed by time because of the Markovian assumption. Also, i’s
decision does not depend on ε−i, since these shocks are private information to
the other players in the game. Define σi(ai|s) as:

σi(ai = k|s) =
∫

1 {δi(s, εi) = k} f(εi)dεi. (3)

In the above expression, 1 {δi(s, εi) = k} is the indicator function that player ı́’s
action is k given the vector of state variable (s, εi). Therefore, σi(ai = k|s) is
the distribution of i’s actions conditional on the state variables that are public
information. We will define the distribution of a given s as σ(a|s) = Πn

i=1σ(ai|s).
Next define πi(ai, s, εi; θ) as:

πi(ai, s, εi; θ) =
∑
a−i

Πi(ai, a−i, s, θ)σ−i(a−i|s) + εi(ai) (4)

where σ−i(a−i|s) = Πj 6=iσj(aj |s). (5)

In (4), πi(ai, s, εi; θ) is player i’s expect utility from choosing ai when the vector
of parameters is θ. Since i does not know the private information shocks, εj

for the other players, his beliefs about their actions are given by σ−i(a−i|s).
Players maximize expected discounted utility using the discount factor β.

Given a state s and private information εi, player i’s value function is:

Wi(s, εi;σi, σ−i) = max
ai∈Ai

πi(ai, s, εi; θ) + β

∫ ∑
a−i

Wi(s′, ε′i;σi, σ−i)g(s′|s, ai, a−i)σ−i(a−i|s)f(ε′i)dε′i

 (6)

The optimal choice of ai depends on the expected period utility, πi(ai, s, εi; θ)
plus the discounted continuation value. Note that the term

∑
a−i

g(s′|s, ai, a−i)σ−i(a−i|s)
is the density for the state variable in the next period given that player i chooses
the action ai today.
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Definition: A Markov Perfect Equilibrium is a collection of decision rules
δi(s, εi), i = 1, ..., n such that for all i, all s and all εi, δi(s, εi) maximizes
Wi(s, εi;σi, σ−i) where σ−i(a−i|s) is given by (3) and (5).

2.1 Expected and Choice-Specific Value Functions.

Following Rust (1994), we will next define the expected and choice-specific value
functions. The expected value function, Vi(s) is defined as the expected value
of Wi(s, εi) marginalizing out εi. It follows from (6) that:

Vi(s) =
∑
a∈A

σ(a|s)Πi(a, s; θ) +
K∑

k=0

E(εi(ai)|ai = k is chosen, s)σi(ai = k|s)(7)

+β

∫ ∑
a∈A

Vi(s′)g(s′|s, a)σ(a|s)ds′.

The expected value function is defined recursively as a sum of three terms.
The first term,

∑
a∈A σ(a|s)Πi(a, s; θ), is the expected value of the determinis-

tic part of the period return function. The second term,
∑K

k=0 E(εi(ai)|ai = k is
chosen, s)σi(ai = k|s), is the expected value of the error term conditional on the
chosen action ai = k and the state s. The third term, β

∑
a∈A Vi(s′)g(s′|s, a)σ(a|s),

is the expected discounted continuation value.
Let the choice-specific value function, Vi(ai, s) be defined as:

Vi(ai, s) =
∑
a−i

σ(ai, a−i)Πi(ai, a−i, s, θ) + β

∫ ∑
a−i

Vi(s′)g(s′|s, a)σ(a−i|s)ds′

The choice-specific value function is the expected utility that the agent received
from taking the action ai in the current period and reverting to the to the
optimal action in the future periods. Note that the choice-specific value func-
tion, however, does not include the error term in the period return function∑K

k=0 E(εi(ai)|ai = k is chosen, s)σi(ai = k|s).

2.2 Choice Probabilities and Choice-Specific Value Func-
tions.

Arguing as in Rust (1994), it is straightforward to show that the equilibrium in
our model must satisfy:

δi(s, εi) = k if and only if Vi(k, s) + εi(k) > Vi(k′, s) + εi(k′) for all k′ 6= k. (8)

The choice-specific value function is useful since it allows us to characterize the
optimal decision rule in our fully dynamic model in an analogous way as in
a static discrete choice model. That is, action k is chosen if and only if the
choice-specific value function and error term associated with k is greater than
the analogous values for k′ 6= k.

6



An implication of (8) is that the equilibrium choice probabilities σi(a|s) must
satisfy:

σi(ai|s) = Pr {εi(ai) + Vi(ai, s)− Vi(0, s) > εi(k) + Vi(k, s)− Vi(0, s),∀k = 0, . . . ,K, k 6= ai} (9)

Equation (9) is a simple consequence of (8). The equilibrium probability that
action ai is chosen is precisely the probability that inequality (8) holds. Since
the inequalities (8) depend only on the differences between the choice-specific
value functions, we can subtract Vi(0, s) from both sides.

For example, suppose that we generate εi(ai) from an extreme value distri-
bution as in the logit model. Then:

σi(ai|s) =
exp(Vi(ai, s)− Vi(0, s))∑K
k=0 exp(Vi(k, s)− Vi(0, s))

(10)

A key insight emphasized by Hotz and Miller (1993) is that equation (10) implies
that the equilibrium choice probabilities, σi(ai|s), have a one-to-one relationship
to the choice-specific value functions, Vi(ai, s)−Vi(0, s). Simple algebra implies
that for any k, k′:

log (σi(k|s))− log (σi(k′|s)) = Vi(k, s)− Vi(k′, s)

This equation is central is the estimation algorithms proposed by Aguirregabiria
and Mira (2002) and Pesendorfer and Schmidt-Dengler (2003). It will also play
a crucial role in the algorithm that we discuss below.

The one-to-one mapping between choice probabilities and choice-specific
value functions holds more generally than in just the simple case of the logit
model. Evidently, the mapping holds whenever the distribution of εi has full
support. We let Γ : {0, ...,K} × S → [0, 1] denote the map in general from
choice-specific value functions to choice probabilities, i.e.

(σi(0|s), ..., σi(K|s)) = Γ (Vi(1, s)− Vi(0, s), ...Vi(K, s)− Vi(0, s))

We will denote the inverse mapping by Ω:

(Vi(1, s)− Vi(0, s), ...Vi(K, s)− Vi(0, s)) = Ωi (σi(0|s), ..., σi(K|s)) . (11)

2.3 Outline of Estimation Strategy.

Estimation proceeds in four steps. In the first step, the economist estimates
σi(k|s) flexibly using a sieve estimation strategy. In the second step, the
economist evaluates equation (11) using the estimated choice probabilities. This
generates an estimate of the choice-specific value functions that is consistent
with the observed choices in the data. In the third step, given a guess θ of
the true value of the utility parameters, θ0, the economist evaluates equations
similar to (7). This generates choice-specific value functions that are consistent
with θ. In the fourth step, the economist then minimizes the distance between
the choice-specific value functions found in the second and third steps. We will
describe the estimator in detail in what follows below.
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2.3.1 First Step: Estimation of Choice Probabilities.

Suppose that the economist has access to time series data on t = 1, ..., T repe-
titions of the dynamic game. During each time period, the economist observes
the actions and state variables for each agent (ai,t, si,t). In the first step we
form an estimate σ̂i(k|s) of σi(k|s) using sieve series expansions (Ai and Chen
(2003)). Let s = (sd, sc) denote the discrete and continuous components of s.
Also let #d and #c denote the dimension of sd and sc.

