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1 Introduction

Much of the recent econometrics, statistics, and biostatistics literature has been concerned

with distribution-free estimation of the parameter vector β0 in the linear regression model

y = x′β0 + ε

where the dependent variable y is subject to censoring that can potentially be random. For

example, in the duration literature, this model is known as the accelerated failure time (or

AFT) model where y, typically the logarithm of survival time, is right censored at varying

censoring points.

The semiparametric literature which studies variations of this model is quite extensive and

can be classified by the set of assumptions that a given paper imposes on the joint distribution

of (x, ε, c) where c is the censoring variable. Work in this area includes the papers by Buckley

and James (1979), Powell(1981), Koul et al.(1981), Ying et al.(1995), Yang(1999), Honoré

et al.(2002) and, more recently Portnoy(2003) among many others. Unfortunately, each of

the estimation methods introduced in the literature impose some assumption which may be

considered too strong and not reasonably characterized by the data, and furthermore, the

proposed methods will yield inconsistent estimators of the parameters of interest if these

assumptions do not hold. Examples of assumptions which may be regarded as too strong

are homoskedastic errors, censoring variables that are independent of the regressors, strong

support conditions on the censoring variable which rule out fixed censoring.

This paper adds to this important literature in different dimensions. We propose an

estimation procedure for the censored regression model which does not require any of these

strong conditions. Specifically, it permits conditional heteroskedasticity in the data, permits

the censoring variable to depend on the covariates in an arbitrary way, can be applied to

both fixed and randomly censored data. Our proposed minimum distance estimator does not

require nonparametric estimation of the censoring variable or error distribution, and conse-

quently does not require the selection of smoothing parameters nor trimming procedures.

The following section describes the censored model studied in this paper in detail, and

introduces the proposed minimum distance estimation procedure. It also compare this pro-

cedure to others recently proposed in the literature. Section 2 establishes the asymptotic

properties for the proposed procedure, specifying sufficient regularity conditions for root-n

consistency and asymptotic normality. Section 3 explores the relative finite sample perfor-

mance of the estimator using a simulation study, and section 4 concludes by summarizing
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results and discussing areas for future research. A mathematical appendix provides the

details of the proofs of the asymptotic theory results.

2 Model and Minimum Distance Estimation Method

This paper will estimate the parameters in an accelerate failure time model, which is char-

acterized by the observed random variables vi, di, xi, where xi is a k-dimensional vector of

covariates, vi is scalar variable, and di is a binary variable the indicates whether an observa-

tion is censored or not. The censored AFT studied here can be expressed by the following

two equations:

vi = min(yi, ci) = min(x′iβ0 + εi, ci) (2.1)

di = I[x′iβ0 + εi < ci] (2.2)

where β0 denotes the unknown k-dimensional parameter vector of interest, ci denotes the

censoring variable that is only observed for censored observations, and εi denotes the un-

observed error term. In the absence of censoring, x′iβ0 + εi would be equal to the observed

dependent variable, which in the AFT context usually is the log of the survival time. In the

censored model, the log-survival time is only partially observed.

The parameter of interest is β0. We provide an identification result that will be based

primarily on the following conditions, which characterize the censoring and error term be-

havior:

A1 med(εi|xi) = 0

A2 ci ⊥ εi|xi

A3 The matrix E[I[x′iβ0 ≤ ci]xix
′
i] is invertible.

The first of the above conditions is the conditional median assumption imposed previously

in the literature- e.g. Honoré et al.(2002) and Ying et al.(1995). It permits very general

forms of heteroskedasticity, and is weaker than the assumption εi ⊥ xi as was imposed in

Buckley and James(1979), Yang(1999), Portnoy(2003). The second condition allows the

censoring variable to depend on the regressors in an arbitrary way, and is weaker than the
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condition ci ⊥ xi imposed in Honoré et al.(2002), Ying et al.(1995)1. Thus we can see that

by permitting both conditional heteroskedasticity and covariate dependent censoring, our

assumptions are weaker than existing work on the censored AFT model. Furthermore the

third condition imposes weaker support conditions on the censoring variable when compared

to existing work in the literature. For example, the estimator in Koul et al.(1981) requires the

support of the censoring variable to be sufficiently large, thereby ruling out fixed censoring.

The estimator in Ying et al.(1995) requires the censoring variable to exceed the index x′iβ0

with probability 1, thus often ruling out the fixed censoring case as well.

We now describe our procedure for identifying β0. Before doing so, we introduce functions

of the data we will be using to establish an identification result that estimation will be based

on. For any possible parameter value β, define the functions of xi

τ1(xi, β) = E[I[vi ≥ x′iβ]|xi]− 1

2
(2.3)

and let

τ0(xi, β) = E[(1− di) + diI[vi ≥ x′iβ]|xi]− 1

2
(2.4)

=
1

2
− E[diI[vi ≤ x′iβ]|xi] (2.5)

We next provide an objective function under which our estimator will be based on.

