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Abstract

We show that the limiting distributions of subset extensions of the weak instrument

robust instrumental variable statistics are bounded from above by the limiting distributions

that apply when the remaining structural parameters are well-identified and, when the

number of remaining structural parameters is one, from below by the limiting distributions

which hold when the remaining structural parameter is completely unidentified. Thus

the robust subset statistics are size correct in large samples and their projection based

counterparts are conservative. The power curves of the robust subset statistics are non-

standard as they resemble identification statistics at distant values of the parameter of

interest. The power of a test on a well-identified structural parameter is therefore low at

distant values when one of the remaining structural parameters is weakly identified. It is

identical to the power of a test for a distant value of any of the other structural parameters.

All results extend to tests on the parameters of the included exogenous variables.

1 Introduction

A sizeable literature currently exists on statistics for the linear instrumental variables (IV) re-

gression model whose limiting distributions are robust to instrument quality, see e.g. Anderson

and Rubin (1949), Kleibergen (2002), Moreira (2003) and Andrews et. al. (2006). These weak

instrument robust statistics test hypotheses that are specified on all structural parameters of
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the linear IV regression model. Many interesting hypotheses are, however, specified on subsets

of the structural parameters and/or on the parameters associated with the included exogenous

variables. When we replace the structural parameters that are not specified by the hypothesis of

interest by estimators, the limiting distributions of the robust statistics extend to tests of such

hypotheses when a high level identification assumption on these remaining structural parameters

holds, see e.g. Stock and Wright (2000), Startz et. al. (2006) and Kleibergen (2004,2005). This

high level assumption is rather arbitrary and its validity is typically unclear. It is needed to

ensure that the parameters whose values are not specified under the null hypothesis are replaced

by consistent estimators so the limiting distributions of the weak instrument robust statistics

remain unaltered. When the high level assumption is not satisfied, the limiting distributions are

unknown. The only testing procedures documented in the literature sofar that controls the size

of subset tests without making the high level identification assumption are the projection based

tests, see e.g. Dufour (1997), Dufour and Jasiak (2001) and Dufour and Taamouti (2005,2007).

We show that when we estimate the structural parameters that are not specified by the hy-

pothesis of interest using the limited information maximum likelihood (LIML) estimator that the

limiting distributions of the robust subset statistics are boundedly pivotal. They are bounded

from above by the limiting distributions that apply when the high level assumption holds and,

when the number of unspecified structural parameters is equal to one, from below by the limiting

distributions that apply when the unspecified parameter is completely unidentified. Thus the

robust subset statistics are size correct since their maximum rejection frequency over all possible

values of the nuisance parameters is equal to the significance level of the test. A consequence of

the size correctness of the robust subset statistics is that the projection based tests are conserva-

tive and that they are dominated in terms of power by the robust subset statistics. The results

that we establish do not hold when we use the two stage least squares estimator to estimate the

structural parameters that are not specified by the hypothesis of interest.

We use the critical values that result under the high level identification assumption to compute

power curves of the robust subset statistics. These power curves show that the weak identification

of a particular structural parameter spills over to tests on any of the other parameters. For

distant values of the structural parameter of interest, we show that the robust subset statistics

correspond with tests of the identification of any of the structural parameters. Hence, when a

particular (combination of the) structural parameter(s) is weakly identified, the power curves

of tests on the structural parameters using the robust subset statistics converge to a rejection

frequency that is well below one when the parameter of interest becomes large. The quality

of the identification of the structural parameters whose values are not specified under the null

hypothesis is therefore of equal importance for the power of the tests as the identification of the

hypothesized parameters itself.
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The paper is organized as follows. The second section states the robust subset statistics.

In the third section, we discuss the bounds on their limiting distributions. The fourth section

analyses the size and power of the robust subset statistics and shows that they converge to

statistics that test the identification of any of the structural parameters when the parameter of

interest becomes large. The fifth section contains a brief discussion of testing hypotheses that

are specified on the parameters of the included exogenous variables. Finally, the sixth section

concludes.

We use the following notation throughout the paper: vec(A) stands for the (column) vector-

ization of the N × n matrix A, vec(A) = (a01 . . . a
0
n)
0 for A = (a1 . . . an), PA = A(A0A)−1A0 is

a projection on the columns of the full rank matrix A and MA = IN − PA is a projection on

the space orthogonal to A. Convergence in probability is denoted by “→
p
” and convergence in

distribution by “→
d
”.