Let {ql(sc), l = 1, 2, . . .} denote a sequence of known basis functions that
can approximate a real valued measurable function of sc arbitrarily well for a
sufficiently large value of l. The sieve could be formed using splines, Fourier
Series or orthogonal polynomials (see Chen (2005) for a survey of sieve estima-
tion). We let the basis become increasingly flexible as T becomes large. Let
κ(T ) denote the number of basis functions to be used when the sample size is
T. We shall assume that κ(T ) →∞, κ(T )/T → 0 at an appropriate rate to be
specified below. Denote the 1× κ(T ) vector of basis functions as

qκ(T )(sc) = (q1(sc), . . . , qκ(T )(sc)), (12)

Let sd be a particular value of the discrete state variables. Define the vector
QT (sd) as:

QT (sd) = (qκ(T )(sc
1)1(sd

1 = sd), . . . , qκ(T )(sc
T )1(sd

T = sd)).

The number of elements in this vector is κ(T ) times the number of time periods
T times the number of discrete values that sd can assume times κ(T ). The
indicator function 1(sd

t = sd) is equal to one if the value of the discrete state
in the data is equal to sd and zero otherwise. Thus, the vector QT (sd) is
comprised of the individual qκ(T )(sc

t) for t = 1, ..., T in those periods when the
state is sd and a zero vector of length κ(T ) in periods t when sd

t 6= sd.
One potential sieve estimator for σ̂i(k|s), k = 1, . . . ,K is a linear probability

model, i.e.:

σ̂i(k|s) =
T∑

t=1

1(ait = k, sd
t = sd)qκ(T )(sc

t)(QT (sd)′QT (sd))−1qκ(T )(sc). (13)

Equation (13) is the standard formula for a linear probability model where the
regressors are the sieve functions κ(T ) in equation (12). The sieve estimator
σ̂i(k|s) will converge to the true σi(k|s) at a nonparametric rate which is slower
than

√
T . This results in no loss of generality as long as we define the sieve basis

functions properly to include dummy variables that indicate the discrete state
variables. In what follows, we shall assume for the ease of exposition that s = sc.
Since there are a finite number of discrete states, our rate of convergence and
asymptotic theory will be unaffected in the more general case where s = (sc, sd).
Other link functions could also be used. For example, we could estimate a sieve
logit model in the first step. The asymptotic theory is notationally simpler for
the case of a sieve linear probability model. However, a similar strategy could
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be used to establish our asymptotic results for alternative estimators in the first
step.

The first step estimator implicitly abstracts away from problems that might
be caused by the multiplicity of equilibrium. If our data consists of a time
series for a fixed set of agents, multiplicity is not an issue. However, in many
standard applications in empirical industrial organization the data are pooled
across markets (see, for example, the entry models of Bresnahan and Reiss
(1991,1992), Berry (1992) and Ciliberto and Tamer (2005)). Since it is likely
that different markets may be in different equilibria, lack of uniqueness could
be an issue. In this case, it is not possible even in principal to recover a single
rule σi(k|s) that describes behavior in all markets.

In practice, there are two potential solutions to the multiplicity problem.
The first is to use estimators that explicitly accommodate multiplicity as in
Bjorn and Vuong (1984), Bresnahan and Reiss (1990,1991), Berry (1992), Moro
(2003), Ackerberg and Gowrisankaran (2002), Tamer (2002), Sweeting (2004),
Ciliberto and Tamer (2005) or Bajari, Hong and Ryan (2005). Unfortunately,
many of these estimators either require the econometrician to be able to analyt-
ically characterize certain properties of the equilibrium or to compute the entire
equilibrium set. These strategies do not generalize to the class of dynamic
models that we are considering.

The second approach to dealing with multiplicity is to assume uniqueness.
This is a strong assumption, as even single agent problems can generate multiple
solutions. Typically, very strong strict convexity and concavity assumptions
are required for uniqueness in many single agent models. The results of Ko-
munjer and Echenique (2005) suggest that many standard regressions, ranging
from estimates of production functions to the returns from education are highly
problematic if multiplicity is present. The basic idea is that the observed
endogenous variables are determined by how the equilibrium is selected given
a fixed set of primitives. This source of uncertainty is rarely accounted for
in either econometric theory or applied econometrics. While the uniqueness
assumption is potentially strong, we note that it is made implicitly in many
applications. We shall make this assumption in what follows, but not that
accounting for multiplicity important topic for future research.

2.3.2 Second Step: Inversion.

In our second step, we take as given our estimates σ̂i(k|s) of the equilibrium
choice probabilities. We then form an estimate of the choice-specific value
functions, V̂i(k, st)− V̂i(0, st) for k = 1, ...,K and t = 1, ..., T . This can be done
by evaluating (11) using σ̂i(k|s) in place of σi(k|s). That is:(

V̂i(1, st)− V̂i(0, st), ...V̂i(K, st)− V̂i(0, st)
)

= Φi (σ̂i(0|st), ..., σ̂i(K|st))

In the specific case of the logit model, this inversion would simply be:

V̂i(k, st)− V̂i(0, st) = log (σ̂i(k|st))− log (σ̂i(0|st)) (14)
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In an alternative model, such as one with normal shocks, we would need to solve
a nonlinear system.

In our second step, we will also want to compute Ê(εi(ai)|ai is chosen,st)
for all i and all t. This is an estimate of the expected value of the error term
conditional on the action and the observed value of the state variable. Fix i
and st and draw r = 1, ..., R simulated values of ε

(r)
i of the stochastic preference

shocks. Since the distribution of the preference shocks is known, this can
easily be done. Equation (9) implies that given choice-specific value functions
V̂i(k, st)− V̂i(0, st):

a
(r)
i = δ(st, ε

(r)
i ) if and only if ε

(r)
i (ai) + V̂i(ai, s)− V̂i(0, s) >

ε
(r)
i (k) + V̂i(k, s)− V̂i(0, s),∀k = 0, . . . ,K, k 6= ai.

By taking the average value of ε
(r)
i when a

(r)
i = δ(st, ε

(r)
i ), we can estimate

Ê(εi(ai)|ai is chosen,st). In principal, such a simulations could introduce
error into our estimator. However, we will assume that the investigator has
access to a sufficiently powerful computer to simulate the objects so that this
source of error can be effectively ignored.

