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Abstract

In this paper we propose estimators for the regression coefficients in censored duration models
which are distribution free, impose no parametric specification of the baseline hazard func-
tion, and can accommodate general forms of censoring. The estimators are shown to have
desirable asymptotic properties and Monte Carlo simulations demonstrate good finite sample
performance. Among the data features the new estimators can accommodate are covariate de-
pendent censoring, double censoring, heteroskedasticity, and fixed (individual or group specific)
effects.
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1 Introduction

This paper considers estimation of regression coefficients in censored duration models. Duration
models have seen widespread use in empirical work in various areas of economics. This is because
many time-to-event variables are of interest to researchers conducting empirical studies in labor
economics, development economics, public finance and finance. For example, the time-to-event of
interest may be the length of an unemployment spell, the time between purchases of a particular
good, time intervals between child births, and insurance claim durations, to name a few. (Van den
Berg(2001) surveys the many applications of duration models.)
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Since the seminal work in Cox(1972,1975), the most widely used models in duration analysis are
the proportional hazards model, and its extension, the mixed proportional hazards model, intro-
duced in Lancaster(1979). These models can be represented as monotonic transformation models,
where an unknown, monotonic transformation of the dependent variable is a linear function of ob-
served covariates plus an unobserved error term, subject to restrictions that maintain the (mixed)
proportional hazards assumption. Relaxing these restrictions gives the Generalized Accelerated
Failure Time (GAFT) model introduced in Ridder(1990).

The GAFT model in its most basic form is usually expressed as

T (yi) = x′iβ0 + εi i = 1, 2, ...n (1.1)

where (yi, x
′
i)
′ is a (k + 1) dimensional observed random vector, with yi denoting the dependent

variable, usually a time to event, and xi denoting a vector of observed covariates. The random
variable εi is unobserved and independent of xi with an unknown distribution. The function
T (·) is assumed to be strictly monotonic, but otherwise unspecified. The k-dimensional vector
β0 is unknown, and is often the object of interest to be estimated from a random sample of n

observations.

Duration data is often subject to right censoring for a variety of reasons that are usually
a consequence of the empirical researcher’s observation or data collection plan. For example,
unemployment spell-length may be censored because the agent is lost from the sample, or to control
data collection costs, unemployed agents are only followed for short period of time. If they are still
unemployed at the end of this period, their spell length is censored. This paper considers right
censoring as the base case and shows how our approach can be extended to cover double censoring
(and naturally left censoring).

When the data is subject to censoring the variable yi is no longer always observed. Instead one
observes the pair (vi, di) where vi is a scalar random variable, and di is a binary random variable.
We express the right censored transformation model as1:

T (vi) = min(x′iβ0 + εi, ci) (1.2)

di = I[x′iβ0 + εi ≤ ci] (1.3)

where I[·] denotes the indicator function, and ci denotes the random censoring variable. So, here
vi = yi for uncensored observations, and vi = ci otherwise. We note the censoring variable need
not always be observed, as would occur in a competing risks type setting (see, e.g. Heckman and
Honoré(1990)).

The primary aim of this paper is to provide an estimator of β0 in the above model with few
restrictions on ci. Specifically, we wish to allow for the presence of covariate dependent censoring,

1We can also express the censored model in the latent dependent variable framework. Letting y∗i = T−1(x′iβ0 + εi)

and c̃i = T−1(ci), one observes the covariates and the pair (yi, di) where yi = min(y∗i , c̃i) and di can now be expressed

as I[y∗i ≤ c̃i].
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i.e., in the case where ci can be arbitrarily correlated with xi. This would be in line with the
form of censoring allowed for in the Partial Maximum Likelihood Estimator (PMLE) introduced in
Cox(1972,1975), and several other estimators (to be mentioned below) in the duration literature.
Outside the proportional hazards framework, covariate dependent censoring also arises in the bio-
statistics literature on competing risks, and survival analysis (even for randomized clinical trials -
see Chen, Jin and Ying(2002)).

We motivate the construction of such an estimator by two ways- first by illustrating the relevance
of the censored transformation model in empirical settings, and second, by showing that the problem
of (distribution free) estimation of β0 in a censored transformation model has not been completely
solved.

Turning first to relevance of the model in empirical work we note the censored transformation
model has become increasingly popular in the applied econometrics literature. This is because
economic theory rarely provides guidelines on how to specify functional form relationships among
variables while (1.1) can accommodate many functional relationships used in practice such as
linear, log-linear, or the parametric transformation in Box-Cox models, without suffering from the
dimensionality problems encountered when adopting a fully nonparametric approach.

Next, we explain why the problem of estimating β0 has not been completely solved despite the
extensive literature (both in econometrics and in biostatistics) and much recent research progress.
We note that with T (·) known there exists many distribution free estimators for β0- examples
include Buckley James(1979), Koul, Susarla and Van Rysin(1981), Tsiatis(1990), Ying, Jung and
Wei(1995), Yang(1999), Honoré, Khan and Powell(2002) and Portnoy(2003), some of which allow
for the distribution of the censoring variable to depend on the covariates. Bijwaard (2001) imposes
parametric restrictions on T (·). For T (·) unknown except for a strict monotonicity assumption,
we can divide the existing literature into two groups. One group allows for covariate dependent
censoring but require a known distribution of εi, and can be inconsistent if this distribution is
misspecified. See for example Cox(1975)’s partial maximum likelihood estimator (PMLE), Cuz-
ick(1988), and more recently Chen, Jin and Ying (2002). Cheng, Wei and Ying(1995), Fine, Ying
and Wei(1998), Cai, Wei and Wilcox(2000) are more restrictive in the sense that in addition to
parametrically specifying the distribution of εi, they do not allow the censoring variable to de-
pend on xi. The other group, of which examples include the important single-index estimators
in Han(1987) and Cavanagh and Sherman(1998), do not impose distributional assumptions on εi,
but for consistency requires that the censoring variable be independent of the covariates. However,
as mentioned above, this assumption is often too restrictive. Attempting to remedy this problem
using conditional Kaplan-Meier methods would require smoothing parameters, trimming proce-
dures, and tail behavior restrictions. In summary, the literature lacks an estimator for β0 that is
distribution free and permits covariate dependent censoring2. The estimator we provide in this

2If the censoring distribution depends on the regressors through the index x′iβ0, we note some single index esti-

mators may be applied, though we consider this too restrictive of a condition. We also note that general covariate

censoring is permitted in Gorgens and Horowitz(1998) in their estimator of the link function T (·). They do not

provide an estimator of β0 assuming it is known, and only suggest estimation by an existing single index estimator.
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paper is a partial rank estimator that allows for general forms of censoring, including left, right,
and double sided censoring, where the censoring can possibly depend on the regressors. This leads
to new identification strategies that are emphasized in the text (and the proofs).

The rest of the paper is organized as follows. In the next section, we introduce an estimator
for β0 in transformation models with covariate dependent censoring that aims to fill the gap in the
literature, and provide conditions for parameter identification. We then show that the estimator
is consistent and derive its asymptotic distribution. Sections 3-5 extend our estimator to cases of
doubly censored, heteroskedastic, and fixed effect panel data. Section 6 explores the finite sample
properties of the new estimators by means of a small scale simulation study. Section 7 concludes
by summarizing results and discussing areas for future research. The proofs of the main results are
collected in an appendix.

2 Estimation Procedure

Our estimator for β0 in the censored GAFT model is motivated by existing rank estimators for β0 in
uncensored transformation models, specifically Han (1987)’s maximum rank correlation (MRC) es-
timator3. This estimator, like other estimators in the single index literature (e.g. Powell, Stock and
Stoker (1989), Ichimura(1993), Cavanagh and Sherman(1997)), is inconsistent when the censoring
variable depends on the covariates in an arbitrary way.

Before introducing our distribution free estimator that accommodates covariate dependent cen-
soring, we define the vector yi = (vi, di)′. To construct a rank regression estimator analogous to
Han (1987)’s, we wish to construct a function:

fij ≡ f(yi,yj)

which satisfies the property

E[I[fij ≥ 0]|xi, xj ] ≥ E[I[fji ≥ 0]|xi, xj ] iff x′iβ0 ≥ x′jβ0 (2.1)

For the uncensored transformation model, Han(1987) sets fij = yi − yj . For the problem at hand
with covariate dependent censoring, we propose an alternative form for fij that satisfies (2.1). First
define the random variables

y0i = vi (2.2)

y1i = divi + (1− di) · (+∞)

where by definition we have

y0i ≤ y∗i ≤ y1i (2.3)

As mentioned, this will not yield consistent estimates if the censoring depends arbitrarily on xi.
3A similar rank estimator was introduced in Cavanagh and Sherman(1998). Their Monotone Rank Estimator

(MRE) is computationally simpler than the MRC, but also does not allow for covariate dependent censoring.

4



where y∗i ≡ T−1(x′iβ0 + εi). We can then define fij and consequently I[fij ≥ 0] as

fij = y1i − y0j (2.4)

I[fij ≥ 0] = I[y1i − y0j ≥ 0] = (1− di) + diI[vi ≥ vj ] (2.5)

Our choice of fij is motivated by the following inequalities which follow from (2.3)

T (y0i) ≤ x′iβ0 + εi ≤ T (y1i)

Heuristically, by monotonicity of T (.), we should have

x′iβ ≥ x′jβ ⇒ P (y1i ≥ y0j) ≥ 1
2

(2.6)

We first show that (2.1) holds for the censored transformation model. Our result is based on the
following assumptions.

I1 Letting SX denote the support of xi, and let Xuc denote the set

Xuc = {x ∈ SX : P (di = 1|xi = x) > 0}

Then Xuc has positive measure.

I2 The random variable εi is distributed independently of the random vector (ci, x
′
i)
′.

I3 The first component of xi has everywhere positive Lebesgue density, conditional on the other
components.