2 Subset statistics in the Linear IV Regression Model

We consider the linear IV regression model

y = Xβ +Wγ + ε

X = ZΠX + VX

W = ZΠW + VW ,

(1)

with y, X andW N ×1, N ×mx and N ×mw dimensional matrices that contain the endogenous

variables, Z aN×k dimensional matrix of instruments andm = mx+mw. TheN×1, N×mx and

N ×mw dimensional matrices ε, VX and VW contain the disturbances. The unknown parameters

are contained in the mx×1, mw×1, k×mx and k×mw dimensional matrices β, γ, ΠX and ΠW .

The model stated in equation (1) is used to simplify the exposition. An extension of the model

that is more relevant for practical purposes arises when we add a number of so-called included

exogenous variables to all equations in (1). The results that we obtain do not alter from such

an extension when we replace the expressions of the variables that are currently in (1) in the

specifications of the robust subset statistics by the residuals that result from a regression of them

on these additional included exogenous variables.

We make, analogous to Staiger and Stock (1997), an assumption on the convergence of the

different variables in (1).

Assumption 1: When the sample size N goes to infinity, the following convergence results

hold jointly:
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a. 1
N
(ε
... VX

... VW )0(ε
... VX

... VW ) →
p
Σ, with Σ a positive definite (m + 1) × (m + 1) matrix

and Σ =

⎛⎜⎝ σεε σεX σεW

σXε ΣXX ΣXW

σWε ΣWX ΣWW

⎞⎟⎠ , σεε : 1× 1, σεX = σ0Xε : 1×mx, σεW = σ0Wε : 1×mw,

ΣXX : mx ×mx, ΣXW = Σ0WX : mx ×mw, ΣWW : mw ×mw.

b. 1
N
Z 0Z →

p
Q, with Q a positive definite k × k matrix.

c. 1√
N
Z 0(ε

... VX
... VW )→

d
(ψZε

... ψZX

... ψZW ), with ψZε : k × 1, ψZX : k ×mx, ψZW : k ×mw

and vec(ψZε

... ψZX

... ψZW ) ∼ N (0,Σ⊗Q) .

Statistics to test joint hypotheses on β and γ, like, for example, H∗ : β = β0 and γ = γ0,

have been developed whose (conditional) limiting distributions under H∗ and Assumption 1 do

not depend on the value of ΠX and ΠW , see e.g. Anderson and Rubin (1949), Kleibergen (2002)

and Moreira (2003). These identification robust statistics can be adapted to test for hypotheses

that are specified on a subset of the parameters, for example, H0 : β = β0. We construct such

robust subset statistics which use the LIML estimator γ̃(β0) to estimate the unknown value of

γ. The identification robust subset statistics are equal to the identification robust statistics that

test the joint hypothesis H∗ : β = β0 and γ = γ0 for γ0 equal to γ̃(β0).

Definition 1: 1. The subset AR statistic (times k) to test H 0 : β = β0 reads

AR(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0PZ(y −Xβ0 −Wγ̃(β0)), (2)

with σ̂εε(β) =
1

N−k (y −Xβ −Wγ̃(β0))
0MZ(y −Xβ −Wγ̃(β0)).

2. Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test H 0 reads, see Kleibergen

(2004),

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0PZ(Π̃W (β0) : Π̃X(β0))
(y −Xβ0 −Wγ̃(β0)), (3)

with
Π̃W (β0) = (Z 0Z)−1Z 0

h
W − (y −Xβ0 −Wγ̃(β0))

σ̂εW (β0)
σ̂εε(β0)

i
Π̃X(β0) = (Z 0Z)−1Z 0

h
X − (y −Xβ0 −Wγ̃(β0))

σ̂εX(β0)
σ̂εε(β0)

i
,

(4)

and σ̂εW (β0) =
1

N−k (y −Xβ0 −Wγ̃(β0))
0MZW, σ̂εX(β0) =

1
N−k (y −Xβ0 −Wγ̃(β0))

0MZX.

