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Abstract. This paper considers random coefficients binary choice models. The main goal is to es-

timate the density of the random coefficients nonparametrically. This is an ill-posed inverse problem

characterized by an integral transform. A new density estimator for the random coefficients is de-

veloped, utilizing Fourier series expansions on spheres. This approach offers a clear insight on the

identification problem. More importantly, it leads to a closed form estimator formula. This allows a

simple plug-in procedure that requires no numerical optimization. The new estimator, therefore, is easy

to implement in empirical applications, while being flexible about the treatment of unobserved hetero-

geneity. Extensions including treatments of non-random coefficients and models with endogeneity are

discussed.

1. Introduction

Consider a binary choice model

(1.1) Y = I
{
X ′β ≥ 0

}
where I denotes the indicator function and X is a d-vector of covariates. We assume that the first

element of X is 1, the vector X is thus of the form X = (1, X̃ ′)′. The vector β is random. The random

vector (Y, X̃, β) is defined on some probability space (Ω,F , P), and (yi, x̃i, βi), i = 1, ..., N denote its

realizations. The econometrician observes (yi, x̃i), i = 1, ..., N , but βi, i = 1, ..., N remain unobserved.

Therefore X̃ and β correspond to observed and unobserved heterogeneity across agents, respectively.

Note that the first element of β in this formulation absorbs the usual scalar stochastic shock term as

well as a constant in standard binary choice with non-random coefficients. This formulation is used
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in Ichimura and Thompson (1993), and is convenient for the subsequent development in the paper.

Throughout the article we assume

Assumption 1.1. β is independent of X̃.

The choice probability is given by

r(x) = P(Y = 1|X = x)(1.2)

= Eβ[I(x′β > 0)].

Discrete choice models with random coefficients variation are useful in applied research since it is

often crucial to incorporate unobserved heterogeneity in the choice behavior of individuals. There

is a vast and active literature on this topic. Recent contributions include Briesch, Chintagunta and

Matzkin (1996), Brownstone and Train (1999), Chesher and Santos Silva (2002), Hess, Bolduc and

Polak (2005), Harding and Hausman (2006), Athey and Imbens (2007) Bajari, fox and Ryan (2007)

and Train (2007). A common approach in estimating random coefficient discrete choice models is to

assume parametric specifications. A leading example is the mixed Logit model, which is discussed in

details by Train (2003). If one does not impose a parametric distributional assumption, the distribution

of β itself is the structural parameter of interest. The goal for the econometrician is then to back out

the distribution of β from the information about r(x) obtained from the data.

Nonparametric treatments for unobserved heterogeneity distributions is an important issue in

econometrics. Heckman and Singer (1984) study the issue of unobserved heterogeneity distributions

in duration models and propose a treatment by NPMLE. Elbers and Ridder (1982) also develop some

identification results in such models. Beran and Hall (1992) and Hoderlein, Klemela and Mammen

(2007) discuss nonparametric estimation of random coefficients linear regression models. Despite

the tremendous importance of random coefficient discrete choice models, as exemplified in the above

references, nonparametrics in this area is relatively underdeveloped. An important paper by Ichimura

and Thompson (1998) proposes a nonparametric maximum likelihood estimator (NPMLE) for the

CDF of β. They present sufficient conditions for identification and prove the consistency of the

NPMLE. The NPMLE requires high dimensional numerical maximization and can be computationally

intensive even for a moderate sample size.

Here we develop a different approach that shares many similarities with standard deconvolution

methods in the Euclidean space. This allows us to revisit the identification issue. Moreover, once

sufficient constraints are imposed on the parameter, we are able to estimate the density with a simple
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closed form formula. This is a simple plug-in procedure that requires no numerical optimization. The

new estimator, therefore, is easy to implement in empirical applications, while being flexible about

the treatment of unobserved heterogeneity.

Since the scale of β is not identified in the binary choice model, we normalize the scale so that

β is a vector of Euclidean norm 1 in Rd. Then β belongs to the d−1 dimensional sphere Sd−1. This is

not a restriction as long as the probability that β is equal to 0 is 0. Also, since only the angle between

X and β matters, we replace X by X/‖X‖ and assume X is on the sphere. We aim to recover the

joint probability density function fβ of β with respect to the spherical measure dσ over Sd−1 from the

N observations (y1, x1), . . . , (yN , xN ) of (Y, X).

The problem considered here is a linear ill-posed inverse problem. Let fX denote the density

of the covariates x, again with respect dσ. We can write

(1.3) r(x) =
∫

b∈Sd−1

I
{
x′b ≥ 0

}
fβ(b)dσ(b) =

∫
H(x)

fβ(b)dσ(b) := T (fβ) (x)

where the set H(x) is the hemisphere {b : x′b ≥ 0}. The mapping T is called the hemispherical

transformation and some of its properties are discussed in Groemer (1996). As we shall see, T is not

injective without further restrictions. Thus conditions need to be imposed to ensure identification.

Even under an additional condition which guarantees identification, however, the inverse of T is not

a continuous mapping, making the problem ill-posed. To see this, suppose we restrict fβ to be in

L2(Sd−1). Since the kernel is square integrable by compactness of the sphere, the operator is Hilbert-

Schmidt and thus compact. Therefore if the inverse of T were continuous, T −1T would map the closed

unit ball in L2(Sd−1) to a compact set. But the Riesz theorem states that the unit ball is relatively

compact if and only if the vector space has finite dimension. The fact that L2(Sd−1) is an infinite

dimensional space contradicts this. Therefore the inverse of T cannot be continuous. In order to

overcome this problem, we use a one parameter family of regularized inverses that are continuous and

converge to the inverse when the parameter goes to infinity. This is a common approach to ill-posed

inverse problems in statistics (see, e.g. Carrasco et al., 2007).

Due to the particular form of the kernel of the operator T involving the scalar product x′b, we

are able to show that the operator is an analogue of convolution in Rd. This analogy provides a clear

insight into the identification issue. It is also useful in deriving an estimator based on a series expansion

on the Fourier basis or its extension to higher dimensional spheres. These bases are defined via the

Laplacian on the sphere, and they diagonalize the operator T on L2
(
Sd−1

)
. Such techniques are used

in Healy and Kim (1996) for empirical Bayes estimation in the case of the sphere S2. The kernel of our
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integral operator T , however, does not satisfy the assumptions made by Healy and Kim. Moreover,

our approach utilizes the so-called “condensed” expressions. The approach replaces a full expansion

on a Fourier basis by an expansion in terms of the projections on the finite dimensional eigenspaces

of the Laplacian on the sphere. This is useful since an explicit expression of the projector is available.

It allows us to work in any dimension and does not require a parametrization by hyperspherical

coordinates nor the actual knowledge of an orthonormal basis. This approach, to the best of our

knowledge, appears to be new in the econometrics literature.

The paper is organized as follows. In Section 2 we introduce a toy model and the tools from

harmonic analysis that are used for the development of our estimation procedure and its asymptotic

analysis. We also present a new estimator for densities on a hypersphere. This, in turn, is potentially

useful for implementing our procedure for random coefficient binary choice models. Section3 presents

the main results of this article. It deals with both the identification and the estimation of the density

of the random coefficient. Extensions such as estimation of marginals, models with non-random

coefficients, treatment of endogeneity and multinomial discrete choice models are presented in Section

4.

2. Preliminaries

In this section we introduce some tools that are used to relate the estimation of the density of β

to a deconvolution problem. Useful geometric concepts are postponed to the appendix. We first study

the case where X is of dimension 2 to gain basic insights. We parameterize the vector b = (b1, b2)
′

of S1 by the angle φ = arccos (b1) in [0, 2π). As it is often the case when standard Fourier series

techniques are used, we consider spaces of complex valued functions. Let Lp(S1) denote the Banach

spaces of Lebesgue p-integrable functions and its norm by ‖ · ‖p. In the case of L2(S1), the norm is

derived from the hermitian product
∫ 2π
0 f(θ)g(θ)dθ. With the parametrization by angles we obtain

(2.1) T (fβ)(θ) =
∫ 2π

0
I {|θ − φ| < π/2} fβ(φ)dφ.

This expression suggests that the hemispherical transformation is a usual convolution of functions on

R/(2πZ). Rewrite (2.1) as

(2.2)
T (fβ)

π
(θ) =

∫ 2π

0

(
1
π

I {|θ − φ| < π/2}
)

fβ(φ)dφ.

It is then possible to link estimation of fβ with statistical deconvolution problems. T (fβ)/π is then

interpreted as the density of θ, which is generated by adding (on R/(2πZ)) a “noise” drawn from the
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uniform density 1
π I{|x| < π/2} to the “signal” φ drawn from fβ. Differentiating the right hand-side

of expression (2.1) we obtain fβ(θ + π/2)− fβ(θ− π/2) where fβ is defined on the line by periodicity.

Under an assumption such that fβ is supported on a hemisphere, this assumption is discussed further

in Section 3.1, we obtain either fβ(θ + π/2) or −fβ(θ − π/2). When the model is identified properly

the inverse is a differential operator and as such unbounded. It is typically the case that the inverse

of kernel operator is a differential operator but, in order to generalize the inversion to any dimension,

we prefer to use an approach based on Fourier series and their generalizations to higher dimensional

spheres.

Fourier series is a useful tool for deconvolution problems on the circle. Either (exp(−int)/(2π))n∈Z

or the real valued functions (cos(nt)/(
√

π), sin(nt)/(
√

π))n∈N can be used as the basis of L2(S1) for

Fourier series. Denoting by cn(f) =
∫ 2π
0 f(t) exp(−int)dt/(2π) the Fourier coefficients of f ∈ L2(S1)

(2.3) fβ(θ) =
∑
n∈Z

cn(fβ) exp(inθ)

in the L2(S1) sense. Recall also that for f and g in L1(S1),

(2.4) cn(f ∗ g) = 2πcn(f)cn(g).

Using equation (2.4) we obtain the following proposition.

Proposition 2.1. c0(T (fβ)) = πc0 (fβ) and for n ∈ Z \ {0}, cn(T (fβ)) = cn (fβ) 2 sin (nπ/2) /n.

As in classical deconvolution problems on the real line, our aim is to obtain fβ using equation

(2.3) and Proposition 2.1. Notice that among the Fourier coefficients cn(fβ), n = 1, 2, ... it is only

possible to recover the first coefficient c0(fβ) (which is easily seen to be 1/2π, by integrating both

sides of (2.1) and noting that fβ is a probability density function) and the odd coefficients. Indeed,

Proposition 2.1 shows that c2p(T (fβ)) = 0 holds for all non-zero p’s, regardless of the value of c2p(fβ).

In other words, any fβ with the same coefficient c0(fβ) and odd coefficients gives rise to the same

hemispherical transformation. Variations in r do not allow to identify the coefficients c2p(fβ) for a

non zero p. The same phenomenon occurs in higher dimensions, as shown below.