2.3.3 Third Step: Computation of Choice-Specific Value Function.

In the third step, we find choice-specific value functions that are consistent with
a particular value of θ. In what follows, we make the assumption (2) that utility
is a linear function of the underlying parameters θ. Define

Λi(s) =
∑

k

Ê(εi(ai)|ai = k is chosen, s)σ̂i(ai = k|s), (15)

Φi(s) =
∫ ∑

a

Φi(a, s)σ̂(a|s)ds, (16)

Λi(s) = Λi(s) + βEΛi(s′|s), (17)
Φi(s) = Φi(s) + βEΦi(s′|s). (18)

In equation (15), Λi(s) is the expected value of the error term after we have
marginalized out player i’s action ai. The function Φi(s) is the expected value
of the basis functions after we have marginalized out the actions of all players.
Equations (17) and (18) has the same recursive structure as a Bellman’s equa-
tion. The term EΛi(s′|s) is defined as the expected value of Λi(s′) given that
the current state is s:

EΛi(s′|s) =
∫ ∑

a

Λi(s′)g(s′|s, a)σ(a)ds. (19)

The term EΦi(s′|s) is defined similarly.
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Let V ∗
i (ai, s; θ) denote the choice-specific value function. Using standard

arguments in dynamic programming (see Rust (1994)), it can easily be shown
that:

V ∗
i (ai, s; θ) = Φi(ai, s)′θ + βΛ̃i(ai, s) + βΦ̃i(ai, s)′θ, (20)

where Φi(ai, s) = Ê [Φi(ai, a−i, s)|ai, s] (21)

Φ̃i(ai, s) = Ê[Φi(s′)|ai, s] (22)

Λ̃i(ai, s) = Ê
[
Λ̄i(s′)|ai, s

]
. (23)

In equations (21)-(23) Ê will denote a consistent “estimate” of the objects in
parentheses. For instance, Λ̃i(ai, s) will denote an estimate of Λ̄i(s′) given that
the current action is ai and the state is equal to s. Equation (20) says that the
choice-specific value function is equal to the sum of three terms. The first term,
Φi(ai, s)′θ is the expected value of Φi(ai, a−i, s) given that player i’s action is
ai and the state is s. The second term, βΛ̃i(ai, s) is the expected continuation
value of future values of the error term in equation (17) given that the current
choice is ai. The final term, βΦ̃i(ai, s)′θ, is the expected discounted value of
the deterministic part of utility, given that the current choice is ai.

We wish to avoid the computational burden of simulating objects similar
to (19) or using a contraction mapping to directly solve equations (17)-(18).
Therefore, we will use a sieve estimator to estimate the right hand sides of (21)-
(23). For example, to estimate the right hand side of (23) we regress Λ̄i(st+1)
on Λ̄i(st) conditional on the fact that the action at time t is ai. The fitted value
of the regression is our consistent estimate of the right hand sides of (23).

Let QT (ai) be formed in a similar way to QT in step one, except that only
observations in which the choice of agent i is equal to ai are used. Instead of
having T rows, QT (ai) only has number of rows equal to the total number of
observations with realized choice ai. We then form our estimates by:

Ê
[
Λi(s′)|ai, s

]
= qκ(T )(s)′ (QT (ai)′QT (ai))

−1
T∑

τ=1,aiτ=ai

qκ(T )(sτ )Λi(sτ+1). (24)

Ê [Φi(ai, a−i, s)|ai, s] = qκ(T )(s)′ (QT (ai)′QT (ai))
−1

T∑
τ=1,aiτ=ai

qκ(T )(sτ )Φi(aiτ , a−iτ , sτ ). (25)

Ê
[
Φi(s′)|ai, s

]
= qκ(T )(s)′ (QT (ai)′QT (ai))

−1
T∑

τ=1,aiτ=ai

qκ(T )(sτ )Φi(sτ+1). (26)

Given the above equations, value function iteration is not required to solve
for Λi(st) or Φi(st) for t = 1, ..., T . To see why, substituting (24) into equation
(17) yields to following system:

Λ̄i(st)− βqκ(T )(st)′ (Q′
T (ai)QT (ai))

−1
T∑

τ=1,aiτ=ai

qκ(T )(sτ )Λi(sτ+1) = Λi(st).

11



Suppose that we estimate Λi(st) by simulating (15). Substitute this simulation
estimate Λ̂i(st) of Λi(st) into the above to yield:

Λ̄i(st)− βqκ(T )(st)′ (Q′
T QT )−1

T−1∑
τ=1

qκ(T )(sτ )Λ̄i(sτ+1) = Λ̂i(st).

AT

 Λ̄i(s1)
...

Λ̄i(sT )

 =

 Λ̂i(s1)
...

Λ̂i(sT )


It is straightforward to demonstrate that the T by T matrix AT is invertible and
Λ̄i(st) can be solved for uniquely. 2 By analogous arguments, Φi(st), t = 1, ..., T
can be computed as the solution to a linear system.

Since both (17) and (18) can be solved as a linear system, it follows that
V ∗

i (st; θ) = Λi(st)+Φi(st)′θ for t = 1, ..., T can be solved for as a linear function
of θ. We note that neither Λi(st) nor Φi(st) depend on θ. Thus, while it may
initially take some effort to compute these objects, once these 2T scalars are
computed, we never need to compute them again in order to solve for V ∗

i (st; θ)!
We note that other strategies are possible for finding the expected choice-

specific value functions. For instance, one could simulate continuation values
as in Bajari, Benkard and Levin (2003) in order to avoid the need to invert the
T × T matrix. In samples with many observations, this may be a preferable
procedure since less memory is required.

2.3.4 Final Step: Minimization.

The final step that we perform is to find a value of θ which minimizes the
distance between the choice-specific value functions found in the second and
third steps. As before we will use V̂T (s) to denote the vector of functions
recovered from inverting the vector of conditional choice probabilities, for each
s:

V̂T (s) =
[
V̂i(k, s)− V̂i(0, s), , k = 1, . . . ,K, i = 1, . . . , n

]
, (27)

and let Λ̃∗
T (s) denote the column vector of functions computed in our third step

which we define as:

Λ̂∗
T (s) = β

[
Λ̃i(k, s)− Λ̃i(0, s), k = 1, . . . ,K, i = 1, . . . , n

]
.

Also, define Φ̂∗
T (s) by

Φ̂∗
T (s) =

[
Φi(k, s)− Φi(0, s) + β

(
Φ̃i(k, s)− Φ̃i(0, s)

)
, k = 1, . . . ,K, i = 1, . . . , n

]
. (28)

2If we examine the coefficient matrix on Λ̄i(st), t = 1, . . . , T , we will easily see that it is a
nonsingular and invertible matrix. Alternatively, we can use an iterative procedure to solve
for Λ̄i(st) for all t. It is not difficult to see that for each T , this defines a contraction mapping

in the integrated square norm 1/T
∑T

t=1 Λ̄i(st), so that the value function iteration procedure
will converge to a unique fixed point.

12



Let A(s) be a dim(θ) × (n × K) dimension matrix of instruments which is
sufficiently rich to identify θ. We can then define our parameter estimate as:

θ̂ = arg min
θ

1
T

T∑
t=1

A(st)
[
V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ
]

= 0. (29)

The estimator θ̂ then can be written as

θ̂ =

(
1
T

T∑
t=1

A(st)Φ̂∗
T (st)′

)−1

1
T

T∑
t=1

A(st)
[
V̂T (st)− Λ̂∗(st)

]
.

3 Practical Inference

The theory of sieve approximation provides rigorous conditions for controlling
the bias term from the fact that the first stage is approximated using a finite
number of basis functions. It turns out, as we shall rigorously justify in the
next sections, that the statistical properties of our estimator can be performed
as if the first stage was estimated parametrically. In this section we describe in
details how one can perform practical inference to obtain a consistent estimate
of the confidence intervals and standard errors. In the next section, we will dis-
cuss the formal theory of semiparametric variances and the required regularity
conditions.

In equation (29), a simple approach would be to define our instruments as
A(st) = Φ̂∗

T (st). This would be equivalent to running a least squares regressions
to recover θ̂ by minimizing

1
T

T∑
t=1

[
V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ
]′ [

V̂T (st)− Λ̂∗(st)− Φ̂∗
T (st)′θ

]
.

