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Abstract

The ecological inference problem arises when making inferences about individual behavior
from aggregate data. Such a situation is frequently encountered in the social sciences and epi-
demiology. In this article, we propose a Bayesian approach based on data augmentation. We
formulate ecological inference in 2×2 tables as a missing data problem where only the weighted
average of two unknown variables is observed. This framework directly incorporates the deter-
ministic bounds, which contain all information available from the data, and allow researchers
to incorporate the individual-level data whenever available. Within this general framework,
we first develop a parametric model. We show that through the use of an EM algorithm, the
model can formally quantify the effect of missing information on parameter estimation. This is
an important diagnostic for evaluating the degree of aggregation effects. Next, we introduce a
nonparametric model using a Dirichlet process prior to relax the distributional assumption of
the parametric model. Through simulations and an empirical application, we evaluate the rela-
tive performance of our models in various situations. We demonstrate that in typical ecological
inference problems, the fraction of missing information often exceeds 50 percent. We also find
that the nonparametric model generally outperforms the parametric model, although the latter
gives reasonable in-sample predictions when the bounds are informative. C-code, along with an
R interface, is publicly available for implementing our Markov chain Monte Carlo algorithms to
fit the proposed models.
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1 Introduction

The ecological inference problem arises when making inferences about individual behavior from

aggregate data. Such a situation is frequently encountered in the social sciences and epidemiology

(e.g., Greenland and Robins, 1994; Achen and Shively, 1995). Although the ecological regression

suggested by Goodman (1953) and an alternative model developed by King (1997) have been widely

used in practice, a number of other approaches have been recently proposed (e.g., King, Rosen,

and Tanner, 1999; Wakefield, 2004a). While some highlight the limitations of ecological inference

(e.g., Gelman et al., 2001), progress has also been made, and there now exist a growing number of

new statistical techniques based on a variety of assumptions (e.g., King, Rosen, and Tanner, 2004).

In this article, we propose an approach based on data augmentation (Tanner and Wong, 1987).

We formulate ecological inference in 2×2 tables as a missing data problem where only the weighted

average of two unknown variables is observed. This framework directly incorporates the determin-

istic bounds, which contain all information available from the data, and allow researchers to use

the individual-level data whenever available. Many have shown that incorporating such auxiliary

information is essential for reliable ecological inference in some situations (e.g., Wakefield, 2004a).

Within this general framework, we first develop a parametric model. We show that through the

use of an EM algorithm and its extension (Dempster, Laird, and Rubin, 1977; Meng and Rubin,

1991), the model can formally quantify the effect of missing information due to aggregation. This

formal evaluation of aggregation effects on parameter estimation is an important contribution to

the literature because the previous works rely solely on informal, graphical diagnostics (e.g., King,

1997; Gelman et al., 2001; Wakefield, 2004a). Our method can also suggest the degree to which one’s

ecological inference relies on the parametric assumptions, an essential consideration for empirical

researchers in light of the debates about the appropriateness of particular parametric assumptions

(e.g., Freedman et al., 1998; King, 1999; Cho and Gaines, 2004).

Second, using this parametric model as a base model, we develop a nonparametric Bayesian

model using a Dirichlet process prior (Ferguson, 1973) in order to relax the distributional as-

sumption of the parametric model. One common feature of many existing models is that they
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make parametric assumptions. For example, in his exchange with Freedman et al. (1998), King

(1999) concludes that “open issues . . . include . . . flexible distributional and functional form spec-

ifications” (p.354). We take up this challenge by relaxing the distributional assumption of our

parametric model, and examine the relative advantages of the nonparametric model through sim-

ulation studies and an empirical example.

Our method deals with ecological inference in 2×2 tables and is motivated by the racial voting

example, which is of particular importance in the social sciences. Every ten years, congressional

districts are redrawn based on the most recent census counts, providing politicians with the op-

portunity of gerrymandering and yielding many litigations by Democratic and Republican parties.

The rulings of these court cases typically rely on the empirical estimates of racial voting behavior

under various redistricting plans that are provided by expert witnesses. Given their importance in

court rooms, the statistical procedures that are used to produce these estimates are often disputed

(e.g., Freedman et al., 1991; Grofman, 1991; Lichtman, 1991; Freedman et al., 1998; King, 1999).

To understand a typical racial voting problem, suppose that we observe the number of registered

white and black voters for each geographical unit (e.g., a county). The election results reveal the

total number of votes for all geographical units. Given this information, we wish to infer the

number of black and white voters who turned out. Table 1 presents a 2 × 2 ecological table of

the racial voting example where counts are transformed into proportions. In typical racial voting

examples, the number of voters within each geographical unit is very large. Hence, many previous

methods directly modeled proportions rather than treating them as parameters (e.g., Goodman,

1953; Freedman et al., 1991; King, 1997). We follow this practice in our article, hence our proposed

method may not be applicable to the situations where the number of voters is small. In contrast,

King et al. (1999) and Wakefield (2004a) model counts although Wakefield (2004a) suggests the

use of normal approximation based on proportions when the counts are large (see also Brown and

Payne, 1986).

For every geographical unit i = 1, . . . , n, such a 2 × 2 ecological table is available. Given the

total turnout rate Yi and the proportion of black voters Xi, one seeks to infer the proportions of

black and white voters who turned out, W1i and W2i respectively. We may also be interested in
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black voters white voters
Voted W1i W2i Yi

Not Voted 1−W1i 1−W2i 1− Yi

Xi 1−Xi

Table 1: 2×2 Ecological Table for the Racial Voting Example. Xi, Yi,W1i, and W2i are proportions,
and hence lie between 0 and 1. The unit of observation is typically a geographical unit and is
denoted by i.

related quantities such as the average of these probabilities, weighted by the total number of black

or white voters in each geographical unit.

Typically, the primary goal of ecological inference is to obtain in-sample and out-of-sample

predictions of these quantities. In-sample predictions are of interest when researchers simply wish

to predict the missing inner cell proportions of ecological tables in a given sample, thereby limiting

inferences to voting behavior of blacks and whites in a particular election. In contrast, out-of-

sample predictions enable inferences about the underlying population from which the sample is

assumed to be randomly drawn. This distinction between the in-sample and population inferences

has been often neglected.

The rest of the article is organized as follows. In Section 2, we briefly review the approaches

that have been previously proposed in the literature. In Section 3, we introduce our parametric

and nonparametric methods. In Section 4, we evaluate the performance of our models through a

variety of simulations. Section 5 presents an empirical application of the voter registration data in

four U.S. southern states. Finally, Section 6 gives concluding remarks.

2 Previous Approaches

In this section, we briefly review some of the previously proposed approaches to motivate our

method. For a more comprehensive survey of the literature, readers may wish to consult Cleave,

Brown, and Payne (1995), King (1997), and Wakefield (2004a), among others.
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2.1 Method of Bounds

Suppose that in a simple random sample of size n from a population, we observe the margins

of Table 1 for each county i. The method of bounds is based on the following deterministic

relationship,

Yi = W1iXi + W2i(1−Xi), for i = 1, 2, . . . , n (1)

where Xi, Yi,W1i,W2i ∈ [0, 1]. When Yi is equal to either 0 or 1, W1i and W2i are completely known.