Remark 2.1. If we make the stronger assumption that fβ belongs to L2(S1), we may interpret this

result in terms of operators. This view is useful for the analysis of higher dimensional cases, which is

our main concern. For n 6= 0 the vector spaces Hn,2 = span {exp(int)/(2π), exp(−int)/(2π)} =

span
{
cos(nt)/(

√
2π), sin(nt)/(

√
2π)
}

are eigenspaces of the compact self-adjoint operator T (fβ).
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These eigenspaces are associated with the eigenvalues 2 sin (nπ/2) /n. Also,
⊕

p∈Z H2p,2 is the null

space ker T of T . The eigenvalue π is simple and associated with the eigenvector 1/2π.

Before turning to the general case where d ≥ 2, let us introduce some concepts. We consider

functions defined on the sphere Sd−1, which is a d − 1 dimensional smooth submanifold of Rd. The

canonical measure on Sd−1 (or spherical measure) is denoted by dσ and is such that
∫

Sd−1 dσ = |Sd−1|

which is the area of the sphere; see, for example, Gallot et al (2004). It is given for d ≥ 1 by∣∣Sd−1
∣∣ = 2πd/2

Γ(d/2) where Γ is the usual Gamma function, with
∣∣S0
∣∣ being 2. When d ≥ 2 we consider

spaces of real valued functions defined on the sphere. The norm of L2(Sd−1) is derived from the

scalar product (f, g)L2(Sd−1) =
∫

Sd−1 f(x)g(x)dσ(x) for f, g ∈ L2(Sd−1). Finally, the Laplacian ∆S on

the sphere proves to be important as well. It allows to extend the Fourier basis to any dimension.

We can indeed check that the functions sin(nt)/(
√

2π) and cos(nt)/(
√

2π) are eigenfunctions of − d
dt2

associated with the eigenvalue n2. Let ∆ denote the usual Laplacian in Rd. Let the notation f̌ signify

the radial extension of f , that is, f̌(x) = f(x/‖x‖). Similarly, let f̂ denote the restriction of the

function f to Sd−1. We define ∆S according to:

(2.5) ∆Sf = (∆f )̌̂.

Similarly the gradient on the sphere ∇S is related to the gradient in Rd through the formula

(2.6) ∇Sf = (∇f )̌̂.

These simple definitions match the classical definitions that hold for any Riemannian manifold. See

the appendix for a brief exposition of some notions from Riemannian geometry that are useful for our

purpose.

Definition 2.1. A surface harmonic of degree n is the restriction to Sd−1 of a homogeneous harmonic

polynomial of degree n in Rd.

The reader is referred to Groemer (1996) for clear and detailed expositions on these concepts

and important results concerning spherical harmonics used in this paper. Erdélyi et al. (1953, vol. 2

chapter 9) provide detailed accounts focusing on special functions. The proofs and results below can

be found in the above references.

Lemma 2.1. The following properties hold:

(i) −∆S is a positive self-adjoint unbounded operator on L2(Sd−1), thus it has orthogonal eigenspaces

and a basis of eigenfunctions;
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(ii) Surface harmonics of degree n are eigenfunctions of −∆S associated with the eigenvalue n(n +

d− 2);

(iii) The dimension of the vector space Hn,d of spherical harmonics of degree n is

dimHn,d =
(2n + d− 2)(n + d− 2)!

n!(d− 2)!(n + d− 2)
;

(iv) A system formed of the collection of orthonormal bases of Hn,d for each degree n = 0, . . . ,∞ is

complete.

Notation. We let h(n, d) denote dimHn,d. �

Lemma 2.1 (i) and (iv) give the decomposition

L2(Sd−1) =
⊕
n∈N

Hn,d

with orthogonal Hn,d’s. The Hn,d are the eigenspaces of ∆S . The space of surface harmonics of degree

0 is the one dimensional space spanned by 1. The real Fourier basis on the line is an orthonormal

basis of surface harmonics and the vector spaces of surface harmonics of degree n are of dimension 2.

A series expansion on an orthonormal basis of surface harmonics is thus also called a Fourier series

expansion.

Orthonormal basis of surface harmonics could be obtained via the Schmidt orthonormalization

procedure. These usually involve parametrization by angles, such as the spherical coordinates when

d = 3 as used by Healy and Kim (1996) or hyperspherical coordinates in higher dimensions. In

contrast, here we work with the decomposition of a function on the spaces Hn,d. This leads to a

simple method both in terms of theoretical developments and practical implementations. Note that

the projector Qn,d on Hn,d in L2(Sd−1) can be expressed as an integral operator with kernel

(2.7) qn,d(x, y) =
h(n,d)∑
l=1

Sl
n(x)Sl

n(y),

where (Sl
n)h(n,d)

l=1 is any basis of Hn,d. This kernel has another simple and useful expression as we shall

see below.

Definition 2.2. The condensed harmonic expansion of a function f in L2(Sd−1) is the series expansion∑∞
n=0 Qn,df .
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The odd and even part of a function defined on the sphere are important notions in the

development of our analysis.

Definition 2.3. We difine the odd part and the even part of a function f by:

f−(b) = (f(b)− f(−b))/2

and

f+(b) = (f(b) + f(−b))/2,

for every b in Sd−1

If the function f is in L2(Sd−1) then using equations (2.10) and (6.10) we can check that for

p nonnegative Q2p,df(x) = Q2p,df(−x) and Q2p+1,df(x) = −Q2p+1,df(−x). Thus the sum of the

odd terms in the condensed harmonic expansion corresponds to f− and the sum of the even terms

corresponds to f+. If a positive function f has its support included in some hemisphere then

f(x) = 2f−(x)I {x ∈ suppf}

= 2f−(x)I
{
f−(x) > 0

}
(2.8)

where we denote by suppf the support of f . This follows from the fact that f−(x) = f+(x) ≥ 0 on

suppf while f−(x) = −f+(x) ≤ 0 on −suppf and both f− and f+ are 0 on Sd−1 \ (suppf
⋃
−suppf).

If f is a probability density function, the coefficient of degree 0 in the expansion of f on surface

harmonics is 1/|Sd−1|.

Remark 2.2. Reciprocally, any harmonic polynomial or series such that the degree 0 coefficient is

1/|Sd−1| integrates to one. Thus, truncation used below as a regularization procedure, preserves the

probability mass. On the other hand, non-negativity on the whole sphere of a truncated expansion is

not guaranteed. When d = 2, non-negativity is equivalent to positive definitiveness of the sequence

of coefficients of the Fourier series expansion by the Herglotz theorem, see Katznelson (2004, p. 41).

This is clearly not preserved by truncation.

Lemma 2.1 (ii) allows to define the Sobolev spaces based on L2(Sd−1). A relation with the

usual definition in terms of derivatives rather than Fourier series is given in the appendix.

Definition 2.4. The Sobolev space Hs(Sd−1) for s positive is the space of functions f in L2(Sd−1) such

that
∑∞

n=0(n(n + d − 2))s‖Qn,df‖2
2 < ∞ where the Qn,df are the factors of the condensed harmonic

expansion of f .
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Equipped with the norm

‖f‖2
2,s =

∞∑
n=0

(1 + n(n + d− 2))s‖Qn,df‖2
2,

Hs(Sd−1) is complete. It is also a Hilbert space for the scalar product related to the norm by polariza-

tion. We use these spaces to make smoothness assumptions. Working in the Sobolev spaces instead of

spaces like Lp(Sd−1) or the space of continuous functions is convenient since Hilbert spaces techniques

and Sobolev embeddings are available. The next result establishes a continuous embedding that is

used in this article.

Proposition 2.2. When s > (d − 1)/2, Hs(Sd−1) is continuously embedded in the space of bounded

continuous functions.

A proof of the proposition is provided in the appendix. It means that Hs(Sd−1) is a subset

of the space of bounded continuous functions for such s and that the injection in the bigger space,

which is a linear mapping, is continuous. In other words there exists a constant C such that for every

f ∈ Hs(Sd−1), ‖f‖∞ ≤ C‖f‖2,s. A similar inequality holds for the more familiar Euclidean space Rd,

with the same condition on the exponent s. A consequence of Proposition 2.2 is that consistency in

Hs(Sd−1) for s > (d− 1)/2 implies consistency in sup norm ‖ · ‖∞.

The next theorem gives an explicit formula for the kernels qn,d in terms of the Gegenbauer

polynomials Cν
n, see Erdélyi (1953, vol. 1 p. 175-179) and the appendix for the properties used in

this article. These polynomials are defined for ν > 1/2 and are orthogonal with respect to the weight

function (1 − t2)ν−1/2dt on [−1, 1]. They correspond to the well known Legendre polynomials when

d = 3. Note that Cν
0 (t) = 1 and Cν

1 (t) = 2νt for ν 6= 0 while C0
1 (t) = 2t. Moreover, they satisfy the

following recursion relation

(2.9) (n + 2)Cν
n+2(t) = 2(ν + n + 1)tCν

n+1(t)− (2ν + n)Cν
n(t).

In our approach the Gegenbauer polynomials will be evaluated at N points for a series of successive

values of the degree n. The recursion relation (2.9) is therefore a powerful tool.

Theorem 2.1 (Addition Formula). The following identity holds

(2.10) qn,d(x, y) =
h(n, d)Cν(d)

n (x′y)

|Sd−1|Cν(d)
n (1)
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where

ν(d) = (d− 2)/2.

Notation. We denote for every integer n,

(2.11) c(n, d) =
h(n, d)

C
ν(d)
n (1)

it is such that c(n, 2) = n and c(n, d) = 2n+d−2
d−2 for d ≥ 3. �

It is interesting to note that the infinite sum of functions
∑T

n=0 qn,d(x, y) converges in the sense

of distributions as T goes to infinity to the Dirac measure δx. The integral operator

ϕ ∈ L2(Sd−1) 7→
∫

Sd−1

T∑
n=0

qn,d(x, y)ϕ(y)dσ(y)

is the analogue of a kernel operator. Theorem 2.1 is later used to obtain closed form estimates in any

dimensions in the nonparametric estimation procedures.

The next theorem is an important result which shows that Fourier series on spheres is a very

natural tool for deconvolution purposes.

Theorem 2.2 (Funk-Hecke Theorem). If g belongs to Hn,d for some n and F is such that∫ 1

−1
|F (t)|2(1− t2)(d−3)/2dt < ∞,

then

(2.12)
∫

Sd−1

F (x′y)g(y)dσ(y) = λn(F )g(x)

where

λn(F ) =
|Sd−2|

C
ν(d)
n (1)

∫ 1

−1
F (t)Cν(d)

n (t)(1− t2)(d−3)/2.

In other words, the kernel operator K defined by

f ∈ L2(Sd−1) 7→
(

x 7→
∫

Sd−1

F (x′y)f(y)dσ(y)
)
∈ L2(Sd−1)

is, when restricted to a subspace Hn,d, the multiplication by λn(F ). Thus a basis of surface harmonics

diagonalizes any appropriate integral operator defined through a kernel function of the scalar product

x′y.
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Remark 2.3. Healy and Kim (1996) use an approach related to ours to analyze a deconvolution

problem on the sphere in dimension d = 3. As we shall see below, the Addition Formula along

with condensed harmonic expansions provide a general treatment that works for cases with arbitrary

dimension.