This is equivalent to choosing the instrument matrix A(st) = Φ̂∗
T (st), and one

can compute θ̂ analytically by

θ̂ =

(
1
T

T∑
t=1

Φ̂∗
T (st)Φ̂∗

T (st)′
)−1

1
T

T∑
t=1

Φ̂∗
T (st)

[
V̂T (st)− Λ̂∗(st)

]
. (30)

In practice, it is possible to use bootstrap or other resampling schemes to ob-
tain consistent standard errors. When T is small, the value function iteration
step can be solved by just inverting a T × T matrix, the computation cost of
repeatedly computing θ̂ should not be overly demanding.

In what follows, we describe a method for computing standard errors that
does not require resampling. This can potentially save computational time if T
is large and difficult to store in the memory of the researcher’s computer. By
equation (30) it follows that:

√
T
(
θ̂ − θ0

)
=

(
1
T

T∑
t=1

A(st)Φ̂∗
T (st)′

)−1

1√
T

T∑
t=1

A(st)
[
V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ0

]
. (31)

13



By standard arguments, the variance of
√

T
(
θ̂ − θ0

)
can be consistently esti-

mated by Ĝ−1
T Ω̂T Ĝ−1′

T , where

ĜT =

(
1
T

T∑
t=1

A(st)Φ̂∗
T (st)′

)
,

and Ω̂T is a consistent estimate of the variance of

`(θ0) =
1√
T

T∑
t=1

A(st)
[
V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ0

]
.

To obtain Ω̂T we examine the structure of `(θ0). Let VT (st), Λ∗(st) and Φ∗
T (st)

denote the population analog of V̂T (st), Λ̂∗(st) and Φ̂∗
T (st). First we note that

VT (st)− Λ∗(st)− Φ∗
T (st)′θ0 ≡ 0

as an identity relation. Then we can rewrite `(θ0) as

1√
T

T∑
t=1

A(st)
[
V̂T (st)− VT (st)− (Λ̂∗(st)− Λ∗(st))−

(
Φ̂∗

T (st)− Φ∗
T (st)

)′
θ0

]
.

The estimation uncertainty in `(θ0) all comes from the first stage estimation
errors in estimating V̂T (st), Λ̂∗

T (st) and Φ̂∗
T (st). To describe this, we will use

Ψ̂T (st)−Ψ(st) to denote any one of the elements of[
V̂T (st)− VT (st), Λ̂∗(st)− Λ∗(st), Φ̂∗

T (st)− Φ∗
T (st)

]
.

In a parametric setup for the first stage where the parametric functional form
is assumed to be correctly specified, Ψ̂T (st) − Ψ(st) depends on a set of least
squares regression coefficients α, such that Ψ∗

T (st) = Ψ∗
T (st;α0), and Ψ̂∗

T (st) =
Ψ̂∗

T (st, α̂). Each component of `(θ0) is then approximately distributed as

ŴT

√
T (α̂− α0) + op(1).

where the first component

ŴT =
1
T

T∑
t=1

A(st)
∂Ψ̂∗

T (st; α̂)
∂α

. (32)

can be evaluated by numerical derivatives (The appendix gives more details
about computing ŴT ). The variance of

√
T (θ̂ − θ0) can then be estimated by

Ĝ−1
T ŴT Σ̂Ŵ ′

T Ĝ−1′

T , where Σ̂ is an estimate of the variance of
√

T (α̂−α0). Since
α̂ is just a set of least square regression coefficients. Σ̂ can easily be computed
by either bootstrapping, or Huber-White robust standard error type calculation.

14



In the later case, let yt denote the vector of the collection of dependent variables
used in these linear regression, such as Λ̄i(st+1) for all i, and use et to denote
the vector of residuals in these linear regressions. Then we can estimate

Σ̂ = I ⊗ (Q′
T QT )−1 1

T

T∑
t=1

ete
′
t ⊗ qκ(T )(st)qκ(T )(st)′I ⊗ (Q′

T QT )−1
.

Naturally, one can also estimate Σ by the empirical variance covariance matrix
of bootstrapped α̂. The next question will be related to the efficient choice of
AT (st), the instrument matrix. We can choose AT (st) to minimize the asymp-
totic variance of

√
T (θ̂ − θ0), which is

(E [AT (s)Φ∗
T (s)′])−1

E

[
AT (s)

∂Ψ∗
T (s;α)
∂α

]
ΣE

[
∂Ψ∗

T (s;α)
∂α

′
AT (s)′

]
(E [Φ∗

T (s)AT (s)′])−1
.

With a correctly specified parametric first step α, it is not immediate to simplify
the solution for the optimal instruments AT (s), except in the case where s are
all discrete, in which case AT (s) can be solved by a system of linear equations.
As we will see in the parametric case it is easier to obtain the optimal AT (s) in
the general case including continuous state variables s.

4 Semiparametric Variance

The estimator that we consider falls within the class of semiparametric estima-
tors considered by Newey (1994). He demonstrates that, under appropriate
regularity conditions, the second stage asymptotic variance will be independent
of the particular choice of nonparametric method used to estimate the first
stage (e.g. sieve or kernel). This suggests that we can derive the form of
the semiparametric asymptotic variance of our estimator that is independent
of the nonparametric methods that are used to estimate the choice probabili-
ties. Deriving this semiparametric variance is important because it validates the
practical inference methods we described in the previous section. The validity
of these parametric inference methods depends on both the knowledge of the
limit semiparametric variances, and a set of regularity conditions that require
the choice probabilities and transition probabilities to be sufficiently smooth
functions of the state variables.

We are concerned with the asymptotic variance of the estimator defined
in (31), where the first step parametric estimation is considered to be a sieve
approximation that expands as a function of the sample size. Since Φ̂∗

T (st)
consistently estimates Φ∗

T (st), it should be intuitively clear that the first com-
ponent of the Jacobian term converges in probability: ĜT

p−→ G, where G =
E [A(st)Φ∗

T (st)] . If we can derive the asymptotic variance Ω of

1√
T

T∑
t=1

m(st, ĥ) =
1√
T

T∑
t=1

A(st)
[
V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ
]
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then it follows that
√

T
(
θ̂ − θ0

)
d−→ N

(
0, G−1ΩG−1′

)
. In the above ĥ is used

to denote the set of sieve least square projections that are used to estimate h,
the set of conditional choice probabilities and conditional transition processes
given the state variables, that are used in forming

Ψ̂∗
T (st) = V̂T (st)− Λ̂∗(st)− Φ̂∗

T (st)′θ0.

For this purpose, the following proposition verifies the linearization requirement
in Newey (1994) for the dynamic discrete model that we considered:

Proposition 1 There exists a set of linear functionals D(st, h) such that for
any parametric sub-path h(θ) through the space of nonparametric functions h:

∂

∂θ
Em (st, h(θ)) =

∂

∂θ
ED (st, h(θ)) ,

and we can find a set of functions δ(st) such that for all h:

ED(st, h) = Eδ(st)h(st).

The complete set of functions h, the linear functions D(z, h), and the set of
influence functions δ(z), are given in the next section.

Based on the calculations that lead to this proposition, it then follows im-
mediately from proposition 4 in Newey (1994) that Ω = V ar(α(st)), where
α(st) = δ(st)⊗ (yt − h(st)), and yt is the vector of dependent variables used in
the first stage linear regressions, and

h(st) = E (yt|st) .

