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Abstract

The Lucas (1976) critique argued that the parameters of the traditional unrestricted

macroeconometric models were unlikely to remain invariant in a changing economic envi-

ronment. Since then, rational expectations models have become a fixture in macroeconomics

− Euler equations in particular. An important, though little acknowledged, implication of

the Lucas critique is that testing stability across regimes should be a natural diagnostic for

the reliability of Euler equations. This paper formalizes this assertion econometrically in the

framework of the classical two-step minimum distance method: The time-varying reduced-

form in the first step reflects private agents’ adaptation of their forecasts and behavior to the

changing environment; The presumed ability of Euler conditions to deliver stable parame-

ters that index tastes and technology is interpreted as a time-invariant second-step model.

Within this framework, I am able to show, complementary to and independent of one an-

other, both standard specification tests and stability tests are required for the evaluation of

Euler equations. Moreover, this conclusion is shown to extend to other major estimation

methods. Following this result, three standard investment Euler equations are submitted

to examination. The empirical results tend to suggest that the standard models have not,

thus far, been a success, at least for aggregate investment.
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1 Introduction

The Lucas critique of econometric policy evaluation argues that it is inappropriate to esti-

mate econometric models of the economy, in which endogenous variables appear as unrestricted

functions of exogenous or predetermined variables, if one proposes to use such models for the

purpose of evaluating alternative economic policies. Since then, forward-looking models have

become a fixture in macroeconomics literature. A wide variety of dynamic stochastic theories

give rise to linearized Euler conditions of the generic form

α(L)xt = Et (ψ(L)zt) + ρ(L)st + et (1)

where xt is the decision variable, zt and st are other variables of the system where zt often

includes xt, and et is an unobservable disturbance term, α(L), ψ(L) and ρ(L) are polynomial

lag operators, and ψ(L) is two-sided. Et denotes rational expectations conditional on date t

information set. The popularity of such models derives from the fact that they make the notion

of forward-lookingness in economic decision explicit and address the Lucas (1976) critique.

The estimation of structural parameters and testing for validity of Euler equations have

been subjects of considerable research. To deal with the common feature of these models that

one variable often depends on the contemporaneous and expected future values of endogenous

variables, various approaches have been proposed in the literature. In this paper, I focus on the

classical minimum distance estimation method, which explores the cross-equation restrictions

imposed by a structural equation on the reduced-form model. This is a standard method in

econometrics literature1 and cross-equation restrictions have been widely used in macroeconomic

applications2. Let the reduced-form model take the form of

yt = w′
tφ+ εt (2)

where yt is a vector of endogenous variables including xt, zt and st in (1) and φ is a vector of

reduced-form coefficients. A hallmark of any structural rational expectations model is that it

imposes restrictions on the reduced-form coefficients. Intuitively, the description of xt in the

structural model should be consistent with the description of xt in the reduced-form model.

Let θ denote the vector of structural parameters of interest3. Derivation of the cross-equation

restrictions is a straightforward application of Campbell-Shiller (1987) methodology4, which

results in

g(φ, θ) = 0

1See Chiang (1956), Ferguson (1958), Newey and McFadden (1994) and Hayashi (2000).
2See Fuhrer and Moore (1995), Jondeau and Lehihan (2001), King and Kurmann (2002), Kurmann (2003),

Sbordone (2003) and Li (2004), just to name a few.
3For example, in the context of equation (1), θ = [{αi}, {ψi}, {ρi}].
4In addition to Campbell and Shiller (1987), Sargent (1979) also points out that Euler equations of dynamic

stochastic theories impose cross-equation restrictions on the coefficients of reduced-form forecasting processes.
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that links the reduced-form coefficients and the structural coefficients. Assuming a stationary

environment, θ can be estimated using the standard two-step procedure: the reduced-form

model is estimated in the first step to obtain an estimator φ̂, the structural parameters in θ are

solved in the second step using g(φ̂, θ) as the moment condition.

However, the specification of the reduced-form model (2) explicitly assumes that the reduced-

form coefficients are time-invariant. A growing number of empirical studies have looked at the

instability of reduced-form empirical models. Stock and Watson (1996) provides the most

general evidence by investigating the stability of a large set of macroeconomic variables. They

find wide-spread instability in both univariate and bivariate models5. Moreover, the authors

point out, the results obtained from low-dimensional models are not restrictive because the

instability in the low-dimensional systems implies the instability in larger systems6. Therefore,

empirical evidence suggests that a time-varying reduced-form model yt = w′
tφt + εt is more

appropriate in many cases. In the two-step minimum distance problem, this leads to cross-

equation restrictions of the form

g(φt, θ) = 0.

This paper studies the case in which φt varies in a persistent manner7. To capture the persis-

tence, the time-varying parameters (TVP) model is considered,

φt = φt−1 + vt.

Why do I consider the TVP model? The underlying changes in the structure of the economy

could affect the parameters in different ways. Some might be of a discrete nature whereas

others might be of a more gradual nature. However, when the true form of the instability is

unknown, the flexibility of the TVP specification makes it an appealing model because it can

approximate discrete changes and many other types of instabilities8. Hence, the TVP model

provides a parsimonious way of capturing a general form of instability.

5Similar results have been obtained in empirical finance. Lettau and Ludvigson (2001) and Paye and Tim-

mermann (2004) find instability in return forecasting model.
6In the context of vector autoregressions, this is confirmed by Boivin (1999) which concludes that there is

compelling evidence of instability in monetary vector autoregressions.
7Temporary time variations are not discussed because they do not necessarily cause the same difficulties in

estimation and inference as the persistent form of time variation
8Regarding its flexibility, Nyblom (1989) points out that, the TVP specification φt = φt−1 + vt can not

only describe a gradual change in φt when the disturbance term vt follows a continuous distribution, it may

also model discrete breaks that occur at randomly chosen time points during the observation period. Most

recently, Elliot and Muller (2003) provide theoretical support for this argument by showing that tests for a very

general set of breaking models (including the TVP model, frequently occurring breaks, clustered breaks, etc.),

are asymptotically equivalent. The ability of the TVP model to uncover discrete breaks and other forms of

instabilities can be illustrated by simulation. In addition to its flexibility, a second advantage of the TVP model

is that the number of the parameters is small and independent of the true number of breaks.

4



Empirical studies, such as Stock and Watson (1996), also find that although a substantial

fraction of macroeconomic relationships are unstable, in most cases this instability is charac-

terized by small period-to-period variations in the coefficients9 In the TVP setup, this empirical

feature can be formally modeled as

vt = τνt where τ = λ/T

where τ and λ are scalars governing the size of the variance of the parameters. Briefly speak-

ing, by making the variance of the parameters local-to-zero, this parameterization provides a

meaning to it being “small period-to-period”. Moreover, the nesting of λ/T is a useful device in

obtaining local asymptotic results. (See Section 2.2 for more discussion.) For these reasons, this

modeling strategy has been becoming a standard treatment in modeling small but persistent

instability10.

In short, motivated by empirical findings, this paper deals with the estimation and valida-

tion of a structural relation with constant coefficients11, while the reduced-form relation is an

unstable one with coefficients that are time-varying in a small but persistent manner.12.

From an economic viewpoint, the sort of cross-equation restrictions studied in the paper

reflects the basic thrust of the Lucas (1976) critique. On the one hand, the reduced-form

coefficients, φ, reflect private agents’ understanding of the underlying economic environment. As

argued in Lucas (1976) paper, φ would be functions of more fundamental structural parameters

and parameters that describe the characteristics of economic policy rules. Accordingly, when

there were any structural change in the laws of motion for the variables, say, induced by any

change in policy regime, the reduced-form model would generate forecasts of future values of

variables which vary with policy changes, if the reduced-form model correctly approximate

the way in which agents form expectations. So, the coefficients of the reduced-form model

9For instance, in Stock and Watson’s (1996) investigation of 76 U.S. macroeconomic series, the outcomes of

the stability tests are often found to be borderline significant. Note that instabilities that are relatively small

compared to the sample information will be too difficult to be detected and should not matter for inferences

based on asymptotic theory. On the other hand, instabilities that are large relative to sample information should

be detected by statistical tests for sure. Obviously the empirical evidence obtained in Stock and Watson’s (1996)

comprehensive study does not support the two cases. Rather, it points to an intermediate case.
10See for example, Stock and Watson (1996), Stock and Watson (1998), Boivin (1999) and Elliott and Muller

(2004), among others. It is worthwhile to point out, the modeling strategy of a random walk with local-to-zero

device was used in the above mentioned work for stability testing. In the current paper, the same modeling

strategy is employed for the purpose of estimation and inference.
11That is, I implicitly assume that the instability in the reduced-form model is induced by changes in the

underlying structure of the economy other than the structural equation under study. In this sense, the estimation

procedure developed in this paper is not applicable to unstable structural relations. For the estimation procedure

designed for an unstable rational expectations structural relations, see for example, Boivin and Watson (1999).
12In the context of a stable structural model, such as Euler equation (1), the instability enters the cross-

equation restrictions through the unstable forecasts of future values of the variables produced by the time-varying

forecasting model.
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could not be expected to remain stable across time and regimes. On the other hand, the

genesis of the Euler equation approach is exactly because the reduced-form parameters are

unstable. A correctly specified Euler condition is supposed to possess the ability to deliver

stable deep parameters of tastes and technology. Under this null hypothesis, the vector of

structural coefficients in the cross-equation restriction, θ, which index private agents’ optimality

condition, would be expected to be stable over time.

From an econometric viewpoint, the modification from a constant φ to a drifting φt trans-

forms the econometric model from a standard textbook problem to a two-step TVP problem

that has not been thoroughly understood in the literature. Consequences could be severe if

the time variation is ignored. First, standard estimation, inference and model evaluation of

the second-step may be invalidated through the first-step estimation, which is distorted by the

ignored time variation. The second-step estimator and test statistics may cease to follow the

standard distribution, even asymptotically, and hence lead to misleading results. Second, if

regressors in a reduced-form model contain lagged dependent variables, as in the widely-used

autoregression or vector autoregression model, the unit root contained in φt would unavoidably

induce non-stationary regressors in the reduced-form model13, which would further complicate

the second-step estimation and testing. It follows from the above discussion that, a desired

estimation and procedure should appropriately take the time variation into account.

In the literature, the traditional estimation procedure for TVP models is by maximum likeli-

hood estimation, making use of Kalman filter to construct the likelihood function. Suppose the

amount of instability in φt is large enough relative to the sample information, the traditional

ML procedure for TVP models can be applied to estimate θ in the two-step minimum distance

problem14. If, on the other hand, the variance of the parameters are small, which, as I have

argued, is indeed the empirically relevant case, the MLE will encounter numerical problem and

break down15.

The inference problems of ignoring the time variations when it is present, together with

13To see this problem, consider an unstable AR(1) model: yt = φtyt−1 + εt with φt following (9) and (10).

The feed back from φt to future values of the regressors is obvious. To see the consequence of such a feedback,

it is straightforward to solve yt, as a function of εt and φt, yt = εt +
� ∞

j=1

���
j−1
i=1 φt−i � εt−j . Thus, even if

ε have the desired stationarity and independence, the distribution of the regressor, the lagged values of yt, is

non-stationary in a complicated manner.
14This can be done in two steps: (1) write the constrained regression yt = w′

tφt + εt s.t. g(φt, θ0) = 0 as an

unconstrained regression yt = x′
tθ0 +z′tγt +εt. by some proper transformation. (2) impose the TVP specification

and normality, implement MLE through Kalman Filtering. Note that in the first step, g(φt, θ0) = 0 is typically

a non-linear restriction, and as a result, θ0 would be non-linear in φt, i.e., θ0 = θ(φt). But it is possible to show,

θ(φt) = Mφt + Op(T−1) where M is a constant matrix. Thus the non-linearity in θ(φt) as a function of φt is

negligible.
15The MLE tends to estimate the variance to be zero. This is because the MLE has a large point mass at zero,

which is related to the “pile-up” problem in the literature. See Stock and Watson (1998) for a more detailed

discussion on this issue.
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the limitations of the traditional MLE procedure in handling empirically relevant instabilities,

provide the econometric motivation of the present paper. But, rather than directly handling

φt, as in the MLE procedure, this paper takes a different track. Note that the parameters of

interest, θ, in the two-step problem are constant (according to the underlying economic theory),

and the instability is solely from φt. This feature naturally prompts me to consider whether

the standard procedure (assuming erroneously a constant φ) is possible to remain valid in the

presence of the time variation in the first step model.

Looking ahead to my results, the econometric findings can be summarized as follows. First,

in the context of the two-step method, I find that:

• Regarding the estimation and inference of the structural (i.e., the second-step) equation,

nothing is lost by ignoring the reduced-form (i.e., the first-step) instability. The standard

minimum distance method remains valid for the second-step estimation, even though the

first-step estimation is unavoidably contaminated. Accordingly, the standard treatment

leads to valid inference about the coefficients in the structural equation.

• The conventional specification test for the structural (i.e., the second-step) model, ignoring

the reduced-form (i.e., the first-step) instability, remains valid. However, the conventional

test alone is not enough for an overall model evaluation − it has no power in detecting

a class of local alternatives. Rather, an overall validation of the second-step structural

model consists not only of the standard test for the cross-equation restrictions, but also

of the assessment of an additional stability requirement.

• To assess the stability requirement of the the second-step structural model, it is shown

that a desired test should be able to isolate the instability in the coefficients being tested

from the instability induced by the non-tested coefficients. I verify that many existing

stability tests possess this property and can be applied unaltered.

• All the above results apply to the case in which the reduced-form model is an unstable

autoregression or an unstable vector autoregression. Recall a first-step model of this kind

has non-stationary regressors induced by the persistence in the time-varying coefficients.

The analysis conducted in the paper concludes that such non-stationarity in the first-step

regressors does not have any asymptotic effects, at least for the kind of instabilities this

paper is concerned with, and hence can be safely ignored.

Based on these findings, I propose a relatively simple solution to the seemingly complex problem

of estimating and testing the two-step model with small reduced-form time variation: the

standard textbook procedure plus the assessment of a stability requirement for which a battery

of well-developed tools are available.

Second, I show that the above results, especially those on model validation testing, are not

limited to the two-step minimum distance method, and are not limited to linear frameworks.

Rather, they are general results that extend to many other methods, such as the general-

ized method of moments and the maximum likelihood method. As a methodological note, my
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analysis concludes that, regardless of the estimation approach, when a restriction under ex-

amination involves coefficients varying in a small but persistent manner, say, in the generic

form of a(φt) = 0, it can be evaluated by sequentially conducting two tests: (i) the standard

specification test for the stable restriction a(φ0) = 0, ignoring the instability in the coefficients;

(ii) a stability assessment testing for the stability requirement of the restriction. Moreover, the

test in (i) and the test in (ii) are shown to be independent asymptotically, which makes it easy

to have an overall test with a designed significance level.

Regarding contribution of the paper from an economics point of view, I note that although

apparently little received in empirical research, the assertion that, testing the stability over

time or across regimes should be one important diagnostic for the reliability of macroeconomic

models, especially Euler equations, has been acknowledged in previous literature, though mainly

on the basis of the economic rationale of the Lucas (1976) critique, see Ghysels and Hall (1990)

and Oliner, Rudebusch and Sichel (1995). In the present paper, this assertion is formalized

econometrically, for the two-step minimum distance method and is shown to extend to other

major econometric approaches. As a result, my analysis strongly recommend a re-orientation

of the evaluation of macroeconomic models: together with standard specification tests, stability

tests should be routinely reported16.

Finally, in the application part of the paper, using the two-step minimum distance method, I

examine the empirical relevance of several investment Euler equations that are typical of those

used in the literature. In my application, reduced-form vector autoregressions are used as the

first-step models, to summarize the dynamics of the economy. Persistent and small instability

is found in the vector autoregressions, which justifies the estimation and model validation

procedure I have developed. Although Euler equations have been a very popular approach to

modeling investment and there have been very little skepticism about these standard investment

models, my empirical results tend to suggest that the standard models have not, thus far, been

a success, at least for aggregate investment. In particular, one of the Euler equations under

examination, which is most widely-used in the literature, exhibits a considerable degree of

parameter instability.

The rest of the paper is organized as follows. Section 2 describes the two-step model with

time-varying parameters in the first step. Technical assumptions required to obtain asymptotic

16There is a strand of research in the literature concerned with testing the Lucas critique, based on the concept

of super exogeneity. See for example, Hendry and Richard (1983), Engle, Hendry and Richard (1983), Hendry

(1988), Hendry and Ericsson (1991a and 1991b), Ericsson (1992), Baba, Hendry and Starr (1992), Favero and

Hendry (1992), Engle and Hendry (1993) and Ericsson and Irons (1994), among others. This literature focuses

on testing for the stability of the reduced-form coefficients, i.e., φt in the reduced-form model yt = w′
tφt + εt,

provided that φt is a function of the underlying unstable coefficients in the policy equation (−the source of the

potential reduced-form instability according to the Lucas critique). Different from this literature, the starting

point of the current paper is that the reduced-form coefficients, φt, are unstable and the focus is on the structural

equations that by construction are supposed to be stable across time and regimes.
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results are discussed. Section 3 deals with the estimation of the two-step time-varying parame-

ters model. Section 4 studies model validation testing of the two-step time-varying parameters

model. Section 5 generalizes the results obtained in preceding sections to other econometric ap-

proaches. Section 6 presents the application to investment Euler equations. Section 7 concludes.

Mathematical details are in the appendix.

2 The Model and Assumptions

This section lays out the two-step TVP model in which the first-step model involves small but

persistent time variation. Conditions needed to obtain the asymptotic results are provided and

discussed. To start, I review the standard (non-TVP) two-step model and summarize the main

asymptotic results.

2.1 The Standard Two-step Model

The purpose of this review section is twofold: to establish the notation for the subsequent

sections and to provide a basis for future comparison. The standard two-step model is

1st step : yt = w′
tφ0 + εt (3)

2nd step : 0 = g(φ0, θ0)

where {yt, wt}T
t=1 are observed variables, wt is a p × 1 vector of regressors, εt is a mean zero

random disturbance, φ0 is a p × 1 vector of reduced-form coefficients, θ0 is a r × 1 vector of

structural coefficients and g(φ0, θ0) is a l × 1 vector of restrictions imposed on φ0 and θ0. θ0 is

the parameters of interest. Assuming stationarity, the two-step estimation is straightforward.

In the first step, the reduced-form model is estimated by OLS. Let φ̂ denote the OLS estimator

of φ0,

T 1/2 (φ̂− φ0) ⇒ N (0, Vφ) (4)

where Vφ = E(wtw
′
t)

−1Var(wtεt)E(wtw
′
t)

−1. In the second step, θ is estimated as the solution to

minθ QT (θ) = g(φ̂, θ)′ WT g(φ̂, θ) where WT is some weighting matrix. The optimal weighting

matrix is determined by g(φ̂, θ0). A mean value expansion around g(φ0, θ0) gives

T 1/2 (g(φ̂, θ0) − g(φ0, θ0)) = Dg T
1/2 (φ̂− φ0) + op(1) (5)

where Dg = ∂g(φ0, θ0)/∂φ is an l× p matrix, with rank l. Therefore, the asymptotic variance of

g(φ̂, θ0) is computed as Avar(g(φ̂, θ0)) = DgVφD
′
g and the optimal weighting matrix Wopt equals

Avar(g(φ̂, θ0))
−1. The resulting second-step estimator, θ̂, is a function of the first-step estimator,

φ̂, with the limiting distribution

T 1/2 (θ̂ − θ0) = MDg T
1/2(φ̂− φ0) + op(1) ⇒ N (0, Vθ) (6)
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where M = [Gθ(φ0, θ0)
′WoptGθ(φ0, θ0)]

−1Gθ(φ0, θ0)
′Wopt with Gθ(φ, θ) = ∂g(φ, θ)/∂θ . The efficient

asymptotic variance for θ̂ is Vθ =
[
Gθ(φ0, θ0)

′(DgVφD
′
g)

−1Gθ(φ0, θ0)
]−1

. The J -test for the cross-

equation restrictions is

JT = T g(φ̂, θ̂)′ Ŵopt g(φ̂, θ̂) ⇒ χ2
(l−r). (7)

Essentially, all asymptotic results in the second step are built up on the asymptotics of the first-

step estimator, φ̂. The limiting distribution of g(φ̂, θ0) is the heart of the second-step estimation

and inference. It determines the optimal weighting matrix, and hence the behavior of θ̂ and JT .

2.2 The Two-step Model with Time-varying Coefficients

When there is time variation in the reduced-form, together with the maintained assumption

that the structural parameter θ0 is stable, the two-step model becomes

1st step : yt = w′
tφt + εt (8)

2nd step : 0 = g(φt, θ0), t = 0, ..., T

where θ0 is the vector of parameters of main interest. The implications of the model are

simple. It allows the coefficients on the reduced-form regressors wt to evolve over time in a non-

stationary manner and hence, alters the structural of the relationship between yt and wt within

a maintained linear form. But it does so in a way that preserves a time-invariant, and possibly

non-linear relationship between the values of the reduced-form coefficients and the structural

coefficients over time.

As mentioned in the introduction, motivated by the empirical evidence observed in macroe-

conomic relations, the type of time variation this paper is concerned with is of the form

φt = φt−1 + vt with vt = τνt (9)

where τ is a scalar, νt ∼ (0, Σ) with Σ being a non-zero matrix, νt and εt are serially and

mutually uncorrelated, mean zero random disturbances. Several extensions could be made for

the TVP specification in (9). First, in addition to the persistent time variation in φt, there

may be temporary time variation in φt as well, so that νt may be serially correlated17. Second,

rather than containing a unit root, φt may contain a near unit-root18. Since all these extensions

or modifications do not change the main results of the paper in a substantive way, in what

follows, for simplicity, I will continue to use the basic TVP specification in (9).

17In this case, νt can be modeled as νt = B(L)µt where µt and εt are serially and mutually uncorrelated. As

long as B(L) is one-summable and B(L) 6= 0, asymptotic results obtained in the serially-uncorrelated-νt case can

be easily extended to the serially-correlated-νt case with some small modifications.
18When φt contains a near unit root, it can be modeled by using the local-to-unity device, φt = (1−c/T )φt−1+

vt. In my problem, asymptotic results obtained in the exact unit-root case extends to the near unit-root case by

replacing the Wiener process associated with φt with a corresponding diffusion process that depends on c.
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Note that decomposing φt − φt−1 into τ and νt has the advantage that with Σ being some

known matrix19, the magnitude of the instability, represented by the the variance of the time-

varying parameters, is governed by a scalar, τ , only. This greatly simplifies the analysis because

the empirical feature of the small period-to-period variation in the vector, φt, can be formalized

by making this scalar, τ , local-to-zero,

τ = λ/T. (10)

Several comments regarding (10) are in order. First, by this parameterization, although the

instability vanishes asymptotically, in any finite sample, the amount of instability is small but

non-zero20. Second, estimation and inference are based on asymptotic distributions. Nesting

(10) is exactly the asymptotic device that would be used in computing the local asymptotic

power of the stability tests under a TVP alternative. It makes the distribution of the tests

non-degenerate and dependent on λ. Thus, the magnitude of the kind of small instabilities

considered in the paper is large enough to invalidate inference that ignores them.

2.3 Conditions and Assumptions

To obtain the theoretical results, it is necessary to impose some conditions on the data generat-

ing processes. The set of conditions which will be presented is by no means the weakest possible

set of sufficient conditions, although most of the conditions are fairly regular in econometrics

analysis. In particular, these conditions intend to cover time-varying parameters autoregression

and vector autoregression models. As mentioned in the introduction, for this class of models,

the regressors contain lagged dependent variables, so instability in the coefficients may create

estimation and inference problem: it will introduce feedback from the unstable coefficients to

future values of regressors, and hence induce non-stationarity in the regressors. If this prob-

lem is not addressed, the scope within which the analysis of this paper is applicable would

be much limited, given the extensive use of this class of models in applied macroeconomics.

As detailed below, this problem is circumvented by making use of a concept called contiguity,

which has existed in the statistical literature for nearly half a century, and is introduced to

econometric analysis only recently. So long as the property of contiguity holds for the data

generating process, non-stationarity in the regressors caused by the unstable coefficients is neg-

ligible asymptotically.

Since the conditions introduced in this section will be used for a range of models in the

rest of the paper, it is useful to digress from the two-step minimum distance framework and to

provide these technical requirements in the context of a general model which nests all specific

19In practice, some suitable normalizations can be imposed on Σ to make it proportional to some matrix known

to the econometricians. See, Stock and Watson (1998) and Nyblom (1989) for more discussion.
20To see this, note that Var(φt − φt−1) = O(T−2). As T goes to infinity, Var(φt − φt−1) approaches 0. But

for a fixed sample size T , its magnitude not zero for any non-zero λ.
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TVP models that will be encountered latter in the paper. Thus, consider a TVP model of the

form

yt = w′
1tφ1t + w′

2tφ2t + εt, (11)

where w1t and w2t are k1×1 and k2×1 vectors of regressors, εt is the error term and φ1t and φ2t

are k1×1 and k2×1 vectors of coefficients that might be time-varying. With the decomposition

of φt = [φ′1t φ
′
2t]

′, the TVP process for the coefficients can be rewritten as φit = φit−1 + vit,

vit = τiνit and τi = λi/T for i = 1 and 2. τi’s and λi’s are scalars. Var(νit) = Σi.