If Xi = 1, then W1i = Yi but W2i does not exist. Similarly, if Xi = 0, then W2i = Yi but W1i

does not exist. King (1997) called equation 1 a tomography line. For every i, this tomography line

defines a deterministic relationship between the missing data, Wi = (W1i,W2i) and the observed

data, (Yi, Xi). Duncan and Davis (1953) first recognized that with equation 1, one can narrow the

original bound of [0, 1] for Wi to the following intervals,

W1i ∈
[
max

(
0,

Xi + Yi − 1
Xi

)
, min

(
1,

Yi

Xi

)]
, (2)

W2i ∈
[
max

(
0,

Yi −Xi

1−Xi

)
, min

(
1,

Yi

1−Xi

)]
. (3)

Given these bounds for each i (e.g., a county), the analysis of larger units (e.g, a state) can be

carried out by simply aggregating the upper and lower bounds with appropriate weights; NiXi and

Ni(1−Xi) for W1i and W2i, respectively, where Ni is the total number of voters in county i. When

the resulting bounds are sufficiently narrow, researchers can make reasonable in-sample inferences.

Although applied researchers often find the bounds too wide for their purposes, the method

of bounds shows the identifying power of the data without any statistical assumption. That is,

equation 1 implies the exact degree to which the data are informative about Wi. For this reason,

statistical analysis that does not incorporate this deterministic relationship is likely to be sensitive

to modeling assumptions (King, 1997).

2.2 The Ecological Regression and Related Methods

Goodman (1953, 1959) proposes the use of a linear regression to model population means of

(W1i,W2i) (see also Achen and Shively, 1995; Gelman et al., 2001). This ecological regression
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assumes that the population average turnout for each racial group is fixed and does not vary from

one county to another. Namely, E(W1i | Xi) = E(W1i) and E(W2i | Xi) = E(W2i) for all i.

With this constancy assumption, taking the conditional expectation of both sides of equation 1

and rearranging the right hand side yield E(Yi | Xi) = E(W2i) + E(W1i − W2i) Xi. If we further

assume that the error term εi = Yi −E(Yi | Xi) is uncorrelated with Xi, the unbiased estimates of

E(Wji) can be obtained from the following least squares regression,

Yi = α + βXi + εi. (4)

Although the ecological regression estimates the marginal means, it does not estimate other

features of the population distribution. Furthermore, the ecological regression often fails to provide

reasonable in-sample inferences. Typically, the estimated population means are used as the in-

sample predictions of W1i and W2i. The problem is, however, that these “in-sample” predictions

are not consistent with the deterministic bounds of equations 2 and 3.

Freedman et al. (1991) introduce a related method, called the neighborhood model, that does

not rely upon the assumption of homogeneity within a racial group. The neighborhood model makes

an alternative assumption that within each county both black and white voters behave in the same

way, i.e., W1i = W2i = γi and hence Yi = γi for all i. In the context of racial voting, however, some

argue that this assumption is unrealistic (e.g., Grofman, 1991). The linear neighborhood model

estimates γi by first fitting the ecological regression of equation 4 and then using Ŷi = α̂ + β̂Xi

as the estimate of γi. The nonlinear neighborhood model uses the observed values of Yi directly

as the estimate of γi. Although these in-sample predictions are consistent with the bounds, the

neighborhood models do not allow for population inferences.

2.3 Recent Advances

Recently, a number of parametric models for ecological inference have been proposed. In contrast

to the ecological regression, these models specify a parametric distribution for the missing data Wi

and therefore yield the in-sample predictions of Wi as well as the population-level estimates. King

(1997) proposes a model where Wi is assumed to follow a truncated bivariate normal distribution.
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The main contribution of his model is to incorporate the bounds into statistical estimation. Sim-

ilarly, Wakefield (2004a) suggests a binomial convolution model that respects the bounds of Wi.

King et al. (1999) propose a hierarchical Bayesian model that adds greater flexibility to distribu-

tional assumptions, but only incorporates the bounds in expectation. Its in-sample predictions are

therefore inconsistent with the bounds.

3 Method

The review of previous approaches in Section 2 reveals our modeling tasks. First, a model must

directly incorporate bounds. Second, strong distributional assumptions should be avoided. In

this section, we propose the parametric and nonparametric methods to address these issues. Our

method is based on data augmentation (Tanner and Wong, 1987). We formulate ecological inference

as a missing data problem where only the weighted average of two unknown variables is observed

(see Wakefield, 2004a, for a related approach).

3.1 A Parametric Model

We first present our parametric model and show that it can incorporate additional information

whenever available. A similar parametric model has appeared in the literature (King, 1997; Wake-

field, 2004a).

We first take the logit transformation of Wi; W ∗
ji = logit(Wji), j = 1, 2, where logit(t) =

log{t/(1− t)}. The deterministic relationship of equation 1 implies,

Yi = logit−1(W ∗
1i) Xi + logit−1(W ∗

2i) (1−Xi).

Next, we assume that W ∗
i = (W ∗

1i,W
∗
2i) follows a bivariate normal distribution,

W ∗
i | µ,Σ ∼ N (µ,Σ), (5)

where µ is a (2×1) vector of the population means and Σ is the (2×2) positive definite population

covariance matrix. Similar to the model of King (1997), this model allows W1 and W2 to be
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correlated with each other (through their logit transformations). In the racial voting example, the

turnout rates of black and white voters in each county may be correlated with one another.

It is possible to obtain the maximum likelihood (ML) estimate of µ and Σ via EM algo-

rithm Dempster et al. (1977). In this case, the E-step requires the numerical calculation of one-

dimensional integrals (e.g., Lange, 1999, chap. 16), which is done by the trapezoidal approximation.

Alternatively, one can formulate a Bayesian model by placing the following conjugate prior distri-

bution on (µ,Σ),

µ | Σ ∼ N (µ0,Σ/τ2
0 ), and Σ ∼ InvWish (ν0, S−1

0 ), (6)

where µ0 is a (2 × 1) vector of the prior mean, τ0 is a scalar, ν0 is the prior degrees of freedom

parameter, and S0 is a (2× 2) positive definite prior scale matrix. The Gibbs sampling algorithm

described in Appendix A, is used to fit this Bayesian model.

An advantage of the parametric Bayesian model is that the posterior draws of (W1i,W2i) are

readily available as a part of the Gibbs sampler and respect the deterministic relationship of

equation 1. Indeed, the observed data (Yi, Xi) enter the likelihood only through equation 1. We

also emphasize that, like the ecological regression and many other existing models in the literature,

our parametric model assumes no contextual effect. That is, W1 and W2 are independent of X.

