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Abstract: The so-called “mixed” or “heterogeneous” multinomial logit (MIXL) model has 
become popular in a number of fields, especially Marketing, Health Economics and Industrial 
Organization. In most applications of the model, the vector of consumer utility weights on 
product attributes is assumed to have a multivariate normal (MVN) distribution in the 
population. Thus, some consumers care more about some attributes than others, and the IIA 
property of multinomial logit (MNL) is avoided (i.e., segments of consumers will tend to 
switch among the subset of brands that possess their most valued attributes). The MIXL 
model is also appealing because it is relatively easy to estimate. But recently Louviere et al 
(1999, 2008) have argued that the MVN is a poor choice for modelling taste heterogeneity. 
They argue that much of the heterogeneity in attribute weights is accounted for by a pure 
scale effect (i.e., across consumers, all attribute weights are scaled up or down in tandem). 
This implies that choice behaviour is simply more random for some consumers than others 
(i.e., holding attribute coefficients fixed, the scale of their error term is greater). This leads to 
what we call a “scale heterogeneity” MNL model (or S-MNL). Here, we develop a 
“generalized” multinomial logit model (G-MNL) that nests S-MNL and MIXL. By estimating 
the S-MNL, MIXL and G-MNL models on ten datasets, we provide evidence on their relative 
performance. We find that models that account for scale heterogeneity (i.e., G-MNL or S-
MNL) are preferred to MIXL by the Bayes and consistent Akaike information criteria in all 
ten data sets. Accounting for scale heterogeneity enables one to account for “extreme” 
consumers who exhibit nearly lexicographic preferences, as well as consumers who exhibit 
very “random” behaviour (in a sense we formalize below).  
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I. Introduction 
 It is well known that consumer choice behaviour exhibits substantial heterogeneity. In 

choice modelling, adequate modelling of heterogeneity is important for many reasons. Most 

obviously, estimates of own and cross price elasticities of demand may be severely biased if 

one does not properly account for taste heterogeneity. More subtle and interesting, perhaps, 

are issues that arise with respect to new product development (NPD), product positioning and 

advertising, optimal price discrimination strategies, the development of menus of product 

offerings, and considerations of product image and/or brand equity.  

For example, in NPD, the estimation of only average preferences, as in a simple 

multinomial logit model – or, more generally, the mis-specification of the heterogeneity 

distribution – may lead a researcher to miss the fact that a significant subset of the population 

would have great demand for a product with particular attributes. Similarly, correct welfare 

analysis requires correct modelling of taste distributions. Or, failure to properly understand 

the nature of taste heterogeneity may lead to failure to optimally target advertising that 

stresses certain product features to groups that favour those features. Also, there are many 

instances where one cares at least as much about the composition of buyers by type as about 

market share (e.g., any insurance or usage fee based product where profits/revenues depend 

on subsequent usage, not just on purchase). Many more examples could be provided. 

For at least 25 years there has been a large ongoing research program in marketing on 

alternative ways to model consumer heterogeneity. As Keane (1997a, b) discusses, the 

traditional multinomial logit (MNL) of McFadden (1974) and multinomial probit (MNP) of 

Thurstone (1927) have an asymmetric heterogeneity structure, as they can be motivated by 

assuming consumers have heterogeneous tastes for the unobserved (or unmeasured or 

intangible) attributes of products, but common tastes for the observed attributes. Much recent 

work has focussed on extending these models to also allow for heterogeneous tastes over 

observed attributes as well.    

For example, the heterogeneous or “mixed” logit (MIXL) model is currently quite 

popular (see, e.g., Ben-Akiva and McFadden et al (1997), McFadden and Train (2000), Dube, 

Chintagunta, et al. (2002)). MIXL extends MNL to allow for random coefficients on the 

observed attributes, while continuing to assume the “idiosyncratic” error is iid extreme value. 

While the researcher has great latitude in specifying distributions for the random attribute 

coefficients, the multivariate normal is used in most applications of which we are aware. [An 

exception is the price coefficient, which is often modelled as log normal to impose the 

constraint that it be negative.] Indeed, it is common in the literature to call the MNL with a 
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normal heterogeneity distribution the mixed logit (MIXL) model (see, e.g. Dube, Chintagunta 

et al. (2002), p. 210). Even when other distributions have been considered, computational 

problems often led researchers to revert back to an assumption of normality (see, e.g. Bartels 

et al 2006) and Small et al (2005)).   

Of course, one can also estimate multinomial probit (MNP) models with normally 

distributed attribute weights, using the GHK simulator to evaluate the choice probabilities 

(see Keane (1994, 1997b)). However, the popularity of the MIXL stems from its greater ease 

of use (i.e., GHK is harder to program, and MIXL procedures are now available in standard 

estimation software packages). Thus, the use of MNP has been mostly limited to more 

sophisticated academic users, while various logit models are widely used by practitioners.   

One could also specify a discrete distribution for heterogeneity in either the MNL or 

MNP. This leads to what is known as the “latent class” (LC) model (see, e,g., Kamakura and 

Russell (1989)). Most applications of LC have used MNL as the base model, again based on 

ease of use. LC models typically generate a few discrete “types” of consumers. Part of the 

appeal of this approach is that one can “name” the types (e.g., couch potatoes, trend setters) 

leading to easier interpretation of market segments (see, e.g., Wedel and Kamakura (1998)). 

On the other hand, work by Elrod and Keane (1995) and Allenby and Rossi (1998) suggests 

that latent class models understate the extent of heterogeneity in choice data.    

Other ways of capturing heterogeneity have been proposed, such as Harris and Keane 

(1999), who extended the heterogeneous logit model to allow the means of the random 

coefficients to depend on observed characteristics of consumers – in particular, attitudinal 

questions about how much they value the different attributes. They found this led to dramatic 

improvements in model fit (i.e., doubling of pseudo R-squared). In general, however, it 

would seem that choice modellers have favored models that rely largely or exclusively on 

unobserved heterogeneity, largely abandoning attempts to explain heterogeneous tastes using 

observables. To be fair, this is partly due to the rather limited set of consumer characteristics 

recorded in most data sets used in choice modelling.  

Recently, Louviere et al (1999), Louviere, Carson, et al (2002), Louviere and Eagle 

(2006), Meyer and Louviere (2007) and Louviere et al (2008) have argued that the normal 

mixing distribution commonly used in the MIXL model is seriously mis-specified. Instead, 

they argue that much of the taste heterogeneity in most choice contexts can be better 

described as “scale” heterogeneity – meaning that for some consumers the scale of the 

idiosyncratic error component is greater than for others. However, the “scale” or standard 

deviation of the idiosyncratic error is not identified in discrete choice data – a problem that is 
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typically resolved by normalizing the standard deviation of the idiosyncratic error component 

to a constant. Thus, the statement that all heterogeneity is in the scale of the error term is 

observationally equivalent to the statement that heterogeneity takes the form of the vector of 

utility weights being scaled up or down proportionately as one “looks” across consumers.    

It is important to note that the scale heterogeneity model is not nested within the 

heterogeneous logit with normal mixing. It might appear that the scale model is a limiting 

case of MIXL in which the attribute weights are perfectly correlated. However, the scale 

parameter must be positive for all consumers, so, while attribute weights may vary in the 

population, for all consumers they must have the same sign. A normal mixture model with 

perfectly correlated errors does not impose this constraint. What is clear is that MIXL with 

independent normal mixing is likely to be a poor approximation to the data generating 

process if scale heterogeneity is important. MIXL with correlated random coefficients may or 

may not provide a better approximation – an empirical question we address below.      

Consider then the more general case in which there is both scale heterogeneity and 

residual normally distributed taste heterogeneity that is independent of the variation induced 

by scale. In that case, the heterogeneous logit model with normal mixing is clearly mis-

specified. For example, suppose the utility weight on attribute k, k=1,…,K, for person n, 

n=1,…N, is given by βnk = σnβk + εnk where βk is the population mean utility weight on 

attribute k, σn is the person n specific scaling parameter, which for illustration we assume is 

distributed log normally, and εnk is what we will call “residual” heterogeneity not explained 

by scale heterogeneity. Assume that εnk is distributed normally. Then, if one writes βnk = βk + 

υnk as in the conventional MIXL model, the error term υnk = βk(σn -1) + εnk is itself a complex 

mixture of normal and lognormal errors (with the nature of the mixing depending on the 

unknown mean parameter vector βk). Thus, the normal mixing model is mis-specified.1

There are a number of possible responses to this problem. Some researchers have 

argued for the estimation of individual level models, which circumvent the need to specify a 

heterogeneity distribution (see Louviere et al (2008), Louviere and Eagle (2006), Meyer and 

Louviere (2007)). However, this approach makes stringent requirements of the data. In 

revealed preference data one rarely has enough observations per individual to estimate 

individual level models. But, as shown by Louviere et al (2008), it is possible to estimate 

                                                 
1 McFadden and Train (2000) show heterogeneous logit can approximate any random utility model arbitrarily 
well. But this result relies on the investigator using the correct mixing distribution – which needs to be specified 
a priori. Unfortunately, their result seems to be widely misinterpreted among practitioners to mean that the 
heterogeneous logit with normal mixing can approximate any random utility model, which is certainly not true. 
Indeed, the correct mixing distribution only happens to be multivariate normal in the case of the MNP model. 
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individual level models from stated preference data obtained using efficient experimental 

designs. Their results suggest that distributions of preference weights generally depart 

substantially from normality. Nevertheless, models are by definition only approximations to 

“reality,” so if estimation of individual models is not feasible, it remains an empirical matter 

whether assuming normality for preference weights is or is not a good modelling choice.    

The hierarchical Bayes (HB) approach to choice modelling has also become popular 

recently, in part because advances in simulation methods (MCMC) made it computationally 

practical (see Allenby and Rossi (1998), Geweke and Keane (2001)). In the HB approach, the 

ease of use advantage for MIXL vanishes, so both MNP and MIXL are widely used.2 An 

appeal of HB is that, by specifying weak priors that individual level parameters are normally 

distributed, one can allow considerable flexibility in their posterior distribution. However, as 

Allenby and Rossi (1998) note, HB procedures “shrink” individual level estimates toward the 

prior. And as Rossi, Allenby and McCulloch (2005 p. 142) note, “the thin tails of the normal 

model tend to shrink outlying units greatly toward the center of the data.” Thus, if one shrinks 

toward a normal prior, when the “true” heterogeneity distribution departs substantially from 

normality, it may result in unreliable inferences about the heterogeneity. A very large amount 

of data per person may be necessary before the data “overwhelms” the prior and gives 

reliable inferences about individual level parameters and the shape of their distribution.  

In response to this problem, a literature has emerged on using mixtures-of-normal 

distributions to generate flexible priors that can potentially accommodate a wide range of 

non-normal posterior distributions. This approach, known as “Bayesian non-parametrics,” 

originated with Ferguson (1973) for density estimation. It has been extended to probit models 

by Geweke and Keane (1999, 2001), and to MIXL models by Rossi, Allenby and McCulloch 

(2005) and Burda, Harding and Hausman (2008).3 Figure 5.7 in Rossi et al (2005) provides a 

nice illustration of how much more flexible the distribution of household posterior means can 

                                                 
2 Indeed, as noted in Train (2003, p. 316), MNP is actually somewhat computationally easier, because it has the 
same distribution (normal) for both the attribute weights and the idiosyncratic errors.  
3 In mixture-of-normals models there is probability of drawing from each class in the mixture, and one must put 
a prior on that probability vector. Some authors have adopted the Dirichlet process prior (DPP), which says 
there may be a countably infinite number of classes, but which is typically specified to put more prior mass on 
models with fewer classes. This is the approach invented by Ferguson (1973), and recently extended to MIXL 
models by Burda et al (2008). A second approach is to assume a fixed number of classes, and put a Dirichlet 
(i.e., multivariate Beta) distribution on the vector of type probabilities. This is the approach adopted in Geweke 
and Keane (1999, 2001) and Rossi et al (2005). In practice there is no fundamental difference between these 
approaches. This is true because (i) in the second method one can consider models with different numbers of 
classes and compare them based on the marginal likelihood or posterior odds, and (ii) in the first approach 
inference invariably puts essentially all mass on a fairly small number of types anyway. The two kinds of prior 
on the hyper-parameters of the Dirichlet distribution thus in practice produce essentially identical results, and 
the real point of this literature is the use of the mixture-of-normals specification. 
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become in a mixture-of-normals model.4 Of course, one can also adopt a mixture-of-normals 

specification for the heterogeneity distribution within the classical framework.       

Here, we propose an alternative approach to modelling heterogeneity that stays within 

the classical framework and retains the simplicity of use of MIXL, while extending it to 

accommodate both scale and “residual” taste heterogeneity. We show how to nest the MIXL 

model and the MNL model with scale heterogeneity (S-MNL) within a single framework. We 

refer to this new model as the “generalized multinomial logit model,” or G-MNL. Estimating 

the G-MNL model allows one to assess whether including scale heterogeneity leads to a 

significant improvement in fit over the conventional MIXL model in any given data set.  

Although not immediately obvious, G-MNL is closely related to mixture-of-normals 

models. The relation becomes clear if we adopt an “approximate Bayesian” perspective and 

use our estimated model to calculate person specific parameters a posteriori (see Train 

(2003), chapter 11). Then, the estimated heterogeneity distribution plays the same role as the 

prior in the Bayesian framework. One can interpret our model as allowing a more flexible 

prior on the distribution of individual level parameters than does a normal model, but via a 

different means than the standard discrete mixtures-of-normals approach. Specifically, G-

MNL implies the attribute coefficients are a continuous mixture of scaled normals.  

We apply G-MNL to data from ten different stated preference choice experiments. 

The experiments cover several different types of choices: choices about medical procedures, 

mobile phones, food delivery services, holiday packages and charge cards. We also estimate 

MIXL and S-MNL on each data set, and compare the performance of the three models using 

three information criteria: the Akaike criteria (AIC), Bayes criterion (BIC) and consistent 

Akaike criterion (CAIC), all of which penalize models with more parameters.  

Our main finding is that models that include scale heterogeneity are preferred over 

MIXL by both BIC and CAIC in all ten data sets: G-MNL in 7 and S-MNL in 3. The MIXL 

model is only (very slightly) preferred by the AIC for the two charge card data sets. But our 

Monte Carlo results indicate that BIC and CAIC are more reliable measures for determining 

if scale heterogeneity is present.5 Interestingly, among practitioners the MIXL model with 

                                                 
4 Recently, Geweke and Keane (2007) introduced the “smoothly mixing regression” (SMR) model in which the 
class probabilities in a mixture-of-normals model are determined by a multinomial probit. The key advantage of 
this approach is it allows class probabilities to depend on covariates, which is critical for modelling 
nonstationary processes. SMR is closely related to what are known as “mixture of experts” models in statistics 
(see Jiang and Tanner (1999), Villani, M., R. Kohn and P. Giordani (2007)). 
5 We find the following difference among the information criteria: in all 7 cases where G-MNL is preferred by 
all three, AIC prefers the full G-MNL model that includes correlated errors (i.e., correlated residual taste 
heterogeneity). But in 5 of these 7 cases the BIC and CAIC, which impose larger penalties for adding 
parameters, prefer a more parsimonious version of G-MNL with uncorrelated errors. We present Monte Carlo 
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uncorrelated errors is very widely used (see Train (2007)).6 But we find this model is 

dominated by either G-MNL or S-MNL in all ten data sets, and in some cases by both. 

Of course, it is also important to assess why the scale heterogeneity models fit better, 

in terms of what behavioural patterns they capture better than MIXL. We show that G-MNL 

can account for “extreme” consumers who exhibit nearly lexicographic preferences, while 

MIXL is not able to account for such behaviour. We also show that G-MNL is better able to 

explain consumers who exhibit very “random” behaviour (in a sense we formalize below). 