Suppose φ1t is the vector of coefficients of interest, φ2t is the vector of nuisance coefficients.

Several versions of model (11) will be discussed in the paper. The model with a constant φ1

and an unstable φ2t is discussed in Section 3.2. The model with φ1t being possibly time-varying

and φ2t being time-varying is the testing model discussed in Section 4.2. The model in which

φ1t is possibly time-varying but φ2 is constant is the testing model that has been examined in

the literature. The reduced-form model in (8) is a special case of (11) with w2t = 0.

In the rest of the paper, I use “under φt” to refer to the case in which the data are generated

by the true model yt = w′
1tφ1t + w′

2tφ2t + εt which has time-varying coefficients. On the

other hand, “under φ0” refers to the case in which data are generated by the corresponding

hypothetical model yt = w′
1tφ10 +w′

2tφ20 + εt where all coefficients are stable. In addition, let

“⇒” denote weak convergence to the relevant stochastic process. Let “
p−→” denote convergence

in probability. Wi’s and Wφi
’s (for i = 1 and 2) are standard Brownian motions. Wφi

’s

are mutually independent Brownian motions associated with the φi processes, and Wφi
’s are

independent of Wi’s. Let [·] denote the greatest lesser integer.

Condition 1: The processes for regressors {w1t, w2t} and disturbances {εt, ν1t, ν2t} are such

that following requirements hold under φt for i = 1, 2 and j = 1, 2.

1. T−1
∑[sT ]

t=1 witw
′
jt

p−→ s Γij uniformly in s ∈ [0, 1] for some constant matrix Γij.

2. T−1/2
∑[sT ]

t=1 witεt ⇒ Γ
i 1/2
wε Wi(s) where Γi

wε is positive definite.

3. T−1
∑[sT ]

t=1 witw
′
jt T

−1/2
∑t

k=1 νjk ⇒ Γij Σ
1/2
j

∫ s
0 Wφj

(r)dr.

Condition 1 can be shown to hold in some general settings. For example, the following

set of assumptions are sufficient to guarantee Condition 1. Among them, Assumptions 1 to 3

are a modified version of the assumptions used in Stock and Watson (1998). For a stationary

process wt, let Ci1···in(r1, · · · , rn−1) denote the nth joint cumulant of wi1t1 , · · · , wintn , where

rj = tj − tn, j = 1, · · · , n− 1, and let C(r1, · · · , rn−1) = supi1,··· ,in Ci1···in(r1, · · · , rn−1).

Assumption 1: The regressors {w1t, w2t} are stationary under φ0 with eighth order cumulants

that satisfy
∑∞

r1,r2,r3=−∞ |C1(r1, r2, r3)| <∞ and
∑∞

r1,r2,r3=−∞ |C2(r1, r2, r3)| <∞.
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This assumption requires that regressors to have bounded moments and are not integrated of

order one or higher under φ0. Note that the assumption of stationarity of the data generating

process is only required in the hypothetical stable model, which is relatively easy to satisfy,

especially when the regressors involve lagged dependent variables.

Assumption 2: (εt, ν
′
1t, ν

′
2t)

′ is a vector of i.i.d. errors with mean zero. εt has four finite

moments, (ν ′1t, ν
′
2t)

′ have eight finite moments. {εt} is independent of {ν1t, ν2t} .

From this assumption, the underlying shocks that generate the stochastic φ1t and φ2t pro-

cesses are required to be independent of other sources of randomness in the regression model.

The φ1t process and the φ2t process are allowed to be correlated.

Assumption 3: The regressors {w1t, w2t} are independent of {εt, ν1t, ν2t} under φ0; Or

alternatively, {w1t, w2t} are independent of {ν1t, ν2t} under φ0 and εt is independent of

{w1t, w1t−1, w1t−2...} and {w2t, w2t−1, w2t−2...}.

Thus, the regressors are supposed to be strictly exogenous or alternatively, part or all of the

regressors to be predetermined under φ0. In particular, for the predetermined case, Assumption

3 only requires the regressors generated by the hypothetical stable process to be independent of

the unstable coefficients in the true TVP model21.

Finally, let zt denote date t observations (yt, w
′
1t, w

′
2t)

′. Denote the joint likelihood function

of the data for a given φ path by fT (z1, ..., zT ;φ). In the hypothetical stable model, φ = φ0

for all t; and in the true model, φ = {φt}T
t=1. Thus, the density of the data under φ0 and

the unconditional density of data under φt are fT (z1, ..., zT ;φ0) and
∫ +∞

−∞
fT (z1, ..., zT ;φ) dvφ

respectively, where vφ is a measure of φ.

Assumption 4: Let φt follow (9) and (10). The sequence of densities {
∫ +∞

−∞
fT (z1, ...zT ;φ) dvφ :

T ≥ 1} are contiguous to the sequence of densities {fT (z1, ...zT ;φ0) : T ≥ 1} .

Here contiguity is introduced as a high-level assumption. It may be a slight abuse the lan-

guage to introduce contiguity as an assumption. Rather, it should be understood as a property

possessed by the data generating process associated with the kind of instabilities described in

(9) and (10). It is shown in the paper, a set of fairly general primitive assumptions on the

likelihood function are sufficient to guarantee contiguity for the kind of instabilities that are

21To understand the meaning of Assumption 3, consider an unstable AR(1) model yt = yt−1φt + εt. Under

the true data generating process, the regressor yt−1 is not independent of the sequence {φt, φt−1, ...}. In other

words, Assumption 3 will not hold under φt. But, under the hypothetical stable process yt = yt−1φ0 + εt, as a

function of {εt−1, εt−2, ...}, the regressor yt−1 is indeed independent of {φt, φt−1, ...}, as long as {φt} and {εt}
are mutually independent. In addition, note that Assumption 3 implies conditional homoskedasticity under φ0.
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empirically relevant. But to avoid distracting the analysis from the main theme of the paper,

the primitive assumptions are given in the appendix, which are followed by the proof of con-

tiguity. Also note that though contiguity is a requirement on the likelihood, often researchers

need not to know the concrete form of the likelihood in order to deal with the problems at hand.

The estimation and testing of the two-step TVP model is one such example.

Briefly speaking, the concept of contiguity describes the asymptotic closeness of two se-

quences of densities. If a sequence of densities is contiguous to another sequence of densities,

the convergence results that apply to the latter sequence also hold for the former sequences22.

Intuitively, this says, if the likelihood functions of two data generating processes are very close

to one another in an asymptotic sense, the difference between the two processes are expected to

have effects that are only negligible in large samples. Therefore, relying on contiguity, in order

to establish a convergence result under φt, one only needs to show the convergence result under

φ0. The property of contiguity will transfer convergence in probability or distribution under

φ0, to analogous convergence under φt
23.

Recall in an unstable autoregression or vector autoregression models, the different behavior

of the regressors generated by the true data generating process and those generated by the

hypothetical stable process is induced by small instability in coefficients. Thus, as a consequence

of Lemma A.2 in the appendix, (i.e., the establishment of contiguity for the data generating

process under φt, ) the regressors in an unstable autoregression or vector autoregression model

behaves asymptotically similarly to the regressors in the corresponding stable autoregression or

vector autoregression model.

Lemma 1: Consider the TVP model defined in (11). Suppose assumptions 1 to 4 are satisfied,

then Condition 1 holds.

This contiguity property plays a key role in obtaining Condition 1 under φt. Without con-

tiguity, assumptions 1 to 3 only, (in particular assumption 3, which would not be satisfied by

the autoregression or vector autoregression models under φt), lead to Condition 1 under φ0. In

22See van der Vaart (1998) and Pollard (2001) for an introduction to the concept. For applications of contiguity

in theoretical econometrics, see Andrews and Ploberger (1994), Elliott and Mueller (2004), Muller (2004), Li and

Mueller (2004).
23To illustrate the role of contiguity, consider two examples from the unstable AR(1) model yt = yt−1φt + εt

where for simplicity, assume εt ∼ (0, σ2).

[Example 1]: Under stationarity, T−1 � T
t=1 y

2
t−1

p−→ σ2

1−φ2

0

can be shown to hold under φ0 (i.e., under the

hypothetical stable process yt = yt−1φ0 + εt). Suppose the densities of data under φt is contiguous to the

densities of data under φ0, the above weak convergence result will also hold under φt (i.e., under the true

unstable process), even if the regressor {yt−1} is not stationary under the true process.

[Example 2]: Let �φ = (
� T

t=1 y
2
t−1)

−1 � T
t=1 ytyt−1, and let �σ2 = (T − k)−1 � T

t=1 �ε2t where �εt = yt − yt−1 �φ is

the OLS residual. Under some standard assumptions, it is easy to establish �σ2 p−→ σ2 under φ0. Then suppose

contiguity holds, the standard variance estimator �σ2 remains consistent under φt.
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the two-step minimum distance problem, the disturbances, εt and νt , and the regressor, wt,

are assumed to satisfy Condition 1. In addition, the second-step g(·) function are assumed to

satisfy the following regularity condition. Let Θ be the parameter space of θ and Φ0 be some

neighborhood of φ0. Let ‖ · ‖ be the Euclidean norm.

Condition 2: g(φ, θ), ∂g(φ, θ)/∂φ and ∂g(φ, θ)/∂θ are continuously differentiable in φ

and θ for all φ ∈ Φ0 and θ ∈ Θ with supθ∈Θ supφ∈Φ0
‖∂2g(i)(φ, θ)/∂φ∂φ′‖ < ∞ and

supθ∈Θ supφ∈Φ0
‖∂2g(i)(φ, θ)/∂θ∂θ‖ <∞ for all i ∈ [1, ..., dim(g)]24.

Equations (8) to (10), together with Conditions 1 and 2, complete the specification of the

two-step time-varying parameters model. θ0 is the parameter of interest. {φ0, λ, Σ} that

characterize the random walk process of φt are the nuisance parameters.

3 Estimation of the Two-step TVP Model

3.1 Estimating by the Standard Procedure

The cross-equation restriction g(φt, θ0) is typically non-linear in φt
25. Consider a first-order

asymptotic approximation by linearizing g(φt, θ0) around φ0, the initial value of the φt sequence,

which can also be interpreted as the constant component of φt
26,

g(φt, θ0) = g(φ0, θ0) + Dg(φt − φ0) + Op(T
−1). (12)

where Dg = ∂g(φ0, θ0)/∂φ is a l × p matrix with rank l, l < p. Derivation of (12) is in the

appendix. Note that the overall restriction g(φt, θ0) at t = 0 gives g(φ0, θ0) = 0. This in turn

implies the second term on the right-hand side of (12) should be zero in large samples. Thus,

in order that the cross-equation restriction g(φt, θ0) = 0 is satisfied in an asymptotic sense, it

24For many linear macro models, for example, the linear rational expectations models, g(φ, θ) is linear in θ so

that ∂2g(φ, θ)/∂θ∂θ′ = 0. In this case, Condition 2 only requires the second derivative with respect to φ to be

bounded.
25It is not too difficult to conceive of cases in which cross-equation restrictions are non-linear in φt. For instance,

in the context of an Euler equation in the form of equation (1), even if it is linear in the structural coefficients

θ, so that the cross-equation restriction takes the form g(φt, θ0) = A(φt) + B(φt)θ0, the functions A(φt) and

B(φt) are still possibly nonlinear in φt, with the nonlinearity in A(φt) and B(φt) coming from multiple-period

ahead forecasts.
26A similar decomposition was used in Leybourne (1993) to study the time-varying coefficient regressions in

the presence of linear restrictions. Note that linear restrictions are a special case of (12), in which the remainder

term is identically zero for all t and T .
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is sufficient the following condition holds.

Restriction 1 : 0 = g(φ0, θ0) (13)

Restriction 2 : 0 = Dg(φt − φ0) t = 1, ...T. (14)

Restriction 1 is the stable component of the overall restriction. Inspection of (3) and (13)

reveals that Restriction 1 is the same constraint one would encounter if the reduced-form model

is stable. Restriction 2 is the TVP component of the overall restriction. So long as the first-

order approximation is accurate in large samples, the instability in g(φt, θ0) that is relevant to

asymptotic inference, if any, is captured by the first-order term, Dg(φt − φ0). Thus, the null

hypothesis that, as a function of unstable coefficients, g(φt, θ0) takes a constant value, zero,

over time requires Dgφt, the linear combination of φt in a particular direction, stay constant at

each point in time27.

So one possible procedure to estimate θ is to perform the standard estimation using Restric-

tion 1. However, this does not imply the standard procedure is necessarily valid. To see this,

the OLS estimator of φ0 is φ̂ = [
∑
wtw

′
t]
−1 ∑

wtyt. (In the rest of the paper, sums are taken

over the whole sample period and the integrals are taken from 0 to 1 unless stated otherwise.)

Writing the data generating process as yt = w′
tφ0 + (εt + w′

t(φt − φ0)), where the neglected time

variation in φt is treated as an “omitted” variable, yields

T 1/2 (φ̂− φ0) = A1T +A2T

A1T =
[
T−1

∑
wtw

′
t

]−1

T−1/2
∑

wtεt

A2T =
[
T−1

∑
wtw

′
t

]−1

T−1/2
∑

wtw
′
t(φt − φ0)

where A1T represents the scaled sampling error in the corresponding stable model, and as a

result, leads to the standard distribution A1T ⇒ N (0, Vφ), where Vφ is the asymptotic variance

in the stable model. On the other hand, A2T represents the extra sampling error associated with

φt, which induced a non-trivial limit, A2T = T−1/2
∑

(φt − φ0) + op(1) ⇒ N (0, 1
3λ

2Σ). (Derivation

of the limit of A2T is detailed in the appendix). Thus, the standard estimation results in

T 1/2
(
φ̂− φ0

)
⇒ N

[
0, Vφ +

1

3
λ2Σ

]
(15)

which is a non-standard distribution28. From (15), it is evident the standard first-step inference

of φ that erroneously uses Vφ as the asymptotic variance is misleading. The result in (15)

27The second restriction is true if and only if DgΣD′
g where Σ is defined in (9). This in turn implies Σ is a

matrix with a reduced rank, dim(φ) − dim(g), under the null hypothesis.
28The result in (15) makes use of the independence assumption between εt and φt, so that the asymptotic

variance of �φ is the sum of the standard variance in the stable model and the variance of the extra term induced

by φt.
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demonstrates that the kind of small instabilities under consideration are not negligible in a

statistical sense since they are large enough to invalidate inference.

It would then be natural to expect the distortion extend to the second step, because the

extra sampling error in A2T would carry over to the second step through g(φ̂, θ0),

T−1/2
(
g(φ̂, θ0) − g(φ0, θ0)

)
= DgA1T + T−1/2

∑
Dg(φt − φ0) + op(1)

where the effect of φt is captured by the term T−1/2
∑
Dg(φt − φ0). But then under the null

hypothesis in (14), Dg(φt−φ0) = 0 for all t. So the term representing the effect of φt disappears,

and the asymptotic distribution of g(φ̂, θ0) is unaffected in the presence of φt,

T−1/2 (g(φ̂, θ0) − g(φ0, θ0)) ⇒ Dg N (0, Vφ) .

This in turn implies, as a functional of g(φ̂, θ0), the asymptotic behavior of the second-step

estimator, θ̂, is unaffected, and the standard second-step inference remains valid. Let Vθ be the

asymptotic variance of θ̂ in the stable two-step model. Then the following results holds.

Proposition 1: Consider the two-step problem described by (8)-(10). Suppose Conditions 1

and 2 holds. Under the null hypothesis of g(φt, θ0) = 0, the standard second-step estimation

is asymptotically independent of the time variation in the reduced-form model. The limiting

distribution of the standard second-step estimator is given by T −1/2 (θ̂ − θ0) ⇒ N (0, Vθ).

3.2 Equivalent Linear TVP Representation

In this section, the first-step model is transformed in such a way that Dgφt, the linear combi-

nation of φt of interest in (14), is isolated from the rest of the regression. The purpose of this

exercise is twofold: first, to understand the insight of Proposition 1 in a linear regression setup;

second, to introduce the testing model studied in the next section.

Construct a p× p matrix S by augmenting the l× p matrix Dg with a (p− l)× p matrix H†

such that S−1 exists, S =

[
Dg

H†

]
and S−1 = [H ′

x H
′
z ] where H ′

x corresponds to the first l columns

of S−1 and H ′
z corresponds to the last (p− l) columns of S−1. Then the first-step regression can

be rewritten as

yt = w′
tS

−1Sφt + εt = (Hxwt)
′(Dgφt) + (Hzwt)

′(H†φt) + εt.

Let Hxwt, Hzwt, Dgφt and H†φt be denoted by xt, zt, βt and γt respectively, then the original two-

step model in (8), a reduced-form model subject to the cross-equation restrictions, is equivalent

to the unconstrained problem

yt = x′tβt + z′tγt + εt, (16)

where βt, if time-varying, follows βt−βt−1 = τβνβt with τβ = λβ/T , and γt follows γt−γt−1 = τγνγt

with τγ = λγ/T , where Var(νit) = Σi for i = β and γ. Since xt and zt are correlated, I specify
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the following partial regression

xt = ϑ′zt + ut. (17)

under φ0
29, where ϑ is a constant coefficient matrix and ut is a vector of mean zero disturbances.

By construction, zt and ut are uncorrelated, so that E(utz
′
t) = 0.

Table 1: Correspondences between OLS and MDE

OLS MDE

1. βt = β0 Dgφt = Dgφ0

2. β̂ g(φ̂, θ0) = Dgφ̂+ op(T
−1/2)

3. T−1/2(β̂ − β0) T−1/2(g(φ̂, θ0) − g(φ0, θ0))

By the transformation made above, a set of correspondences between the two-step minimum

distance method (MDE) with time-varying coefficients and ordinary least square (OLS) with

time-varying coefficients are summarized in Table 1. Note that under the null hypothesis of

βt = β0, regression (16) becomes

yt = x′tβ0 + z′tγt + εt (18)

Then, according to the third correspondence in Table 1, the question investigated in the pre-

ceding subsection that, under Dgφt = Dgφ0, whether the distribution of g(φ̂, θ0) is affected by

φt, is equivalent to the following question: In the linear TVP model (18) where β is constant,

whether the distribution of β̂ is affected by γt.

This issue is studied in Elliott and Mueller (2003b) and Li and Mueller (2004). The conclusion

they obtain is, valid inference can still be made on the stable coefficients in the presence of small

instability in the nuisance coefficients30. Therefore, the finding in Proposition 1 is not a surprise,

given that the behavior of g(φ̂, θ0) in the two-step model parallels that of β̂ in the regression

model. In fact, the result in Elliott and Mueller (2003b) and Li and Mueller (2004) extends to

a more general situation where β itself is unstable. as stated in the following proposition31. Let

Vβ denote E(utu
′
t)

−1Var(utεt)E(utu
′
t)

−1, the asymptotic variance of β̂ in the stable model.

29Since the true data generating process under consideration is a time-varying parameter model, the true

partial regression of xt on zt should also be a time-varying parameter model. However, under the contiguity

argument, to get the asymptotic results under φt, I only need to specify the relationship between xt and zt in

the hypothetical stable setup.
30See Section 5.1 for more discussion about this finding in these papers.
31In the next section, this generalized independence property plays an important role in constructing appro-

priate tests for the constancy of β in model (16).

18



Proposition 2: Let yt obey (16)−(17). Suppose Condition 1 holds. Then, the asymptotic

distribution of the OLS estimator β̂ is independent of γt. Its limiting distribution is given by

T−1/2(β̂ − β0) ⇒ N (0, Vβ + 1
3λ

2
βΣβ).

Several comments are in order. First, a special case of Proposition 2 is when β is stable (so

that λβ is zero). Then the inference over β is dominated by the standard term only. This is

exactly the result obtained by Elliott and Mueller (2003b) and Li and Mueller (2004).

Second, in the more general case that β is unstable, the non-standard distribution of β̂ is

induced by the instability in βt itself, rather than the instability in the nuisance coefficients, γt.

To see the intuition, when both β and γ are unstable, the standard procedure estimates

yt = x′tβ0 + z′tγ0 + (εt + x′t(βt − β0) + z′t(γt − γ0)). (19)

The instability ignored by the standard procedure are essentially two omitted variables, x ′
t(βt −

β0) and z′t(γt − γ0), in the composite error. I show in the appendix that whenever γ0, the

constant component of the nuisance coefficients, is partialed out in the standard procedure (by

premultiplying the matrix form of equation (19) by the residual matrix Mz = I−Z(Z ′Z)−1Z ′), an

important by-product of this operation is, the unstable component of the nuisance coefficients,

(γt − γ0), is partialed out asymptotically. From the derivation detailed in the appendix, it is

clear the crucial condition behind this outcome is E(utz
′
t) = 0. Note that this is the orthogonal

condition in the partial regression of xt on zt in (17), and it holds by construction. As a result,

time variation in γ does not alter the limiting behavior of β̂.

4 Testing the Two-step TVP Model

With the decomposition of the overall restriction g(φt, θ0) = 0 into g(φ0, θ0) = 0 and Dg(φt−φ0) =

0, the overall evaluation of the two-step TVP model becomes a joint test of g(φ0, θ0) = 0 and

Dg(φt − φ0) = 0. In this section, three issues are studied: testing for the stable restriction

g(φ0, θ0) = 0; testing for the TVP restriction Dg(φt −φ0) = 0; and finally, the statistical relation-

ship between the two tests.

4.1 Testing the stable Restriction g(φ0, θ0) = 0

The J -statistic is shown to be a functional of g(φ̂, θ0), see the appendix. According to the

analysis in Section 3.1, the asymptotic behavior of g(φ̂, θ0) is not affected by the time variation

in φt under the null hypothesis. Hence, to test for g(φ0, θ0) = 0, the two-step TVP model can

be treated as a standard two-step model because ignoring the reduced-form instability does not

alter the asymptotic distribution the J -test.
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Proposition 3: Consider the two-step problem described by (8)-(10). Suppose Conditions 1 and

2 hold. Under the null hypothesis of g(φt, θ0) = 0, the standard test for restriction g(φ0, θ0) = 0

is asymptotically independent of the time variation in φt. The asymptotic distribution of the

test is given by JT ⇒ χ2
dim(g)−dim(θ)

, with JT being defined in (7).

4.2 Testing the TVP Restriction Dg(φt − φ0) = 0

Testing the constancy of Dgφt in the two-step model is essentially testing the constancy of β in

model yt = x′tβt + z′tγt + εt, see the first correspondence in Table 1. Although there is a long-

standing interest and effect in developing tests for structural stability, the studies most relevant

to the current problem are concerned with testing model yt = x′tβt + z′tγ0 + εt, where the non-

tested coefficient, γ, is stable. A natural question to investigate is then, whether tests developed

for constant nuisance coefficients are robust in the presence of unstable nuisance coefficients. To

start, I first review the existing tests for the constancy of β when the non-tested coefficient, γ,

is stable.

4.2.1 Related Literature

In the literature, a large number of stability tests have been developed for yt = x′tβt + z′tγ0 + εt.

The test focuses on the possibility of a non-constant β while requiring for other coefficients to

be stable over time.

The first set of tests for this TVP model are Nyblom’s (1989) locally most powerful tests and

point optimal invariant tests (Saikkonen and Luukkonen (1993), Shively (1988) and Elliott and

Muller (2003a)), which are invariant to translations and scale transformations. The Nyblom

test is a locally optimal test obtained by comparing the Gaussian likelihood of certain maximal

invariant under the null of a constant β and under the local alternative that β follows a random

walk. Point optimal invariant tests (POI) are also Gaussian likelihood based, with one value of

λ being chosen to construct the test statistic. The POI tests are optimal for the chosen value

of λ.

Another set of test statistics consist of sequential Chow statistics, which are motivated to

test the null of a constant β against the alternative of a single discrete break in β at certain

fraction through the sample. Three such tests are frequently used, namely, Quandt (1960)

likelihood ratio statistic (QLR), Andrews-Ploberger (1994) mean Wald statistic (MW) and

Andrews-Ploberger (1994) average exponential Wald statistic (EW). These tests are performed

over restricted sample period with appropriate trimming at both ends. The QLR test uses the

maximum Chow statistic over all possible break dates within the trimmed sample. The MW

and EW tests are optimal tests in the sense of maximizing certain weighted average power

criterion over the trimmed period32.

32The choice of the weighting scheme distinguishes the two Andrews-Ploberger tests and allows the researcher
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Although the two set of tests have been derived with respect to different alternatives, they

have limiting distributions that are qualitatively similar. This provides intuition for the fact

that these tests have power over a range of alternatives, instead of being limited to the alter-

natives they are designed for. The limiting distributions of these tests under the random walk

alternatives are derived in Stock and Watson (1998) and Elliott and Muller (2003a)33 . Asymp-

totic power analysis show that, for local alternatives, all tests perform well and very close to

the power envelope. For more distant alternatives, the POI tests perform well. The Nyblom

test and the MW test lose power34, and to a less degree, so do the EW test and the QLR test35.