3. A J-statistic that tests miss-specification under H 0, HM : E(Z 0(y − Xβ0 −Wγ̃(β0))) = 0,

reads,

JKLM(β0) = AR(β0)−KLM(β0). (5)
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4. A subset extension of Moreira’s (2003) conditional likelihood ratio statistic to test H 0 reads,

MQLR(β0) =
1
2

∙
AR(β0)− rk(β0) +

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

(6)

where rk(β0) is the smallest characteristic root of Σ̂MQLR(β0) = T (β0)
0T (β0) with

T (β0) = (Z
0Z)

1
2 [Π̃X(β0)

... Π̃W (β0)]Σ̂
− 1
2

(X : W )(X : W ).ε
(7)

and

Σ̂
− 1
2

(X : W )(X : W ).ε =

Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εεΣ̂
− 12
XX.(ε : W )

0

Σ̂
− 12
WW.ε

!
(8)

in which Σ̂XX.(ε : W ) =
1

N−kX
0M(Z : W : ε̂)X, Σ̂WX.ε =

1
N−kW

0M(Z : ε̂)X, Σ̂WW.ε =
1

N−kW
0M(Z : ε̂)W

and ε̂ = y −Xβ0 −Wγ̃(β0).

We analyse the subset extension (6) of the conditional likelihood ratio statistic of Moreira

(2003) instead of the subset likelihood ratio statistic that results under i.i.d. normal disturbances

because it is easier to use than the subset likelihood ratio statistic and results in almost identical

results when used to conduct statistical inference as we show lateron.

In case of one included endogenous variable, m = 1, and i.i.d. normal disturbances with

a known covariance matrix, the MQLR statistic (6) is the likelihood ratio statistic for testing

hypotheses on all structural parameters, see e.g. Moreira (2003) and Hillier (2007). When the

number of included endogenous variables exceeds one, m > 1, the MQLR statistic is no longer

the likelihood ratio statistic that tests a hypothesis that is specified on all structural parameters,

like, for example, H∗. In Kleibergen (2007) and Hillier (2006), the likelihood ratio statistic for

testing hypotheses on all structural parameters when m exceeds one is studied. In Kleibergen

(2007), it is shown that the limiting distribution of the likelihood ratio statistic depends on all

the characteristic roots of Σ̂MQLR(β0) and that the MQLR statistic provides a upper bound on

the likelihood ratio statistic which results by restricting all characteristic roots to the smallest

one.1 The upper bound is sharp when the tested hypothesis coincides with a value of the

structural parameters for which the first order condition holds. In Hillier (2006), it is shown

that the conditioning argument for the likelihood ratio statistic can be improved upon further

such that the limiting distribution of the likelihood ratio statistic essentially depends on only

one conditioning statistic.

The subset likelihood ratio statistic has the same expression as the likelihood ratio statistic

under i.i.d. normal disturbances that tests the joint hypothesis when we replace the value

1This explains why we refer to the MQLR statistic as a quasi-likelihood ratio statistic.
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of the non-hypothesized parameters under H0 by their LIML estimate under H0. Because of

the prevailing first order condition, the conditioning argument for the subset likelihood ratio

statistic is more involved than for the likelihood ratio statistic that tests a hypothesis on all

structural parameters. The number of conditioning statistics for the subset likelihood ratio

statistic therefore exceeds the number for the likelihood ratio statistic that conducts a joint

test on all structural parameters. For expository purposes, we relegate a brief discussion of the

conditioning argument to the Appendix but include the subset likelihood ratio statistic in the

size and power analysis that we conduct in Section 4.

Using a high level assumption with respect to the rank of ΠW , Theorem 1 states the (condi-

tional) limiting distributions of the subset AR, KLM, JKLM and MQLR statistics.

Assumption 2: The value of the k×mw dimensional matrix ΠW is fixed and of full rank.

Theorem 1. Under H 0 and when Assumptions 1 and 2 hold, the (conditional) limiting distri-

butions of AR(β0), KLM(β0), JKLM(β0) and MQLR(β0) given rk(β0) are characterized by

1. AR(β0) →
d

ψmx
+ ψk−m,

2. KLM(β0) →
d

ψmx
,

3. JKLM(β0) →
d

ψk−m,

4. MQLR(β0)|rk(β0) →
d

1
2

∙
ψmx

+ ψk−m − rk(β0) +
q¡

ψmx
+ ψk−m + rk(β0)

¢2 − 4ψk−mrk(β0)
¸
,

(9)

where ψmx
and ψk−m are independent χ

2(mx) and χ2(k −m) distributed random variables.

Proof. see Stock and Wright (2000) and Startz et. al. (2006) for the subset AR statistic and
Kleibergen (2004), Mikusheva (2007) for all other statistics.