Both of these advantages follow directly from the fact that the G-MNL model allows for 

much greater flexibility in the shape of posterior distribution of person specific parameters 

than does the MIXL model, even when the amount of data per person is large.   

A comparison of our results across datasets revealed two other interesting patterns. 

First, we can assess the importance of heterogeneity in general (both scale and residual) by 

looking at the percentage log-likelihood improvement in going from simple MNL to the G-

MNL model. By this metric, heterogeneity is roughly twice as important in the data sets that 

involve medical decisions as in those that involve product choices. We speculate that this 

may be because medical decisions involve more complex emotions/greater involvement 

and/or higher brain functions than do consumer purchase decisions. But regardless of the 

reason, the result has important implications for the study of medical decision-making.     

Second, we lack a formal metric for assessing relative importance of scale vs. residual 

taste heterogeneity in a given data set, because log-likelihood improvements from including 

them are not additive. But, as a heuristic, we look at the fraction of the overall likelihood 

improvement from including all forms of heterogeneity that is attained by including scale 

heterogeneity alone. This fraction is far greater in the four data sets that involve medical 

decisions or cell phones than in the six involving choice of pizza delivery, holiday packages 

or charge cards. This finding is consistent with a hypothesis that scale heterogeneity is more 

important in contexts involving more complex choice objects (medical tests or high-tech 

goods vs. consumer goods). But research on sources of heterogeneity is in its infancy (see, 

e.g., Louviere, Carson, et al (2002), Cameron (2002)),7 so this hypothesis is only preliminary. 

                                                                                                                                                        
results showing that BIC and CAIC are reliable for assessing if scale heterogeneity is present, but that they tend 
to prefer models with uncorrelated errors even when correlation is present.   
6 Presumably a key reason is the ready availability of Ken Train’s program for MIXL. The classical version of 
his program imposes uncorrelated errors (although the Bayesian version has an option to allow correlation).    
7 This prior work has examined complexity as a source of scale heterogeneity, defining “complexity” to be the 
amount of information subjects must process to make choices. Factors examined as contributors to “complexity” 
include number of attributes, number of alternatives, number of attributes that differ among alternatives, number 
of scenarios. But complexity may also derive from the nature of attributes themselves (i.e., attributes of high-
tech goods may be intrinsically harder to evaluate than those of simple consumer goods). There may also be 
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II. The Generalized Multinomial Logit Model (G-MNL) 

In the simple multinomial logit (MNL) model the utility to person n from choosing 

alternative j on purchase occasion (or in choice scenario) t is given by: 

1,..., ; 1,..., ; 1,..., ,njt njt njtU x n N j J t Tβ ε= + = = =          (1)  

where xnjt is a vector of observed attributes of alternative j, β is a vector of utility weights 

(homogenous across consumers) and εnjt ~ iid extreme value is the “idiosyncratic” error. As 

emphasized by Keane (1997b), the idiosyncratic error can be motivated as consumer 

heterogeneity in tastes for unobserved (or intangible or latent) product attributes. The xnjt for 

j=1,…,J may include alternative specific constants (ASCs), which capture persistence in the 

unobserved attributes (for each option j) over choice occasions. If the average consumer 

views option j as having desirable unmeasured attributes, it will have a positive ASC.       

Of course, the great popularity of the MNL stems from the fact that it generates 

simple closed form expressions for the choice probabilities: 

 
1

( | ) exp( ) exp( )
J

nt njt nkt
k

P j X x xβ β
=

= ∑ ,             (2) 

where Xnt is the vector of attributes of all alternatives j=1,…J. However, due to the restrictive 

assumptions that (i) the εnjt are iid extreme value and (ii) tastes for observed attribute are 

homogenous, MNL imposes a very special structure on how changes in elements of xnjt can 

affect choice probabilities. For instance, from (2) we see the restrictive IIA property: 

 ( | ) / ( | ) exp( )nt nt njt nktP j X P k X x xβ β= −  

which says that the ratio of choice probabilities for alternatives j and k depends only on the 

attributes of j and k. Thus, changes in the attributes of any product l, or the introduction of a 

new product into the choice set, cannot alter the relative probabilities of j and k. This is 

obviously unrealistic in cases where product l is much more similar to j than to k. 

 One model that avoids IIA is the MIXL model. In MIXL the utility to person n from 

choosing alternative j on purchase occasion (or in choice scenario) t is given by: 

( ) 1,..., ; 1,..., ; 1,..., ,njt n njt njtU x n N j J t Tβ η ε= + + = = =            (3) 

Here, β is the vector of mean attribute utility weights in the population, while ηn is the person 

n specific deviation from the mean. The “idiosyncratic” error component εnjt is still assumed 
                                                                                                                                                        
individual differences in ability to deal with complexity, arising due to literacy differences, age differences, etc. 
For example, Fang et al (2006) find that ability to choose among insurance options differs by level of cognitive 
ability. Response times also can be used as indirect measures of task complexity (i.e., more complex tasks 
exhibit longer response times). In behavioural economics, de Palma et al. (1994) develop a theoretical model 
where consumers differ in ability to choose, but have identical preferences. Their assumptions suggest that as 
complexity increases, some consumers who have less ability to choose should make more mistakes. 
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to be iid extreme value. The investigator may specify any distribution for the η vector, but in 

most applications it is assumed to be multivariate normal, MVN(0, Σ). However, the price 

coefficient is sometimes assumed to be log-normal to impose the proper sign restriction.  

Many MIXL applications have assumed Σ is diagonal. This rules out that consumers 

who like a certain attribute will also tend to like (dislike) some other attribute. That is, it rules 

out correlation in tastes across attributes, but not correlation in tastes across alternatives.8  

 A major appeal of MIXL is ease of use. It relaxes IIA yet it is still quite simple to 

program.9 The reason MIXL is simple to program can be seen by examining the expression 

for the choice probabilities and how they are simulated: 

 
1

1

exp[( ) ]1( | )
exp[( ) ]

dD
njt

nt J
dd

nkt
k

x
P j X

D
x

β η

β η=

=

+
=

+
∑

∑
      (4) 

Thus, given D draws {ηd}d=1,…,D from the multivariate normal MVN(0, Σ), one obtains 

simulated choice probabilities just by averaging simple logit expressions over these draws.10  

 The scale heterogeneity model (S-MNL) can be understood by recognizing that the 

idiosyncratic error in both (1) and (3) has a scale or variance that has been implicitly 

normalized (to that of the standard extreme value distribution) to achieve identification. To 

proceed, let us write out the simple logit model with the scale of the error made explicit: 

   / 1,..., ; 1,..., ; 1,..., ,njt njt njtU x n N j J t Tβ ε σ= + = = =    (5) 

Here, σ is the scale of the error term. Obviously, it is not possible to identify both β and σ, so 

it is standard practice to normalize σ to 1, which is equivalent to multiplying (5) through by σ. 

                                                 
8 It is important to emphasize that the assumption that Σ is diagonal does not rule out correlation across 
alternatives or within alternatives over time. Note that (3) can be rewritten: 

( )njt njt n njt njt njt njtU x x x vβ η ε β= + + = +  
The composite error term vnjt = (ηnxnjt + εnjt) will be positively (negatively) correlated across alternatives j that 
have similar (dissimilar) attributes, which is indeed the essential idea of the MIXL model. Thus, MIXL with 
diagonal Σ does avoid IIA. It also allows for correlation over time, as a person who places high utility weights 
on certain attributes will persist in preferring brands with high levels of those attributes over time. 
9 Another model that avoids IIA and allows a more flexible pattern of substitution across alternatives is the 
multinomial probit (MNP). This model assumes that the idiosyncratic errors have a multivariate normal 
distribution. MNP can also be extended to allow the β vector to be normally distributed in the population. 
However, MNP generates choice probabilities that are J-1 dimensional integrals with no closed form. Thus, 
estimation beyond the J=2 case was precluded for many years by computational limits. But the development of 
the GHK probability simulator in the late 1980s (see Keane (1994, 1997b)) made MNP estimation feasible. 
While MNP algorithms are now readily available in popular packages such as SAS and STATA, these packaged 
programs remain limited because they allow only correlation across alternatives, not across choice occasions as 
would be appropriate in many stated and revealed preference applications. Geweke, Keane and Runkle (1997) 
provide extensive discussion of the MNP with correlation across alternatives and over choice occasions. As is 
clear from their discussion, the programming required to implement MNP in this case is much more involved.   
10 Furthermore, with panel data or multiple choice occasions per subject, the simulated choice probabilities are 
obtained simply by taking the products of period-by-period logit expressions, and averaging them over draws d. 
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Now, suppose that σ is heterogeneous in the population, and denote its value for person n by 

σn. Then, multiplying (5) through by σn we obtain the S-MNL model: 

 ( ) 1,..., ; 1,..., ; 1,..., ,njt n njt njtU x n N j J t Tβσ ε= + = = =    (6) 

Notice that heterogeneity in scale is observationally equivalent to a particular type of 

heterogeneity in the utility weights. That is, equation (6) implies that the vector of utility 

weights β is scaled up or down proportionately across consumers n by the scaling factor σn.11   

 Note that, if valid, the S-MNL model provides a much more parsimonious description 

of the data than MIXL. This is because βσn is a much simpler object than (β + ηn). For 

example, say there are 10 observed attributes. Then ηn is a 10-vector of normals, with a 10 by 

10 covariance matrix containing 55 unique elements to be estimated. In contrast, σn is a scalar 

random variable, and only the parameters of its distribution need be estimated. For example, 

if σn is assumed to be log normal, we need estimate only its variance – a single parameter – as 

the mean must be constrained for identification reasons (see below). 

Recently, Louviere et al (2008) have criticized the MIXL model in (3). Based on the 

distributions of utility weights obtained from individual level estimations, they have argued 

that: (1) distributions do not appear very close to being normal, as assumed in most MIXL 

applications, and (2), when comparing coefficient vectors across consumers, something close 

to the scaling property implied by (6) seems to hold. Thus, they have argued that much of the 

heterogeneity in discrete models would be better captured by S-MNL than by MIXL. 

 In an attempt to shed light on this issue, Keane (2006) noted that MIXL and S-MNL 

could be nested, to obtain a “generalized multinomial logit” model (G-MNL). Estimation of  

G-MNL would shed light on whether heterogeneity is better described by scale heterogeneity, 

normal mixing, or some combination of the two. In the G-MNL model the utility to person n 

from choosing alternative j on purchase occasion (or in choice scenario) t is given by: 
 
 njtnjtnnnnnjt xU εησγγηβσ +−++= ])1([       (7) 

where γ  is a parameter between 0 and 1. Figure 1 describes how G-MNL nests MIXL, S-

MNL and MNL, as well as two other models we call G-MNL-I and G-MNL-II. To obtain 

MIXL one sets the scale parameter σn=σ=1. To obtain the S-MNL model one sets Var(ηn)=0, 

meaning the variance-covariance matrix of ηn, denoted Σ, is degenerate.   

 The parameter γ does not arise in either the MIXL or S-MNL special cases. It is only 

present in the G-MNL model, and its interpretation is more subtle than either σn or Σ. The 

                                                 
11 A common misconception is that random coefficient and scale heterogeneity models are fundamentally 
different. In fact, they are just different ways of specifying the distribution of coefficient heterogeneity. 
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parameter γ governs how the variance of residual taste heterogeneity varies with scale, in a 

model that includes both. To see this, note that there are two equally sensible ways to nest 

MIXL and S-MNL. One might simply combine (3) and (6) to obtain what we call G-MNL-I: 

  ( ) 1,..., ; 1,..., ; 1,..., ,njt n n njt njtU x n N j J t Tβσ η ε= + + = = =   (8) 

Alternatively, one might start with (3) and make the scale parameter explicit: 

 ( ) / 1,..., ; 1,..., ; 1,..., ,njt n njt njt nU x n N j J t Tβ η ε σ= + + = = =  

Then, multiplying through by σn we obtain G-MNL-II: 

 ( ) 1,..., ; 1,..., ; 1,..., ,njt n n njt njtU x n N j J t Tσ β η ε= + + = = =   (9) 

Note that, in either model (8) or (9), we can write the vector of utility weights as: 
*

n n nβ σ β η= +   

In our terminology, the random variable σn captures scale heterogeneity while the random 

variable *
nη  captures “residual” taste heterogeneity. The difference between G-MNL-I and G-

MNL-II is that, in G-MNL-I, the standard deviation of residual taste heterogeneity is 

independent of the scaling of β. But in G-MNL-II the standard deviation of *
nη  is proportional 

to σn. As noted in Figure 1, G-MNL approaches G-MNL-I as γ → 1, and approaches G-MNL-

II as γ → 0. In the full G-MNL model γ can take on any value between 0 and 1. 

 To enhance intuition, it is useful to consider the use of an estimated G-MNL model to 

calculate the posterior means of individual level parameters. G-MNL-I adopts the prior that 

they are a mixture-of-normals with different means but equal variances. G-MNL-II adopts the 

prior that they are a mixture-of-normals with proportionally different means and standard 

deviations. The full G-MNL model allows for differential scaling of β and *
nη .   

In order to impose the restriction that γ must lie between 0 and 1 in estimation, we use 

a logistic transform  and estimate the parameter γ)]exp(1/[)exp( ** γγγ += *. Thus, G-MNL 

approaches G-MNL-I as γ* → ∞, and approaches G-MNL-II as γ* → -∞.   

To complete the specification of G-MNL we must specify the distribution of σn. The 

spirit of the model is that σn is positive, as it represents the person specific standard deviation 

of the idiosyncratic error term. Thus, we specify that σn has a log normal distribution with 

mean 1 and standard deviation τ, or LN(1, τ2). Thus, τ is the key parameter that indicates if 

scale heterogeneity is present in the data. As τ → 0, G-MNL approaches MIXL. If τ > 0 then 

G-MNL approaches S-MNL as the diagonal elements of Σ approach zero. If both τ and Σ go 

to zero we approach the simple MNL model. 
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III. Computation and Estimation  

 Here we discuss the details of computation and estimation for the G-MNL model. In 

order to constrain the scale parameter σn to be positive we use an exponential transformation: 

 0 0exp( ) ~ (0,1)n n nwhere Nσ σ τε ε= + . 

Thus, as the parameter τ increases, the degree of scale heterogeneity increases. 

Obviously, as σn and β only enter the model as a product σnβ, some normalization on 

σn is necessary to identify β. The natural normalization is to set the mean of σn equal to 1, so 

that β is interpretable as the mean vector of utility weights. In order to achieve this, it is 

necessary that the parameter σ  be a decreasing function τ. Note that: 
2exp( / 2)nEσ σ τ= +  

Thus, to set E σn = 1 we should set 2 / 2σ τ= − . 

 Then, the simulated choice probabilities in the G-MNL model take the form: 

∑
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    (10) 

where: 

 0exp( )d dσ σ τε= +  

Note that ηd is a multivariate normal K-vector, where K is the number of elements of β, 

while 0
dε is simply a scalar. The simulation involves drawing the multivariate normal vectors 

{ηd} for d=1,…,D, and the standard normal random variables { 0
dε } for d=1,…,D. It is 

notable that the computation in (10) is no more difficult than that for the MIXL model in (4).  

Now suppose we have either panel data or multiple choice tasks per subject. Let ynjt=1 

if person n chooses option j at time t, and 0 otherwise. Then, the simulated probability of 

observing person n choosing a sequence of choices  is given by: T
tnjty 1}{ =

   ( )
1 1

1

exp( (1 ) )1 1ˆ ( | , , )
exp( (1 ) )
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which strings together period specific probabilities like that inside the summation in (10).12  

                                                 
12 Empirical applications of MIXL, S-MNL and G-MNL will almost always involve multiple observations per 
subject. While the MIXL model is formally identified given only one observation per subject (simply because 
the mixture of normal and extreme value errors may provide a slightly better fit to the data than extreme value 
alone), Harris and Keane (1999) showed that the likelihood surface is extremely flat without multiple 
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 In practice, we found the numerical performance of the algorithm is substantially 

improved by adopting two slight modifications to the above specification. First, we set the 

mean of σn equal to one in the simulated data, not merely in expectation. This means setting: 

 ( )
0

1

1ln exp( )
N

d n

nN
σ τ

=

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ ε

                                                                                                                                                       

 

where the notation means the d( )
0
d nε th draw for the nth person (we use a different set of D 

draws for each person). Second, if τ is too large, it causes numerical problems (i.e., overflows 

and underflows in exponentiation) for extreme draws of ε0. To avoid this, we draw ε0 from a 

truncated normal with truncation at ±2.  