3.2 Quantifying the Amount of Missing Information due to Aggregation

An important advantage of our parametric model is that it is possible to formally quantify the

amount of information lost due to the aggregation process in ecological inference. This is useful

because the large amount of missing information, relative to the observed information, implies that

the resulting estimates may be driven by the parametric assumption of the model. In contrast,

previous studies have used informal graphical methods to examine the informativeness of bounds

(e.g., King, 1997; Gelman et al., 2001; Cho and Gaines, 2004; Wakefield, 2004a).

We use the missing information principle of Orchard and Woodbury (1972): observed informa-

tion = complete information − missing information. Formally, Io = Ioc − Iom where Io represents

the negative second derivative of the observed log-likelihood (or the observed Fisher information
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matrix), Ioc denotes the expected information matrix from the complete log-likelihood, and Iom can

be viewed as the missing information. Dempster et al. (1977) show that the asymptotic variance-

covariance matrix can be written as I−1
o = I−1

oc + I−1
oc DM(I − DM)−1 where DM is a Jacobian

matrix associated with the rate of convergence of the EM algorithm. The diagonal elements of the

difference between I−1
o and I−1

oc quantifies the increased asymptotic variance for each parameter

due to the information lost through the aggregation process. Meng and Rubin (1991) introduce the

Supplemented EM algorithm that can be used to compute the DM matrix. We use this algorithm

to estimate the fraction of missing information for each model parameter, i.e., the observed data

information divided by the complete data information. This gives a formal evaluation of aggrega-

tion effects on parameter estimation under our model. We illustrate our method using simulated

datasets in Section 4.1 and a real dataset in Section 5.

3.3 A Nonparametric Model

Like other parametric models in the literature, the model introduced in Section 3.1 makes a specific

distributional assumption. To relax this assumption, we apply a Dirichlet process prior and model

the unknown population distribution as a mixture of bivariate normal distributions (Ferguson, 1973,

1974, 1983) (see Imai and King (2004) for an alternative approach based on the Bayesian model

averaging). The resulting model is nonparametric in the sense that no distributional assumption

is made, and its in-sample predictions respect the deterministic bounds. Although its applications

were limited in the past, rapid development of MCMC algorithms made it feasible to employ a

Dirichlet process prior for Bayesian density estimation (e.g., Escobar, 1994; Escobar and West,

1995), and other nonparametric and semiparametric problems (e.g., Mukhopadhyay and Gelfand,

1997; Dey, Müller, and Sinha, 1998).

The basic idea is to model the parameters, in our case (µi,Σi), with an unknown (random)

distribution function G rather than a known (fixed) one such as the normal/inverse-Wishart dis-

tribution. We then place a prior distribution on G over all possible probability measures. Such a

prior distribution is called a Dirichlet process prior and is denoted by G ∼ D(G0, α), where G0(·) is

the known base prior distribution and is also the prior expectation of G(·); E(G(µ,Σ)) = G0(µ,Σ)
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for all (µ,Σ) in its parameter space. A positive scalar α is a concentration parameter. Ferguson

(1973) established that given any measurable partition (A1, A2, . . . , Ak) on the support of G0, the

random vector of probabilities (G(A1), G(A2), . . . , G(Ak)) follows a Dirichlet distribution with pa-

rameter (αG0(A1), αG0(A2), . . . , αG0(Ak)). A large value of α suggests that G is likely to be close

to G0, and hence, to yield the results that are similar to those obtained from the parametric model

with the prior distribution G0. On the other hand, a small value of α implies that G is likely to

place most of the probability mass on a few partitions. This setup allows the unknown distribution

function G to be nonparametrically estimated from the data.

We model W ∗ with the unknown distribution that can be in general characterized by a normal

mixture. To do this, we specify a Dirichlet process prior on the unknown distribution function of the

population parameters (µ,Σ), using the same conjugate normal/inverse-Wishart prior distribution

as the base prior distribution. Finally, we place a gamma prior on the concentration parameter α.

Then, our nonparametric model is given by,

Yi = logit−1(W ∗
1i) Xi + logit−1(W ∗

2i) (1−Xi),

W ∗
i | µi,Σi ∼ N (µi, Σi),

µi,Σi | G ∼ G,

G | α ∼ D(G0, α),

α ∼ G(a0, b0),

where under G0, (µi,Σi) is distributed as

µi | Σi ∼ N
(

µ0,
Σi

τ2
0

)
, and Σi ∼ InvWish (ν0, S−1

0 ).

Appendix B describes our Gibbs sampling algorithm that is used to fit the model.

To illustrate how our model relates to a normal mixture, we follow Ferguson (1973) and Es-

cobar and West (1995) to compute the conditional prior, p(µi,Σi | µ(i),Σ(i), α) where µ(i) =

{µ1, . . . , µi−1, µi+1, . . . , µn} and Σ(i) = {Σ1, . . . ,Σi−1,Σi+1, . . . ,Σn}.

µi,Σi | µ(i),Σ(i), α ∼ α an−1 G0(µi,Σi) + an−1

n∑
j=1,j 6=i

δ(µj ,Σj) (µi,Σi) for i = 1, . . . , n,(7)
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where δ(µj ,Σj)(µi,Σi) is a degenerate distribution whose entire probability mass is concentrated at

(µi,Σi) = (µj ,Σj) and an−1 = 1/(α + n − 1). Equation 7 shows that given any (n − 1) values

of (µi,Σi), there is a positive probability of coincident values, and that as α tends to ∞, the

distribution approaches to G0.

Similarly, a future replication draw of (µn+1,Σn+1) given µ = {µ1, . . . , µn} and Σ = {Σ1, . . . ,Σn}

has the following distribution,

µn+1,Σn+1 | µ,Σ, α ∼ α an G0(µn+1,Σn+1) + an

n∑
i=1

δ(µi,Σi) (µn+1,Σn+1),

where an = 1/(α + n). We then compute the predictive distribution of a future observation W ∗
n+1

given (µ,Σ, α) which forms the basis of Bayesian density estimation. In particular, we evaluate∫
p(W ∗

n+1 | µn+1,Σn+1, α)d P (µn+1,Σn+1 | µ,Σ, α), which yields,

W ∗
n+1 | µ,Σ, α ∼ α an Tν0 (µ0, S) + an

n∑
i=1

N (µi,Σi), (8)

where Tν0(µ0, S) is a bivariate t distribution with ν0 degrees of freedom, the location parameter

µ0 and the scale matrix S = τ2
0 ν0S0/(1 + τ2

0 ). Equation 8 shows that when the value of α is small

the predictive distribution is equivalent to a normal mixture. This setup resembles the standard

kernel density estimator with a bivariate normal kernel. α plays a role similar to the bandwidth

parameter, which controls the degree of smoothness.