Lemma 2.1 Let the function g(xi, β) be defined as:

g(xi, β) = τ1(xi, β)I[τ1(xi, β) ≥ 0] + τ0(xi, β)I[τ0(xi, β) ≤ 0] (2.6)

then under Assumptions A1-A3,

1. g(xi, β0) = 0 xi-a.s.

2. PX(g(xi, β) > 0) > 0 for all β 6= β0.

1Both of these papers suggest methods to allow for the censoring variable to depend on the covariates,

which involve replacing the Kaplan-Meier procedure they require with a conditional Kaplan Meier. This will

require the choice of smoothing parameters to localize the Kaplan-Meier procedure, as well as the additional

regularity conditions in Beran(1981).
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The lemma is stating that at the true value of the parameter, the function g(·, β0) is 0

for all values in the support of xi, whereas at β 6= β0 the function is positive somewhere in

the support of xi. As this result is fundamental to what follows in the paper, we prove it

here.

Proof: First we note note

P (vi ≥ x′iβ0|xi) = P (εi ≥ 0|xi)P (ci ≥ x′iβ0|xi) =
1

2
P (ci ≥ x′iβ0|xi)

This results in τ1(xi, β0)I[τ1(xi, β0) ≥ 0] = 0 Similarly, since

divi = di(x
′
iβ0 + εi) ≤ x′iβ0 + εi

one can show that τ0(xi, β0) is always non-negative, and thus τ0(xi, β0)I[τ0(xi, β0) ≤ 0] = 0.

Next, consider the “imposter” value β 6= β0. Let δ = β− β0. By Assumption A3, we can

find a subset of the support of (ci, x
′
i), which we denote by S∗cx, that has positive measure,

where x′iβ0 ≤ ci for all (ci, xi) ∈ Scx and xi does not lie in a linear subspace of Rk when

restricted to this set. Consequently, for any (c∗, x∗) ∈ Scx, we have x∗δ 6= 0.

We will establish that g(x∗, β) 6= 0. If x∗δ < 0 then since c∗ ≥ x∗β0,

τ1(x
∗, β) = P (εi ≥ x∗δ|xi = x∗)− 1

2
> 0. by A2. If x∗δ > 0, first note since for any xi,

diI[vi ≤ x′iβ] = I[x′iβ0 + εi ≤ ci]I[x′iβ0 + εi ≤ x′iβ] = I[εi ≤ min(ci − x′iβ0, x
′
iδ)]

So at c∗, x∗, where x∗β0 < c∗, x∗δ > 0, the expected value of the above expression is greater

than 1
2
. Consequently τ0(x

∗, β) < 0. Therefore, we have established g(x∗, β) 6= 0 for any

β 6= β0 and any (c∗, x∗) ∈ Scx, which has positive measure. ¥

Remark 2.1 Our identification result in Lemma 2.1 uses available information in the two

functions τ1(·, ·) and τ0(·, ·). We can contrast this with the procedure in Ying et al.(1995)

which is only based on the function τ1(·), and consequently requires to reweight the data using

the Kaplan Meier(1958) estimator. As alluded to previously, this imposes strong support

conditions on the censoring variable does not allow for covariate dependent censoring, unless

one uses the conditional Kaplan Meier estimator in Beran(1981) to reweight the data, which

introduces the complication of selecting smoothing parameters and trimming procedures.
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Lemma 2.1 establishes a conditional moment condition which we aim to base our estima-

tor for β0 on. Recent work on conditional moment estimation includes Donald et al.(2003),

and recently in Dominguez and Lobato(2004)2 (DL hereafter). As mentioned in DL, some

previous work in the literature (e.g. Chamberlain(1987)), do attain the semiparametric

efficiency bound, but at the expense of selecting smoothing parameters.

Our identification result and estimation procedure will be similar to the framework con-

sidered in DL, who recognized the difficulty in translating a conditional moment model into

an unconditional moment model while ensuring global identification of the parameters of

interest. Our model is based on a set of conditional moment inequalities that are satisfied

uniquely for all x at the truth. To ensure global identification from a set of conditional mo-

ment inequalities, we provide a procedure that modifies the estimator in DL to take account

of moment inequalities and preserve global point identification3.

To explain how we attain global point identification, we define the following functions

of the parameter vector, and two vectors of the same dimension as xi. Specifically let t1, t2

denote two vectors the same dimension as xi and define the following functions:

H1(β, t1, t2) = E

{
[I[vi ≥ x′iβ]− 1

2
]I[t1 ≤ xi ≤ t2]

}
(2.7)

H0(β, t1, t2) = E

{
[
1

2
− diI[vi ≤ x′iβ]]I[t1 ≤ xi ≤ t2]

}
(2.8)

where above the inequality t1 ≤ xi, corresponds to each component of the two vectors.