4.2.2 The Testing Model and Appropriate Tests

Motivated in Section 3.2, the testing model yt = x′tβt + z′tγt + εt is concerned with the constancy

of βt, while allowing for other coefficients, γt, to vary over time36: H0 : βt = β0 and γt 6= γ0

against H1 : βt 6= β0 and γt 6= γ0.

The present testing model is seen to be a non-standard problem because γt, the time-varying

nuisance sequence, is present under both the null and the alternative. This distinct feature

complicates the testing problem. A desired test, then, should have a limiting representation

which is (i) dependent on the βt process and (ii) independent of the γt process. The dependence

property of (i) indicates the test has power against the time variation in βt. The independence

property of (ii) ensures that the instability detected, if any, originates solely from βt
37. In what

follows, I investigate whether this independence property is possessed by existing stability tests,

assuming perhaps erroneously that γt is constant.

I first consider the class of tests motivated by discrete breaks. This class includes the QLR

test, the MW test and the EW test, which are functionals of sequential Chow statistics. Let

SSRt1,t2 denote the sum of squared residuals from regressing yt on xt and zt over sample period

t1 ≤ t ≤ t2. The Chow F-statistic testing for a break at date [sT ], with 0 ≤ s ≤ 1, is

FT (s) =
SSR1,T − SSR1,[sT ] − SSR[sT+1],T

k(SSR1,[sT ] + SSR[sT+1],T )/(T − k)
(20)

to orient the power to certain part of the sample relative to the others. The MW test assigns more weight to

alternatives closer to the null and the EW test assigns more weight to alternatives further away from the null.
33In Elliott and Muller (2003a), the asymptotic distributions of the POI tests are derived for a general class

of breaking processes that cover the random walk process.
34This is consistent with the fact that the Nyblom test is designed for local alternatives, and the MW test puts

more weight to local alternatives.
35See Andrews, Lee and Ploberger (1996), Stock and Watson (1996), Stock and Watson (1998) and Elliott and

Muller (2003).
36According to the random walk processes for βt and γt specified in Section 3.2, the null hypothesis and the

alternative hypothesis can be written equivalently as H0 : λβ = 0 and λγ 6= 0 against H1 : λβ 6= 0 and λγ 6= 0.
37There are other situations in which a test with such an independence property is desirable. For example, if

the goal is to locate the instability among coefficients, then the evidence from a test that is unable to disentangle

the instability in the coefficients of interest from that in the nuisance coefficients would not be informative.
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where k = dim(β). Let 0 < s0 < s1 < 1, then the QLR, MW and EW statistics are

QLRT = sup
s∈(s0,s1)

FT (s); MWT =

∫ s1

s0

FT (s)ds; EWT = log

∫ s1

s0

exp

[
1

2
FT (s)

]
ds (21)

Intuitively this class of tests are independent of γt because the Chow F-statistic can be equiv-

alently written as a functional of the estimated difference of β over different subsamples38. By

Proposition 2, the distribution of β̂ is asymptotically independent of γt. As a result, the esti-

mator of β in each subsample possesses this independence property, so should their difference.

The second class of tests, designed for random walk alternatives, include the Nyblom test

and the POI tests. Consider the Nyblom test first. The standard Nyblom test for the constant

γ model yt = x′tβt + z′tγ0 + εt can be constructed in two ways39,

Lx
T = T−1

T∑

t=1

[
T−1/2

t∑

i=1

e′ix
′
i

̂Var(xtεt)
−1
T−1/2

t∑

i=1

xiei

]

Lu
T = T−1

T∑

t=1

[
T−1/2

t∑

i=1

e′iû
′
i

̂Var(utεt)
−1
T−1/2

t∑

i=1

ûiei

]

where et is the residual of regressing yt on xt and zt, ût is the residual of regressing xt on zt.

Lu
T can be thought of being obtained in two steps: before Lu

T is computed in the second step,

the testing model is pre-multiplied by Mz = I − Z(Z ′Z)−1Z ′ to partial out γ0.

When the constancy of β is tested in model yt = x′tβt +z
′
tγ0+εt, Lx

T and Lu
T have the same null

distribution. They both converge to
∫
W (s)′W (s)ds where W (s) is a k × 1 standard Brownian

motion. But if the true testing model is yt = x′tβt + z′tγt + εt where the non-tested coefficient

γ is unstable, Lx
T and Lu

T behave differently: Lu
T is robust to the instability in γt, while Lx

T ,

unfortunately, is contaminated by γt, and hence inappropriate to use for this testing model40.

The technical insight driven this difference is straightforward: As discussed in Section 3.2,

38Chow statistic expressed in the estimated difference of β can be computed as,

FT (s) =
T − k

k � �β1,[sT ] − �β[sT+1],T � ′ � 1

s(1 − s)
�Σ−1

uu 	Var(utεt) �Σ−1
uu 
 −1 � �β1,[sT ] − �β[sT+1],T � (22)

where ut is the residual from the partial regression of xt on zt, Σ̂uu and ̂Var(utεt) are the standard estimators

for E(utu
′
t) and Var(utεt) in the corresponding stable model. The Chow F-statistic presented in this version

is derived under part 1 of Condition 1 that data moments are approximated by the appropriate fractions of the

corresponding full-sample moments.
39To be more concrete, Lx

T is obtained by computing the Gaussian likelihood ratio of the maximal invariant,

Mε, under the null and under the alternative, where M = I − R(R′R)−1R′ with R = [X Z]; εt = εt under

the null of a stable β and εt = εt + x′t(βt − β0) under the alternative of an unstable β. Lu
T can be computed in

two steps. In the first step, partial out z′tγ0 by pre-multiplying the matrix form of yt = x′
tβt + z′tγ0 + εt by the

residual matrix Mz = I−Z(Z ′Z)−1Z ′, which yields ỹt = ũ′tβt + ε̃t, where ỹ = Mzy; ũ = Mzx and ε̃ = Mzε.

In the second step, Lu
T is obtained by computing the Gaussian likelihood ratio of the maximal invariant, Muε̃,

under the null and under the alternative, where Mu = I − ũ(ũ′ũ)−1ũ′, ε̃t = ε̃t under the null of a stable β and

ε̃t = ε̃t + ũ′t(βt − β0) under the alternative of an unstable β.
40To see this, Lx

T is a functional of the partial sum T−1/2
∑t

i=1 xiei. It is shown in the appendix, under
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when the stable component of the γt process, γ0, is partialed out in the standard procedure,

the time-varying component of the γt process, γt − γ0 is also partialed out asymptotically. So

the asymptotic effects of γt is eliminated before Lu
T is constructed in the second step. For this

reason, erroneously assuming a constant γ when it is time-varying does no harm. On the other

hand, when applying Lx
T to the current testing problem, the tested block x′

tβt and the rest of the

model z′tγt + εt is not independent because of the correlation between xt and zt
41. Unavoidably,

this would lead to an extra term that is non-trivial in the limit, which alters the distribution

of the Lx
T statistic.

Similarly, POI tests that are asymptotically independent of the time variation in the non-

tested coefficients should be used for testing purpose. Following the same reasoning behind

the robust Nyblom test, robust POI tests could be constructed by eliminating the asymptotic

effects of γt from the regression before computing the test statistics.

In the appendix, it is shown that limiting distributions of QLRT , MWT , EWT and Lu
T are

identical to their counterparts of the constant γ model, due to the independence of β̂ to γt.

These limiting distributions are first derived in Stock and Watson (1998)42. Nevertheless, the

asymptotic results are summarized in Proposition 4. Let W and Wβ be k × 1 independent

standard Brownian motions with k = dim(β). Let DB = Var(utεt)
−1/2E(utu

′
t)Σ

1/2
β .

Proposition 4: Suppose yt obeys (16) and (17). Suppose Condition 1 holds. Let hλ(s) =

W (s) + λβDB

∫ s

0
Wβ(r)dr. Then,

1. V̂ar(utεt)
−1/2 T−1/2

[sT ]∑

t=1

ûtet ⇒ hλ(s) − shλ(1)

2. FT (s) ⇒ F ∗(s) where F ∗(s) = [ks(1 − s)]−1[hλ(s) − shλ(1)]′[hλ(s) − shλ(1)]

As a result of Proposition 4 and the continuous mapping theorem, any test statistic which is a

functional of FT (s), denoted by ξT (FT (s)), has the limiting presentation ξT (F ∗(s))43.

In terms of local asymptotic power, as a result of the independence property of the tests, all

findings in the previous literature regarding tests for model yt = x′tβt + z′tγ0 + εt, summarized in

Section 3.1, carry over to the present testing model yt = x′tβt + z′tγt + εt.

both the null hypothesis of a constant β and the alternative of an unstable β, the limiting distribution of

T−1/2
∑t

i=1 xiei depends on λγ and Σγ , the two parameters governing the γt process. On the other hand, the

null and the alternative distributions of T−1/2
∑t

i=1 ûiei is asymptotically independent of γt.
41This says, only in the special case that xt and zt are asymptotically uncorrelated, Lx

T is robust to the time

variation in γt. But in general this is not true.
42The limiting distributions derived in Stock and Watson (1998) are for testing model yt = x′

tβt + εt, which

can be easily extend to the constant-γ model.
43In the context of the QLR, MW, EW and the robust Nyblom tests, their asymptotic distribution is

given by Lm
T ⇒ � 1

0
k s(1 − s)F ∗(s)ds, QLRT ⇒ sups∈(s0,s1) F

∗(s), MWT ⇒ � s1

s0

F ∗(s)ds, and EWT ⇒
log � s1

s0

exp � 1
2
F ∗(s) 
 ds respectively.
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4.3 Size Control of the Joint Test

Since the overall evaluation of the two-step TVP model is a joint test of the stable coefficient

restriction (13) and the TVP restriction (14), one issue that has to be addressed is the size of the

overall test. If the two individual tests are not independent, then to have a desired significance

level of the overall test, the significance levels of both tests have to be adjusted to account for

such correlation. Fortunately, this issue does not arise. The following proposition clarifies the

statistical relationship between the two tests.

Proposition 5: Consider the two-step minimum distance problem described by (8)-(10). Sup-

pose Conditions 1 and 2 hold. Then, the standard specification test for restriction g(φ0, θ0) = 0

and the stability tests for restriction Dg(φt − φ0) = 0 are asymptotically independent under the

null hypothesis of g(φt, θ0) = 0.

Several remarks regarding Proposition 5 are in order. On the one hand, given the indepen-

dence, for the joint test to have a correct size, it is easy to fix the size of each of the component

tests. On the other hand, the combination of the size of the two tests that matches certain

desired size of the overall test is not unique. Different weighting schemes assigned to the two

tests would result in different weighted average power for tests of equal (overall) significance

level. The standard two-step procedure can be interpreted as the extreme case of assigning all

weight to the test for the first restriction g(φ0, θ0) = 0, and hence it has zero power against the

alternatives of the second restriction Dg(φt − φ0) = 0. An equal weight, which indicates the

alternatives in the two component tests are equally likely, would result in an overall test with

power against alternatives of both component tests44.

5 Generality of Results to Other Estimation Methods

Most econometric estimators can be viewed as being obtained by minimizing a quadratic form in

data and parameters. In the context of estimating a linear Euler equation, the analog between

different estimation methods is illustrated in Li (2004). The two-step minimum distance method

is, according to Li (2004), (i) essentially the maximum likelihood estimation of the reduced-

form model subject to the cross-equation restrictions45; and (ii) asymptotically equivalent to

44Model selection with parameter instability is also studied in Rossi (2004), according to which, when the

alternatives in the two component tests are of equal likelihood, a joint test as the one discussed in the present

paper would not achieve the optimal weighted average power. However, an obvious strength of the testing

procedure in the current paper is that, if the overall restriction is rejected, the researcher knows exactly which

component of the overall restriction fails.
45To see this, the OLS estimation of the first-step model is equivalent to the maximum likelihood estimation

of the first-step model with Gaussian disturbances. The objective function of the second-step minimum distance
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the GMM approach under certain condition46. It should not be a surprise that, all results in

preceding sections are not limited to linear regressions or two-step minimum distance models.

Rather, they extend to other estimation methods.

5.1 Inference on Stable Coefficients

It is seen in Section 3, in the two-step minimum distance model, standard estimation leads

to valid inference on the stable coefficients in the presence of reduced-form instability. The

same conclusion is obtained in Elliott and Mueller (2003) in linear regression models, and most

recently, in Li and Mueller (2004) in the GMM models47. Summarizing, “valid inference over

stable coefficients” is a general property that applies to a wide range of unstable econometric

models. Recall in Section 3.2, the insight of this result was illustrated in a time-varying linear

regression model. In the appendix, I show that by treating the linearized GMM first order

conditions as generalized “regression” models, this “partialing-out” argument also provides the

technical insight for the result of Li and Mueller (2004).

5.2 Model Validation Testing

Section 4 concludes that, in the framework of the two-step model, to evaluate a restriction

involving unstable coefficients, one can decompose the restriction into its stable component

and its TVP component. A sequential procedure can be applied to test the two components

separately. The fact that the test for the stable component is asymptotically independent of

the test for the TVP component makes it easy to have an overall test with a desired significance

level. In what follows, I extend this statement to other econometric models, by developing an

argument applicable to general extremum estimation methods.

Consider the problem of testing a restriction of the generic form

a(φt) = 0 (23)

where φt is a vector of time-varying coefficients, following the TVP process in (9) and (10). a(·)
is a possibly non-linear vector function of its argument. The function a(·) is assumed to satisfy

some regularity conditions. Let Φ0 be some neighborhood of φ0.

estimation is the maximum likelihood Wald statistic of testing the cross-equation restrictions.
46As shown in Li (2004), when the first-step model is a reduced-form vector autoregression, the two-step

method and GMM are asymptotically equivalent as long as the GMM instrument set is identical to the VAR

information set.
47Although different from the analysis in the present paper, Li and Mueller (2004) assume the time-varying

coefficients follow a deterministic path, rather than a random process. Many other papers in the literature

adopt this assumption to study parameter instability. See for example, Ghysels and Hall (1990a), Andrews and

Ploberger (1994), Sowell (1996), Rossi (2003), among others.
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Condition 3: a(φ) and ∂a(φ)/∂φ are continuously differentiable in φ for all φ ∈ Φ0 with

supφ∈Φ0
‖∂2a(i)(φ)/∂φ∂φ′‖ <∞ for all i ∈ [1, ..., dim(a)].

Let QT (φ) be the objective function in estimating φ0. It could be the objective function

of OLS, NLS, MLE or GMM, among others. Denote the first and the second derivatives of

QT (φ) with respect to φ as ∂QT (φ)/∂φ = T−1
∑
st(φ) and ∂2QT (φ)/∂φ∂φ′ = T−1

∑
ht(φ), where

st(φ) and ht(φ) are the score and Hessian functions for date t observation48. To establish the

asymptotic results, the score and Hessian functions are assumed to satisfy Condition 4 below.

Note that Condition 4 is a generalized version of Condition 149, so that it not only applies to

linear models, but also covers a wide variety of non-linear models. In Condition 4 below, let

Wφ be a standard Brownian motion associated with φt.

Condition 4: Functions st(φ) and ht(φ) satisfy the following requirements under φt.

1. T−1
∑[sT ]

t=1 ht(φ)
p−→ sEht(φ) uniformly for all φ ∈ Φ0.

2. T−1/2
∑[sT ]

t=1 st(φt) ⇒ F (s) for some mean zero Gaussian stochastic process F (s) that has

E[F (s)F (s)′] = s Ω where Ω is a positive definite matrix.

3. T−1
∑[sT ]

t=1 ht(φ0)T
−1/2

∑t
i=1 νi ⇒ Eht(φ0)Σ

1/2
∫ s

0
Wφ(r)dr

Let φ̂ and φ̃ denote the unconstrained and constrained extreumum estimators of φ0 ob-

tained by ignoring the instability in φt, so that φ̂ = argminφ∈Φ0
QT (φ) and φ̃ = argminφ∈Φ0

QT (φ)

subject to a(φ) = 0. Let V �φ and V �φ be the asymptotic variances of φ̂ and φ̃ in the cor-

responding stable model. Let LRT = 2T [QT (φ̃) − QT (φ̂)], LMT = Tγ′T Âvar(γT )−1γT , and

WT = Ta(φ̂)′Âvar(a(φ̂))−1a(φ̂) be the likelihood ratio test50, Lagrange multiplier test and Wald

test statistics, respectively, and γT is the Lagrange multiplier in the constrained problem,

Âvar(a(φ̂)) and Âvar(γT ) are the estimated asymptotic variances of a(φ̂) and γT assuming a

stable model51. Parameters λ and Σ are defined in (9) and (10). Then, I have the following

proposition that parallels the set of testing results for the two-step minimum distance model.

48For estimation methods other than MLE, calling st(φ) and ht(φ) the score and Hessian functions is a slight

abuse of the language because QT (φ)’s for methods other than MLE are not the likelihood function. But I will

continue to use these terms because of the analog between various methods in deriving the asymptotic results.
49Consider regression model yt = x′

tφt + εt, then QT (φ) = T−1 � et(φ)′et(φ) where et(φ) = yt − x′
tφ, st(φ) =

xtεt, and ht(φ) = xtx
′
t. When ht(φ) and st(φ) in Condition 4 is replaced by their corresponding OLS expressions,

we obtain Condition 1. Moreover, similar to Condition 1, any primitive assumptions that lead to Condition 4

under φ0, together with the contiguity argument would be sufficient to guarantee Condition 4, which is defined

under φt.
50For the statistic LRT , it might be more appropriate to call it distance metric test, rather than likelihood

ratio test, for methods other than maximum likelihood estimation. But for simplicity, the name “likelihood ratio

test” is used for all estimation methods.
51By the theory results in Section 2.3, as long as (i) Âvar(a(φ̂)) and Âvar(γT ) are consistent estimator in the
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Proposition 6: Consider the testing problem described by (9), (10) and (23). Under Conditions

3 and 4, following results hold.

1. φ̂ and φ̃ are consistent and asymptotically normal. Their limiting distributions are given

by T−1/2(φ̂− φ0) ⇒ N (0, V �φ + 1
3λ

2Σ) and T−1/2(φ̃− φ0) ⇒ N (0, V �φ + 1
3λ

2Σ).

2. Evaluation of a(φt) = 0 can be proceeded by sequentially testing the TVP restriction

A(φ0)(φt − φ0) = 0, where A(φ0) = ∂a(φ0)/∂φ, and the stable restriction a(φ0) = 0.

3. Standard specification tests for a(φ0) = 0, including the standard likelihood ratio test, the

Lagrange multiplier test and the Wald test, are independent of the time variation in φt,

under the null of a(φt) = 0. Test statistics LRT , LMT and WT all converge to a central

χ2 distribution, with degrees of freedom equal to the dimension of a(φt).

4. Standard specification tests for a(φ0) = 0 are asymptotically independent of Chow-statistic

based stability tests for A(φ0)(φt − φ0) = 0 under the null of a(φt) = 0.

According to part 1 of Proposition 6, the conventional estimators of φ0 remain consistent

in the presence of instability, but standard deviations of elements of φ̂ or φ̃ based on the

conventional distributions will be incorrect. The standard t-test or F -test for the coefficients will

lead to over-rejection in general. Also, note that, the distortionary effect of φt solely depends on

λ and Σ, the two parameters governing the φt process, while other model features are irrelevant

to the magnitude of the distortion52. The effects of parameter instability on inference are also

studied in Li and Mueller (2004) for GMM models. Due to the deterministic nature of the

time-varying coefficients assumed in Li and Mueller (2004), instability induces a constant shift,

rather than a change in the variance, in the limiting distributions of the standard estimators,

and the size of the bias only depends on the path of φt. Therefore, part 1 of Proposition 6 is

complementary to that of Li and Mueller (2004).

According to part 3 of Proposition 6, although distribution of φ̂ or φ̃ is distorted by the

ignored instability in φt, distributions of the standard specification tests remain unaltered.

A restatement of this result is, instability would easily remain undetected with the standard

tests because the standard tests have no power in distinguishing a class of local time-varying

alternatives of the kind considered in the paper. In the literature, a similar point has been

made in Newey (1985), Ghysels and Hall (1990a), and most recently, Li and Mueller (2004),

which show that in GMM models, Hansen’s J -test has no asymptotic power against a class

of deterministic time variations in the coefficients over the sample period. Though the above

mentioned studies, including the current paper, consider different forms of local alternatives

against the null of stability, essentially the problems reported for the standard specification

corresponding stable model, and (ii) contiguity holds for the data generating process, these estimators remains

consistent in the unstable model.
52So the distortion on the variance of �φ reported in (15) for the linear regression model is just a special case

of the first result in Proposition 6.
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tests can all be classified as identification problems, because in all these studies, the extra

quadratic term induced by the time varying coefficients which would lead to a non-central χ2

distribution of the standard tests, turns out to be zero for certain class of local instabilities due

to various kinds of singularity53.

It follows that, as stated in part 2 of proposition 6, standard specification tests alone are

not adequate for testing an overall restriction with potentially unstable coefficients. Instead,

they must be supplemented by a stability assessment of the restriction. Actually, this issue

has been raised in the literature long before the present paper. See, for example, Ghysels and

Hall (1990a and 1990b) and Oliner, Rudebusch and Sichel (1996). Largely motivated by the

rationale of the Lucas (1976) Critique, in their discussions about GMM model validation tests

of Euler equations, the authors stress that Structural stability tests are a natural diagnostic

for Euler conditions. In the present paper, this intuition is formalized econometrically and it is

seen to apply to a broad range of econometric models. The analysis of the paper also enables

me to clarifies the statistical relation between the standard specification tests and the stability

tests. By part 4 of Proposition 6, stability tests should not be viewed as substitutes for standard

specification tests, and vice versa. Rather, they are complementary to, and independent of, one

another.

In practice, the necessity of stability tests as a model diagnostic appears little received.

Most empirical work in macroeconomics literature judges model adequacy of Euler conditions

using only the conventional specification tests. According to the results of the paper, with a

changing economic environment, if an Euler equation fails the standard specification test, it

fails the overall model assessment. But, if an Euler equation is not rejected by the standard

specification test, it does not necessarily imply it is a valid structural representation. In this

sense, to determine whether they are truly structural, those Euler equation models having

been received supporting evidence from the standard specification tests should be submitted

to further scrutiny by testing whether they exhibit structural stability. Such an example is

provided in the application part of the paper. One Euler equation widely accepted in empirical

literature on the basis of the standard specification test, fails the stability assessment. Though

any empirical exercise that ignores the potential time variation in the data generating process

can be interpreted as subjectively assuming stability holds with probability one, given the

widespread instability found in macroeconomic relations, this seems an inappropriate weight

53In the current paper, the family of instabilities that (i) take the TVP form in (9) with the nesting in (10), and

(ii) moves along directions characterized by ∂a(φ0)
∂φ

φt = ∂a(φ0)
∂φ

φ0, will lead to a zero non-centrality parameter.

Here, singularity can be seen to arise from Var(φt), or equivalently, according to (9) and (10), arise from the

matrix Σ, which has a reduced rank of dim(φ) − dim(a(φ)). In Newey (1985), the family of deterministic local

alternatives that would cause the consistency problem in GMM testing is characterized by setting the non-

centrality parameter of the distribution of the J-test to zero. In Ghysels and Hall (1990), the instability in the

form of a single discrete break turns out to be a particular member of the class of alternatives characterized in

Newey (1985).
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scheme assigned to the two parts of the overall model validation. Therefore, the analysis of the

paper recommend a major re-orientation in the evaluation of macroeconomic models: stability

tests should routinely be reported, in addition to the conventional specification tests.

6 An Application to Investment Euler Equations

6.1 Background

Since Lucas’ (1976) indictment on several traditional models including the traditional invest-

ment model, the subsequent research program of rational expectations has made Euler equation

a popular approach to modeling investment. Best known early theoretical work on firm’s opti-

mal investment decision includes Hayashi (1982) and Abel and Blanchard (1983), which derive

the investment Euler from firm’s profit maximization subject to technology and adjustment

cost of investment. Since then this formulation of investment decision has become standard

and showed up in mainstream macroeconomics textbooks, for instance, Blanchard and Fischer

(1989), Romer (1996) and Obstfeld and Rogoff (1996). In recent literature, most theoretical

work that involves endogenous investment focus on general equilibrium analysis, with firm’s

investment decision being part of a fully-structural model. But the modeling of the investment

block remains the standard Euler equation approach, examples are King and Watson (1996),

Jermann (1998), Bernanke, Gertler and Gilchrist (1998), Kim (1999), Casares and McCallum

(2000), Edge (2000), Christiano, Eichembaum and Evans (2001), Edge, Laubach, and Williams

(2003) and Smets and Wouters (2003a, 2003b), among many others.

There is a relatively smaller empirical literature on investment Euler equations. Abel (1980)

was probably the first paper to estimate an investment Euler equation with rational expecta-

tions. Later work includes Pindyck and Rotermberg (1983), Shapiro (1986a, 1986b), Gilchirist

(1990), Gertler, Hubbard and Kashyap (1991), Hubbard and Kashyap (1992), Whited (1992),

Oliner, Rudebusch and Sichel (1995 and 1996) and Gilchrist and Himmelberg (1998). Gen-

eralized method of moments (GMM) is used in all of these papers to estimate the structural

coefficients.