The (conditional) limiting distributions in Theorem 1 hold under a full rank value of ΠW

which is a high level assumption that is difficult to verify in practice. We therefore establish

bounds on the (conditional) limiting distributions of the statistics from Definition 1 that apply

for all values of ΠW .

3 Bounds on the limiting distributions of robust subset

statistics

Theorem 2 states the bounds on the limiting distributions of the robust subset statistics.
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Theorem 2. Under H 0 and when Assumption 1 holds, the (conditional) limiting distributions

of the robust subset statistics from Theorem 1 provide a upper bound on the (conditional) limiting

distributions for general values of ΠW . When mw is equal to one, the (conditional) limiting

distributions under a zero value of ΠW provide a lower bound.

Proof. see the Appendix.

The proof of Theorem 2 consists of two parts. First, the bounds on the limiting distribution

of the subset AR statistic are established. These bounds are obtained by using that the subset

AR statistic is equal to the smallest root of a characteristic polynomial. The matrices in the

characteristic polynomial can be transformed such that the upper bound on the smallest char-

acteristic root results from a ratio of quadratic forms or Rayleigh quotient. A judicious choice

of the vector in the ratio of quadratic forms shows that this upper bound is always less than or

equal to a χ2(k −mw) distributed random variable. Thus the upper bound coincides with the

limiting distribution from Theorem 1 that holds for a full rank value of ΠW .

When mw is equal to one, the upper bound is non-decreasing in the value of ΠW which

implies, since the upper bound coincides with the limiting distribution of the subset AR statistic

when ΠW has a full rank value, that the limiting distribution of the subset AR statistic is non-

decreasing in ΠW as well. Hence, a lower bound on the limiting distribution of the subset AR

statistic results when ΠW is equal to zero. This property presumably holds for other values of

mw as well but because the lower bound is of less importance than the upper bound we do not

estabilish the result for a general value of mw.

The second part of the proof of Theorem 2 concerns the (conditional) limiting distributions of

the subset KLM, JKLM and MQLR statistics. The manner in which these are computed is such

that first the subset AR statistic is computed whose limiting distribution is bounded as described

above. Jointly with the subset AR statistic, the LIML estimator is computed. Given the value of

the LIML estimator, the subset KLM and JKLM statistics are then computed as quadratic forms

of a random vector with respect to a random matrix whose limiting distributions are independent

of one another. Given the value of the LIML estimator, the limiting distributions of the subset

KLM and JKLM statistics are independent as well. Hence, since the subset AR statistic is the

sum of the subset KLM and JKLM statistics, the bounds on the limiting distributions of the

subset AR statistic imply the bounds on the limiting distributions of the subset KLM and JKLM

statistics.

Given the value of the LIML estimator, the limiting distribution of the conditioning statistic

for the subset MQLR statistic is independent of the limiting distributions of the subset KLM

and JKLM statistics. Thus because the derivatives of the subset MQLR statistic with respect

to the subset KLM and JKLM statistics are non-negative, the conditional limiting distribution
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of the subset MQLR statistic is also bounded as stated in Theorem 2.

Theorem 2 shows that the (conditional) limiting distributions of the robust subset statistics

are boundedly pivotal. The critical values that result from the (conditional) limiting distributions

in Theorem 1 can therefore be applied in general, so even for (almost) lower rank values of ΠW ,

since the rejection frequency of these tests is at most equal to the rejection frequency under a full

rank value of ΠW . Thus Theorem 2 shows that the robust subset statistics are size correct since

the maximum rejection probability over all possible values of ΠW is equal to the significance level

of the test.

At present the only existing approach in the literature that controls the size of subset tests

results from using a projection argument, see e.g. Dufour (1997), Dufour and Jasiak (2001) and

Dufour and Taamouti (2005,2007). Projection-based tests do not reject H0 when tests of the

joint hypothesis H∗ : β = β0, γ = γ0 are not significant with respect to the limiting distribution

of the joint test for some values of γ0. When the limiting distribution of the joint test does not

depend on nuisance parameters, the maximal value of the rejection probability over all possible

values of the nuisance parameters can not exceed the size of the test.

Theorem 3. When Assumption 1 and H 0 : β = β0 hold, a non-significant value of AR(β0),

KLM(β0), JKLM(β0) and MQLR(β0) implies that their projection based counterparts are non-

significant as well.