From Billingsley(1995, Theorem 16.10) a conditional moment condition can be related to

unconditional moment conditions with indicator functions as above comparing regressor

values to all vectors in Rk. Our identification result will need to make use of two distinct

vectors in Rk. As we will see below, this will translate into estimation procedure involving

a third order U-process.

Our global identification result is based on the following objective function of distinct

realizations of the observed regressors, denoted here by xj, xk:

Q(β) = E
[
H1(β, xj , xk)2I[H1(β, xj , xk) ≥ 0] + H0(β, xj , xk)2I[H0(β, xj , xk) ≤ 0]

]
(2.9)

2Similar results are also given in Koul(2002) and Stute(1996).
3In interesting work, Rosen(2005) has extended the DL framework to estimate models that are set iden-

tified.

5



The intuition of our identification result is the following simple case. Suppose that

uniquely at θ = θ0, the following inequality moment condition is satisfied E[m(y; θ)|x] ≤ 0 for

all x a.e. , then also uniquely at θ = θ0, we have H(xi, xj; θ) = E[I[xi ≤ x ≤ xj]m(y; θ)] = 0

for all xi and xj a.e. The main identification result is stated in the following lemma:

Lemma 2.2 Under Assumptions A1-A3, Q(β) is uniquely minimized at β = β0.

Proof: We first show that

Q(β0) = 0 (2.10)

To see why note this follows directly from the previous lemma which established that

τ1(xi, β0) = τ0(xi, β0) = 0 for all values of xi on its support. Similarly, as established in

that lemma, there exists a regressor value x∗, such that for all x in a sufficiently small neigh-

borhood of x∗, max(τ1(x, β)I[τ1(x, β) ≥ 0],−τ0(x, β)I[τ0(x, β) ≤ 0]) > 0 for any β 6= β0. Let

Xδ denote this neighborhood of x∗. Since xi has the same support across observations, if

we let Xjk denote the set of values that xk − xj takes, it follows that the set Xjk ∩ Xδ has

positive measure, establishing that Q(β) > 0 for β 6= β0. ¥

Having shown global identification, we propose an estimation procedure, which is based

on the analogy principle, and minimizes the sample analog of Q(β). Our estimator involves

a third order U-statistic which selects the values of t1, t2 that ensures conditioning on all pos-

sible regressor values, and hence global identification. Specifically, we propose the following

estimation procedure:

First, define the functions:

Ĥ1(β, xj, xk) =
1

n

n∑
i=1

(I[vi ≥ x′iβ]− 1

2
)I[xj ≤ xi ≤ xk] (2.11)

Ĥ0(β, xj, xk) =
1

n

n∑
i=1

(
1

2
− diI[vi ≤ x′iβ])I[xj ≤ xi ≤ xk] (2.12)
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β̂ = arg min
β∈B

Q̂n(β) (2.13)

= arg min
β∈B

1

n(n− 1)

∑

j 6=k

{
Ĥ1(β, xj, xk)

2I[Ĥ1(β, xj, xk) ≥ 0] (2.14)

+ Ĥ0(β, xj, xk)
2I[Ĥ0(β, xj, xk) ≤ 0]

}

As we can see, the above estimation procedure minimizes a third order U-process, which

is computationally expensive. As is the case with DL, (which minimizes a second order

U-process) this provides us with estimation procedure without the need to select smoothing

parameters.

We next turn attention to the asymptotic properties of the estimator. We begin by

establishing consistency under the following assumptions.

C1 The parameter space B is a compact subset of Rk.

C2 The sample vector (di, vi, x
′
i)
′ is i.i.d.

C3 Q(β) is continuous.

The following theorem establishes consistency of the estimator; its proof is left to the

appendix.

Theorem 2.1 Under Assumptions A1-A3, and C1-C3,

β̂
p→ β0

We next turn attention to root-n consistency and asymptotic normality. Our results our

based on the following additional regularity conditions:

D1 β0 is an interior point of the parameter space B.

D2 The error terms {εi} are absolutely continuously distributed with conditional density

function f(ε | x) given the regressors xi = x which has median equal to zero, is bounded

above, Lipschitz continuous in ε, and is bounded away from zero in a neighborhood of

zero, uniformly in xi.
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D3 The censoring values {ci} are distributed independently of εi conditionally on the re-

gressors. We note this weak restriction permits both conditional heteroskedasticity

and covariate dependent censoring.

D4 The regressors {xi} and censoring values {ci} satisfy

(i) Pr{| ci − x′iβ |≤ d} = O(d) if ‖β − β0‖ < η0, some η0 > 0; and

(ii) E[I[ci−x′iβ > η0] ·xix
′
i] = E

[
Sc|x(x′iβ0 + η0) · xix

′
i

]
is nonsingular for some η0 > 0

The following theorem establishes the root-n consistency and asymptotic normality of

our proposed minimum distance estimator. Due to its technical nature, we leave the proof

to the appendix.