Condition I1 requires that the probability of censoring is not equal to one for all x. The inde-
pendence assumption I2 requires that ε be independent of both x and c. This assumption is a
natural starting point for examining the identification of β in this class of models. The indepen-
dence between ε and x is similar to independence assumption in the MRC estimator. In section
4, we relax this assumption where we allow for (conditional) heteroskedasticity. This will come
at the expense of stronger (sufficient) point identification condition4. Finally, the last assumption
I3 provides sufficient condition for point identification. This support condition is a widely used
identification condition in semiparametric econometric models such as the MRC and the maximum
score estimator in Manski(1975,1985). The main result of this section is stated in the next lemma
whose proof is in the appendix.

Lemma 2.1 Under Assumptions I1-I3, (2.1) holds.
4On the other hand, it is not generally possible to relax the conditional independence of c and ε without additional

assumption like exclusion restrictions (or functional form assumptions). This independence assumption is natural

and has been widely adotpted in the duration literature.
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It is this result which motivates our estimator. Before describing it in detail, we note that the object
of interest β0 is only identified up to scale as the function T (·) is unknown. Following convention,
we set the first component of the vector β0 to 1, express β0 = (1, θ′0)

′ and consider estimation of
θ0. Adopting standard notation, for any θ ∈ Θ, we let β denote (1, θ′)′.

Our censoring robust rank estimator, which we refer to hereafter as the partial rank estimator
(PRE), is of the form:

θ̂ = arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

I[fij ≥ 0]I[x′iβ ≥ x′jβ] (2.7)

= arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

(diI[vi ≥ vj ] + (1− di))I[x′iβ ≥ x′jβ] (2.8)

where Θ denotes the parameter space.

Remark 2.1 We note the following particular features of the estimation procedure:

• The above estimator is numerically equivalent to maximizing the objective function:

1
n(n− 1)

∑

i 6=j

I[y0i ≥ y1j ]I[x′iβ ≥ x′jβ] =
1

n(n− 1)

∑

i 6=j

diI[vi ≤ vj ]I[x′iβ ≤ x′jβ] (2.9)

Expressed this way, a loose analogy can be drawn to the partial maximum likelihood estimator
(PMLE) introduced in Cox(1972,1975). In the PMLE only uncensored observations enter
the likelihood function, and for a given such observation, all the observations in its risk set
(i.e. observations whose spell length is known not to be less that i’s spell length) are used in
evaluating the likelihood. Analogously, for the PRE only uncensored observations enter the
rank correlation function, and for a given uncensored observation, all the observations in its
risk set are used to determine its rank.

• The PRE is numerically equivalent to the MRC in the absence of censoring, as the censoring
indicators are always 1. PRE is also numerically equivalent to the MRC, and hence is consis-
tent in the case of fixed censoring, (e.g. ci ≡ 0), which arises often in economic models. The
estimator can therefore be applied without change to fixed and randomly censored data. This
is in contrast to procedures dividing by Kaplan-Meier estimators of the censoring variable’s
survivor function (see, e.g. Koul, Susarla and Van Rysin(1980)), which cannot in general be
applied in the fixed censoring case.

• Though the PRE was defined in terms of the right censored model, it can be easily modified
for the left censored model. The form of this modification is illustrated in the next section
where we explore the doubly censored model.

We first establish consistency of the PRE. For this we impose the additional conditions
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I4 The vector zi = (di, vi, xi), i = 1, 2, ..n are i.i.d.

I5 Θ is a compact subset of Rk−1.

I6 SX is not contained in any proper linear subspace of Rk.

The following theorem, whose proof is left to the appendix, establishes the consistency of the
PRE.

Theorem 2.1 Under Assumptions I1-I6,

θ̂
p→ θ0

We now establish the limiting distribution theory of the PRE. The arguments are analogous to
those used in Sherman(1993) for establishing the asymptotic distribution of the MRC. Our results
are based on a set of similar assumptions and we deliberately choose notation to match his as
closely as possible.

Recalling that zi denotes the vector (di, vi, x
′
i)
′, we define

τ(zi, θ) = E[(diI[vi ≥ v] + (1− di))I[x′β ≥ x′iβ]]

+ E[(dI[v ≥ vi] + (1− d))]I[x′iβ ≥ x′β]]

Finally, we let N denote a neighborhood of θ0.

A1 θ0 lies in the interior of Θ, a compact subset of Rk−1.

A2 For each z, the function τ(z, ·) is twice differentiable in a neighborhood of θ0. Furthermore,
the vector of second derivatives of τ(z, ·) satisfies the following Lipschitz condition:

‖∇2τ(z, θ)−∇2τ(z, θ0)‖ ≤ M(z)‖θ − θ0‖

where ∇2 denotes the second derivative operator and M(·) denotes an integrable function of
z.

A3 E[‖∇1τ(zi, θ0)‖2] and E[‖∇2τ(zi, θ0)‖] are finite, where ∇1 denotes the first derivative opera-
tor.

A4 E[∇2τ(zi, θ0)] is non-singular.

We now state the main theorem, characterizing the asymptotic distribution of the PRE; its proof
is left to the appendix.

Theorem 2.2 Under Assumptions I1-I5, A1-A4,
√

n(θ̂ − θ0) ⇒ N(0, V −1∆V −1) (2.10)

where V = E[∇2τ(zi, θ0)]/2 and ∆ = E[∇1τ(zi, θ0)∇1τ(zi, θ0)′].
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We conclude this section with a brief discussion on conducting inference with the PRE. The asymp-
totic variance matrix can be estimated in a similar fashion to the estimator in Sherman(1993). As
is the case with that estimator, the selection of smoothing parameters will be required.

Unfortunately, it has not been formally established that the bootstrap is asymptotically valid
in this setting, or else inference could be conducted without the selection of smoothing parameters.
However, other sampling procedures are possible. For one, a recent “wild” sampling procedure
introduced in Jin, Ying, and Wei (2001) appears likely to be applicable (after appropriate modifi-
cations) to the problem at hand.

Separately, the PRE can be used to construct model specification tests by comparing its value
to those of existing estimators. For example, the PRE may be compared to the MRC to test for the
presence of covariate dependent censoring. We can compare the PRE to the relative coefficients
obtained from Cox’s partial likelihood estimator (PMLE) or those found using the estimator in
Ying, Jung and Wei (2002) to test for the presence of unobserved heterogeneity, or more generally,
to test for particular distributions of εi. Also, we can compare the PRE to relative coefficients
obtained from the Tsiatsis(1990) and/or Ying, Jung and Wei (1995) estimators, to test for particular
functional forms of the transformation.

3 Extension I: Doubly Censored Data

Many data sets in both biostatistics and economics are subject to double (i.e. left and right)
random censoring. Examples are when the dependent variable is the age of the individual at which
a particular event(e.g. cancerous tumor, change in employment status) occurs, and individuals are
regularly and frequently surveyed or tested for an interval of time. If the occurrence of the event is
detected on the first survey/test, the dependent variable (age) is left censored, as the recorded value
is greater than the actual (latent) value. If no such events have occurred by the last survey/test,
the dependent variable is right censored, as the recorded value is exceeded by the actual value.

In the monotonic transformation framework, the doubly censored regression model can be ex-
pressed as follows. (1.1) still holds, but the econometrician does not always observe the dependent
variable yi ≡ T−1(x′iβ0 + εi). Instead one observes the doubly censored sample, which we can
express as the pair (vi, di) where

di = I[c1i < x′iβ0 + εi ≤ c2i] + 2 · I[x′iβ0 + εi ≤ c1i] + 3 · I[c2i < x′iβ0 + εi]

vi = I[di = 1] · (x′iβ0 + εi) + I[di = 2]c1i + I[di = 3]c2i

where I[·] denotes the usual indicator function, c1i, c2i denote left and right censoring variables,
whose distributions may depend on the covariates xi and who satisfy P (c1i < c2i) = 1.

For a regression model with double censoring, estimators have been proposed by Zhang and
Li(1996), Ren and Gu(1997) to name a few. Both of these require a linear regression specification
and the censoring variables to be independent of the covariates. With T (·) unknown, one can again
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perform MRC using vi as the dependent variable if xi is independent of (c1i, c2i). However in the
doubly censored case the efficiency loss can be very severe due to ignoring the value of di.

To estimate β0 in the general model with T (·) and the distribution of εi unknown, as well as
covariate dependent censoring, we first define y1i, y0i as

y1i = I[di < 3]vi + I[di = 3] ·+∞ (3.1)

y0i = I[di 6= 2]vi + I[di = 2] · −∞ (3.2)

and accordingly we may define fij , I[fij ≥ 0] as:

fij = y1i − y0j

I[fij ≥ 0] = I[di = 3] + I[dj = 2]− (I[di = 3] ∗ I[dj = 2])

+ (I[di = 1] + I[di = 2]) ∗ (I[dj = 1] + I[dj = 3])I[vi ≥ vj ]

Letting d1i, d2i, d3i denote I[di = 1], I[di = 2], I[di = 3], respectively, we can express the PRE
for doubly censored data as:

θ̂ = arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

I[y1i ≥ y0j ]I[x′iβ ≥ x′jβ] (3.3)

= arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

((d1i + d2i) · (d1j + d3j)I[vi ≥ vj ]

+ (d3i + d2j − d3id2j))I[x′iβ ≥ x′jβ] (3.4)

which, as before, is numerically equivalent to

θ̂ = arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

I[y0i ≥ y1j ]I[x′iβ ≥ x′jβ] (3.5)

= arg max
θ∈Θ

1
n(n− 1)

∑

i6=j

(1− I[di = 2])(1− I[dj = 3])I[vi ≥ vj ]I[x′iβ ≥ x′jβ] (3.6)

We first establish the analogous identification result for the PRE in the doubly censored case.
The identification result is again based on Assumptions I1-I3, where it is now understood that the
event di = 1 is defined for doubly censored data. The proof is left to the appendix.