 In addition, we also discovered that the S-MNL model performs poorly empirically 

when alternative specific constants (ASCs) are scaled. By this we mean: (1) the estimates 

often “blow up,” with τ taking on very large values and the standard errors of the elements of 

β becoming very large, and (2) the model always produces a substantially worse fit than a 

model where only the utility weights on observed attributes are scaled, while the ASCs are 

assumed homogenous in the population. Mechanically, it seems that these problems arise 

because data sets typically contain a set of individuals who always (or almost always) chose 

the same option, regardless of the elements of Xnt. If the ASCs are scaled, then the model can 

explain this phenomenon by making τ very large so that ASCs can vary substantially across 

individuals. The estimation algorithm usually decides to take this route.  

On a more conceptual level, note that ASCs are fundamentally different from most 

observed attributes. For instance, for attributes like price or indicators of quality, it makes 

sense to think that all consumers have utility weights of the same sign, but that these weights 

are scaled up or down across consumers (e.g., all consumers value quality, but some value it 

more than others). In contrast, ASCs tend to measure intangible aspects of products. Thus, it 

is very likely that the ASCs consumers assign to products will differ in sign. A model that 

imposes that all consumers have ASCs of the same sign, and that these are merely scaled, is 

very unlikely to explain key patterns observed in choice behaviour, such as the high degree of 

persistence in choices or the “loyalty” that consumers often exhibit for specific brands.  

Thus, in models that have ASCs, we decided to specify the S-MNL in one of two 

ways. In one version, we assume the ASCs are homogenous in the population and do not 

scale them. In another version we treat the ASCs as random effects. We assume these have a 

 
observations per subject. This is completely intuitive: We cannot expect to identify parameters that characterize 
systematic heterogeneity in individual choice behaviour if we only see each person once. 
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MVN distribution which we estimate. We treat the ASCs in the G-MNL model in exactly the 

same way. Thus, we can rewrite (7) as:  

njtnjtnnnnnjjnjt xU εησγγηβσηβ +−++++= ])1([)( 00    (11) 

where xnjt is now interpreted to include only observed attributes and not ASCs, and β0j+η0nj is 

the ASC for alternative j, which consists of the component β0j which is constant across 

people, and the component η0nj which is heterogeneous across people. Then, we can write that 

(β0 + η0n) is a vector of ASCs, with β0 being the mean vector and η0n being the stochastic 

component. We assume that the entire vector {η0n, ηn} has a MVN distribution. 

 Finally, in an effort to explain why scale differs across people, or even across choice 

occasions for the same person, we can let σn be a function of characteristics of people or of 

choice occasions. For instance, we could write: 

0exp( )nt ntzσ σ θ τε= + +        (12) 

where znt is a vector of attributes of person i and choice occasion t. For instance, one might let 

znt contain demographics, or some measure of the “entropy” of the choice occasion (e.g., how 

similar or dissimilar the choices are; see Swait and Adamowicz, 2001; DeShazo and Fermo, 

2002). Similarly, in the equation for γ we could let the parameter γ* depend on znt as well. 
 
IV. Monte Carlo Results 

 In this section we present two Monte-Carlo experiments to evaluate the properties of 

G-MNL model estimates. Of particular interest is whether the model can accurately assess the 

extent of scale heterogeneity (captured by τ) vs. “residual taste heterogeneity” captured by Σ.  

In order to make the Monte Carlo experiments realistic, we constructed simulated data sets 

based on two of the empirical data sets that we will analyse in Section V. The first is a data 

set where women choose whether to have a pap smear exam, and the second is a data set 

where people choose between holiday locations (the “Holiday A” data set).  

In each experiment, we use the actual Xs from the empirical data sets. The “true” 

parameters are obtained by estimating the G-MNL model on the empirical data sets. We 

generate 20 artificial data sets based on each empirical data set. We then estimate the G-MNL 

model on these 20 Monte Carlo data sets. In these estimations, as in our empirical work in 

Section V, we use D=500 draws to simulate the likelihood.      

The results of estimating G-MNL on the 20 data sets based on the pap smear data are 

reported in Table 1. The pap smear data sets contain five attributes (see Table 5), including 

doctor attributes, test cost and contextual variables (i.e., whether the test is recommended), as 

well as an ASC for the “Yes” option. Each has 79 hypothetical respondents and 32 choice 
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occasions per respondent. In Table 1 we report the true parameter values used to generate the 

data sets, the mean estimates across the 20 replications, the empirical standard deviation of 

the estimates across data sets, and the mean of the asymptotic standard errors. An asterisk 

indicates that the bias in an estimated parameter is significant at the 5% level. 

The results in Table 1 show evidence of significant bias for only a handful of 

parameters. Of the six elements of the β vector, only β5 exhibits significant bias. But the 

magnitude of the bias is less than 2/3 of an empirical standard deviation.13 The standard 

deviations of residual taste heterogeneity are also rather precisely estimated, except for that 

on attribute 6, where it is upward biased.14 Most importantly, the scale heterogeneity 

parameter τ  is estimated quite precisely: its true value is .890 and the mean estimate is .891.  

In these datasets the true value of the parameter γ is almost 0, but our mean estimate is 

.156. This is significantly greater than zero but still quantitatively small. In addition, the 

median estimate of γ is .08 (it exceeds .50 in only one out of 20 datasets). Thus, the model 

does a reasonable job of uncovering the fact that the true γ is small. For the most part the 

empirical standard errors and mean asymptotic standard errors are close, suggesting the 

asymptotic theory is a good guide to the variability of the estimates. 

The results of estimating the G-MNL model on the 20 artificial data sets based on the 

Holiday A data set are reported in Table 2. These data sets contain 8 attributes, as described 

in Table 5. There are 331 hypothetical respondents and 16 choice occasions per respondent. 

Of the eight elements of the β vector, only β1 exhibits significant bias. And the 

magnitude of the bias is only 1/2 of an empirical standard deviation. The scale heterogeneity 

parameter τ  is again estimated quite precisely: its true value is 1.0 and the mean estimate is 

.968. However, the standard deviations of residual taste heterogeneity show a tendency to be 

upward biased, and this bias is significant for 6 out of 8 parameters.  

We would argue that this upward bias in the error variances is not a great cause for 

concern. The largest bias, which is for σ8, is only 80% of an empirical standard deviation, and 

other significant biases are about 2/3 of a standard deviation. Biases of this magnitude are not 

surprising, in light of prior work showing it is often difficult to pin down error variance-

covariance parameters in discrete choice models (e.g., Geweke, Keane and Runkle (1994)).  

                                                 
13 Of course, the reader should always bear in mind that ML estimators are only consistent – they are not 
unbiased in finite samples. This is why in Monte Carlo work it is generally argued that modest biases are to be 
expected and are not a major concern. Only quantitatively large biases that would substantially alter the 
interpretation of results would be a major concern.  
14 The estimates of the correlations among the errors (i.e., the residual taste heterogeneity) fall reasonably well 
in line with the true values, although significant biases show up in 6 out of 15 cases.  
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The true value of the parameter γ is 0.20, and the mean estimate is .137. This 

downward bias is significant, but again the model does a reasonable job of uncovering the 

fact that the true γ is small. The greatest cause for concern in Table 2 is that the asymptotic 

standard errors are systematically smaller than the empirical standard errors. This was not the 

case in Table 1. We suspect that this difference arises because we attempt to estimate a larger 

number of variance-covariance parameters in Table 2 (i.e., 36 vs. 21).    

In Section V we use AIC, BIC and CAIC to choose between the G-MNL, MIXL and 

S-MNL models. So it is important to consider if these criteria can reliably distinguish among 

them. To address this issue, we perform a 3 by 6 factorial experiment where we: (i) simulate 

data where the true model is S-MNL, MIXL or G-MNL (both with correlated errors), and (ii) 

estimate the MNL, S-MNL, MIXL and G-MNL models (both with and without correlated 

errors) on those data sets. As in Tables 1 and 2, this was done using data sets constructed to 

look like the pap smear and Holiday A data.15 We then counted the number of times that 

AIC, BIC and CAIC preferred each model in each case. The results are reported in Table 3.  

 Consider first the case where G-MNL with correlated errors is the true model. In the 

pap smear data sets the AIC correctly picks it in 9/20 cases. But in 11/20 cases AIC chooses 

instead the more parsimonious G-MNL with uncorrelated errors. In contrast, for the Holiday 

A data sets, AIC correctly picks G-MNL with correlated errors in all 20 cases. Now consider 

BIC and CAIC (which have larger penalties for adding parameters). In both data sets, these 

criteria tend to pick the more parsimonious G-MNL with uncorrelated errors, even though 

errors are correlated. Indeed, they occasionally even pick MIXL with uncorrelated errors. 

Next consider the case where MIXL with correlated errors is the true model. In this 

case BIC and CAIC correctly pick MIXL as the true model in the large majority of cases.  

But they always choose the more parsimonious version with uncorrelated errors. The 

performance of AIC in this case is poor, as it chooses G-MNL in 12/20 cases in the pap 

smear data set and 7/20 cases in the Holiday A data sets. 

Finally, when S-MNL is the true model it is correctly identified by all three 

information criteria in all 40 cases. The reason for this success is that MIXL and G-MNL 

both involve a large increase in number of parameters over S-MNL. In summary, while the 

results for the case when S-MNL is the true model are clear cut, those for the cases where 

MIXL or G-MNL are the true model appear more ambiguous.  
                                                 
15 For example, we fit the S-MNL model to the Papsmear data set, and use those estimates to generate the data 
where S-MNL is the true model. We fit MIXL with correlated errors to the Papsmear data set, and use those 
estimates to generate the data where MIXL is the true model. Finally, we fit G-MNL with correlated errors to 
the Papsmear data set, and use those estimates to generate the data where G-MNL is the true model. 
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How can we make sense of these results? The bottom panel of Table 3 provides a 

useful summary. Here we look only at the cases where MIXL or G-MNL is the true model, 

ignore the distinction between correlated and uncorrelated errors, and combine the results 

from the two data generating processes. We simply ask how reliably the three information 

criteria determine if the true model contains scale heterogeneity. Note that BIC makes the 

correct determination in 68/80 cases. It wrongly concludes the true model is MIXL in 7/80 

cases, and it only gives a false positive for scale heterogeneity in 5/80 cases. The results for 

CAIC are similar. In contrast, AIC has a bias towards accepting scale heterogeneity when it is 

not present (19/80 cases). This is not surprising, as the AIC has a smaller penalty for adding 

parameters, and G-MNL has only two more parameters than MIXL.              

Given these results, we would argue that both BIC and CAIC provide accurate guides 

for whether scale heterogeneity is present – that is, for distinguishing between MIXL and G-

MNL. But they are biased toward rejecting the presence of error correlations. This is not 

surprising because error correlations add many parameters, which these criteria penalize 

heavily. On the other hand, AIC correctly picks models where errors are correlated in 69/80 

cases. Thus, we would recommend using the information criteria in conjunction: Using BIC 

and/or CAIC as reliable measures of whether scale heterogeneity is present (i.e., MIXL vs. G-

MNL or S-MNL) and then using AIC to evaluate whether error correlations are important.      
 
V. Empirical Results 

V.A. Estimation Results  

Our empirical results are based on data from ten stated preference choice experiments 

described in Table 4. The datasets differ widely along several dimensions, including the 

object of choice (i.e., medical tests, mobile phones, pizza delivery services, holiday packages 

and charge cards), the number of attributes (6 to 18), the number of choices (2 to 4), and the 

number of choice occasions (or choice sets) that each person faced in the experiment (4 to 

32). All datasets are fairly large, but the number of observations also varies substantially 

(from 2,528 to 21,856). Table 5 lists all attributes and how they are coded in each dataset. 

Tables 6-15 present estimation results for the 10 datasets. We only discuss the results 

for dataset 1 in detail, giving an overview of results for the other datasets in Sections V.B and 

V.D. In dataset one, participants were asked whether they would chose to receive diagnostic 

tests for Tay Sachs disease, cystic fibrosis, both or neither, giving four alternatives. The 

attributes that vary across choice scenarios are the cost of the tests, whether the person’s 

doctor recommends the tests, the chance that the test is inaccurate, how the results of the tests 
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will be communicated, and what the person is told about the probability that they are a carrier 

for each disease. The members of the sample in dataset one are Ashkenazi Jews, who are a 

population of interest as they have a relatively high probability of carrying Tay Sachs.    

The estimation results are presented in Table 6. The first column presents results for a 

simple MNL model. All attribute coefficients are significant with expected signs (except for 

how the result is communicated, which is not significant). Cost has a negative effect, doctor 

recommendation and risk factors have positive effects, and inaccuracy has a negative effect. 

The next column contains results for the S-MNL model with homogeneous ASCs. 

The scale parameter τ is 1.14 with a standard error of 0.09, implying substantial scale 

heterogeneity in the data. Allowing for scale heterogeneity leads to a dramatic improvement 

in the likelihood over MNL, from -3717 to -3223, which is 494 points or 13%. As this model 

adds only a single parameter, it leads to substantial improvements in all three information 

criteria (AIC, BIC and CAIC). 

In the 3rd column we report results of the S-MNL model with heterogeneity in the 

ASCs. Allowing for such heterogeneity leads to a further substantial improvement in fit (e.g., 

408 points in the likelihood, or 11%). Notice that the scale heterogeneity parameter τ falls 

from 1.22 to 0.64, but remains highly significant with a standard error of 0.06. 

The next two columns of the table present results from MIXL and the G-MNL model 

that nests MIXL and S-MNL. Two aspects of the results are notable. First, while the S-MNL 

model does provide dramatic improvement in fit compared to simple MNL, the improvement 

achieved by MIXL is, at least in this data set, considerably greater. MIXL achieves a log-

likelihood of -2500 vs. -3717 for MNL. This is a 33% improvement, compared to the 24% 

improvement achieved by S-MNL (with random ASCs). Of course, this is not too surprising, 

as MIXL adds 66 parameters, while S-MNL adds only 7.  

Second, G-MNL provides a better fit than either MIXL or S-MNL alone. By adding 

two parameters, it achieves a log-likelihood improvement of 20 points over MIXL, and it 

beats MIXL on all three information criteria (AIC, BIC, CAIC).  

Note that the G-MNL estimate of the scale parameter τ is 0.45 with a standard error of 

0.08. Thus, the estimates imply a substantial degree of scale heterogeneity in the data, even 

after allowing for correlated normal random coefficients. As σ n = exp(−τ 2 /2 + τε0n ), the 

estimates imply a person at the 90th percentile of the scale parameter would have his/her 

vector of utility weights scaled up by 57%, while a person at the 10th percentile would have 

his/her vector of utility weights scaled down by 46%. 
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The estimate of γ is 0.11, which implies the data is closer to the G-MNL-II model (see 

equation (9)), where the variance of residual taste heterogeneity increases with scale, than the 

G-MNL-I model (see equation (8)), where it is invariant to scale.  

Finally, the last two columns of Table 6 report estimates of restricted versions of 

MIXL and G-MNL with uncorrelated residual taste heterogeneity. This is of interest in part 

because MIXL with independent normal taste heterogeneity is popular among practitioners. 