Theorem 2.2 Under Assumptions A1-A3, C1-C3, and D1-D4

√
n(β̂ − β0) ⇒ N(0, V −1ΩV −1) (2.15)

where we define V as follows. Let C denote the subset of X where for all x ∈ C, P (ci ≥
x′iβ0|xi = x) = 1. Define the function

G(xj, xk) =

∫
fε(0|xi)xiI[xj ≤ xi ≤ xk]fX(xi)dxi (2.16)

where fX(·) denotes the regressor density function. Then

V = 4E[I[[xj, xk] ⊆ C]G(xj, xk)G(xj, xk)
′] (2.17)

Next we define the outer score term Ω. Now define the function define

G(xj, xk, xi) = G(xj, xk)I[xj ≤ xi ≤ xk]

from which we define

Ḡ(xi) = E[G(xj, xk, xi)|xi]

The outer score term is defined as

Ω = E[δ0iδ
′
0i]

with

δ0i = 2Ḡ(xi)(I[vi ≥ x′iβ0]− diI[vi ≤ x′iβ0])

To conduct inference, one can either adopt the bootstrap or consistently estimate the

variance matrix.
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3 Finite Sample Performance

The theoretical results of the previous section give conditions under which the randomly-

censored regression quantile estimator will be well-behaved in large samples. In this section,

we investigate the small-sample performance of this estimator by reporting results of a small-

scale Monte Carlo study.

The model used in this simulation study is

yi = min{α0 + xiβ0 + εi, ci} (3.1)

where the scalar regressor xi has a standard normal distribution. The true values α0 and β0 of

the parameters are 0.5 and 1, respectively. We considered two types of censoring- covariate

independent censoring, where ci was distributed chi-squared, one degree of freedom, and

covariate dependent censoring, where we set ci = I[xi ≥ 0]∗exp(xi)−I[xi ≤ 0]∗exp(x)+xi∗zi,

where zi was distributed standard normal.

We assumed the error distribution of εi was standard normal. In addition, we simulated

designs with heteroskedastic errors as well: εi = σ(xi) · ηi, with ηi having a standard normal

distribution and σ(xi) = exp(xi). For these designs, the overall censoring probabilities vary

between 25% and 35%. For each replication of the model, the following estimators were

calculated4:

a) The minimum distance least absolute deviations (MD) estimator introduced in this paper.

b) The randomly censored LAD introduced in Honoré et al.(2002), refereed to in the tables

as HKP.

c) The estimator proposed by Buckley and James (1979);

d) The estimator proposed by Ying et al. (1995);

Both the Ying et al.(1995) and MD estimators were computed using the Nelder Meade

simplex algorithm.5

4The simulation study was performed in GAUSS and C++. Codes for the estimators introduced in this

paper are available from the authors upon request.
5OLS, LAD, and true parameter values were used in constructing the initial simplex for the results

reported.
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The randomly-censored least absolute deviations estimator (HKP) was computed using

the iterative Barrodale-Roberts algorithm described by Buchinsky(1995)6; in the random

censoring setting, the objective function can be transformed into a weighted version of the

objective function for the censored quantile estimator with fixed censoring.

The results of 401 replications of these estimators for each design, with sample sizes of

50, 100, 200, and 400, are summarized in Tables I-IV, which report the mean bias, median

bias, root-mean-squared error, and mean absolute error. These 4 tables corresponded to

designs with 1)homoskedastic errors and covariate independent censoring, 2)heteroskedastic

errors and covariate independent censoring, 3) homoskedastic errors and covariate dependent

censoring, and 4) heteroskedastic errors and covariate dependent censoring. Theoretically,

only the MD estimator introduced here is consistent in all designs, and the only estimator

which is consistent in design 4.

HKP and Ying et al.(1995) estimators are consistent under designs 1 and 2, 7, whereas

the Buckley-James estimator is inconsistent when the errors are heteroskedastic as is the

case in designs 2 and 4.

The results indicate that the estimation method proposed here perform relatively well.

For some designs the MD estimator exhibits large values of RMSE for 50 observations, but

otherwise appears to be converging at the root −n rate.

As might be expected, the MD estimator, which do not impose homoskedasticity of the

error terms, is superior to Buckley-James when the errors are heteroskedastic. It generally

outperforms HKP and Ying et al.(1995) estimator when the censoring variable depends on

the covariates. This is especially the case when the sample size is 200 or larger. HKP

preforms surprisingly well for small samples in design 4. However, its inconsistency is clearly

reflected here as well as its bias and RMSE does not shrink with the sample size.

4 Conclusions

This paper introduces a new estimation procedure for an AFT model with conditional het-

eroskedasticity and very general censoring when compared to existing estimators in the

6OLS was used as the starting value when implementing this algorithm for the simulation study.
7Actually, the Ying et al.(1995) estimator are inconsistent for the regressor independent censoring designs

as well, because of the bound on the support of ci. However, as observations for which estimated values of

the survivor function were close to 0 were “trimmed” away, this is not reflected in the simulation results.
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literature. The procedure minimized a third order U-process, and did not required the esti-

mation of the censoring variable distribution, nor did it require nonparametric methods and

the selection smoothing parameters. The estimator was shown to have desirable asymptotic

properties and a simulation study indicated adequate finite sample performance.