Lemma 3.1 Under assumptions analogous to I1-I3, if either the covariates are independent of the
regressors or we have the condition:

P (c1i > c2j |xi, xj) = P (c1j > c2i|xi, xj) = 0 xi, xj a.s. (3.7)

then we have

P (y0i ≥ y1j |xi, xj) ≥ P (y0j ≥ y1i|xi, xj) iff x′iβ0 ≥ x′jβ0 (3.8)

9



In the above lemma, we impose the additional condition (3.7) which is a sufficient condition for
point identification. Consistency of the estimator follows by including assumptions analogous to
I4-I6. In the appendix, we also provide the asymptotic distribution of (3.6) above.

4 Extension II: Heteroskedastic Data

One of the assumptions that we used above the independence between the disturbance term εi

and the covariates xi. This assumption may be overly restrictive; for example, it rules out any
form of conditional heteroskedasticity which is important in some data sets. In this section we
relax the independence assumption by assuming only one of the quantiles of εi, say the median, is
independent of the covariates. Khan(2000) proposed a two step rank estimator for a heteroskedastic
transformation model, but did not allow for random censoring. In contrast, Honoré, Khan and
Powell(2002) and Portnoy(2004) allow for unknown heteroskedasticity and random censoring, but
require the transformation function to be known. For point identification in models with random
covariate dependent censoring, heteroskedasticity and an unknown transformation function, we
assume that the random variables ci, εi are statistically independent5given xi.

Next, we provide identification conditions for the univariate censoring case. Similar arguments
can be used to attain point identification results for the double censoring case. The results in
the next lemma, whose proof is in the appendix, provide sufficient conditions for regular point
identification.

Lemma 4.1 Define the set X such that

X = {x : Pr(c− xβ ≥ 0|x) = 1}

Assume further that Prx(X ) > 0. Moreover, the random variable c is such that ε ⊥ c|x. Finally,
define the random variables y0i = vi and y1i = divi + (1− di) ·+∞. Then we have that

Med(T (y0)|x) = Med(T (y)|x) = Med(T (y1)|x) = xβ

if and only if x ∈ X .

The above identification result6, along with the invariance of medians, suggests an (infeasible)
rank estimator based on the conditional medians of y0i and y1i. Letting m0(xi),m1(xi) denote
these conditional median functions, we would estimate β0 by maximizing the function

Q(β) =
1

n(n− 1)

∑

i6=j

I[m1(xi) ≥ m0(xj)]I[x′iβ ≥ x′jβ] (4.1)

5Without this assumption, the identified features of the model is a set of parameters (as opposed to a unique

parameter.).
6The lemma above provides sufficient conditions for regular point identification or β0, i.e., conditions that allow

for consistent estimation of β0 at the parametric rate. Notice that, the sufficient condition rules out the case where

x and c are jointly normal. One can easily show that this is a case of identification at infinity where the parameter

β0 is point identified but can only be estimated at rates slower than
√

n.
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To construct a feasible estimation procedure, we replace the unknown median functions in the above
estimator with their nonparametric estimators. To construct these estimators, we adopt the local
polynomial approach introduced in Chaudhuri(1991). For a detailed description of the estimator,
see Chaudhuri(1991). Here, we simply let m̂δn,p

0 (xi), m̂δn,p
1 (xi) denote the local polynomial estima-

tors where the superscripts denote the bandwidth sequence (δn), and order of polynomial (p) used.
Conditions on δn and p are stated in the theorem below characterizing the limiting distribution of
our estimator of β0. To avoid the technical difficulty of dealing with a smoothing parameter inside
an indicator function, we define our heteroskedasticity robust estimator of β0, denoted here as β̂ht

as follows:

β̂ht = arg max
β∈B

1
n(n− 1)

∑

i6=j

Khn(m̂δn,p
1 (xi)− m̂δn,p

0 (xj))I[x′iβ ≥ x′jβ] (4.2)

where Khn(·) ≡ K(·/hn)/hn, with K(·) denoting a smooth approximating function to an indicator
function (i.e. a cumulative distribution function), and hn denotes a sequence of positive constants,
converging to 0, such that in the limit we have an indicator function. This smoothing technique
was introduced in the seminal work of Horowitz(1992). In the appendix, we provide the asymptotic
distribution of our estimator in (4.2) and state the required regularity conditions necessary for its
well behavior.

5 Extension III: Panel Data

As is the case with duration data7, panel data has received an increasing amount of attention in the
econometric literature - see Arellano and Honoré(2001) for a recent survey. In the duration context,
a panel data set usually refers to a cross section for which we observe multiple time-to-events, or
spells. This may refer to multiple spells by the same individual, or spells for different individuals
in a group or family.

Empirical examples in the first case include include unemployment spells (Heckman and Bor-
jas(1980)), time intervals between child births (Newman and McCullogh (1984)) and car insurance
claim durations (Abbring, Chiappori and Pinquet(2003)). Examples in the second case would
include survival times of children in a family in a developing country (Sastry (1997), Ridder and
Tunah(1999)), lifetimes of machines grouped by a firm, or unemployment spells grouped by a family
or region (e.g. Fitzgerald(1992)).

In this section we consider estimation of a right censored duration model with fixed effects.
As in the previous sections, we allow for general forms of censoring. Of particular interest in the
panel data setting is to permit the distribution of the censoring variable to be spell-specific and
individual/group specific.

The vast existing literature does not address this type of problem. Honoré at al.(2002) al-
lows for random censoring, but requires a linear transformation, and the censoring variables to
be distributed independently of the covariates with the same distribution across spells. Exten-

7We thank Bo Honoré for suggesting this extension to us.
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sions of the linear specification can be found in Abrevaya(1999,2000), which allow for a generalized
transformation function, but rule out fixed and/or general random censoring. Other work in the
panel duration literature parametrically specifies the distribution of the error terms. Examples
include Chamberlain(1985), Honoré(1993), Ridder and Tunah(1999), Lancaster (2000), Horowitz
and Lee(2003) and Lee(2003). Some of these also rule out censoring distributions that vary across
spells and/or are independent of covariates8.

In the context of multiple spell data, we wish to allow for distribution of the censoring variable
to vary across spells, for one of two reasons: for one, the censoring distribution may depend on
time-varying covariates. Also, even if the censoring distribution does not depend on the covariates,
and is purely a result of the observation plan, the observation plans may vary across spells.

To be precise, we will focus on the following model:

Ti(vit) = min(αi + x′itβ0 + εit, cit)

dit = I[αi + x′itβ0 + εit ≤ cit] i = 1, 2, ...n t = 1, 2, ...τ

where here the subscript i denotes an economic agent in a cross section of n observations. In
the duration model framework studied in this section, the subscript t does not denote the time
period, but one of τ spells. Ti(·) is an unknown, strictly monotonic function that varies across
individuals, xit is a k−dimensional vector of covariates, cit is a censoring variable which is permitted
to be random, and whose distribution is permitted to depend on xit. The disturbance term εit

is unobserved, and will be assumed to satisfy conditions which will be discussed shortly. The
individual specific effect αi is unobserved, and following the standard fixed effects approach, is
permitted to depend on the covariates xit in an arbitrary way. Finally, the k−dimensional vector
β0 is the parameter of interest which we wish to estimate.

Following convention in the fixed-effects literature, we regard n to be large and τ small, as many
time-to-event panel data sets encountered in practice are characterized by a large cross section but
few spells. Without loss of generality, we set τ = 2, as this facilitates description of the new
estimation procedure, and allow n → ∞. Consequently, we wish to estimate β0 from a random
sample of pairs of the (4 + 2k)× 1 vector

(di1, di2, vi1, vi2, x
′
i1, x

′
i2)
′

As in the previous sections, we let θ0 denote the remaining components of β0 after imposing
the same scale normalization, and propose an estimator for θ0. The estimator, denoted here as θ̂p,

8Honoré(1993), Horowitz and Lee (2003) and Lee(2003) do allow for the censoring variable’s distribution to depend

on the error term, which is not considered here. As mentioned in these papers, dependent censoring can easily occur

in multiple data. Therefore the independence assumption considered here is better suited for analyzing data with

group specific effects.
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and referred to hereafter as the censored duration panel (CDP) estimator, is of the form9:

θ̂p = arg max
θ∈Θ

1
n

n∑

i=1

di1I[vi1 < vi2]I[x′i1β(θ) < x′i2β(θ)] (5.1)

where Θ denotes the parameter space and for each θ ∈ Θ, β(θ) ≡ (1, θ′)′.

We establish the consistency of the estimator; this result is based on conditions which are
analogous to those imposed in previous sections. To simplify notation, we will let ∆xi denote
xi2 − xi1.

P1 Letting SXt denote the support of xit, and let Xuct denote the set

Xuct = {x ∈ SX : P (dit = 1|xit = x) > 0}

Then Xuct has positive measure.

P2 The random variables εi1, εi2 are identically distributed conditional on the vector (ci1, x
′
i1, ci2, x

′
i2),

with common support equal to the real line.

P3 The first component of ∆xi has everywhere positive Lebesgue density, conditional on the other
components.

P4 The vector (dit, vit, xit), i = 1, 2, ..., n are i.i.d.

P5 Θ is a compact subset of Rk−1.

P6 SX , the support of ∆xi, is not contained in any proper linear subspace of Rk.

We can now state the theorem establishing consistency in the panel data setting. The proof is
left to the appendix.

