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Abstract. This paper presents a new estimator for the mixed proportional

hazard model that allows for a nonparametric baseline hazard and time-varying

regressors. In particular, this paper allows for discrete measurement of the du-

rations as happens often in practice. The integrated baseline hazard and all pa-

rameters are estimated at regular rate,
√
N, where N is the number of individu-

als.
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Preliminary and Incomplete

1. Introduction

The estimation of duration models has been the subject of significant research in

econometrics since the late 1970s. Since Lancaster (1979), it has been recognized that it

is important to account for unobserved heterogeneity in models for duration data. Failure

to account for unobserved heterogeneity causes the estimated hazard rate to decrease

more with the duration than the hazard rate of a randomly selected member of the

population. Moreover, the estimated proportional effect of explanatory variables on the

population hazard rate is smaller in absolute value than that on the hazard rate of the

average population member and decreases with the duration. To account for unobserved

heterogeneity Lancaster proposed a parametric Mixed Proportional Hazard (MPH) model,

a generalization of Cox’s (1972) Proportional Hazard model, that specifies the hazard rate
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as the product of a regression function that captures the effect of observed explanatory

variables, a base-line hazard that captures variation in the hazard over the spell, and a

random variable that accounts for the omitted heterogeneity.

Lancaster’s MPH model was fully parametric, as opposed to Cox’s semi-parametric

approach, and from the outset questions were raised on the role of functional form and

parametric assumptions in the distinction between unobserved heterogeneity and dura-

tion dependence1. This question was resolved by Elbers and Ridder (1982) who showed

that the MPH model is semi-parametrically identified if there is minimal variation in

the regression function. A single indicator variable in the regression function suffices to

recover the regression function, the base-line hazard, and the distribution of the unob-

served component, provided that this distribution does not depend on the explanatory

variables. Semi-parametric identification means that semi-parametric estimation is feasi-

ble, and a number of semi-parametric estimators for the MPH model have been proposed

that progressively relaxed the parametric restrictions.

Nielsen et al., (1992) showed that the Partial Likelihood estimator of Cox (1972) can be

generalized to the MPH model with Gamma distributed unobserved heterogeneity. Their

estimator is semi-parametric because it uses parametric specifications of the regression

function and the distribution of the unobserved heterogeneity. The estimator requires

numerical integration of the order of the sample size, which further limits its usefulness

and makes it impractical for most situation in econometrics. Heckman and Singer (1984)

considered the non-parametric maximum likelihood estimator of the MPH model with a

parametric baseline hazard and regression function. Using results of Kiefer and Wolfowitz

(1956), they approximate the unobserved heterogeneity with a discrete mixture. The

rate of convergence and the asymptotic distribution of this estimator are not known.

Another estimator that does not require the specification of the unobserved heterogeneity

distribution was suggested by Honoré (1990). This estimator assumes a Weibull baseline

hazard and only uses very short durations to estimate the Weibull parameter. In the

limit, this estimator only uses arbitrarily short durations. Since only a small fraction of

1Heckman (1991) gives an overview of attempts to make this distinction in duration and dynamic
panel data models.
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the durations is arbitrarily short, this estimator converges at a slow rate. Van den Berg

(2001) discusses other disadvantages of focussing only on arbitrarily durations.

Han and Hausman (1990) and Meyer (1990) proposes an estimator that assumes that

the baseline hazard is piecewise-constant, to permit flexibility, and that the heterogeneity

has a gamma distribution. We present simulations and a theoretical result that show that

using a nonparametric estimator of the baseline hazard with gamma heterogeneity yields

inconsistent estimates for all parameters and functions if the true mixing distribution is

not a gamma, which limits the usefulness of the Han-Hausman-Meyer approach. Thus,

we find it important to specify a model that does not require a parametric specification

of the unobserved heterogeneity.

Horowitz (1999) was the first to propose an estimator that estimates both the baseline

hazard and the distribution of the unobserved heterogeneity non-parametrically. His

estimator is an adaptation of the semi-parametric estimator for a transformation model

that he introduced in Horowitz (1996). In particular, if the regressors are constant over the

duration, the MPHmodel has a transformation model representation with the logarithm of

the integrated baseline hazard as the dependent variable and a random error that is equal

to the logarithm of a log standard exponential minus the logarithm of a positive random

variable. In the transformation model the regression coefficients are identified only up to

scale. As shown by Ridder (1990) the scale parameter is identified in the MPH model if

the unobserved heterogeneity has a finite mean. Horowitz (1999) suggests an estimator of

the scale parameter that is similar to Honoré’s (1990) estimator of the Weibull parameter

and consistent if the finite mean assumption holds so that his approach allows estimation

of the regression coefficients (not just up to scale). However, the Horowitz approach only

permits estimation of the regression coefficients at a slow rate of convergence and it is not

N−1/2 consistent, where N is the sample size In practice, there may be three difficulties

with the Horowitz (1999) MPH estimator. First, the durations need to be measured at

a continuous scale in order to estimate the transformation model. This condition often

does not hold in economic data, e.g. unemployment duration data as discussed in Han

and Hausman (1990). Second, like the transformation model, the MPH estimator does
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not allow for time-varying regressors. Finally, the estimator relies on arbitrarily short

durations to estimate the scale parameter and, therefore, converges very slowly. Thus,

the regression coefficient estimates, which are often of primary interest, are often not

estimated very precisely.

In this paper, we derive a new estimator for the mixed proportional hazard model

(with heterogeneity) that allows for a nonparametric baseline hazard and time-varying re-

gressors. No parametric specification of the heterogeneity distribution nor non-parametric

estimation of the heterogeneity distribution is necessary. Intuitively, we condition out the

heterogeneity distribution, which makes it unnecessary to estimate it. Thus, we eliminate

the problems that arise with the Lancaster (1979) approach to MPH models. In our new

model the baseline hazard rate is nonparametric and the estimator of the baseline hazard

rate converges at the regular rate, N−1/2, where N is the sample size. This convergence

rate is the same rate as for a duration model without heterogeneity. The regressor para-

meters also converge at the regular rate. A nice feature of the new estimator is that it

allows the durations to be measured on a finite set of points. Such discrete measurement

of durations is important in economics; for example, unemployment is often measured

in weeks. In the case of discrete duration measurements, the estimator of the baseline

hazard only converges at this set of points, as would be expected.

It may be argued that the bias in the estimates of the regression coefficients is small,

if the estimates of the MPH model indicate that there is no significant unobserved het-

erogeneity. The problem with this argument is that estimates of the heterogeneity distri-

bution are usually not very accurate. Given the results in Horowitz (1999) this finding

should not come as a surprise. The simulation results in Baker and Melino (2000) show

that it is empirically difficult to find evidence of unobserved heterogeneity, in particular

if one chooses a flexible parametric representation of the baseline hazard. However, Han-

Hausman (1990) and applications of their approach have found significant heterogeneity

using a flexible approach to the baseline hazard. Bijwaard and Ridder (2000) find that the

bias in the regression parameters is largely independent of the specification of the baseline

hazard. Hence, failure to find significant unobserved heterogeneity should not lead to the
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conclusion that the bias due to correlation of the regressors and the unobservables that

affect the hazard is small.

Because it is empirically difficult to recover the distribution of the unobserved hetero-

geneity, estimators that rely on estimation of this distribution may be unreliable. There-

fore, we avoid estimating the unobserved heterogeneity distribution. Nevertheless, we

can identify and estimate the regression parameters and the integrated baseline hazard.

We find the removal of the requirement to estimate the heterogeneity distribution a major

advantage of our approach. Our estimator is related to the estimator by Han (1987). Han

derives an estimator, up to scale, of the regression coefficients. However, Han’s estimator

cannot handle time-varying regressors and we estimate the regression coefficients when

time-varying regressors are present as well as the scale of the regression coefficients. In

particular, by estimating the regression coefficients up to scale, each regression coefficient

can be interpreted as the elasticity of the hazard with respect to its regressor. Simi-

larly, Chen’s (2002) estimator of the transformation model cannot handle time-varying

regressions and only gives the transformation function up to scale. While Horowitz’s

(1999) estimator is not subject to the limitation of estimating the regression coefficients

up to scale only, it converges slowly and it is not N−1/2 consistent which makes standard

inferences techniques inapplicable unless N is extremely large.

This paper is organized as follows. Section 2 discusses the mixed proportional hazard

model (with heterogeneity) and presents our estimator. Section 3 shows that our esti-

mator converges at the regular rate and is asymptotically normally distributed. Section

4 shows that misspecifying the heterogeneity yields inconsistent estimates, even if the

baseline hazard is nonparametric. Section 5 presents and empirical example and section

6 concludes.