Our nonparametric model, therefore, in principle can provide flexible estimation of bivariate

density functions for ecological inference problems. However, because we do not directly observe

W1i and W2i, the density estimation problem for ecological inference is much more difficult. There-

fore, bounds must be sufficiently informative in order for the nonparametric model to be able

to recover the underlying population distribution. We empirically investigate this issue through

various simulations in Section 4.2 and a real data example in Section 5. Finally, although the

nonparametric model relaxes the distributional assumptions of parametric models, it maintains

the assumption of no contextual effects.
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3.4 Incorporating Individual-level Data

When bounds are not informative, ecological inference is extremely difficult. The parametric

inference will be sensitive to modeling assumptions, and the nonparametric model will not be able to

recover the underlying distribution. Therefore, as emphasized by Wakefield (2004a), incorporating

individual-level data may be helpful whenever such additional information is available. In our data

augmentation approach, this is straightforward to accomplish. Suppose that for some counties

we observe the true values or good estimates of Wi. For example, one might conduct a survey in

randomly selected counties to obtain such information (One can also survey only one ethnic group).

Sometimes, a small scale survey can be conducted to get rough estimates of Wi for some counties,

and incorporating such auxiliary information can also be helpful (Wakefield, 2004a). For any of

these cases, the Gibbs samplers described in Appendices can be modified slightly to incorporate

the available information. In Sections 4 and 5, we investigate how additional individual-level data

affect in-sample and population inferences.

3.5 Prior and Posterior Inferences

Our models require the specification of prior distributions. For the parametric model, p(µ,Σ) must

be specified, whereas for the nonparametric model, the base prior G0 as well as p(α) are required.

Since we employ the conjugate normal/inverse-Wishart prior for both p(µ,Σ) and G0, µ0, S0, τ0,

ν0 need to be specified. In addition, the nonparametric model requires the specification of a0 and

b0 if we choose a gamma prior distribution G(a0, b0) for α.

When strong prior information is available from previous studies or elsewhere, we specify these

prior parameters so that the prior knowledge is properly approximated. When such information is

not available, however, we consider a non-informative prior where the prior predictive distribution

of (W1,W2) is approximately uniform. This leads to our choice of the prior parameters for the

parametric model and the base prior of the nonparametric model; µ0 = 0, S0 = 8I2, τ0 = 1, and

ν0 = 4. The left panel of Figure 1 shows the prior predictive draws of (W1,W2), and the middle and

right panels show the marginal distributions of W1 and W2. The figure illustrates that the prior
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Figure 1: Prior Predictive Distribution of W1 and W2. The prior distribution is an inverse logit
transformation of normal/inverse-Wishart distribution with µ0 = 0, S0 = 8I2, τ0 = 1, and ν0 = 4.
The three graphs are, from left to right, the scatter-plot of (W1,W2) prior predictive draws, the
marginal density of W1 and the marginal density of W2.

predictive distribution of (W1,W2) is approximately uniform. For the nonparametric model, we

use a diffuse prior, G(1, 0.1), with a mean of 10 and variance 100 for the concentration parameter,

α. According to Antoniak (1974), the expected number of clusters given α and the sample size n

is approximately α log(1 + n/α). With this choice of prior distribution for α, the prior expected

number of clusters is approximately 27. Since the concentration parameter plays an important role

in the density estimation with Dirichlet processes, a sensitivity analysis should be conducted in

order to assess the influence of prior specification on posterior inferences.

The posterior inferences are based on the MCMC draws from the joint posterior distribution

(see Appendices). For both the parametric and nonparametric models, the posterior draws of Wi

are used to make in-sample predictions (or finite population inferences). These draws are readily

available as a part of the Markov chain and respect the deterministic relationship of equation 1. To

make out-of-sample predictions (or population inferences), we draw from the posterior predictive

distribution of (W1,W2) without being subject to bounds. Specifically, we first sample the posterior

predictive draws of (W ∗
1 ,W ∗

2 ), and then use the inverse logit transformation to obtain (W1,W2).
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4 Simulation Studies

In this section, we assess the performance of our proposed method using simulated data. We

emphasize that there are three factors that influence ecological inference: aggregation effects pro-

duced by different distributions of the observed weight variable Xi, distributional effects produced

by different distributions of the unobserved variables Wi, and contextual effects produced by the

possible dependence between Xi and Wi. The literature often does not make the distinction be-

tween aggregation and contextual effects, which are commonly lumped together and referred to as

“aggregation bias.”

Our simulation studies are designed to assess aggregation and distributional effects on ecolog-

ical inference. We do not report our simulation results regarding contextual effects. Instead, we

only note that most models, including ours, assume no contextual effect. And, without additional

information, it is difficult to control contextual effects. In this section, we first show that even

without contextual effects, aggregation effects can greatly influence ecological inference. Second,

we investigate the sensitivity of the parametric model to its distributional assumption and the per-

formance of the nonparametric model. For all simulations, we use the prior distribution described

in Section 3.5. To fit our models, we use the Gibbs samplers described in Appendices. After

running 20,000 MCMC iterations, we discard the initial 5,000 draws and take every fifth draw.

4.1 Aggregation Effects

For the ecological inference problem in 2 × 2 tables, we only observe Yi, which is the weighted

average of the two unknown variables, W1i and W2i, with known weight Xi. This means that even

with the same values of Wi, a different distribution of Xi can lead to a different distribution of

Yi, consequently leading to different bounds conditions about Wi. Here, we evaluate our method

against a variety of such aggregation effects by generating Xi from different distributions while

keeping the same sample values of Wi. In particular, we draw (W ∗
1i,W

∗
2i) from a bivariate normal

distribution with a mean (0, 1.4), variance (0.5, 0.5) and covariance 0.2. We then draw Xi, the

ratio of black voters in each county, independently from the following distributions. We consider

13



the sample size of 200.

• Simulation I: Xi is drawn independently from B(0.5, 2). This distribution is skewed to the

right, implying that many counties have a high percentage of white voters.

• Simulation II: Xi is drawn independently from B(0.5, 0.5). This distribution corresponds to

a polarized situation, where some counties are predominantly black, while others are white.

Relatively few counties have similar ratios of black and white voters.

• Simulation III: Xi is drawn independently from B(2, 0.5). This distribution is skewed left,

implying a situation where many counties have a high percentage of black voters.

Figure 2 presents the tomography plots and the bounds of W1 and W2 across the four simulation

examples. Given W1i and W2i, the value of Xi determines the slope − Xi
1−Xi

and the intercept Yi
Xi

of a tomography line. Therefore, applying different distributions of Xi yields four considerably

different tomography plots even when the true values of Wi are identical. The second and third

columns of Figure 2 illustrate how the bounds of W1i and W2i vary when different distributions of

Xi are used. In general, when the value of Xi is close to 1, the bound for W1i is likely to be narrow.

Conversely, when the value of Xi is close to 0, the bound tends to be informative for W2i. For

example, in Simulation I where more counties have a high percentage of white voters, the bounds

of W2 are narrow. In contrast, Simulation III consists of more counties with a high percentage of

black voters, and hence the bounds of W1 are more informative. When X is more symmetrically

distributed as in Simulation II, the amount of information contained in the bounds of W1 and W2

is approximately equal. For Simulation II, the distribution of X is chosen to be bimodal. In this

case, both informative and non-informative bounds exist for W1 and W2.