Theorem 5.1 Under Assumptions P1-P6, the CDP estimator is consistent:

θ̂p
p→ θ0 (5.2)

Inference on parameters requires limiting distribution theory. We note since the CDP estimator
has the same form of a maximum score estimator, the rate of convergence will be slower than
the parametric rate, with a non-Gaussian limiting distribution (Kim and Pollard(1990)), making
inference difficult to conduct. We also note that one can adopt a smoothed maximum score approach

9This estimator can be related to, but is distinct from, existing panel data estimators. The indicator functions

comparing values of the observed dependent variables and index values across time originates in Manski(1987),

and was also used in Abrevaya(1999). Comparing these values across time intuitively in a “maximum score” (Man-

ski(1975,1985)) type setting leads to consistent estimation of θ0 for binary choice (Manski(1987)) models and transfor-

mation models with fixed censoring (Abrevaya(1999)). However this estimation approach by itself will not consistently

estimate θ0 in the presence of random covariate dependent and/or spell specific censoring, as considered here.
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(Horowitz(1992)) and attain a faster rate by imposing stronger smoothness conditions. Since this
is now a standard exercise and has been applied in many settings, we omit the details here.

Finally, we conjecture that the slow rate of convergence is a consequence of the generality of the
model and not a deficiency of the proposed estimator. This is because there is no common element
in our model which permits averaging over individuals in the cross section. Such an averaging would
permit attaining the parametric (root-n) rate of convergence for a regression coefficient estimator.

6 Monte Carlo Results

In this section we explore the finite sample properties of the new estimators introduced in this
paper by reporting results obtained from a small scale simulation study. Our base design involves
two regressors and an additive error term which we express in the absence of censoring as:

T (yi) = α0 + x1iβ0 + x2i + εi

where x1i, x2i are distributed as a chi-squared with one degree of freedom, and standard normal,
respectively; α0, β0 were set to 1 and -1 respectively. We considered 2 functional forms for T (·) and
the error distribution as follows:

1. T−1(ν) = ν; εi ∼ mixture of two normals, centered around -1 and 2 respectively.

2. T−1(ν) = exp(ν); εi ∼ chi squared, 1 degree of freedom.

We simulated four types of censoring:

1. Covariate dependent right censoring: For the exponential design, the censoring variable was
distributed as 2.05·exp(x2

1i ·x2i+x2i) and for the linear design it was distributed as −x2
1i−x2i.

2. Covariate independent right censoring: Here for both functional forms the censoring variable
was distributed as a chi-squared random variable, with one degree of freedom.

3. Double covariate independent censoring (linear transformation only) : the left censoring vari-
able was distributed as the right censoring variable - 2 times a chi-squared with one degree
of freedom - 2, and the right censoring variable was distributed as in 2.

4. Double covariate dependent censoring (linear transformation only): The right censoring vari-
able was the same as in 1. and the relationship between the two censoring variables was the
same as in 3.

In tables I through VI we report results for 4 estimators: 1)PRE 2) the MRC 3) the monotone rank
estimator (MRE) introduced in Cavanagh and Sherman(1998) 4) the PMLE in Cox(1972,1975).
For each estimator and each design the summary statistics mean bias, median bias, root mean
squared error (RMSE) and median absolute deviation (MAD) are reported for 100,200, and 400
observations, with 401 replications. As there is only one parameter to compute, each rank estimator
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was evaluated by means of a grid search of 500 evenly spaced points over the interval [-5,5]. For
the PMLE, the intercept and both slope coefficients were evaluated, and the tables report the ratio
of the two slope coefficients. Computation of these three values was performed using QNewton
in GAUSS, with 10 starting values, which included the true values, least squares estimates, and
randomly generated values.

In general, the simulation results are in accordance with the theory. For covariate independent
right censoring, all rank estimator perform well in the linear design, and the PRE has the smallest
RMSE at all sample sizes. The PMLE performs well, even though the error distribution is mis-
specified, though its bias values and RMSE do not decline with the sample size. In the exponential
design, the only estimators that perform adequately are the PRE and the PMLE, with the PMLE
again suffering from RMSE values not shrinking with the sample size. The MRC and MRE only
perform adequately at a sample size of 400, which is surprising since they are both theoretically
consistent for this design.

For covariate dependent right censoring, the results clearly establish the benefits of the PRE
over MRC and MRE. It performs quite well with bias and RMSE values shrinking at the parametric
rate. In complete contrast, the MRC and MRE perform very poorly for both functional forms, with
RMSE values in most cases not reducing, and sometimes even increasing with the sample size. The
PMLE’s inconsistency (due to the error distribution misspecification) is also apparent, tough not
as pronounced in the linear design at 400 observations. Its RMSE values are much larger than the
PRE’s for the smaller sample sizes. For the exponential design, the PMLE performs very poorly
at all sample sizes.

For double covariate independent censoring, all rank estimators have RMSE’s shrinking at the
parametric rate, but the efficiency gains of the PRE are very apparent for both functional form error
distribution pairs. This is due to the fact that the PRE uses more information on the censoring
structure than the other two estimators. The PMLE performs poorly at all sample sizes.

For covariate dependent double censoring, the results are similar to the one sided covariate
dependent censoring case, i.e., only the PRE exhibits root-n consistency and the others are clearly
inconsistent.

In summary, the results from our simulation indicate that the PRE estimators introduced in
this paper perform adequately well in finite samples, so it can be applied in empirical settings,
which we turn to in the following section. The results also show how sensitive the other estimators
are to model misspecification.

7 Conclusions and further extensions

In this paper, we introduced new estimators for duration models with general forms of covariate
dependent censoring. The new estimators have the attractive properties of being distribution free,
require no smoothing parameters, and are robust to censoring that depends on the regressors. The
estimator is shown to converge at the parametric rate with asymptotically normal distribution.
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Extensions were provided for doubly censored, heteroskedastic, and panel data. A simulation
study indicated the estimator(s) performed well in finite samples, and also illustrated how erroneous
existing estimators can be if the censoring variable depends on covariates or the error distribution
is misspecified.

The work in this paper suggest areas for future research. We provide two such examples. For one,
it would be useful to construct an estimator for the function T (.) based on y0i, y1i that modifies the
rank estimator of T (·) in Chen(2002) to allow for covariate dependent censoring. Finally, another
important area for future work would be to formally confirm the conjecture that the proposed panel
data estimator attains the fastest rate of convergence possible under the assumptions of the model.
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[21] Honoré, B.E., Khan, S. and J.L. Powell (2002) “Quantile Regression under Random Censor-
ing”, Journal of Econometrics, 109. 67-105.

17



[22] Horowitz, J.L. and S. Lee (2003), “Semiparametric Estimation of a Panel Data Proportional
Hazards Model with Fixed Effects”, Journal of Econometrics, forthcoming.

[23] Jin Z., Ying Z., and Wei L.J. (2002) “A Simple Resampling Method by Perturbing the Mini-
mand”, Biometrika, 88, 381-390.

[24] Kalbfleisch, J.D. and R.L. Prentice (1980), The Statistical Analysis of Failure Time Data. New
York: Wiley.

[25] Kaplan, E.L. and P. Meier (1958), “Nonparametric Estimation from Incomplete Data,” Journal
of the American Statistical Association, 53, 457-481.

[26] Koul, H., V. Susarla, and J. Van Ryzin (1981), “Regression Analysis with Randomly Right
Censored Data,” Annals of Statistics, 9, 1276-1288.

[27] Lancaster, T. (2000), “The Incidental Parameter Problem since 1948”, Journal of Economet-
rics, 95, 291-413.

[28] Lee, S. (2003), “Estimating Panel Data Duration Models with Censored Data”, manuscript,
University College London.

[29] Manski, C.F. (1975), “Maximum Score Estimation of the Stochastic Utility Model of Choice”,
Journal of Econometrics, 3, 205-228

[30] Manski, C.F. (1985), “Semiparametric Analysis of Discrete Response: Asymptotic Properties
of Maximum Score Estimation”, Journal of Econometrics, 27, 313-334

[31] Newey, W.K. and D. McFadden (1994) “Estimation and Hypothesis Testing in Large Samples”,
in Engle, R.F. and D. McFadden (eds.) , Handbook of Econometrics, Vol. 4, Amsterdam:
North-Holland.

[32] Newman, J.L. and C.E. McCullogh (1984), “A hazard Rate Approach to the Timing of Births”,
Econometrica, 52, 939-961.

[33] Pakes, A. and D. Pollard (1989), “Simulation and the Asymptotics of Optimization Estima-
tors”, Econometrica, 57, 1027-1057.

[34] Portnoy, S. (2003), “Censored Regression Quantiles”, Journal of the American Statistical As-
sociation, 98, 1001-1012.

[35] Ridder, G. (1990) “The Non-parametric Identification of Generalized Accelerated Failure-time
Models”, Review of Economic Studies, 57, 167-182

[36] Ridder, G. and I. Tunah(1999) “Stratified Partial Likeliood Estimation”, Journal of Econo-
metrics, 92, 193-232.

[37] Sherman, R.P. (1993), “The Limiting Distribution of the Maximum Rank Correlation Estima-
tor”, Econometrica, 61, 123-137

[38] Sherman, R.P. (1994a), “U-Processes in the Analysis of a Generalized Semiparametric Regres-
sion Estimator”, Econometric Theory, 10, 372-395

[39] Sherman, R.P. (1994b), “Maximal Inequalities for Degenerate U-Processes with Applications
to Optimization Estimators ”, Annals of Statistics, 22, 439-459

[40] Tsiatis, A.A. (1990), “Estimating Regression Parameters Using Linear Rank Tests for Censored
Data,” Annals of Statistics, 18, 354-372.

[41] Van den Berg, G.J. (2001), “Duration Models: Specification, Identification and Multiple Dura-
tions”, in Heckman, J.J. and E. Leamer, eds., Handbook of Econometrics, Vol. 5, Amsterdam:
North-Holland.

18



[42] Wei, L.J., Z. Ying, and D.Y. Lin (1990), “Linear Regression Analysis of Censored Survival
Data Based on Rank Tests.” Biometrika, 19, 417-442.