2. Mixed Proportional Hazard Model

Lancaster (1979) introduced the mixed proportional hazard model in which the hazard is

a function of a regressor X, unobserved heterogeneity v, and a function of time λ(t),

θ(t | X, v) = veXβλ(t). (1)
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The function λ(t) is often referred to as the baseline hazard. The popularity of the mixed

proportional hazard model is partly due to the fact that it nests two alternative explana-

tions for the hazard θ(t | X, v) to be decreasing with time. In particular, estimating the

mixed proportional hazard model gives the relative importance of the heterogeneity, v,

and genuine duration dependence, λ(t), see Lancaster (1990) and Van den Berg (2002) for

overviews. Lancaster (1979) uses functional form assumptions on λ(t) and distributional

assumptions on v to identify the model. Examples by Lancaster and Nickell (1981) and

Heckman and Singer (1984a), however, show the sensitivity to these functional form and

distributional assumptions. We avoid theses functional form and distributional assump-

tions and consider the mixed proportional hazard model with time-varying regressors,

θ(t|x(t), v) = vex(t)βλ(t) (2)

where x(t) is a set of regressors that can vary with time, v denotes the heterogeneity and

is independent of x(t) and λ(t) denotes the baseline hazard. We somewhat abuse notation

and also use x(t) to denote the sequence of the regressor from s = 0 to s = t. The mixed

proportional hazard model of equation (2) implies the following survival probabilities,

P (T ≥ t|x(t), v) = F̄ (t|x(t), v) = exp(−v
Z t

0

ex(s)βλ(s)ds) and

P (T ≥ t|x(t)) = Ev{F̄ (t|x(t), v)} = Ev{exp(−v
Z t

0

ex(s)βλ(s)ds)}.

In applied work, duration are measured discretely and to fix ideas we assume that the

duration are measured on a weekly scale. We also assume for now that the regressors

could only change at the beginning of the week. Let the regressor xi1 denote the vector

of regressors of individual i during week 1, xi2 the regressors of individual i during week

two etc. We now can write equation (2) as follows,

P (T ≥ t|x(t)) = Ev{F̄ (t|x(t), v)} = Ev{exp(−v
tX

s=1

exsβ+δs)},

where t is a natural number, δs = ln{
R s
s−1 λ(s)ds} and we normalize δ1 = 0. This

specification is similar to Han-Hausman (1990) who specify δs in a similar manner, but

who specify and estimate v parametrically, a requirement we remove in this paper.

Kendall (1938) proposes a statistic for rank correlation. If we are interested in the
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rank correlation between T and the index Xβ, then Kendall’s (1938) rank correlation has

the following form,

Q(β) =
1

N(N − 1)
X
i

X
j

1{Ti > Tj}1{Xiβ > Xjβ}.

Han (1987) proposes an estimator that maximizes Q(β), the rank correlation between

T and the index Xβ. Under certain assumptions, including that the expectation of T

depends only on X through the index Xβ, maximizing Q(β) yields an estimate for β up

to scale, excluding the intercept which cannot be estimated.2.

However, Kendall’s (1938) rank correlation cannot be used for the case of time-varying

regressors since it is unclear which regressor one should use. We therefore propose the

following modification of the rank correlation. In particular, in our model, the expectation

does depend on an index, although it has a more complicated form. Define Zi(l;β, δ) =Pl
s=1 e

Xisβ+δs . We propose minimizing the following objective function,

Q(β, δ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

(3)

Thus, Zi(l;β, δ) is the index during the lth period. The intuition for this objective function

is the following. We are comparing two different individuals as the Han objective function

Q(β). However, we are now also taking account of the outcome in each period through

the parameters for the integrated hazard function, δ. The probability that individual i

survives period l is larger than the probability that individual j survives period k if and

only if Zi(l;β, δ) < Zj(k;β, δ). Vice versa if Zi(l;β,δ) > Zj(k;β, δ). Thus, we use the

outcomes for individuals i and j together with these probabilities to yield an objective

function that permits identification of the parameters β and δ, without the restriction of

only up to scale as in the Han approach. In particular,

E{Q(β, δ)} = 1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[Ev{e−vZ,i(l;β0,δ0)−e−vZj(k;β0,δ0)}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

We now use a two period outcome to illustrate the necessary conditions for identification.

Note that our approach focuses on the probability than an individual i survives period
2For this reason, Han (1987) estimates β/||β||; alternatively, the coefficient of the first regressor could

be normalized to be one in absolute value, i.e. |β1| = 1.
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l (measured from time 0) which permits a convenient treatment of the heterogeneity in

comparison with the ”traditional” approach that focuses on the hazard function. By only

using comparisons measured from time 0 we are able to ”condition out” the heterogeneity

distribution. The more traditional hazard approach considers the probability of survival

conditional on individual i surviving up to period l which requires an explicit treatment

of the heterogeneity distribution.

The definition of Q(β, δ) that is given above contains a double sum so that the number

of computational operations for calculating Q(β, δ) is N2 (note that L and K are fixed).

In order to reduce the number of computational operations to be of the order N lnN , we

use the rank operator. In particular, let dr = 1{T ≥ r} for the vector T of length N. Let

d be constructed by stacking the vectors dr vertically for all r = 1, ...,K. Now both d and

Z are of dimension NK × 1. If a regressor is continuously distributed conditional on the

other regressors, then we can re-write Q(β, δ) using these vectors and the rank function,

Q(β, δ) =
1

N(N − 1)

NKX
j=1

d(j)[2Rank(Z(j))−NK].

The computational burden to calculate3 Q(β, δ) is proportional to N ln(N).

Identification, two period model. In order to develop intuition, we first consider a

two period model in which we estimate the scale parameter. Suppose we observe a group

of N unemployed individuals at the beginning of their unemployment, at the end of the

first period and at the end of the second period. In particular, let the data generating

process be given by equation (2), let x be exogenous and let v be independent of x. Let

dit = 1{Ti ≥ t}. Let x be a scalar and suppose we observe for each i, {di1, di2, xi1, xi2}.

Thus, xi1, xi2 are the regressors in the first and second period. Note that

Edit = Eve
−v t

s=1 e
xisβ+δs where δ1 is normalized to be zero.

Also note that

Edi2 ≥ Edj1

3 Suppose we have an ordered vector of length N − 1; calculating the rank of a new, N th observation
is ln(N). We can see this by observing that having 2(N − 1) elements to begin with would require us to
compare the ‘new’ observation to the median of the 2(N − 1) elements; we are then back to comparing
the new element to N −1 observation. Thus, the extra cost is ln(N). The summation then yields the rate
N ln(N).
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is equivalent to

exi1β + exi2β+δ2 ≤ exj1β

where β and δ2 denote the true parameter values. Let A denote the set of all pairs i, j for

which the last equation holds. That is,

A = {i, j : exi1β + exi2β+δ2 ≤ exj1β}.

Let A0 denote the following set defined for the parameters (β0, δ02)

A0 = {i, j : exi1β0 + exi2β
0+δ02 ≤ exj1β

0}.

We now give conditions under which A = A0 implies {β0 = β, δ02 = δ2}.

A1 = {i, j : xi1 = xi2, e
xi1β(1 + eδ2) ≤ exj1β}

= {i, j : xi1 = xi2, e
xi1β+cβ ≤ exj1β}

where ecβ = (1 + eδ2). Thus,

A1 = {i, j : xi1 = xi2, c ≤ xj1 − xi1}.

Similarly,

A01 = {i, j : xi1 = xi2, e
xi1β(1 + eδ2) ≤ exj1β}

= {i, j : xi1 = xi2, c
0 ≤ xj1 − xi1}.

For these two sets to coincide, A1 = A01, for any distribution of the regressors, we need

c0 = c. Thus, c is identified if the density of the regressor is positive in an arbitrarily

small neighborhood around xi1 and xi2 because otherwise if we do not have c0 = c, the

inequality can be reversed for a small change in say xj1. Moreover, for x̃i1 = x̃i2 we have

Edi2 = Edj1 if and only if x̃j1 − x̃i1 = c. While this explanation is only local, it leads to

a proof of global identification because of the global convexity property of exp(xikβ+ δ0k)

as we now demonstrate.