In the previous section about practical inference, given that α̂− α is essen-
tially

(Q′
T QT )−1

T∑
t=1

(yt − hα(st))⊗ qκ(T )(st),

where hα(st) is the parametric approximation of h(st), in (32) we are effectively
estimating α(st) by the linear square projection of

α̂(st) = ŴT (Q′
T QT )−1

qκ(T )(st)⊗ (yt − hα(st)) .

This is because the ŴT in (32) is approximately

1
T

T∑
t=1

D
(
st, q

κ(T )(·)
)

=
1
T

T∑
t=1

δ(st)qκ(T )(st),

therefore the first part ŴT (Q′
T QT )−1

qκ(T )(st) in α̂(st), being the fitted value
of a least square projection of δ(st) on qκ(T )(st), should be close to δ(st).
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The verification of the semiparametric asymptotic variance indicates that
other approximations can be used to estimate the asymptotic variance of θ̂. For
example, a kernel based nonparametric regression or other sieve basis functions
can be used to consistently estimate h(st) and δ(st), which are feasibly given
the analytical forms of δ(st) derived in the appendix. They can be chosen based
on computational tractability and the plausibility of the results.

4.1 Semiparametric Influence Functions

This subsection derives the linear asymptotic influence functions D(st, h) and
δ(st) that are used in proposition 1. This subsection presumes familiarity with
the arguments in Newey (1994) and can be skipped by those readers interested
in implementation issues and not the proof of proposition 1. We will denote
the collection of the influence functions as

hJ =
(
hj , j = 1, . . . , J

)
,

where each set of hj(st) corresponds to a step in the nonparametric estimations
before the last stage of fitting the parametric utility functions.

The influence function h1(st) The function h1(st) corresponds to the es-
timation of σ̂i(k|s) in (14). Since the functions σ̂i(k|s) enter the calculations
of V̂T (st) through (14) and Λ̂∗

T (st) through (15), (17), (23) and (27). Hence in
correspondence to V̂T (st) and Λ̂∗

T (st) we can separate

D(st, h
1) = D1(st, h

1) + D2(st, h
1).

Define ∂Φ(σ)
∂σ (st) to be the (K ×n) by (K)×n block diagonal derivative matrix

of V̂T (st) with respect to all σi(k|st) of equation (14), and define σ̂(st) to be
the K × n vector of the collections of all σ̂i(k|st) for all i and all k, then

D1(st, h
1) = A(st)

∂Φ(σ)
∂σ

(st)σ̂(st).

The corresponding linear influence function is then

A(st)
∂Φ(σ)

∂σ
(st) (at − σ̂(st))

with δ(st) = A(st)
∂Φ(σ)

∂σ (st) and at is the stacked vector of ait for all i = 1, . . . , n.
Next define ∂Λ(σ)

∂σ (st) to be the n by K × n derivative of (15). Note that
∂Λ(σ)

∂σ (st), (17), (23) and (27) define a (system of) linear functional from σ(st)
to Λ̂∗

T (st). Denote this linear mapping by Λ̂∗
T (σ̂(·)) (st):

D2(st, h
1) = A(st)Λ̂∗

T (σ̂(·)) (st).

The linear influence function for D2(st, h
1) will be derived below.
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The influence function h2(st) The influence function h2(st) corresponds to
the conditional expectation operator in (17) and (18) that are used to compute
the fixed point functions Λ̄i(s) and Φ̄i(s). The transformations in (17) and (18)
are nonlinear but can be linearized as follows. Let Ψ to denote generically either
Λ or Φ. We can replace (17) and (18) by

Ψ̄i(s)−Ψ0
i (s) = β

[
Ê(Ψ0

i (s
′)|s)− E0(Ψ0

i (s
′)|s)

]
+ βE

[
0Ψ̄i(s′)−Ψ0

i (s
′)|s
]
. (33)

This defines a linear mapping from Ê(Ψ0
i (s

′)|s) to Ψ̄i(s). Together (33) and (23)
and (22) define a linear mapping from Ê(Ψ0

i (s
′)|s) to Ψ̂∗

T (s), which was stacked
in a vector Ψ̃i(ai, s). Denote this linear transformation by Ψ̂∗

T (Ê[Ψ0(s′)|·])(st):

D(st, h
2) = A(st)Ψ̂∗

T

(
Ê
[
Ψ0(s′)|·

])
(st).

Its corresponding linear influence function is also discussed below.

The influence function h3(st) The influence function h3(st) corresponds to
the conditional expectation operator in (22) and (23) that are used to compute
the choice-specific expectations. Since these are already linear transformations.

D(st, h
3) = A(st)Ê[Ψ0(s′)|st, ai],

and the corresponding linear influence function is therefore

A(st)
(
Ψ0(st+1)− Ê[Ψ0(s′)|st, ai]

)
where δ(st) = A(st).

The influence function h4(st) The influence function h4(st) corresponds to
the estimation of

Êa−i [Φi(ai, a−i, s)|ai, s]

in (21). This enters the calculation of Φ̂∗
T (st) directly through its first terms in

(28). by (21), and also through the second term in (28) through both (21) the
value function iterations (22). Therefore we can correspondingly partition

D(st, h
4) = D1(st, h

4) + D2(st, h
4),

Obviously, the first component can be written as

D1(st, h
4) = A(st)Ea−t

[Φ(at, a−t, st)|at, st] ,

where Ea−t [Φ(at, a−t, st)|at, st] is the stacked vector of Êa−i [Φi(ai, a−i, s)|ait, st].
For the second part D2(st, h

4), both (21) and (22) are linear transformations.
They define a linear functional from Êa−i

[Φi(ai, a−i, s)|ai, s] to Φ̂∗
T (st), which

we denote by Φ̂∗
T

(
Êa−i

[Φi(ai, a−i, ·)|ai, ·]
)

(st). Hence,

D2(st, h
4) = A(st)Φ̂∗

T

(
Êa−i

[Φi(ai, a−i, ·)|ai, ·]
)

(st).
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The linear influence functions for D2(st, h
1), D(st, h

2), and D2(st, h
4).

In the above we have explicitly given the asymptotic linear influence function
representations for D1(st, h

1), D(st, h
3) and D1(st, h

4). We are now left to
specify the linear influence functions that correspond to D2(st, h

1), D(st, h
2),

and D2(st, h
4). These influence functions have a common structure which we

exploit now. This common structure begins with a value function contraction
mapping:

ĝ(st)− βE [ĝ(st+1)|st] = ĥ(st).

In the second step the forward choice-specific conditional expectation of g(st)
is computed and instrumented, so that we are concerned with the asymptotic
representation of the moment conditions:

E [A(st)E [ĝ(st+1)|at = k, st]] .

For ease of exposition, we analyze an equivalent set of moment conditions:

E [A(st)p(ait = k|st)E [ĝ(st+1)|ait = k, st]]
= E [A(st)E [1(ait = k|st)ĝ(st+1)|st]] = E [A(st)1(ait = k|st)ĝ(st+1)] .

In the spirit of Newey (2004), we are looking for a set of functions δ(st) such
that we can write

E [A(st)1(ait = k)ĝ(st+1)] = E
[
δ(st)ĥ(st)

]
. (34)

To describe δ(st), first we define the function

Ã(st) = E [A(st−1)1(ait−1 = k)|st] .