[43] Wang, J.-G. (1987), “A Note on the Uniform Consistency of the Kaplan-Meier Estimator”
Annals of Statistics, 15, 1313-1316

[44] Yang, S. (1999), “Censored Median Regression Using Weighted Empirical Survival and Hazard
Functions”, Journal of the American Statistical Association, 94, 137-145

[45] Ying, Z., S.H. Jung, and L.J. Wei (1995), “Survival Analysis with Median Regression Models,”
Journal of the American Statistical Association, 90, 178-184

19



A Appendix

A.1 Proof of lemma 2.1

We need to show that

Pr[y1i ≥ y0j |xi, xj ] ≥ Pr[y1j ≥ y0i|xi, xj ] iff x′iβ0 ≥ x′jβ0 (A.1)

which is equivalent to showing that

P (y0i ≥ y1j |xi, xj) ≥ P (y0j ≥ y1i|xi, xj) iff x′iβ0 ≥ x′jβ0 (A.2)

For notational convenience, we let zi, zj denote x′iβ0, x
′
jβ0 respectively. We first evaluate

P (y0i ≥ y1j) (A.3)

where we condition on xi, xj . This probability can be decomposed into the mutually exclusive cases ci > cj

and ci ≤ cj . We first focus on the case where ci > cj , and evaluate the probability conditional on the
censoring values ci, cj .

Note the probability of (A.3) is zero whenever dj = 0, so we can decompose (A.3) as

P (y0i ≥ y1j) = P (y0i ≥ y1j , di = 1, dj = 1) + P (y0i ≥ y1j , di = 0, dj = 1) (A.4)

We derive an expression for the first term, which we write here as:

P (εi ≥ εj −∆z, εi ≤ ci − zi, εj ≤ cj − zj)

where here, ∆z ≡ zi − zj . Recall that we are assuming for now that ci > cj , so by the independence
assumption, we express the above probability as:

∫ cj−zj

−∞

∫ ci−zi

εj−∆z

dF (εi)dF (εj) (A.5)

where F (·) denotes the c.d.f. of εi and εj . So (A.5) is

F (ci − zi)F (cj − zj)−
∫ cj−zj

−∞
F (εj −∆z)dF (εj) (A.6)

Now, turning attention to the second term in (A.4), we express it as:

P (εj ≤ cj − zj , εi ≥ ci − zi, εj ≤ ci − zj) = P (εi ≥ ci − zi, εj ≤ cj − zj) (A.7)

where the equality follows from ci > cj . This is equal to

(1− F (ci − zi))(F (cj − zj)) (A.8)

Thus we have that conditioning on xi, xj , and ci > cj , (A.4) can be expressed as:
∫ cj−zj

−∞
S(εj −∆z)dF (εj) (A.9)

where here S(·) = 1− F (·).
We next evaluate P (y0j ≥ y1i), again conditioning on xi, xj , ci > cj . A similar decomposition yields:

P (y0j ≥ y1i, di = 1, dj = 1) + P (y0j ≥ y1i, di = 1, dj = 0) (A.10)
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The first term is:

P (εi ≤ εj −∆z, εi ≤ ci − zi, εj ≤ cj − zj) (A.11)

which we can decompose into the sum of

P (εi ≤ εj −∆z, εi ≤ cj − zi, εj ≤ cj − zj) + P (εi ≤ εj −∆z, cj − zi ≤ εi ≤ ci − zi, εj ≤ cj − zj) (A.12)

Note the second term is 0 (since εi ≤ εj −∆z and εj ≤ cj − zj contradicts the middle event), and the first
term is:

∫ cj−zi

−∞

∫ cj−zj

εi+∆z

dF (εj)dF (εi) (A.13)

which is equal to

F (cj − zj)F (cj − zi)−
∫ cj−zi

−∞
F (εi + ∆z)dF (εi)

The second term in (A.10) is

P (cj ≥ εi + zi, εj ≥ cj − zj , εi ≤ ci − zi) = P (εj ≥ cj − zj , εi ≤ cj − zi) (A.14)

where the equality follows from ci > cj . This can be expressed as:

(1− F (cj − zj))F (cj − zi) (A.15)

Therefore, (A.10) is
∫ cj−zi

−∞ S(εi + ∆z)dF (εi), and the difference between (A.4) and (A.10) is

∫ cj−zj

−∞
S(ε−∆z)dF (ε)−

∫ cj−zi

−∞
S(ε + ∆z)dF (ε) (A.16)

We note that the above difference has the same sign as zi− zj , as the integrand is strictly larger for the first
term if and only if zi > zj , as is the range of integration. This establishes the identification result for the
case where ci > cj . For ci ≤ cj , using analogous arguments, we find that

P (y0i ≥ y1j) =
∫ ci−zj

−∞
S(εi −∆z)dF (εi) (A.17)

and

P (y0j ≥ y1i) =
∫ ci−zi

−∞
S(εi + ∆z)dF (εi) (A.18)

and the difference in the two integrals has the same sign as zi − zj here as well. Thus after integrating over
ci, cj we can conclude that

P (y0i ≥ y1j |xi, xj)− P (y0i ≥ y1j |xi, xj)

has the same sign as x′iβ0 − x′jβ0. ¥

A.2 Proof of Theorem 2.1

To show consistency it suffices to show 4 conditions (see e.g. Newey and McFadden(1994), Theorem 2.1.):
compactness, uniform convergence, continuity, identification.
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We first turn attention to identification, whose result will be shown to follow Lemma 2.1. The sample
objective function (2.7) can be written as

1
n(n− 1)

∑

i 6=j

I[y1i ≥ y0j ]I[x′iβ ≥ x′jβ] =
1

n(n− 1)

∑

i<j

(
I[y1i ≥ y0j ]I[x′iβ ≥ x′jβ] + I[y1j ≥ y0i]I[x′jβ ≥ x′iβ]

)

Then, let Q(β) denote the limiting objective function:

Q(β) = EX [P (y1i ≥ y0j |xi, xj)I[x′iβ ≥ x′jβ] + P (y1j ≥ y0i|xi, xj)I[x′jβ ≥ x′iβ]]

where EX [·] denotes the expectation over xi, xj . We need to show that this is uniquely maximized at β0.
We have (suppressing the conditioning on xi and xj):

Q(β0)−Q(β) = EX [(P (y1i ≥ y0j)− P (y1j ≥ y0i))
(
I[x′iβ0 ≥ x′jβ0]− I[x′iβ ≥ x′jβ]

)
] (A.19)

= EX [(P (y1i ≥ y0j)− P (y1j ≥ y0i)) (I[∆x′β0 ≥ 0 > ∆x′β]− I[∆x′β ≥ 0 > ∆x′β0])]

By the previous lemma, the above expectation is non-negative, and trivially equal to 0 when β = β0 by
Assumption I3. We show for β 6= β0, the above expectation is strictly positive. Note that β 6= β0 corresponds
to θ 6= θ0 since θ and θ0 have the same first component of 1. It follows from Assumption I6 that with positive
probability, ∆x(−1)′θ 6= x(−1)′θ0, where here ∆x(−1) denotes the difference in the k − 1 dimensional vector
corresponding to the last k− 1 components of the regressor vector. By Assumption I3, we can find a subset
of Xuc × Xuc where I[x′iβ0 > x′jβ0, x

′
iβ < x′jβ]] = 1 or I[x′iβ0 < x′jβ0, x

′
iβ > x′jβ]] = 1 , and this subset has

positive probability. But from Lemma 2.1, on this subset P (y1i ≥ y0j |xi, xj) > P (y1j ≥ y0i|xi, xj), so (A.19)
is strictly positive, establishing that the limiting objective function is uniquely maximized at β0 and proving
identification.

Turning attention to the other three items, we note that compactness holds by Assumption I5. Regarding
uniform convergence, we need to show

sup
θ∈Θ

Qn(β)
p→ Q(β) (A.20)

where Qn(β) is the sample objective function defined in (2.9). (A.20) follows from uniform laws of large
numbers for U -statistics with bounded kernel functions satisfying a Euclidean property. This property (with
the constant envelope 1) is shown below, so we can apply Corollary 7 in Sherman(1994) to establish (A.20).
The continuity condition that Q(β) is continuous at β = β0 follows from the smoothness of the density of
x′iβ0 which follows from I3. This establishes consistency. ¥

A.3 Proof of Theorem 2.2

We note that virtually identical arguments as in Sherman(1993) can be used, as the objective functions of
the MRC and the PRE are very similar. The only component of the proof there that does not immediately
carry over to the problem at hand is establishing the Euclidean property of the class of functions in the
objective function. For the problem at hand, we consider the class of functions:

F = {f(·, ·, θ) : θ ∈ Θ} (A.21)

where for each (z1, z2) ∈ S × S, θ ∈ Θ, we can define

f(z1, z2, θ) = I[y01 ≥ y12]I[x′1β ≥ x′2β] (A.22)

= (d2I[v1 ≥ v2])I[x′1β ≥ x′2β] (A.23)
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where with our notation, recall β is a function of θ.

Note the class of functions

f1(z1, z2, θ) = I[v1 ≥ v2]I[x′1β ≥ x′2β] (A.24)

is Euclidean for envelope 1 from identical subgraph set arguments used in Sherman(1993). The class of
functions:

f2(z1, z2, θ) = d2 (A.25)

is trivially Euclidean for envelope 1 as it does not depend on θ. The Euclidean property of f = f1 ·f2 follows
from Lemma 2.14(ii) in Pakes and Pollard(1989).

A.4 Double Censored Section: Consistency and Normality

First, we prove Lemma 3.1.