The results established in this paper suggest areas for future research. Specifically, the

semiparametric efficiency bound for this general censoring model as yet to be derived, and

it would be interesting to see how are MD estimator can be modified to attain the bound.

Furthermore, it would be useful to see how if the identification methods used here can be

modified to identify regression parameters in a panel data model with fixed effects. We leave

these possible extensions for future research.
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A Proof of Theorem 2.1

Here we verify the conditions in Theorem 2.1 in Newey and McFadden(1994). Identification

follows from 2.2. Compactness and continuity follow from Assumptions C1 and C3 respec-

tively. It remains to show uniform convergence of the sample objective function to Q(·). To

establish this result we will define the following functions:

Q̂n(xi, xjβ) = Ĥ1(β, xi, xj)2I[Ĥ1(β, xi, xj) ≥ 0] + Ĥ0(β, xi, xj)2I[Ĥ0(β, xi, xj) ≤ 0]

Qn(xi, xj , β) = H1(β, xi, xj)2I[H1(β, xi, xj) ≥ 0] + H0(β, xi, xj)2I[H0(β, xi, xj) ≤ 0]

To simplify our proof we assume here that the regressor values lie in a compact set. Then

by the fact that the terms in the summation in Ĥ1(xi, xj, β) and Ĥ0(xi, xj, β) involve two

indicator functions and hence are bounded, we can apply Lemma 2.4 in Newey and McFad-

den(1994) to conclude that

sup |Q̂n(·, ·, ·)−Qn(·, ·, ·)| p→ 0 (A.1)

Next, we will establish that

sup
β∈B

|Qn(β)−Q(β)| = op(1) (A.2)

For this we can apply existing uniform laws of large numbers for U− statistics. Specifically,

we can show the r.h.s. of (A.2) is Op(n
−1/2) by Corollary 7 in Sherman(1994a) since the

functional space index by β is Euclidean for a constant envelope. The Euclidean property

follows from example (2.11) in Pakes and Pollard(1989). ¥

B Sketch of Proof of Theorem 2.2

As the proposed estimator is defined as the minimizer of a U-process, our proof strategy will

be to provide a locally quadratic approximation function of the objective function. We adopt

this strategy since the objective function is not smooth in the parameters. Quadratic approx-

imation of objective functions have been provided in, for example, Pakes and Pollard(1989),

Sherman(1993,1994a,b) and Newey and McFadden(1994).

Here, we follow the approach in Sherman(1994b). Having already established consistency

of the estimator, we will first establish root-n consistency and asymptotic normality. For

root-n consistency we will apply theorem 1 of Sherman(1994). Here, let Gn(β) denote the
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sample objective function and let G(β) denote the limiting objective function. From Theorem

1 in Sherman(1994b), sufficient conditions for root-n consistency are that

1. β̂ − β0 = op(1)

2. There exists a neighborhood of β0 and a constant κ > 0 such that G(β) − G(β0) ≥
κ‖β − β0‖2 for all β in this neighborhood.

3. Uniformly over op(1) neighborhoods of β0

Gn(β) = G(β) + Op(‖β − β0‖/
√

n) + op(‖β − β0‖2)

Once root-n consistency has been established we can apply Theorem 2 in Sherman(1994b)

to attain asymptotic normality. A sufficient condition is that uniformly over Op(1/
√

n)

neighborhoods of β0,

Gn(β)− Gn(β0) =
1

2
(β − β0)

′V (β − β0) +
1√
n

(β − β0)
′Wn + op(

1

n
) (B.1)

where Wn converges in distribution to a N(0, Ω) random vector, and V is positive definite.

In this case the asymptotic variance of β̂ − β0 is V −1ΩV −1.

We will turn immediately to (B.1). Here, we will work with the U -statistic decomposition

in, for example, Serfling(1980) as our objective function is a third-order U -process. We will

first derive an expansion for G(β) around G(β0). We denote that even though Gn(β) is

not differentiable in β, G(β) is sufficiently smooth for Taylor expansions to apply as the

expectation operator is a smoothing operator. Taking a second order expansion of G(β)

around G(β0), we obtain

G(β) = G(β0) +∇βG(β0))
′(β − β0) +

1

2
(β − β0)

′∇ββG(β∗))(β − β0) (B.2)

where ∇β and ∇ββ denote first and second derivative operators and, and βast denotes an

intermediate value. We note that the first two terms of the right hand side of the above

equation are 0, the first by how we defined the objective function, and the second by our

identification result in Theorem 1. We will thus evaluate the following result:

∇ββG(β∗)) = V + op(1) (B.3)