An examination of the length of the bounds via summary statistics or graphs, such as those in

Figure 2, gives us only a rough idea of the severity of aggregation effects. Instead, it is desirable to

formally evaluate aggregation effects on parameter estimation. As discussed in Section 3.2, using

the Supplemented EM algorithm, we can quantify the fraction of missing information for different

aggregation patterns. Table 2 presents the ML estimates of the model parameters, their asymptotic

standard errors, as well as the fraction of missing information for each simulation. In all cases,

14



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

W1

W
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

●
● ● ● ● ● ●

●
●

●
●

●

●
● ●

●

●

●
●

●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bo
un

ds

●

●
●

●
●

●
●

●
● ● ● ● ● ● ●

● ●
●

● ●
●

● ● ● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bo
un

ds

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

W1

W
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

●
● ● ● ● ● ●

●
●

●
●

●

●
● ●

●

●

●
●

●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bo
un

ds

●

●
●

●
●

●
●

●
● ● ● ● ● ● ●

● ●
●

● ●
●

● ● ● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ●

10 20 30 40
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

bo
un

ds

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

W1

W
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

●
● ● ● ● ● ●

●
●

●
●

●

●
● ●

●

●

●
●

●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bo
un

ds

●

●
●

●
●

●
●

●
● ● ● ● ● ● ●

● ●
●

● ●
●

● ● ● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bo
un

ds

be
ta

(0
.5

,2
)

be
ta

(0
.5

,0
.5

)
be

ta
(2

,0
.5

)
S

im
ul

at
io

n 
I

S
im

ul
at

io
n 

II
S

im
ul

at
io

n 
III

Tomography Bounds of W1 Bounds of W2

Figure 2: Aggregation Effects Due to Different Distributions of X. The four simulation setups
with different distributions of X are illustrated in each row using randomly selected counties. The
first column presents tomography plots. The second and third columns illustrate that the amount
of information contained in the deterministic bounds depends on the distribution of X. The same
set of the true values is used for W1 and W2 in all simulations.
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Simulation I Simulation II Simulation III
Complete-data without 10% without 10% without 10%

MLE survey survey survey survey survey survey
µ1

estimate 0.043 −0.079 −0.098 0.159 0.080 0.134 0.086
standard error (0.068) (0.166) (0.118) (0.100) (0.087) (0.080) (0.069)
% miss. info. 87.01 75.19 60.54 50.76 33.31 17.33

µ2

estimate 1.386 1.414 1.393 1.242 1.267 1.028 1.095
standard error (0.048) (0.068) (0.058) (0.087) (0.072) (0.247) (0.135)
% miss. info. 47.74 34.46 62.11 53.04 91.07 80.01

σ11

estimate 0.918 0.716 0.760 0.789 0.824 0.862 0.868
standard error (0.091) (0.219) (0.164) (0.145) (0.123) (0.111) (0.097)
% miss. info. 89.26 80.54 70.50 59.01 40.05 27.56

σ22

estimate 0.467 0.490 0.480 0.570 0.542 1.086 0.801
standard error (0.046) (0.072) (0.061) (0.098) (0.080) (0.376) (0.180)
% miss. info. 53.57 42.93 66.22 58.02 91.67 82.01

σ12

estimate 0.254 0.254 0.283 0.291 0.292 0.126 0.161
standard error (0.038) (0.240) (0.150) (0.180) (0.126) (0.209) (0.134)
% miss. info. 92.56 82.84 87.01 75.96 88.93 75.92

Table 2: Aggregation Effects on Parameter Estimation in Four Simulations. The complete-data
ML estimates of the model parameters are listed in the first column, while the remaining columns
show the observed-data MLE using the EM algorithm. The standard errors of the estimates are in
parentheses, while the numbers in italics represent the fraction of missing information. The second
column for each simulation gives the results based on the addition of 10% individual-level data.

aggregation effects greatly impact parameter estimation; the fraction of missing information often

exceeds 50%. In particular, there is hardly any observed information for estimating the covariance;

the fraction of missing information is higher than 90% in all cases. On the other hand, there also

exists a significant variation across different simulation setups. For example, the fraction of missing

information for µ2, the mean of W ∗
2 , is 48% in Simulation I while it is 91% in Simulation III. Indeed,

the estimates of mu2 from Simulation I are much closer to the complete-data ML estimates than

those from Simulation III. Similar patterns are observed for the other parameter estimates.

We also examine the extent to which additional individual-level data can improve estimation.

To do this, we add 20 counties using the same underlying distribution and assume that the values

of W1i and W2i are known for these counties. The sample size of the resulting simulated datasets
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Simulation I Simulation II Simulation III
W1 W2 W1 W2 W1 W2

Bias
Parametric Model

Without survey −0.012 0.001 0.023 −0.024 0.010 −0.031
With 10% survey −0.023 0.002 0.015 −0.020 0.010 −0.028

Ecological regression −0.037 0.004 0.010 −0.012 −0.010 0.053
RMSE

Parametric Model
Without survey 0.175 0.044 0.126 0.080 0.053 0.116
With 10% survey 0.171 0.044 0.123 0.078 0.050 0.112

Ecological regression 0.204 0.113 0.201 0.114 0.201 0.125

Table 3: In-sample Predictive Performance of the Parametric and Nonparametric Models When
Subject to Different Aggregation Effects. The bias for Wj is calculated as

∑n
i=1(Ŵji −Wji)/n for

j = 1, 2, where Ŵji denotes the in-sample predictions of Wji, and Wji is the true value. Similarly,

the root mean squared error (RMSE) is defined as
√∑n

i=1(Ŵji −Wji)2/n.

is 220. In Table 2 these results are listed in the second column for each simulation. Overall,

adding the survey data greatly reduces the fraction of missing information for all the estimates,

resulting in smaller standard errors; the discrepancy between the observed-data and complete-data

ML estimates may not necessarily be reduced due to sample variability. Even with the survey data,

however, estimating the covariance between the two unknown variables is still a difficult task as

indicated by its high fraction of missing information.

Finally, Table 3 presents the bias and the root mean squared error (RMSE) of the in-sample

predictions for the parametric Bayesian model and the ecological regression. Bias is computed

as the average difference between the in-sample predictions and their corresponding true values,

i.e.,
∑n

i=1(Ŵji − Wji)/n for j = 1, 2 where Ŵji denotes the in-sample prediction of Wji. RMSE

is defined as the square root of the mean square error,
√∑n

i=1(Ŵji −Wji)2/n. Although the

ecological regression only estimates E(Wj), this estimate is used as the “in-sample” prediction for

all i as it is often done in practice. Under the assumption of no contextual effects, the ecological

regression is known to estimate E(Wi) without bias, and hence is shown here as a baseline.

In all simulations, our parametric model yields the magnitude of bias similar to that of the

ecological regression. More importantly, when the amount of missing information is small, the
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parametric model provides in-sample predictions with smaller bias and RMSE. For example, in

Simulation I, the bounds of W2 are more informative than those of W1, and the fraction of missing

information for µ1 is 87% as opposed to 48% for µ2. Hence, the in-sample values of W2is are better

predicted by the parametric model as well as the ecological regression; the same pattern is observed

for Simulation III. Adding the individual-level data improves the overall prediction by reducing the

RMSE and, in most cases, the bias, though the magnitude of improvement is rather small.