Without loss of generality, let β > 0 (if β < 0, multiply x by -1). Define

H(β) = exi1β + exi2β+δ2 − exj1β. (4)



A Semi-Parametric Duration Model with Heterogeneity that Does Need to be Estimated 10

For the individuals on the boundary of the set A, we have H(β) = 0. To make this bound-

ary relevant, we assume that the density of the regressor is positive in a neighborhood of

some {xi1, xi2, xj1} with H(β) = 0. We now show that if H(β0) = 0 then H(β) = 0 is

uniquely solved for β = β0. Using e
δ2 = ecβ − 1 = e(x̃j1−x̃i1)β − 1 yields

H(β) = exi1β + exi2β+(x̃j1−x̃i1)β − exi2β − exj1β

= exi1β{1 + e(xi2−xi1+x̃j1−x̃i1)β − e(xi2−xi1)β − e(xj1−xi1)β}.

Define

H∗(β) = 1 + e(xi2−xi1+x̃j1−x̃i1)β − e(xi2−xi1)β − e(xj1−xi1)β .

Consider the derivative of H∗(β) with respect to β,

∂H∗(β)

∂β
= (xi2−xi1+x̃j1−x̃i1)e(xi2−xi1+x̃j1−x̃i1)β−(xi2−xi1)e(xi2−xi1)β−(xj1−xi1)e(xj1−xi1)β.

Suppose that, for some individual on the boundary of set A, we have xi2 > xi1. Then

(xj1 − xi1) > (x̃j1 − x̃i1). Thus,

lim
β↓0

∂H∗(β)

∂β
= (xi2 − xi1 + x̃j1 − x̃i1)− (xi2 − xi1)− (xj1 − xi1)

= (x̃j1 − x̃i1)− (xj1 − xi1) < 0.

Also note that (xi2 − xi1 + x̃j1 − x̃i1) > (xi2 − xi1) since x̃j1 > x̃i1. Moreover, we have

x̃j1− x̃i1 = c and xj1−xi2 < x̃j1− x̃i1 since xi2 > xi1. Therefore, (xi2−xi1+ x̃j1− x̃i1) >

(xj1 − xi1), so that
∂H∗(β)
∂β > 0 for large β. Consider the second derivative,

∂2H∗(β)

(∂β)2
= (xi2−xi1+x̃j1−x̃i1)2e(xi2−xi1+x̃j1−x̃i1)β−(xi2−xi1)2e(xi2−xi1)β−(xj1−xi1)2e(xj1−xi1)β

We continue to assume that xi2 > xi1 for some individual. Note that this implies that

(1). e(xi2−xi1+x̃j1−x̃i1)β > e(xi2−xi1)β and e(xi2−xi1+x̃j1−x̃i1)β > e(xj1−xi1)β .

(2). (xi2− xi1+ x̃j1− x̃i1)
2− (xi2− xi1)

2− (x̃j1− x̃i1)
2 = 2(xi2− xi1)(x̃j1− x̃i1) > 0.

(1)-(2) imply that ∂2H∗(β)
(∂β)2 > 0.

Thus, H∗(β) first decreases and then increases in β so that H∗(β) = 0 is uniquely solved

for β = β0. Similar reasoning applies if xi2 < xi1 so that the substantive condition is

that P (xi1 6= xi2) > 0 plus the continuity assumption of the regressor around some

points. Identification of {β, δ} is equivalent to identification of {β, c}. Note that we have
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identification of β rather than identification only up to an unknown scale coefficient, which

is the usual outcome of most previous approaches to the problem. Also, note that by

focussing on survival from the beginning of the sample, we have eliminated the requirement

to specify the heterogeneity distribution since no survival bias (dynamic sample selection)

occurs in our sample comparisons.

Our identification is similar to the nonconstructive identification result of Elbers and

Ridder (1982) in the sense that we also assume a continuously distributed regressor.

However, our identification results differs in two important ways. First, our identification

proof is constructive in the sense that it suggests an estimator. Second, our identification

result does not rely on an iterative procedure. An iterative procedure typically precludes

N1/2 consistency4.

3. Large Sample Properties

In this section, we formalize the example of the last section and derive large sample

properties of our estimator. For the two period model, we assume the following.

Assumption 1 (MPH): Let (i) {T, v, x} be a random sample where x = {x1, x2} and

x1, x2 are scalars, (ii) v and x are independent, x is exogenous (iii) Pr(T ≥ 1|x1, x2) =

Eve
−vex1β and Pr(T ≥ 2|x1, x2) = Eve

−v{ex1β+ex2β+δ2}, (iv) let {β, δ2} ∈ Θ, which is

compact, (v) ∃ a pair {x1, x01, x02}, x01 6= x02, such that Pr(T ≥ 1|x1, x2) = Pr(T ≥

2|x01, x02) where the density of the regressor is positive in an arbitrarily small neighborhood

around x1 or {x01, x02}, (vi) ∃ a pair {x1, x01, x02}, x01 = x02, such that Pr(T ≥ 1|x1, x2) =

Pr(T ≥ 2|x01, x02) where the density of the regressor is positive in an arbitrarily small

neighborhood around x1 or x01.

Assumption 1 (iii) holds if the data generating process is given by equation (2).

Theorem 1:

Let assumption 1 hold. Let {β̂, δ̂2} = argmin
β,δ2

Q(β, δ2) where

Q(β, δ) =
1

N(N − 1)
X
i

X
j

2X
l=1

2X
l=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l) < Zj(k)}.

4 Indeed, Hahn (1994) shows that the identification result of Elbers and Ridder (1982) holds for singular
information matrices, so that no

√
N estimator exists.
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Then

{β̂, δ̂2}→
p
{β, δ2}.

Proof: Define

Q0(β, δ) = E{QN (β, δ)}

= E[E{QN (β, δ)|Z}]

= E[

P
i

N

LX
l=1

Ev{e−vZi(l)|Zi(l)}
KX
k=1

[2 ∗ FZ(Zi(l))− 1]]

where FZ is the cdf of Zi(l) for l = 1, ...,K and i = 1, ...,N. The function Q0(β, δ) is

continuous and maximized at the true value of the parameters. The function Q(β, δ2) is

stochastically equicontinuous and the conditions of Newey and McFadden (1994, lemma

2.8) are satisfied so that Q(β, δ2) converges uniformly to EQ(β, δ2). Moreover, Θ is as-

sumed to be compact and the data are i.i.d., so that consistency follow from Newey and

McFadden (1994, theorem 1). Note that these arguments do not require that there is

unoberved heterogeneity; they still hold if all individuals have the same value of v.

Suppose that we observe {Ti, xi} where Ti is a natural number and Ti ∈ [0,K], K > 1.

For example, we observe unemployment duration, which is measured in weeks, and want

to estimate the integrated baseline hazard at the end of each week. In that case we need

to strengthen assumption 1 in order to estimate {δ3, ..., δK}. Let xl denote {x1, x2, ..., xl},

which are all scalars.

Assumption 1’ (MPH): Let (i) {T, v, x} be a random sample x = {x1, ..., xK}, x1, ..., xK

are scalars, (ii) v and x are independent, x is exogenous (iii) Pr(T ≥ l|x) = Eve
−v l

s=1 e
xsβ+δs

for l = 1, ...,K, (iv) δ1 is normalized to be zero, let {β, δ2} ∈ Θ, which is compact; (v)

let G be a K by K matrix and let the element Glk be equal to one if ∃ a pair {xl, xk}

such that Pr(T ≥ l|xl) = Pr(T ≥ k|xk) where the density of the regressor is positive

in an arbitrarily small neighborhood around xl or xk and let Glk be zero otherwise; let

the matrix G represent a connected graph (vi) ∃ a pair of regressors, {xr, xs, }, r 6= s,

such that Pr(T ≥ r|xr) = Pr(T ≥ s|xs) where the density of the regressor is positive

in an arbitrarily small neighborhood around xr or xs [moreover, let x1 = x2 = ...xr or

x1 = x2 = ... = xs].
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Condition (i)-(v) ensure identification up to scale. Condition (i)-(vi) ensures complete

identification5. We hope to remove the condition between square brackets, [..], in a future

version. Similar to theorem 1, {β̂, δ̂2, ..., δ̂K} converges to {β, δ2, ..., δK} under assumption

1’.

Suppose that the regressor is a vector instead of a scalar. The easiest way to prove

identification for that case is by noting that one can estimate the regressor up to scale

using only observations of the first period. In particular, the parameter vector could be

estimated up to scale using the maximum rank correlation estimator (MRC). Rank cor-

relation was introduced by Kendall (1938) and Han (1987) proposed the MRC estimator.

In order to estimate β up to scale, we assume the following.