Notation. We define λ(n, d) = λn (I {t ∈ [0, 1]}) for d ≥ 3 and λ(n, 2) = 2 sin(nπ/2)
n of Proposition

2.1. �

Proposition 2.3. When d ≥ 2, the coefficients λ(n, d) have the following expression

(i) λ(0, d) = 2
|Sd−1|

(ii) ∀p > 0, λ(2p, d) = 0

(iii) ∀p ≥ 0, λ(2p + 1, d) = (−1)p|Sd−2|1·3···(2p−1)
(d−1)(d+1)···(d+2p−1) .

The proof is given in the appendix.

Remark 2.4. These eigenvalues of the hemispherical transformation take alternatively positive and

negative signs: the operator is not a positive operator. T ∗T = T 2 is however compact, self-adjoint

and positive and the Spectral Theorem applies. We can easily verify that the sequence of eigenvalues

converges to zero, which is also implied by the compactness of T 2.

The following corollary corresponds to an observation made in Remark 2.1 for the d = 2 case.

Corollary 2.1. The null space of T seen as an operator on L2(Sd−1) is

kerT =
∞⊕

p=1

H2p,d.

The spaces H0,d and H2p+1,d for p non negative are the eigenspaces associated with non zero eigen-

values.

Remark 2.5. Because of the lack of continuity of the inverse of the operator T , we use a truncation

of the series expansion of the inverse. Our approach amounts to the spectral cut-off method used in

the statistics of inverse problems.

We use the following notation.

Notation. For two sequences of positive numbers (an)n∈N and (bn)n∈N, we write an � bn when there

exists M positive such that M−1bn ≤ an ≤ Mbn for every n positive. �
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Before closing this section on preliminary materials, let us present some new results on density

estimation on the sphere. This provides some theoretical results which are useful for the estimation

of the random coefficients density fβ. Also, we propose new estimators for densities on the sphere

which in turn can be used to construct a feasible estimator for fβ in the next section.

Estimation of densities on compact manifolds have been studied by several authors. Some

authors have considered Fourier series type estimates, see for example Devroye and Gyorfi (1985) for

the circle and Hendriks (1990) for general compact Riemannian manifolds. Hendriks (2003) considers

fast spherical Fourier transform on the sphere S2 using the algorithm of Driscoll and Healy (1994).

Kernel estimates have also been considered, see Devroye and Gyorfi (1985) for the case of the circle,

Hall, Watson and Cabrera (1987) for higher dimensional spheres and Pelletier (2005) for general

Riemannian manifolds. We present a new estimate of fX . It is in the spirit of Hendricks (1990) but,

using condensed harmonic expansions together with the Addition Formula, it has a simple closed form

in any dimension. Again neither a basis of spherical harmonics nor a hyperspherical parametrization

are required. See the appendix for the proofs of the following theorems.

Theorem 2.3. The density fX is given by

(2.13) fX(x) =
1

|Sd−1|

(
1 +

∞∑
n=1

c(n, d)E
[
Cν(d)

n (X ′x)
])

.

If the support of X is contained in some hemisphere H, the density fX is also given by

(2.14) fX(x) = 2f−X (x)I{x ∈ H}.

where

f−X (x) =
1

|Sd−1|

∞∑
p=0

c(2p + 1, d)E
[
C

ν(d)
2p+1(X

′x)
]
.

The specification of our discrete choice model (1.1) implies that X = (1, X̃)′/‖(1, X̃)′‖, thus

the support of X is automatically a subset of the closed upper hemisphere, denoted by H+.

We consider the following estimate

(2.15) f̂N,T
X (x) =

1
|Sd−1|

(
1 +

1
N

N∑
i=1

T∑
n=1

c(n, d)Cν(d)
n (x′ix)

)
as a sample analogue of (2.13). On the other hand, (2.14) suggests the following estimator

(2.16) f̂N,T
X (x) = 2f̂−N,T

X (x)I{x ∈ H} =

 2
N |Sd−1|

N∑
i=1

T∑
p=0

c(2p + 1, d)Cν(d)
2p+1(x

′
ix)

 I {x ∈ H}
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when the support of X is a subset of H. If the support of X is known to be a subset of a hemisphere

yet a priori knowledge of the hemisphere is not available, it is still possible to obtain an appropriate

estimator using the identity (2.8). See Section 3 for an application of this approach for the estimation

of fβ. Note that when X is supported in some hemisphere we could also write fX can be represented

by even terms. The estimate (2.16) seems more convenient from a practical point of view, however,

since it involves terms we are later use to estimate fβ.

To study consistency, we consider the mean square error where the loss function is the norm

of some Sobolev space Hv(Sd−1). The case where v = 0 corresponds to the integrated MSE. Using

Sobolev embeddings, the result can be used to consider loss functions expressed in Lp(Sd−1) norms

and Lp(Sd−1) norms of derivatives for some 2 ≤ p ≤ p∗(v) and p∗ a function of the exponent v. In

particular, Sobolev embedding is convenient in showing the L∞ convergence result of our estimator

for fX . This, in turn, is useful for the asymptotic analysis of our estimator for fβ, which requires a

preliminary estimator for fX .

Theorem 2.4. When fX belongs to Hσ(Sd−1), TN � N1/(2σ+d−1) and v in [0, σ], then the estimator

(2.15) satisfies

(2.17) E
[∥∥∥f̂N,TN

X − fX

∥∥∥2

2,v

]
= O

(
N

− σ−v
σ+(d−1)/2

)
.

If the support of X is contained in some hemisphere, (2.17) holds for the estimator (2.16). Also, both

estimators satisfy

(2.18)
∥∥∥f̂N,TN

X − fX

∥∥∥
∞

= op

(
N−σ−(d−1)/2−ε

2σ+d−1

)
when σ > (d− 1)/2, for all ε in (0, σ − (d− 1)/2).

These rates are the same as the ones obtained by Hendriks (1990) and the other references

mentioned above for estimation of densities on manifolds. It also matches the convergence rate for

nonparametric estimation in the conventional space Rd if d is replaced by the dimension of the mani-

fold, here d− 1.

Asymptotic normality is obtained under either of the following two scenarios:

(i) fX is bounded from below by 1/CX on the whole sphere; the estimator (2.15) is used.

(ii) fX is supported on a hemisphere H and is bounded from below by on H; the estimator (2.16) is

used.
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Theorem 2.5. For either (i) or (ii), if σ > (d − 1)/2, x in suppfX , and TN � Nα, 1
2σ ≤ α < 1

d−1 ,

then

(2.19) N
1
2 s−1

N

(
f̂N,TN

X (x)− fX(x)
)

d→ N(0, 1)

holds with s2
N := 4var(Zni), Zni =

∑TN
n=0 qn,d(Xi, x) for (i), and Zni =

∑TN
p=0 q2p+1,d(Xi, x) for (ii).

Note that the condition on the rate α amounts to under-smoothing. The variance in the

denominator can be estimated by a sample counterpart.

3. Main Results

3.1. Identification in the Random Coefficient Model. This section analyzes the identifiability

of fβ and discusses sufficient conditions for identification. We make the following assumption which

also appears in Ichimura and Thompson (1998). It is used to extend the choice probability r(x) to a

function on the whole sphere and as a result to identify fβ.

Assumption 3.1. The support of fX is the whole hemisphere H+.

This assumption demands that X̃ is supported on the whole space Rd−1. It rules out discrete or

bounded X̃. (See Section 4 for a potential approach to deal with such regressors as dummy variables.)

For simplicity we make the following stronger assumption on fX .

Assumption 3.2. fX is bounded from below on H+ by a constant 1/CX .

This assumption can be relaxed using thresholding for X drawn near the boundary of H+ as

in Hoderlein, Klemelä and Mammen (2007) in the case of the linear random coefficients model. We

make the following assumption on the smoothness of fX and fβ.

Assumption 3.3. f−X and f−β belong to Hσ and Hs, respectively for σ > (d− 1)/2 and s > (d− 1)/2.

We now consider choice probabilities r(x) given by (1.2) which are invariant by dilatation

∀x ∈ Rd, P(Y = 1|X = x) = P(Y = 1|X = x/‖x‖).

As such they can be studied as function on the sphere. The invariance by dilatation is satisfied in

the case of the random coefficient model (1.2). They are not strictly speaking functions on the sphere

as they are only defined on the support of X. Under Assumption 3.1 it is possible to extend such
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functions r(x) to a bona fide function on the whole sphere. If we again think that the choice probability

is such that model (1.2) holds then, as fβ is a probability density function, we obtain for x in H+

(3.1) T (fβ)(−x) =
∫

H(−x)
fβ(b)dσ(b) = 1− r(x) = 1− T (fβ)(x).

We thus consider the extension R such that

(3.2) ∀x ∈ H+, R(x) = r(x), and ∀x ∈ −H+, R(x) = 1− r(−x) = 1−R(−x).

This extension is one possibility among infinitely many alternatives, though it is the only one consistent

with the random coefficient model. R is now a function defined on the whole sphere and, provided it

is square integrable, it has a condensed harmonic expansion which enables us to obtain the expression

in the next theorem. R, and not r, is the quantity we want to invert in order to obtain the density

of the random coefficients. Note that R is entirely determined by its odd part. Indeed, we can check

that

R(x) = R+(x) + R−(x)(3.3)

=
1
2

[R(x) + R(−x)] + R−(x)

=
1
2

[R(x) + (1−R(x))] + R−(x) by (3.2)

=
1
2

+ R−(x).

This proves to be important for the identification of the model (1.2).

Theorem 3.1. When infessfX(X) > 0 in L∞(Ω),

(3.4) R(x) =
1
2

+
1

|Sd−1|

∞∑
p=0

c(2p + 1, d)E

[
(2Y − 1)Cν(d)

2p+1(X
′x)

fX(X)

]
.

The assumption on fX is satisfied under the stronger Assumption 3.2. The following result is

a consequence of the Funk-Hecke theorem.

Lemma 3.1. For all n in N and f in L2(Sd−1), Qn,dT (f) = T (Qn,df) = λn (I {t ∈ [0, 1]}) Qn,df .

Also, we have seen in Theorem 3.1 that

R−(x) =
∞∑

p=0

λ(2p + 1, d)E
[
(2Y − 1)q2p+1,d(X, x)

fX(X)λ(2p + 1, d)

]
.
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Therefore, provided that
∞∑

p=0

∥∥∥∥E [(2Y − 1)q2p+1,d(X, x)
fX(X)λ(2p + 1, d)

]∥∥∥∥2

2

< ∞,

the relation

R−(x) =
∞∑

p=0

Q2p+1,dR
−

=
∞∑

p=0

Q2p+1,dT (f−β )

holds with

f−β (b) =
∞∑

p=0

E
[
(2Y − 1)q2p+1,d(X, b)
fX(X)λ(2p + 1, d)

]
(3.5)

=
1

|Sd−1|

∞∑
p=0

c(2p + 1, d)
λ(2p + 1, d)

E

[
(2Y − 1)Cν(d)

2p+1(X
′b)

fX(X)

]
.