4.2 Distributional Effects

To investigate distributional effects, we use Xi from the dataset analyzed by Burden and Kimball

(1998) which has a sample size of 361. Although this dataset is not about racial voting, for

simplicity, we use the notation of Table 1 and refer to Xi as the proportion of black voters and

Yi as the overall turnout rate for each county i. The unknown inner cells (W1i,W2i) are the

fractions of those who voted among black and white voters, respectively. To construct different

simulation settings, we draw (W1i,W2i) independently from the following three distributions, while

maintaining the same racial composition Xi,

• Simulation IV: (W ∗
1i,W

∗
2i) is independently drawn from the same bivariate normal distri-

bution used in Section 4.1. This simulation setup follows the parametric model, and yields

the average turnout of about 50 and 80 percent for black and white voters, respectively.

• Simulation V: (W ∗
1i,W

∗
2i) is independently drawn from a mixture of two bivariate normal

distributions with the mixing probability vector (0.6, 0.4). The first distribution has mean

(−0.4, 1.4), variance (0.2, 0.1), and covariance 0. The second distribution has a different mean

(−0.4,−1.4), but the same covariance matrix. This simulation yields the average turnout of

roughly 40 percent for black voters. For white voters, the average turnout is approximately

80 percent for three-fifths of the counties, and about 20 percent for the other counties.

• Simulation VI: (W ∗
1i,W

∗
2i) is independently drawn from a mixture of two bivariate normal

distributions. The mixing probability vector is (0.6, 0.4). The first distribution has mean

(−1.4, 1.4), variance (0.1, 0.1), and covariance 0. The second distribution has a different
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Figure 3: Tomography Plots of Simulations IV, V, and VI. The solid lines illustrate the deterministic
relationship of equation 1, and the dots represent the true values of (W1i,W2i), for randomly
selected 40 counties.

mean (1.4,−1.4), but the same covariance matrix. In 60 percent of the counties, the average

turnout is 20 percent for blacks and 80 percent for whites, while in the rest of the counties

this pattern is reversed.

For each simulation, the inverse logit transformation gives the values of (W1i,W2i), and Yi

is computed given Xi and Wi using equation 1. Note that in Simulations V only the marginal

distribution of W2i is bimodal, while in Simulation VI the marginal distributions of both W1i and

W2i are bimodal. It is of particular interest to see whether the nonparametric method can recover

such distributions. In all three simulations, we assume no contextual effect.

Figure 3 presents the tomography plots of the simulated datasets with the true values of Wi.

The graphs illustrate the bounds for W1i and W2i, which can be obtained by projecting tomography

lines onto the horizontal and vertical axes. Using equations 2 and 3, we compute the length of

bounds. The average length of bounds for W1i in Simulations IV, V, and VI is 0.55, 0.58, and 0.64,

while that for W2i is 0.71, 0.73, and 0.78, respectively. This indicates that in all three simulations,

the bounds are not particularly informative.

Treating Xi and Yi as observed and Wi as unknown, we fit our parametric and nonparamet-

ric models and assess their relative performance in terms of both in-sample and out-of-sample

predictions. Table 4 numerically summarizes the in-sample predictive performance. In Simula-

tions V and VI, the RMSE of our nonparametric model is smaller than that of the parametric
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Simulation IV Simulation V Simulation VI
W1 W2 W1 W2 W1 W2

Bias
Parametric model −0.007 0.004 0.001 −0.009 −0.009 0.009
Nonparametric model −0.006 0.003 0.004 −0.006 −0.007 0.007
Ecological regression −0.011 0.011 −0.003 0.006 −0.027 0.029

RMSE
Parametric model 0.083 0.080 0.095 0.162 0.133 0.135
Nonparametric model 0.083 0.080 0.078 0.147 0.112 0.105
Ecological regression 0.164 0.113 0.102 0.288 0.293 0.291

Table 4: In-sample Predictive Performance with Different Distributions of (W1,W2). The bias for
Wj is calculated as

∑n
i=1(Ŵji −Wji)/n for j = 1, 2, where Ŵji denotes the in-sample predictions

of Wji, and Wji is the true value. Similarly, the root mean squared error (RMSE) is defined as√∑n
i=1(Ŵji −Wji)2/n.

model. Nevertheless, even when the true distribution is bimodal, the in-sample predictions from

our parametric model are reasonable. This is because the parametric model yields the in-sample

predictions that respect the bound conditions. The ecological regression yields relatively small bias

in these simulations, but its RMSE is much larger than the other two methods.

Finally, we examine the out-of-sample predictive performance which is of importance for pop-

ulation inferences. Figure 4 compares the true distribution with the estimated marginal density

based on out-of-sample predictions from our models. In Simulation IV, our nonparametric and

parametric models give essentially identical estimates and approximate the marginal distributions

well. Indeed, the number of clusters for the nonparametric model reduces to one. In our setup, the

nonparametric model with one cluster is identical to the parametric model. This is not surpris-

ing given that this dataset is generated using the parametric model. The other two simulations,

however, demonstrate the clear advantage of the nonparametric model. The nonparametric model

captures the bimodality feature of the marginal distributions, while the parametric model fails

to approximate the true distribution as expected. We have also investigated the effect of survey

data on model performance. In this particular case, the additional individual data do not seem to

matter much for the nonparametric model though they slightly improve the in-sample prediction

of the parametric model (See Section 5 for more discussion).
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Figure 4: Out-of-sample Predictive Performance with Different Distributions of (W1,W2). The true
marginal distributions are shown as shaded areas. The solid line represents the estimated density
from the parametric model, whereas the dashed line represents that from the nonparametric model.

5 Empirical Application: Voter Registration in US Southern States

5.1 Data

In this section, we analyze voter registration data from 275 counties of four Southern states in

the United States: Florida, Louisiana, North Carolina, and South Carolina. This dataset is first

studied by King (1997) and subsequently analyzed by others (King et al., 1999; Wakefield, 2004b).

For each county, Xi represents the proportion of black voters, Yi denotes the registration rate, W1i

and W2i represent the registration rates of black and white voters. In this example, the true values

of W1i and W2i are known, which allows us to compare the performance of our method with that

of existing models in the literature.

Figure 5 presents a graphical summary of the data. The upper-left panel plots the true values

of W1i and W2i. The registration rates among white voters are high in many counties with an
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Figure 5: Summary of the Voter Registration Data from Four US Southern States. The upper-left
graph is the scatter-plot of the true values of W1i and W2i. The upper-middle graph is the scatter-
plot of black registration rate, W1i, and the ratio of black voters, Xi. The solid line represents a
LOWESS curve. The upper-right graph presents the same figure for white voters. The lower-left
graph is the tomography plot with the true values indicated as dots. The lower middle and right
graphs plot the bounds of W1 and W2, respectively.

average of 86 percent. In contrast, black registration rates are much lower, with an average of 56

percent. The sample variances of registration rates are 0.044 and 0.024 for black and white voters,

respectively. The other two graphs in the upper panel are the scatter-plots of the registration rates

and the proportions for black and white voters. In this dataset, the correlation between X and W1

is −0.08, while the correlation between X and W2 is only 0.01, implying minor contextual effects.