Note that restricting residual taste heterogeneity to be independent across attributes leads to a 

substantial deterioration of the log-likelihood – by over 250 points for both MIXL and G-

MNL.16 The AIC, BIC and CAIC all prefer the G-MNL model with correlated taste 

heterogeneity over that without. This is a bit surprising, in light of our Monte Carlo result that 

BIC and CAIC tend to prefer the uncorrelated model even if correlation is present.  

With the above discussion as a guide, the interested reader should be able to follow 

the empirical results in Tables 7-15. Rather than describe each of these in detail, we turn to a 

discussion of general patterns that emerge across data sets.    

V.B. Comparing Model Fit across Data Sets 

Table 16 compares the fit of our 7 alternative models (simple MNL, S-MNL, MIXL, 

G-MNL and the latter two with uncorrelated taste heterogeneity) across the 10 datasets. 

Recall that our Monte Carlo results in Section IV indicated that BIC and CAIC were the most 

reliable criteria for determining whether scale heterogeneity is present. According to BIC and 

CAIC, G-MNL is the preferred model in 7 out of 10 data sets. And the S-MNL (with a 

random intercept) is preferred in the remaining 3 data sets (mobile phones and charge cards A 

and B). Thus, models that include scale heterogeneity are preferred over MIXL in all cases. 

That S-MNL is preferred in 3 cases is striking, given the great simplicity of this model 

relative to its competitors. For example, in the mobile phone dataset, S-MNL (with a random 

intercept) beats MIXL by 176 points on BIC, and beats G-MNL by 160 points. Yet it has 

only 17 parameters, compared to 45 for MIXL and 47 for G-MNL. Similarly, in the charge 

card A and B data sets, S-MNL beats MIXL by 176 and 159 points on BIC, respectively.  

Among the 7 data sets where G-MNL is preferred by BIC and CAIC, the G-MNL 

model with correlated errors is preferred only in the two Tay Sachs datasets. The G-MNL 

model with uncorrelated residual taste heterogeneity is preferred in five datasets (Pap smear, 

Pizza A and B, and Holiday A and B). But this result should be interpreted with caution, in 
                                                 
16 A priori, one might have expected the deterioration in the likelihood to be less in the model with scale 
heterogeneity, because scale heterogeneity could “sop up” much of the positive correlation among the attribute 
weights. However, when we look at the estimated correlation matrix (not reported but available on request), we 
find that at least half of the correlations among attribute weights in this data set are negative.  
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light of our Monte Carlo results in Section IV showing that BIC and CAIC tend to prefer 

simpler models without correlation even when error correlations are present.   

In the 7 cases where BIC and AIC prefer the G-MNL model, the AIC, which imposes 

a smaller penalty for additional parameters, always prefers the full version of G-MNL with 

correlated errors. This is not too surprising, as our Monte Carlo results suggest that AIC is 

more likely to prefer models with correlated errors when correlation is in fact present.  

The AIC results regarding the preferred model contradict BIC and CAIC for three 

data sets. For mobile phones, AIC prefers G-MNL with correlated errors while BIC and 

CAIC both prefer S-MNL. Also, in the two credit card data sets, AIC slightly prefers MIXL 

with correlated errors, although the advantage over G-MNL and S-MNL is very small.     

In summary, models with scale heterogeneity (G-MNL or S-MNL) are preferred by 

all three information criteria in 8 out of 10 cases. In the other two cases, AIC picks MIXL 

while BIC and CAIC pick S-MNL. Thus, there is clear evidence that scale heterogeneity is 

important in 8 data sets, and substantial evidence it is important in the other two.17       

A final notable result is that MIXL with uncorrelated errors, which is very widely 

used (see Train (2007)), is never preferred. According to BIC and CAIC it is beaten by G-

MNL with uncorrelated errors in every data set except mobile phones. It is beaten by S-MNL 

in mobile phones, as well as the Tay Sachs general population data, and the two charge card 

data sets. It is beaten by MIXL with correlated errors in the Tay Sachs and charge card data. 

According to BIC and CAIC, it is beaten by G-MNL with correlated errors in those four data 

sets plus Pizza B and Holiday B, and under AIC it is beaten by G-MNL with correlated errors 

in every data set. The only case where it comes even close to being the preferred model is the 

pap smear data. Thus, the data offer no empirical support for MIXL with uncorrelated errors. 

V.C. Why Do Models with Scale Heterogeneity Fit Better than MIXL? 

We have shown that models with scale heterogeneity (either G-MNL or S-MNL) are 

preferred by BIC and CAIC in all ten data sets, and preferred by AIC in 8 out of 10. Thus, we 

have strong evidence that models with scale heterogeneity provide a better fit to a wide range 

of data sets than do models like MIXL that rely on residual taste heterogeneity alone. In this 

section we ask “Why do models with scale heterogeneity fit better? That is, what behavioural 

patterns can they explain better than the MIXL model?” And “What substantive behavioural 

predictions differ between the G-MNL model and simpler nested models like MIXL?” 

                                                 
17 Among the 10 data sets, γ  ran off to zero – and had to be pegged near 0 – in five cases, and it ran off to one in 
another. Only in four cases (the Tay Sachs datasets, mobile phones and charge card A) do we find intermediate 
values of γ. Usually γ  was small, implying the G-MNL-II model is often a reasonable description of the data. 
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These key questions are addressed in Figures 2 to 5. These look specifically at the 

Pizza B data, although we could have shown similar figures for other data sets. In Figure 2, 

we order the 328 individuals from the person with least negative log-likelihood contribution 

in the MIXL model (i.e., the person the model fits best) to the person with the most negative 

log-likelihood contribution (i.e., the person the model fits worst). We then plot these people 

from left to right (the dark circles). We also plot each person’s log-likelihood contribution 

according to the G-MNL model (the light crosses). The horizontal line is the log-likelihood of 

the naïve model that assumes equal choice probabilities for both alternatives. We also divide 

the sample into thirds: the “Type I” people on the left that MIXL fits best, the Type IIs in the 

middle, and the Type IIIs on the right (for whom the fit is often worse than the naïve model). 

  The key result of Figure 2 is that G-MNL generally fits Type I and Type III people 

better than MIXL, while the fit for Type II people is about the same. What does this mean? It 

turns out the Type Is are “extreme” people whose preferences are close to lexicographic. For 

instance, of these 109 people, 22 always choose the pizza with fresher ingredients on all 

choice occasions, regardless of other attributes, 18 always choose the pizza with the lower 

price, etc..18 The G-MNL model is better able to explain such extreme behaviour, by saying 

that: (i) some people have a very small scale for the error term (or, conversely, very large 

attribute weights), so there is little randomness in their behaviour, and (ii) as attribute weights 

are random, for some people one (or a few) attributes are much more important than others, 

so that one (or few) attributes almost entirely drive choices.      

 Turning to Type IIIs, these are people whose behaviour is highly random. That is, 

their behaviour is largely driven by the idiosyncratic error term εnjt and is little affected by 

attributes. Indeed, the naïve model that assumes equal choice probabilities regardless of 

attribute settings generally fits their behaviour better than MIXL. G-MNL still has trouble 

fitting the behaviour of such people, but it gives a clear improvement over MIXL. G-MNL is 

better able to explain “random” people because it can say that some people have a very large 

scale of the error term (or, conversely, very small attribute weights).19

 Some further insight is gained by looking at the bottom panel of Figure 2. Here, we fit 

simple MNL models to the Type I, II and III groups separately. Note that for the Type III 

people we obtain very small attribute weights. Thus, choices of the Type IIIs are largely 

driven by the error terms. In this sense they are highly random. In contrast, for Type Is we 

                                                 
18 There are 32 choice occasions, but each attribute only differs between the two options on 16 occasions. 
19 Note that, in principle, the MIXL model can also generate some people for whom all attribute weights are 
small. But in a model with several attributes, this would be a very unlikely event.  
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estimate very large attribute weights. This makes their choices very sensitive to attribute 

settings. The Type IIs are in the middle. One can clearly see a general scaling up of the 

attribute weights as one moves from Type IIIs to Type IIs to Type Is. 

 Having isolated why G-MNL fits better than MIXL, we turn to the question of how its 

substantive predictions differ. In Figure 3, the four graphs correspond to MNL, S-MNL, 

MIXL and G-MNL. Each graph shows the distribution of people in terms of their probability 

of choosing between the two Pizza delivery services.20 The distribution is shown under two 

scenarios: a baseline where services A and B have identical attributes and a scenario where 

service A improves ingredient quality (to all fresh) while also raising price by $4. 

 Of course, under the baseline, each model says that 100% of the people have a 50% 

probability of choosing A. After the policy change, MNL (which assumes homogeneous 

preferences) predicts that all people have a 52% chance of choosing A. In contrast, S-MNL 

predicts heterogeneity in consumer responses. 41% of consumers continue to have a roughly 

50% chance of choosing A, while for 43% the probability of choosing A increases to about 

55%, and for 17% of the probability of choosing A increases into the 60-75% range. 

 The more interesting comparison is between MIXL and G-MNL. G-MNL predicts 

that, after the policy change, 14% of consumers still have a 50% chance of choosing A. 

Strikingly, 8% of consumers would have essentially a 100% chance of choosing A (these are 

the types who put great weight on fresh ingredients) while 5% would have essentially a 0% 

chance of choosing A (these are the types who care primarily about price). As we would 

expect based on the Figure 2 results, MIXL predicts that fewer people stay indifferent, and 

also that fewer people have extreme reactions. Specifically, MIXL predicts that only 8% of 

consumers stay at roughly a 50% chance of choosing A, while essentially no consumers have 

their choice probabilities move all the way to 100% or 0%.  

In the actual Pizza B data, there are 24/328 = 7.3% of subjects who choose the fresh 

ingredient Pizza on all choice occasions regardless of other attribute settings, while there are 

27/328 = 8.2% who always choose the less expensive Pizza. The Figure 3 results show that 

G-MNL can generate such extreme (or lexicographic) behaviour, while MIXL cannot. 

                                                 
20 Note that here we adopt the mathematical psychology view that choice is random for an individual across 
choice occasions. In the economist’s view, the randomness in choice exists solely from the point of view of the 
analyst, who does not observe a consumer’s preference type or all the relevant product attributes. In this view, a 
consumer faced with the same choice situation on two occasions should make the same choice. But this view is 
hard to reconcile with behaviour in choice experiments where consumers make repeated choices (e.g., 32 in the 
Pizza B data set). Inevitably one sees cases where, when presented with A vs. B, a person chooses A, and then 
later, in a situation that is identical except that an attribute of A is improved, the person chooses B. Randomness 
across choice occasions at the individual level is necessary to explain this. Such randomness is present in choice 
models applied to experimental data whenever one lets the stochastic terms differ across choice occasions.          
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To gain additional insight into why the behavioural predictions of G-MNL and MIXL 

differ, we report for each model the posterior means of the person level coefficients on fresh 

ingredients and price. To do this we condition on the estimated model parameters and the 32 

observed choices of each person, using the algorithm in Train (2003) p. 266. Distributions of 

the posterior means of the person specific parameters are reported in Figure 4.21  

The differences in the posteriors generated from the MIXL and G-MNL model are 

striking. The MIXL posteriors depart modestly from normality, but the strong influence of 

the normal prior, and in particular its tendency to pull in tail observations, is evident. In 

contrast, the G-MNL posteriors are multi-modal, with considerable mass in the tails. In 

particular, the G-MNL posterior for the price coefficient clearly shows a substantial mass of 

people in the left tail who care tremendously about price. And the G-MNL posterior for the 

coefficient on fresh ingredients clearly shows a substantial mass of people in the right tail 

who greatly value freshness. This example clearly illustrates the flexibility of the continuous 

mixture of scaled normals prior for individual level coefficients in the G-MNL model.         

 Finally, Figure 5 shows that the pattern shown in Figure 3 emerges not just for fresh 

ingredients but for other attributes as well. Each panel plots the distribution of consumer 

choice probabilities under an experiment where one attribute of Pizza delivery service A is 

improved, and price is also increased by $4. The first panel repeats the fresh ingredients 

experiment from Figure 3. But now the probability distributions of the G-MNL and MIXL 

models are plotted side-by-side, making the differences easier to see. As is clear, the G-MNL 

model puts more mass near the center of the distribution of choice probabilities (i.e., close to 

50%) and more mass in the tails (close to 0% or 100%). The same basic pattern holds in 

experiments where firm A offers gourmet pizza, steaming hot pizza or a vegetarian option.   

 What are the managerial implications of these results? Unlike the situation in the 

Pizza B choice experiment, in the real world pizza delivery firms do not offer a single type of 

pizza (or a small range of options) at a single price. They offer a wide range of pizzas with 

different attributes at different prices. In order to determine the optimal menu of offerings, a 

firm needs to know the entire distribution of demand. It is beyond the scope of this paper to 

design optimal menus. But it is clear that optimal price discrimination strategies would differ 

between a market where a significant fraction of consumers have essentially lexicographic 

preferences vs. a market where attribute weights differs less markedly across consumers. 
                                                 
21 Allenby and Rossi (1999) call this an “approximate Bayesian” approach. We tried integrating over uncertainty 
in the estimated model parameters, as well as uncertainty in calculating the posterior means. This made little 
difference, presumably because (i) the model coefficients are estimated quite precisely, and (ii) with 32 
observations per person, the posterior means are also estimated rather precisely. 
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 In summary, these results make clear why models with scale heterogeneity (either G-

MNL or S-MNL) fit better than MIXL in every data set we examine. The models with scale 

heterogeneity are able to generate the sort of extreme (or lexicographic) behaviour that is 

common in these choice experiments, while MIXL cannot. It is also able to capture “random” 

choice behaviour (i.e., low responsiveness to attribute settings) better than MIXL. The reason 

for both advantages is transparent. Models that include scale can generate random behaviour 

by setting scale large, and can generate lexicographic behaviour by setting scale small (while 

also letting one attribute have a large idiosyncratic component of its preference weight). 

V.D. Comparing the Importance of Heterogeneity across Data Sets    

Table 17 summarizes results across the ten data sets.22 One interesting pattern is the 

extent to which the inclusion of heterogeneity of all types leads to improvement in model fit. 

That is, what is the percentage improvement in the log-likelihood when we go from the 

simple MNL model to the full-fledged G-MNL model?  Strikingly, this differs greatly by 

dataset, ranging from only 12% to 16% in the mobile phone, pizza B and holiday B data sets, 

to as much as 33% to 40% in the Tay Sachs and Pap smear datasets. Another metric (not in 

the table) is the improvement in pseudo-R2 when heterogeneity is included. This ranges from 

.27 to .35 in the three medical datasets, but from only .10 to .17 in the other datasets.23    

Thus, the extent of preference heterogeneity in the three datasets involving medical 

decisions is roughly twice as great as in those for consumption goods (phones, pizza delivery, 

holidays, charge cards). There are a number of possible explanations for this pattern. People 

may have stronger feelings about medical procedures than the more mundane attributes of 

consumer products. People may have very different attitudes towards risk. Perhaps medical 

decision-making is a more complex or higher involvement task, and taste heterogeneity in 

general (and perhaps scale heterogeneity in particular) increases with task complexity. 24, 25

A second interesting pattern is how the importance of scale heterogeneity differs 

across datasets. We do not have a formal measure of the fraction of heterogeneity due to scale 

heterogeneity, because the improvement in the likelihood when we include scale and residual 
                                                 
22 The Mobile Phone, Pizza B, Holiday B, and Charge Card data sets contained very many attributes (16 to 18), 
so it was not feasible to estimate a full variance-covariance matrix in these cases. Instead, we restricted them to  
have a one-factor structure. Such an approach may be worth pursuing as a compromise between the two extreme 
options commonly applied in practice: imposing no correlation or estimating full variance-covariance matrix. 
23 Pseudo-R2 for a discrete choice model is defined as 1-LL(m)/LL(0) where LL(m) is the  log-likelihood of the 
model, and LL(0) is that of a “null” model that assigns equal probability to each choice.  
24 Medical decisions are also relatively “unfamiliar” tasks compared to choice among common consumer goods. 
It is plausible that choice in such unfamiliar contexts is more difficult. 
25 Also, it may simply be that taste heterogeneity is more important in datasets with ASCs. But, this is 
contradicted by the mobile phone and credit card data sets, which contain ASCs but exhibit a relatively low 
degree of heterogeneity.   
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heterogeneity is not additive. But we can get a sense of the importance of scale heterogeneity 

by asking: “Of the total improvement in the likelihood achieved by adding all forms of 

heterogeneity, what fraction can be attained just by adding scale heterogeneity?” Table 17 

reports this figure for the S-MNL models with and without random ASCs. The more relevant 

figure is that for models with fixed ASCs, as the likelihood improvement from adding 

random intercepts is more appropriately ascribed to residual taste heterogeneity.  