Assumption 2 (MRC): Let (i) β be contained in a compact subset eB of Rq, (ii)

Pr(T ≥ l|x) = Eve
−v l

s=1 e
xsβ+δs (iii) {T, v, x} be a random sample (iv) the support of

the distribution of x, Sx, is not contained in any proper linear subspace of Rq, (v) β1 6= 0,

and for almost every x̃i1 ≡ (xi1,2, ..., xi1,q)0, the distribution of xi1,1 conditional on x̃i1

has everywhere positive density with respect to the Lesbesgue measure (vi) v and x are

independent.

Assumption 2 is sufficient to estimate β up to scale. In particular, under assumption

2, β can be estimated up to scale using

Q0(β, δ) =
1

N(N − 1)
X
i

X
j

[1{Ti ≥ 1}− 1{Tj ≥ 1}]1{Zi(1) < Zj(1)}. (5)

Assumption 2 can be replaced by any assumption that ensures that β is consistently

estimated using the following objective function,

Q00(β, δ) =
1

N(N − 1)
X
i

X
j

KX
l=1

[1{Ti ≥ l}− 1{Tj ≥ l}]1{Zi(l) < Zj(l)}. (6)

In particular, Q00(β, δ) uses K restrictions and the resulting estimator for β is no longer

an MRC estimator and uses more data then just applying the MRC estimator to the first

5Matrices with only zeros and ones can be represented by graphs; a connected graph means that,
informally speaking, you can ‘travel’ from one point to any other point but not necessarily directly.
Condition (v) is considerably weaker than a condition that a regressor has a positive density on the whole
real line.
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period. Combining the last two assumption ensures consistency of {β̂, δ̂2, ..., δ̂K}.Thus,

instead of estimation of β up to scale, the objective function Q(β, δ) permits estimation

of the β, including the scale.

Theorem 2 (Consistency):

Let assumption 1-2 hold. Then

{β̂, δ̂}→
p
{β, δ}.

3.1. Asymptotic Distribution. In this subsection,we derive the asymptotic dis-

tribution of our estimator. As before, we use the following objective function, where

θ = {β, δ},

QN (θ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l) < Zj(k)}

=
1

N(N − 1)
X
i

X
j

LX
l=1

[1{Ti ≥ l}
KX
l=1

1{Zi(l) < Zj(k)}

− 1

N(N − 1)
X
i

X
j

KX
l=1

1{Tj ≥ k}
LX
l=1

1{Zi(l) < Zj(k)}

=

P
i

N

LX
l=1

1{Ti ≥ l}
P

j

N − 1

KX
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}]

=

P
i

N

LX
l=1

1{Ti ≥ l}
P

j

N − 1

KX
k=1

[2 ∗ 1{Zi(l) < Zj(k)}− 1]

=

P
i

N

LX
l=1

1{Ti ≥ l}K[1− 2F̂Z{Zi(l)}]. (7)

where F̂Z{Zi(l)} = j

N−1
K
k=1

K 1{Zi(l) < Zj(k)}.Note thatE[F̂Z{Zi(l)}|Zi(l)] = FZ{Zi(l)}

where FZ is the cdf of Zi(l) for l = 1, ...,K and i = 1, ...,N. Define H to be the second

derivative of Q0(β, δ) = E{QN (β, δ)}, evaluated at θ0, i.e.

H = ∇θθQ0(θ0).

We assume the following.

Assumption 3 (Interior): Let θ0 = (β0, δ0) ∈ Interior(Θ), where Θ is compact.

Let fZ{Zi(l)} denote the density of Zi(l).
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Assumption 4: Let (i) Q0(θ) be twice continuously differentiable at θ0 with nonsingular

derivative H; (ii) let fZ(z) be differentiable and let |fZ(z)∂Z∂θ | < M for all θ,|dfZ{z}dz | < M

for all z and for some M <∞.

Assumption 3 is a standard regularity condition and supports an argument based on a

Taylor expansion6.

Theorem 3 (Asymptotic Normality)

Let assumption 1’, 2-4 hold. Then

√
N{θ̂ − θ}→

d
N(0,H−1ΩH−1)

where Ω = E[DN (θ0)DN (θ0)
0] and

DN (θ) = −2
P

i√
N
[
LX
l=1

1{Ti ≥ l}fZ{Zi(l)}
∂Zi(l)

∂θ
−E[

LX
l=1

1{Ti ≥ l}fZ{Zi(l)}
∂Zi(l)

∂θ
]].

Proof:

DN = −2
P

i

N

LX
l=1

[1{Ti ≥ l}−E(1{Ti ≥ l}|Xi)]
KX
k=1

fZ{Zi(l)}
∂Zi(l)

∂θ

−2[E(1{Ti ≥ l}|Xi)]
KX
k=1

fZ{Zi(l)}
∂Zi(l)

∂θ
−E[

P
i

N

LX
l=1

1{Ti ≥ l}
KX
k=1

fZ{Zi(l)}
∂Zi(l)

∂θ
]].

The assumption |fZ(z)∂Z∂θ | < M and the random sample assumption of assumption 1

implies that
√
NDN (θ) converges to a normal distribution with variance-covariance Ω =

E[DN (θ0)DN (θ0)
0].

Note that

QN (θ)−QN (θ0) = 2K

P
i

N

LX
l=1

1{Ti ≥ l}[F̂ (Z0,i(l))− F̂ (Zi(l))]

Q0(θ)−Q0(θ0) = 2K ∗EX [

P
i

N

LX
l=1

E{1(Ti ≥ l)|Xi}[FZ{Z0,i(l)}− FZ{Zi(l)}]].

Let 1 − G(w) denote the cumulative distribution function of the logistic distribution,

G(w) = 1
1+exp(w) , and let G

0(w) = − exp(w)
{1+exp(w)}2 . Note that G(u/h)− 1(u > 0) decreases

exponentially in 1/h for all u 6= 0.
6We cannot immediately apply Sherman (1993) since he requires that QN (θ0)− Q0(θ0) = Op(N−1),

an assumption that is violated for our objective function.
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Let F̃ (.) denote the smoothed F̂ (.),

F̂ (Zi(l)) =
X
i

KX
k=1

G{Zi(l)− Zj(k)

h
}. (8)

With probability one, Zi(l)− Zj(k) 6= 0. Consider u and u0 and let ∆ = u− u0.

G(u/h) = G(u0/h+∆/h) =
1

1 + exp(u0/h+∆/h)
.

G(u/h)−G(u0/h) =
1

1 + exp(u0/h+∆/h)
− 1

1 + exp(u0/h)

=
exp(u0/h)− exp(u0/h+∆/h)

{1 + exp(u0/h)}{1 + exp(u0/h+∆/h)}

=
exp(u0/h)

{1 + exp(u0/h)}
1− exp(∆/h)

{1 + exp(u0/h+∆/h)}

Thus, for ∆ →p 0 for N → ∞ and h ∝ Nδ, δ < 0, we have supu0,u0 6=0 |
√
N

|∆| [G(u/h) −

G(u0/h+∆/h)]| →
p
0. Define

qN (θ)− qN (θ0) = 2

P
i

N

LX
l=1

1{Ti ≥ l}
KX
k=1

{F̃ (Z0,i(l))− F̃ (Zi(l))}. (9)

The above reasoning implies that {QN (θ)−QN (θ0)}/K is closely approximated by qN (θ)−

qN (θ0). In particular,

sup
θ∈Θ

|
√
N

||θ − θ0||
[
QN (θ)−QN (θ0)

K
− {qN (θ)− qN (θ0)}]|→

p
0.

Let q0(θ) = E{qN (θ)}, and define

rN(θ) = qN (θ)− qN (θ0)− {q0(θ)− q0(θ0)}

Note that rN (θ) is continuously differentiable. A Taylor approximation around θ = θ0

yields

rN (θ) = {
∂qN (θ)

∂θ
|θ=θ̄ −

∂q0(θ)

∂θ
|θ=θ̄}(θ − θ0)
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for some intermediate value θ̄ ∈ [θ, θ0]. For h→ 0,

rN (θ) = {∂qN (θ)
∂θ

|θ=θ̄ −
∂q0(θ)

∂θ
|θ=θ̄}(θ − θ0)

= 2

P
i

N

LX
l=1

1{Ti ≥ l}{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2E[

P
i

N

LX
l=1

1{Ti ≥ l}{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

= 2

P
i

N

LX
l=1

[1{Ti ≥ l}−E(1{Ti ≥ l}|X)]{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2

P
i

N

LX
l=1

[E(1{Ti ≥ l}|X)]{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}

− E[E(1{Ti ≥ l}|X){ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}]]|θ=θ̄(θ − θ0)

= 2

P
i

N

LX
l=1

[1{Ti ≥ l}−E(1{Ti ≥ l}|X)]{fZ(Zi(l))
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2

P
i

N

LX
l=1

[E(1{Ti ≥ l}|X){fZ(Zi(l))
∂Zi(θ)

∂θ
}

− E[E(1{Ti ≥ l}|X){fZ(Zi(l))
∂Zi(θ)

∂θ
}]]|θ=θ̄(θ − θ0) + op(

||θ − θ0||√
N

)

= DN + op(
||θ − θ0||√

N
). (10)

The continuous differentiability of rN (θ) with respect to θ implies that this convergence

is uniform. Thus, [QN (θ)−QN(θ0)− {Q0(θ)−Q0(θ0)}]/K can be approximated by rN

and the continuously differentiable rN can be approximated by DN (θ − θ0). Define

RN (θ) =
√
N [QN (θ)−QN (θ0)−DN (θ − θ0) + {Q0(θ)−Q0(θ0)}].