The lower panel of Figure 5 presents the tomography plots for a random subset of the counties.

The bounds reveal asymmetric information about W1 and W2 and they are more informative for

W2 than for W1. Moreover, for 30 percent of W2, the true values are equal to 1. As a result,

the true values of the corresponding W1 lie at the lower end of the bounds. This may pose some

difficulty for in-sample predictions, especially for the counties whose bounds are wide.
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Bias RMSE MAE
W1 W2 W1 W2 W1 W2

Without survey data
Parametric model −0.173 0.058 0.286 0.096 0.209 0.065
Nonparametric model 0.002 −0.001 0.163 0.049 0.111 0.032

With survey data
Parametric model −0.055 0.021 0.199 0.066 0.157 0.047
Nonparametric model 0.026 −0.011 0.146 0.054 0.095 0.029

Other methods
Ecological regression −0.059 0.016 0.226 0.156 0.177 0.121
King’s EI model 0.093 −0.031 0.175 0.065 0.127 0.041
Wakefield’s hierarchical model 0.045 −0.013 0.193 0.064 0.145 0.045
Neighborhood method 0.220 −0.077 0.311 0.182 0.247 0.158
Nonlinear neighborhood method 0.220 −0.077 0.269 0.111 0.224 0.078
Midpoints of bounds 0.099 −0.049 0.185 0.092 0.148 0.057

Table 5: In-sample Predictive Performance of Various Models. The bias for Wj is calculated as∑n
i=1(Ŵji−Wji)/n for j = 1, 2, where Ŵji denotes the in-sample predictions of Wji, and Wji is the

true value. Similarly, the root mean squared error (RMSE) is defined as
√∑n

i=1(Ŵji −Wji)2/n

and the mean absolute error (MAE) is given by
∑n

i=1 |Ŵji −Wji|/n.

5.2 Analysis

By treating W1 and W2 as unknown, we fit both our parametric and nonparametric models to 250

counties that are randomly selected without replacement. We also examine the model performance

by adding the individual-level data of the remaining 25 counties. Finally, we compare the results

with other methods in the literature, including the ecological regression, the linear and nonlinear

neighborhood models, the midpoints of bounds, King’s EI model, and Wakefield’s hierarchical

model. To fit King’s EI model, we use the publicly available software, EzI (version 2.7) by Benoit

and King, with its default specifications. To fit Wakefield’s binomial convolution model, we use

his WinBUGS code (Wakefield, 2004b) which fits the model based on normal approximation. We

specify prior distributions such that the implied prior predictive distribution of Wi is approximately

uniform. Specifically, we use µ0 ∼ logistic(0, 1), µ1 ∼ logistic(0, 1), σ−2
0 ∼ G(1, 100), and σ−2

1 ∼

G(1, 100). After 50,000 iterations, we discard the initial 20,000 draws and take every tenth draw.

Table 5 summarizes the in-sample predictive performance. For this dataset, our nonparametric

model significantly outperforms our parametric model in all discrepancy measures by a magnitude
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Figure 6: Out-of-sample Predictive Performance of Selected Models. The true density is represented
by the shaded area. The solid and dashed lines represent the estimated density without and with
the additional survey data information, respectively.

that is much greater than what we have seen in our simulation examples. With the addition

of the individual-level data, however, the in-sample predictions of the parametric model improve

substantially. Furthermore, the predictions of the nonparametric model are more accurate than

those of existing methods. For example, the biases of the ecological regression are more than ten

times as large as those of the nonparametric model. The performance of King’s EI model and

Wakefield’s model is comparable with that of the nonparametric model in terms of RMSE and

MAE (mean absolute error), but the biases of both models are larger. Finally, the neighborhood

models do not work well in this application, and simply using the midpoint of a bound as an

estimate gives better results than some methods.

For our two models, the posterior predictive distribution serves as a basis for population in-

ferences. Figure 6 compares the out-of-sample predictive performance of our models, with and

without the help of individual level data. In this application, the true distribution of W1 and W2

is unknown, so we approximate it by a kernel smoothing technique using the sample values (Wand

and Jones, 1995). The nonparametric model estimates the marginal density of W2 very well, while

its density estimate for W1 is slightly off. (Note that the bounds of W2 are more informative than

those of W1.) In contrast, the estimated marginal densities based on our parametric model are not

accurate. With the addition of the individual-level data, the nonparametric model now recovers

the density of W1, and the density estimation of W2 is further improved. The parametric model
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still gives a poor estimate even after adding the individual-level data.

6 Concluding Remarks

Since Robinson’s (1950) article, the ecological inference problem has attracted the attention of

many social scientists, epidemiologists, and statisticians. In this article, we propose parametric

and nonparametric models for ecological inference in 2× 2 tables. Both models provide in-sample

predictions that are consistent with deterministic bounds. At the same time, they also give out-

of-sample predictions that can be used to make population inferences. Although the distinction

between in-sample and out-of-sample inferences is rarely made in the literature, it is essential for

evaluating ecological inference models.

In addition, the proposed parametric model allows one to formally identify the amount of

missing information. The simulation study shows that the amount of missing information depends

highly on the distribution of the racial composition variable. In many scenarios, aggregation

effects are so severe that more than half of the information is lost, yielding estimates with little

precision. Moreover, if the distributional assumption is not satisfied, the resulting inferences may

be even more unreliable. Our nonparametric Bayesian model relaxes the distributional assumption

of the parametric model. Through simulation studies and an empirical example, we find that in

general the nonparametric model outperforms parametric models. Therefore, our nonparametric

model offers the advantage of flexible estimation, which is important given the inherent uncertainty

about underlying distribution in ecological inference.
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Appendices: Computational Details

A Gibbs Sampler for the Parametric Model

To sample from the joint posterior distribution p(W ∗
i , µ, Σ | Y, X), we construct a Gibbs sampler.

First, we draw Wi from its conditional posterior density, which is proportional to,

1{Wi : Yi = W1iXi + W2i(1−Xi)}√
2π|Σ|W1iW2i(1−W1i)(1−W2i)

exp
[
−1

2
{logit(Wi)− µ}> Σ−1 {logit(Wi)− µ}

]
, (9)

if (W1i,W2i) ∈ (0, 1), otherwise the density is equal to zero. Although equation 9 is not the

density of a standard distribution, it has a bounded support because (W1i,W2i) lies on a bounded

line segment. Therefore, we can use the inverse CDF method by evaluating equation 9 on a grid

of equidistant points on a tomography line. Given a sample of Wi, we then obtain W ∗
i via the

logit transformation. Alternatively, Metropolis-Hastings or importance sampling algorithms can

be used, although they require separate tuning parameters or target densities for each observation.