In terms of model validation testing, empirical work cited above mostly obtained support-

ing results. The supporting empirical evidence was found on the basis of Hansen’s J -test for

over-identifying restrictions only54. Unfortunately, as discussed in preceding sections, standard

specification tests are not enough for overall model evaluation. I have shown in theory that when

54In general equilibrium empirical models such as those estimated in Christiano, Eichembaum and Evans

(2001) and Smets and Wouters (2003a and 2003b), typically the empirical adequacy of the investment block is

not investigated separately. Instead, it is only a part of the evaluation of the general equilibrium model. Again,

there is little examination of stability of the estimated parameters of taste and technology governing objective

functions.
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there is instability in the data generating process, rather than relying on conventional speci-

fication tests as the sole model diagnostic, stability assessment of structural relations should

be an essential part of an overall model evaluation. This is consistent with the standards of

the Lucas (1976) Critique, according to which, such local alternatives are precisely the relevant

ones to confront when testing the success of estimated Euler equations. Intuitively, if economic

theory predicts a structural equation to be invariant across time and regimes, then the esti-

mated equation should exhibit a similar invariance, suppose the structural model is correctly

specified. In this aspect, to my knowledge, Oliner, Rudebusch and Sichel (1996) is probably the

only paper to date that incorporates stability study into the overall evaluation of an investment

Euler equation, and their results point to parameter instability, and hence inadequacy of the

investment model they studied.

In this section, using the two-step classical minimum distance method, I examine several in-

vestment models that are typical of those used in the macroeconomic literature. The motivation

of this examination is twofold. First, I aim to conduct a relatively more comprehensive analysis

in investment models than those having been reported in the literature. To be more concrete,

three investment Euler equations are considered, with (1) investment-capital ratio, (2) capital

growth, and (3) investment growth being the decision variable respectively. Among them, to

my knowledge, evaluation of the model in investment growth and the model in capital growth

has not been reported in the empirical literature. The model in investment-capital ratio, on

the other hand, is arguably the most popular model in both theoretical and empirical macroe-

conomics. For this model, my aim is to determine whether evidence from my study, especially

from various stability tests contradicts that from standard specification tests in the previous

literature. In this paper, these three investment models are diagnosed using the conventional

J -test for the cross-equation restrictions the investment Eulers imposed on the reduced-form

models, together with a battery of structural stability tests.

A second motivation is, as documented in Li (2004), the two-step minimum distance esti-

mator is essentially a ML estimator of the reduced-form model subject to the cross-equation

restrictions, while almost all previous empirical research on investment Euler equations was

conducted in the GMM framework. ML estimator and GMM estimator behave very differently

in finite samples55. Simulation study in Fuhrer, Moore and Schuh (1995) suggests that the small

sample performance of ML estimator is superior to that of GMM estimator in various aspects56.

Thus, in the current context of investment Euler equations, the two-step minimum distance es-

timator is expected to possess better finite sample properties than the most widely-used GMM

55It is well known in the GMM framework, pathological cases caused by weak instruments are common and

shown to impart serious distortion on inference and specification tests. See the series of papers on the finite

sample performance of GMM estimators in Journal of Business and Economic Statistics, 14, 1996. For example,

Altonji and Segal (1996) and Hansen, Heaton and Yaron (1996).
56In Fuhrer, Moore and Schuh (1995), small sample properties of a ML estimator and a GMM estimator are

compared in the context of a linear-quadratic inventory Euler equation.
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estimator, and hence, to provide more reliable empirical evidence.

6.2 Investment Equations

The investment models examined in the paper are some standard investment Euler equations

derived from the representative firm’s profit optimization. Although the assumptions underlying

the model are open to criticism, I have adopted them because I intend to assess the validity of

standard models that have been used in the literature.

6.2.1 Common features

Investment Euler equations based on adjustment cost functions have become a fixture in applied

work. The investment models considered in the paper differ only in their specifications of the

adjustment cost of capital stock. In what follows, I first present the common features shared

by these models before introducing various specifications on the adjustment cost. The firm’s

production function is assumed to be of Cobb-Douglas with constant returns to scale,

Yt = F (Kt, Lt) = AtK
α
t L

1−α
t , (24)

where Kt is the capital stock at the beginning of period t; Lt is the employment during period

t; At is an exogenous shifter of the total productivity; and the capital share in production, α,

is a constant with 0 < α < 1. Capital is subject to adjustment cost. Let Ct be the adjustment

cost of capital in period t. Following the usual practice in the literature, the representative firm

is assumed to maximize the expected present value of real future profits

Et

[
∞∑

s=t

βs−tRs

]
. (25)

where β is the firm’s time discount factor which is assumed to be constant. The period real

profit of the firm, Rs, is defined as57

Rs = F (Ks, Ls) − Cs − ωsLs − Isp
I
s (26)

where Is is the gross investment during period s, pI
s is the relative purchase price of capital

goods, and ωs is the real wage in period s. The capital stock, Kt, evolves according to the

following law of motion,

Kt+1 = (1 − δ)Kt + It, (27)

where δ is a constant depreciation rate on the firm’s capital stock.

57Rather than introducing the adjustment costs in the period profit function, an alternative way to introduce

the adjustment costs is to place it in the law of motion for capital in (27). The two formulations are shown

to deliver similar results concerning the optimal investment rule, see Hayashi (1982). I henceforth focus on the

current formulation.

31



6.2.2 Adjustment costs of capital

At the aggregate level, changes in capital stock occur at a finite rate and investment is persistent.

The persistence and the smooth and continuous changes in investment prompted researchers

to focus on convex adjustment costs. In applied work, adjustment costs are typically assumed

to be quadratic. Specifically, two classes of specifications used in the literature are considered.

The first class of cost functions model the adjustment cost as a function of investment-capital

ratio. This class of cost functions are, thus far, most widely used in the literature58,

C(It,Kt) = [φ1(It/Kt) + φ2(It/Kt)
2]Kt (28)

C(It,Kt) = [φ1(It/Kt) + φ2(It/Kt)
2]It p

I
t . (29)

Both specifications penalize the investment share in capital stock It/Kt
59. For (28) and (29) to

be well-defined, φ2 in both equations should be positive60.

Another class of cost functions that have also been used in the literature are as follows61,

C(It, It−1) =
[
φ0 + φ1(It/It−1) + φ2(It/It−1)

2
]
It p

I
t (30)

C(It, It−1) = φ̃1It + φ̃2I
2
t + φ̃3(It − It−1) + φ̃4(It − It−1)

2. (31)

Specification (30) penalizes the growth in investment. Specification (31) penalizes both the level

of investment and the change in investment. For cost functions (30) and (31) to be well-defined,

φ2, φ̃2 and φ̃4 should all take positive values62.

58See, for example, Hayashi (1982), Abel and Blanchard (1983), Shapiro (1986a and 1986b), Blanchard and

Fischer (1989), Gilchrist (1990), Hubbard and Kashyap (1992), Whited (1992), Baxter and Crucini (1993), Oliner,

Rudebusch and Sichel (1995 and 1996), King and Watson (1996), Romer (1996), Obstfeld and Rogoff (1996),

Bernanke, Gertler and Gilchrist (1998), Jermann (1998), Kim (1999), Edge (2000) and Casares and McCallum

(2000), among many others.
59The only difference is that cost function (28) is expressed in the unit of capital goods while cost function

(29) is expressed in the unit of investment.
60This is because marginal adjustment costs are supposed to be increasing with the investment-capital share,

which implies φ2 > 0.
61See for example, Christiano, Eichembaum and Evans (2001), Smets and Wouters (2003a, 2003b) and Edge,

Laubachard and Williams (2003). It should be pointed out, (i) the specification used in Edge, Laubachard and

Williams (2003) is C(It, It−1) = exp{φ1[(It/It−1 − φ2)]
2}Itp

I
t . Since my empirical exercise in this section is

based on the log-linearized equations, this specification results in an identical log-linearized investment Euler

as cost function (30); (ii) According to the analysis in Christiano, Eichembaum and Evans (2001), in a general

equilibrium setup, a cost function penalizing the change in investment, such as specification (30) and specification

(31), generates theoretical impulse responses to a monetary policy shock that better fit the empirical finding in

investment than other cost specifications.
62In (30), the marginal adjustment cost is assumed to be increasing with the change in investment, which

implies φ2 > 0; in (31), the marginal adjustment costs are supposed to be increasing with both the level and the

change of investment, which implies �φ2 > 0 and �φ4 > 0.
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6.2.3 Investment Euler equations

The firm’s optimization problem is then to choose processes It, Kt and Lt for all dates t ≥ 0 to

maximize (25) subject to (24), (26), (27) and one of the cost functions from (28) to (31). This is

a standard optimization problem subject to a sequence of constraints. Different specifications of

the adjustment cost in capital lead to different investment Euler equations. The log-linearized

first-order condition based on cost function (28) or (29) takes the form

ÎKt = βEtÎKt+1 + ω1[β(1 − δ)Etp̂
I
t+1 − p̂I

t ] + ω2EtK̂Y t+1 (32)

where a caret over a variable signifies the variable’s log-deviation from its steady-state value.

ÎKt = Ît − K̂t is the logarithmic investment share in capital stock and K̂Y t = K̂t − Ŷt is the

logarithmic capital share in total output. Using the log-linearized version of the law of motion

of capital in (27), equation (32) can be rewritten in terms of capital growth63,

∆K̂t = βEt∆K̂t+1 + ω̃1[β(1 − δ)Etp̂
I
t+1 − p̂I

t ] + ω̃2EtK̂Y t+1 (33)

where ∆K̂t = K̂t+1 − K̂t is the growth rate of capital in period t64. The investment Euler

equation based on cost function (30) is

∆Ît = β(2 − δ)Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 + γ1p̂
I
t + γ2Etp̂

I
t+1 + γ3Etp̂

I
t+2 + γ4EtK̂Y t+1 (34)

where ∆Ît = Ît − Ît−1 is the percentage change in investment. Finally, cost function (31) results

in the following first order condition

∆Ît = β(2 − δ)Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 (35)

+λ1[β(1 − δ)EtÎt+1 − Ît] + λ2[β(1 − δ)Etp̂
I
t+1 − p̂I

t ] + λ3EtK̂Y t+1

Derivation of the Euler equations is included in the appendix. Since the coefficients ω’s, ω̃’s, γ’s

and λ’s are functions of (i) the so-called “deep” structural parameters of taste and technology

in equations (24) to (27), and (ii) steady-state values of the variables, they are supposed to

be stable across time and regimes, if the objective function and the structural constraints are

correctly specified.

Note that in equations (32), (33) and (35), β(1− δ) is very close to one for theoretical values

of β and δ, which justifies the use of Et∆Ît+1 and Et∆p̂
I
t+1 to approximate β(1 − δ)EtÎt+1 − Ît

and β(1 − δ)Etp̂
I
t+1 − p̂I

t respectively65. Similarly, in equation (34), by expressions of the γ’s

63Although (32) and (33) are mutually equivalent models in economic theory, empirical results could be very

different for the two specifications, say, due to a misspecified law of motion of capital and inaccurate data.
64As defined in equation (24), Kt+1, hence the log-linearized �Kt+1, is a date t variable since it denotes the

capital stock accumulated by the end of period t. Here, in equation (33), to avoid confusion, I use ∆ �Kt instead

of ∆ �Kt+1 to denote the capital growth by the end of period of t.
65For β = 0.99 and δ = 0.025, β(1− δ) = 0.97, β(1− δ)Et �It+1 − �It = Et(0.97 �It+1 − �It). Note that 0.97 �It+1 − �It

is too highly correlated with �It+1 − �It. This may induce severe statistical imprecision of the estimation results.

Same argument applies to β(1 − δ)Et �pI
t+1 − �pI

t .
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provided in the appendix, γ1 + γ2 + γ3 is close to zero for theoretical values of β and δ, which

implies γ1p̂
I
t + γ2Etp̂

I
t+1 + γ3Etp̂

I
t+2 can be approximated by −γ1Et∆p̂

I
t+1 + γ3Et∆p̂

I
t+2. With these

approximations, in the rest of the section, I estimate and test the following three specifications,

ÎKt = θIKEtÎKt+1 + θp1Et∆p̂
I
t+1 + θKY EtK̂Y t+1 + εt (36)

∆K̂t = θKEt∆K̂t+1 + θp1Et∆p̂
I
t+1 + θKYEtK̂Y t+1 + εt

∆Ît = θI1Et∆Ît+1 + θI2Et∆Ît+2 + θp1Et∆p̂
I
t+1 + θp2Et∆p̂

I
t+2 + θKYEtK̂Y t+1 + εt.

where the first equation in (36) is a modified, or an approximate, version of (32), the second

equation is a modified version of (33), and the third equation nests a modified version of (34)

and a modified version of (35). Latter in the paper, the three specifications in (36) are referred

to as “the ∆I model”, “the IK model” and “the ∆K model” respectively. A disturbance term εt,

which does not belong to original Euler equations, is added to each of the equations. Different

interpretation of εt is possible. It may capture misspecification of the models or approximation

errors induced by linearizion.

A common feature of the investment equations in (36) is that all specifications are purely

forward-looking equations that relate a decision variable, which could be the investment-capital

ratio (ÎK), the capital growth (∆K̂) or the investment growth (∆Î), to expected future values

of that decision variable, changes in the purchase price of capital goods (∆p̂I ) and capital share

in output (K̂Y ). Moreover, economic theory predicts the signs, and in some cases the values, of

coefficients of these investment models, as summarized in Table 8 in the appendix.

6.3 Econometric Specifications

The first-step model I use to summarize the dynamics of the economy is a pth-order reduced-

form vector autoregression. Let yt denote an n-variable vector containing variables in an in-

vestment equation and other useful variables summarizing the behavior of the economy. Let

Zt = [yt yt−1 · · · yt−p+1]. Zt is the econometrician’s information set at date t. If the reduced-

form model were time-invariant, the vector autoregression in the first-order form would be

Zt = Φ0Zt−1 + ut where the error term ut E(ut|Zt−1) = 0.

Then the assumption of E(εt|Zt−1) = 0, that is, the disturbance in an investment equation at

date t is not predictable at date t− 1, leads to a vector of standard cross-equation restrictions,

in which all coefficients are stable. For example, the cross-equation restriction for the model in

∆I in a stable environment is

0 =
[
I − Φ′

0θI1 − (Φ′
0)

2θI2

]
eI −

[
Φ′

0θp1 − (Φ′
0)

2θp2

]
ep − Φ′

0θKY eKY = 0,

where eI , ep and eKY are corresponding np × 1 selection vectors for ∆Î , ∆p̂I and K̂Y in the

vector autoregression66. See the appendix for the derivation.

66To be more specific, in a first-step VAR, suppose ∆ �I, ∆ �p and 	KY take the first, the second and the third

positions in Zt respectively, then eI = [1 0 0 · · · 0]′, ep = [0 1 0 · · · 0]′, eKY = [0 0 1 · · · 0]′. For the model in IK

and the model in ∆K, selection vectors eIK and eK in (37) are defined in the same way.
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However, any single source of instability in the economic environment, say, changing market

conditions and economic policies, can translate itself into the instability in the reduced-form

coefficients. Indeed, the instability of the VARs used in this application is confirmed later in

this section. Thus, the appropriate first-step model is an unstable vector autoregression

Zt = ΦtZt−1 + ut

where Φt is assumed to follow the TVP process specified in (9) and (10). With the first-step

coefficient matrix Φ0 changing to Φt, the cross-equation restrictions change accordingly. The

resulting time-varying coefficients cross-equation restrictions for the three models in (36) are

0 = [I − Φ′
tθIK ] eIK − Φ′

tθp1ep − Φ′
tθKY eKY (37)

0 = [I − Φ′
tθK ] eK − Φ′

tθp1ep − Φ′
tθKY eKY

0 =
[
I − Φ′

tθI1 − (Φ′
t)

2θI2

]
eI −

[
Φ′

tθp1 − (Φ′
t)

2θp2

]
ep − Φ′

tθKY eKY

respectively. Estimation and model validation can then be conducted applying the procedure

developed in previous sections. Estimation and testing procedure in the context of the three

investment equations in (37) is summarized in the appendix.

6.4 Empirical Results

6.4.1 Data, persistence and reduced-form instability

The estimates of the this section use quarterly data for the United States from 1967:I to 2001:IV.

In addition to the variables in an investment equation, I also include other variables, which

may help predict the decision variable of that investment equation, into the first-step vector

autoregression model. For instance, output is included in all VAR specifications to capture the

effects of output movement. This could be justified by the so-called “acceleraionist” theory of

investment that relates investment to changes in output. The data appendix documents the

construction and data source for each series. Two schemes are considered to formulate the

vector autoregression. In the first scheme, five variables are included, which are (1) the decision

variable of an investment Euler equation, (2) purchase price of capital goods, (3) capital share,

(4) a short-term interest rate and (5) total output. In the second scheme, all variables in the

first scheme are included except for the short-term interest rate. This allows me to study the

sensitivity of my estimation results to the inclusion/exclusion of the interest rate. To further

check the robustness of the empirical results, within each scheme, different measures of variables

and different numbers of lags are considered. See the data appendix for documentation.

One feature of the data that deserves attention is the persistence of the time series. In

the context of the two-step minimum distance procedure, even if the first-step model is time-

invariant, highly persistent series entering the first-step VAR could lead to inference problem
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in the second-step67. In the presence of instability, the compound effects of time-varying coeffi-

cients and persistent regressors could only deteriorate the problem. Persistence of the series and

corresponding transformations made to the series to circumvent the problem are documented

in the data appendix.

Before proceeding to the results on structural investment equations, stability of the first-step

VARs must be addressed to justify the TVP specification and the procedure developed for it

in the current application. As documented in the appendix, persistent but small instability is

found in all VAR specifications. Thus empirical evidence suggests the TVP model (9) and the

asymptotic nesting (10) are appropriate68.

6.4.2 Estimation and testing results for investment models

Next let’s turn to the estimation and validation of the second-step model, the structural invest-

ment equations. Three criteria are used to evaluate a model. An investment model is regarded

as not being rejected by the data if (i) the conventional J -test does not reject the cross-equation

restrictions; (ii) the stability requirement of the cross-equation restrictions is satisfied; and (iii)

the estimated coefficients have signs consistent with economic theory. The first two criteria

judge an estimated equation quantitatively by the standards of statistical tests. The third

criterion evaluates estimated coefficients in a qualitatively manner, guided by economic theory.

Table 3 to Table 5 present the estimates for models in ∆I, in IK and in ∆K respectively,

accompanied by the J -test and stability tests. Table 2 summarizes the results in Table 3 to Table

5 in a qualitative manner. Inspection of Table 2, none of the estimated Euler equations satisfy

all three criteria simultaneously. The estimated IK model and the estimated ∆K model yield

expected signs on all coefficients. However, they fail one or both of the J -test and stability tests.

In particular, the IK model, for which previous research have obtained supporting evidence

from GMM over-identifying tests, is seen to exhibit instability, and this observed instability

turns out to be a result robust to various VAR specifications. Moreover, compared to the

corresponding IK equation in the reduced-form VAR, the Euler equation appears to provide

no more improvement when judged on the basis of structural stability.

67It is well known that time series regression that includes persistent variables can behave very differently than

a standard regression. In the two-step minimum distance model, the effects of persistence extends to the second-

step because the second-step estimator can be written as linear combinations of the first-step VAR coefficients.

See Li (2004) for a more detailed analysis on this issue. In the context of an Euler equation for inflation, Li

(2004) shows that highly persistent variables can lead to false rejections.
68In addition to persistence and instability, the other data issue is that VAR errors might exhibit conditional

heteroskedasticity and autocorrelation. Temporary time variations in the VAR coefficients could also be thought

of as part of the heteroskedastic and autocorrelated error, as discussed in Section 2.2. Failing to account for

heteroskedasticity and autocorrelation when it is present affects the optimal weighting matrix in the second step,

contaminating standard deviations and test statistics. This motivates using the robust version of estimation since

it imposes less restriction on the data. In this section, only robust results are reported.
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Table 2: Evaluation of Investment Euler Equations

Model in ∆I Model in IK Model in ∆K

VAR with i VAR without i VAR with i VAR without i VAR with i VAR without i

J -test × √ × √ × ×
Stability × √ × × × ×
Coeff. sign × × √ √ √ √

Overall × × × × × ×
Note:
√

: 1. p value of the J-test or stability test is greater than 5%.

2. Estimated coefficients have the predicted signs.

×: 1. p value of the J-test or stability test is less than 5%.

2. Estimated coefficients do not have the predicted signs.

3. In the overall evaluation, at least one of the three criteria fails and is marked ×.

Note that among the three investment equations, the only specification that seems to be

fairly stable, and at the same time not rejected by the J -test, is the ∆I model. But the

seemingly promising outcome is completely undermined by the incorrect signs on the estimated

coefficients, (see the theoretical signs and values in Table 8 of the appendix for comparison). In

addition, the observed stability in the ∆I model is conditional on the exclusion of the interest

rate from the first-step model. This is an issue worth further scrutiny and is taken up in the

next subsection.

A word of caution is in order about the interpretation of the estimation results. By construc-

tion, the J -test for cross-equation restrictions assesses the adequacy of the structural model by

measuring the “distance” between the structural model and the corresponding reduced-form

representation of the data, assuming a correctly specified reduced-form model. A restatement

of this interpretation is to say, the J -test is essentially a joint test of the reduced-form model

and the structural model. Note that results reported in Table 3 to Table 5 for the three in-

vestment models are computed on the basis of three different VARs, though the only difference

lies in the decision variable. Though it is widely agreed that a carefully specified reduced-form

VAR is able to well summarize the correlations present in the data, it is still possible with the

inclusion of different decision variables, some VARs capture relatively less amount of correla-

tions in the data than the others. Therefore, the J -tests based on different benchmarks are

not directly comparable and the rejections seen in the data might not solely attribute to the

misspecification in the structural model.
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Table 3: Investment Equation in ∆I

VAR with interest rate VAR without interest rate

Dataset 1 Dataset 2 Dataset 1 Dataset 2

Et∆Ît+1 - 0.53 - 0.13 - 0.38 - 0.11

[0.02] [0.04] [0.06] [0.03]

Et∆Ît+2 1.22 1.55 1.18 1.15

[0.02] [0.18] [0.05] [0.08]

Et∆p̂
I
t+1 - 3.99 - 4.59 - 2.89 - 4.90

[0.08] [0.07] [0.19] [0.46]

Et∆p̂
I
t+2 3.04 7.39 3.23 6.02

[0.11] [0.10] [0.35] [1.05]

EtK̂Y t+1 - 0.52 - 0.40 - 0.39 - 0.34

[0.01] [0.08] [0.02] [0.09]

p(J-test) 0.00 0.04 0.08 0.84

p(QLR) 0.01 0.01 0.14 0.10

p(EW) 0.02 0.02 0.16 0.13

p(MW) 0.06 0.03 0.22 0.14

Note:

1. The investment equation under study is the third model in (36).

2. “Dataset 1” refers to the ∆I(NFB) dataset defined in the appendix.

“Dataset 2” refers to the ∆I(GDP ) dataset defined in the appendix.

3. For the estimated parameters, the numbers without brackets are the

estimated coefficients. The numbers in the brackets are the standard

deviations of the estimates.

4. p(J-test) is the p value of the test for over-identifying restrictions.

p(QLR), p(EW) and p(MW) are p values of QLR, EW and MW tests.
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Table 4: Investment Equation in IK

VAR with interest rate VAR without interest rate

Dataset 1 Dataset 2 Dataset 1 Dataset 2

EtÎKt+1 1.21 1.14 0.91 0.91

[0.01] [0.01] [0.01] [0.01]

Et∆p̂
I
t+1 2.62 1.81 1.44 0.93

[0.03] [0.03] [0.07] [0.05]

EtK̂Y t+1 0.50 0.43 1.95 1.78

[0.01] [0.01] [0.04] [0.04]

p(J-test) 0.00 0.02 0.13 0.26

p(QLR) 0.00 0.00 0.00 0.00

p(EW) 0.00 0.00 0.00 0.03

p(MW) 0.00 0.00 0.00 0.01

Note:

1. The investment equation under study is the first model in (36).

2. “Dataset 1” refers to the IK(NFB) dataset defined in the appendix.

“Dataset 2” refers to the IK(GDP ) dataset defined in the appendix.

3. For the estimated parameters, the numbers without brackets are the

estimated coefficients. The numbers in the brackets are the standard

deviations of the estimates.

4. p(J-test) is the p value of the test for over-identifying restrictions.

p(QLR), p(EW) and p(MW) are p values of QLR, EW and MW tests.
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Table 5: Investment Equation in ∆K

VAR with interest rate VAR without interest rate

Dataset 1 Dataset 2 Dataset 1 Dataset 2

Et∆K̂t+1 1.28 1.12 0.98 0.92

[0.02] [0.03] [0.04] [0.03]

Et∆p̂
I
t+1 0.13 0.03 0.09 0.05

[0.01] [0.03] [0.04] [0.02]

EtK̂Y t+1 0.12 0.07 0.08 0.09

[0.01] [0.02] [0.02] [0.02]

p(J-test) 0.00 0.01 0.05 0.04

p(QLR) 0.00 0.01 0.00 0.00

p(EW) 0.00 0.01 0.03 0.00

p(MW) 0.00 0.01 0.02 0.01

Note:

1. The investment equation under study is the second model in (36).

2. “Dataset 1” refers to the ∆K(NFB) dataset defined in the appendix.