The above reasoning implies that, for any δN → 0, sup||θ−θN ||≤δN |RN (θ)/[1 +
√
N ||θ −

θN ||]|→
p
0. Thus, assumption (v) of Newey and McFadden (1994, theorem 7.1) is satisfied.

Q.E.D.

The matrix Ω = E[DN (θ0)DN (θ0)
0] can be estimated using a sample analogue where

fZ{Zi(l)} can be estimated using a second order kernel that omits observation i. In order

to estimate H let ei denote the ith unit vector, εN a small positive constant that depends

on the sample size, and Ĥ the matrix with i, j th element

Ĥij =
1

4ε2N
[Q̂(θ̂+eiεN+ejεN )−Q̂(θ̂−eiεN+ejεN )−Q̂(θ̂+eiεN−ejεN )+Q̂(θ̂−eiεN−ejεN )].
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Lemma (Estimating H)

Let the conditions of theorem 3 be satisfied. Let εN → 0 and εN
√
N →∞. Then Ĥ →

p
H.

Proof: All conditions of Newey and McFadden theorem 7.4 are satisfied and the result

follows.

Theorem 3 requires the regressors to be exogenous. Sometimes a regressor can qualify

as an exogenous regressor, even if its value depend on survival up to a certain point.

For example, a treatment that is given with probability ph to individuals who survived h

periods seems to be endogenous since it depends on survival. However, in this duration

framework, we can relabel the treatment as if it is given at the beginning of the spell

with probability ph and consider the randomly assigned treatment exogenous. In the next

section, we consider endogenous regressors, such as randomly assigned treatment with

partial compliance.

Our estimates of {δ1, ..., δK} imply an estimate for the the integrated hazard. In

particular, suppose that we measure survival at {0, 1, ...,K}, e.g. weekly unemployment

data, then dΛ(t) = s=tX
s=1

exp(δ̂s) where t ∈ {0, 1, ...,K}.

We define the average hazard on the interval [a, b) to be the value λ for which
R b
a
λ(s)ds =

Λ(b)− Λ(a). This gives an expression for the average hazard,

dλ(s) = exp(δ̂t) for t− 1 < s < t.

If the duration are measured on a very fine grid, then one could also approximate the

hazard by numerically differentiating the integrated hazard dΛ(t). Thus, we can estimate
the integrated hazard rate at each point and also approximate the hazard rate at each

point. This differs considerably from Chen (2002), who only estimates the logarithm of

the integrated hazard up to a unknown scalar, so that we do not know whether the hazard

is increasing or decreasing.

The last theorem requires the regressors to be exogenous. Sometimes a regressor can

qualify as an exogenous regressor, even if its value depend on survival up to a certain
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point. For example, a treatment that is given with probability ph to individuals who

survived h periods seems to be endogenous since it depends on survival. However, in this

duration framework, we can relabel the treatment as if it is given at the beginning of the

spell with probability ph and consider the randomly assigned treatment exogenous. In

the next section, we consider endogenous regressors, such as randomly assigned treatment

with partial compliance.

Our estimates of {δ1, ..., δK} imply an estimate for the the integrated hazard. In

particular, suppose that we measure survival at {0, 1, ...,K}, e.g. weekly unemployment

data, then dΛ(t) = s=tX
s=1

exp(δ̂s) where t ∈ {0, 1, ...,K}. (11)

We define the average hazard on the interval [a, b) to be the value λ for which
R b
a
λ(s)ds =

Λ(b)− Λ(a). This gives an expression for the average hazard,

dλ(s) = exp(δ̂t) for t− 1 < s < t. (12)

This approach is similar to Han-Hausman (1990). If the durations are measured on a very

fine grid, then one could also approximate the hazard by numerically differentiating the

integrated hazard dΛ(t).
4. An Endogenous Regressor

The last section dealt with exogenous regressors. However, some regressors are endogenous

in the sense that the regressor depends on the unobserved heterogeneity. This situation

occurs often in panel data and the genesis of the problem and an approach to a solution to

the problem are discussed in e.g. Mundlak (1961), Hausman and Wise (1979) and Haus-

man and Taylor (1981). For example, in the National Supported Work Demonstration7

data, long term unemployed individuals are randomly offered training but some choose

not to participate. Thus, there is a partial compliance problem and the treatment indi-

cator can depend on unobserved heterogeneity. See also Heckman, LaLonde, and Smith

(1999). Let R ∈ {0, 1} denote the treatment assignment and let X ∈ {0, 1} denote actual

treatment. Let R be randomly assigned among the individuals that are unemployed at

7Ham and LaLonde (1996) discuss this data
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time8 t̄. Suppose that an individual can refuse treatment, that is, we can observe R = 1

and X = 0 for a particular individual. The refusal of treatment, or equivalently, the

choice of participating, can potentially depend on the unobserved heterogeneity v or on

the observed regressors. If the probability of X depends on v, the distribution p(v|X = 1)

is different from p(v|X = 0). In particular, the conditional expectation of 1{Ti ≥ l},

conditional on {v, Zi(l),X}, does not depend on X.

E[1{Ti ≥ l}|v, Zi(l),X = 0] = Ev{e−vZi(l)|v,Zi(l),X = 0} = Ev{e−vZi(l)|v, Zi(l)},

so that

E[1{Ti ≥ l}|v, Zi(l),X = 0] = E[1{Tj ≥ l}|v,Zj(l) = Zi(l),X = 1].

However, since the distribution of v depends on X, we have, in general,

Ev{e−vZi(l)|Zi(l),X = 0} 6= Ev{e−vZj(l)|Zj(l) = Zi(l),X = 1}.

Therefore, Ev{e−vZi(l)|Zi(l),X} may not be decreasing in Zi(l). Therefore, we need to

adjust the objective function Q(β, δ) that was introduced above,

Q(β, δ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

In particular, one can view the indicators 1{Ti ≥ l} and 1{Tj ≥ k} as estimators of

survival functions. In order to ensure that the unobserved heterogeneity distribution is

the same for i and j so that we do not have to explicitly model the distribution of the

heterogeneity, we need to choose a set to condition on.

Suppose that individuals are treated in period t̄. In order to avoid survival bias, we

condition on survival up to t̄ and also on the index at t̄ − 1, Z(t̄ − 1). Thus, a duration

model is a natural framework to handle survival selection. Let R denote the treatment

intention, X the actual treatment and R,X ∈ {0, 1}. For now, we assume that R = 0

implies X = 0. Below, we present a simulations in which treatments happens right after

4 weeks and in which unemployment is another time-varying regressor. Without loss of

generality, we can assume that R is given at the beginning of the spell. Denote this by

8One could also assume that R is assigned at time the beginning of the duration spell; for given
P (R = 1), this is equivalent to assuming that R is assigned at time t̄.
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R∗. Let P (R∗ = 0) = P (R∗ = 1) = 1
2 . Let Gi denote the group of individual i and assume

that there are M groups. If Gi = Gj then individual i and individual j belong to the

same group. For each group, we define

F̂g,11|C =

P26
l=5 1{Ti ≥ l}1{Xi = 1}P26
l=5 1{Ti ≥ 4}1{Xi = 1}

F̂g,00|C =

P26
l=5[1{Ti ≥ l}1{Ri = 0}1{Xi = 0}− 1{Ti ≥ l}1{Ri = 1}1{Xi = 0}]P26
l=5[1{Ti ≥ 4}1{Ri = 0}1{Xi = 0}− 1{Ti ≥ 4}1{Ri = 1}1{Xi = 0}]

=

P26
l=5 1{Ti ≥ l}1{Xi = 0}[1{Ri = 0}− 1{Ri = 1}]P26
l=5 1{Ti ≥ 4}1{Xi = 0}[1{Ri = 0}− 1{Ri = 1}]

.