Therefore R− = T (f−β ). Moreover, since R − 1/2 is odd and T
(

1
|Sd−1|

)
= 1

2 , we can check that

whatever the even function g having 1
|Sd−1| as coefficient of degree 0,

T (g) =
1
2

and thus

R = R− +
1
2

= T
(
g + f−β

)
.

That is, such g + f−β solves the inverse problem. Expressions for f−β other than can be obtained using

the explicit expression of the Gegenbauer polynomials in the appendix. Formulae simpler than (3.5)

are available for the case with d = 2 or 4; in the other cases one can use relation (2.9) to obtain

Gegenbauer polynomials.

A consequence of the above result is that only the odd part f−β of the density of the random

coefficient and the coefficient of degree 0 are identified. An infinite number of functions fβ are

compatible with the choice probability r(x) since g − 1
|Sd−1| could be arbitrary. A more general result

along this line for the hemispherical transform applied to signed measures is given in Groemer (1996,

Proposition 3.4.11).

Ichimura and Thompson (1998, Theorem 1) give a sufficient condition for identification of the

model (1.1). Their assumption postulates that there exists c on Sd−1 such that P(c′β > 0) = 1. This,

in our terminology, means that:

Assumption 3.4. The support of β is a subset of some hemisphere.
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As noted by Ichimura and Thompson (1998) Assumption 3.4 does not seem to be too stringent

in economic applications. It is often reasonable to assume that one of the random coefficients, such

as a price coefficient, has a known sign. Assumption 3.4 implies the following mapping from f−β to fβ

developed in (2.8):

(3.6) fβ(b) = 2f−β (b)I
{

f−β (b) > 0
}

.

This relation is useful because (i) it shows that Assumption 3.4 guarantees identification if f−β is

identified, (ii) it enables us to derive a key formula that leads to a simple and practical estimation

algorithm and (iii) it guaranties that fβ is nonnegative.

Remark 3.1. Assumption 3.4 is testable since it yields implications in terms of f−β which is identified

under weak conditions. For example, we can compare the positivity of f−β with its negativity on

the corresponding points on the opposite side of the sphere. Or, it implies that f−β integrates to

1/(2|Sd−1|) on H and −1/(2|Sd−1|) on −H. An estimator for f−β and its asymptotic properties are

presented in the next section.

3.2. Nonparametric Estimator for fβ and Its Asymptotic Properties. As noted earlier the

relation (3.6) holds under Assumption 3.4. This suggests the following form as an estimator for fβ:

(3.7) f̂β(b) = 2f̂β(b)I
{

f̂β(b) > 0
}

with f̂β being an estimator for f−β . The expression (3.5) offers a simple way to estimate f−β , though

some consideration is in order. Note that the expectations in (3.5) need to be estimated empirically,

which are divided by λ(2p+1, d), p = 0, 1, .... The factor λ(2p+1, d) tends to zero as p increases, as a

manifestation of the ill-posed nature of our estimation problem. We need a regularization procedure

to deal with this. Our approach is to truncate the infinite sums to achieve appropriate convergence

properties. The unknown fX can be replaced by a nonparametric estimator f̂X of the density of fX .

Those considerations suggest

(3.8) f̂−,N,T
β (b) =

1
N |Sd−1|

N∑
i=1

2yi − 1

f̂X(xi)

T∑
p=0

c(2p + 1, d)
λ(2p + 1, d)

C
ν(d)
2p+1(x

′
ib)

as the estimator to be used in (3.7). Here we propose to use the estimator f̂N,T
X developed in Section

2 as f̂X . Our nonparametric estimator for fβ is therefore:

(3.9) f̂N,T
β (b) = 2f̂−,N,T

β (b)I
{

f̂−,N,T
β (b) > 0

}
.

The proof of the following result is given in the appendix.
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Theorem 3.2. Under Assumptions 1.1, 3.2 and 3.3, if s > (d − 1)/2, σ ≥ s + d
2 and TN satisfies

TN � N1/(2s+2d−1), ∥∥∥f̂N,TN

β − fβ

∥∥∥
2

= Op

(
N− s

2s+2d−1

)
.

Our rate is in accordance with the rate in Healy and Kim (1996), who study deconvolution on

S2 for non degenerate kernels. Kim and Koo (2000) prove that the rate in Healy and Kim (1996) is

optimal in a minimax sense. Hoderlein, Klemelä and Mammen (2007) study estimation of densities

in a linear model with random coefficients.

Let us now consider asymptotic normality.

Theorem 3.3. Under the assumptions of Theorem 3.2, if TN � Nα,
(

1
2s+d ∨

2
2σ+d−1

)
< α < 1

2d−1 ,

then

(3.10) N
1
2 s−1

N

(
f̂N,TN

β (b)− fβ(b)
)

d→ N(0, 1)

holds for fβ(b) 6= 0, where s2
N := 4var(Zni), Zni = 2Yi−1

fX(Xi)

∑TN
p=0

q2p+1,d(Xi,b)
λ(2p+1,d) .

As in the case of the estimation of fX , the condition imposed for α corresponds to under-

smoothing, therefore no bias term is present in the above result.

4. Discussion

4.1. Estimation of Marginals. In Section 3 we have provided an expression for the estimate of the

full joint density of β, from which an estimator for a marginal density can be obtained. Let dσk denote

the surface measure and dσk = dσk/|Sk| the uniform measure on Sk. We write β =
(
β
′
, β

′)′
and wish

to obtain the density of the marginal of β which is a vector of dimension d− k. We also define P and

P the projectors such that β = Pβ and β = Pβ and denote by dP ∗σd−1 and dP ∗σd−1 the direct image

probability measures. One possibility is to define the marginal law of β as the measure P ∗fβdσ. This

may not be convenient, however, since then a uniform distribution would have U-shaped marginals.

The U-shape becomes more pronounced as the dimension of β increases. In order to obtain a flat

density for the marginals of the uniform joint distribution on the sphere it is enough to consider

densities with respect to the dominating measure dP ∗σd−1. Notice that sampling U uniformly on

Sd−1 is equivalent to sampling U according to P ∗σd−1 and then given U forming ρ
(
U
)

V where V is

a draw from the uniform distribution σd−1−k on Sd−1−k and ρ
(
U
)

=

√
1−

∥∥∥U∥∥∥2
. Indeed given U ,
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U/ρ
(
U
)

is uniformly distributed on Sd−1−k. Thus, when g is an element of L1(Sd−1) we can write

for k in {1, . . . , d− 1},

(4.1)
∫

Sd−1

g(b)dσd−1(b) =
∫

Bk

[∫
Sd−1−k

g
(
ρ
(
b
)

u, b
)

dσd−1−k(u)
]

dP ∗σd−1

(
b
)

where Bk is the k dimensional ball of radius 1. Setting g = |Sd−1|fβ(b)I
{

b ∈ A
}

for A Borel set of Bk

shows that the marginal density of β with respect to the dominating measure dP ∗σd−1 is given by

(4.2) f
β

(
b
)

= |Sd−1|
∫

Sd−1−k

fβ

(
ρ
(
b
)

u, b
)

dσd−1−k(u).

In the particular case where k = d − 1, i.e. we are interested in the marginal of β̃, we use dσ0 =

(δ1 + δ−1) /2 where δ denotes the Dirac mass.

When the dimension of the variables in the integral is small we can use hyperspherical parametriza-

tion (polar coordinates when k = d− 2 and spherical coordinates when k = d− 3) and deterministic

numerical integration methods. When it is not, one may use Monte-Carlo methods, by forming

(4.3) f̂N,T,M

β

(
b
)

=
1
M

M∑
j=1

f̂N,T
β

(
ρ
(
b
)

uj , b
)

where uj are draws from independent uniform random variables on Sd−1−k. Draws uj could be

obtained by computing uj = vj/‖vj‖ where vj are draws from a standard Gaussian random vector of

dimension d− 1− k. When β is of dimension 2 we could draw contour plots on the disk, that is, level

sets of the density. When β is of dimension 3 it is possible to draw contour plots on S2.

4.2. Treatment of non-random coefficients. It may be useful to develop an extension of the

method described in the previous sections to models that have non-random coefficients, at least

for two reasons. First, the convergence rate of our estimator of the joint density of β slows down

as the dimension d of β grows, which is a manifestation of the curse of dimensionality. Treating

some coefficient as fixed parameters alleviates this problem. Second, our identification assumption

in Section 3.1 precludes covariates with discrete or bounded support. This may not be desirable as

many random coefficient discrete choice models in economics involve dummy variables as covariates.

The following identification/estimation strategy allows such covariates as far as their coefficients are

non-random. Note that Hoderlein, Klemelä and Mammen (2007) suggest a method to deal with non-

random coefficients in their treatment of random coefficient linear regression models. Identification

in random coefficient binary choice models with covariates with limited support is somewhat tricky.

As we shall see shortly, identification is possible in a model where the coefficients on covariates with
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limited support are non-random, provided that at least one of the covariates with “large support” has

a non-random coefficient as well. More precisely, consider the model:

(4.4) yi = I{β1i + β′
2ix2i + α1z1i + α′

2z2i ≥ 0}

where β1 ∈ R and β2 ∈ RdX−1 are random coefficients, whereas the coefficients α1 ∈ R and α2 ∈ RdZ−1

are nonrandom. The covariate vector (z1, z
′
2)
′ is in RdZ , though the (dZ − 1)-subvector z2 might have

limited support: for example, it can be a vector of dummies. The covariate vector (x′2, z1)′ is assumed

to be, among other things, continuously distributed. Normalizing the coefficients vector and the vector

of covariates to be elements of the unit sphere works well for the development of our procedure, as we

have seen in the prevous sections. The model (4.4), however, is presented “in the original scale” to

avoid confusion.

Define β∗
1(z2) := β1 + α′

2z2, τ(z2) = [β∗
1(z2), α1, β2]′ and w = [1, z1, x

′
2]
′. We also use the

notation

τ(z2) :=
[β∗

1(z2), α1, β2]′

‖[β∗
1(z2), α1, β2]′‖

∈ SdX+1, w :=
[1, z1, x

′
2]
′

‖[1, z1, x′2]′‖
∈ SdX+1.

Then (4.4) is equivalent to:

yi = I{β∗
1(z2) + [α1, β2][z1, x

′
2]
′ ≥ 0}

= I{[β∗
1(z2), α1, β2][1, z1, x

′
2]
′ ≥ 0}

= I
{

[β∗
1(z2), α1, β2]

‖[β∗
1(z2), α1, β2]′‖

[1, z1, x
′
2]
′

‖[1, z1, x′2]′‖
≥ 0
}

= I
{
τ(z2)′w ≥ 0

}
.