“Dataset 2” refers to the ∆K(GDP ) dataset defined in the appendix.

3. For the estimated parameters, the numbers without brackets are the

estimated coefficients. The numbers in the brackets are the standard

deviations of the estimates.

4. p(J-test) is the p value of the test for over-identifying restrictions.

p(QLR), p(EW) and p(MW) are p values of QLR, EW and MW tests.
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6.4.3 The effects of interest rates

One observation that seems to deserve special attention is the effects on the second-step results

of including/excluding interest rates in the first-step model. From Table 2 to Table 5, it seems

excluding interest rates from the first-step VAR improves the performance of the second-step

model to varying degrees. For instance, for the IK model and the ∆K model, excluding interest

rates makes the estimated coefficients on EtÎKt+1 and Et∆̂Kt+1 much close to their theoretical

value of 0.99. Moreover, for the ∆I model and the IK model, more criteria are satisfied with

such an exclusion. In the previous literature, when the IK model was estimated by GMM − an

asymptotically equivalent approach to the two-step method under certain conditions, according

to Li (2004) − a typical instrument set would not include interest rates. It follows that the

present exercise appears to suggest the supporting results reported in the literature might be

sensitive to the choice of instruments, in particular, the interest rates.

In order to see if my concern above is well-founded, I investigate the effects of interest

rates in the first-step model. Take the ∆I model as an example. Tables 13 and 14 in the

appendix presents the stability tests and the Granger causality test of two VAR specifications:

one includes interest rate and the other does not. From Table 13, it is evident interest rate is

an important source of reduced-form instability. With the exclusion of the interest rate, the

estimated value of λ, which is proportional to the standard deviation of the period-to-period

change in the reduced-form coefficients, decreases by 14% to 34% for for the VAR equations.

This may partially explain the improved stability in the ∆I model after interest rate is excluded.

From Table 14, on the other hand, it seems that the ability of pI , the price of capital stock, in

explaining the behavior of other VAR variables depends on whether interest rate is included.

When interest rate is excluded from the VAR specification, pI helps explain most of the VAR

variables. On the other hand, when both the price of capital and the interest rate show up in

the VAR, pI appears to lose much of its explanatory power on other variables except for pI

itself.

The sensitivity of the empirical results to interest rates naturally raises the question of

whether interest rates should be included in the reduced-form model. On the one hand, the

exclusion of interest rates might be justified on the ground that, interest rates affects investment

decision through their role in determining the purchase price of capital goods. In other words,

the explanatory power of interest rates on other variables might have been implicitly included

in the purchase price of capital goods. As a consequence, in making their optimal investment

decisions, it might be redundant for private firms to include both purchase price of capital

and interest rate in their forecasting system. However, the above argument might only make

sense in a partial equilibrium setup. It seems much less convincing if one thinks about the

first-step model as a reduced-form representation of some general equilibrium model. There is

an extensive literature on dynamic stochastic general equilibrium models, in particular, that
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on monetary business cycle models, which emphasizes the link between central bank’s interest

rate policies and investment69. Along this line of thinking, it would be a severe drawback not

to incorporate interest rates to investment forecasting and decision making.

6.5 Further discussions

Note that in the previous investigation, regardless of interest rate being included in the first-

step VAR or not, it appears hard for the standard investment models to account for the data

correlations captured in the reduced-form model. Various factors could be responsible for this

empirical outcome. First, inaccurate data could always be one source of the statistical failure.

Difficulties in rigorously aggregating across heterogeneous firms and heterogeneous types of

capital make structural analysis for aggregate investment a perilous task. In addition, the

construction of the quarterly capital series through interpolation70 would unavoidably introduce

measurement error that may further deteriorate the data problem.

Second, the Euler equations estimated may just be incorrectly specified models. Although

there has seemed to be very little skepticism about the modeling potential of these standard

investment Eulers to macroeconomics, the tight restrictions imposed on the dynamic structure

by these standard models appear not easy to fit the U.S. data. Therefore, a hard question might

be to find a tractable Euler equation for investment that is not mis-specified.

It is useful to point out, statistical tests typically check whether data contain correlations that

are not predicted by the model under test. In reduced-form models, such as vector autoregres-

sions, it is relatively straightforward to amend the model to take into account the correlations

present in the data. It is much more difficult to do so in Euler equations because the estimated

parameters come from private agents’ objective functions. When correlations present in the

data are not predicted by the objective functions under study, it is often difficult to know how

to parsimoniously change the objective functions. So it should not be too surprising the stan-

dard investment Eulers are statistically rejected by the data. Since these models are extremely

simple in many dimensions. It is, perhaps, more important to discuss whether these statistical

rejections have economic meaning, which we can learn from.

To improve the empirical performance of investment models, a variety of extensions or re-

visions might be worth considering. Here I just discuss a few. First, in models introduced so

far, firm’s time discount factor, β, capital share in production, α, and the depreciation rate

69Most recent work on this issue includes Dupor (2001 and 2002), Carlstrom and Fuerst (1999 and 2000), Li

(2003) and Woodford (2003).
70The empirical exercise of this section is based on quarterly data while the quarterly series of capital stock

is not directly available. Following the usual practice, I interpolate a quarterly series from the annual series of

capital stock. See the data appendix for more details about this interpolation. In this regard, the model in ∆I,

whose decision variable, the change of investment, is directly available on quarterly basis, is less affected by the

measurement error caused by interpolation.
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of capital, δ, are all assumed constant over the sample period. This might not be true under

more realistic situations. For instance, uncertainty about discount factors is widely discussed

in the theoretical macro literature. The argument is that firms are uncertain not only about

what their future profits will be, but also about how those profits will be valued. The capital

share, arguably would evolve over time following the progress in technology. The depreciation

rate may also follow certain time variations exogenous to the optimal decision in investment.

Appropriately accounting for these exogenous time variations help improve the model fit, say,

by absorbing part of the instability observed in the current models 71.

Second, a re-evaluation of the proper modeling of the adjustment costs might be necessary.

For instance, in the standard investment models, the adjustment costs of capital stock are

specified as functions of investment and/or capital only. There is no channel to account for the

effects from labor employment, the other production input, in the adjustment process. As a

result, the optimality conditions in investment decision are independent of labor employment.

A more careful modeling of investment may introduce employment to the cost function to allow

for a simultaneous adjustment in both production factors. Another possibility might be to give

up on the convex adjustment costs and introduce non-convexities, for instance, better models of

investment might be provided by embedding irreversibilities, as suggested by a large literature,

see, for example, Bernanke (1983), Abel and Eberly (1994) and Dixit and Pindyak (1994).

7 Concluding Remarks

Lucas’ (1976) paper has strongly influenced the course of the economics profession for nearly

three decades. As a result, Euler equation modeling strategy has become popular in both theo-

retical and empirical work. But there has been surprisingly little examination of the structural

stability of the Euler equations − arguably one of the most relevant criterion for model val-

idation by the standards of the Lucas critique. Thus, one purpose of this paper has been to

formalize the necessity of structural stability testing. This is done by formulating the basic

economic rationale of the Lucas critique in the classical two-step minimum distance framework:

the time-varying reduced-form model in the first step reflects private agents’ adaptation of their

forecasts and behavior to the changing economic environment; and the presumed ability of Eu-

ler equations to deliver stable parameters indexing tastes and technology is interpreted as a

time-invariant second-step model. Within this setup, I have been able to show, complementary

to and independent of one another, both standard specification tests and stability assessment

are needed for the evaluation of Euler equations. Therefore, the conventional model validation

71Oliner, Rudebusch and Sichel (1996) assume a time-varying discount factor and a constant depreciation rate

of capital in their GMM estimation of a model in IK. According to their results, relaxing only the constancy of

the discount factor seems not enough to induce structural stability.
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strategy is a one-sided strategy by neglecting the stability assessment.

A second purpose of this article has been to describe how estimation and testing may be

carried out in unstable econometric models when restrictions between unstable coefficients exist

at each point in time. The approach adopted in the paper has demonstrated that, although

estimation of such models by standard methods may induce invalid inference in general, testing

for such restrictions raise no new technical issues since it only requires the standard testing

procedure be supplemented by standard stability tests. However, a word of caution is required

in interpreting the above statement. When there are other data problems that co-exists with

instability, the proposed testing procedure could cease to work. For instance, it can be shown if

instability is accompanied by highly persistent series, the compound effects will invalidate the

proposed testing procedure.

Another important econometric issue not addressed in the application of this paper is weak

identification. Weak identification can be a concern in the estimation of macroeconomic equa-

tions with expectations, as pointed out by Ma (2002), Mavroeidis (2001) and Fuhrer and Rude-

busch (2002). Even if simulation investigation suggests the ML estimator (which is equivalent

to the two-step estimator, as I have briefly mentioned in Section 5) less suffer from this problem

than the GMM estimator, in principle weak identification might still arise if the second-step

objective function is, say, flat around the minimum or locally non-quadratic. It has been shown

that, if weak identification exists, the sampling distribution of conventional estimators are in

general non-normal, and hence point estimates and inference based on standard methods are

unreliable. ( See Staiger and Stock (1997), Stock, Wright and Yogo (2002) and Stock and Yogo

(2003a, 2003b) on the issue of weak instruments.) Note that in the context of a time-varying

coefficient model, the presence of weak identification creates a problem involving both unstable

coefficients and weak identification. Although it is possible to show the distortion on inference is

dominated by weak identification, as illustrated in the appendix in a pilot study for the unstable

2SLS models, the consequence on estimation, inference and testing is not thoroughly under-

stood. For instance, for practical purpose, whether tools developed to detect weak identification

in a stable environment directly apply to models with time-varying coefficients is unclear.
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9.1 Contiguity (Section 2.3)

Following the notation introduced in Section 2.3 for Assumption 4, let {zt, t = 1, ..., T} denote the

data set when the sample size is T . φt is a k × 1 vector of time-varying parameters in the likelihood

function which follows the process defined in (9) and (10). The likelihood function of the data for a

given φ is fT (z1, ...zT ;φ). In many cases, it can be written as a product of two terms, one that depends

on φ, and another that does not: fT (z1, ...zT ;φ) =
�

T
t=1 f(z1, ..., zT ;φ)b(z1, ...zT ) where b(z1, ...zT ) is the

conditional distribution of some weakly exogenous variables at time t given all the preceding variables.

To save notation, let ft(φ) = f(z1, ..., zT ;φ) and bt = b(z1, ...zT ). Then the density of the data under

φ0 is
�

T
t=1 ft(φ0)bt. The conditional density of the data under φt for a given φ path is

�
T
t=1 ft(φt)bt.

Accordingly, the unconditional density of the data under φt is � +∞

−∞

�
T
t=1 ft(φt)bt dvφ where vφ is the

measure of φ. Note that the ratio of the density under φt for a given path of φ and the density under

φ0 is provided by

LRT =

T∏

t=1

ft(φt)bt/

T∏

t=1

ft(φ0)bt = exp

{
T∑

t=1

log ft(φt) −
T∑

t=1

log ft(φ0)

}
(38)

Before introducing some regularity conditions of ft(φ), define some notation. Let I(φ) denote

E(−∂2 log ft(φ)/∂φ∂φ′) under φ0. Let st(φ) and ht(φ) denote ∂ log ft(φ)/∂φ and ∂2 log ft(φ)/∂φ∂φ′ re-

spectively. Let B(φ, δ) be an open ball in Φ0 (where Φ0 is the parameter space for φ) around φ

with radius δ, ie B(φ, δ) = { �φ ∈ φ : ‖ �φ − φ‖ < δ}. Thus as δ approaches zero, B(φ, δ) defines

a shrinking neighborhood of φ. Define matrix ht(φ, δ) with its element in ith row and jth col-

umn being h
(i,j)
t (φ, δ) = sup{h(i,j)

t ( �φ) : �φ ∈ B(φ, δ)}. Define ht(φ, δ) likewise with its elements being

h
(i,j)
t (φ, δ) = inf{h(i,j)

t ( �φ) : �φ ∈ B(φ, δ)}, for all i and j. Thus, the function ht(φ, δ) and the function

ht(φ, δ) provide the lower bound and the upper bound of ht(φ) on element-by-element basis within some

neighborhood of φ. Finally, let d(z1, ..., zt) be a dominating matrix with elements being defined as

d(i,j)(z1, ..., zt) = sup{|h(i,j)
t (φ)| : φ ∈ Φ0}. For notational simplicity, let dt = d(z1, ..., zt).

• Assumption A1: log ft(φ) is continuously twice differentiable in φ for all φ ∈ Φ0.

• Assumption A2: T−1/2 � [sT ]
t=1 st(φ0) ⇒ N (0, sI(φ0)) for all s ∈ [0, 1] and I(φ0) is positive definite.

• Assumption A3: ht(φ, δ) and ht(φ, δ) are uniform mixing of size −r/(2r − 2) or strong mixing of

size −r/(r− 2) with r > 2 under φ0 for any t, any φ ∈ Φ0 and any δ sufficiently small. Moreover,

ht(φ, δ), ht(φ, δ) and dt are Lr bounded with r > 2.

• Assumption A4: For each φ ∈ Φ0, there is a constant τ > 0 such that ‖ �φ − φ‖ ≤ τ implies

‖ht( �φ)−ht(φ)‖ ≤ F (z1, ...zt) g(‖ �φ−φ‖) for all t, where F (·) and g(·) are non-random functions with

E(F (z1, ..., zt)) <∞ and limy→0 g(y) = 0.

Assumptions A1 and A2 are fairly standard in the literature. Assumption A3 places sufficient weak

dependence condition on ht(φ, δ) and ht(φ, δ). Assumption A4 is a smoothness condition on ht(φ), as a

function of φ. It describes the distance between ht(φ)’s (evaluating at different φ values) as a function of

the distance between the φ values. A restatement of Assumption A4 is, as τ becomes arbitrarily small,

so that �φ and φ are arbitrarily close, ht( �φ) and ht(φ) would be arbitrarily close to one another.

Before establishing contiguity in Lemma A2, a useful result is given below which will be used in

the proof of Lemma A2 to determine the order of magnitude of the remainder term in the quadratic

approximation of the log likelihood function.
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Lemma A1: Let φ̄t be any intermediate point between φ0 and φt. Suppose for any realization of {φt},
T 1/2(φ[sT ] − φ0) → fφ(s) for any s ∈ [0, 1], where fφ(·) is a k × 1 non-random, non-zero vector function

that satisfies sups∈[0 1] ‖fφ(s)‖ ≤ K <∞, then
�

(φt − φ0)
′ � ht(φ̄t) −Eht(φ0) � (φt − φ0)

p−→ 0.

Proof: Lemma 1 is proved in several steps. As a preparation, step 1 to step 3 below establish

T−1/2 � (ht(φ0) −Eht(φ0)) (φt − φ0)
p−→ 0. This result is then used in steps 4 to 6 to establish Lemma A1.

Step 1: Some implications of Assumptions A3 and A4 are summarized as follows.

(a) Given Assumptions A3 and A4, according to Andrews’ (1987) Corollary 1 and McLeish’s (1975)

Theorem 2.10, ht(φ, δ) and ht(φ, δ) satisfy pointwise LLNs for all φ ∈ Φ0 and δ sufficiently small, i.e.,

T−1 � ht(φ, δ)
p−→ E(ht(φ, δ)) and T−1 � ht(φ, δ)

p−→ E(ht(φ, δ)).

(b) Assumption 4 implies limδ→0Eht(φ, δ) = E(ht(φ)) and limδ→0E(ht(φ, δ)) = E(ht(φ)), see An-

drews’ (1987) Corollary 2.

Step 2: φ̄t is in a shrinking neighborhood of φt because it is an intermediate point between φt and

φ0. This can be expressed as φ̄t ∈ B(φ0, δT ) where limT→∞ δT = 0. Then, by the definition of ht(φ, δ) and

ht(φ, δ), we have ht(φ0, δT ) ≤ ht(φ̄t) ≤ ht(φ0, δT ) for all t and T , which implies�
(φt−φ0)

′(ht−Eht(φ0))(φt−φ0) ≤
�

(φt−φ0)
′(ht(φ̄t)−Eht(φ0))(φt−φ0) ≤

�
(φt−φ0)

′(ht−Eht(φ0))(φt−φ0).

(39)

where ht = ht(φ0, δT ) and ht = ht(φ0, δT ). On the other hand, following result in part (b) of Step 1,

plimT→∞

�
(φt −φ0)

′(ht(φ0, δT )−E(ht(φ0, δT )))(φt −φ0) = plimT→∞

�
(φt −φ0)

′(ht(φ0, δT )−E(ht(φ0)))(φt −
φ0), and likewise with ht(φ0, δT ) being replaced by ht(φ0, δT ). It follows that to show the convergence

result in Lemma A1, it is sufficient to show
�

(φt−φ0)
′(ht(φ0, δT )−E(ht(φ0, δT )))(φt−φ0)

p−→ 0 and likewise

with ht(φ0, δT ) being replaced by ht(φ0, δT ).

Step 3: To streamline notation, in what follows, ht = ht(φ0, δT ) and ht = ht(φ0, δT ). Let �yij
t =

(hij
t −Ehij

t (φ0))(T
1/2(φi

t − φi
0))(T

1/2(φj
t − φj

0)) where hij
t is the element of the ith row and the jth column

in matrix ht. Eh
ij
t (φ0) is defined likewise. φi

t is the ith element in vector φt, and φj
t , φ

i
0, φ

j
0 are defined

likewise. Then according to Assumption A3, ht is Lr bounded, hence �yij
t is also Lr bounded. To see this,

by the Lr boundedness assumption, ‖hij
t (φ0, δT )‖r ≤M <∞. Also, ‖Ehij

t (φ0, δT )‖r ≤M ′ <∞. Then,

‖ �yij
t ‖r = ‖(hij

t −Ehij
t )(T 1/2(φi

t − φi
0))(T

1/2(φj
t − φj

0))‖r ≤
�
‖hij

t ‖r + ‖Ehij
t ‖r � ( sup

s∈[0 1]

‖fφ(s)‖)2 = [M +M ′]K2

(40)

which is independent of t. The inequality in (40) follows from the triangular inequality. Because r > 2,

the derivation in (40) implies �yt is uniformly integrable.

Step 4: In what follows, we show that ỹt is L1 mixingale with respect to the σ-field Ft under both

strong mixing and uniform mixing. Under strong mixing of size −r/(r − 2),��� E( �yij
t |Ft−m)

���
1

≤ 6 α1−1/r
m ‖ �yij

t ‖r ≤ 6[M +M ′]K2 α1−1/r
m

where αm is the mth strong mixing coefficient. Since αm = O(m−r/(r−2)−ε) for some ε > 0, we have

α
1−1/r
m = O(m−1−ε′ ) for ε′ = 1/(r − 2) + ((r− 1)/r)ε > 0. Thus, under strong mixing, ỹt is L1 mixingale of

size −1 with respect to constants that do not depend on t. Similarly, under uniform mixing,��� E( �yij
t |Ft−m)

���
1

≤ 2 φ1−1/r
m ‖ �yij

t ‖r ≤ 2[M +M ′]K2 φ1−1/r
m

where φm is the mth uniform mixing coefficient. Since φm = O(m−r/(2r−2)−ε) for some ε > 0, we have

φ
1−1/r
m = O(m−1/2−ε′ ) for ε′ = ((r−1)/r)ε > 0. Thus, under strong mixing, �yt is L1 mixingale of size −1/2
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with respect to constants that do not depend on t.

Step 5: Theorem 19.11 of Davidson (1994) states that the sample mean of a uniformly integrable L1

mixingale of any size with respect to constants that does not depend on t converges to zero in L1-norm.

So T−1 � �yij
t

L1−−→ 0. But then convergence in L1-norm implies convergence in probability, T−1 � �yij
t

p−→ 0.

This in turn gives T−1 � T
t=1

� p
i=1

� p
j=1 �yij

t

p−→ 0, i.e.,
� T

t=1(φt − φ0)
′(ht −Eht(φ0))(φt − φ0)

p−→ 0. Following

the identical procedure, we obtain
� T

t=1(φt − φ0)
′(ht −Eht(φ0))(φt − φ0)

p−→ 0.

Then, sandwiched by two terms with probability limits of zero, the middle term in (39) also has a

probability limit of zero, which is the convergence result in Lemma A1.

Lemma A2: Suppose φt follows (9) and (10). Under Assumptions A1 to A3, the sequence of densities

{ � +∞

−∞

�
T
t=1 ft(φt)btdvφ : T ≥ 1} are contiguous to the sequence of densities {

�
T
t=1 ft(φ0)bt : T ≥ 1}.

Proof: We proceed in two steps. In the first step, the contiguity between the densities of the data under

φ0 and the conditional densities of the data under φt for a given path of φ is established. Let us call

it “conditional” contiguity. In the second step, the “unconditional” contiguity stated in Lemma A2 is

shown to hold given the “conditional” contiguity proved in the first step.

Step 1: In order to establish the “conditional” contiguity, the following result is used, which follows

Lemma 9 of Pollard (2001)72: For a given path of φt, t = 1, ..., T , if (i) LRT defined in (38) converges

weakly to some random variable LR under φ0 and (ii) E(LR) = 1 under φ0, then the conditional densities� �
T
t=1 ft(φt)bt : T ≥ 1 � are contiguous to the densities

� �
T
t=1 ft(φ0)bt : T ≥ 1 � .

A quadratic expansion of
�

log ft(φt) around
�

log ft(φ0) yields

∑
log ft(φt) −

∑
log ft(φ0) (41)

=
∑

st(φ0)
′(φt − φ0) +

1

2

∑
(φt − φ0)

′ht(φ̄t)(φt − φ0)

=
∑

st(φ0)
′(φt − φ0) +

1

2

∑
(φt − φ0)

′Eht(φ0)(φt − φ0) +RT

where φ̄t is an intermediate point between φ0 and φt. The remainder term in (41) is RT = 1
2

�
(φt −

φ0)
′(ht(φ̄t)−Eht(φ0))(φt−φ0) = op(1), which follows from the convergence result of Lemma A1. Moreover,

it follows that

exp{RT } = 1 + �RT with �RT = op(1) (42)

Next, the limit of (41) can be obtained by deriving the limit of the first order term and the limit of the

second order term respectively. The limit of the first order term is�
st(φ0)

′(φt − φ0) =
�

(T−1/2(φt − φ0))
′ � T−1/2

t�
i=1

si(φ0) − T−1/2
t−1�
i=1

si(φ0) � (43)

⇒ � fφ(r)′ I(φ0)
1/2 dWs(r)

where Ws(·) is a standard Weiner process associated with the score function. The limit in (43) follows

from the uniform square integrability of each element of fφ(s) for all s ∈ [0, 1] (which is an immediate

72The result is also described in, for example, Theorems 16.8 and 18.11 of Strasser (1985), Lemma 3 of Andrews

and Ploberger (1992) and Lemma a-4 of Andrews and Ploberger (1994).
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result of the boundness assumption of fφ(s) as stated in Lemma A1 ). The limit of the second order

term can be calculated as�
(φt − φ0)

′Eht(φ0)(φt − φ0) = T−1
� � T 1/2(φt − φ0)

′ � Eht(φ0) � T 1/2(φt − φ0) � (44)

→ − � 1

0

fφ(r)′ I(φ0) fφ(r)dr

Thus the limit of the conditional likelihood ratio statistic can be computed as

LRT = � ft(φt)bt/ � ft(φ0)bt (45)

= exp � � st(φ0)
′(φt − φ0) +

1

2

�
(φt − φ0)

′Eht(φ0)(φt − φ0) +RT �
= exp � � st(φ0)

′(φt − φ0) +
1

2

�
(φt − φ0)

′Eht(φ0)(φt − φ0) � (1 + �RT )

= exp � � st(φ0)
′(φt − φ0) +

1

2

�
(φt − φ0)

′Eht(φ0)(φt − φ0) � + op(1)

⇒ exp ��� 1

0

fφ(r)′I(φ0)
1/2dWs(r) − 1

2
� fφ(r)′I(φ0)fφ(r)dr �

where the second equality follows from (41), the third equality follows from (42), the fourth equality is

derived by using
�
st(φ0)

′(φt −φ0) = Op(1),
�

(φt −φ0)
′Eht(φ0)(φt −φ0) = O(1), and (Op(1)+O(1))op(1) =

op(1). The final limiting distribution is obtained by using (43) and (44).

Note the limit of LRT is a random variable whose randomness comes from Ws(·). Let Z =� fφ(r)′I(φ0)
1/2dWs(r) − 1

2 � fφ(r)′I(φ0)fφ(r). Then LRT ⇒ eZ . Since the only random component of

the Z variable, Ws(·), is a Gaussian variable, Z is a Gaussian random variable whose distribution is given

by Z ∼ N � − 1
2
� fφ(r)′I(φ0)fφ(r)dr, � fφ(r)′I(φ0)fφ(r)dr � . Thus by the moment generating function of a

normal variable,

E � eZ � = exp � −1

2
� fφ(r)′I(φ0)fφ(r)dr +

1

2
� fφ(r)′I(φ0)fφ(r)dr � = 1.