Proof. Since AR(β0) =AR(β0, γ̃(β0)) and when the significance level of the test is α,

1−α ≥ Pr[χ2(k−mw) <AR(β0)] > Pr[χ
2(k) <AR(β0, γ̃(β0))] which shows that a non-significant

value of AR(β0) implies a non-significant value of its projection based counterpart as well since

there is a value of γ, i.e. γ = γ̃(β0), for which AR(β0, γ) is non-significant. The same argument

applies to KLM(β0), JKLM(β0) and MQLR(β0).

Theorem 3 shows that the rejection frequency of the robust subset statistics is strictly larger

than the rejection frequency of their projection based counterparts. Theorem 2 shows that the

robust subset statistics are size correct so Theorem 3 implies that the projection based tests are

under sized and therefore conservative. Theorem 3 also implies that the power of the robust

subset statistics is strictly larger than the power of their projection based counterparts.

4 Size, power and tests at distant values

We conduct a size and power comparison of the different robust subset statistics to analyse the

influence of the strength of the identification of γ for tests on β.We therefore conduct a simulation

experiment using (1) with mx = mw = 1, γ = 1, N = 500 and vec(ε
... VX

... VW ) ∼ N(0,Σ⊗ IN).
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Table 1: Size of the different statistics and of their projection based counterparts (indicated by
“Proj”) in percentages that test H0 at the 95% significance level.

KLM(β0) LR(β0) MQLR(β0) JKLM(β0) CJKLM(β0) AR(β0) 2SLS(β0)
Figures Proj Proj Proj
1.1, 2.1 3.3 0.6 1.9 1.9 0.5 1.3 2.4 2.0 1.6 4.3
1.2, 2.2 5.1 1.6 5.7 5.2 2.5 4.9 5.0 5.1 4.1 3.5
1.3, 2.3 4.3 1.1 3.8 3.9 1.3 3.6 3.8 4.4 2.9 4.5
1.4, 2.4 5.0 1.4 5.5 5.0 2.0 4.9 4.8 5.1 4.1 5.5
1.5, 2.5 4.6 1.3 4.7 4.6 1.6 4.5 4.6 5.0 3.6 4.6
1.6, 2.6 4.9 1.4 5.3 5.1 1.9 4.9 4.8 5.1 4.1 4.3

The instruments Z are generated from a N(0, Ik ⊗ IN) distribution. We compute the rejection

frequency of testing H0 : β = 0 using the robust subset statistics and the two stage least squares

(2SLS) t-statistic, to which we refer as 2SLS(β0). The number of simulations that we conduct

equals ten thousand.

We control for the identification of β and γ by specifyingΠX andΠW in accordance with a pre-

specified value of the matrix generalisation of the concentration parameter, see e.g. Phillips (1983)

and Rothenberg (1984). We therefore analyse the size and power of tests on β for different values

of Θ = (Z 0Z)
1
2 (ΠX

... ΠW )Ω
− 1
2

XW , with ΩXW =
³

ΣXX

ΣWX

ΣXW

ΣWW

´
, whose quadratic form constitutes the

matrix concentration parameter. We specify Θ such that only its first two diagonal elements are

non-zero. To analyse the influence of the strength of identification of γ on the power of tests

on β in an isolated manner, we equate the covariance matrix Σ to the identity matrix. This

essentially implies that there is no endogeneity but it allows us to illustrate another important

property of the robust subset statistics in a more straightforward manner.

4.1 Power and size

Table 1 contains the rejection frequencies of the robust subset statistics when we test at the 95%

significance level and of their projection based counterparts. Besides these statistics, Table 1 also

contains the rejection frequency of the 2SLS t-statistic, the subset LR statistic and a combination

of the subset KLM and JKLM statistics that uses a 96% significance level for the subset KLM

statistic and a 99% significance level for the subset JKLM statistic. Because of the independence

of the limiting distributions of the subset KLM and JKLM statistics, the size of the combined

test is at most 5%. The critical values that are used for the subset LR statistic are discussed in

the Appendix. Table 1 also shows which Figures contain the accompanying power curves. These

Figures show the specification of the non-zero diagonal elements of Θ that indicate the strength

of the identification of β and/or γ.
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Panel 1: Power curves of AR(β0) (dash-dotted), Projected AR (solid-triangles), KLM(β0) (dashed),