Proof of Lemma 3.1: Again, we wish to show that conditional on xi, xj ,

P (y0i ≥ y1j) ≥ P (y0j ≥ y1i) (A.26)

iff zi ≥ zj . As with the singly censored data we will separately consider cases involving relationships for
the ith and jth censoring values. For double censoring, the problem becomes more involved as there are the
following 6 cases to consider:

c1i > c1j , c2i > c2j , c1i < c2j (A.27)

c1i > c1j , c2i > c2j , c1i > c2j (A.28)

c1j > c1i, c2j > c2i, c2i > c1j (A.29)

c1j > c1i, c2j > c2i, c2i < c1j (A.30)

c2j > c2i, c1j < c1i (A.31)

c2i > c2j , c1i < c1j (A.32)

We first show (A.26) holds for the first of the mentioned censoring variable relationships in the theorem.
As before, we derive an expression for each of the probabilities being compared. For the left hand side
probability, we decompose it as follows:

P (y0i ≥ y1j) = P (y0i ≥ y1j , di = 1, dj = 1) (A.33)

+ P (y0i ≥ y1j , di = 1, dj = 2) (A.34)

+ P (y0i ≥ y1j , di = 3, dj = 2) (A.35)

+ P (y0i ≥ y1j , di = 3, dj = 1) (A.36)

Before deriving expressions for each of the above terms, for ease of exposition, we introduce some new
notation. Again we let F (·) denote the c.d.f. of the error term, for n = 1, 2 we let Fnij denote F (cni − zj).

23



Turning attention to the first of the four above expressions, it can be expanded as:

P (εj ≤ εi + ∆z, c1i − zi ≤ εi ≤ c2i − zi, c1j − zj ≤ εj ≤ c2j − zj) (A.37)

which, recalling we are assuming the censoring values relationship in (A.27), can be expressed as:

P (c1i − zi ≤ εi ≤ c2j − zi), c1j − zj ≤ εj ≤ c2j − zj , εj ≤ εi + ∆z)+ (A.38)

P (c2j − zi ≤ εi ≤ c2i − zi), c1j − zj ≤ εj ≤ c2j − zj , εj ≤ εi + ∆z) (A.39)

where ∆z ≡ zi − zj . Note in the first probability, the second bound on εj is binding, and in the second
probability, the first bound on εj is binding. Therefore we can write the sum of these two terms as (again
conditioning on censoring variables and regressors) :

∫ c2j−zi

c1i−zi

F (εi + ∆z)dF (εi) + F1jjF1ii + F2iiF2jj − F2iiF1jj − F2jiF2jj (A.40)

This is the expression for (A.33). The terms (A.34), (A.35), (A.36) are easier to deal with so we omit the
details. They can be expressed as:

(F2ii − F1ii)F1jj , (1− F2ii)F1jj , (1− F2ii)(F2jj − F1jj) (A.41)

respectively. Collecting all terms we have

P (y0i ≥ y1j) =
∫ c2j−zi

c1i−zi

F (εi + ∆z)dF (εi) + F2jj − F2jjF2ji (A.42)

We will compare this expression to one for P (y0j ≥ y1i), which we also decompose into the sum of four
probabilities involving 4 censoring pair indicators. As before, the case di = 1, dj = 1 is the most involved.
Here, the probability is

P (c1i − zi ≤ εi ≤ εj −∆z, c1j − zj ≤ εj ≤ c2j − zj) (A.43)

which we can express as:
∫ c2j−zj

c1i−zj

F (εj −∆z)dF (εj)− F1iiF2jj + F1iiF1ij (A.44)

The cases (dj = 1, di = 2), (dj = 3, di = 2), (dj = 3, di = 1) are easier to deal with. They are, respectively:

F1ii(F2jj − F1ij), F1ii(1− F2jj , (1− F2jj)(F2ji − F1ii) (A.45)

So collecting terms we have

P (y0j ≥ y1i) =
∫ c2j−zj

c1i−zj

F (εi + ∆z)dF (εi) + F2jj − F2jjF2ji (A.46)

Thus we have that P (y0i ≥ y1j)− P (y0j ≥ y1i) is

∫ c2j−zi

c1i−zi

F (εi + ∆z)dF (εi)−
∫ c2j−zj

c1i−zj

F (εi −∆z)dF (εi) + F2jj − F2ji (A.47)

we now show the above expression has the same sign as zi − zj . First, we assume that zi ≥ zj and show the
above expression is nonnegative. Note that F2jj − F2ji is nonegative, but unlike in the one-sided censoring
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case, the difference in integrals is not unambiguously nonnegative, as the ranges of integration differ. Thus
we work with the decomposition:

∫ c2j−zj

c1i−zj

F (εi −∆z)dF (εi) =
∫ c2j−zi

c1i−zj

F (εi −∆z)dF (εi) +
∫ c2j−zj

c2j−zi

F (εi −∆z)dF (εi) (A.48)

Note the first piece on the right hand side of the above decomposition is less than or equal to the the first
term in (A.47), which has a larger integrand and range of integration. (We note that here we are assuming
that c2j − zi ≥ c1i − zj . If it is not, then this integral (the first piece on the right hand side of the above
decomposition) is negative, and trivially less than the the first term in (A.47).

Also, the second piece on the right hand side of the above decomposition is smaller that F2jj − F2ji,
which follows by exploiting F (·) ≤ 1. Thus we have shown that (A.47) is nonnegative when zi ≥ zj . The
same arguments can be used to show that (A.47) is nonpositive when zi ≤ zj . This establishes identification
for the case (A.27).

Similar arguments may be used for the other censoring variable relationships. We omit the details and
only state the difference between P (y0i ≥ y1j) and P (y0j ≥ y1i) for the five remaining cases:

1. F2jj(1− F1ii)

2.
∫ c2i−zi

c1j−zi
F (εi + ∆z)dF (εi)−

∫ c2i−zj

c1j−zj
F (εi −∆z)dF (εi) + F2ij − F2ii

3. −F2ii(1− F1jj)

4.
∫ c2i−zi

c1i−zi
F (εi + ∆z)dF (εi)−

∫ c2i−zj

c1i−zj
F (εi −∆z)dF (εi) + F2ij − F2ii

5.
∫ c2j−zi

c1j−zi
F (εi + ∆z)dF (εi)−

∫ c2j−zj

c1j−zj
F (εi −∆z)dF (εi) + F2jj − F2ji

Note we can use the same arguments to show that, with the exception of cases 1 and 3, the above terms
have the same sign as zi − zj . Thus if were not for 1 and 3 the identification proof is complete. Note that
if we have P (c1i ≥ c2j |xi, xj) = P (c1j ≥ c2i|xi, xj) = 0, then cases 1 and 3 cannot occur and we have
identification. Alternatively, if the censoring distributions are independent of the covariates, then we have
P (c1i ≥ c2j |xi, xj) = P (c1j ≥ c2i|xi, xj) = p12 for some constant p12 not necessarily equal to 0. Then we can
integrate the sum of the term in 1 and the term in 3 with respect to the censoring variables c1i, c2i, c1j , c2j ,
which yields a term whose sign is the same sign as zi − zj , establishing identification here as well. ¥

The asymptotic distribution theory of the estimator in 3.1 above is based on Assumptions AD1-AD4 below.
We first need to introduce some further notation for the doubly censored case. Now zi denotes the vector
(d1i, d2i, d3i, vi, x

′
i)
′, we define

τd(z, θ) = E[((1− d2)(1− d3i)I[v ≥ vi])I[x′β ≥ x′iβ]]

+ E[((1− d2i)(1− d3)I[vi ≥ v]]I[x′iβ ≥ x′β]]

Finally, we let N denote a neighborhood of θ0.

AD1 θ0 lies in the interior of Θ, a compact subset of Rk−1.

AD2 For each z, the function τd(z, ·) is twice differentiable in a neighborhood of θ0. Furthermore, the vector
of second derivatives of τd(z, ·) satisfies the following Lipschitz condition:

‖∇2τd(z, θ)−∇2τd(z, θ0)‖ ≤ M(z)‖θ − θ0‖

where ∇2 denotes the second derivative operator and M(·) denotes an integrable function of z.
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AD3 E[‖∇1τd(zi, θ0)‖2] and E[‖∇2τd(zi, θ0)‖] are finite.

AD4 E[∇2τd(zi, θ0)] is non-singular.

The following theorem characterizes the asymptotic distribution of the estimator. The proof of the theorem
is omitted, as it follows from identical steps used in proving Theorem 2.2.

Theorem A.1 Under Assumptions AD1-AD4,
√

n(θ̂ − θ0) ⇒ N(0, V −1
d ∆dV

−1
d ) (A.49)

where Vd = E[∇2τd(zi, θ0)]/2 and ∆d = E[∇1τd(zi, θ0)∇1τd(zi, θ0)′].

A.5 Heteroskedasticity: Consistency and Normality

We first provide the proof for lemma 4.1.

Proof of Lemma 4.1 (only if) Consider the following

Pr(T (y1)− xβ ≤ 0|x) = Pr(T (y1) ≤ xβ, d = 1|x) + Pr(T (y1) ≤ xβ, d = 0|x)

= Pr(ε ≤ 0, ε ≤ c− xβ|x)

= Pr(ε ≤ 0|x)

where the second equality follows from the definition of y1 and the third equality follows from the hypothesis
that x ∈ X .