To formally show the above result, we first expand Ĥ1(β, xj, xk)
2 in the double summa-

tion.
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Ĥ1(β, xj, xk)
2 =

1

n2

n∑
i=1

(I[vi ≥ x′iβ]− 1

2
)2I[xj ≤ xi ≤ xk] (B.4)

+
1

n2

∑

l 6=m

(I[vl ≥ x′lβ]− 1

2
)(I[vm ≥ x′mβ]− 1

2
) (B.5)

· (I[vl ≥ x′lβ]− 1

2
)I[xj ≤ xl ≤ xk]I[xj ≤ xm ≤ xk] (B.6)

Similarly, we have:

Ĥ0(β, xj, xk)
2 =

1

n2

n∑
i=1

(
1

2
− diI[vi ≤ x′iβ])2I[xj ≤ xi ≤ xk] (B.7)

+
1

n2

∑

l 6=m

(
1

2
− dlI[vl ≤ x′lβ]) (B.8)

· (
1

2
− dmI[vm ≤ x′mβ])I[xj ≤ xl ≤ xk]I[xj ≤ xm ≤ xk] (B.9)

At this stage, we will concentrate on the Ĥ1(xj, xk, β) half of the objective function and

make 2 adjustments to this half of the objective function, both of which will be shown to

not affect the limiting distribution theory. The first that the squared terms above in the

summation across i can be ignored in the asymptotic theory due to fact we are summing

across n terms with the constant being 1
n2 . The second is that we will replace the indicator

function in the objective function

I[Ĥ1(xj, xk, β) ≥ 0] with I[H1(xj, xk, β0) ≥ 0]. This also will not affect the limiting distribu-

tion theory and is analogous to results found in Powell(1984) and Khan and Powell(2001).

We will thus apply Theorem 2 in Sherman(1994b) to the following 4-th order U -statistic:

1

n(n− 1)

∑

j 6=k

I[H1(xj, xk, β0) ≥ 0]
1

n2

∑

l 6=m

I[xj ≤ xl ≤ xk]I[xj ≤ xm ≤ xk]× (B.10)

(I[vl ≥ x′lβ]− 1

2
)(I[vm ≥ x′mβ]− 1

2
) (B.11)

We first note that H1(xj, xk, β0) ≥ 0) implies that the interval [xj, xk] ⊆ C. Thus the

other indicators in the above summation imply that both xl, xm ∈ C. This in turn will imply

that the expectation of the above summation will be 0 when β = β0. We will evaluate the

expectation as a function of β and expand around β0.
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First, we condition on the regressors xj, xk, xl, xm, we get

I[H1(xj, xk, β0) ≥ 0]I[xj ≤ xl ≤ xk]I[xj ≤ xm ≤ xk]× (B.12)

(Sε(x
′
l(β − β0))Sc(x

′
lβ)− 1

2
)(Sε(x

′
m(β − β0))Sc(x

′
mβ)− 1

2
) (B.13)

Where Sε(·), Sc(·) denote the conditional survivor functions of εi and ci respectively.

Expanding around β0, we note the first term and the derivative term are 0 since both

xl, xm ∈ C. The second derivative term in the expansion is of the form

I[H1(xj, xk, β0) ≥ 0]I[xj ≤ xl ≤ xk]I[xj ≤ xm ≤ xk](β−β0)
′fε(0|xl)fε(0|xm)xlx

′
m(β−β0)

(B.14)

Next, we take expectations of the above term conditional on xj, xk. First, take the expec-

tation with respect to xl, conditioning on xj, xk, ignoring for now the terms involving xm.

This gives the following function of xj, xk:

G(xj, xk) =

∫
fε(0|xl)xlI[xj ≤ xl ≤ xk]fX(xl)dxl (B.15)

where fX(·) denotes the regressor density function. A similar expression can be found when

integrating with respect to xm. Finally, we can apply the same arguments to the other ”half”

of the objective function involving H0(xj, xk, β0).

Combining all these results we may conclude that form of V in the quadratic approxi-

mation in Theorem 2 in Sherman(1994b) is of the form

V = 4E[I[[xj, xk] ⊆ C]G(xj, xk)G(xj, xk)
′] (B.16)

We next turn attention to the deriving the form of the score term in Theorem 2 in

Sherman(1994b). As before, we will work with the first ”half” of the objective function, and

the 4th order U -process in (B.10). To proceed, we will first replace the term (I[vl ≥ x′lβ]− 1
2
)

with

(I[vl ≥ x′lβ0]− 1
2
). The resulting remainder term can be shown to be asymptotically negligible

uniformly in β in an Op(n
−1/2) neighborhood of β0 using arguments in Pakes and Pollard

(1989) and Sherman(1994a,b).
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With this replacement, we can look at the form of first order projection terms in the

U -statistic decomposition in Sherman(1994b). Recall this involves the sample means of the

conditional expectations of each of the four arguments. The conditional expectation given

the subscript j, k, m terms are each 0 due to the fact that xl ∈ C and we have replaced β

with β0 in that term. Therefore, all that remains is the conditional expectation of (B.10)

(after replacing β with β0) in the term involving xl. Here, we can use the same arguments

as we did for the Hessian term, this time expanding

Sε(x
′
m(β − β0))Sc(x

′
mβ) around β = β0, conditioning on vl, xl.