This has the same form as our original model if we condition on Z2 = z2. We can then apply previous

results for identification and estimation under the following assumptions. First, suppose (β1, β
′
2)
′ and

w are independent, instead of Assumption 1.1. Second, we impose some condition on fW |Z2=z2
, the

conditional density of W given Z2 = z2. More specifically, suppose there exists a set Z2 ∈ RdZ−1,

such that Assumptions 3.1, 3.2 and 3.3 hold if we replace fX and d with fW |Z2=z2
and dX + 1 for all

z2 ∈ Z2. If Z2 is a vector of dummies, for example, Z2 would be a set of discrete points. By (3.5) we

obtain

(4.5) f−τ(z2)|Z2=z2
(t) =

1
|SdX |

∞∑
p=0

h(2p + 1, dX + 1)
λ(2p + 1, dX + 1)

E

[
(2Y − 1)Cν(dX+1)

2p+1 (W ′t)

fW |Z2=z2
(W )Cν(dX+1)

2p+1 (1)

∣∣∣∣∣Z2 = z2

]
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for all z2 ∈ Z2, where the right hand side consists of observables. This determines fτ(z2)|Z2=z2
. That

is, the conditional density

f

(
[β∗

1(z2), α1, β2]
‖[β∗

1(z2), α1, β2]′‖

∣∣∣∣Z2 = z2

)
is identified for all z2 ∈ Z2. (Here and henceforth we use the notation f(·|·) to denote conditional

densities with appropriate arguments when adding subscripts is too cumbersome.) This obviously

identifies

(4.6) f

(
[β∗

1(z2), α1, β2]
‖β2‖

∣∣∣∣Z2 = z2

)
for all z2 ∈ Z2 as well. If we are only interested in the joint distribution of β2 under a suitable

normalization, we can stop here. The presence of the term α1z1 in (4.4) is unimportant so far.

Some more work is necessary, however, if one is interested in the joint distribution of the

coefficients on all the regressors. Notice that the distribution (4.6) gives

f

(
β∗

1(z2)
‖β2‖

∣∣∣∣Z2 = z2

)
= f

(
β1 + α′

2z2

‖β2‖

∣∣∣∣Z2 = z2

)
,

from which we can, for example, get

E

(
β∗

1(z2)
‖β2‖

∣∣∣∣Z2 = z2

)
= E

(
β1

‖β2‖

)
+ E

(
1

‖β2‖

)
α′

2z2 for all z2 ∈ Z2.

Define a constant

c := E

(
1

‖β2‖

)
then we can identify cα2 as far as z2 ∈ Z2 has enough variation. From the second marginal of the

conditional joint density (4.6)

E

(
α1

‖β2‖

)
= E

[
E

(
α1

‖β2‖

∣∣∣∣Z2

)∣∣∣∣Z2 ∈ Z2

]
= cα1

is identified as well.1 Let

(4.7) f

(
[β′

2i, α1, α
′
2]
′

‖β2i‖

)
denote the joint density of all the coefficient (except for β1, which corresponds to the conventional

disturbance term in the original model (4.4), normalized by the length of β2i. Then

f

(
[β′

2i, α1, α
′
2]
′

‖β2i‖

)
= f




1 0

0 1
... cα2

cα1


 β2i

‖β2i‖
α1
‖β2i|


 .

1This can be done by just using the conditional distribution at one value of z2 as well.
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In the expression on the right hand side, f([β′
2i, α1]′/‖β2i‖) is already available from (4.6), and cα1

and cα2 are identified already, therefore the desired joint density (4.7) is identified. Obviously (4.7)

also determines the joint density of [β′
2i, α1, α

′
2]
′ under other suitable normalizations as well.

The density (4.5) is estimable: when Z2 is discrete, one can truncate the infinite sum by a

parameter TN , then compute its sample counterpart by applying the formula (3.8) to each subsample

corresponding to each value of Z2. If Z2 continuous we can estimate fW |z2
and the conditional

expectation by nonparametric smoothing. An estimate for the density (4.6) can be then obtained

with some numerical techniques.

4.3. Endogenous Regressors. Assumption 1.1 is violated if some of the regressors are endogenous

in the sense that the random coefficients and the covariates are not independent. This problem can

be solved if an appropriate vector of instruments is available. To be more specific, suppose we observe

(Y, X,Z) generated from the following model

(4.8) Yi = I{αi + β′
2iXi ≥ 0}

with

(4.9) Xi = ΓZi + Vi

where V is a vector of reduced form residuals and Z is independent of (β, V ). The equations (4.8)

and (4.9) yield

Yi = I{
(
αi + V ′

i βi

)
+ Z ′

iΓ
′βi}.

Suppose the distribution of ΓZi satisfy the support conditions assumed for the basic model. It is

then possible to estimate the density of τ = τ/‖τ‖ where τ =
(
β1 + V ′β̃, β̃

)′
by replacing Γ with

a consistent estimator, which is easy to obtain under the maintained assumptions. This yields an

estimate for the joint density of β2i/‖β2i‖, the random coefficients on the covariates under scale

normalization.

5. Conclusion

To be added.
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6. Appendix

Let us start this appendix by recalling useful notions of Riemannian geometry. The tangent

space TxSd−1 at a point x on the sphere is the vector space of tangents d
dtγ(t)

∣∣
t=0

of curves γ :

(−ε, ε) → U where ε > 0 and U is a neighborhood of x in Rd, drawn on Sd−1. We can easily check

that it is the orthogonal in Rd of x. Given a map f from Sd−1 to R, its differential dxf at x in Rd

is a linear form acting on TxSd−1. It is such that for h in TxSd−1 corresponding to a curve γ, dxf.h

is defined as d
dt [f(γ)]

∣∣
t=0

. A useful example in the case of derivatives of choice probabilities is the

height function, see do Carmo (1976) p.86, defined for z in Sd−1 as x ∈ Sd−1 7→ z′x. Its differential is

the mapping

(6.1) h ∈ TxSd−1 7→ z′h.

As in the Euclidian plane, the gradient on the sphere is related to the above defined differential using

the scalar product. The gradient of f at x is denoted by ∇S
xf and defined as the vector of TxSd−1

such that for h in TxSd−1, ∇S
xf ′h = dxf.h. The scalar product on the tangent spaces is the restriction

of the scalar product in Rd. This is a general construction of a gradient on smooth submanifolds of

Rd. It matches in the particular case of the sphere the definition provided by identity (2.6). The

Laplace operator on a smooth submanifolds of Rd is defined through the generalization of the formula

div∇. The generalization of the divergence is defined as follows. A vector field X is a map which

to x in Sd−1 assigns a vector X(x) of TxSd−1. It is differentiable if given a local parametrization of

Sd−1, for example using the stereographic projection, consisting of to maps ϕ from an open set U in

Rd−1 to V ∩ Sd−1 where V is an open set of Rd, X(ϕ) is differentiable. The linear mapping which to

v in TxSd−1 corresponding to some curve γ(−ε, ε) → U and X a vector field, assigns the orthogonal

projection of d
dtX(γ)

∣∣
t=0

on TxSd−1 is denoted by D. Then ∆S is defined as trD∇S . Also, see for

example Gallot et al (2004) p.209, we have

(6.2) −
∫

Sd−1

f(x)∆Sf(x)dσ(x) =
∫

Sd−1

‖|dfx‖|2dσ(x) =
∫

Sd−1

∇S
xf ′∇S

xfdσ(x)

where ‖| · ‖| denotes the operator norm. We can check using the condensed harmonic expansion,

Lemma 2.1 (ii) and relation (6.2) that

‖f‖2
2,1 = ‖f‖2

2 +
∥∥‖∇Sf‖

∥∥2

2

where the last term denotes the right hand-side of (6.2) and is the L2(Sd−1) norm of the Euclidian

norm of the gradient. For higher order integer Sobolev norm, we can check with iterations of identity
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(6.2) that the norm introduced is equivalent to the usual square root of the some of the squares of the

L2(Sd−1) norms of the derivatives.

We now give some results on the Gegenbauer polynomials. These results can be found in

Erdélyi et al. (1953) and Groemer (1996). The Gegenbauer polynomials have the following explicit

representation

(6.3) Cν
n(t) =

[n/2]∑
l=0

(−1)l(ν)n−l

l!(n− 2l)!
(2t)n−2l

where (a)0 = 1 and for n in N \ {0}, (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a). When ν = 0,

case d = 2, it is related to the Chebychev polynomials of the first kind as follows

∀n ∈ N \ {0}, C0
n(t) =

2
n

Tn(t)

and

C0
0 (t) = T0(t) = 1

where

∀n ∈ N, Tn(t) = cos (n arccos(t)) .

When ν = 1, case d = 4, C1
n(t) coincides with the Chebychev polynomial of the second kind Un(t)

which is such that

∀n ∈ N, Un(t) =
sin[(n + 1) arccos(t)]

sin[arccos(t)]
.

The Gegenbauer polynomials are stable by differentiation, they satisfy

(6.4)
d
dt

Cν
n(t) = 2νCν+1

n−1(t)

for ν > 0 and

(6.5)
d
dt

C0
n(t) = 2C1

n−1(t).

For ν 6= 0, the Rodrigues formula

(6.6) Cν
n(t) = (−2)−n(1− t2)−ν+1/2 (2ν)n

(ν + 1/2)nn!
dn

dtn
(1− t2)n+ν−1/2,

can be used. The following results are also used in the paper

(6.7) sup
t∈[−1,1]

∣∣∣∣Cν
n(t)

Cν
n(1)

∣∣∣∣ ≤ 1,
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for ν positive,

(6.8) ∀n ∈ N, Cν
n(1) =

 n + 2ν − 1

n


while for ν = 0

(6.9) C0
0 (1) = 1 and ∀n ∈ N \ {0}, C0

n(1) =
2
n

,

the following parity relation holds

(6.10) Cν
n(−t) = (−1)nCν

n(t).

The normalization is such that

(6.11)
∫ 1

−1
(Cν(d)

n (t))2(1− t2)(d−3)/2dt =
|Sd−1|(Cν(d)

n (1))2

|Sd−2|h(n, d)
.

Let us present some useful inequalities. We herein use the following notation

Notation. ζn = 1 + n(n + d− 2). �

Lemma 6.1. For constants depending only on the dimension, the following holds:

h(n, d) � nd−2,(6.12)

T∑
n=1

h(n, d)ζv
n � T 2v+d−1,(6.13)

|λ(2p + 1, d)| � p−d/2,(6.14)

T∑
p=1

h(2p + 1, d)
λ(2p + 1, d)2

ζv
2p+1 � T 2v+2d−1,(6.15)

T∑
p=1

h(2p + 1, d)
|λ(2p + 1, d)|

� T 3d/2−1.(6.16)

Proof. Estimate (6.12) is clearly satisfied when d = 2 and 3 since h(n, 2) = 2 and h(n, 3) = 2n + 1.

When d ≥ 4 we have

h(n, d) =
2

(d− 2)!
(n + (d− 2)/2)[(n + 1)(n + 2) · · · (n + d− 3)],

the lower bound is straightforward and the upper bound follows from

h(n, d) ≤ 2
(d− 2)!