Differences in results across datasets are striking. For mobile phones, 71% of the log-

likelihood improvement that can be achieved by introducing all heterogeneity is achieved by 

introducing scale heterogeneity alone. For the three medical tests (Pap smear, Tay Sachs) the 

figures range from 40% to 66%. But in the other datasets scale heterogeneity appears to be 

less important. In the Pizza delivery and Holiday destination datasets the fraction of the total 

log-likelihood improvement that can be achieved just by introducing scale is only 13% to 

23%, and, in the two Charge Card choice experiments, the figures are only 21% to 22%.  

Another way to gauge the importance of scale heterogeneity is by the improvement in 

pseudo-R2 when it is added to the model. This ranges from .07 to .23 in the medical and 

mobile phone data sets,26 but from only .02 to .05 in the other data sets. 

Thus, by this metric, scale heterogeneity appears to be much more important in the 

medical test and mobile phone data sets than in the pizza, holiday and charge card data sets.  

What accounts for this contrast? One hypothesis is that scale heterogeneity increases with 

task complexity. It is intuitive that choices about medical tests are complex, as they involve 

making decisions about risks/probabilities, which humans have difficultly understanding. 

Similarly, mobile phones are high-tech goods with attributes like WiFi connectivity, voice 

commands, USB connections, etc., which consumers may also find difficult to assess. In 

contrast, attributes of simple consumer goods like pizza and holidays (e.g., thick crust, quality 

of hotels) may be easier to evaluate. Thus, the results appear consistent with a view that scale 

heterogeneity is more important in more complex choice contexts.      

In summary, we find that two hypotheses seem at least consistent with the observed 

patterns across datasets. First, heterogeneity (in general) is more important in data sets that 

involve high involvement decisions (e.g., medical tests). Second, scale heterogeneity is more 

important in data sets that involve more complex choice objects (i.e., objects with more 

complex attributes). Of course, we view both of these hypotheses as merely preliminary, but 

they suggest interesting avenues for future work. 
                                                 
26 The low end of this range (.07) comes from the mobile phone dataset. But this improvement appears more 
substantial when one considers that heterogeneity in general only improves pseudo-R2 by .10 for mobile phones.     
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Finally, we tried using observed covariates to explain differences in scale across 

subjects, as in equation (12). But we had little success and hence do not report the results. 

Our limited data on subject characteristics did not help to explain scale, nor did our measures 

of task complexity (number of attributes, number of alternatives, number of attributes that 

differ among alternatives, number of scenarios). Clearly, more work is needed on this topic. 

V.E. Comparing Willingness to Pay Calculations in the MIXL and G-MNL Models 

An important issue that arises in choice modelling is the calculation of consumer 

willingness to pay (WTP) for changes in product attributes. How best to do this in random 

coefficient models has recently been an active area of research (see, e.g., Sonnier, Ainslie and 

Otter (2007)). To understand the issue, consider a general model with heterogeneity in (i) the 

attribute weights, (ii) the price coefficient and (iii) the scale parameter:    

 / 1,..., ; 1,..., ; 1,..., ,njt n njt n njt njt nU x p n N j J t Tβ φ ε σ= − + = = =        (14) 

This model is not identified, and the most common normalization is, of course, to set the 

scale parameter σn=1 for all n. This gives what is called a model in “utility space.” But an 

alternative is to normalize the price coefficient φn =1 for all n. This gives what is called a 

model in “WTP space.” It is useful to write out the two models explicitly: 

njt n njt n njt njtU x pβ φ= − + ε    “Utility Space” 

* * /njt n njt njt njt nU x pβ ε σ= − +    “WTP Space” 

In the model in “Utility space,” WTP for an additional unit of attribute k is βnk /φn, while for 

the model in “WTP space” it is simply *
nβ .27 These two models will give identical fits to the 

data, and identical estimates of WTP, provided the specification and estimation methods 

maintain the restrictions that * /n n nβ β σ=  and φn = σn . 

 Practitioners have reported however, that the two models give very different estimates 

of WTP, and in particular that estimates obtained in “utility space” are often unreasonably 

large. The source of these differences is that, in practice, it is difficult (or inconvenient) to 

specify the “Utility space” and “WTP space” models in such a way that they are equivalent.28 

This does not mean however, that the two models are not equivalent if properly specified.  

                                                 
27 Analogously, in contingent valuation data, Hanemann (1984) estimated WTP as the ratio of the intercept 
(representing the hypothetical program) to the price coefficient, while Cameron (1988) uses the expenditure 
function to estimate WTP directly. 
28 In the utility space model it is common to assume βn is normal, and that the price coefficient φn is normal or 
log normal (to keep it positive). Regardless, the distribution of WTP for attribute k is the ratio (βnk/φn), where the 
numerator is normal and the denominator normal or log normal. In contrast, in the WTP space model, the WTP 
distribution is simply that of *

nkβ , which is typically specified as normal (see, e.g., Sonnier et al (2007)). Hence, 
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 It is interesting to examine the issue of estimating WTP in the context of the G-MNL 

and S-MNL models. Rewriting (7) so the price coefficient is explicit, we have:   

njtnjtnnnnnjtnnnnnjt pxU εησγγηφσησγγηβσ φφ +−++−−++= ])1([])1([       (13) 

where φ  denotes the mean price coefficient in the population. If only scale heterogeneity 

matters, WTP for a unit of attribute k reduces to just (βk /φ ), where βk. denotes the kth element 

of the β vector. This illustrates a strong property of the S-MNL model – there is heterogeneity 

in coefficients, but not in WTP.29 However, this does not mean there is no heterogeneity in 

price sensitivity. For example, in the pure S-MNL model the derivative of the choice 

probability with respect to price is ∂Pn(j | Xnt) / ∂pnjt = −Pn(j | Xnt)[1- Pn(j | Xnt)] · σn · φ. Thus, 

as σn→0, only unobserved attributes ε matter for choice, and price sensitivity goes to zero.  

This illustrates an odd aspect of the “willingness to pay” concept in choice models. A 

consumer’s WTP for an attribute increase is defined as the price increase which, combined 

with the attribute increase, leaves the deterministic part of his utility for a brand unchanged – 

and hence the choice probability unchanged. However, consider the same unit increase in the 

attribute holding price fixed. Given heterogeneity, consumers with the same WTP for the 

attribute will not in general have the same increase in their choice probability for the brand 

(even given the same initial probability). Consumers with larger σn in the WTP space model, 

or larger *
n n nβ β σ=  in the utility space model, will have a larger increase in demand. In other 

words, it is perfectly compatible that some consumers have a large WTP for an attribute, but 

that introducing it leads to little increase in their probability of choosing the brand. 

In general, WTP in the G-MNL model is given by the ratio: 

])1(/[])1([ nnnnknnknkn φφ ησγγηφσησγγηβσ −++−++  

While seemingly complicated, this is no more difficult to simulate than (βnk/φn) in the MIXL 

model. To guarantee “reasonable” WTP estimates one must choose distributions for σn and 

nφη so the price coefficient ])1([ nnnn φφ ησγγηφσ −++  is bounded away from zero. However, 

in light of our previous comments, we argue that WTP calculations are overemphasized, and 

that more emphasis should be placed on simulating demand. This will become clear below. 

In Table 18, we compare demand and WTP predictions of the G-MNL and MIXL 

models, again focussing on the Pizza B data set. The top and bottom panels report results for 

                                                                                                                                                        
it is not surprising that the two models – as typically specified – give very different answers, as there is no 
reason to expect (βnk/φn) to be approximately normal. Furthermore, it is not surprising that, in a utility space 
model, WTP sometimes takes on extreme values; we are taking the ratio of two random variables, where the 
denominator is normal or log normal, and the ratio can “explode” because the denominator is close to zero. 
29 This is because people with larger attribute weights have a proportionately larger price coefficient.  
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MIXL and G-MNL, respectively. In the first row we consider an experiment where delivery 

service A switches from traditional to gourmet pizza, while raising price by $4 (holding other 

attributes equal between the two services). Both MIXL and G-MNL predict that roughly 39% 

of consumer would choose service A under this experiment (as opposed to 50% under the 

baseline where all attributes are equal). Thus, the demand curves generated by both models 

imply that roughly 39% of consumers are willing to pay $4 extra for gourmet pizza. 

A similar pattern holds when we look (see the next three rows of each panel) at the 

demand predictions for fresh ingredients, guaranteed hot pizza, and vegetarian pizza. In each 

case, demand predictions from the G-MNL and MIXL models are almost identical. This 

pattern held across all data sets and a wide range of prediction scenarios: the aggregate 

demand predictions from G-MNL and MIXL are almost identical. The key point is that the 

difference between the two models arises not from their predictions about aggregate demand, 

but in their predictions about the distribution of demand across individual types of people. 

We turn next to the distribution of WTP implied by each model. For both G-MNL and 

MIXL this is simulated in the conventional way, as described above. At the 50th percentile, 

the WTP for gourmet pizza is close to zero according to both models. At the 75th percentile it 

is about $3 according to MIXL and $2.40 according to G-MNL. Thus, given the simulated 

WTP distributions, both models imply less than 25% of consumers are willing to pay $4 extra 

for gourmet pizza. Here we see immediately how WTP distributions generated by both 

models (calculated in the conventional way) seriously contradict the demand predictions, as 

we have already seen that both models predict that roughly 39% of consumers would be 

willing to pay $4 extra for the gourmet pizza. Indeed, based on the overall WTP distribution, 

the MIXL model implies that only 23% of consumers would buy the gourmet pizza at a $4 

price premium, and the G-MNL model implies that only 20% of consumers would do so.   
 
VI. Conclusion      

Consumer taste heterogeneity is of central importance for many issues in marketing 

and economics. For at least 25 years there has been a large ongoing research program on how 

best to model heterogeneity. This research program has produced a large number of 

alternative modelling approaches. One of the most popular is the so-called “mixed” or 

“heterogeneous” multinomial logit (MIXL) model. In most applications of MIXL, the vector 

of consumer utility weights is assumed to have a multivariate normal distribution in the 

population. But recently, Louviere et al (1999, 2008) have argued, based on estimation of 

individual level models, that much of the heterogeneity in attribute weights is better described 
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as a pure scale effect (i.e., across consumers, weights on all attributes are scaled up or down 

in tandem). This implies that choice behaviour is simply more random for some consumers 

than others (i.e., holding attribute coefficients fixed, the scale of their error term is greater). 

This leads to what we have called a “scale heterogeneity” MNL model (S-MNL).  

In this paper we have developing a “generalized” multinomial logit model (G-MNL) 

that nests S-MNL and MIXL. By estimating the G-MNL model on ten datasets, we provide 

empirical evidence on the importance of scale heterogeneity, and on the relative ability of the 

MIXL, S-MNL and G-MNL models to fit the data. Our main results show that, based on BIC 

and CAIC, the G-MNL model is preferred in 7 data sets while the S-MNL model is preferred 

in the other three. This is striking evidence of the importance of scale heterogeneity – and of 

the ability of models that include scale heterogeneity to outperform MIXL. 

We also show why G-MNL fits better than MIXL. Specifically, it can better explain 

the behaviour of “extreme” consumers who exhibit near lexicographic preferences (i.e., 

consumers who nearly always choose the option with a particular attribute, such as lowest 

price or highest quality, regardless of the attributes of other alternatives). G-MNL is also 

better able to explain highly “random” consumers whose choices are relatively insensitive to 

product attributes (i.e., consumer with a large scale of the idiosyncratic error terms).   

We went on to show that the G-MNL model allows more flexibility in the posterior 

distribution of individual level parameters than does MIXL. From an “approximate Bayesian” 

perspective, the MIXL model with a normal heterogeneity distribution imposes a normal 

prior on the distribution of individual level parameters. But G-MNL imposes a much more 

flexible continuous mixture of scaled normals prior. Thus, even given a large amount of data 

per person, MIXL posteriors depart only modestly from normality. But G-MNL posteriors 

exhibit sharp departures. These include both multi-modality with spikes in the tails (people 

who care greatly about particular attributes) and excess kurtosis (people who have small 

attribute weights or, conversely, a large scale of the error term). 

An important avenue for future research is to compare G-MNL with alternative 

models that also allow a more flexible distribution of individual level parameters, such as 

mixture-of-normals logit and probit models. The potential advantage of G-MNL is that it 

achieves a flexible distribution while adding only two parameters to the normal model.           

Our analysis also yielded two interesting empirical findings: First, taste heterogeneity 

in general was far more important for medical decisions than for consumer goods. Second, 

scale heterogeneity was more important in datasets that involve more complex choice objects. 

Of course, these empirical findings are quite preliminary, as they involve only ten datasets. 
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Figure 1: The G-MNL Model & Its Special Cases 
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Figure 2: Individuals' log-likelihood from Pizza B data set ( N = 328; T = 32; binary choice) 
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 Figure 3: Predicted distribution of probability of choosing firm A from MNL, S-MNL, MIXL and G-MNL models 
                 when firm A improves ingredient quality and increases price $4  
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Figure 4: Posterior distribution of individual-level parameters: MIXL vs. G-MNL 
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Figure 5: Predicted distribution of probability of choosing firm A from MIXL and G-MNL models 
                 when firm A improves one attribute and increases price $4  
     (Note: attribute scenarios clock-wise are fresh/canned ingredients, gourmet/traditional, hot/warm, vegetarian availability) 
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Table 1: Monte Carlo Simulation Results – Papsmear test configuration 
 

  No. of draws = 500        
           

 True θ  s.d. ASE    True θ  s.d. ASE  

1β  -1.201 -1.192 0.742 0.542  ρ12 -0.392 -0.271 0.377 0.308 

2β  0.466 0.525 0.405 0.444  ρ23 -0.116 -0.031 0.270 0.281 

3β  -1.475 -1.458 0.818 0.601  ρ34 -0.182 -0.186 0.170 0.216 

4β  3.563 3.983 1.045 0.908  ρ45 -0.120 -0.016 0.265 0.406 

5β  1.657 1.928 0.408* 0.551  ρ56 0.398 0.175 0.346* 0.565 

6β  -0.215 -0.241 0.123 0.192  ρ13 0.075 0.211 0.287* 0.245 

      ρ24 0.073 0.030 0.319 0.233 

1σ  4.036 4.107 0.704 0.786  ρ35 0.280 0.249 0.237 0.386 

2σ  1.631 1.768 0.469 0.555  ρ46 -0.115 -0.169 0.355 0.497 

3σ  2.454 2.685 0.781 0.724  ρ14 -0.385 -0.231 0.275* 0.233 

4σ  2.992 3.436 0.959 0.782  ρ25 -0.418 -0.494 0.257 0.322 

5σ  1.506 1.787 0.674 0.640  ρ36 -0.483 -0.219 0.329* 0.474 

6σ  0.226 0.490 0.175* 0.254  ρ15 0.132 0.262 0.262* 0.424 

      ρ26 0.110 -0.077 0.370* 0.478 

      ρ16 0.239 0.048 0.415 0.522 
           
τ  

*
0.890 0.891 0.328  0.214       

γ  -5.000 -2.699 1.978* 16.215       
γ  0.007 0.156 0.198*  0.232       
           

The attributes and true values are constructed from the Papsmear data set (X1  is ASC). The number of draws used in simulated maximum likelihood estimation  is 500.  We construct  20 artificial data sets (indexed by 

m = 1,…,20) and compare the estimates to the true values.  
m

m
θθ Σ

=

=
20

120
1  ; 2

20

1
)(

19
1s.d. θθ −= Σ

=
m

m

 ; 
m

m
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20
1ASE 

20

1
Σ

=

=  where mθ  and denote parameter estimates and asymptotic standard errors 

from each data set.  An asterisk indicates the t-statistic for the estimated bias greater than the critical value at the 5% level, i.e., |t|>2.09  where 

mASE

1..)(20 −−= dst trueθθ .  The true values are from Table 11. 
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Table 2 : Monte Carlo Simulation Results – Holiday A configuration 
 