We will use this estimator of the survival function instead of 1{Ti ≥ l} and 1{Tj ≥ k}.

Define Zg,11(l) as the index of the treated individuals of group g (i.e. those with X = 1).

Define Zg,00(l) as the index of the untreated individuals of group g (i.e. those withX = 0).

We then use

Q∗(β, δ) = Q∗1(β, δ) +Q∗2(β, δ) (13)

where

Q∗1(β, δ) =

P
i

(N − 1)

l=26−22R∗iX
l=1

1{Ti ≥ l} (14)

∗[
P

j

N
1{R∗i = 0}

k=26X
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}

+

P
j

N
1{R∗i = 1}

k=4X
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}].

and

Q∗2(β, δ) =

P
g

M

26X
l=5

26X
k=5

[F̂g,11|C − F̂g,00|C ]1{Zg,11(l) < Zg,00(k)}.

The objective function Q∗1(β, δ) can be interpreted as the outcomes for the two groups,

in terms of treatment assignment considered at the beginning of the unemployment spell.

The first group is considered up through the end of the period since is not assigned a

treatment while the second group is consider up to the fourth week when it would be

offered treatment. The objective function Q∗2(β, δ) can be interpreted as conditioning on

both survival up to the end of the fourth period as well as z(4) which removes possible
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dependence between treatment and the unobserved heterogeneity term. This DGP re-

sembles the data of Ham and LaLonde (1996); see also Heckman, LaLonde, and Smith

(1999). We can extend the analysis in a straightforward manner to th situation of non-

compliance in both treatment and control individuals, so that R = 1 and X = 0 for

a particular individual and R = 0 and X = 1 for another individual. However, since

the latter situation is relatively unlikely to occur in practice, we leave the details as an

exercise.

5. Gamma Mixing Distribution

Han and Hausman (1990) and Meyer (1990) use a flexible baseline hazard and model the

unobserved heterogeneity as a gamma distribution. In this section we discuss the sensi-

tivity of the estimators of the MPH model to misspecification of the mixing distribution.

In particular, misspecifying the heterogeneity yields inconsistent estimators and having a

flexible integrated baseline hazard Λ(t) does not compensate for a failure to control for

heterogeneity. We illustrate this using two examples.

Example 1:

Suppose we observe F̄ (t | x) for x = 0, 1. Moreover suppose we estimate the following

model,

F̄ (t | x) = e−φ
xΛ(t).

Then,

Λ(t) = − ln F̄ (t | x = 0)

For a given Λ(t) = − ln F̄ (t | x = 0), the MLE of φ can be derived,

f(t | x = 1) = φλ(t)e−φΛ(t)

L(φ) = lnφ+ lnλ(t)− φΛ(t)

∂L(φ)

∂φ
=

1

φ
− Λ(t)⇒

φ̂
−1

= E{Λ(t)|x = 0} = −E ln F̄0(t1),

where F̄0 is the survival function for x = 0. If v ∼ Gamma(α,α), then F̄0 =
1

(1+Λ(t)α )
α

so that − lnF0(t) = α ln
³
1 + Λ(t)

α

´
φΛ(t1) =

z
v where z ∼ exp(1) and v ∼Gamma(α,α).
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Thus, Λ(t) = z
vφ . This yields

φ̂
−1
= −E ln F̄0(t1) = Eα ln

µ
1 +

z

vφα

¶
.

As a result, φ̂
−1
is not an consistent estimator for φ−1. In particular, for φ = 2 and φ = 10

we find the following,

True φ True α plim φ̂

φ = 2 α = 1 φ̂ = 1.46

φ = 2 α = 2 φ̂ = 1.089

φ = 10 α = 1 φ̂ = 4.04

φ = 10 α = 2 φ̂ = 3.197

Note that, without loss of generality, we can write the integrated baseline hazard as

follows,

Λ(t) = H(t)α

where H(t) is unrestricted and α > 0. Horowitz (1996) and Chen (2002) show how to

estimate H(t) at rate
√
N. Suppose one first estimates H(t) using one of these methods.

Estimating α is then like estimating a Weibull model. We therefore consider the following.

Example 2: Consider the Weibull model with a Gamma mixing distribution,

θ (t | v, x) = vexβαtα−1

v ∼ Gamma (γ, δ)

F̄ (ti | v) = e−ve
xβ�α

F̄ (ti) = Eve−ve
xβtα =

1³
1 + exβtα

δ

´γ
f(ti) =

αγexβtαi
δ

1³
1 +

exiβtαi
δ

´γ+1
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L =
X
i

lnα+ ln γ + xiβ + α ln ti − ln δ − (γ + 1) ln
µ
1 +

exiβt
α
i

δ

¶
Lα =

X
i

1

α
+ ln ti −

(γ + 1)

δ

exiβtαi ln ti

! + exiβtα

δ

Lβ =
X
i

xi −
(γ + 1)

δ

xie
xiβtα

1 + exβtα

δ

Lγ =
X
i

1

γ
− ln

µ
1 +

exβtαi
δ

¶
⇒ γ =

P
N
ln

µ
1 +

exβtαi
δ

¶
=

P
N
ln

µ
1 +

(exηt)
α

δ

¶

Lδ =
P
−1
δ
+ (γ + 1)

exβtα · 1
δ2

1 + exβtα

δ

ln tα = −xβ − ln v + ln z

ln t = −xη − ln v
α
+
ln z

α
Ew = ψ(α)− lnβuaw = ψ0(α)

E ln t = −xη − 1
α
ψ(γ) +

1

α
ln δ +

ψ(1)

α

vα ln t =
1

α2
¡
ψ0(γ

¢
+ ψ0(1))

Eexβtα = E
1

v
=

β

α− 1
Eeηt = Es1/α =

1

v1/α
Ez1/αR

z1/αe−zαz =z }| {
a =

1

α
+ 1

Γ

µ
1

α
+ 1

¶
=

1

α
!

MLE:

p(u) = ec−v v ≥ cZ ∞
c

e−vdv = −e−v
¯̄∞
c

= e−c

DGP:

θ (t | x, v) = ex

Thus, the true value of β is one.

c β γ δ β; γ = 2, δ = 1
0 1 1 1 1
0.1 1.11 1.12 0.96 1.06
0.2 1.154 1.23 0.89 1.09
0.3 1.16 1.30 0.84 1.12
0.5 1.17 1.42 0.76 1.14
1 1.21 1.75 0.54 1.21
2 1.30 1.87 0.33 1.27

N = 10, 000
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The simulation results do not depend on the distribution of x.

Lemma C1: Let θ(t | v, x) = vexβλ(t) where v ⊥ x. Let v − c | T ≥ 0 ∼ Gamma(γ, δ).

If c = 0, then F̄ (t|x) decreases at a polynomial rate. If c > 0, then F̄ (t|x) decreases at an

exponential rate.

5.1. Role of the Mixing Distribution in Applied Research. We have devel-

oped an econometric approach that permits estimation of both the regression parameters

and the integrated hazard parameters at a rate of N−1/2 and determined the asymptotic

distribution of the estimators. Thus, while pervious approach to estimating the mixed

proportion hazard model either had to specify a parametric form of the unknown (het-

erogeneity) mixing function to achieve N1/2 consistency or relied on a non-parametric

estimator for the unknown mixing distribution to permit estimation of the regression pa-

rameters which ruled out N1/2 consistency, our approach seemingly eliminates any role

for the mixing distribution. Thus, if we return to the basic model specification:

θ(t|x(t), v) = vex(t)βλ(t)

and the associated survival probability:

P (T ≥ t|x(t)) = Ev{F̄ (t|x(t), v)} = Ev{exp(−v
Z t

0

ex(s)βλ(s)ds)}. (15)

we see that we can calculate elasticities of the underlying model and survival probabil-

ity without any requirement to estimate the unknown mixing distribution. In this sense,

the mixing distribution has been returned to the role of ”nuisance” parameters, similar

to the role of individual effects parameters in panel data models where they are often

”conditioned out” as in e.g. Cox (1982) and Hausman, Hall and Griliches (1984). We

are able to estimate the regression and integrated hazard parameters and the associated

elasticities because the mixing distribution is assumed to be independent of the regres-

sion variables. Many previous estimation approaches induced a dependence between the

unknown mixing distribution and the regression variables, which created the requirement
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to specify a parametric form of the mixing distribution or use deconvolution estimation

approaches with their associated slow convergence properties.