Then we can define δ(st) as the unique function solution to the following con-
traction mapping:

δ(st)− βE [δ(st−1)|st] = Ã(st). (35)

To see why this satisfies (34), note that we can write its left hand side as

E [E [A(st)1(ait = k)|st+1] ĝ(st+1)] = E
[
Ã(st+1)ĝ(st+1)

]
,

which can also be written E
[
Ã(st)ĝ(st)

]
because of stationarity. Now using the

definition of δ(st), this can be written as

E [(δ(st)− βE [δ(st−1)|st]) ĝ(st)] = Eδ(st)ĝ(st)− βEδ(st−1)ĝ(st)
= Eδ(st)ĝ(st)− βEδ(st)ĝ(st+1) = Eδ(st) [ĝ(st)− βE (ĝ(st+1)|st)] .

The definition of g(st) in (35) then verifies that this is equal to Eδ(st)ĥ(st).
With this definition of δ(st), we can then write the asymptotic linear represen-
tation as

δ(st) (yt − h(st))
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where yt are the dependent variables used in the construction of h(st) = E(yt|st),
including ∂Φ(σ)

∂σ (st)at in D2(st, h
1), βΨ0

i (st+1) for D(st, h
2), and Φi(ait, a−it, st)

in D(st, h
4).

The linearity representation functions also allow us to address the issue of
efficient choice of instruments. In general as we show above δ(st) is a linear
functional of the instrument functions A(st), which we denote δ[A(·)](st). Also
let Σ(st) = V ar(yt − h(st)|st) denote the conditional variance matrix of the
dependent variables in the conditional expecation calculations. Then we can in
general write the asymptotic variance in the form of

(EA(st)Φ∗
T (st))

−1
E (δ[A(·)](st)Σ(st)δ[A(·)](st)′) (EΦ∗

T (st)′A(st)′)
−1

.

The efficient choice of A(st) minimizes this asymptotic variance, which will
equate

(EA(st)Φ∗
T (st)) = E (δ[A(·)](st)Σ(st)δ[A(·)](st)′) .

Alternatively, we can also choose δ(st) efficiently, noting in turn that A(st) can
be written as a linear functional of δ(st) by inverting the mapping from A(st) to
δ(st). It is straightforward but tedious to describe the explicit functional form
of A(st), because δ[A(·)](st) involves both a simple pointwise derivative and a
value function iteration. We omit such details.

4.2 Regularity conditions

Newey (1994) provided a set of sufficient conditions that rigorously justify the
validity of semiparametric variances and the validity of the use of seive para-
metric models to approximate the limiting semiparametric variance. We verify
these regularity conditions for the dynamic model that we study.

The required regularity conditions can be broadly classified into two cate-
gories. The first category contains conditions on the sieve functions used and the
degree of smoothness of the underlying function that is estimated nonparametri-
cally, so that the conditional expectations can be estimated at a sufficiently fast
rate of convergence. The second category of regularity conditions requires that
the second stage semiparametric parameter is a sufficiently smooth functional
of the conditional expectation functions that are being estimated nonparamet-
rically in the first stage.

Assumption 1. For each of the h(s) = hj(s) conditional expectation function
that is being estimated nonparametrically in the first stage,

sup
s∈

|h(s)− hκ(s)| ≤ Cκ−α

where hκ(s) = qκ(s)′ (Eqκ(s)qκ(s)′)−1
Eqκ(s)h(s). The class of sieve ap-

proximating functions satisfies the following conditions:
√

Tζ0(κ)2
[( κ

T

)
+ κ−2α

]
−→ 0

where ζ0(κ) = supz∈ ||qκ(s)||.
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This assumption implies that the first stage nonparametric estimation con-
verges to the truth at a rate faster than T 1/4 because Newey (1994b) showed
that under this assumption:

sup
z∈

|ĥ(z)− h(z)| = Op

(
ζ0(κ)

[√
κ

T
+ κ−α

])
.

Assumption 2. For each of the δ(s) = δj(s), define δκ(s) = qκ(s) (Eqκ(s)qκ(s)′)−1
Eqκ(s)δ(s).

Then

TE
[
|δ(s)− δκ(s)|2

]
E
[
|h(s)− hκ(s)|2

]
→ 0.

In addition, ζ4
0

κ
T → 0, E (δ(s)− δκ(s))2 → 0, and

ζ0(κ)2E (h(s)− hκ(s))2 −→ 0.

Newey (1994) showed that this assumption implies that

√
TED

(
st, ĥ− h

)
=

1√
T

T∑
t=1

δ(st)(yt − h(zt)) + op(1).

Note that both of these two assumptions apply generically to similar two
step semiparametric models. Once we made these two assumptions, there is
no need to verify them for our model. In contrast, the next two assumptions
stated below will need to be verified for the model we consider. The contraction
mapping properties turn out to be useful for verifying these assumptions.

Assumption 3.
(∑κ

k=1 |qk(s)|20
)1/2

[(
κ
T

)1/2 + κ−α
]
−→ 0, and for each h =

hj , D(st, h) satisfies

|D(st, h)−D(st, h0)| ≤ b(st) sup
s
|h(s)− h0(s)|. where Eb(st)2 < ∞.

The first part of this assumption is a condition on the sieve functions and
is not model specific. In our model, the second part of the above assumption
is satisfied as long as the instrument matrix A(st) has finite variance, because
of the contraction mapping property. Note that in our model D(st, h − h0)
typically takes the form of

A(st) (g(st)− g0(st)) ≤ A(st) sup
s
|g(s)− g0(s)|,

where (g(s)− g0(s)) is defined as the unique fixed point solution to the func-
tional iteration:

g(s)− g0(s) = h(s)− h(s0) + βE [g(s′)− g0(s′).|s]
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As long as β < 1, it follows immediately that

sup
s
|g(s)− g0(s)| ≤

1
1− β

|h(s)− h0(s)|.

Hence this assumption is satisfied.
The last assumption requires that the sample moment condition used in our

estimation procedure is approximated well enough by the D(s, h) that are linear
functionals of the first stage conditional expectations h = hj for all j’s.

Assumption 4. For each h = hj ,
√

T sups |m(s, h)−m(s, h0)−D(s, h−h0)| =
op(1).

To see why this assumption is satisfied in our model, note that m(st, h)
typically takes the form of A(st)ĝ(st), where ĝ(st) is the solution to the sample
value function iteration:

ĝ(s) = ĥ + βÊ (ĝ(s′)|s) .

The true g0(s) solves the population analog

g0(s) = h0(s) + βE (g0(s′)|s) .

On the other hand, D(s, h) takes the form of A(st)ḡ(st), where ḡ(s) solves the
following iteration:

ḡ(s)− g0(s) = ĥ(s)− h0(s) + β
(
Ê (g0(s′)|s)− E (g0(s′)|s)

)
+ βE (ḡ(s′)− g0(s′)|s) .

The difference between m(s, h) and D(s, h) hence is driven by the difference
ĝ(s)− ḡ(s), which can be written as

ĝ(s)− ḡ(s) = β
(
Ê(ĝ(s′)− ḡ(s′)|s)

)
+ β

(
Ê (ḡ(s′)− g0(s′)|s)− E (ḡ(s′)− g0(s′)|s)

)
.