                

 True θ  s.d. ASE    True θ  s.d. ASE    True θ  s.d. ASE  

1β  -0.905 -1.134 0.415* 0.242  ρ12 0.216 0.092 0.219* 0.033 
 ρ47 0.194 0.105 0.125* 0.119 

2β  1.012 1.214 0.619 0.277  ρ23 0.012 0.045 0.303 0.180 
 ρ58 0.113 0.193 0.156* 0.050 

3β  -0.189 -0.243 0.174 0.111  ρ34 -0.092 -0.129 0.288 0.122  ρ15 -0.065 -0.148 0.227 0.066 

4β  1.924 2.223 0.814 0.449  ρ45 0.243 0.304 0.127* 0.067  ρ26 -0.165 -0.157 0.197 0.113 

5β  1.771 2.032 0.733 0.413  ρ56 0.225 0.255 0.185 0.102  ρ37 -0.070 -0.011 0.294 0.164 

6β  0.860 0.885 0.299 0.209  ρ67 0.094 0.173 0.186 0.143  ρ48 -0.060  0.039 0.167* 0.050 

β7 0.262 0.232 0.180 0.120  ρ78 -0.350 -0.201 0.196* 0.083 
 ρ16 0.244  0.212 0.247 0.105 

β8 3.200 3.803 1.296 0.745  ρ13 -0.043 -0.081 0.410 0.184 
 ρ27 0.194  0.217 0.182 0.112 

      ρ24 0.446 0.453 0.129 0.050  ρ38  0.106  0.018 0.254 0.076 

1σ  0.982 1.157 0.403 0.241  ρ35 0.056 0.064 0.221 0.098  ρ17 0.620  0.489 0.204* 0.106 

2σ  3.590 4.503 1.503* 0.854  ρ46 0.182 0.162 0.198 0.104  ρ28 0.015  0.035 0.139 0.048 

3σ  0.616 0.598 0.245 0.162  ρ57 -0.358 -0.308 0.199 0.117  ρ18 0.129  0.031 0.230 0.042 

4σ  1.891 2.451 0.785* 0.473  ρ68 0.181 0.154 0.198 0.067  
    

 

5σ  1.693 2.127 0.686* 0.414  ρ14 0.007 -0.057 0.217 0.055 
     

 

6σ  1.006 1.305 0.445* 0.283  ρ25 0.072 0.087 0.126 0.070 
     

 

7σ  0.877 1.119 0.407* 0.247  ρ36 0.403 0.283 0.351 0.132 
     

 

8σ  2.351 3.323 1.212* 0.638      
      

 
                 
τ  

*
1.000 0.968 0.344 0.138             

γ  -1.380 -2.633 2.260* 10.379             
γ  0.200 0.137 0.254* 0.118             
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The attributes and true values are constructed from the Holiday A data set. The number of draws used in simulated maximum likelihood estimation is 500.  We construct 20 artificial data sets (indexed by m = 

1,…,20) and compare the estimates to the true values. 
m
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=  where mθ  and denote parameter estimates and asymptotic standard errors from 

each data set.  An asterisk indicates the t-statistic for the estimated bias greater than the critical value at the 5% level, i.e., |t|>2.09  where 

mASE

1..)(20 −−= dst trueθθ .  The true values are from Table 10, except τ is 

reduced from 1.51 to 1.00 to make detection of scale heterogeneity more challenging. And γ is increased from 0 to 0.20 so to contrast with Table 1 where γ =0. 
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Table 3: Monte Carlo Simulation Results 
 

A. Papsmear test data configuration  B. Holiday A data configuration 
                     
True DGP is G-MNL          True DGP is G-MNL        

      Correlated error  Uncorrelated error        Correlated error   Uncorrelated error 
  MNL S-MNL MIXL G-MNL   MIXL G-MNL    MNL S-MNL MIXL G-MNL   MIXL G-MNL 

AIC 0 0 0 9  0 11  AIC 0 0 0 20  0 0 
BIC 0 0 0 0  2 18  BIC 0 0 0 1  5 14 

CAIC 0 0 0 0  4 16  CAIC 0 0 0 0  6 14 
                     

True DGP is MIXL         True DGP is MIXL         
      Correlated error  Uncorrelated error        Correlated error  Uncorrelated error 
  MNL S-MNL MIXL G-MNL   MIXL G-MNL    MNL S-MNL MIXL G-MNL   MIXL G-MNL 

AIC 0 0 8 10  0 2  AIC 0 0 13 7  0 0 
BIC 0 0 0 0  19 1  BIC 0 0 0 0  16 4 

CAIC 0 0 0 0  19 1  CAIC 0 0 0 0  17 3 
                     

True DGP is S-MNL        True DGP is S-MNL        
      Correlated error  Uncorrelated error        Correlated error  Uncorrelated error 
  MNL S-MNL MIXL G-MNL   MIXL G-MNL    MNL S-MNL MIXL G-MNL   MIXL G-MNL 

AIC 0 20 0 0  0 0  AIC 0 20 0 0  0 0 
BIC 0 20 0 0  0 0  BIC 0 20 0 0  0 0 

CAIC 0 20 0 0  0 0  CAIC 0 20 0 0  0 0 
                                 
 
 

G-MNL or MIXL     
     

 Right  Wrong 
   MIXL G-MNL
BIC 68  7 5 
CAIC 66  10 4 
AIC 61  0 19 
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Table 4: Empirical Data Sets 
 

    No. of No. of  No. of  No. of No. of    Meaningful Complicated Variation All consumers 
  choices choice  respondents observations attributes Products  ASC attributes  in   are likely to  
      occasions              attributes have same signs 
            

1 
Tay Sachs Disease & 
Cystic Fibrosis test 4 16 210 3360 11 Medical Yes Yes High Yes 

 Jewish sample (3 ASCs)           
            

2 
Tay Sachs Disease & 
Cystic Fibrosis test 4 16 261 4176 11 Medical Yes Yes High Yes 

 
General population sample 
(3 ASCs)           

            
3 Mobile phone (1 ASC) 4 8 493 3944 15 Consumption No Yes High Yes 
            
4 Pizza A (no ASC) 2 16 178 2848 8 Consumption No No Low No 
            
5 Holiday A (no ASC) 2 16 331 5296 8 Consumption No No Low No 
            
6 Papsmear test (1 ASC) 2 32 79 2528 6 Medical Yes No Medium Yes 
            
7 Pizza B (no ASC) 2 32 328 10496 16 Consumption No No Low No 
            
8 Holiday B (no ASC) 2 32 683 21856 16 Consumption No No Low No 
            
9 Charge card A (2 ASCs) 3 4 827* 3308 17 Consumption Yes No High Yes 
            

 Charge card B (3 ASCs) 4 4 827* 3308 18 Consumption Yes No High Yes 
                        

 
Note: * The respondents in the two credit card data sets are the same. They first complete 4 tasks with 3 options and then answer 4 tasks with 4 options. Some data sets 
were used in previous research (see Hall et al (2006) for data sets 1 and 2, Fiebig and Hall (2005) for data set 6, and Louviere et al (2008) for data sets 4, 5, 7 and 8). 
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Table 5: Attributes and Levels 
Tay Sachs disease (TS) & Cystic Fibrosis (CF) test: Jewish and General population  Mobile phone   
  Attributes Levels    Attributes Levels 

1 ASC for TS test 0,1  1 ASC for purchase 0,1 
2 ASC for CF test 0,1   (phone 1, phone 2 or phone 3)  
3 ASC for both tests 0,1        Voice Commands (omitted Text to voice or voice to text converter) 
4 Cost to you of being tested for TS (0,150,300,600)/1000  2 (1) No    -1,0,1 
5 Cost to you of being tested for CF (0,375,750,1500)/1000  3 (2) Voice dialling by number or name -1,0,1 
6 Cost to you of being tested both TS and CF (0,150,…,1800,2100)/1000  4 (3) Voice operating commands -1,0,1 
7 Whether your doctor recommends you have a test -1(no),1(yes)         Push to Communicate (omitted to share video) 
8 The chance that you are a carrier (15,30,45,60)/10  5 (1) No -1,0,1 

  even if the test is negative   6 (2) to talk  -1,0,1 
9 Whether you are told your carrier status  -1(individual), 1(couple)  7 (3) to share pictures or video -1,0,1 

 as an individual or as a couple          Email Access (omitted email with attachments) 
10 Risk of being a carrier for TS log base 10 of (.004,.04,.4,4) x 10^3  8 (1) personal emails -1,0,1 
11 Risk of being a carrier for CF log base 10 of (.004,.04,.4,4) x 10^3  9 (2) corporate emails (VPN, RIM) -1,0,1 

    10 (3) both personal & corporate emails -1,0,1 
Papsmear test          on multiple accounts  
  Attributes Levels  11 WiFi -1(No), 1(Yes) 

1 ASC for test 0(no),1(yes)  12 USB Cable or Cradle connection -1(No), 1(Yes) 
2 Whether you know doctor 0(no),1(yes)  13 Thermometer -1(No), 1(Yes) 
3 Whether doctor is male 0(no),1(yes)  14 Flashlight -1(No), 1(Yes) 
4 Whether test is due 0(no),1(yes)  15 Price (0,11.7,19.5,…,497.25, 563.55)/100 
5 Whether doctor recommends 0(no),1(yes)    (36 unique values) 
6 Test cost {0,10,20,30}/10        

       
Pizza A: attributes 1-8;  Pizza B: attributes 1-16 (No ASC)  Holiday A: attributes 1-8; Holiday B: attributes 1-16 (No ASC) 
  Attributes Levels    Attributes Levels 

1 Gourmet  -1 (Traditional),1(Gourmet)  1 Price -1($999), 1 ($1200) 
2 Price -1 ($13),1 ($17)  2 Overseas destination  -1(Australia), 1(Overseas) 
3 Ingredient freshness -1 (some canned),1(all fresh ingredients) 3 Airline -1(Qantas), 1(Virgin) 
4 Delivery time -1(45 mins),1(30 min)  4 Length of  stay -1(7), 1(12) 
5 Crust -1(thin),1(thick)  5 Meal inclusion -1(no), 1(yes) 
6 Sizes  -1(single size),1(3 sizes)  6 Local tours availability -1(no), 1(yes) 
7 Steaming hot -1(warm),1(steaming hot)  7 Peak season -1(off-peak), 1(peak) 
8 Late open hours -1(till 10 pm.), 1 (till 1 am.)  8 4-star Accommodation -1(2-star), 1 (4-star) 
9 Free delivery charge -1($2),1 (free)  9 Length of Trip -1(3 hours), 1 (5 hours) 

10 Local store -1(chain),1(local)   10 Cultural activities -1(Historical sites), 1 (museum) 
11 Baking Method -1(traditional),1(wood fire)  11 Distance from hotel to attractions -1 (200m), 1 (5km) 
12 Manners -1(friendly),1(polite & friendly)  12 Swimming pool avail. -1(no), 1(yes) 
13 Vegetarian availability -1(no),1(yes)  13 Helpfulness -1(helpful), 1(very helpful) 
14 Delivery time guaranteed -1(no),1(yes)  14 Individual tour -1 (organized tour), 1 (individual) 
15 Distance to the outlet -1(in other suburb),1(in own suburb)  15 Beach availability -1(no), 1(yes) 
16 Range/variety availability -1(restricted menu),1(large menu)  16 Brand -1(Jetset), 1 (Creative Holidays) 
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Table 5 (continued) 
 

Charge card A & B (no transaction option  for Card A)         
  Attributes Levels       
1 ASC for credit card 0,1    
2 ASC for debit card 0,1    
3 ASC for transaction card 0,1    
4 Annual fee (-70,-30,10,70)/10    
5 Transaction fee (-.5, -.3, .1, .5)*10    
6 Permanent overdraft facility     

   credit:  0 (N/A)    
   debit/trans:  -1(Available), 1(Not available)    
7 overdraft interest free days (up to) (-30, 5, 15, 30 )/10    
8 Interest charged on outstanding (-.075, -.035, .015, .075)*100    

  credit/overdraft     
9 Interest earned on positive balance     

   credit: (-.025, .025)*100    
   debit/trans: 0.015*100    
10 Cash advance interest rate     
   credit: (-.035, -.005, .015, .035 )*100    
   debit/trans: 0.015*100    
       Location and shop access  (omitted EFTPOS + telephone + internet + mail, use world wide)   
11 (1) Nowhere else, use Australia wide -1,0,1    
12 (2) EFTPOS + telephone + internet + mail, -1,0,1    
       use Australia wide     
13 (3) Nowhere else, use world wide -1,0,1    
14 Loyalty scheme 0(None), 1(Frequent Flyer/Fly Buys and other rewards) 
15 Loyalty scheme annual fees (-40,40)/10 if Loyalty scheme = 1; 0 if Loyalty scheme = 0 
16 Loyalty scheme points earning -1(points on outstanding balance interest paid on), 1(points on purchases only) 
17 Merchant surcharge for using card (-.03, -.01, .01, .03 )*100    
18 Surcharge for transactions at other banks ATM     
   credit: -1.5    
   debit/trans: (-1.5, -.5, .5, 1.5)    
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Table 6: Tay Sachs Disease (TS) and Cystic Fibrosis (CF) test: Jewish sample (3 ASCs) 
 

                                      
    Scale  Random   Correlated errors  Uncorrelated errors 

     heterogeneity  Effects  Mixed logit    Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                   
  est s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                   
ASC for TS test -0.57 0.14  -2.24 0.11  -0.57 0.20  -0.67 0.47 -0.17 0.41  -1.07 0.18 -0.95 0.17 
ASC for CF test -0.82 0.15  -2.39 0.13  -0.88 0.22  -0.74 0.42 -0.27 0.36  -1.14 0.20 -1.15 0.19 
ASC for both tests -0.08 0.15  -3.01 0.12  0.01 0.27  -0.38 0.52 0.01 0.45  -0.43 0.20 -0.32 0.18 
                   
TS cost   -2.51 0.24  -2.87 0.40  -3.45 0.34  -4.75 0.63 -5.62 0.78  -4.24 0.34 -5.41 0.49 
CF cost   -1.43 0.13  -1.38 0.20  -1.96 0.20  -3.24 0.38 -3.57 0.42  -3.07 0.25 -4.11 0.35 
Both cost   -1.20 0.07  -0.95 0.13  -2.70 0.17  -3.65 0.26 -4.25 0.37  -3.13 0.20 -4.23 0.24 
Recommend   0.33 0.04  0.66 0.11  0.56 0.06  0.95 0.13 1.00 0.19  0.64 0.08 0.81 0.10 
Inaccuracy   -0.12 0.02  0.22 0.04  -0.15 0.03  -0.14 0.09 -0.36 0.10  -0.12 0.04 -0.19 0.05 
Form   0.07 0.04  0.13 0.08  0.12 0.05  0.28 0.16 0.15 0.19  0.24 0.08 0.24 0.10 
Own risk of TS 0.50 0.03  1.62 0.17  1.05 0.08  1.39 0.12 1.67 0.18  1.10 0.07 1.20 0.09 
Own risk of CF 0.47 0.04  1.27 0.14  1.02 0.07  1.26 0.12 1.50 0.18  1.02 0.07 1.37 0.10 
                   