Step 2: Introduce some notation. Let P0(BT ) denote the probability of event BT under φ0. Let

P1,φ(BT ) denote the probability of event BT under φt conditional on a given path of {φt, t = 1, ..., T}. Let

P1(BT ) denote the unconditional probability of event BT under φt. Then by definition, the contiguity

result in step 1 for a given φ path can be stated as follows: For any sequences of random variable YT ,

P0(YT ∈ A) → 0 for any set A implies P1,φ(YT ∈ A) → 0 for any set A.

To show contiguity under any given path of φ implies the “unconditional” contiguity under a random

path of φ, we need to show: P1,φ(YT ∈ A) → 0 for any set A implies P1(YT ∈ A) → 0 for any set A. Note

that P1(YT ∈ A) = E(P1,φ(YT ∈ A)) where the expectation is taken with respect to φ. To see this, let

f(YT ) be the unconditional density of YT ; f(YT |φ) be the conditional density of YT for a given φ path;

and f(φ) be the marginal density of φ. Let 1(·) be the indicator function. Then,

P1(YT ∈ A) = � 1(YT ∈A) f(YT ) dvYT
= � 1(YT ∈A) � � f(YT |φ) f(φ) dvφ � dvYT

= � � 1(YT ∈A) f(YT |φ) f(φ) dvφ dvYT
= � � � 1(YT ∈A) f(YT |φ) dvYT � f(φ) dvφ

= � P1,φ(YT ∈ A) f(φ) dvφ = E (P1,φ(YT ∈ A))

where the fourth equality follows from the Fubini’s theorem. Then, as a result of the Dominated

Convergence Theorem (see Theorem 5.3.3 on pp.133 of Resnick (2001)), E(P1,φ(YT ∈ A)) → 0 because
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(i) P1,φ(YT ∈ A) → 0; (ii) P1,φ(YT ∈ A) is bounded by 1. Combining this result and the result from step

1, the sequence of densities of the data under φ0 and the sequence of unconditional densities of the data

under φt are contiguous.

9.2 Linearization of g(φt, θ0) (Section 3.1)

A local linearization of g(φt, θ0) around φ0 leads to g(φt, θ0) = g(φ0, θ0)+Dg(φt −φ0)+RT where RT is the

remainder term. Let G(i)
φφ(φ̄t, θ0) = ∂2g(i)(φ̄t, θ0)/∂φ∂φ

′, then RT = 1
2

� l
i=1(φt − φ0)

′G
(i)
φφ(φ̄t, θ0)(φt − φ0) =

1
2

� l
i=1

� l
j=1

� l
k=1(φ

j
t − φj

0)
′G

(ijk)
φφ (φ̄t, θ0)(φ

k
t − φk

0) where l is the dimension of g. φ̄t is an intermedi-

ate point between φ0 and φt. φ̄t is in the neighborhood of φ0 because φt is local to φ0. Then by

(9), (10) and Condition 2, there exists M < ∞ such that |RT | = 1
2
| � l

i=1(φt − φ0)
′G

(i)
φφ(φ̄t, θ0)(φt −

φ0)| ≤ 1
2

� l
i=1

� l
j=1

� l
k=1 |(φj

t − φj
0)

′||G(ijk)
φφ φ̄t, θ0)||φk

t − φk
0)| ≤ T−1 !MQT (t/T ) = Op(T−1) where !M =

λ2lM |Σ(j)|1/2|Σ(k)|1/2 = O(1) where p is the dimension of φ, Σ(j) and Σ(k) are the jth and kth rows

of the matrix Σ. QT (t/T ) =
�

j

�
k |W j

T (t/T )||W k
T (t/T )| = Op(1) where W j

T (t/T ) and W k
T (t/T ) are

the finite sample approximations of the standard Brownian motions associated with φj
t and φk

t . Thus

g(φt, θ0) = g(φ0, θ0) +Dg(φt − φ0) +Op(T−1)..

9.3 Lemma 1 (Section 2.3)

A lemma of Stock and Watson (1998) is reproduced below, which will be used in proving Lemma 1.

Lemma A3: Let xt be a mean zero stationary vector stochastic process with fourth-order cumulants that

satisfy
∑∞

r1,r2,r3=−∞ |C(r1, r2, r3)| < ∞. Let wt be either a scalar nonrandom sequence or a random

variable that is independent of xt for which supisupt≥1E|xit|4 < ∞ and supt≥1E|wt|4 < ∞. Then

T−1
∑[sT ]

t=1 xtwt
p−→ 0 uniformly in s.

Proof: See the appendix of Stock and Watson (1998).

In what follows, I first prove Condition 1 under φ0, that is, to show Condition 1 holds in the case

where the {wit}′s are generated by the corresponding stable process. The regressors in this hypothetical

model are assumed to satisfy Assumption 1 to 3. The strategy of the proof under φ0 follows Stock

and Watson (1998). Let Wi and Wφi
be independent ki-dimensional standard Brownian motions. An

implication of Assumptions 1 to 3 is as follows. Let Γij = E(witw
′
jt) and let Γi

wε = Var(witεt) for i = 1, 2

and j = 1, 2.

(i) T−1 � [sT ]
t=1 witw

′
jt

p−→ sΓij ;

(ii) Γ
i −1/2
wε T−1/2 � [sT ]

t=1 witεt ⇒ Wi(s);

(iii) Σ
−1/2
i T−1/2 � [sT ]

t=1 νit ⇒ Wφi
(s).

Next, I use Lemma A3 to prove the third requirement in Condition 1. To be more concrete, consider

the case of i = 1 and j = 1. Then, T−1
� [sT ]

t=1 w1tw
′
1tT

−1/2
� t

i=1 ν1i = ξ1T (s) + ξ2T (s) where ξ1T (s) =

T−1 � [sT ]
t=1 Γ11T

−1/2 � t
i=1 ν1i and ξ2T (s) = T−1 � [sT ]

t=1 [w1tw
′
1t − Γ11]T

−1/2 � t
i=1 ν1i. Limits are obtained for

these terms.

(a) For ξ1T (s), the limit under φ0 follows from result (iii), ξ1T (s) ⇒ Γ11Σ
1/2
β � s

0
Wφ1

(r)dr.

(b) For ξ2T (s), w1tw
′
1t − Γ11 is stationary, mean zero and with absolutely summable fourth-

order cumulants under φ0. Let ν1t = Σ
1/2
β η1t, where η1t ∼ i.i.d.(0, Ik1). Notice that T−1/2 � t

i=1 νi
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has four finite moments73. Thus ξ2T (s) satisfies the conditions of Lemma A3 with zt = w1tw
′
1t −

Γ11 and wt = T−1/2 � t
i=1 ν1t. As a result, ξ2T (s) = op(1). Combining results of (a) and (b),

T−1 � [sT ]
t=1 w1tw

′
1tT

−1/2 � t
i=1 η1i ⇒ Γ11Σ

1/2
β � s

0
Wφ1

(r)dr. Thus Condition 1 is established under φ0. Finally,

by Assumption 4, all the above convergence results also hold under φt.

9.4 Proposition 1 (Section 3.1)

The relevant model is yt = w′
tφt + εt. Most of the derivation is covered in Section 3.1. The only

missing part is the derivation of the limit of A2T . Let x1t = wt and ν1t = νt in Condition 1. This

leads to T−1/2 � T
t=1 wtw

′
t(φt − φ0) = λT−1 � T

t=1 wtw
′
tT

−1/2 � t
i=1 νi ⇒ λ E(wtw

′
t) Σ1/2 � Wφ(r)dr. By part

1 of Condition 1, T−1
�
wtw

′
t

p−→ E(wtw
′
t) under φt. Therefore, the limit of A2T under φt is A2T =� T−1 � wtw

′
t 
 −1

T−1/2 � wtw
′
t(φt − φ0) ⇒ λΣ1/2 � Wφ(r)dr. Moreover, the a standard Brownian motion,� Wφ(r)dr ⇒ N(0, 1/3). As a result, the limiting distribution of A2T is given by A2T ⇒ N(0, 1

3
λ2Σ).

9.5 Proposition 2 (Section 3.2)

The relevant model is yt = x′
tβt+z

′
t+εt. Relying on the contiguity argument, in order to show Proposition

2 under {βt, γt}, I only need to show it holds under {β0, γ0}, that is, as if the regrssors xt and zt are

generated by the stable model.

To analyze in matrix form, define T×k matrix X = [x1, ..., xT ]′, T×(k−d) matrix Z = [z1, · · · , zT ]′, T×
d matrix U = [u1, · · · , uT ]′, T×1 vector ε = [ε1, · · · , εT ]′. Let (k−d)T×1 vector �γ = [(γ1 − γ0)

′, ..., (γT − γ0)
′]
′

and T × (k − d)T matrix �Z = diag(z′1, ..., z
′
T ). Also define the (kT ) × 1 vector �β and the T × (kT ) matrix�X likewise.

Model (16) can then be written in matrix form as y = Xβ0 + Zγ0 + �ε with �ε = ε+ �X �β + �Z �γ. where�X �β and �Z �γ represent the ignored instabilities from βt and γt. The standard estimator of β0 can be

obtained by partialing out zt. This is achieved by premultiplying the regression by the residual matrix

Mz = I − Z(Z′Z)−1Z′. Then the OLS estimator of β is solved as �β = (U ′MzU)−1U ′Mzy. Accordingly,

T 1/2 (β̂ − β0) =
[
T−1U ′MzU

]−1
T−1/2U ′Mz ε̃. (46)

It is straightforward to verify T−1U ′MzU
p−→ E(utu

′
t). So the distribution is driven by T−1/2U ′Mz �ε. Let

Pz = Z(Z′Z)−1Z′, then

T−1/2 U ′Mz ε̃ = T−1/2 U ′ε̃− T−1/2 U ′Pz ε̃. (47)

I want to show the behavior of T−1/2U ′Mz �ε is (i) asymptotically independent of γt; (ii) but it depends on

βt. Thus, the distortion on the inference over β, if any, comes from the ignored time variation in β itself.

The first term on the right-hand side of (47) is T−1/2U ′ �ε = T−1/2U ′ε+T−1/2U ′ �X �β+T−1/2U ′ �Z �γ. The limits

of the three right-hand side terms are (i) T−1/2U ′ε⇒ N (0, Var(utεt)) This the standard result in the cor-

responding stable model. (ii) T−1/2U ′ �X �β = T−1/2 � T
t=1 utx

′
t � λβ

� t
i=1 ν1i 
 ⇒ λβE(utu

′
t)Σ

1/2
β � Wβ(r)dr,

which follows from part 3 of Condition 1 with x1t = ut and x2t = xt and uses the equality

73To see this, consider for notational simplicity k1 = 1 (The argument for k1 > 1 is similar),

maxt∈[1,T ]E � T−1/2 � t
i=1 νi � 4 = T−2 maxt � tE(η4

i ) + 3(t2 − t) � E(η2
i ) � 2 � Σ2

β = T−2t∗ � E(η4
i ) − 3 � E(η2

i ) � 2 � Σ2
β +

3T−2t∗2 � E(η2
i ) 
 2 Σ2

β ≤ T−2t∗ � E(η4
i ) − 3 � E(η2

i ) � 2 � Σ2
β + 3 � E(η2

i ) 
 2 Σ2
β . The first term above approaches zero in

the limit, and the second term is finite.
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E(utx
′
t) = E(utu

′
t) in the partial regression of xt on zt. (iii) T−1/2U ′ �Z �γ = T−1/2 � T

t=1 utz
′
t � λγ

� t
i=1 ν2i 
 ⇒

λβE(utz
′
t)Σ

1/2
γ � Wγ(r)dr = 0 which follows from part 3 of Condition 1 with x1t = ut and x2t = zt and the

zero limit is due to the orthogonal condition E(utz
′
t) = 0 in the partial regression. Note that (ii) reflects

the effect of the time-varying βt, and (iii) reflects the effect of the time-varying γt. It is evident that only

βt has non-trivial effect while γt’s effect is partialed out asymptotically. Thus, (i) to (iii) above jointly

yield

T−1/2U ′ε̃ ⇒ N(0, Var(utεt)) + λβ E(utu
′
t) Σ

1/2
β

∫
Wβ(r)dr. (48)

Turn to the second term of (47), which can be equivalently written as T−1/2U ′Pz �ε =� T−1U ′Z 
"� T−1Z′Z 
 −1 � T−1/2Z′ �ε � . The limits of the the first two components under {β0, γ0} are

T−1U ′Z
p−→ E(utz

′
t) = 0 and T−1Z′Z

p−→ E(ztz
′
t), following from part 1 of Condition 1, and the orthogonal

condition in the partial regression of x on z. The derivation of the limit of the third component is

similar to that of T−1/2U ′ �ε, which results in T−1/2Z′ �ε ⇒ N(0, Var(ztεt)) + λβ E(ztx
′
t) Σ

1/2
β � Wβ(r)dr +

λγ E(ztz
′
t) Σ

1/2
γ � Wγ(r)dr.. Taking together the limits of the three pieces, T−1/2U ′Pz �ε → 0.. Then,

together with (46), (47), (48), and let Vβ = E(utu
′
t)

−1Var(utεt)E(utu
′
t)

−1,

T−1/2(β̂ − β0) ⇒ N(0, Vβ) + λβ Σ
1/2
β

∫
Wβ(r)dr = N(0, Vβ +

1

3
λ2

βΣβ).

The limiting distribution of γ̂, the OLS estimator of γ0, can be obtained likewise. Let Σuu = E(utu
′
t)

and Σzz = E(ztz
′
t), For future reference, I list the following results for β̂ and γ̂ where ϑ is the coefficient

matrix in the partial regression of xt on zt.

T 1/2 (β̂ − β0) = Σ−1
uu T−1/2U ′ε̃+ op(1) (49)

T 1/2 (γ̂ − γ0) = Σ−1
zz T−1/2Z ′ε̃− ϑ Σ−1

uu T−1/2U ′ε̃+ op(1) (50)

β̂ − β0 = Op(T
−1/2) and γ̂ − γ0 = Op(T

−1/2) (51)

Discussion 1: The above derivation directly applies to the case that β is constant over time, by

simply setting λβ = 0. This gives T−1/2( �β − β0) ⇒ N(0, Vβ) . This simply says, the inference over the

stable coefficients in an unstable model is asymptotically unaffected by the instability in the nuisance

coefficients.

Discussion 2: To understand the insight behind the parallel result in Li and Muller (2004) that the

inference over the stable coefficients in the GMM model is asympototically unaffected by the unstable

nuisance coefficients, in what follows, I briefly describe the GMM model with parameter instability in

Li and Muller (2004), and list the GMM first order condition through which, the analog between the

unstable linear regression model and unstable GMM model is clarified. Thus, the technical insight in

the linear regression models carries directly over to the non-linear GMM models.

The GMM moment condition in Li and Muller (2004) is E(g(zt; β0, γt)) = 0, where zt is the observ-

ables, β0 is the constant coefficients of main interest and γt is the unstable nuisance coefficients. The

standard GMM estimator is defined as [ �β, �γ]′ = argminβ,γT
−1 � gt(β, γ)

′WTT
−1 � gt(β, γ) where WT is

some weighting matrix with WT
p−→ W0. For regularity conditions imposed on the moment function and

the data generating process, see Li and Muller (2004).

Define ḡt(β, γ) = W
1/2
0 gt(β, γ), Ḡβ,T = W

1/2
0 T−1 � ∂gt( �β, �γ)/∂β, Ḡγ,T = W

1/2
0 T−1 � ∂gt( �β, �γ)/∂γ, and

M̄γ,T = I − Ḡγ,T [Ḡ′
γ,T Ḡγ,T ]−1Ḡ′

γ,T . Following the usual practice in econometrics that asymptotics are
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typically derived on the basis of the first-order approximation, a mean value expansion of the sample

moment condition T−1 � ḡt( �β, �γ) around T−1 � ḡt(β0, γt) yields

T−1
∑

ḡt(β̂, γ̂) = [T−1
∑

ḡt(β0, γt)+ Ḡγ,TT
−1

∑
(γt − γ0)]− Ḡβ,T (β̂−β0)− Ḡγ,T (γ̂− γ0)+ op(T

−1/2)

(52)

where the term Ḡγ,T T
−1 � (γt − γ0) captures the effects of the ignored time variation in γt. Note that in

the linear regression model we have

e = (ε+ Z̃γ̃) −X(β̂ − β0) − Z(γ̂ − γ0)

where e is the OLS residual matrix. Compare the two equations, the analog between the two models is

obvious, and is summerized in Table 6. Moreover, the linearized GMM first order condition for β is

op(T
−1/2) = Ḡ′

β,TM̄γ,TT
−1

∑
ḡt(β̂, γ̂)

= Ḡ′
β,TM̄γ,TT

−1
∑

ḡt(β0, γt) − Ḡ′
β,T M̄γ,T Ḡβ,T (β̂ − β0)

−Ḡ′
β,TM̄γ,T Ḡγ,T (γ̂ − γ0) + Ḡ′

β,T M̄γ,T Ḡγ,TT
−1

∑
(γt − γ0)

= Ḡ′
β,TM̄γ,TT

−1
∑

ḡt(β0, γt) − Ḡ′
β,T M̄γ,T Ḡβ,T (β̂ − β0)

where the third equality follows from M̄γ,T Ḡγ,T = 0 which holds by construction. The above derivation

completely resembles that in linear regressions. That is, when M̄γ,T is used to partial out Ḡγ,T ( �γ − γ0),

the term Ḡγ,T T
−1 � (γt −γ0), representing the effects of the instability in γt, is also partialed out. Hence,

asymptotic behavior of β̂ remains the same as that in the standard GMM model.

Table 6: Comparison between OLS and GMM

OLS GMM

Disturbance ε ε̄T = � T−1 � ḡt(β0, γt) 

Residual e = y −X ′ �β − Z′ �γ ēT = � T−1

�
ḡt( �β, �γ)�

Regressor 1 X Ḡβ,T = � T−1
�
∂ḡt(β, γ)/∂β 


Regressor 2 Z Ḡγ,T = � T−1 � ∂ḡt(β, γ)/∂γ 

Residual matrix Mz = I − Z(Z′Z)−1Z′ M̄γ,T = I − Ḡγ,T (Ḡ′

γ,T Ḡγ,T )−1Ḡ′
γ,T

Normal equation X ′Mze = 0 Ḡ′
β,T M̄γ,T ēT = op(T

−1/2)

9.6 Proposition 3 (Section 4.1)

Recall that JT = Tg( �φ, �θ)′ #Wg( �φ, �θ) where φ̂ is the estimated first-step coefficients, θ̂ is the efficient second-

step estimator, and #W p−→ W0 with W0 being the optimal weighting matrix and Ŵ being a consistent
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estimator of W0
74. Use the notation introduced in Section 2.1, linearize g( �φ, �θ) arond g( �φ, θ0),

g(φ̂, θ̂) = g(φ̂, θ0) +Gθ(φ̂, θ0)(θ̂ − θ0) +RT (53)

where RT = 1
2

�
i( �θ− θ0)

′∂2g(i)( �φ, θ̄)/∂θ∂θ′( �θ− θ0) for i ∈ [1, ...l], where θ̄ is an intermediate point between

θ̂ and θ0. Since (i) �θ − θ0 = Op(T
−1/2) and (ii) g(φ̄, θ0)(i)/∂θ∂θ′ is bounded according to Condition 2,

RT = Op(T−1) using an argument similar to that in Appendix 7.2. Standardize functions g and Gθ by

the optimal weighting matrix and denote ḡ(φ, θ) = W
1/2
0 g(φ, θ), Ḡθ(φ, θ) = W

1/2
0 Gθ(φ, θ). Then (53)

can be written as ḡ( �φ, �θ) = ḡ( �φ, θ0) + Ḡθ(φ0, θ0)( �θ − θ0) + op(T
−1/2) where I use Ḡθ( �φ, θ0) p−→ Ḡθ(φ0, θ0)

which follows from the consistency of φ̂ and the continuous mapping theorem. On the other hand,

from the first order condition of the second-step problem, it is straightforward to derive �θ − θ0 =

− � Ḡθ(φ0, θ0)
′Ḡθ(φ0, θ0) 
 −1

Ḡθ(φ0, θ0)
′ḡ( �φ, θ0) + op(T

−1/2). Substituting the expression into ḡ( �φ, �θ) yields

ḡ(φ̂, θ̂) = M̄θ ḡ(φ̂, θ0) + op(T
−1/2) (54)

where M̄θ = I − Ḡθ(φ0, θ0)[Ḡθ(φ0, θ0)
′Ḡθ(φ0, θ0)]

−1Ḡθ(φ0, θ0)
′. M̄θ is an idempotent matrix with rank T − l

where l = dim(g). So ḡ( �φ, �θ) is a functional of ḡ( �φ, θ0). As a result, JT is a functional of ḡ( �φ, θ0) because

JT = T ḡ( �φ, θ0)′M̄θ ḡ( �φ, θ0) + op(1). According to the finding in Section 3.1, the distribution of ḡ( �φ, θ0)
is unaffected by the time variation in φt. Thus, as a functional of ḡ( �φ, θ0), JT is also asymptotically

independent of φt. Moreover, note that T 1/2ḡ( �φ, θ0) ⇒ N(0, I). This in turn results in JT ⇒ χ2
(l−r), just

as in the stable coefficient case.

9.7 Distributions of partial sums (Section 4.2.2)

The relevant model is yt = x′
tβt + z′tγt + εt. Let �εt = εt + x′

t(βt − β0) + z′t(γt − γ0). I derive the limiting

distribution of T−1/2
∑[sT ]

t=1 xtet in two steps.

1. Show T−1/2
∑[sT ]

t=1 xtet can be expressed as a functional of T−1/2
∑[sT ]

t=1 xtε̃t.

2. Derive the distribution of T−1/2
∑[sT ]

t=1 xtε̃t and hence the distribution of T−1/2
∑[sT ]

t=1 xtet.

Step 1: Let Σxx = E(xtx
′
t), Σxz = E(xtz

′
t), Σuu = E(utu

′
t) and Σzz = E(ztz

′
t). Substitute et =�εt − x′

t( �β − β0) − z′t( �γ − γ0) into T−1/2 � [sT ]
t=1 xtet, yields

T−1/2

[sT ]�
t=1

xtet = T−1/2

[sT ]�
t=1

�
xt �εt − xtx

′
t( �β − β0) − xtz

′
t( �γ − γ0) �

where the second right-hand side term can be decomposed in to T−1/2 � [sT ]
t=1 xtx

′
t( �β − β0) = A1T (s)† +

∆A1T (s), with A1T (s)† = T−1
� [sT ]

t=1 ΣxxT
1/2( �β − β0) = sΣxxT

1/2( �β − β0), and ∆A1T (s) = T−1
� [sT ]

t=1 (xtx
′
t −

Σxx)T 1/2( �β−β0) = op(1), which follows from Condition 1(1) and (51). Similarly, T−1/2 � [sT ]
t=1 xtz

′
t( �γ−γ0) =

74So long as #W is consistent of W0 in the standard two-step model, #W remains consistent in the two-step TVP

model by contiguity.
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Table 7: Asymptotics of Partial Sums

T−1/2 � [sT ]
t=1 xtet = T−1/2 � [sT ]

t=1 xt �εt − sT−1/2 � T
t=1 xt �εt + op(1)

T−1/2
� [sT ]

t=1 xt �εt ⇒ Var(xtεt)
1/2gλ(s)

T−1/2 � [sT ]
t=1 xtet ⇒ Var(xtεt)

1/2(gλ(s) − sgλ(1))

gλ(s) = W (s) + λβ DBx � s

0
Wβ(r)dr + λγ DCx � s

0
Wγ(r)dr

DBx = Var(xtεt)
−1/2ΣxxΣ

1/2
β

DCx = Var(xtεt)
−1/2ΣxzΣ

1/2
γ

T−1/2 � [sT ]
t=1 ztet = T−1/2 � [sT ]

t=1 zt �εt − sT−1/2 � T
t=1 zt �εt + op(1)

T−1/2 � [sT ]
t=1 zt �εt ⇒ Var(ztεt)

1/2fλ(s)

T−1/2 � [sT ]
t=1 ztet ⇒ Var(ztεt)

1/2(fλ(s) − sfλ(1))

fλ(s) = W (s) + λβ DBz � s

0
Wβ(r)dr + λγ DCz � s

0
Wγ(r)dr

DBz = Var(ztεt)
−1/2ΣzxΣ

1/2
β

DCz = Var(ztεt)
−1/2ΣzzΣ

1/2
γ

T−1/2 � [sT ]
t=1 utet = T−1/2 � [sT ]

t=1 ut �εt − sT−1/2 � T
t=1 ut �εt + op(1)

T−1/2 � [sT ]
t=1 ut �εt ⇒ Var(utεt)

1/2hλ(s)

T−1/2
� [sT ]

t=1 utet ⇒ Var(utεt)
1/2(hλ(s) − shλ(1))

hλ(s) = W (s) + λβ DBu � s

0
Wβ(r)dr

DBu = Var(utεt)
−1/2ΣuuΣ

1/2
β

sΣxzT
1/2( �γ − γ0) + op(1) Combining the above results,

s−1 T−1/2

[sT ]∑

t=1

[
xtx

′
t(β̂ − β0) + xtz

′
t(γ̂ − γ0)

]

= ΣxxT
1/2(β̂ − β0) + ΣxzT

1/2(γ̂ − γ0) + op(1)

= (ϑ′Σzzϑ+ Σuu)Σ−1
uuT

−1/2U ′ε̃+ ϑ′Σzz

[
Σ−1

zz T
−1/2Z ′ε̃− ϑΣ−1

uuT
−1/2U ′ε̃

]
+ op(1)

= T−1/2(U + Zϑ)′ε̃+ op(1) = T−1/2X ′ε̃+ op(1)

= T−1/2
T∑

t=1

xtε̃t + op(1)

where I use (49), (50) and the results of partial regression that Σxx = ϑ′Σzzϑ + Σuu and Σxz =

ϑ′Σzz. Collecting terms, T−1/2 � [sT ]
t=1 xtet = T−1/2 � [sT ]

t=1 xt �εt − sT−1/2 � T
t=1 xt �εt + op(1) which shows that

T−1/2 � [sT ]
t=1 xtet is a functional of T−1/2 � [sT ]

t=1 xt �εt.
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Step 2: Next I derive the limiting distribution of T−1/2 � [sT ]
t=1 xt �εt. Note that it can be written as

T−1/2

[sT ]∑

t=1

xtε̃t = T−1/2

[sT ]∑

t=1

[xtεt + xtx
′
t(βt − β0) + xtz

′
t(γt − γ0)]

The limit of the first term above directly follow from Condition 1(2), T−1/2 � [sT ]
t=1 xtεt ⇒ Var(xtεt)

1/2W (s);

The limit of the second follows from Conditions 1(1) and 1(3), T−1/2 � [sT ]
t=1 xtx

′
t(βt − β0) =

T−1/2
� [sT ]

t=1 xtx
′
tλβT

−1
� t

i=1 ν1i ⇒ λβΣxxΣ
1/2
β � s

0
Wβ(r)dr; and the limit of the third follows from Conditions

1(1) and 1(3), T−1/2 � [sT ]
t=1 xtz

′
t(γt −γ0) = T−1/2 � [sT ]

t=1 xtz
′
tλγT

−1 � t
i=1 ν2i ⇒ λγΣxzΣ

1/2
γ � s

0
Wγ(r)dr. There-

fore, limiting distributions of T−1/2
� [sT ]

t=1 xt �εt and T−1/2
� [sT ]

t=1 xtet can be derived, and them are summer-

ized in Table 7, together with the limiting distributions of other partial sums. Note that the absence of

the λγ term in the limiting distribution of T−1/2 � [sT ]
t=1 utet is a direct consequence of Σuz = E(utz

′
t) = 0

in the partial regression.