(n + d− 3)d−2
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and 2/((d− 2)!) by a constant large enough.

Estimate (6.13) follows from (6.12), ζn � n2 and comparing the sum with the integral of x 7→ x2v+d−2.

When d is even and p ≥ d/2

|λ(2p + 1, d)| = κd

(2p + 1)(2p + 3) · · · (2p + d− 1)

where

κd =
|Sd−2|1 · 3 · · · (d− 1)

d− 1
.

The upper bound is straightforward and we can write

|λ(2p + 1, d)| ≥ κd

(2p + d− 1)d/2

and conclude replacing κd by a small enough constant.

Sterling’s double inequality, see Feller (1968) p.50-53

√
2πnn+1/2 exp

(
−n +

1
12n + 1

)
< n! <

√
2πnn+1/2 exp

(
−n +

1
12n

)
implies that

(2pp!)2

(2p)!
� √

p

thus

1 · 3 · · · (2p− 1) � √
p2 · 4 · · · (2p).

Therefore, for p ≥ d/2 and d odd we have

|λ(2p + 1, d)| �
√

p

(2p + 2)(2p + 4) · · · (2p + d− 1)

and (6.14) holds for d even and odd.

(6.15) and (6.16) follow from the above inequality and comparing sums with integrals. �

Proof of Proposition 2.2. Consider
(
Sl

n

)
l=1,...,h(n,d);n=1,...,∞ an orthonormal basis of spherical har-

monics. Given f in Hs(Sd−1) we have for x in Sd−1,

f(x) =
∞∑

n=0

h(n,d)∑
l=1

(
f, Sl

n

)
L2(Sd−1)

Sl
n(x).

Using the Hölder inequality we obtain

|f(x)|2 ≤
∞∑

n=0

h(n,d)∑
l=1

(1 + n(n + d− 2))s
(
f, Sl

n

)2

L2(Sd−1)

∞∑
n=0

h(n,d)∑
l=1

(1 + n(n + d− 2))−s
(
Sl

n(x)
)2

≤
‖f‖2

2,s

|Sd−1|

∞∑
n=0

(1 + n(n + d− 2))−sh(n, d)
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indeed using (2.7) and (2.10)
∑h(n,d)

l=1

(
Sl

n(x)
)2 = qn,d(x, x) = h(n,d)

|Sd−1| . Thus using (6.12), for s >

(d− 1)/2 and some constant c depending on the dimension only, we have

|f(x)|2 ≤ c

∞∑
n=0

n−2s+d−2‖f‖2
2,s.

Therefore there exists a constant c̃d such that

‖f‖∞ ≤ c̃d‖f‖2,s

thus the injection of Hs(Sd−1) into L∞(Sd−1) is continuous. We may check as well that f is continuous.

�

Proof of Proposition 2.3. From the Funk-Hecke theorem we know that the coefficients α(n, d) =

C
ν(d)
n (1)|Sd−2|−1λn (I {t ∈ [0, 1]}) are given by

α(n, d) =
∫ 1

0
Cν(d)

n (t)(1− t2)(d−3)/2dt

using (6.6),

α(n, d) =
(−2)−n(d− 2)n

n! ((d− 1)/2)n

∫ 1

0

dn

dtn
(1− t2)n+(d−3)/2dt.

Thus for n ≥ 1 and d ≥ 3,

α(n, d) = −(−2)−n(d− 2)n

n! ((d− 1)/2)n

dn−1

dtn−1
(1− t2)n−1+(d−3)/2dt

∣∣∣∣
t=0

since the term on the right hand-side is equal to 0 for t = 1. To prove that the coefficients α(2p, d)

are equal to zero for p positive it is enough to prove

d2p+1

dt2p+1
(1− t2)2p+1+m

∣∣∣∣
t=0

= 0, ∀m ≥ 1, p ≥ 0.

The Faá di Bruno formula gives that this quantity is equal to

∑
k1+2k2=2p+1

(−1)2p+1−k2(2p + 1)!(m + 1) · · · (2p + 1 + m)
k1!k2!

(1− t2)m+k2(2t)k1

∣∣∣∣∣∣
t=0

.

and we conclude since k1 in the sum cannot be equal to 0.

When n = 2p + 1 for p nonnegative we obtain, using again the Faá di Bruno formula, that the

derivative at t = 0 is equal to

(−1)p (2p)!
p!

[(2p + 1 + (d− 3)/2)(2p + (d− 3)/2) · · · (p + 2 + (d− 3)/2)] .

We obtain the result of Proposition 2.3 using identity (6.8). For the case d = 2 we use Proposition

2.1. �
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Let us now prove the theorems concerning the estimation of fX .

Proof of Theorem 2.3. fX being a probability density function, it has the following condensed

harmonic expansion

fX(x) =
1

|Sd−1|
+

∞∑
n=1

(Qn,dfX)(x).

We then write

(Qn,dfX)(x) =
∫

Sd−1

qn,d(x, y)fX(y)dσ(y)

= E [qn,d(x,X)]

=
h(n, d)

|Sd−1|Cν(d)
n (1)

E
[
Cν(d)

n (x′X)
]
,

using (2.10), and use (2.11). The case where fX is supported in some hemisphere can be treated

similarly. �

Lemma 6.2. For f in Hs and v < s,∥∥∥∥∥
∞∑

n=T+1

Qn,df

∥∥∥∥∥
2

2,v

≤ cT−2(s−v) ‖f‖2
2,s .

Proof. The result follows from the next sequence of inequalities∥∥∥∥∥
∞∑

n=T+1

Qn,df

∥∥∥∥∥
2

2,v

≤
∞∑

n=T+1

ζv‖Qn,df‖2
2

≤ ζ
−(s−v)
T+1

∞∑
n=T+1

ζs
n‖Qn,df‖2

2

≤ ζ
−(s−v)
T+1

∞∑
n=T+1

ζs
n‖Qn,df‖2

2

and the fact that ζT+1 > T−2(s−v). �

Proof of Theorem 2.4. First consider the estimator (2.15). Using Lemma 6.2 and the fact that

fX(x) − E
[
f̂N,T

X (x)
]

is equivalent in L2(Sd−1) to
∑∞

n=N+1 (Qn,dfX) (x), the square of the bias is

bounded as follows ∥∥∥fX − E
[
f̂N,T

X

]∥∥∥2

2,v
≤ T−2(σ−v) ‖fX‖2

2,σ .

Let us now consider the variance and show that

E
[∥∥∥f̂N,T

X − E
[
f̂N,T

X

]∥∥∥2

2,v

]
≤ c

N
T 2v+d−1
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for some constant c depending only on the dimension d.

Using (2.7)

N∑
i=1

qn,d(xi, x) =
h(n,d)∑
l=1

N∑
i=1

Sl
n(xi)Sl

n(x)

is a linear combination of elements of Hn,d and thus an element of Hn,d. Also for any orthonormal

basis
(
Sl

n

)h(n,d)

l=1
of Hn,d

E [qn,d(X, x)] =
h(n,d)∑
l=1

E
[
Sl

n(X)
]
Sl

n(x),

it is therefore also an element of Hn,d. Thus, we have

∥∥∥f̂N,T
X − E

[
f̂N,T

X

]∥∥∥2

2,v
=

T∑
n=0

ζv
n

N2

∫
Sd−1

(
N∑

i=1

qn,d(xi, x)− E [qn,d(X, x)]

)2

dσ(x).

Denoting the expectation of the above term by V(N,T ),

V(N,T ) =
T∑

n=0

ζv
n

N2

∫
Sd−1

E

(
N∑

i=1

qn,d(xi, x)− E [qn,d(X, x)]

)2

dσ(x)

=
T∑

n=0

ζv
n

N

∫
Sd−1

E (qn,d(X, x)− E [qn,d(X, x)])2 dσ(x).

Thus

V(N,T ) ≤
T∑

n=0

ζv
n

N
E
∫

Sd−1

(qn,d(X, x))2 dσ(x).

Using successively Theorem 2.1 and relation (6.11) it follows that

V(N,T ) ≤ 1
N |Sd−1|2

T∑
n=0

ζv
nh(n, d)2(
C

ν(d)
n (1)

)2

∫
Sd−1

(Cν(d)
n (X ′x))2dσ(x)

≤ 1
N |Sd−1|

T∑
n=0

ζv
nh(n, d)

and we conclude using (6.13). Choosing T = TN of the order indicated in the theorem balances the

orders of the squared bias and the variance. (2.18) is a consequence of Proposition 2.2. It is easily seen

that (2.17) and (2.18) also hold for f̂−,N,Tn

X and f−X . Since fX(x)− fN,TN
X (x) = 2f−X (x)− 2f−,N,TN

X (x)

for x in H and is equal to 0 on Sd−1 \H, the same convergence rate result for the estimator (2.16) as

well. �
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Proof of Theorem 2.5. The stated lower bound for α guarantees that the bias term due to the

truncation by TN is asymptotically negligible. This can be shown following essentially the same steps as

in the argument for the asymptotic negligibility of the term C3 in the proof of Theorem 3.3. Therefore

it suffices to verify that an appropriate CLT holds for the triangular array {ZN,i}N
i=1, N = 1, 2, ....

Consider the first scenario where Assumption (i) is satisfied. We verify the Lyapounov condition:

there exists δ > 0 such that for N going to infinity,

(6.17)
E
[
|ZN,1 − E [ZN,1]|2+δ

]
N δ/2 (var (ZN,1))

1+δ/2
→ 0,

We need a lower bound on var (ZN,1). Since E[ZN,1] converges to fX(x) while the variance blows-up,

it is enough to obtain a lower bound on

(6.18) E[Z2
N,1] =

∫
Sd−1

(
TN∑
n=0

qn,d(y, x)

)2

fX(y)dσ(y).

Using (i) and the computation in the proof of Theorem 2.4 we obtain

E[Z2
N,1] ≥

1
CX |Sd−1|

TN∑
n=0

h(n, d),

thus, using (6.13), for some constant c, the denominator of (6.17) is greater than cN δ/2Nα(d−1)(1+δ/2).

As for the denominator, it is enough to obtain an upper bound of E
[
|ZN,1|2+δ

]
, where

E
[
|ZN,1|2+δ

]
=
∫

Sd−1

∣∣∣∣∣
TN∑
n=0

qn,d(y, x)

∣∣∣∣∣
2+δ

fX(y)dσ(y)

≤ c|Sd−1|

(
TN∑
n=0

sup
y,x∈Sd−1

|qn,d(y, x)|

)2+δ

≤ c|Sd−1|

(
TN∑
n=0

h(n, d)

)2+δ

≤ c|Sd−1|Nα(d−1)(2+δ)

where c is a constant that take different values and is only a function of the dimension. Note that

we have used that, since σ > (d− 1)/2, fX is bounded. In the last line above we have used equation

(2.10) together with inequality (6.7). Using again (6.13) we obtain that the criterion (6.17) is satisfied

if
δ/2

1 + δ/2
> α(d− 1)
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. Taking δ large enough results in the upper bound for α. The second scenario with Assumption (ii)

can be treated using the same argument. We however need to replace (6.18) by is

E[Z2
N,1] =

∫
H

 TN∑
p=0

q2p+1,d(y, x)

2

fX(y)dσ(y)

≥ 1
CX

∫
H

 TN∑
p=0

q2p+1,d(y, x)

2

dσ(y)

=
1

CX

∫
Sd−1

 TN∑
p=0

q2p+1,d(y, x)

2

dσ(y).

where we have used (6.10) to obtain the last identity. �

Let us turn to results concerning choice probabilities.