                   
τ -   1.14 0.09  0.64 0.06  -  0.45 0.08  -  0.52 0.05 
γ            0.11 0.15    0.01 0.02 
                   
No. of parameters 11     12     18     77   79     22   24   
                   
LL -3717   -3223   -2815   -2500  -2480   -2753  -2744  
AIC 7455   6469   5666   5154  5118   5550  5535  
BIC 7523   6543   5777   5626  5601   5684  5682  
CAIC 7534   6555   5795   5703  5680   5706  5706  
                                      

 
 
Note: Bold estimates are statistically significant at the 1% level. 
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Table 7: Tay Sachs Disease (TS) and Cystic Fibrosis (CF) test: General population sample (3 ASCs) 
 

                                      
    Scale  Random   Correlated errors  Uncorrelated errors 

     heterogeneity  Effects  Mixed logit    Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                   
  est s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                   
ASC for TS test -2.18 0.13  -3.43 0.11  -3.14 0.21  -3.24 0.32 -3.29 0.31  -3.20 0.18 -3.36 0.17 
ASC for CF test -1.92 0.12  -3.18 0.11  -2.75 0.20  -2.61 0.33 -2.64 0.29  -2.61 0.17 -2.92 0.15 
ASC for both tests -1.49 0.13  -4.11 0.11  -3.23 0.29  -3.13 0.44 -3.73 0.40  -2.75 0.20 -3.03 0.19 
                   
TS cost   -1.12 0.25  -1.60 0.40  -1.55 0.27  -2.71 0.50 -2.99 0.52  -2.04 0.32 -1.62 0.27 
CF cost   -0.73 0.10  -0.82 0.17  -0.99 0.13  -2.17 0.30 -2.56 0.32  -1.60 0.15 -1.24 0.14 
Both cost   -0.51 0.06  -0.51 0.12  -1.21 0.13  -2.13 0.23 -2.27 0.22  -1.49 0.14 -1.37 0.11 
Recommend   0.35 0.03  1.11 0.15  0.68 0.06  0.95 0.12 0.94 0.12  0.69 0.07 0.70 0.08 
Inaccuracy   0.02 0.02  0.45 0.06  0.09 0.03  0.10 0.07 0.02 0.06  -0.01 0.05 0.10 0.04 
Form   0.06 0.03  0.23 0.07  0.09 0.05  0.25 0.10 0.21 0.13  0.17 0.06 0.18 0.06 
Own risk of TS 0.39 0.03  1.54 0.19  1.01 0.08  1.06 0.11 1.26 0.13  0.86 0.06 0.85 0.06 
Own risk of CF 0.37 0.03  1.43 0.18  0.97 0.08  0.99 0.10 1.16 0.10  0.87 0.06 0.87 0.06 
                   
                   
τ -   1.53 0.11  0.97 0.07  -  0.56 0.07  -  0.64 0.06 
γ            0.64 0.08    0.99 0.02 
                   
No. of parameters 11     12     18     77   79     22   24   
                   
LL -4649   -3567   -3226   -2946  -2914   -3232  -3199  
AIC 9320   7158   6487   6047  5986   6507  6446  
BIC 9390   7234   6601   6535  6487   6646  6598  
CAIC 9401   7246   6619   6612  6566   6668  6622  
                                      

 
Note: Bold estimates are statistically significant at the 1% level.



Table 8: Mobile phones (1 ASC) 
  

                                      
    Scale  Random   Correlated errors  Uncorrelated errors 

     heterogeneity  Effects  1-Factor 1-Factor  Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                   
  est std. err.   est. std.err.   est. std.err.   est. std.err. est. std.err.   est. std.err. est. std.err. 
                   
ASC for purchase -0.80 0.05  0.00 0.04  -0.35 0.12  -0.54 0.11 -0.51 0.13  -0.50 0.11 -0.46 0.12 
                   
No voice comm. 0.04 0.04  0.03 0.13  0.06 0.05  0.03 0.05 0.04 0.06  0.04 0.05 0.04 0.06 
Voice dialing 0.08 0.04  0.20 0.14  0.05 0.06  0.03 0.06 0.07 0.06  0.10 0.05 0.09 0.06 
Voice operation -0.12 0.04  -0.22 0.17  -0.11 0.06  -0.10 0.06 -0.12 0.07  -0.13 0.05 -0.12 0.06 
No push to com. 0.06 0.04  0.15 0.16  0.12 0.06  0.06 0.05 0.09 0.06  0.05 0.05 0.06 0.06 
Push to talk 0.03 0.04  0.07 0.18  0.03 0.07  0.04 0.06 0.03 0.07  0.05 0.05 0.07 0.06 
Push to share pics/video -0.02 0.04  -0.14 0.19  -0.08 0.07  -0.04 0.06 -0.03 0.07  -0.02 0.05 -0.04 0.06 
Personal e-mail -0.07 0.04  -0.09 0.16  -0.04 0.06  -0.09 0.06 -0.11 0.07  -0.08 0.05 -0.07 0.06 
Corporate e-mail 0.09 0.04  0.24 0.19  0.08 0.07  0.09 0.05 0.10 0.06  0.08 0.05 0.08 0.06 
both e-mails -0.05 0.04  -0.16 0.17  -0.08 0.06  -0.01 0.06 -0.003 0.06  -0.03 0.05 -0.04 0.06 
WiFi 0.001 0.02  -0.03 0.09  -0.02 0.03  0.02 0.03 0.02 0.04  -0.002 0.03 -0.01 0.03 
USB Cable/Cradle 0.06 0.03  0.02 0.09  0.08 0.04  0.07 0.03 0.08 0.04  0.07 0.03 0.08 0.03 
Thermometer 0.07 0.03  0.02 0.08  0.05 0.03  0.06 0.03 0.06 0.04  0.07 0.03 0.08 0.03 
Flashlight 0.05 0.03  0.07 0.08  0.01 0.03  0.05 0.03 0.08 0.04  0.05 0.03 0.04 0.03 
Price/100 -0.32 0.02  -3.07 0.47  -1.02 0.16  -0.76 0.06 -0.84 0.10  -0.76 0.06 -0.88 0.10 
                   
                   
τ -   2.14 0.13  1.45 0.15  -  0.77 0.19  -  0.66 0.18 
γ            0.28 0.24    0.01 0.49 
                   
No. of parameters 15   16   17   45  47   30  32  
                                      
LL -4475   -4102   -3990   -3962  -3949   -3971  -3966  
AIC 8980   8236   8014   8014  7986   8002  7996  
BIC 9074   8336   8121   8297  8281   8190  8197  
CAIC 9089   8352   8138   8342  8328   8220  8229  
                                      

γ *

 
Note: Bold estimates are statistically significant at the 5% level. 

 45



 
Table 9: Pizza A (No ASC) 
 
 

                                
    Scale  Correlated errors  Uncorrelated errors 

     heterogeneity  Mixed logit    Mixed logit   
 MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                
  est s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                
Gourmet  0.02 0.02  0.03 0.04  -0.01 0.06 0.16 0.45  0.03 0.05 0.45 0.22 
Price -0.16 0.02  -0.19 0.05  -0.38 0.06 -3.44 1.81  -0.35 0.06 -1.67 0.65 
Ingredient freshness 0.48 0.03  1.45 0.29  1.06 0.10 11.10 5.46  0.96 0.08 4.65 1.69 
Delivery time 0.09 0.03  0.16 0.08  0.17 0.07 1.24 0.72  0.16 0.05 0.74 0.35 
Crust 0.02 0.03  0.01 0.04  0.08 0.08 0.70 0.70  0.02 0.06 0.42 0.26 
Sizes  0.09 0.03  0.12 0.06  0.17 0.07 1.21 0.91  0.20 0.05 0.81 0.37 
Steaming hot 0.38 0.03  1.02 0.24  0.86 0.11 8.93 4.32  0.87 0.08 4.46 1.64 
Late open hours 0.04 0.02  0.08 0.06  0.07 0.06 0.39 0.55  0.07 0.05 0.29 0.17 
                
τ -   1.69 0.18  -  2.00 0.26  -  1.79 0.24 
γ         0.02 0.01    0.01 0.01 
                
No. of parameters 8     9     44   46     16   18   
                
LL -1657   -1581   -1379  -1324   -1403  -1373  
AIC 3330   3179   2847  2741   2838  2782  
BIC 3378   3233   3109  3015   2933  2889  
CAIC 3386   3242   3153  3061   2949  2907  
                                

γ *

 
Note: Bold estimates are statistically significant at the 5% level.

 46



 47

Table 10: Holiday A (No ASC) 
 

                                
    Scale  Correlated errors  Uncorrelated errors 

     heterogeneity  Mixed logit    Mixed logit   
 MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                
  est s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                
Price -0.16 0.02  -0.17 0.03  -0.36 0.04 -0.91 0.22  -0.33 0.04 -0.74 0.12 
Overseas destination  0.09 0.02  0.17 0.02  0.19 0.07 1.01 0.26  0.23 0.06 0.32 0.11 
Airline -0.01 0.02  -0.05 0.02  -0.05 0.03 -0.19 0.11  -0.02 0.03 -0.1 0.06 
Length of  stay 0.26 0.02  0.35 0.04  0.55 0.05 1.92 0.42  0.52 0.04 1.24 0.19 
Meal inclusion 0.27 0.02  0.31 0.03  0.61 0.05 1.77 0.39  0.56 0.04 1.29 0.2 
Local tours availability 0.09 0.02  0.09 0.03  0.23 0.05 0.86 0.21  0.19 0.03 0.45 0.09 
Peak season 0.03 0.02  0 0.03  0.08 0.05 0.26 0.12  0.06 0.03 0.14 0.07 
4-star Accommodation 0.44 0.02  0.65 0.05  0.92 0.06 3.2 0.68  0.86 0.06 1.99 0.29 
                
τ -   0.97 0.08  -  1.51 0.14  -  1.19 0.10 
γ         0.00 0.14    0.00 0.18 
                
No. of parameters 8     9     44   46     16   18   
                
LL -3066   -2967   -2504  -2469   -2553  -2519  
AIC 6149   5952   5097  5031   5139  5074  
BIC 6201   6011   5386  5333   5244  5192  
CAIC 6209   6020   5430  5379   5260  5210  
                                

 
Note: Bold estimates are statistically significant at the 1% level.
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Table 11: Papsmear test (1 ASC) 
 

                                      
    Scale  Random   Correlated errors  Uncorrelated errors 

     heterogeneity  effects  Mixed logit    Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                   
  est s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                   
ASC for test -0.40 0.14  -1.93 0.11  -0.60 0.37  -1.93 0.57 -1.20 0.45  -1.26 0.30 -0.80 0.31 
                   
If know doctor 0.32 0.09  1.83 0.45  0.63 0.14  0.97 0.29 0.47 0.30  0.78 0.18 0.68 0.21 
If doctor is male -0.70 0.09  -0.97 0.34  -1.24 0.16  -1.07 0.46 -1.48 0.53  -1.39 0.30 -1.99 0.32 
If test is due 1.23 0.10  5.35 1.38  2.74 0.29  3.33 0.48 3.56 0.58  3.26 0.31 3.35 0.42 
If doctor recommends 0.51 0.10  2.68 0.77  0.74 0.17  1.31 0.30 1.66 0.46  1.33 0.23 1.65 0.31 
Test cost -0.08 0.04  0.00 0.13  -0.17 0.07  -0.18 0.12 -0.22 0.16  -0.22 0.09 -0.28 0.09 
                   
τ -   1.45 0.18  0.81 0.11  -  0.89 0.18  -  1.00 0.11 
γ            0.00 0.42    0.01 0.38 
                   
No. of parameters 6   7   8   27  29   12  14  
                                      
LL -1528   -1124   -1063   -923  -914   -945  -935  
AIC 3069   2262   2143   1899  1887   1914  1897  
BIC 3104   2303   2189   2057  2056   1984  1979  
CAIC 3110   2310   2197   2084  2085   1996  1993  
                                      

 
 
Note: Bold estimates are statistically significant at the 1% level. 
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Table 12: Pizza B (No ASC) 
 

                                
    Scale  Correlated errors  Uncorrelated errors 
     heterogeneity  1-Factor 1-Factor  Mixed logit   
 MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                
  est s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                
Gourmet  0.01 0.01  0.05 0.01  0.01 0.02 0.06 0.03  0.01 0.02 0.03 0.03 
Price -0.17 0.01  -0.25 0.02  -0.32 0.03 -0.54 0.05  -0.30 0.03 -0.79 0.07 
Ingredient freshness 0.21 0.01  0.36 0.03  0.39 0.03 0.74 0.06  0.34 0.03 1.05 0.08 
Delivery time 0.03 0.01  0.04 0.02  0.05 0.02 0.15 0.04  0.05 0.02 0.15 0.04 
Crust 0.08 0.01  0.09 0.01  0.16 0.03 0.33 0.05  0.08 0.03 0.59 0.06 
Sizes  0.07 0.01  0.08 0.02  0.10 0.02 0.17 0.03  0.11 0.02 0.23 0.03 
Steaming hot 0.20 0.01  0.35 0.03  0.34 0.03 0.76 0.05  0.34 0.02 1.15 0.09 
Late open hours 0.04 0.01  0.02 0.02  0.07 0.02 0.12 0.03  0.08 0.02 0.08 0.04 
Free delivery charge 0.12 0.01  0.15 0.02  0.21 0.02 0.41 0.04  0.20 0.02 0.56 0.06 
Local store 0.08 0.01  0.06 0.02  0.13 0.02 0.24 0.04  0.15 0.02 0.42 0.05 
Baking Method 0.07 0.01  0.07 0.02  0.10 0.02 0.22 0.03  0.11 0.02 0.25 0.04 
Manners 0.01 0.01  -0.004 0.02  0.02 0.02 -0.07 0.04  0.02 0.02 0.01 0.04 
Vegetarian availability 0.09 0.01  0.06 0.01  0.11 0.03 0.21 0.05  0.13 0.03 0.34 0.06 
Delivery time guaranteed 0.07 0.01  0.07 0.02  0.11 0.02 0.16 0.03  0.11 0.02 0.15 0.04 
Distance to the outlet 0.06 0.01  0.04 0.02  0.09 0.02 0.12 0.03  0.09 0.02 0.10 0.04 
Range/variety availability 0.06 0.02  0.04 0.02  0.09 0.02 0.12 0.04  0.09 0.02 0.14 0.05 
                
τ -   1.22 0.08  -  1.12 0.06  -  1.26 0.06 
γ         0.01 0.01    0.01 0.01 
                
No. of parameters 16     17     48   50     32   34   
                
LL -6747   -6607   -5857  -5668   -5892  -5689  
AIC 13525   13249   11810  11436   11849  11446  
BIC 13641   13372   12159  11799   12081  11693  
CAIC 13657   13389   12207  11849   12113  11727  
                                

 
Note: Bold estimates are statistically significant different at the 1% level. 
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Table 13: Holiday B (No ASC) 
 

                                
    Scale  Correlated errors  Uncorrelated errors 

     heterogeneity  1-Factor 1-Factor  Mixed logit   
 MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                
  est s.e.   est. s.e.   est. s.e. est. s.e.   est. s.e. est. s.e. 
                