When Xi = 1, we know W1i exactly, and so we take the logit transformation of the observed

value. In this situation, however, W2i does not exist. We therefore impute W ∗
2i, conditioning on

the observed W ∗
1i, from N [µ2 + σ12(W ∗

1i − µ1)/σ11), σ22(1− ρ2)] where σjk is the (j, k) element of

Σ and ρ = σ12/
√

σ11σ22. The inverse logit transformation gives a draw of W2i. When X = 0, W2i

is observed, and a similar method is used to draw W1i. Moreover, if Yi = 1, then W1i = W2i = 1.

In this case, we set W ∗
1i = W ∗

2i = logit(1− ε), where ε is a small positive number. If Yi = 0, on the

other hand, we set W ∗
1i = W ∗

2i = logit(ε). Alternatively, one can exclude these observations from

the sample since no internal cell needs to be estimated.

Next, we draw (µ,Σ) from their conditional posterior distributions. Note that the observed

data, (Yi, Xi), are redundant given W ∗
i . The augmented-data conditional posterior distribu-

tion has the form of a standard bivariate normal/inverse-Wishart model, p(µ,Σ | W ∗
i ) ∝ p(µ |

Σ) p(Σ)
∏n

i=1 p(W ∗
i | µ,Σ). This implies that conditioning on W ∗

i , sampling (µ,Σ) can be done

using the following standard distributions,

µ | W ∗,Σ ∼ N

(
τ2
0 µ0 + nW

∗

τ2
0 + n

,
Σ

τ2
0 + n

)
, and Σ | W ∗ ∼ InvWish

(
ν0 + n, S−1

n

)
,
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where W ∗ = {W ∗
i , . . . ,W ∗

n}, W
∗ =

∑n
i=1 W ∗

i /n, and Sn = S0 +
∑n

i=1(W
∗
i − W

∗)(W ∗
i − W

∗)> +

τ2
0 n

τ2
0 +n

(W ∗ − µ0)(W
∗ − µ0)>.

B Gibbs Sampler for the Nonparametric Model

We construct a Gibbs sampler in order to sample from the joint posterior distribution p(W ∗, µ,Σ, α |

Y ). First, we independently sample Wi for each i and transform it to obtain W ∗
i in the same

way as above, but we replace (µ,Σ) with (µi,Σi) in equation 9. Then, given the draw of W ∗
i ,

the augmented-data model can be estimated through a multivariate generalization of the density

estimation method of Escobar and West (1995). In our Gibbs sampler, we sample (µi,Σi) given

(µ(i),Σ(i),W ∗, α) for each i, and then update α based on the new values of (µi,Σi).

An application of the usual calculation due to Antoniak (1974) shows that the conditional

posterior distribution of (µi,Σi) given W ∗
i is given by the following mixture of Dirichlet processes,

(µi,Σi) | µ(i),Σ(i),W ∗
i ∼ q0 Gi(µi,Σi) +

n∑
j=1,j 6=i

qj δ(µj ,Σj)(µi,Σi),

where Gi(µi,Σi) is the posterior distribution under G0 which is a normal/inverse-Wishart distri-

bution with components,

µi | Σi ∼ N
(

τ2
0 µ0 + W ∗

i

τ2
0 + 1

,
Σi

τ2
0 + 1

)
,

Σi ∼ InvWish

[
ν0 + 1,

{
S0 +

τ2
0

τ2
0 + 1

(W ∗
i − µ0)(W ∗

i − µ0)>
}−1

]
.

Next, following West, Müller, and Escobar (1994), we derive the weights, q0 and qj , by com-

puting the marginal (augmented-data) likelihood p(W ∗
i | µi,Σi) and p(W ∗

i | µj ,Σj), respectively,

q0 ∝ α
2τ2

0 Γ
(

ν0+1
2

)
(τ2

0 + 1) Γ
(

ν0−1
2

) |S0|−1/2

{
1 +

τ2
0

τ2
0 + 1

(W ∗
i − µ0)>S−1

0 (W ∗
i − µ0)

}−(ν0+1)/2

,

qj ∝ |Σj |−1/2 exp
{

1
2
(W ∗

i − µj)>Σ−1
j (W ∗

i − µj)
}

for j = 1, . . . , n, and j 6= i,

where
∑n

j=0,j 6=i qj = 1. q0 is proportional to the bivariate t density with (ν0−1) degrees of freedom,

the location parameter µ0, and the scale matrix τ2
0 (ν0 − 1)S0/(1 + τ2

0 ). qj is proportional to the

bivariate normal density with mean µj and variance Σj .
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Given these weights, we can approximate p(µ,Σ | W ∗) via a Gibbs sampler by sampling (µi,Σi)

given (µ(i),Σ(i),W ∗
i ) for each i. This step creates clusters of units where some units share the same

values of the population parameters. At a particular iteration, we have J ≤ n clusters each of which

has nj units with
∑J

j=1 nj = n. Note that the number of clusters J can vary from one iteration

to another. Bush and MacEachern (1996) recommend adding the ‘remixing’ step to prevent the

Gibbs sampler from repeatedly sampling a small set of values. In our application, we update the

new values of the parameters (µi,Σi) by using the newly configured cluster structure. That is,

for each cluster j, we update the parameters with (µ̃j , Σ̃j) by drawing them from the following

conditional distribution,

µ̃j | Σ̃j , {W ∗
i : i ∈ jth cluster} ∼ N

(
τ2
0 µ0 + njW

∗
j

τ2
0 + nj

,
Σ̃j

τ2
0 + nj

)
,

Σ̃j | {W ∗
i : i ∈ jth cluster} ∼ InvWish

(
ν0 + nj , S−1

nj

)
,

where Snj = S0 +
∑nj

i∈jth cluster(W
∗
i −W

∗
j )(W

∗
i −W

∗
j )
> + τ2

0 nj

τ2
0 +nj

(W ∗
j − µ0)(W

∗
j − µ0)>, and W

∗
j =∑nj

i∈jth cluster W ∗
i /nj . Given these new draws, we set µi = µ∗j and Σi = Σ∗

j for each i that belongs

to the jth cluster.

When small scale survey data, W survey
i , are available for some counties, we can update the

posterior draws of µi and Σi conditional on µ(i),Σ(i),W ∗
i and W survey

i . In this case, the posterior

distribution will be conditional on two data points instead of just one. The corresponding compo-

nents of the Dirichlet mixture can be modified accordingly. At the remixing step, one can include

the survey data directly.

Finally, to update α, we use the algorithm developed by Escobar and West (1995). Namely,

the conditional posterior distribution of α has the form of the following gamma mixture,

α | η, J ∼ ω G (a0 + J, b0 − log η) + (1− ω)G (a0 + J − 1, b0 − log η),

where ω = (a0 + J − 1)/{n(b0 − log η)}, and η is a latent variable that follows a beta distribution,

B (α + 1, J). This completes one cycle of our Gibbs sampler.
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