Here, the first derivative term does not vanish as it did in the Hessian term. To get the

form of this first derivative term, define G(xj, xk) as before, and now define

G(xj, xk, xl) = G(xj, xk)I[xj ≤ xl ≤ xk]

from which we define

Ḡ(xl) = E[G(xj, xk, xl)|xl]

Thus the form of the first order projection terms in the U -statistic decomposition of the

first ”half” of the objective function is

(β − β0)
′ 1
n

n∑

l=1

2Ḡ(xl)(I[vl ≥ x′lβ0]− 1

2
) (B.17)

plus an asymptotically negligible remainder term.

Similar arguments can be used for the other ”half” of the objective function involving

H0(xj, xk, β). Combining both pieces, we get the following representation for the linear term

in Theorem 2 in Sherman(1994b)

(β − β0)
′ 1
n

n∑

l=1

2Ḡ(xl)(I[vl ≥ x′lβ0]− dlI[vl ≤ x′lβ0]) (B.18)

plus an asymptotically negligible term.

Combining this result with our results for the Hessian term, and applying Theorem 2 in

Sherman(1994b), we can conclude that

√
n(β̂ − β0) ⇒ N(0, V −1ΩV −1) (B.19)
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where Ω = E[δ0lδ
′
0l] with

δ0l = 2Ḡ(xl)(I[vl ≥ x′lβ0]− dlI[vl ≤ x′lβ0])

Which established proof of the theorem. ¥
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TABLE I

Simulation Results for Censored Regression Estimators

CI Censoring, Homosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.2424 0.1336 0.5719 0.2090 0.1774 0.1097 0.5033 0.2064

HKP -0.0032 -0.0261 0.2714 0.1819 -0.0611 -0.0794 0.2728 0.1665

Buckley James -0.0535 -0.0610 0.1875 0.1225 0.0041 -0.0121 0.1883 0.1353

Ying et al. -0.0103 -0.0279 0.3480 0.1936 -0.1679 -0.1115 0.3853 0.1922

100 obs.

MD 0.1136 0.0646 0.3156 0.1367 0.0892 0.0605 0.3151 0.1652

HKP -0.0081 -0.0336 0.1965 0.1238 -0.0155 -0.0115 0.2091 0.1202

Buckley James -0.0214 -0.0361 0.1341 0.0911 -0.0104 -0.0061 0.1264 0.0775

Ying et al. 0.0092 0.0188 0.1837 0.1050 -0.0799 -0.0553 0.2122 0.1126

200 obs.

MD 0.0469 0.0275 0.2141 0.1180 0.0405 0.0292 0.2151 0.1309

HKP 0.0044 -0.0142 0.1305 0.0796 0.0073 -0.0070 0.1429 0.0798

Buckley James -0.0085 -0.0004 0.1099 0.0699 -0.0010 0.0016 0.0925 0.0537

Ying et al. -0.0154 -0.0116 0.1368 0.0911 -0.0425 -0.0321 0.1756 0.0797

400 obs.

MD 0.0078 -0.0006 0.1486 0.0952 0.0119 -0.0008 0.1517 0.1000

HKP -0.0045 -0.0031 0.1046 0.0598 0.0022 0.0111 0.0978 0.0669

Buckley James -0.0168 -0.0065 0.0684 0.0490 -0.0083 -0.0131 0.0600 0.0491

Ying et al. -0.0058 -0.0197 0.1145 0.0624 -0.0421 -0.0431 0.1204 0.0743
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TABLE II

Simulation Results for Censored Regression Estimators

CI Censoring, Heterosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.0659 0.0433 0.2490 0.1091 0.0612 0.0286 0.2484 0.0865

HKP -0.0457 -0.0342 0.2708 0.1496 -0.0581 -0.0219 0.2315 0.0891

Buckley James -0.6671 -0.5731 0.8346 0.5731 -0.9244 -0.7440 1.2189 0.7440

Ying et al. -0.0614 -0.0561 0.4602 0.1862 -0.2161 -0.1226 0.6423 0.2120

100 obs.

MD 0.0273 0.0175 0.1655 0.0853 0.0178 0.0075 0.1406 0.0673

HKP -0.0237 -0.0210 0.1792 0.1138 -0.0204 -0.0210 0.1237 0.0606

Buckley James -0.5309 -0.4637 0.6263 0.4637 -0.7941 -0.6857 0.9151 0.6857

Ying et al. -0.0499 -0.0230 0.2698 0.1139 -0.0632 -0.0366 0.2554 0.1173

200 obs.