Proof of Theorem 3.1. R has the following condensed harmonic expansion

R(x) =
1
2

+
∞∑

p=1

(Q2p+1,dR)(x).

We then write using (3.2), changing variables and using (6.10),

(Q2p+1,dR)(x) =
∫

Sd−1

q2p+1,d(x, z)R(z)dσ(z)

=
∫

H+

q2p+1,d(x, z)r(z)dσ(z) +
∫
−H+

q2p+1,d(x, z)(1− r(−z))dσ(z)

=
∫

H+

q2p+1,d(x, z)r(z)dσ(z)−
∫

H+

q2p+1,d(x, z)(1− r(z))dσ(z),

and using (2.10) and (2.11)

(Q2p+1,dR)(x) =
∫

H+

q2p+1,d(x, z)(2r(z)− 1)dσ(z)

=
∫

H+

q2p+1,d(x, z)E
[

2Y − 1
fX(z)

∣∣∣∣X = z

]
fX(z)dσ(z)

= E
[
(2Y − 1)q2p+1,d(x,Z)

fX(Z)

]
=

h(n, d)

|Sd−1|Cν(d)
n (1)

E

[
(2Y − 1)Cν(d)

n (x′X)
fX(X)

]
.

�
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Now we turn to the proofs for Theorems 3.2 and 3.3 for the estimator of fβ . We first provide

some notation and auxiliary lemmas used for the proofs. The assumption stated in the theorems are

maintained throughout the lemmas.

Notation. In what follows we often drop subscripts/superscripts for the dimension d for notational

economy. Thus we write hn, λn, Qn, and qn for h(h, d) λ(n, d), Qn,d and qn,d. Define

Pn(x′b) :=
C

ν(d)
2p+1(x

′b)

C
ν(d)
2p+1(1)

.

For a density function f on Sd−1 let:

UT,i(f, b) =
2yi − 1
f(xi)

T∑
p=0

h2p+1

|Sd−1|λ2p+1
P2p+1(x′ib),

f̂β
−
(f, b) =

1
N

N∑
i=1

UT,i(f, b),

MT (f, b) = E[UT,i(f, b)]

J1T (f) = E

[∫
Sd−1

U2
T,i(f, b)dσ(b)

]
= E[‖UT,i(f, b)‖2

2],

J2T (f) =
∫

Sd−1

E[UT,i(f, b)]2dσ(b) =
∫

Sd−1

M2
T (f, b)dσ(b) = ‖MT (f, b)‖2

2.

Lemma 6.3. For g ∈ L2(Sd−1),

∥∥∥∥∥∥
T∑

p=0

1
λ2p+1

Q2p+1g

∥∥∥∥∥∥
2

≤
∣∣∣∣ 1
λ2T+1

∣∣∣∣ ‖g‖2.
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Proof of Lemma 6.3.∥∥∥∥∥∥
T∑

p=0

1
λ2p+1

Q2p+1g

∥∥∥∥∥∥
2

2

=
∫

Sd−1

 T∑
p=0

1
λ2p+1

Q2p+1g

2

dσ(b)

=
∫

Sd−1

T∑
p=0

1
λ2

2p+1

[Q2p+1g]2 dσ(b)

≤
∫

Sd−1

1
λ2

2T+1

T∑
p=0

[Q2p+1g]2 dσ(b)

=
1

λ2
2T+1

T∑
p=0

‖Q2p+1g‖2
2

≤ 1
λ2

2T+1

∞∑
p=0

‖Q2p+1g‖2
2

≤ 1
λ2

2T+1

∞∑
n=0

‖Qng‖2
2

=
1

λ2
2T+1

∥∥∥∥∥
∞∑

n=0

Qng

∥∥∥∥∥
2

2

=
1

λ2
2T+1

‖g‖2
2.

�

Following lemmas report asymptotic (stochastic) order results when T →∞ and ‖f−fX‖∞ ↓ 0

and/or the sample size N goes to infinity.

Lemma 6.4. For a density function f on Sd−1,

J1T (f)− J1T (fX) = O(T 2d−1‖f − fX‖2)O
(∥∥∥∥ 1

f

(
1
f

+
1

fX

)∥∥∥∥
2

)
and

J2T (f)− J2T (fX) = O(T d)O(‖f − fX‖2)O(‖1/f‖∞‖(f + fX)/f‖2).

Proof of Lemma 6.4. Regarding the equation for

J1T (f) = E

[∫
Sd−1

U2
T,i(f, b)dσ(b)

]
,
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note

∫
Sd−1

U2
T,i(f, b)dσ(b) =

∫
Sd−1

1
f(xi)2

 T∑
p=0

h2p+1

λ2p+1

P2p+1(xi, b)
|Sd−1|

2

dσ(b)

=
1

f2(xi)||Sd−1|2
T∑

p=0

h2
2p+1

λ2
2p+1

∫
Sd−1

P 2
2p+1(x

′
ib)dσ(b).

Now,

∫
Sd−1

P 2
2p+1(x

′
ib)dσ(b) =

1

(Cν(d)
2p+1(1))2

∫
Sd−1

(Cν(d)
2p+1(x

′
ib))

2dσ(b)

=
1

(Cν(d)
2p+1(1))2

|Sd−2|
∫

Sd−1

(Cν(d)
2p+1)

2(1− t2)
d−3
2 dt

=
1

(Cν(d)
2p+1(1))2

|Sd−2|
|Sd−1|(Cν(d)

2p+1(1))2

|Sd−2|h2p+1
by (6.11)

= |Sd−1|/h2p+1.

Therefore ∫
Sd−1

U2
T,i(f, b)dσ(b) =

1
f2(xi)||Sd−1|

T∑
p=0

h2p+1

λ2
2p+1

,

and

J1(f) =
1

|Sd−1|

 T∑
p=0

h2p+1

λ2
2p+1

E

[
1

f2(X)

]

or

J1(f)− J1(fX) =
1

|Sd−1|

 T∑
p=0

h2p+1

λ2
2p+1

E

[
1

f2(X)
− 1

f2
X(X)

]
.

Finally,

E

[
1

f2(X)
− 1

f2
X(X)

]
=
∫

Sd−1

1
f

(
1
f

+
1

fX

)
(fX − f)dσ(x)

≤
∥∥∥∥ 1
f

(
1
f

+
1

fX

)∥∥∥∥
2

‖fX − f‖2.
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Using (6.15), the desired result follows. Next, we turn to the equation for J2T . With the notation

above,

J2T (f)− J2T (fX) =
∫

Sd−1

M2
T (f, b)dσ(x)−

∫
Sd−1

M2
T (fX , b)dσ(x)(6.19)

=
∫

Sd−1

(MT (f, b) + MT (fX , b)) (MT (f, b)−MT (fX , b)) dσ(x)

≤ ‖(MT (f, b) + MT (fX , b)‖2‖(MT (f, b)−MT (fX , b)‖2.

Now,

MT (f, b) + MT (fX , b) = E

( 1
f(xi)

+
1

fX(xi)

)
(2yi − 1)

T∑
p=0

h2p+1

|Sd−1|λ2p+1
P2p+1(x′ib)


= E

( 1
f(xi)

+
1

fX(xi)

)
(2R(xi)− 1)

T∑
p=0

h2p+1

|Sd−1|λ2p+1
P2p+1(x′ib)


by iterated expectations

=
T∑

p=0

1
λ2p+1

∫
Sd−1

(
f + fX

f

)
(2R− 1)

h2p+1

|Sd−1|λ2p+1
P2p+1(x′b)dσ(x)

=
T∑

p=0

1
λ2p+1

∫
Sd−1

(
f + fX

f

)
(2R− 1)q2p+1(x, b)dσ(x)

by Theorem 2.1 (Addition formula)

=
T∑

p=0

1
λ2p+1

Q2p+1

(
f + fX

f
(2R− 1)

)
.

Take the L2 norm of both sides, then apply Lemma 6.3 and (6.15), to get:

‖MT (f, b) + MT (fX , b)‖2 ≤
∣∣∣∣ 1
λ2T+1

∣∣∣∣ ∥∥∥∥f + fX

f
(2R− 1)

∥∥∥∥
2

(6.20)

≤
∣∣∣∣ 1
λ2T+1

∣∣∣∣ ∥∥∥∥f + fX

f

∥∥∥∥
2

= O(T
d
2 )O(‖(f + fX)/f‖2).
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By similar calculations,

‖MT (f, b)−MT (fX , b)‖2 ≤
∣∣∣∣ 1
λ2T+1

∣∣∣∣ ∥∥∥∥(fX

f
− 1
)

(2R− 1)
∥∥∥∥

2

(6.21)

≤
∣∣∣∣ 1
λ2T+1

∣∣∣∣ ∥∥∥∥( 1
f

(f − fX)
)∥∥∥∥

2

= O(T
d
2 )O(‖f − fX‖2)O(‖1/f‖∞).

The result follows from (6.19), (6.20) and (6.21). �

Now we are ready to establish the rate of convergence of f̂−β (f̂X , ·) as an estimator for f−β (·).

The first lemma shows that f̂−β (f̂X , ·) converges to MT (f̂X , ·) at an appropriate speed, then the second

lemma replaces MT (f̂X , b, ·) with the target, f−β (b, ·).

Lemma 6.5.

‖f̂−β (f̂X , ·)−MT (f̂X , ·)‖2 = Op(N− 1
2 T

2d−1
2 ).

Proof of Lemma 6.5. Let f be an element of L2(Sd−1).

‖f̂−β (f, ·)−MT (f, ·)‖2
2 =

∥∥∥∥∥ 1
N

N∑
i=1

(UT,i(f, ·)− E[UT,i(f, ·)])

∥∥∥∥∥
2

2

=
1

N2

∫
Sd−1

[
N∑

i=1

(UT,i(f, b)− E[UT,i(f, b)])

]2

dσ(b),

therefore

E‖f̂−β (f, ·)−MT (f, ·)‖2
2 =

1
N

∫
Sd−1

E [UT,i(f, b)− E[UT,i(f, b)]]2 dσ(b)

=
1
N

∫
Sd−1

[
E
[
U2

T,i(f, b)
]
− E [UT,i(f, b)]2

]
dσ(b)

=
1
N

(J1T (f)− J2T (f)) .