Under the smoothness conditions stated in assumption 1, it is not difficult to
show that

sup
s

∣∣∣∣Ê (ḡ(s′)− g0(s′)|s)− E (ḡ(s′)− g0(s′)|s)
∣∣∣∣ = (ζ0(κ)

[√
κ

T
+ κ−α

])2

.

and that

βÊ(ĝ(s′)− ḡ(s′)|s) ≤ (β + op(1))E(ĝ(s′)− ḡ(s′)|s).

By combining these, we have therefore shown that

(1− β + op(1)) sup
s

√
T |ĝ(s)− ḡ(s)| ≤

(
ζ0(κ)

[√
κ

T
+ κ−α

])2

.

Hence the last required assumption is verified because of assumption 1 and the
above properties of our model.
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5 Nonparametric Identification and Alternative
Estimators

In the previous sections, we have assumed that the period utility function has
a parametric representation Πi(a, s; θ). Identification in the estimator Sec-
tion 2 formally required a sufficiently rich set of instruments. In this section,
we discuss the problem of identifying the period return function if parametric
assumptions are not imposed. Our identification strategy will suggest an alter-
native set of estimators which we will briefly discuss at the end of this section.
Identification of models with discrete state spaces has been discussed by Hotz
and Miller (1993), Berry, Pakes, and Ostrovsky (2003), Aguirregabiria and Mira
(2002) and Pesendorfer and Schmidt-Dengler (2003). Recent work by Heckman
and Navarro (2005) and Aguirregabiria (2005) discuss identification in models
with continuous state variables. The arguments we present here are closely
related to the ideas of Bajari, Hong and Ryan (2004) and Bajari and Krainer
(2004) which propose exclusion restrictions to identify static games.

Formally, we consider the problem of recovering the function Πi(ai, a−i, s)
without specifying it parametrically as Πi(ai, a−i, s; θ). We begin by assuming
that the econometrician has knowledge of the distribution of the εi. As we
discussed in Bajari, Hong and Ryan (2004), this assumption is required for
identification even in a static model. The intuition is straightforward. For
instance, a textbook binary probit is a special case of our dynamic model where
β = 0, there are two choices and the error term is normally distributed. We
can think of s as the set of covariates. Let σ1(a1 = 0|s) be the probability
that the choice is equal to one in the probit. Then we can rationalize this
probability by setting Π1(a1, s) = F−1(σ1(a1 = 0|s)) where F is the normal
c.d.f. Obviously, if knowledge of the distribution of the error term is required
for a static, single agent problem, it must be required for our model that nests
this as an extremely special case. Furthermore, we assume that the economist
has knowledge of the discount factor, β. Rust (1994) discusses why this is not
identified even in single agent discrete choice problems.

We break the problem of identification into two steps. In the first step, we
seek to identify for all ai = 0, . . . ,K :

Πi(ai, s) ≡
∑
a−i

Πi(ai, a−i, s)σ−i(a−i|s) (36)

In the second step, we ask what restrictions, such as exclusion restrictions, can
be used to identify Πi(ai, a−i, s) from knowledge of Πi(ai, s).

5.1 Identification of Πi(ai, s)

Identification of the first step of Πi(ai, s) follows from arguments along the lines
of Aguirregabiria and Mira (2002) and Magnac and Thesmar (2002). The
basic idea is quite simple. The definition of equilibrium implies that an agent
makes a best response to his equilibrium expectations about the actions of the
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other agents. By focusing on (36), we are identifying an agent’s period utility
in equilibrium from choosing an action ai. This is similar to identifying the
structural parameters in a single agent problem:

Recall (7) implies that for each ai = 0, . . . ,K:

Vi(ai, s) = Πi(ai, s) + βE [Vi(s′)|s, ai] .

Furthermore, from equations (7) and (20), we can write

Vi(s) = Λi(s) +
K∑

k=0

σi(k|s)Vi(k, s).

The combination of these two relations shows that

Vi(ai, s) = Πi(ai, s) + βE

[
Λi(s′) +

K∑
k=0

σi(k|s′)Vi(k, s′)|s, ai

]
. (37)

By writing Vi(k, s′) = Vi(k, s′)−Vi(0, s′)+Vi(0, s′), we can rearrange this relation
so that

Vi(ai, s)− βE

[
Λi(s′) +

K∑
k=1

(Vi(k, s′)− Vi(0, s′))σi(k|s′)|s, ai

]
= Πi(ai, s) + βE [Vi(0, s′)|s, ai] .

Next, we impose the normalization that Πi(0, a−i, s) = 0 for all a−i. This
is similar to the assumption that there is an outside good in a single agent
discrete choice model. In an entry model, if 0 corresponded to the decision
not to enter a market, then this assumption could be interpreted as the profit
from not entering a market being zero. Since this assumption is required
for identification in much simpler static models (see Bajari, Hong and Ryan
(2004) for a formal argument), it is not surprising that it is also required for
identification in dynamic models. We can then rewrite the above equation as:

Vi(0, s)− βE [Vi(0, s′)|s, 0] = βE

[
Λi(s′) +

K∑
k=1

(Vi(k, s′)− Vi(0, s′))σi(k|s′)|s, 0

]
. (38)

Based on arguments similar to Section 2, it is clear that the right hand side
can be recovered from the population. The left hand side obviously satisfies
Blackwell’s sufficient conditions and is a contraction that can be used to recover
Vi(0, s) uniquely. Therefore Vi(0, s) is identified. In section 2, we established
that there is an inversion between choice probabilities and Vi(k, s)−Vi(0, s) for
k = 1, ...,K. Given knowledge of Vi(0, s), we can clearly recover Vi(k, s). Thus,
our choice-specific value functions are identified.

Once these quantities are known, Πi(ai, s) can then be identified since all of
the terms on the right hand side of the equation below can be recovered from
the population:

Πi(ai, s) = Vi(ai, s)− βE

[
Λi(s′) +

K∑
k=0

Vi(k, s′)σi(k|s′)|s, ai

]
(39)
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5.2 Identification of Πi(ai, a−i, s)

Next we turn to the problem of identifying Πi(ai, a−i, s) from knowledge of
Πi(ai, s) and σ−i(a−i|s):

Πi(ai, s) =
∑
a−i

σ−i(a−i|s)Πi(ai, a−i, s),∀i = 1, . . . , n, ai = 1, . . . ,K. (40)

Even with the normalization that Πi(0, a−i, s) ≡ 0, it is clear that Πi(ai, a−i, s)
is not identified. Holding the state vector s fixed, determining the utilities of all
agents involves solving for n×K × (K + 1)n−1 unknowns. That is, there are n
agents, for each action k = 1, ...,K, utility depends on the (K + 1)n−1 possible
actions of the other agents. However, the left hand side of (40) only contains
information about n×(K+1) scalars holding s fixed. It is clearly not possible to
invert this system in order to identify Πi(ai, a−i, s) for all i, all k = 1, ...., K and
all a−i ∈ A−i. Related nonidentification results have been found by Bresnahan
and Reiss (1991,1992) and Pesendorfer and Schmidt-Dengler (2003).

Obviously, there must be cross equation restrictions across either i or k in
order to identify the system. An obvious way to identify the system is to impose
exclusion restrictions. Partition s = (si, s−i), and suppose Πi(ai, a−i, s) =
Πi(ai, a−i, si) depends only on the subvector si. An example of this might
be in an entry model. In this type of model the state is usually a vector of
productivity shocks. While we might expect the profit of firm i to depend on
the entry decisions of other agents, it should not depend on the productivity
shocks of other agents. See Bajari and Krainer (2003) and Bajari, Hong and
Ryan (2004) for other examples of possible exclusion restrictions that can be
used in applications. If such an exclusion restriction is possible, we can then
write

Π̂i(ai, s−i, si) =
∑
a−i

σ−i(a−i|s−i, si)Π̂i(ai, a−i, si).