Pr(T (y0) = xβ ≤ 0|x) = Pr(T (y0) ≤ xβ, d = 1|x) + Pr(T (y0)− xβ ≤ 0, d = 0|x)

= Pr(ε ≤ 0, ε ≤ c− xβ|x) + Pr(c− xβ ≤ 0, ε > c− xβ|x)

= Pr(ε ≤ 0, ε ≤ c− xβ|x)

= Pr(ε ≤ 0|x)

where the second equality follows from the definition of y0, and the third and fourth equalities follow from
the fact that x ∈ X (i.e., c− xβ ≥ 0). This implies that for x ∈ X ,

Pr(T (y0) = xβ ≤ 0|x) = Pr(T (y) = xβ ≤ 0|x) = Pr(ε ≤ 0|x) = Pr(T (y1) = xβ ≤ 0|x)

(if) Now we have

Pr(T (y)− xβ ≤ 0|x) = Pr(ε ≤ 0|x) =
1
2

= Pr(T (y0)− xβ ≤ 0|x)

= Pr(T (y0)− xβ ≤ 0, d = 1|x) + Pr(T (y0)− xβ ≤ 0, d = 0|x)

= Pr(ε ≤ 0, ε ≤ c− xβ|x) + Pr(c− xβ ≤ 0, ε > c− xβ|x)

= Pr(ε ≤ 0, ε ≤ c− xβ, c− xβ ≥ 0|x) + Pr(ε ≤ 0, ε ≤ c− xβ, c− xβ < 0|x)

+Pr(c− xβ ≤ 0, ε > c− xβ|x)

= Pr(ε ≤ 0|x) Pr(c− xβ ≥ 0|x) + Pr(ε ≤ c− xβ, c− xβ ≤ 0|x)

+Pr(c− xβ ≤ 0, ε > c− xβ|x)

= Pr(ε ≤ 0|x) Pr(c− xβ ≥ 0|x) + Pr(c− xβ ≤ 0|x)

=
1
2

Pr(c− xβ ≥ 0|x) + 1− Pr(c− xβ ≥ 0|x)

= 1− 1
2

Pr(c− xβ ≥ 0|x)
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which implies that

Pr(c− xβ ≥ 0|x) = 1

i.e., x ∈ X . The third equality above follows from the definition of y0, and the sixth equality follows from
the independence assumption ε ⊥ c|x. ¥

We next state the limiting distribution theory for β̂ht we defined in (4.2). For notational ease, in this
section we assume the covariates are all continuously distributed. Our limiting distribution theory for this
estimator is based on the following assumptions:

Assumptions on the Median Functions

Q1 mj(·) j = 0, 1 is [p] times differentiable in xi with [·] denoting the integer operator. Letting ∇[p]mj(x)
denote the vector of [p]th order derivatives of mj(·) in xi, we assume the following Lipschitz condition:

‖∇[p]mj(x1)−∇[p]mj(x2)‖ ≤ K‖x1 − x2‖γ

for all values x1, x2 in the support of xi, where ‖ · ‖ denotes the Euclidean norm, γ ∈ (0, 1], and
K is some positive constant. In the theorems to follow, we will let p = [p] + γ denote the order of
smoothness of the quantile function.

Assumptions on the Trimming Function

T The trimming function τ : Rk 7→ R+ is continuous, bounded, and bounded away from zero on its support,
denoted by Xτ , a compact subset of Rd.

Assumptions on the Regressors

B1 The sequence of k + 2 dimensional vectors (di, vi, xi) are independent and identically distributed.

B2 The regressor vector xi has support which is a subset of Rk. We will let fX(x) denote the (Lebesgue)
density function of xi.

B3 fX(x) is continuous and bounded on the support of xi.

B4 Assume that Xt = Xt(k−1)×Xtk where Xt(k−1) and Xtk are compact subsets with non-empty interiors of
the supports of the first k−1 components, and the kth component of xi, respectively. For each x ∈ Xt,
denote its first k − 1 components by x(k−1). Xt will be assumed to have the following properties:

B4.1 Xt is not contained in any proper linear subspace of Rk.

B4.2 fX(x) ≥ ε0 > 0 ∀x ∈ Xt, for some constant ε0.

Assumptions on the Median Residual Terms

D1 Let u1i = y1i −m1(xi); in a neighborhood of 0, u1i has a conditional (Lebesgue) density, denoted by
fu1|Xi=x(·) which is continuous, and bounded away from 0 and infinity for all values of x ∈ Xt. As a
function of x, fu|Xi=x is Lipschitz continuous for all values of u1i in a neighborhood of 0. Define u0i

analogously and assume it has analogous properties.
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Furthermore, we require conditions on the smoothness of the median functions. Let

τq1(x, θ) =
∫

I[x ∈ X ]I[u ∈ X ]τ(x)I[m1(x) ≥ m0(u)]I[x′β(θ) > u′β(θ)]dFX(u)

+
∫

I[x ∈ X ]I[u ∈ X ]τq(u)I[m1(u) ≥ m0(x)]I[u′β(θ) > x′β(θ)]dFX(u)

and let

τq2(x, θ) =
∫

I[x ∈ X ]I[u ∈ X ]I[x′β(θ) > u′β(θ)]dFX(u)

let N be a neighborhood of the d − 1 dimensional vector θ0. Then we impose the following additional
assumptions:

E1 For each x in the support of xi, τq1(x, ·) is differentiable of order 2, with Lipschitz continuous second
derivative on N .

E2 E[∇2τq1(·, θ0)] is negative definite

E3 For each x in the support of xi, τq2(x, ·) is continuously differentiable on N .

E4 E[‖∇1τq2(·, θ0)‖2] < ∞

Finally, we impose conditions on the second stage smoothed indicator function and bandwidth:

SI1 The function K(·) is positive, strictly increasing, twice differentiable with bounded first and second
derivatives, and satisfies the following:

SI1.1 limν→+∞K(ν) = 1, limν→−∞K(ν) = 0

SI1.2
∫∞
−∞K ′(ν)dν = 1

SI2 hn > 0 and hn → 0.

The following theorem establishes that these additional assumptions, along with a stronger smoothness
condition on the quantile function and further restrictions on the bandwidth sequence, are sufficient for
root-n consistency and asymptotic normality of the proposed estimator:

Theorem A.2 Assume that p > 3k/2, and that in the first stage, and the bandwidth sequences satisfy√
nδp

n → 0, log n
√

n−1δ−3k
n → 0 and

√
nh−2

n (δ2p
n + log n · n−1δ−k

n ) → 0

Define

δ(y1i, y0i, xi) = τ(xi)f−1
u1i|xi

(0)f ′m0
(m1(xi))(I[y1i ≤ m1(xi)]− 0.5)∇1τq2(xi, θ0)

+ τ(xi)f−1
u0i|xi

(0)f ′m1
(m0(xi))(I[y0i ≤ m0(xi)]− 0.5)∇1τq2(xi, θ0)

where f ′m1(·), f ′m0(·) denote derivatives of density functions of the median functions; then under Assumptions
A,B,Q,T,E,SI

√
n(θ̂ − θ0) ⇒ N(0, V −1

q ∆qV
−1
q ) (A.50)

where ∆q = E[δq(yi, xi)δq(yi, xi)′] and Vq = 1
2E[∇2τq1(xi, θ0)].
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Proof: The asymptotic properties follow from arguments that are very similar to those used in Khan(2001),
so we only provide a sketch of the steps involved. First we expand the kernel function of the estimated median
functions around the kernel of the true median functions in (4.2), yielding the sum of the three components

Γn(β) ≡ 1
n(n− 1)

∑

i 6=j

Khn
(m1i −m0j)I[x′iβ ≥ x′jβ] (A.51)

Hn(β) ≡ 1
n(n− 1)

∑

i6=j

K ′
hn

(m1i −m0j)h−1
n ((m̂1i −m1i)− (m̂0j −m0j)I[x′iβ ≥ x′jβ] (A.52)

Rn(β)
1

n(n− 1)

∑

i 6=j

K ′′
hn

(m∗
1i −m∗

0j)h
−2
n (m̂1i −m1i − m̂0j + m0j)2I[x′iβ ≥ x′jβ] (A.53)

where we have adopted the shorthand notation m̂1i,m1i denotes m̂δn,p
1 (xi),m1(xi) respectively, and ∗ denotes

intermediate values.

First we deal with (A.52). It follows by uniform rates of convergence for median function estimators
over compact sets, (see, e.g. Chaudhuri(1991)) where these rates depend on p, δn, Assumptions SI1,SI2, and
the rates imposed on δn, hn stated in the theorem Rn(β) is op(1/n) uniformly over β within an Op(1/

√
n)

neighborhood of β0.

Turning attention to Hn(β), with the properties of K(·) in Assumption SI1, we apply the arguments in
Lemma A.4 in Khan(2000) that uniformly over β within op(1) neighborhoods of β0, we have

Hn(β) = (β − β0)′
1
n

n∑

i=1

δ(y1i, y0i, xi) + op(1/n) (A.54)

Finally, with regard to Γn(β), we have by the properties of K(·), hn in Assumption SI1,SI2, using identical
arguments as in Lemma A.3 in Khan(2000), that uniformly over β within op(1) neighborhoods of β0, we
have

Γn(β) =
1
2
(β − β0)′Vq(β − β0) + op(1/n) (A.55)

Combining these three results, the limiting distribution of the estimator follows by applying Lemma A.2
in Khan(2000). ¥

A.6 Panel Data: Consistency:

Here, we prove theorem 5.1. We will only establish the key identification condition as before. We will take
the same approach as before, though for the problem at hand we need to allow for the serial dependence in
both the error terms and the censoring variables.

We first show that, conditioning on the variables xi1, xi2,

P (di1 = 1, vi1 ≤ vi2) ≤ P (di2 = 1, vi2 ≤ vi1) (A.56)

iff x′i1β0 ≤ x′i2β0. For notational convenience, we let zi1, zi2 denote x′i1β0 + αi, x
′
i2β0 + αi respectively.

We first evaluate

P (di1 = 1, vi1 ≤ vi2) (A.57)
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where we condition on xi1, xi2. This probability can be decomposed into the mutually exclusive cases
ci1 > ci2, ci1 ≤ ci2. We first focus on the first case ci1 > ci2, and evaluate the probability conditional on the
censoring values ci1, ci2.