MD -0.0038 -0.0057 0.1261 0.0786 -0.0007 0.0012 0.0973 0.0533

HKP -0.0119 -0.0116 0.1051 0.0737 -0.0069 -0.0041 0.0676 0.0367

Buckley James -0.4420 -0.4401 0.4951 0.4401 -0.7528 -0.6889 0.8166 0.6889

Ying et al. -0.0310 -0.0161 0.1820 0.0934 -0.0431 -0.0251 0.1826 0.0774

400 obs.

MD -0.0154 -0.0098 0.0905 0.0596 -0.0095 -0.0072 0.0587 0.0364

HKP -0.0234 -0.0265 0.0852 0.0556 -0.0140 -0.0145 0.0492 0.0284

Buckley James -0.4215 -0.4396 0.4450 0.4396 -0.7430 -0.7116 0.7709 0.7116

Ying et al. -0.0302 -0.0550 0.1864 0.1143 -0.0180 -0.0511 0.2243 0.0866
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TABLE III

Simulation Results for Censored Regression Estimators

CD Censoring, Homosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD -0.0383 -0.0099 0.4130 0.2339 0.0182 0.0162 0.4734 0.2345

HKP -0.0775 -0.0766 0.2398 0.1517 0.0187 0.0049 0.2784 0.1950

Buckley James -0.0686 -0.0830 0.2241 0.1452 0.0170 0.0284 0.2046 0.1391

Ying et al. 0.0038 -0.0143 0.2750 0.1733 0.3062 0.2712 0.4041 0.2926

100 obs.

MD -0.0000 0.0062 0.2625 0.1488 -0.0139 -0.0105 0.2999 0.1785

HKP -0.0527 -0.0330 0.1643 0.1091 0.0294 0.0425 0.1844 0.1359

Buckley James -0.0290 -0.0262 0.1428 0.1057 0.0028 0.0104 0.0992 0.0641

Ying et al. -0.0051 -0.0070 0.1714 0.1208 0.3451 0.3247 0.3830 0.3247

200 obs.

MD -0.0017 0.0007 0.2041 0.1245 -0.0106 -0.0110 0.2022 0.1199

HKP -0.0242 -0.0333 0.1174 0.0831 0.0872 0.0719 0.1453 0.0845

Buckley James -0.0214 -0.0208 0.0825 0.0595 -0.0022 0.0042 0.0749 0.0518

Ying et al. 0.0505 0.0658 0.1635 0.0948 0.3569 0.3381 0.3916 0.3381

400 obs.

MD 0.0011 0.0030 0.1616 0.0982 -0.0129 -0.0086 0.1489 0.0927

HKP -0.0127 -0.0097 0.0767 0.0510 0.0811 0.0782 0.1084 0.0808

Buckley James 0.0024 -0.0016 0.0623 0.0420 0.0062 0.0005 0.0583 0.0452

Ying et al. 0.0308 0.0224 0.1079 0.0633 0.4111 0.4304 0.4316 0.4304
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TABLE IV

Simulation Results for Censored Regression Estimators

CD Censoring, Heterosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD -0.0054 0.0000 0.3986 0.1732 0.0286 0.0160 0.5462 0.1904

HKP 0.0962 0.0895 0.3109 0.1947 0.1075 0.0923 0.2556 0.1490

Buckley James 0.1418 -0.0683 1.2248 0.4135 -0.8735 -0.6956 1.4538 0.6956

Ying et al. -0.6507 -0.4609 2.0226 0.5182 -0.2543 -0.2327 1.2432 0.3681

100 obs.

MD 0.0005 -0.0021 0.2583 0.1259 -0.0380 -0.0115 0.3956 0.1284

HKP 0.1282 0.1649 0.2467 0.1913 0.1295 0.1169 0.2120 0.1436

Buckley James 0.1910 0.1542 0.6758 0.3917 -0.6270 -0.5537 0.8489 0.5537

Ying et al. -0.4324 -0.4731 0.6741 0.4948 -0.1263 -0.1504 0.4982 0.2620

200 obs.

MD -0.0048 0.0033 0.1997 0.1075 -0.0001 0.0050 0.2073 0.0745

HKP 0.1790 0.1780 0.2411 0.1780 0.1699 0.1733 0.2119 0.1733

Buckley James 0.2958 0.2106 0.6305 0.3071 -0.5496 -0.5003 0.7303 0.5318

Ying et al. -0.3295 -0.4709 0.5915 0.4872 -0.1500 -0.1923 0.6122 0.2216

400 obs.

MD -0.0053 -0.0069 0.1478 0.0822 -0.0046 -0.0036 0.1152 0.0531

HKP 0.1911 0.1884 0.2192 0.1884 0.1607 0.1571 0.1810 0.1571

Buckley James 0.4339 0.3341 0.6524 0.3341 -0.5209 -0.5642 0.6425 0.5642

Ying et al. -0.4116 -0.4891 0.4869 0.4930 -0.1054 -0.1815 0.3708 0.2025
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