Finally, the asymptotics for the constant β model yt = x′
tβ0 + z′tγt + εt can be obtained by setting

λβ = 0 in Table 7.

9.8 Proposition 4 (Section 4.2.2)

I will show the Lu
T version of the Nyblom test statistic and the Chow-based test statistics are functionals

of T−1/2
� [sT ]

t=1 ut �εt. Therefore their limiting distributions are functionals of the limit of T−1/2
� [sT ]

t=1 ut �εt.

Step 1: For the Lu
T test, I will first show T−1/2 � [sT ]

t=1 �utet has the same limiting distribution as

that of T−1/2 � [sT ]
t=1 utet. Define the following matrix notation for the subsamples, say, for t ∈ (0, [sT ]),

Z1 = (z1, · · · , z[sT ])
′, U1 = (u1, · · · , u[sT ])

′ and e1 = (e1, · · · , e[sT ])
′. Let Mz1 = I − Z1(Z

′
1Z1)

−1Z′
1 and

Pz1 = I −Mz1. Notation for the second subsample can be defined likewise. Then for the first subsample,

T−1/2
� [sT ]

t=1 �utet = T−1/2U ′
1e1 +T−1/2U ′

1Pz1e1. So the key is to show the second term vanishes in the limit.

The second term can be written as T−1/2U ′
1Pz1e1 = T−1U ′

1Z1 � T−1Z′
1Z1 
 −1

T−1/2Z′
1e1 where T−1U ′

1Z1
p−→

sE(utz
′
t) = 0 which follows from Condition 1(1) and the orthogonal condition in partial regression.� T−1Z′
1Z1 
 −1 p−→ s−1[E(ztz

′
t)]

−1 following from Condition 1(1) and the continuous mapping theorem.. The

distribution of T−1/2Z′
1e1 is given in Table 7. Therefore, T−1/2U ′

1Pz1e1 −→ 0, that is, the use of residual

ût instead of ut has not asymptotic effect, just as in the corresponding stable model.

T−1/2

[sT ]∑

t=1

ûtet = T−1/2

[sT ]∑

t=1

utet + op(1).

The connection between T−1/2 � [sT ]
t=1 utet and T−1/2 � [sT ]

t=1 ut �εt is stated in Table 7.

Step 2: Since all Chow-based tests are functionals of the Chow test, it is sufficient to show the

Chow test is a functional of T−1/2
� [sT ]

t=1 ut �εt. Result (49) can be applied to subsamples which yields75

T 1/2 (β̂1 − β0) =
1

s
Σ−1

uu T 1/2U ′
1ε̃1 + op(1), T 1/2 (β̂2 − β0) =

1

1 − s
Σ−1

uu T 1/2U ′
2ε̃2 + op(1)

Take the difference and rearrange,

T 1/2 ( #β1 − #β2) =
1

s(1 − s)
Σ−1

uu $% T−1/2

[sT ]�
t=1

ut �εt − sT−1/2
T�

t=1

ut �εt &' + op(1)

75the appearance of Σuu in both subsample limits is the consequence of Condition 1(1). For example, for

t ∈ (0, [sT ]),
U′

1
U1

sT
= s−1T−1 � [sT ]

t=1 utu
′
t = s−1sΣuu + op(1)

p−→ Σuu.
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Therefore, the Chow statistic is a functional of T−1/2 � [sT ]
t=1 ut �εt. So do all tests that are functionals of

the Chow test statistic.

Step 3: The limiting distribution of T−1/2 � [sT ]
t=1 ut �εt is given in Table 7. By the continuous mapping

theorem, the distributions of all regression-based tests are easily obtained. This leads to Proposition 4.

9.9 Proposition 5 (Section 4.3)

Denote WT (s) = Var(utεt)
−1/2T−1/2 � T

t=1 ut �εt. To show the independence between the J-test and the

stability tests, I proceed as follows.

1. J-test statistic can be expressed as a functional of WT (1).

2. The regression-based stability tests can be expressed as functionals of WT (s) − sWT (1).

3. Under the null of {β0, γt}, WT (1) and WT (s) − sWT (1) are asymptotically independent.

4. Under the null hypothesis, the J-test and stability tests are asymptotically independent.

Step 1: JT = T−1[W
1/2
0 g( �φ, θ0)]′M̄θ[W

1/2
0 g( �φ, θ0)] + op(1) where T−1/2g( �φ, θ0) = T−1/2Dg( �φ − φ0) +

Op(T
−1/2) = T−1/2( �β − β0) + Op(T−1/2) The second equality follows from (5). The last equality follows

from the transfermation in Section 3.2. Then, by (49), T 1/2( �β − β0) is a functional of T−1/2 � T
t=1 ut �εt.

So does JT . Hence, JT is a functional of WT (1), JT = J(WT (1)).

Step 2: Appendix 9.8 shows that the robust stability tests are functionals of WT (s) − sWT (1). Let

ξT denote any regression-based test. Then, ξT = ξ(WT (s) − sWT (1)).

Step 3: The limiting distribution of WT (s) is given in Table 7, according to which, the null distri-

bution is WT (s) ⇒ W (s), where W (s) is a k-dimensional standard Brownian motion with k = dim(β).

Then under the null hypothesis,

WT (1) ⇒ W (1), WT (s) − sWT (1) ⇒ W (s) − sW (1)

Notice that, W (1) = W (s)+W (1−s) and W (s)−sW (1) = (1−s)W (s)−sW (1−s) where W (s) ∼ N(0, sI)

and W (1 − s) ∼ N(0, (1 − s)I). Given W (s) and W (1 − s) are independent, W (1) and W (s) − sW (1)

are independent because

Cov(W (1), W (s) − sW (1)

= Cov(W (s) +W (1 − s), (1 − s)W (s)− sW (1 − s))

= (1 − s)Var(W (s))− sVar(W (1 − s)) = 0.

Step 4: By the continuous mapping theorem, the joint distribution of J(WT (1)) and ξ(WT (s) −
sWT (1)) under the null hypothesis is

[
J(WT (1))

ξ(WT (s) − sWT (1))

]
⇒

[
J(W (1))

ξ(W (s) − sW (1))

]

It follows from the asymptotic independence of WT (1) and WT (s) − sWT (1) under the null and the

continuous mapping theorem, the J-test statistic J(WT (1)) and any regression-based stability test

ξ(WT (s) − sWT (1)) are asymptotically independent under the null.
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9.10 Proposition 6 (Section 5.2)

Under Condition 3, by a local linearization similar to (12) in the two-step model, the overall restriction

(23) can be decomposed into its stable component and its TVP component. Let A(φ0) = ∂a(φ0)/∂φ.

Restriction 1 : 0 = a(φ0)

Restriction 2 : 0 = A(φ0)(φt − φ0).

9.10.1 Conventional tests for a(φ0) = 0

The likelihood ratio test, the Lagrange multiplier test and the Wald test can all be used to test for

a(φ0) = 0. In what follows, I first derive the restricted and unrestriced estimators using the standard

procedure (i.e., ignoring the time variation in φt when estimating φ). Denote the restriced and the

unrestriced estimators by by φ̃ and φ̂ respectively. Then I show under the null of a(φt) = 0, the tests

are independent of the time variation in φt.

The restricted estimator is obtained by minimizing the objective function QT s.t. a(φ) = 0. Let γT

be the Lagrange multiplier to the constrained problem. Then φ̃ satisfies the first order condition

T−1/2 ∂QT (φ̃)

∂φ
+ T−1/2 A(φ̃)′γT = 0 (55)

T−1/2 a(φ̃) = 0

To solve for φ̃, the terms in the first order condition are linearized. Expanding a(φ̃) around the overall

restriction a(φt) results in a( �φ) = a(φt) + A(φ0)( �φ − φt) + Op(T−1), where the order of the magnitude of

the remainder is obtained under Condition 3 and φ̃
p−→ φ0. Thus under the null of a(φt) = 0,

T 1/2a(φ̃) = A(φ0) T
1/2(φ̃ − φ0) −A(φ0) T

1/2(φt − φ0) +Op(T
−1/2) (56)

It is straightforward to show A( �φ) = A(φ0) +Op(T−1) under Condition 3. Therefore,

T 1/2A(φ̃) = T 1/2A(φ0) + Op(T
−1/2). (57)

Under Conditions 4(1) and 4(2), the Taylor expansion of ∂QT ( �φ)/∂φ around φt leads to

T 1/2∂QT (φ̃)

∂φ
= T−1/2

∑
st(φt) + T−1/2

∑
ht(φ0)(φ̃ − φt) + Op(T

−1/2) (58)

= T−1/2
∑

st(φt) + T−1/2
∑

ht(φ0)(φ̃ − φ0)

+ T−1/2
∑

ht(φ0)(φt − φ0) + Op(T
−1/2)

= T−1/2
∑

st(φt) + H0 T
1/2(φ̃− φ0) + H0 T

−1/2
∑

(φt − φ0) + op(1)

where H0 = Eht(φ0). The last equality uses Conditions 4(1) and 4(3). To streamline the notation, let

A0 = A(φ0). Substituting (56), (57) and (58) into the first order condition (55) and rearranging, yields

[
H0 A′

0

A0 0

] [
T 1/2(φ̃− φ0)

T 1/2γT

]
= −

[
T−1/2

∑
st(φt)

0

]
+

[
H0 T

−1/2
∑

(φt − φ0)

A0 T
−1/2

∑
(φt − φ0)

]
+ op(1)
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Calculate the inverse of the partitioned matrices, φ̃ and γT can be jointly solved as

[
T 1/2 (φ̃ − φ0)

T 1/2 γT

]
=

[
F11 F12

F21 F22

] {
−

[
T−1/2

∑
st(φt)

0

]
+

[
H0 T

−1/2
∑

(φt − φ0)

A0 T
−1/2

∑
(φt − φ0)

]}
+ op(1)

where in the above partitioned matrix,

F11 = H−1
0 −H−1

0 A′
0[A0H

−1
0 A′

0]
−1A0H

−1
0

F12 = H−1
0 A′

0[A0H
−1
0 A′

0]
−1

F21 = [A0H
−1
0 A′

0]
−1A0H

−1
0

F22 = −[A0H
−1
0 A′

0]
−1

Solving φ̃ seperately yields

T 1/2(φ̃− φ0) = −F11T
−1/2

∑
st(φt) + (F11H0 + F12A0)T

−1/2
∑

(φt − φ0) + op(1)

= −[H−1
0 −H−1

0 A′
0(A0H

−1
0 A′

0)
−1A0H

−1
0 ]T−1/2

∑
st(φt)

+T−1/2
∑

(φt − φ0) + op(1) (59)

which follows from F11H0 +F12A0 = I. Note that the second right-hand-side term in (59) represents the

effect of the ignored instability in φt. Similarly, γT can be solved as

T 1/2γT = −F21T
−1/2

∑
st(φt) + (F21H0 + F22A0)T

−1/2
∑

(φt − φ0) + op(1)

= −[(A0H
−1
0 A′

0]
−1A0H

−1
0 T−1/2

∑
st(φt) + op(1) (60)

which follows from F21H0 + F22A0 = 0. Note that the instability in φt has no effects on γT .

The derivation of the unrestricted estimator φ̂ is similar to that in the linear regression model.

Hence it is not repeated here. φ̂ can be solved as

T 1/2(φ̂ − φ0) = −H−1
0 T−1/2

∑
st(φt) + T−1/2

∑
(φt − φ0) + op(1) (61)

Next, using the results for φ̃, φ̂ and γT , I study the behavior of three tests. Denote the likelihood ratio

test, the Lagrange multiplier test and the Wald test by LRT , LMT and WT respectively.

(a) For the likelihood ratio test,

LRT = 2T (QT (φ̃) −QT (φ̂)) = T (φ̃− φ̂)′H0(φ̃ − φ̂) + op(T
−1)

and its asymptotics depend on the behavior of φ̃− φ̂. By (59) and (61),

T 1/2(φ̂− φ̃) = −H−1
0 A′

0[A0H
−1
0 A′

0]
−1A0H

−1
0 T−1/2

∑
st(φt)

+ T−1/2
∑

(φt − φ0) − T−1/2
∑

(φt − φ0) + op(1)

= −H−1
0 A′

0[A0H
−1
0 A′

0]
−1A0H

−1
0 T−1/2

∑
st(φt) + op(1)

So φ̃− φ̂ is a functional of T−1/2 � st(φt) only. There are no asymptotic effects caused by the instability

in γt because the distortion on φ̃ and that on φ̂ are of the same magnitude but with opposite signs.
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(b) For the Lagrange multiplier test, by definition, LMT = T γ′
T 	Avar(γT )−1 γT where Avar(γT ) is

the asymptotic variance of γT . From (60), the effects of the instability in φt on γT is canceled out and

the distribution of γT only depends on T−1/2 � st(φt). So does LMT .

(c) The Wald statistic is defined as WT = T a( �φ)′ 	Avar(a( �φ))−1 a( �φ) where Avar(a(φ̂)) is the asymp-

totic variance of a(φ̂). Taylor expansion of a(φ̂) around a(φt) yields a( �φ) = a(φt)+A0( �φ−φt)+Op(T
−1/2)

which follows Condition 3 and the consistency of φ̂. Since a(φt) = 0 under the null hypothesis,

T 1/2a(φ̂) = A0T
1/2(φ̂− φ0) −A0T

−1/2
∑

(φt − φ0) +Op(T
−1/2) (62)

Substituting (61) into (62) yields

T 1/2a(φ̂) = A0

[
−H−1

0 T−1/2
∑

st(φt) + T−1/2
∑

(φt − φ0)
]

−A0T
−1/2

∑
(φt − φ0) +Op(T

−1/2)

= −A0H
−1
0 T−1/2

∑
st(φt) + op(1)

Thus asymptotically a(φ̂), hence WT , is unaffected by φt.

In summary, the distribution of either the unrestriced or the restricted estimator of φ0 is affected by

the instability in φt. However, no matter what statistic is used to test for a(φ0) = 0, it is a functional of

T−1/2
∑
st(φt) only. The distortion term T−1/2

∑
(φt−φ0) is always canceled out in these test statistics.

9.10.2 Size control of the joint test

Let WT (s) = Ω−1/2T−1/2 � [sT ]
t=1 st(φt) where Ω is the asymptotic variance of st(φt) defined in Condition

4(2). To show the independence between the conventional specification tests for a(φ0) = 0 and the

stabillity tests for A(φ0)(φt − φ0) = 0, I derive in four steps.

1. Tests for a(φ0) = 0 are functionals of WT (1) under the null.

2. The Chow-based stability tests are functionals of WT (s) − sWT (1) under the null.

3. WT (1) and WT (s) − sWT (1) are asymptotically independent.

4. The tests for a(φ0) = 0 and stability tests are asymptotically independent.

The first step is shown in Part I . Now turn to the second step. The class of tests considered are

based on sequntial Chow tests. The Chow test is built up on the estimated difference of A(φ)φ over

different sample periods, that is, based on A( �φ1) �φ1 − A( �φ2) �φ2. Applying (61) to the subsamples for any

0 ≤ s ≤ 1, yields

T 1/2(φ̂1 − φ0) =
1

s


−H−1

0 T−1/2

[sT ]∑

t=1

st(φt) + T−1/2

[sT ]∑

t=1

(φt − φ0)


 + op(1) (63)

T 1/2(φ̂2 − φ0) =
1

1 − s


−H−1

0 T−1/2
T∑

t=[sT ]+1

st(φt) + T−1/2
T∑

t=[sT ]+1

(φt − φ0)


 + op(1)

Note that because of the consistency of φ̂i, for i = 1 and 2, and the continuity of function A(φ) assumed
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in Condition 3, I obtain T 1/2A( �φi)( �φi − φ0) = T 1/2A(φ0)( �φi − φ0) + op(1). Then substitute into (63),

T 1/2 (A(φ̂1)φ̂1 −A(φ̂2)φ̂2) = T 1/2(A0φ̂1 −A0φ̂2) + op(1)

=
−1

s(1 − s)
A0H

−1
0


T−1/2

[sT ]∑

t=1

st(φt) − sT−1/2
T∑

1

st(φt)




+
−1

s(1− s)


T−1/2

[sT ]∑

t=1

A0(φt − φ0) − sT−1/2
T∑

1

A0(φt − φ0)


 + op(1)

=
−1

s(1 − s)
A0H

−1
0


T−1/2

[sT ]∑

t=1

st(φt) − sT−1/2
T∑

1

st(φt)


 + op(1)

where I use that A0(φt − φ0) = 0 for all t under the null. It is evident A( �φ1) �φ1 − A( �φ2) �φ2 is a functional

of WT (s) − sWT (1). Hence any stability tests based on Chow test are functionals of WT (s) − sWT (1).

Finally note that under Condition 3(2), WT (s) ⇒W (s) where W(s) is a standard Brownian motion.

The derivation in Appendix 7.10 for Step 3 and Step 4 then carries over.
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9.11 Derivation of the Investment Equations (Section 6.2.3)

I derive in details the investment model in ∆I . Derivation of the model in IK and the model in ∆K

follows the same procedure, and hence is not repeated.

Consider the cost function (30). The partial derivative of the period profit function defined in (26)

with respect to It, It−1 and Kt, needed to specify the investment Euler equation, are

∂Rt

∂It
= −

[
∂C(It, It−1)

∂It
+ 1

]
pt = −

[
1 + φ0 + 2φ1

It
It−1

+ 3φ2
I2
t

I2
t−1

]
pt (64)

∂Rt

∂It−1
= −∂C(It, It−1)

∂It−1
pt =

[
φ1

I2
t

I2
t−1

+ 2φ2
I3
t

I3
t−1

]
pt (65)

∂Rt

∂Kt
=

∂F (Kt, Lt)

∂Kt
= α

Yt

Kt
(66)

The firm’s optimization problem is then to choose processes It, Kt and Lt for all dates t ≥ 0 to max-

imize (25) subject to (24), (28), (26) and (27). To carry out this constrained optimization, define the

Lagrangian

Lt = Et

{
∞∑

s=t

βs−t[Rs − λs(Ks+1 − (1 − δ)Ks − Is)]

}

where λs is the langragian multiplier for period s. Setting ∂Lt/∂xs = 0 with xs = [Is Ks Ls]
′, yields the

first-order conditions. In particular, for s = t, the first-order conditions for It and Kt are

[I ] : 0 = λt +
∂Rt

∂It
+ βEt

[
∂Rt+1

∂It

]
(67)

[K] : 0 = λt − β(1 − δ)Etλt+1 − βEt

[
∂Rt+1

∂Kt+1

]
(68)

Combining (67) and (68) to eliminate λt and λt+1, yields

∂Rt

∂It
+ βEt

[
∂Rt+1

∂It

]
= β(1 − δ)Et

[
∂Rt+1

∂It+1

]
+ β2(1 − δ)Et

[
∂Rt+2

∂It+1

]
− βEt

[
∂Rt+1

∂Kt+1

]
(69)

Substituting (64), (65) and (66) into (69), the Euler equation of investment is

[
1 + φ0 + 2φ1

It
It−1

+ 3φ2
I2
t

I2
t−1

]
pt

= βEt

{[
(1 − δ)(1 + φ0) + 2(1 − δ)φ1

It+1

It
+ (φ1 + 3(1 − δ)φ2)

I2
t+1

I2
t

+ 2φ2
I3
t+1

I3
t

]
pt+1

}

−β2(1 − δ)Et

{[
φ1
I2
t+2

I2
t+1

+ 2φ2
I3
t+2

I3
t+1

]
pt+2

}
+ αβEt

[
Yt+1

Kt+1

]

Log-linearizing the above Euler equation around the stationary steady-state equilibrium gives

∆Ît = β(2 − δ)Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 (70)

+γ1p̂t + γ2Etp̂t+1 + γ3Etp̂t+2 + γ4EtK̂Y t+1
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where

γ1 = −1 + φ0 + 2φ1 + 3φ2

2(φ1 + 3φ2)

γ2 =
β[(1 − δ)(1 + φ0) + (3 − 2δ)φ1 + (5 − 3δ)φ2]

2(φ1 + 3φ2)

γ3 = −β
2(1 − δ)(φ1 + 2φ2)

2(φ1 + 3φ2)

γ4 = − [1− β(1 − δ)](1 + φ0) + [2 − β(3 − 2δ) + β2(1 − δ)]φ1 + [3 − β(5 − 3δ) + 2β2(1 − δ)]φ2

2(φ1 + 3φ2)

By the expressions of γ1, γ2 and γ3, their sum is very close to zero76. Then substitute γ2 ≈ −(γ2 + γ3)

into equation (70), I get

∆Ît ≈ β(2 − δ)Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 − γ1Et∆p̂t+1 + γ3Et∆p̂t+2 + γ4EtK̂Y t+1 (71)

Following the identical procedure, when the cost adjustment function is (31), the log-linearized invest-

ment Euler equation is

∆Ît = β(2 − δ)Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 (72)

+λ1[β(1 − δ)EtÎt+1 − Ît] + λ2[β(1 − δ)Etp̂t+1 − p̂t] + λ3EtK̂Y t+1

with λ1 = φ̃2/φ̃4, λ2 = p̄/(φ̃4Ī) and λ3 = αβȲ /(φ̃4K̄Ī) where a bar over a variable is the steady-state

value of that variable. Since β(1− δ) is very close to one for theoretical values of β and δ, equation (72)

can be approximated by

∆Ît ≈ [β(2 − δ) + λ1]Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 + λ2Et∆p̂t+1 + λ3EtK̂Y t+1 (73)

Inspection of equations (71) and (73), they can be nested within the following specification

∆Ît = θI1Et∆Ît+1 − β2(1 − δ)Et∆Ît+2 + θp1Et∆p̂
I
t+1 + θp2Et∆p̂

I
t+2 + θKYEtK̂Y t+1 + εt

which is the third equation in (36), the model in ∆I .

In addition, from the above derivation, the signs and, in some cases, the values of the parameters

of the investment equations can be predicted. See Table 8 for a summary.

9.12 Cross-Equation Restrictions (Section 6.3)

I derive the cross-equation restrictions for model in ∆I . Derivation of the cross-equation restrictions for

the model in IK and the model in ∆K follows the same procedure, and hence is not repeated.

The first-step VAR takes the form of Zt = ΦZt−1 + ut. Let ∆Ît, ∆p̂t and K̂Y t take the first, the

second and the third positions in Zt respectively. The k-period ahead forecasts of the three variables are

E(∆Ît+k|Zt) = e′IΦ
kZt, E(∆p̂t+k|Zt) = e′pΦ

kZt and E(K̂Y t+k|Zt) = e′KY ΦkZt (74)

where eI = [1 0 0 · · · 0]′, ep = [0 1 0 · · · 0]′ and eky = [0 0 1 · · · 0]′. Assuming E(εt|Zt−1) = 0 where εt is

the disturbance term in the investment Euler equation.