While most questions that arise in applied research are answered by using the above

approach, a set of questions do arise that create a dependence between the unknown

mixing distribution and the regression variables. Suppose that conditional on continued

unemployment for τ weeks, we are interested in the elasticity with respect to a component

of x(τ) of the conditional survival probability:

P (T ≥ t|x(t), ν, T > τ) = Ev{exp(−v
R t
τ
ex(s)βλ(s)ds)}.

The expectation of ν now will depend on the history of the x(s) for a particular

individual j. For example, with a scalar x(s) and a positive β high x(s)0s will imply

a larger expectation of νj than low x(s)0s. However, we can continue to evaluate the

elasticities without the need to estimate the distribution of ν. Return to the notation

Zi(l;β, δ) =
Pl

s=1 e
Xisβ+δs for individual i. We set l = τ so that for individual i we

have Zi(τ ;β, δ) and consider a set of individuals indexed by k who have a similar value

of Zk(ω;β, δ) to Zi(τ ;β, δ) for some ω. (to be completed)

6. Empirical Results

We estimate our new duration model on a sample of 15,491 males who received unem-

ployment benefits beginning in 1998 in a data set called the Study of Unemployment

Insurance Exhaustees public use data. The study was designed to examine the character-

istics, labor market experiences, unemployment insurance (UI) program experiences, and

reemployment service receipt of UI recipients.9

The study sample consists of UI recipients in 25 states who began their benefit year in

1998 and received at least one UI payment, and is designed to be nationally representative

of UI exhaustees and non-exhaustees. The data description is:

“The data come from the UI administrative records of the 25 sample states

and telephone interviews conducted with a subsample of these UI recipients.

Telephone interviews were conducted in English and Spanish between July

9The following description follows from http://www.upjohninst.org/erdc/uie/datasumm.html which
has further details of the sample design and results.
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2000 and February 2001 using a two-stage process. For the first 16 weeks,

all 25 participating states used mail, phone, and database methods to locate

sample members, who were then asked to complete the survey. The second

stage, conducted in 10 of the sample states, added field staff to help locate non-

responding sample members. The administrative data include the individual’s

age, race, sex, weekly benefit amount, first and last payment date, the state

where benefits were collected, and whether benefits were exhausted.” (op. cit.)

The survey data contain individual level information about labor market and other

activities from the time the person entered the UI system through the time of the inter-

view. However, we limit our econometric study to the first 25 weeks of unemployment

due to the recognized change in behavior in week 26 when UI benefits cease for a signif-

icant part of the sample, see e.g. Han-Hausman (1990). The data include information

about the individual’s pre-UI job, other income or assistance received, and demographic

information.

We use two indicator variables, race and age over 50 in our index specification. We

also use the replacement rate which is the weekly benefit amount divided by the UI

recipient’s base period earnings. Lastly, we use the state unemployment rate of the state

from which the individual received UI benefits during the period in which the individual

filed for benefits. This variable changes over time. Table 1 gives the means and standard

deviations for the variables we use in our empirical specification:

We first estimate the unknown parameters of the model using the gamma heterogeneity

specification of Han-Hausman (1990) and Meyer (1990) (HHM). This specification allows

for a piecewise constant baseline hazard, which does not restrict the specification since

unemployment duration is recorded on a weekly basis. However, it does impose a gamma

heterogeneity distribution on the specification which can lead to inconsistent estimates

as we discussed above. We estimate the model using a gradient method and report the

HHM estimates and bootstrap standard errors in Table 2.

We find significant evidence of heterogeneity in the two larger samples, while in the

6 period sample we do not estimate significant heterogeneity. We also find the expected
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Figure 1:
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Figure 2:
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negative estimates for all of the coefficients with the state unemployment rate a signif-

icant factor in affecting the probability of exiting unemployment. When comparing the

estimates of the βi across the 3 samples, the scaling changes depending on the variance of

the estimate gamma distribution. Thus, the ratios of the coefficients should be compared.

The ratios of the coefficients across samples remain similar with the results for the 13

period and 24 period very close to each other.

In Figures 3 and 4 we plot the survival curves for the 13 week and 24 week gamma

heterogeneity estimates. We fit the survival curves using a second order local polynomial

estimator which takes account of the standard deviations of the estimated period coeffi-

cients in Table 2.10 The estimated survival curves fit the data quite well with only the

first period not being fit well by the local polynomial estimation.

1 3 5 7 9 11 13 15
Period

0.2

0.3

0.4

0.5

Gamma Heterogeneity Design, 13 periods

P
(T
≥t

)

Figure 3: Gamma Heterogeneity 13 Week Survival Curve

We now turn to estimate of the new duration specification, which does not require

estimation of a heterogeneity distribution using the same samples as above. Optimization

10We explain our approach in more detail in the appendix.
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Figure 4: Gamma Heterogeneity 24 Week Survival Curve

of the objective function can now create a problem because of its lack of smoothness.

Usual Newton-type gradient methods are not applicable in this situation. To date we

have found that generalized pattern search algorithms perform best.11 We use the pat-

ternsearch routine from Matlab to estimate the parameters. See the Appendix for further

details of our computational approach. The basic idea is to begin with the gamma hetero-

geneity estimates and to construct a “bounding box” around each parameter estimates of

3 standard deviations. We then find new estimates and increase the bounding box until

we do not find an increase in the objective function. The routine converges relatively

rapidly. We estimate standard errors using a bootstrap approach. In Table 3 we give the

estimates of the new duration model.

Again we find that all of the estimated coefficients have the expected negative signs.

The coefficients are also estimated with a high degree of statistical precision, although this

11Further research would be helpful here. We have also used gradient algorithms on a smoothed
objective function to obtain initial estimates and then employed Nelder-Mead routines to find the optima.
However, the pattern search algorithms appear to work best. See e.g. Audet and Dennis (2003) for a
recent survey of pattern search algorithms.
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Figure 5:
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finding may a function of our large sample size of 15,491 individuals. We again find that

the ratio of coefficients remains relatively stable across the three different samples with

the exception of the replacement rate which becomes increasingly larger with respect to

the state unemployment rate as the sample length increases. In Figures 6 and 7 we plot

the survival curves for the 13 week and 24 week duration model estimates. We again fit

the survival curves using a second order local polynomial estimator which takes account

of the standard deviations of the estimated period coefficients in Table 3. The estimated

survival curves fit the data quite well with only the first period not being fit well by the

local polynomial estimation.

1 3 5 7 9 11 13 15
Period

0.52
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0.67

0.72

0.77

Semi-parametric Design, 13 periods

P(
T≥

t)

Figure 6: Semi-parametric 13 Week Survival Curve

The main difference we find between the results of the gamma heterogeneity survival

curves and the semi-parametric survival curves is that the gamma heterogeneity survival

curves are initially steeper. Thus, the gamma heterogeneity results predict a higher prob-

ability of exiting unemployment in the early periods than do the semi-parametric results.

These results should be taken as tentative since we need to explore the performance of

the semi-parametric estimator more before we can be confident in terms of its accuracy.
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Figure 7: Semi-parametric 24 Week Survival Curve

7. Conclusion

Since Lancaster (1979), it has been recognized that it is important to account for un-

observed heterogeneity in models for duration data. Failure to account for unobserved

heterogeneity makes the estimated hazard rate decreases more with the duration than the

hazard rate of a randomly selected member of the population. In this paper, we derive a

new estimator for the mixed proportional hazard model that allows for a nonparametric

baseline hazard and time-varying regressors. By using time varying regressors we are

able to estimate the regression coefficients, instead of estimates only up to scale as in

the previous literature. We also do not require explicit estimation of the heterogeneity

distribution in estimating the baseline hazard and regression coefficients. The baseline

hazard rate is nonparametric and the estimator of the baseline hazard rate converges at

the regular rate, N−1/2, where N is the sample size. This is the same rate as for a duration

model without heterogeneity. The regressor parameters also converge at the regular rate.

A nice feature of the new estimator is that it allows the durations to be measured on a

finite set of points. Such discrete measurement of durations is important in economics;
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for example, unemployment is often measured in weeks. In that case, the estimator of the

baseline hazard only converges at this set of points.
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Appendix: Proofs of Theorems 1 and 2

Proof of Theorem 1: EQ(β, δ2) is maximized at the true value of the parameters.

The conditions of Newey and McFadden (1994, lemma 2.4) are satisfied so that Q(β, δ2)

converges uniformly to EQ(β, δ2). Note that Newey and McFadden (1994, lemma 2.4)

does not require continuity of Q(β, δ2). Newey and McFadden (1994, theorem 1) implies

consistency.