Clearly, a sufficient identification condition is that for each si, there exists
(K + 1)n−1 points in the support of the conditional distribution of s−i given
si, such that this system of equations form by these (K + 1)n−1 points given si

is invertible. In other words, Let s1
−i, . . . , s

(K+1)n−1

−i denote these points, then
identification requires that the matrix[

σ(a−i|sj
−i, si), a−i = 1, . . . , (K + 1)n−1, j = 1, . . . , (K + 1)n−1

]
be nonsingular and invertible. Note that this assumption will be satisfied as long
as s−i contains a continuously distributed variable with sufficient variability.

Obviously, there must be cross equation restrictions across either i or k in
order to identify the system. An obvious way to identify the system is to impose
exclusion restrictions. Partition s = (si, s−i), and suppose Πi(ai, a−i, s) =
Πi(ai, a−i, si) depends only on the subvector si. An example of this might be
in an entry model. In empirical studies of entry, the profit of firm i is usually
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modeled as a function of i’s entry decision and the entry decision of other firms.
The productivity shocks of other firms −i are not typically included in i’s profits.
However, the productivity shocks of other firms may influence their own entry
decisions. Thus, these generate a set of variables that might be plausbily
excluded from si but which might enter s. Such exclusion restrictions are
often difficult to find in practice and may be controversial. However, they are
required for identification when simultaneity is present in many other settings.
We next characterize which exclusion restrictions are sufficient for identification
in games as well.

The two step identification structure that we discuss above also suggests
simple identification conditions for parametric utility models. Suppose we pa-
rameterize utilities as Πi(ai, a−i, s; θ) such that the normalization constraint
Π(0, a−i, s; θ) ≡ 0 at all values of θ. Since as in (40), the left hand side Πi(ai, s)
and the choice probabilities σ−i(a−i|s) are identified, parametric identification
can be stated as requiring that for any θ 6= θ0,∑

a−i

σ−i(a−i|s)Πi(ai, a−i, s; θ) 6=
∑
a−i

σ−i(a−i|s)Πi(ai, a−i, s; θ0)

for some ai = 1, . . . ,K and for a set of s with positive probabilities.

5.3 Alternative Semiparametric Estimators

The identification procedure discussed above suggests an alternative approach
to estimating the model that does not rely on the linearity assumptions that
we imposes earlier in the paper. Using the notation developed in the previous
sections, we briefly describe the steps involved in constructing this alternative
estimator.
Step 1: Estimate choice probabilities as in step 1 in section 2.3.1.
Step 2: Estimate V̂i(k, st) − V̂i(0, st) for k = 1, . . . ,K, i = 1, . . . , n and t =
1, . . . , T through the inversion step described in section 2.3.2. As an immedi-
ate consequence, we can also estimate Λ̂i(s), the expected unobserved utilities
conditional on optimal choice of the agents.
Step 3: Use the sample analog of (38) to obtain an estimate of V̂i(0, s) for all i:

V̂i(0, s)− βÊ[V̂i(0, s′)|s] = βÊ
[
Λ̂i(s′) + Ê

[
(V̂i(k, s′)− V̂i(0, s′))|s′

]
|s, 0

]
.

Consistent estimation of the expectation objects Ê in the above can be ob-
tained by sieve based least square regressions described in section 2.3.3. The
value function iteration for V̂i(0, s) on the left hand side can be obtained by
either recursive least square projection that iterates to convergence, or by in-
verting a T × T matrix as described in section 2.3.3.
Step 4: Use equation (39) or (37) to recover a nonparametric estimate of the
conditional expected per period utility Π̂i(ai, s).
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Step 5: For each θ, use a least square projection to estimate Π̂i(ai, s; θ):

Π̂i(ai, s; θ) = qκ(T )(s)′ (QT (ai)′QT (ai))
−1

T∑
τ=1,ai,τ=ai

qκ(T )(sτ )Πi(aiτ , a−iτ , sτ ; θ). (41)

Note that when Πi(ai, a−i; θ) is specified as a linear function of θ as in (2),
we can estimate Π̂i(ai, s; θ) by Φ̂i(ai; s)′θ, where the least square projection is
applied to the individual index functions:

Φ̂i(ai; s) = qκ(T )(s)′ (QT (ai)′QT (ai))
−1

T∑
τ=1,ai,τ=ai

qκ(T )(sτ )Φi(aiτ , a−iτ , sτ ).

Step 6: Minimize a proper norm of the distance between the nonparametric
estimate of Π̂i(ai, s) and the semiparametric estimate of Π̂i(ai, s; θ) in the above
step 4:

θ̂ = min
θ
||Π̂(a, s)− Π̂(a, s; θ),∀i = 1, . . . , n,∀ai = 0, . . . ,K||.

where Π̂T (s) and Π̂T (s, θ) are the vectors of collections Π̂i(ai, s) and Π̂i(ai, s; θ)
for all i = 1, . . . , n and ai = 0, . . . ,K. As before, we can use the sample weights
to specify the norms and use smooth norms so that θ̂ is asymptotically defined
by the solution to a set of moment conditions with a dim(θ) × (n × (K + 1))
dimension instrument matrix A(s):

1
T

T∑
t=1

A(st)
[
Π̂T (st)− Π̂T (st; θ)

]
.

For example, a semiparametric nonlinear least square estimator can be defined
as

θ̂ = arg min
1
T

T∑
t=1

[
Π̂T (st)− Π̂T (st; θ)

]2
.

This will be asymptotically equivalent to the “IV” estimator using the instru-
ment matrix:

A(st) =
∂ΠT (st; θ0)

∂θ
.

In particular, with the linear in parameter specification of the per period utility
function, the estimator for θ̂ can be computed analytically:

θ̂ =

(
1
T

T∑
t=1

A(st)Φ̂T (st)

)−1

1
T

T∑
t=1

A(st)Π̂T (st).

where Φ̂T (st) is the vector of Φ̂i(ai, st) constructed in (41).
Practical inference methods and the asymptotic distribution theory can be

written similar to sections 3 and 4. Since they are completely analogous, we
do not reproduce the results here. By choosing the instrument matrix A(st)
efficiently, we can also show that this estimator is as efficient as the previous
one we studied in sections 2, 3 and 4.
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6 Conclusion

In this paper, we have proposed a semiparametric estimator for dynamic games
of incomplete information. The estimator is influenced by earlier work by Pakes,
Ostrovsky and Berry (2003), Aguirregabiria and Mira (2002), Pesendorfer and
Schmidt-Dengler (2003) and Bajari, Benkard and Levin (2003). However, unlike
the earlier literature, the econometric approach that we take exploits the modern
theory of semiparametric estimation, particularly sieve estimation (see Ai and
Chen (2003) and Chen (2005)) and the theoretical results of Newey (1994).
Therefore, we are able to estimate models that allow for a nonparametric first
step and continuous state variables. Also, our results clarify the identification
of these models for the case of continuous state variables. In general these
models are underidentified, however, with appropriate restrictions on payoffs,
identification is possible.
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