76To see this, when β is one and δ is zero, the sum of γ1, γ2 and γ3 is identically zero. For theoretical values of β

and δ used in the paper, that is, β = 0.99 and δ = 0.025, we get γ1+γ2+γ3 = −0.017(1+φ0 +φ1+φ2)/(φ1+2φ2).
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Table 8: Theoretical Signs and Values of Coefficients

Model in ∆I Model in IK Model in ∆K

Coeff. Value/Sign Coeff. Value/Sign Coeff. Value/Sign

θI1 + θIK + 0.99 θK + 0.99

θI2 − 0.96 — — — —

θp1 + θp1 + θp1 +

θKY + θKY + θKY +

Note: When the value of a coefficient is not available, only the sign of that

coefficient is reported. The values reported are computed by assuming

β = 0.99 and δ = 0.025.

Consider the third equation in (36), the model in ∆I . Taking expectations conditional on Zt−1 on

both sides yields

E(∆Ît|Zt−1) = θI1Et(∆Ît+1|Zt−1) + θI2Et(∆Ît+2|Zt−1) (75)

+θp1Et(∆p̂
I
t+1|Zt−1) + θp2Et(∆p̂

I
t+2|Zt−1) + θKY Et(K̂Y t+1|Zt−1)

Note expression (75) holds exactly, as a result of the orthogonal condition E(εt|Zt−1) = 0 and the law

of iterative expectations. Then using VAR forecasts (74), equation (75) becomes

(e′IΦ − θI1e
′
IΦ

2 − θI2e
′
IΦ

3 − θp1e
′
pΦ

2 − θp2e
′
pΦ

3 − θKY e
′
KY Φ2)Zt−1 = 0.

Since the above equality holds for any t, it must be the case that

e′IΦ − θI1e
′
IΦ

2 − θI2e
′
IΦ

3 − θp1e
′
pΦ

2 − θp2e
′
pΦ

3 − θKY e
′
KY Φ2 = 0

which is a 1 × np vector of restrictions. So as long Φ−1 exists, which is indeed the case for the VAR

specification in my application, one can post-multiply the above equation by Φ−1. Then expressing the

resulting restrictions in a column vector gives

0 = eI − Φ′eIθI1 − (Φ′)2eIθI2 − Φ′epθp1 − (Φ′)2epθp2 − Φ′eKY θKY

=
[
I − Φ′θI1 − (Φ′)2θI2

]
eI −

[
Φ′θp1 − (Φ′)2θp2

]
ep − Φ′θKY eKY

9.13 Procedure for Estimation and Testing (Section 6.3)

The cross-equation restricions for the models investigated in the paper are linear in the second-step

parameters, see (37). Hence, they can be written in the following general form

0 = A(Φt) +B(Φt)θ. (76)

Expressions of A(Φt), B(Φt) and θ for various models are listed in Table 9.
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Table 9: Expressions of A(Φt), B(Φt) and θ

Model A(Φt) B(Φt) θ

Model in IK eIK −[Φ′
teIK Φ′

tep Φ′
teKY ] [θIK θp1 θKY ]′

Model in ∆K eK −[Φ′
teK Φ′

tep Φ′
teKY ] [θK θp1 θKY ]′

Model in ∆I eI −[Φ′
teI (Φ′

t)
2eI Φ′

tep (Φ′
t)

2ep Φ′
teKY ] [θI1 θI2 θp1 θp2 θKY ]′

Then, following the analysis in Section 3.1, the overall restriction (76) can be decomposed into its

time-invariant component and the TVP component results in

Restriction 1 : 0 = A(Φ0) +B(Φ0) θ0 (77)

Restriction 2 : 0 = Dg vec(Φt − Φ0)
′ (78)

where expressions of Dg for the model in IK, the model in ∆K and the model in ∆I are respectively

DgIK = −[e′IKθIK + +e′pθp1 + e′KY θKY ]′ ⊗ I

Dg∆K = −[e′KθK + +e′pθp1 + e′KY θKY ]′ ⊗ I

Dg∆I = −[e′I(θI1 + θI2Φ0) + e′p(θp1 + θp2Φ0) + e′KY θKY ]′ ⊗ I − (e′IθI2 + e′pθp2) ⊗ Φ′
0

Then, estimation and testing can be conducted as follows.

• Step 1: Obtain Φ̂, the OLS estimator of Φ0 through equation-by-equation estimation. Compute

the residuals {et}.

• Step 2: Use Φ̂ and solve for θ by the conventional two-step minimum distance approach. Obtain

the efficient estimator θ̂ and its estimated asymptotic variance Âvar(θ̂).

• Step 3: Compute the J-statistic JT for testing the over-identifying restriction A(Φ0)+B(Φ0)θ0 = 0

and compute the p-value PR1 = Pχ2(J > JT ).

• Step 4: To conduct the stability test, rewrite the VAR in the form of (??) by setting β̂ =

Dg(Φ̂, θ̂) vecΦ̂′. Obtain {xt} and {zt} accordingly.

• Step 5: Compute the residuals {ût} by regressing xt on zt. Together with {et}, construct Σ̂uu =

T−1
∑
ûtû

′
t and ̂Var(utεt) = Σ̂uu(T−1e2t ).

• Step 6: Compute the test statistics for Restriction 2. The Nyblom statistic Lu
T can be computed

according to (23). To obtain the Chow FT -based tests, compute the FT statistic by (22) and

QLRT , MWT and EWT by (21)77.

77One needs to choose the trimming proportions s0 and s1, with s0 < s1. For each potential break date

t ∈ [s0T, s1T ], calculate �βi (i = 1, 2) for subsample i by �βi = Dg( �Φi, �θi) vec �Φ′
i , or alternatively, by �βi =

Dg( �Φ, �θ) vec �Φ′
i using the full-sample estimate of Dg.
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• Step 7: Simulate the null distribution of the tests78. Compute the p-value PR2 = Pλ1=0(ξ > ξT ),

where ξT can be either of the Lu
T , QLRT , MWT or EWT statistics obtained in Step 6.

• Step 8: For a given significance level of the overall test for (76), determine the significance levels

of the R1 test and the R2 test, αR1 and αR2. The decision rule is: the NKPC is not rejected if

and only if PR1
> αR1

and PR2
> αR2

.

9.14 Data Appendix

Table 10: Data Description

DRI name Description

FYFF Interest rate: federal funds (effective)

GDPD Implicit price deflator: GDP

GDIPD Implicit price deflator: producers durable equipment

LBGDPU Implicit price deflator: non farm business

GDPQ Gross domestic product: chained

GPBUQ Gross domestic product: non farm business

GIPDEQ Total producers durable equipment

KNNREQ Real net stock, non-residential equipment

9.14.1 Data description

All data series in Table 10 are from DRI-McGraw Hill database.

• Investment, denoted by I in the paper, is the quarterly spending on producers durable equipment

in billions of 1987 dollars.

• Capital stock, denoted by K in the paper, is a series interpolated from the annual net stock

of private non-residential equipment. To construct this series, I set the fourth-quarter value of

the interpolated series equal to the year-end value of net stock of that year. Then to interpolate

between the year-end values, I assume the capital stock evolves following the law of motion Kt+1 =

(1−δ)Kt +It where δ is set to equal 0.025 on a quarterly basis. In words, the quarterly changes in

the stock of equipment after depreciation is proportional to the quarterly pattern of investment.

The resulting quarterly capital series is measured in billions of 1987 dollars.

• Investment share in captial stock, denoted by IK in the paper, is constructed as the ratio of

investment to capital stock, I/K.

78For the QLR test, the MW test and the EW test, the critical values are available in Andrews (1993) and

Andrews and Ploberger (1994). So alternatively one can compare the test statistics obtained in Step 6 with the

critical values in these papers.
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• Purchase price of capital goods, denoted by pI in the paper, is constructed as pI = PDE/PY ,

where PDE is the implicit price deflator for producers durable equipment and PY is the implicit

price deflator of output. Two measures of PY are used. They are the price deflator for the

non-farm business sector and the price deflator for the overall GDP measure. Accordingly, there

are two measures for the relative purchase price of capital goods, denoted by pI
NFB and pI

GDP

respectively.

• Output, is denoted by Y in the paper. Two measures of Y are used. One is the gross domestic

product in the non-farm business sector, and the other one is an overall measure of gross domestic

product. The two measures are denoted by YNFB and YGDP respectively.

• Capital share in output, denoted by KY in the paper, is computed as the ratio of capital stock

to output, K/Y . Two measures of capital share are computed and are denoted by KYNFB and

KYGDP respectively, corresponding to the two measures of output.

• Short-term interest rate, denoted by i in the paper, is the federal funds rate. Since only monthly

series is available, it is converted to quarterly basis.

9.14.2 Persistence and data transformations

Almost all variables introduced above are used in their log-linearized form. The only exception is the

interest rate, which is used without log-linearization. a log-linearized variable is computed as x̂t =

logxt − T−1
∑T

t=1 logxt, that is, the log-deviation of a variable from its sample mean.

Table 11: Persistence of Series

Series OLS MUE 90% CI

i 0.92 0.93 0.87 − 1.02

Î 0.91 0.94 0.83 − 1.02

K̂ 0.96 0.99 0.88 − 1.02

ÎK 0.95 0.95 0.87 − 1.02

p̂I
NFB 0.99 1.02 0.96 − 1.03

p̂I
GDP 0.99 1.02 0.95 − 1.03

ŶNFB 0.88 0.89 0.80 − 1.01

ŶGDP 0.88 0.89 0.79 − 1.01

K̂Y NFB 0.96 0.97 0.89 − 1.02

K̂Y GDP 0.96 0.99 0.91 − 1.03

In addition, special attention is paid to the persistence of the time series, since persistence of series

could lead to inference problem. It turns out that in my application, all variables in level, Î , p̂I , K̂, ÎK,

K̂Y , Ŷ and i, are persistent. Empirical estimates of persistence, measured by the largest autoregressive

root of the series are give in Table 11. A second median-unbiased estimator (MUE) for the largest root
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is also reported79. They are construced by inverting the Dicker-Fuller unit root statistics ( including a

constant for the federal funds rate series, and including a linear time trend for the other series). Indeed,

the hypothesis of a unit root cannot be rejected for any of the series.

To avoid the inference problem caused by persistent series, transformations are made to the time

series. First difference is used for a series if (1) this variable shows up in an investment equation in first

difference, such as investment Î , capital stock K̂ and price of capital stock p̂I ; or (2) this variable only

shows up in the first-step VAR model but not in any investment Euler equations, such as interest rate i

and total output Ŷ .

On the other hand, if a variable is persistent but showing up in an investment equation in level,

such as capital share in output K̂Y and investment share in capital ÎK, then this variable is detrended

using a non-parametric method, the cubic spline80. In the current application, a cubic spline with two

knot points is used. Between the knot points, the spline is a third degree polynomial imposing equality

of the levels and first two derivatives at the knot points. The knot points used are equally spaced.

Table 12: Variable Combinations of VARs

Dataset Name VAR with interest rate VAR without interest rate

∆I(NFB) [∆ �I ∆ �pI
NFB 	KY NFB ∆ �YNFB ∆i] [∆ �I ∆ �pI

NFB 	KY NFB ∆ �YNFB]

∆I(GDP ) [∆ �I ∆ �pI
GDP 	KY GDP ∆ �YGDP ∆i] [∆ �I ∆ �pI

GDP 	KY GDP ∆ �YGDP ]

IK(NFB) [ #IK ∆ �pI
NFB 	KY NFB ∆ �YNFB ∆i] [ #IK ∆ �pI

NFB 	KY NFB ∆ �YNFB]

IK(GDP ) [ #IK ∆ �pI
GDP 	KY GDP ∆ �YGDP ∆i] [ #IK ∆ �pI

GDP 	KY GDP ∆ �YGDP ]

∆K(NFB) [∆ �K ∆ �pI
NFB 	KY NFB ∆ �YNFB ∆i] [∆ �K ∆ �pI

NFB 	KY NFB ∆ �YNFB]

∆K(GDP ) [∆ �K ∆ �pI
GDP 	KY GDP ∆ �YGDP ∆i] [∆ �K ∆ �pI

GDP 	KY GDP ∆ �YGDP ]

9.15 Instability in the first-step VARs

I test the stability of the first-step VARs with two approaches81. In the first approach, the stability of

the VAR is examined using a variety of tests including the Nyblom test, the MW test, the EW test and

the QLR test. The MW, EW and QLR tests are based on the Chow Wald statistics. They are computed

by excluding 30% of the observations at each end of the sample. The choice of a relatively large trimming

79The median-unbiased estimation method is used because the OLS estimator of the largest root is biased

towards zero. The MUE estimates and their 90% confidence intervals are computed using the method described

by Stock (1991).
80In the literature, the spline model has been used to approximate the trend component in unemployment

or output. It is used in Staiger, Stock and Watson (1997a and 1997b) to model the NAIRU, and in Bernanke,

Gertler and Watson (1997) to detrend the output.
81When there are both temporary and persistent time variations in the VAR coefficients, The two approaches

used here will capture instability in a persistent manner. Temporary time variations, on the other hand, is

controled by adopting heteroskedasticity-and-autocorrelation-robust estimation.
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Table 13: Instability in the VAR

1. Interest Rate Excluded

Nyblom MW EW QLR

Equation p-value λ̂ p-value λ̂ p-value λ̂ p-value λ̂

Investment 0.00 5.12 0.00 3.40 0.00 3.84 0.00 3.90

Capital price 0.00 5.18 0.00 3.44 0.00 3.92 0.00 3.96

Capital share 0.00 4.34 0.01 2.70 0.00 4.00 0.00 4.03

Output 0.00 4.10 0.01 2.45 0.00 3.72 0.00 3.84

2. Interest Rate Included

Nyblom MW EW QLR

Equation p-value λ̂ p-value λ̂ p-value λ̂ p-value λ̂

Investment 0.00 6.27 0.00 4.43 0.00 5.38 0.00 5.47

Capital price 0.00 6.06 0.00 4.24 0.00 4.58 0.00 4.63

Capital share 0.00 5.91 0.00 4.09 0.00 5.99 0.00 6.07

Output 0.00 5.39 0.00 3.63 0.00 5.49 0.00 5.57

Interest rate 0.00 7.16 0.00 5.15 0.00 6.83 0.00 6.90

Note: p-values are computed by simulating the null distribution of the test statistics.

The estimates of λ̂ are obtained by simulating the distribution of the test statistics

under the TVP alternative. In all simulations, (i) the number of replications is 5,000;

(ii) the number of the grid points used to approximate the integrals is 500.

at each end is based on the moderate sample size, T = 140 and the number of parameters in the VAR.

There are 21 coefficients in each VAR equation. Even a 30% trimming implies in the smallest subsample,

only 42 observations are used for 21 unknowns.

In the second approach, the amount of the time variation in the reduced-form VAR is quantified.

To do so, I estimate the λ in (10), using the median-unbiased estimation proposed by Stock and Watson

(1998)82. A zero λ indicates no time variation in the VAR; A non-zero λ signifies the presence of

instability; and a large value of λ corresponds to large amount of instability.

It turns out both approaches indicate that all VAR specifications used in the exercise exhibit

parameter instability. For illustration purpose, I present the stability results for one VAR, which is

82The general idea of the median-unbiased estimation method is to explore the fact that the distribution of the

stability tests under the TVP alternative (9) and (10) depends on λ and Σ. Hence, by appropriate normalization

so that Σ is consistently estimable, the distribution depends on λ only. Then the 50th quantile of the distribution

can be inverted to obtain a median-unbiased estimator of λ. In the current application, I impose the normalization

Σ = E(Zt−1Z
′
t−1)

−1Var(εtZt−1)E(Zt−1Z
′
t−1)

−1.
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a first-step model for the third investment model in (36). Using the notation of Table 12, this is a

five-variable VAR in ∆ÎNFB , ∆p̂I
NFB , K̂Y NFB , ∆i and ∆ŶNFB . The number of lags of this VAR is

four. Table 13 summarizes the testing results for this VAR on equation-by-equation basis. The null of

stability is rejected in all equations. The median-unbiased estimates are all small but non-zero, ranging

from 3.63 to 7.16. Thus the empirical evidence suggests the asymptotic nesting (10) is appropriate.

9.16 Inclusion / Exclusion of Interest Rate

Table 14: Granger Causality Test of a First-Step VAR

(1) Interest Rate Excluded

Excluded variable

∆ �I ∆ �pI 	KY ∆ �Y
∆ �I equation

√

∆ �pI equation
√ √ √ √

	KY equation
√ √ √ √

∆ �Y equation
√ √ √ √

(2) Interest Rate Included

Excluded variable

∆ �I ∆ �pI 	KY ∆ �Y ∆i

∆ �I equation
√ √

∆ �pI equation
√ √ √ √

	KY equation
√ √ √ √

∆ �Y equation
√ √ √ √

∆i equation
√ √ √

Note: “
√

” means the p value of the Granger causality test

of excluding a variable from the VAR is greater than 5%.
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9.17 Weak Identification in Time-varying 2SLS Models (Section 7)

Consider the following linear IV regression model in which all regressors are endogenous and there are

no included exogenous variables,

yt = x′tβt + εt (79)

where xt is a k × 1 vector of regressors, εt is a mean zero scalar disturbance term, βt is a k × 1

vector of time-varying coefficients which follows the TVP process βt − βt−1 = τvt with τ = λβ/T and

vt ∼ N(0,Σβ). The regressors, xt, are connected to the set of instruments, zt, by

x′t = z′tΠ + u′t (80)

under β0, where zt is a d × 1 vector of instruments, Π is a d × k coefficient matrix, ut is a k × 1 vector

of mean zero disturbances which satisfies E(ztu
′
t) = 0; Note that, to get the asymptotic results, as long

as contiguity holds, I only require the regressors and instruments maintain a stable relationship in the

hypothetical case of xt being generated by the stable regression yt = x′tβ0 + εt.

The weak idendification, i.e., the weak correlation between the regressors, xt, and the instruments,

zt, is modeled, following Staiger and Stock (1997), as

Π = T−1Γ, (81)

from which it is easy to show T−1 p−→ 0. In addition, the vector of instruments, zt, and disturbances

{εt, ut} satisfy the following assumptions.

• Assumption B1: {zt, εt, ut} follows a stationary process under β0 .

• Assumption B2: ztεt and ztut are martingale difference sequences under β0 with E(ztz
′
tε

2
t ) = Σzε

and E(ztz
′
tu

2
t ) = Σzu, with Σzε and Σzu being positive definite.

• Assumption B3: E(ztz
′
t) = Σzz with Σzz being positive definite.

• Assumption B4: The sequence of densities of data under βt is contiguous of the sequences of

densities of the data under β0.

The estabilishment of contiguity is identical to the proof of contiguity in Appendix 9.1, and hence

is not repeated. Then we have the following proposition. The proposition shows that the asymptotic

distribution of the standard 2SLS estimator does not depend on {λβ, Σβ}, the parameters governing the

βt process.

Proposition: Consider the time-varying parameter 2SLS regression defined in (79), (80) and (81).

Let Wzε(·) and Wzu(·) be two standard Brownian motions associated with ztεt and ztu
′
t. Then, under

Assumptions B1 to B4, the standard 2SLS estimator, β̂2SLS, is asymptotically independent of the βt

process. The limiting distribution of the standard 2SLS estimator is given by

β̂2SLS − β0 ⇒ FD(Wzu)−1FN (Wzε,Wzu)

where FD(Wzu) = Γ′ΣzzΓ + Γ′Σ1/2
zu Wzu(1) +W ′

zu(1)Σ1/2
zu Γ +W ′

zu(1)Σ1/2
zu Σ−1

zz Σ1/2
zu Wzu(1)

FN (Wzε,Wzu) = Γ′Σ1/2
zε Wzε(1) +W ′

zu(1)Σ1/2
zu Σ−1

zz Σ1/2
zε Wzε(1)
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Proof: First, by Assumption B1 to B4, the following results can be established on some partial sums

under βt.

(i) T−1/2
∑[sT ]

t=1 ztu
′
t(βt − β0) ⇒ λβE(ztu

′
t)Σ

1/2
β

∫ s

0
Wβ(r)dr = 0

(ii) T−1/2
∑[sT ]

t=1 ztz
′
tΓ(βt − β0) ⇒ λβΣzzΓΣ

1/2
β

∫ s

0 Wβ(r)dr

(iii) T−1/2
∑[sT ]

t=1 ztεt ⇒ Σ
1/2
zε Wzε(s)

(iv) T−1/2
∑[sT ]

t=1 ztu
′
t ⇒ Σ

1/2
zu Wzu(s)

(v) T−1/2
∑[sT ]

t=1 ztzt
p−→ Σzz

The proof of result (i) to result (v) is similar to the proof of Lemma 1 in appendix 9.3, and hence

is not repeated. To faciliate the analysis in matrix form , let Z = [z1, ..., zT ]′, and X , ε, u are defined

likewise; let Z̃ = diag(z′1, ...z
′
T ), and X̃ and Ṽ are defined likewise; let β̃ = [(β1 − β0)

′, ..., (βT − β0)
′]′.

Let Pz = Z(Z ′Z)−1Z ′. Then the 2SLS estimator of β0, expressed in matrix form, is β̂2SLS =

[X ′PzX ]−1X ′Pzy, from which,

β̂2SLS − β0 = [X ′PzX ]−1[X ′Pzε+X ′PzX̃β̃] (82)

where the effects of the instability in βt is captured by the omitted variable X ′PzX̃β̃. In what follows, I

derive the limits of the three terms on the right-hand side of (82). The term X ′PzX can be decomposed

as

X ′PzX = (T−1/2ZΓ + u)′Pz(T
−1/2ZΓ + u) = A1T +A2T + A3T +A4T with

A1T = T−1Γ′Z′ZΓ = Γ′T−1
�

ztz
′
tΓ

p−→ Γ′ΣzzΓ

A2T = T−1/2Γ′Z′u = Γ′T−1/2
�

ztu
′
t ⇒ Γ′Σ1/2

zu Wzu(1)

A3T = T−1/2u′ZΓ = A′
2T ⇒ W ′

zu(1)Σ1/2
zu Γ

A4T = u′Pzu = [T−1/2
�

utz
′
t][T

−1
�

ztz
′
t]
−1[T−1/2

�
ztu

′
t]

⇒ W ′
zu(1)Σ1/2

zu Σ−1
zz Σ1/2

zu Wzu(1)

where the limit of A1T follows from result (v); limits of A2T and A3T follow from result (iv); and the

limit of A4T follows from results (iv) and (v). Similarly, the term X ′Pzε can be computed as

X ′Pzε = (T−1/2ZΓ + u)′Pzε = B1T +B2T where

B1T = T−1/2Γ′Z′ε = Γ′T−1/2
�

ztεt ⇒ Γ′Σ1/2
zε Wzε(1)

B2T = u′Pzε = [T−1/2
�

utz
′
t][T

−1
�

ztz
′
t]
−1[T−1/2

�
ztεt]

⇒ W ′
zu(1)Σ1/2

zu Σ−1
zz Σ1/2

zε Wzε(1)

where the limit of B1T follows from result (iii); and the limit of B2T follows from results (iii), (iv) and

(v). Finally consider the term X ′PzX̃β̃,

X ′PzX̃β̃ = (T−1/2ZΓ + u)′Pz(T
−1/2Z̃ ⊗ Γ + ũ)β̃ = C1T + C2T + C3T + C4T where

C1T = T−1/2Γ′Z′ �u �β = Γ′T−1/2
�

ztut(βt − β0) → 0

C2T = u′Pz �u �β = [T−1/2
�

utz
′
t][T

−1
�

ztz
′
t]
−1[T−1/2

�
ztut(βt − β0)] → 0

C3T = T−1Γ′Z′( �Z ⊗ Γ) �β = T−1/2[T−1/2
�

ztz
′
tΓ(βt − β0)] = Op(T

−1/2) → 0

C4T = T−1/2u′Pz( �Z ⊗ Γ) �β
T−1/2[T−1/2

�
utz

′
t][T

−1
�

ztz
′
t]
−1[T−1/2

�
ztz

′
tΓ(βt − β0)] = Op(T

−1/2) → 0
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where the limit of C1T follows from result (i); the limit of C2T follows from results (i), (iv) and (v); the

limit of C3T follows from result (ii) and the limit of C4T follows from result (ii), (iv) and (v).

Summerizing, the limits of the three right-hand side terms in (82) are

X ′PzX ⇒ Γ′ΣzzΓ + Γ′Σ1/2
zu Wzu(1) +W ′

zu(1)Σ1/2
zu Γ +W ′

zu(1)Σ1/2
zu Σ−1

zz Σ1/2
zu Wzu(1)

X ′Pzε ⇒ Γ′Σ1/2
zε Wzε(1) +W ′

zu(1)Σ1/2
zu Σ−1

zz Σ1/2
zε Wzε(1)

X ′PzX̃β̃
p−→ 0,

from which, it is evident the effects of the ignored time variation in βt is negligible asymptotically.

Substituting the above limits to (82) gives the limting distribution of β̂2SLS , which is free of λβ , Σβ , and

Wβ(·) − the parameters and Brownian motion associated with the βt process.
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