Proof of Theorem 2: Define α = β/|β1| and note that Han’s (1987) identification result

applies to α. Reasoning similar as in the texts yields that {β, δ} is identified. Thus,

EQ(β, δ) is maximized at the true value of the parameters. The conditions of Newey

and McFadden (1994, lemma 2.4) are satisfied so that Q(β, δ) converges uniformly to

EQ(β, δ). Note that Newey and McFadden (1994, lemma 2.4) does not require continuity

of Q(β, δ). Newey and McFadden (1994, theorem 1) implies consistency.

Appendix: Algebra Identification

Identification

Note that

P{Ti > l|, Zi(l; θ0)} = P{Yi > l|, Zi(l; θ0)} = Ev[exp{−veZi(l;θ0)}]

is decreasing in Zi(Tj ; θ0). Also note

Lemma 1: Let {x, T} be a random sample. Let the data generating process be given

by equation (2). Let the first element of x be denoted by x1 and the second by x2. For

some x∗, let xi1 = xi2 = x∗ − c with positive probability and let the density of x1, be

continuous for x1 ∈ [x∗ − η, x∗ + η] for some η > 0. Let {β, c} ∈ Θ, which is compact.

Then c is identified.

Lemma 2 (Identification scalar case):

Let the assumptions of lemma 1 hold. Let P (x1 < x2) > 0. Then {β, c} is identified.

Proof: Let f(x) be continuously differentiable over a bounded interval I(x). Let f 0(x) > 0

if f(x) = 0. Then f(x) = 0 has only one solution for x ∈ I(x).
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Lemma 2A (alternative conditions)

Assumption 2: xi2 = xj1 for some pairs i, j.

Let A2 denote all elements of A for which xi2 = xj1,

A2 = {i, j : xi2 = xj1, e
(xi1−xj1)β + eδ2 > 1}.

Similarly,

A02 = {i, j : xi2 = xj1, e
(xi1−xj1)β0 + eδ

0
2 > 1}.

Lemma 3 (Consistency scalar case):

Let the assumptions of lemma 1 and lemma 2 hold. Let

{β̂, δ̂2} = argmax
β,δ2

Q(β, δ2).

Then

{β̂, δ̂2}→
p
{β, δ2}.

Appendix: Section Estimating the Mixing Distribution

{to be completed} (**point out that we can use deconvolution methods similar to

Horowitz to estimate the mixing distribution.)

Appendix: Computational Issues

by Matthew Harding, Jerry Hausman, and Tiemen Woutersen

We estimate the parameter vector (β, δ) from the following objective function which

corresponds to a mass of indicator functions:

Q(β, δ) =
nX
i=1

LX
l=1

1{Ti ≥ l}
nX
j=1

KX
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}]. (16)

Optimization of this objective function using iterated sums is not feasible since for

the specification with 24 periods it takes approximately 15 minutes to evaluate one such

objective function in Matlab. Note however that for all individuals i which pass the

criterion Ti ≥ l the objective function evaluates the difference between the number of

individuals with an index less than the index of individual i and the number of individuals
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with an index greater than the index of individual i. This information is also contained

in the ranking of individual’s indices and thus can be more efficiently extracted using the

Rank function. This suggest that an efficient implementation of this optimization will be

similar to that of Chen (2002).

We can define dk = 1{T ≥ k} for the vector T of dimension N×1. Let d be constructed

by stacking the vectors dk vertically for all k = 1..K. Similarly let Z be constructed by

stacking the vectors Z(k) for all k = 1..K. Now both d and Z are of dimension Nk × 1.

We can now re-write Q(β, δ) using these vectors and the Rank function:

Q(β, δ) =
1

N(N − 1)

NkX
i=1

d(i) [2Rank(Z(i))−Nk] . (17)

This simpler yet numerically identical representation12 will be more efficient to evaluate

numerically because computation of the rank function requires sorting for which highly

efficient algorithms are available. Indeed it now takes less than one second to estimate

one such objective function for the specification with 24 periods.

Models with non-smooth objective functions in the parameters have been traditionally

estimated using the Nelder-Mead simplex method (see, e.g. Abrevaya, 1999; Cavanah and

Sherman, 1998). In this particular example the large number of spurious local optima

makes the Nelder-Mead method computationally unstable. The Nelder-Mead algorithm

fails to converge or takes unreasonably long to do so.13

Pattern search methods have been available for many decades and rigorous convergence

results have become available in recent years (Lewis and Torczon, 1999; Audet and Dennis,

2003). Although anecdotal evidence on the performance of these algorithms often suggests

slow convergence we find that the convergence of the objective function at 4 decimal places

for the specification with 13 periods takes about 20 minutes while the specification with

24 periods takes approximately 50 minutes to convergence.

We shall now provide a brief introduction to the mechanism of pattern search.14 For

some given real valued objective function Q(γ) defined on the n-dimensional Euclidean

12There is still an issue regarding the treatment of ties in the Rank function but it seems to matter
little in practice.
13Convergence of the objective function to 4 decimal places may take as long as 9 hours to compute.
14For a more detailed review and convergence proofs see Kolda, Lewis and Torczon (2003).
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space, let γ0 be the initial guess. In our case we use γ0 = [ bβ,bδ]Gamma be the parameter

estimates from the HHM Gamma Heterogeneity model estimated using a quasi-Newton

derivative based method. Additionally define a forcing function ρ(t) to be a continuous

function such that ρ(t)/t→ 0 as t→ 0. Let ∆k control the step length at each iteration.

Search patterns for some initial starting value γ0 are drawn from a given generating set.

A minimal generating set corresponds to some positive spanning set for the n-dimensional

space, where the number of dimensions corresponds to the number of parameters to be

estimated. The defining requirement for a generating set is that any vector in Rn may be

written as a linear combination of elements in the generating set using positive coefficients

only. A generating set will thus contain at least n+1 elements. To illustrate the generating

set for n = 2 is

G =

½µ
1
0

¶
,

µ
−1
−1

¶
,

µ
−1
1

¶¾
. (18)

Alternatively we could use the set of 2n coordinate directions as the elements of our

generating set. In our application however we have found computational performance to

be superior under the setup with n+1 directions. Additionally, heuristic additions to the

generating set may be implemented in order to improve speed and performance. These

heuristic additions allow the algorithm to evaluate other points in the same direction as

the last successful search, but further away from the starting point than the standard

elements of the generating set would allow for, thus allowing for the possibility that if the

correct direction of improvement was found, several computation steps will be skipped

and the search converges more rapidly. Random polling vectors also provide heuristic

evaluations of the objective function without compromising the convergence properties of

the algorithm which only depend on the minimal generating set.

We use the standard errors of the HHM estimation to construct a "bounding box"

that will hopefully contain the parameter estimates under the semi-parametric setup. A

bounding box is required to increase the probability that the true optimum will be visited

with increased probability. For most cases a bounding box of ±3s.e. seems to be sufficient

for convergence.
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At each iteration the algorithm evaluates the objective function for all vectors gk ∈ G

and compares Q(γk + ∆kgk) with Q(γk) − ρ(∆k). If an improvement is found γk+1 =

γk +∆kgk and ∆k is increased to ∆k+1. If no improvement is found then γk+1 = γk and

∆k is decreased to ∆k+1. This process is iterated to convergence.

We use the estimated values bδPattern to compute an estimate of the survival probability
at each time period. Using the delta method we compute the associated estimates of the

standard error of the survivor curve. Interpretation is made easier by smoothing the pair

(P (T ≥ ti), ti) for all time periods ti using a local polynomial method. The neighborhood

of ti is defined as a percentage of the total number of periods under consideration and

may be chosen using cross-validation techniques. Each point in the neighborhood N(ti) is

assigned two sets of weights. One set of weights is inversely proportional to the standard

error of the survivor estimate as given by the pattern search optimization. The other set

of weights is provided by the tri-cubic weight function and weighs the impact of distant

data points on the smoothing estimate of one particular observation. The tri-cubic weight

function involved in the smoothing of point ti places the following weight on observation

tj :

W (ti, tj) =

Ã
1−

µ
|ti − tj|

maxtj∈N(ti) |ti − tj |

¶3!3
1

½
0 ≤ |ti − tj |

maxtj∈N(ti) |ti − tj |
< 1

¾
. (19)

The smoothed estimates of the survivor function are then computed as the predicted

values of the weighted linear regression of second degree for each point in the corresponding

neighborhood using the two sets of weights. The choice of the span of the neighborhood

at each point using cross-validation tends to matter little in this case.
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