Note we can decompose (A.57) as the sum of

P (vi1 ≤ vi2, di1 = 1, di2 = 1) + P (vi1 ≤ vi2, di1 = 1, di2 = 0) (A.58)

We derive an expression for the first term, which we write here as:

P (εi2 ≥ εi1 + ∆zi, εi1 ≤ ci1 − zi1, εi2 ≤ ci2 − zi2) (A.59)

where here, ∆zi ≡ zi1 − zi2. Recall that we are assuming for now that ci1 > ci2, so we express the above
probability as:

P (εi2 ≥ εi1+∆zi, ci2−zi1 ≤ εi1 ≤ ci1−zi1, εi2 ≤ ci2−zi2)+P (εi2 ≥ εi1+∆zi, εi1 ≤ ci2−zi1, εi2 ≤ ci2−zi2)

(A.60)

The first piece above is zero, so

(A.59) = P (εi2 ≥ εi1 + ∆zi, εi1 ≤ ci2 − zi1, εi2 ≤ ci2 − zi2) =
∫ ci2−zi1

−∞

∫ ci2−zi2

e1+∆zi

f(e1, e2)de2de1

Now, turning attention to the second term in (A.58), we express it as:

P (εi1 ≤ ci2 − zi1, εi2 ≥ ci2 − zi2, εi1 ≤ ci1 − zi1) = P (εi1 ≤ ci2 − zi1, εi2 ≥ ci2 − zi2) (A.61)

where the equality follows ci1 > ci2. This is equal to
∫ +∞

ci2−zi2

∫ ci2−zi1

−∞
f(e1, e2)de1de2 (A.62)

Thus we have that conditioning on xi1, xi2, and ci1 > ci2, (A.58) can be expressed as:

(A.58) =
∫ ci2−zi1

−∞

∫ ci2−zi2

e1+∆zi

f(e1, e2)de2de1 +
∫ +∞

ci2−zi2

∫ ci2−zi1

−∞
f(e1, e2)de1de2

=
∫ ci2−zi1

−∞

∫ ∞

e1+∆zi

f(e1, e2)de2de1 = (A.57) (A.63)

where we have used exchangeability of the distribution of ε1 and ε2.

We next evaluate P (di2 = 1, vi2 ≥ vi1), again conditioning on xi1, xi2, ci1 > ci2. A similar decomposition
yields:

P (vi2 ≤ vi1, di1 = 1, di2 = 1) + P (vi2 ≤ vi1, di2 = 1, di1 = 0) (A.64)

The first term is:

P (εi1 ≥ εi2 −∆zi, εi1 ≤ ci1 − zi1, εi2 ≤ ci2 − zi2) =
∫ ci2−zi2

−∞

∫ ci1−zi1

e2−∆zi

f(e1, e2)de1de2

The second term in (A.64) is

P (εi2 ≤ ci1 − zi2, εi2 ≤ ci2 − zi2, εi1 ≥ ci1 − zi1) = P (εi2 ≤ ci2 − zi2, εi1 ≥ ci1 − zi1)
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where the equality uses ci1 > ci2. This can be expressed as:
∫ ci2−zi2

−∞

∫ ∞

ci1−zi1

f(e1, e2)de1de2

Hence, we have

P (di2 = 1, vi2 ≥ vi1) =
∫ ci2−zi2

−∞

∫ ∞

e2−∆zi

f(e1, e2)de1de2 (A.65)

P (di1 = 1, vi1 ≤ vi2) =
∫ ci2−zi1

−∞

∫ ∞

e2+∆zi

f(e1, e2)de1de2 (A.66)

As we can see, the difference P (di2 = 1, vi2 ≥ vi1)−P (di1 = 1, vi1 ≤ vi2) has the same sign as zi1− zi2 since
for the case where zi1 > zi2 for example, the area of integration for P (di2 = 1, vi2 ≥ vi1) is strictly larger
than the area of integration for P (di1 = 1, vi1 ≤ vi2).

This establishes the identification result for the case where ci1 > ci2. For ci1 ≤ ci2, using analogous
arguments, we find that

P (di1 = 1, vi1 ≤ vi2) =
∫ ci1−zi1

−∞

∫ ∞

e2+∆zi

f(e1, e2)de1de2 (A.67)

and

P (di2 = 1, vi2 ≤ vi1) =
∫ ci1−zi2

−∞

∫ ∞

e2−∆zi

f(e1, e2)de1de2 (A.68)

and the difference in the two integrals has the same sign as zi1− zi2 here as well. Thus after integrating over
ci1, ci2 we can conclude that

P (di1 = 1, vi1 ≤ vi2|xi1, xi2)− P (di2 = 1, vi2 ≤ vi1|xi1, xi2)

has the same sign as x′i1β0 − x′i2β0. ¥
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TABLE I
Simulation Results for Rank Regression Estimators

One Sided CI Censoring Linear

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.0114 0.0000 0.1310 0.0972
MRC -0.0934 0.0000 0.4477 0.2091
MRE -0.1459 -0.0400 0.5408 0.2804
PMLE 0.1728 0.1029 0.5142 0.3650

200 obs.
PRE 0.0039 0.0000 0.0745 0.0516
MRC -0.0163 0.0000 0.1289 0.0867
MRE -0.0442 0.0000 0.2199 0.1499
PMLE 0.2582 0.1569 0.5083 0.3653

400 obs.
PRE -0.0000 0.0000 0.0497 0.0347
MRC -0.0056 0.0000 0.0764 0.0545
MRE -0.0155 0.0000 0.1259 0.0939
PMLE 0.2713 0.1496 0.5241 0.3703
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TABLE II
Simulation Results for Rank Regression Estimators

One Sided CI Censoring Exponential

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.0075 0.0000 0.1887 0.1407
MRC -0.6863 -0.0800 1.6583 1.0402
MRE -0.6388 -0.1200 1.7200 1.1142
PMLE 0.0071 0.0429 0.3426 0.2387

200 obs.
PRE -0.0071 0.0000 0.1136 0.0803
MRC -0.6148 -0.0400 1.4565 0.8524
MRE -0.5057 -0.0800 1.2994 0.7816
PMLE 0.1147 0.0923 0.3561 0.2454

400 obs.
PRE -0.0001 0.0000 0.0600 0.0420
MRC -0.2794 0.0400 0.9462 0.4595
MRE -0.2724 0.0400 0.9079 0.4960
PMLE 0.1103 0.0990 0.2885 0.2000
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TABLE III
Simulation Results for Rank Regression Estimators

One Sided CD Censoring Linear

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.1738 0.1200 1.7905 1.3221
MRC -3.9549 -3.9600 3.9550 3.9549
MRE -3.9441 -3.9600 3.9445 3.9441
PMLE -0.7720 0.1061 19.0136 3.4298

200 obs.
PRE -0.1423 0.0800 1.2551 0.8821
MRC -3.9599 -3.9600 3.9599 3.9599
MRE -3.9593 -3.9600 3.9593 3.9593
PMLE -1.0761 0.0622 16.1674 1.8040

400 obs.
PRE -0.1289 0.0400 0.9102 0.6326
MRC -3.9600 -3.9600 3.9600 3.9600
MRE -3.9600 -3.9600 3.9600 3.9600
PMLE -0.2322 -0.0649 1.0144 0.6270
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TABLE IV
Simulation Results for Rank Regression Estimators

One Sided CD Censoring Exponential

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.0577 0.0000 0.2639 0.1293
MRC 0.3860 0.4000 0.3972 0.3860
MRE 0.7575 0.7200 0.8013 0.7575
PMLE -0.9946 -0.3277 8.9472 1.6586

200 obs.
PRE -0.0237 0.0000 0.1073 0.0712
MRC 0.3867 0.4000 0.3930 0.3867
MRE 0.7992 0.7600 0.8323 0.7992
PMLE -0.8173 -0.2140 12.3673 1.5778

400 obs.
PRE -0.0044 0.0000 0.0590 0.0401
MRC 0.3869 0.4000 0.3901 0.3869
MRE 0.8525 0.8400 0.8759 0.8525
PMLE -0.2599 -0.2933 2.5544 1.1266
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TABLE V
Simulation Results for Rank Regression Estimators

Two Sided Sided CI Censoring Linear

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.1302 0.0000 0.6601 0.4574
MRC -0.2029 0.0800 0.9163 0.6302
MRE -0.2146 0.0000 0.9010 0.6004
PMLE 0.3390 0.4022 0.6808 0.4701

200 obs.
PRE -0.0584 0.0000 0.4074 0.2970
MRC -0.1189 -0.0400 0.5729 0.4084
MRE -0.1152 0.0000 0.5586 0.3801
PMLE 0.3888 0.4338 0.4785 0.4304

400 obs.
PRE -0.0238 0.0000 0.2664 0.2008
MRC -0.0429 0.0000 0.3850 0.2757
MRE -0.0584 0.0000 0.3762 0.2676
PMLE 0.4322 0.4508 0.4677 0.4368
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TABLE VI
Simulation Results for Rank Regression Estimators

Two Sided CD Censoring Linear

β

Mean Bias Med. Bias RMSE MAD
100 obs.
PRE -0.3144 -0.0800 1.0762 0.7481
MRC -3.9424 -3.9600 3.9428 3.9424
MRE -3.9331 -3.9600 3.9337 3.9331
PMLE -0.8615 -0.6787 3.9160 1.6850

200 obs.
PRE -0.3187 -0.1600 0.7808 0.5240
MRC -3.9571 -3.9600 3.9571 3.9571
MRE -3.9575 -3.9600 3.9575 3.9575
PMLE -0.8166 -0.7717 1.5573 1.2185

400 obs.
PRE -0.1937 -0.1200 0.4757 0.3423
MRC -3.9600 -3.9600 3.9600 3.9600
MRE -3.9600 -3.9600 3.9600 3.9600
PMLE -0.6579 -0.8208 1.2974 1.1231
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