In particular, evaluated at the true covariates density f = fX , the above quantity is the integral of

the variance of f̂−β (fX , b) = with respect to σ(b) over Sd−1. By regularization, the order of magnitude

of this term is given by O(N−1T 2d−1) (see the proof of Theorem 2.4). That is,

1
N

(J1T (fX)− J2T (fX)) = O(N−1T 2d−1).
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By this and Lemma 6.4,

E‖f̂−β (f, ·)−MT (f, ·)‖2
2 =

1
N

(J1T (f)− J2T (f))

=
1
N

(J1T (fX)− J2T (fX)) +
1
N

(J1T (f)− J1T (fX))− 1
N

(J2T (f)− J2T (fX))

=O(N−1T 2d−1) + O(N−1T 2d−1‖f − fX‖2)O
(∥∥∥∥ 1

f

(
1
f

+
1

fX

)∥∥∥∥
2

)
+ O(N−1T d)O(‖f − fX‖2)O(‖1/f‖∞‖(f + fX)/f‖2).

Therefore the LHS is O(N−1T 2d−1) if ‖f − fX‖2 = o(1). By Markov and the convergence result for

f̂X (Theorem 2.4),

‖f̂−β (f̂X , ·)−MT (f̂X , ·)‖2 = Op(N− 1
2 T

2d−1
2 ).

�

Lemma 6.6. Suppose T � N
1

2s+2d−1 , then

‖f̂−β (f̂X , ·)− f−β (·)‖2 = Op(N
−s

2s+2d−1 ).

Proof of Lemma 6.6. Note

‖f̂−β (f̂X , ·)− f−β (·)‖2 = ‖f̂−β (f̂X , ·)−MT (f̂X , ·) + MT (f̂X , ·)−MT (fX , ·) + MT (fX , ·)− f−β (·)‖2

≤ ‖f̂−β (f̂X , ·)−MT (f̂−X , ·)‖2 + ‖MT (f̂−X , ·)−MT (fX , ·)‖2 + ‖MT (fX , ·)− f−β (·)‖2

:= ‖A1‖2 + ‖A2‖2 + ‖A3‖2.

By Lemma 6.5, A1 = Op(N− 1
2 T

2d−1
2 ). By (6.21) and Theorem 2.4,

A2 = Op(T
d
2 ‖f̂X − fX‖2‖1/f̂X‖∞)

= Op(T
d
2 N

−σ
2σ+d−1 ).

Lemma 6.2 implies that

‖A3‖2 =

∥∥∥∥∥∥
T∑

p=0

Q2p+1f
−
β −

∞∑
p=0

Q2p+1f
−
β

∥∥∥∥∥∥
2

= O(T−s).

If the true density fX is known, the term A1 evaluated at fX corresponds to the standard error and the

term A3 the bias. The optimal choice of T that balances the bias-variance trade-off is TN � N
1

2s+2d−1 ,

giving the convergence rate N
−s

2s+2d−1 . The term A2 reflects the effect of substituting fX with its

estimate. Evaluated at the optimal rate TN ,

A2 = Op(N
d

2(2s+2d−1) N
−σ

2σ+d−1 ).
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So A2 becomes negligible if

d

2(2s + 2d− 1)
− σ

2σ + d− 1
≤ −s

2s + 2d− 1
,

which holds if σ ≥ s + d
2 . �

Lemma 6.6 establishes the L2 convergence rate of f̂−β (f̂X , b) = f̂−,N,T
β (b). This is our feasible

estimator (3.8) for f−β , the odd part of fβ. Now we are ready to show the L2 convergence result for

f̂N,T
β .

Proof of Theorem 3.2. For notational convenience, in this proof we simply write f̂β := f̂N,T
β , f̂−β :=

f̂−,N,T
β , I := I{f−β (b) > 0} and Î := I{f̂−β (b) > 0}. Then fβ = 2f−β I and f̂β = 2f̂−β Î.

‖f̂β − fβ‖2
2 =

∫
(f̂β(b)− fβ(b))2dσ(b)

=
∫

I(b)=1,Î(b)=1
(f̂β(b)− fβ(b))2dσ(b) +

∫
I(b)=0,Î(b)=1

(f̂β(b)− fβ(b))2dσ(b)

+
∫

I(b)=1,Î(b)=0
(f̂β(b)− fβ(b))2dσ(b) +

∫
I(b)=0,Î(b)=0

(f̂β(b)− fβ(b))2dσ(b)

:=B1 + B2 + B3 + B4.

Obviously

B1 =
∫

I(b)=1,Î(b)=1
(2f̂−β (b)− 2f−β (b))2dσ(b)

and B4 = 0. Also,

B2 =
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− fβ(b))2dσ(b).

But given I(b) = 0 and Î(b) = 1, 2f̂−β (b) > 0, fβ(b) = 0 and 2f−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

B2 ≤
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− 2f−β (b))2dσ(b).

Similarly,

B3 =
∫

I(b)=1,Î(b)=0
(f̂β(b)− 2f−β (b))2dσ(b).

and given I(b) = 1 and Î(b) = 0, 2f−β (b) > 0, f̂β(b) = 0 and 2f̂−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

B3 ≤
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− 2f−β (b))2dσ(b).

Overall,

‖f̂β − fβ‖2
2 ≤ 4‖f̂−β − f−β ‖

2
2
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or

‖f̂β − fβ‖2 ≤ 2‖f̂−β − f−β ‖2

= Op(N
−s

2s+2d−1 ) by Lemma 6.6,

which is the desired result. �

Proof of Theorem 3.3. Since f−β (b) > 0 under the assumption of the theorem and the consistency

result implied by Theorem 3.2, it is suffices to consider N1/2s−1
N 2(f̂−,N,Tn

β (b)−f−β (b)). Now, using the

notation introduced in this appendix, write

f̂−,N,Tn

β (b)− f−β (b) = f̂−,N,Tn

β (b)−MT (f̂X , b) + MT (f̂X , b)−MT (fX , b) + MT (fX , b)− f−β (b)

:= C1(b) + C2(b) + C3(b).

In what follows we show that C2 and C3 are asymptotically negligible. Since we are concerned

with asymptotic normality at a point b throughout this proof, we sometimes drop the argument

“b” from a function symbol when obvious. Note that C3 is the regularization bias term and C3 =∑∞
p=T+1 Q2p+1f

−
β . Therefore under the maintained hypothesis s > d−1

2 , for a v < s

‖C3‖∞ ≤

∥∥∥∥∥∥
∞∑

p=T+1

Q2p+1f
−
β

∥∥∥∥∥∥
2,v

≤ cT−(s−v)‖f−β ‖2,s by Lemma 6.2.

Noting sN � T d− 1
2 and letting v = d−1

2 + ε, ε > 0 in the above result,

N
1
2 s−1

N C3 = O(N
1
2 T−d+ 1

2 )O(T−(s− d−1
2

−ε))

= O(N
1
2
+α(s− d−1

2
−ε)).

C3 is negligible if N
1
2 s−1

N C3 = o(1), that is,

1
2

+ α(s− d− 1
2

− ε) < 0

or
1

2s + d− ε
< α.

Since ε > 0 can be made arbitrarily small, we obtain the condition

(6.22)
1

2s + d
< α.
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Now we turn to C2, which can be written as

C2 =
T∑

p=0

1
λ2p+1

Q2p+1

[(
fX

f̂X

− 1
)

(2R− 1)
]

:=
T∑

p=0

1
λ2p+1

Q2p+1∆

Therefore

‖C2‖2
2,t =

∞∑
n=0

ζt
n‖QnC2‖2

2

=
∞∑

n=0

ζt
n

∥∥∥∥∥∥Qn

T∑
p=0

1
λ2p+1

Q2p+1∆

∥∥∥∥∥∥
2

2

=
∞∑

p=0

ζt
2p+1

∥∥∥∥ 1
λ2p+1

Q2p+1∆
∥∥∥∥2

2

=
∞∑

p=0

ζt
2p+1

λ2
2p+1

‖Q2p+1∆‖2
2

≤ 1
λ2

2T+1

∞∑
p=0

ζt
2p+1 ‖Q2p+1∆‖2

2

≤ 1
λ2

2T+1

∞∑
n=0

ζt
n ‖Qn∆‖2

2

=
‖∆‖2

2,t

λ2
2T+1

,

or ‖C2‖2,t = ‖∆‖2,t

λ2T+1
. Recall that λ2T+1 � T−d/2. By Theorem 2.4 and the results in Tambaca (2001)

and Cox and O’Sullivan (1994),

‖C2‖2,t = O(T d/2)Op(N
− σ−t−ε

2σ+d−1 ),

ε > 0. Let t = d−1
2 + ε, then

C2(b) ≤ ‖C2‖∞

≤ c‖C2‖2,t

= O(T d/2)Op(N
−σ− d−1

2 −2ε

2σ+d−1 ).
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or

N
1
2 s−1

N C2(b) = O(N
1
2 )O(T−d+ 1

2 )O(T d/2)Op(N
−σ− d−1

2 −2ε

2σ+d−1 )

= O(N
1
2 )O(N−α d−1

2
))Op(N

−σ− d−1
2 −2ε

2σ+d−1 ).

C2(b) is negligible if N
1
2 s−1

N C2(b) = op(1), or

1
2
− α

d− 1
2

−
σ − d−1

2 − 2ε

2σ + d− 1
< 0

or
2 + 4ε

d−1

2σ + d− 1
< α.

Since ε > 0 can be made arbitrarily small, we obtain the condition

(6.23)
2

2σ + d− 1
< α.

In sum, C2 + C3 is asymptotically negligible if α satisfies (6.22) and (6.23), that is,

1
2s + d

∨ 2
2σ + d− 1

< α.

Moreover

N
1
2 s−1

N C1(b) = N1/2s−1
N (f̂−β (fX , b)−MT (fX , b)) + op(1).

holds. Therefore the proof is complete if we can show that N1/2s−1
N 2(f̂−β (fX , b)−MT (fX , b)) converges

to the stated distribution in the theorem. Note that

N1/2s−1
N

(
f̂−β (fX , b)−MT (fX , b)

)
=

1
N1/2sN

N∑
i=1

2 (ZNi − E[Zi]) .

We can show, as in the proof of Theorem 2.5 but using (6.15), that there exists a constant c depending

on the dimension such that

var (ZN,1) ≥ cNα(2d−1).

Also,

E
[
|ZN,1|2+δ

]
=
∫

Sd−1

∣∣∣∣∣∣
TN∑
p=0

q2p+1,d(y, x)
λ(2p + 1, d)

∣∣∣∣∣∣
2+δ

f−1−δ
X (y)dσ(y)

≤
(

CX

|Sd−1|

)1+δ
(

TN∑
n=0

h(2p + 1, d)
|λ(2p + 1, d)|

)2+δ

.

Therefore the criterion (6.17) is satisfied if

δ/2
1 + δ/2

> α(2d− 1).
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Taking δ large enough, we obtain the upper bound for the rate α. An application of the Lyapounov

CLT proves the claim. �
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