Price -0.16 0.01  -0.16 0.01  -0.25 0.02 -0.31 0.02  -0.25 0.02 -0.34 0.02 
Overseas destination  0.08 0.01  0.12 0.01  0.17 0.02 0.21 0.03  0.12 0.02 0.24 0.03 
Airline -0.02 0.01  -0.02 0.01  -0.03 0.01 -0.03 0.02  -0.03 0.01 -0.03 0.02 
Length of  stay 0.18 0.01  0.19 0.01  0.30 0.02 0.40 0.02  0.29 0.02 0.40 0.02 
Meal inclusion 0.20 0.01  0.24 0.02  0.33 0.02 0.45 0.02  0.34 0.02 0.46 0.03 
Local tours availability 0.07 0.01  0.08 0.01  0.11 0.01 0.15 0.02  0.11 0.01 0.17 0.02 
Peak season 0.003 0.01  0.02 0.01  0.003 0.01 0.005 0.01  0.001 0.01 -0.01 0.02 
4-star Accommodation 0.34 0.01  0.54 0.03  0.51 0.02 0.65 0.03  0.50 0.02 0.69 0.03 
Length of Trip -0.02 0.01  -0.03 0.01  -0.04 0.01 -0.03 0.01  -0.03 0.01 -0.03 0.02 
Cultural activities -0.05 0.01  -0.05 0.01  -0.09 0.01 -0.11 0.02  -0.09 0.01 -0.12 0.01 
Distance from hotel to attractions -0.08 0.01  -0.07 0.01  -0.13 0.01 -0.17 0.02  -0.12 0.01 -0.17 0.02 
Swimming pool avail. 0.09 0.01  0.09 0.01  0.15 0.01 0.19 0.02  0.15 0.01 0.23 0.02 
Helpfulness 0.04 0.01  0.03 0.01  0.06 0.01 0.08 0.02  0.06 0.01 0.07 0.02 
Individual tour 0.07 0.01  0.07 0.01  0.11 0.02 0.19 0.02  0.13 0.02 0.20 0.02 
Beach availability 0.11 0.01  0.10 0.01  0.19 0.01 0.23 0.02  0.18 0.01 0.22 0.02 
Brand 0.001 0.01  -0.01 0.02  -0.004 0.02 0.01 0.02  0.003 0.02 0.004 0.02 
                
τ -   1.13 0.05  -  0.67 0.04  -  0.72 0.04 
γ         0.01 0.02    0.01 0.02 
                
No. of parameters 16     17     48   50     32   34   
                
LL -13478   -13027   -11570  -11446   -11600  -11476  
AIC 26988   26088   23236  22992   23263  23019  
BIC 27116   26224   23619  23391   23519  23291  
CAIC 27132   26241   23667  23441   23551  23325  
                                

 
Note: Bold estimates are statistically significant at the 1% level.
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Table 14: Charge Card A (2 ASCs) 
 

                                      
    Scale  Random   Correlated errors  Uncorrelated errors 

     heterogeneity  Effects  1-Factor 1-Factor  Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
                   
  est s.e.   est s.e.   est s.e.   est s.e. est s.e.   est s.e. est s.e. 
                   
ASC for credit -0.85 0.08  -1.00 0.05  -0.90 0.18  -1.31 0.27 -1.31 0.27  -2.51 0.36 -3.15 0.34 
ASC for debit -0.99 0.08  -1.35 0.05  -1.22 0.18  -2.07 0.31 -2.05 0.32  -3.34 0.44 -4.16 0.46 
                   
annual fee -0.08 0.01  -0.14 0.02  -0.13 0.01  -0.18 0.02 -0.19 0.02  -0.27 0.03 -1.14 0.23 
trans fee -0.53 0.07  -0.80 0.11  -0.82 0.11  -1.34 0.20 -1.37 0.21  -1.53 0.27 -7.90 1.77 
overdraft facility 0.28 0.06  0.58 0.09  0.43 0.09  0.70 0.15 0.75 0.16  0.80 0.20 4.05 0.93 
overdraft free days 0.04 0.02  0.06 0.02  0.06 0.02  0.07 0.03 0.07 0.03  0.08 0.04 0.35 0.13 
interest charged -0.43 0.06  -1.26 0.15  -0.67 0.09  -1.00 0.15 -1.01 0.16  -1.29 0.21 -6.45 1.26 
interest earned 0.04 0.01  0.02 0.01  0.04 0.02  0.06 0.03 0.06 0.03  0.08 0.04 0.31 0.13 
access_1  -0.05 0.02  -0.06 0.02  -0.08 0.02  -0.05 0.03 -0.06 0.03  -0.14 0.05 -0.30 0.16 
access_2  -0.21 0.05  -0.35 0.07  -0.31 0.08  -0.42 0.13 -0.39 0.12  -0.54 0.16 -1.77 0.61 
access_3 0.06 0.05  0.26 0.07  0.11 0.07  0.22 0.11 0.23 0.11  0.32 0.14 0.81 0.50 
cash advance interest -0.06 0.05  -0.39 0.07  -0.12 0.08  -0.29 0.13 -0.34 0.14  -0.33 0.15 -1.91 0.63 
loyal scheme 0.26 0.06  0.56 0.08  0.33 0.08  0.44 0.14 0.47 0.15  0.37 0.20 3.18 0.83 
loyal fee -0.03 0.01  -0.04 0.01  -0.05 0.01  -0.06 0.02 -0.06 0.02  -0.08 0.03 -0.15 0.11 
loyal point -0.04 0.04  0.04 0.04  0.04 0.06  0.07 0.09 0.07 0.09  0.13 0.13 0.73 0.49 
merchant surcharge -0.02 0.01  -0.09 0.02  -0.07 0.02  -0.08 0.03 -0.08 0.03  -0.10 0.04 -0.57 0.16 
surcharge at other ATM -0.10 0.04  -0.22 0.04  -0.17 0.06  -0.20 0.11 -0.19 0.11  -0.20 0.12 -1.99 0.44 
                   
τ -   1.86 0.17  0.40 0.17  -  0.21 0.24  -  2.17 0.20 
γ            0.50 0.56    0.00 0.18 
                   
No. of parameters 17   18   21   51  53   35  37  
                                      
LL -3354   -3217   -2768   -2735  -2734   -2868  -2820  
AIC 6742   6470   5579   5572  5574   5806  5714  
BIC 6846   6580   5707   5883  5898   6020  5940  
CAIC 6863     6598     5728     5934   5951     6055   5977   

 
Note: Bold estimates are statistically significant at the 1% level. 
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Table 15: Charge Card B (3 ASCs) 
 

                                   
    Scale  Random   Correlated errors  Uncorrelated errors 
    heterogeneity  Effects  1-Factor 1-Factor  Mixed logit   
 MNL  S-MNL  S-MNL  MIXL G-MNL  MIXL G-MNL 
  est s.e.   est s.e.   est s.e.   est s.e. est s.e.   est s.e. est s.e. 
                   
ASC for credit -0.97 0.07  -1.02 0.05  -0.83 0.18  -1.29 0.24 -1.29 0.24  -3.06 0.29 -2.72 0.25 
ASC for debit -1.29 0.08  -1.78 0.07  -1.47 0.20  -1.99 0.27 -1.99 0.27  -4.18 0.37 -4.54 0.34 
ASC for transaction -1.32 0.08  -1.72 0.06  -1.59 0.21  -2.12 0.29 -2.12 0.29  -4.30 0.38 -4.76 0.36 
                   
annual fee -0.10 0.01  -0.13 0.01  -0.16 0.01  -0.22 0.02 -0.22 0.02  -0.28 0.02 -0.49 0.05 
trans fee -0.61 0.07  -0.71 0.07  -0.94 0.10  -1.32 0.17 -1.32 0.17  -1.72 0.23 -3.48 0.45 
overdraft facility 0.30 0.06  0.54 0.06  0.42 0.08  0.48 0.11 0.48 0.11  0.98 0.15 1.77 0.22 
overdraft free days 0.06 0.02  0.08 0.01  0.09 0.02  0.10 0.03 0.10 0.03  0.15 0.04 0.18 0.07 
interest charged -0.56 0.06  -0.96 0.08  -0.80 0.08  -0.90 0.12 -0.90 0.13  -1.65 0.19 -3.21 0.34 
interest earned 0.02 0.01  0.02 0.01  0.02 0.02  0.02 0.02 0.02 0.02  0.03 0.03 0.00 0.04 
access_1 -0.01 0.02  0.11 0.02  0.00 0.02  -0.01 0.03 -0.01 0.03  -0.01 0.05 0.19 0.07 
access_2 -0.21 0.05  -0.22 0.05  -0.35 0.07  -0.44 0.10 -0.44 0.10  -0.58 0.13 -1.08 0.22 
access_3 0.13 0.05  0.16 0.04  0.19 0.06  0.32 0.09 0.32 0.09  0.28 0.11 0.48 0.17 
cash advance interest -0.19 0.05  -0.27 0.05  -0.32 0.06  -0.45 0.11 -0.45 0.11  -0.50 0.13 -0.89 0.20 
loyal scheme 0.24 0.05  0.50 0.05  0.37 0.07  0.46 0.11 0.46 0.11  0.44 0.17 1.56 0.23 
loyal fee -0.02 0.01  -0.03 0.01  -0.04 0.01  -0.04 0.02 -0.04 0.02  -0.07 0.03 -0.07 0.04 
loyal point -0.03 0.04  -0.09 0.04  -0.06 0.06  -0.06 0.08 -0.06 0.08  -0.22 0.11 -0.41 0.16 
merchant surcharge -0.06 0.01  -0.04 0.01  -0.08 0.02  -0.13 0.03 -0.13 0.03  -0.13 0.03 -0.20 0.05 
surcharge at other ATM -0.07 0.03  -0.05 0.03  -0.11 0.04  -0.19 0.07 -0.19 0.07  -0.18 0.08 -0.17 0.11 
                   
τ -   1.18 0.09  0.38 0.12  -  0.00 0.19  -  1.52 0.11 
γ            0.99 171    0.01 0.25 
                   
No. of parameters 18     19     25     54    56      36   38   
LL -4100   -3947   -3402   -3364  -3364   -3528  -3447  
AIC 8236   7932   6854   6836  6840   7128  6970  
BIC 8346   8048   7007   7166  7182   7348  7202  
CAIC 8364     8067     7032     7220   7238     7384   7240   

 
Note: Bold estimates are statistically significant different at the 1% level. 
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Table 16: Comparing Model Fit Across Data Sets 
 

  Criteria  Scale Random  Correlated   Uncorrelated  
      heterogeneity effects  errors  errors 

    MNL S-MNL S-MNL   MIXL G-MNL   MIXL G-MNL 
Tay Sachs Disease & Cystic Fibrosis test AIC 7455 6469 5666  5154 5118  5550 5535 

Jewish sample (3 ASCs) BIC 7523 6543 5777  5626 5601  5684 5682 
  CAIC 7534 6555 5795  5703 5680  5706 5706 

Tay Sachs Disease & Cystic Fibrosis test AIC 9320 7158 6487   6047 5986   6507 6446 
General population (3 ASCs) BIC 9390 7234 6601  6535 6487  6646 6598 

  CAIC 9401 7246 6619   6612 6566   6668 6622 
Mobile phone (1 ASC) AIC 8980 8236 8014  8014 7986  8002 7996 

  BIC 9074 8336 8121  8297 8281  8190 8197 
  CAIC 9089 8352 8138   8342 8328   8220 8229 

Pizza A (No ASC) AIC 3330 3179   2847 2741  2838 2782 
  BIC 3378 3233   3109 3015  2933 2889 
  CAIC 3386 3242   3153 3061  2949 2907 

Holiday A (No ASC) AIC 6149 5952     5097 5031   5139 5074 
  BIC 6201 6011   5386 5333  5244 5192 
  CAIC 6209 6020     5430 5379   5260 5210 

Papsmear test (1 ASC) AIC 3069 2262 2143  1899 1887  1914 1897 
  BIC 3104 2303 2189  2057 2056  1984 1979 
  CAIC 3110 2310 2197   2084 2085   1996 1993 

Pizza B (No ASC) AIC 13525 13249   11810 11436  11849 11446 
  BIC 13641 13372   12159 11799  12081 11693 
  CAIC 13657 13389     12207 11849   12113 11727 

Holiday B (No ASC) AIC 26988 26088   23236 22992  23263 23019 
  BIC 27116 26224   23619 23391  23519 23291 
  CAIC 27132 26241     23667 23441   23551 23325 

Charge card A (2 ASCs) AIC 6742 6470 5579  5572 5574  5806 5714 
  BIC 6846 6580 5707  5883 5898  6020 5940 
  CAIC 6863 6598 5728   5934 5951   6055 5977 

Charge card B (3 ASCs) AIC 8236 7932 6854   6836 6840   7128 6970 
  BIC 8346 8048 7007  7166 7182  7348 7202 
  CAIC 8364 8067 7032   7220 7238   7384 7240 
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Table 17: Comparing the Importance of Heterogeneity Across Data Sets 
 
                              
  No. of  No. of No. of  No. of MNL S-MNL MIXL G-MNL % Improvement 

  choices attributes occasions people        
MNL to S-MNL/ 
MNL to G-MNL MNL to G-MNL 

                              
               
1 Tay Sachs Disease & Cystic Fibrosis test 4 11 16 210 -3717    -3223 a  -2500  -2480  40% 33% 

 Jewish sample (3 ASCs)      -2815b      73%  
               
2 Tay Sachs Disease & Cystic Fibrosis test 4 11 16 261 -4649    -3567 a  -2946  -2914  62% 37% 

 General population sample (3 ASCs)      -3226b      82%  
               
3 Mobile phone (1 ASC) 4 15 8 493 -4475    -4102 a  -3962 c  -3949 c  71% 12% 

       -3990b      92%  
               
4 Pizza A (No ASC) 2 8 16 178 -1657 -1581  -1379  -1324  23% 20% 

               
5 Holiday A (No ASC) 2 8 16 331 -3066 -2967  -2504  -2469  17% 19% 

               
6 Papsmear test (1 ASC) 2 6 32 79 -1528    -1124 a  -923  -914  66% 40% 

       -1063 b      76%  
               
7 Pizza B (No ASC) 2 16 32 328 -6747 -6607  -5857 c  -5668 c  13% 16% 

               
8 Holiday B (No ASC) 2 16 32 683 -13478 -13027  -11570 c  -11446 c  22% 15% 

               
9 Charge card A (2 ASCs) 3 17 4 827 -3354    -3217 a  -2735 c  -2734 c  22% 18% 

       -2768b      95%  
               
10 Charge card B (3 ASCs) 4 18 4 827 -4100    -3947 a  -3364 c  -3364 c  21% 18% 
       -3402b      95%  
                             

a S-MNL with fixed ASCs              
b S-MNL with random ASCs        
c Imposing 1-factor model restriction on variance-covariance matrix            
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Table 18: Willingness to Pay Estimates vs. Aggregate Choice Probabilities 
 
  % choosing A   % people                 

MIXL when A's attribute  with  WTP distribution 
 changes &  WTP $4         
  charges $4 more   or more   10th 20th 25th 50th 75th 80th 90th
             
Traditional to Gourmet        39.43  23.17  -Inf -2.15 -1.27 0.16 2.96 5.85 Inf 
Canned to fresh ingredient  52.08  49.70  -3.19 -0.34 0.25 3.69 23.08 53.37 Inf 
Warm to steaming hot         52.05  52.13  -1.87 0.33 0.79 4.22 26.08 74.75 Inf 
No Veg. to Veg avail.          43.68  33.23  -6.04 -1.17 -0.46 1.33 9.55 21.41 Inf 
             
  % choosing A   % people                 

G-MNL when A's attribute  with  WTP distribution 
 changes &  WTP $4         
  charges $4 more   or more   10th 20th 25th 50th 75th 80th 90th
                      
Traditional to Gourmet        38.98  20.12  -8.66 -1.36 -0.78 0.31 2.39 4.10 Inf 
Canned to fresh ingredient  50.80  48.48  -1.38 0.25 0.64 3.80 29.50 96.80 Inf 
Warm to steaming hot         53.25  61.59  0.55 1.41 1.85 6.23 39.57 1308.71 Inf 
No Veg. to Veg avail.          43.50  30.79  -8.77 -1.24 -0.85 1.06 6.40 11.57 Inf 
                      

 
 