Projected KLM (solid-plusses), MQLR(β0) (solid) and Projected MQLR (dotted).
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Figure 1.1: Θ11 = 10, Θ22 = 3. Figure 1.2: Θ11 = 3, Θ22 = 10.
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Figure 1.3: Θ11 = 10, Θ22 = 5. Figure 1.4: Θ11 = 5, Θ22 = 10.
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Figure 1.5: Θ11 = 10, Θ22 = 7. Figure 1.6: Θ11 = 7, Θ22 = 10.10



Panel 2: Power curves of AR(β0) (dash-dotted), LR(β0) (dashed-points), KLM(β0) (dashed),

JKLM(β0) (solid-triangles), MQLR(β0) (solid), CJKLM (solid-plusses) and 2SLS(β0) (dotted)

for testing H0 : β = 0.
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Figure 2.1: Θ11 = 10, Θ22 = 3. Figure 2.2: Θ11 = 3, Θ22 = 10.
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Figure 2.3: Θ11 = 10, Θ22 = 5. Figure 2.4: Θ11 = 5, Θ22 = 10.
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Table 1 shows that the size of all statistics is at most 5%. As stated in Theorem 2, this

result holds in general for all the robust subset statistics but not for the 2SLS t-statistic. For the

2SLS t-statistic, the bounded size results because, since Σ equals the identity matrix, there is no

endogeneity. When we introduce endogeneity, the 2SLS t-statistic can be severly size distorted

especially when the concentration matrix is rather small. Since this is a well known result, we

do not discuss it further. Table 1 shows that the robust subset statistics are under sized when

the non-hypothesized parameter is weakly identified as is the case in the first and third row of

Table 1. The value of Θ22, which shows, because Σ equals the identity matrix, the strength of

identification of γ, is equal to 3 and 5 in these rows and implies that γ is weakly identified. When

γ is well identified, the size of the robust subset statistics is close to 5% regardless of the strength

of identification of β. Table 1 also shows that the rejection frequency of the projection-based

tests is always less than the rejection frequency of the robust subset statistics.

Panel 1 contains the power curves of the subset AR, KLM and MQLR statistics and their

projection based counterparts. The Figures on the lefthandside in Panel 1 are all such that β

is well identified, since Θ11 = 10, while the quality of identification of γ differs from Θ22 = 3 in

Figure 1.1, Θ22 = 5 in Figure 1.3 to Θ22 = 7 in Figure 1.5. The Figures on the righthandside of

Panel 1 are such that γ is well identified, since Θ22 = 10, and the quality of the identification of

β differs from Θ11 = 3 in Figure 1.2, Θ11 = 5 in Figure 1.4 to Θ11 = 7 in Figure 1.6. Hence, for

the same row, the strength of identification of β and γ is reversed in the righthandside column

compared to the lefthandside column.

The Figures in Panel 1 contain a number of striking features. First, as implied by Theorem

3, the power curves of the subset AR, KLM and MQLR statistics are strictly above the power

curves of their projection based counterparts. Second, the Figures on the lefthandside of Panel

1 show that the strength of the identification of γ has large consequences for tests on β. Third,

the power curves of the same statistic in the two Figures on the same row in Panel 1, for which

the strength of identification of β and γ is reversed, show that the rejection frequencies are the

same at values of β that are distant from the true one. Fourth, the rejection frequency of the

subset MQLR and AR statistics is almost the same at values that are distant from the true one.

Panel 2 contains the power curves of the robust subset statistics, the subset LR statistic,

combined subset KLM and JKLM test and the 2SLS t-statistic. The value of the concentration

matrix is the same for the Figures in Panel 2 as in Panel 1. Hence, β is well identified in the

lefthandside Figures and γ is well identified in the righthandside Figures.

Besides the features discussed for Panel 1, the Figures in Panel 2 also contain some other

important characteristics. First, the 2SLS t-statistic is the most powerful statistic but because of

its size distortion when the strength of identification is rather low and endogeneity is present, its

power performance is missleading. Second, the power curves of the subset LR and subset MQLR
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statistics are almost identical. While not reported, the power curves of these statistics are also

almost identical for other settings of the matrix concentration parameter and the covariance

matrix. This explains why we did not provide an elobarate discussion of the subset LR statistic

since, as the construction of its critical values in the Appendix shows, it is more difficult to

implement as the subset MQLR statistic and is basically as powerful.2 Hence, we only discussed

the subset MQLR statistic. Third, none of the robust subset statistics strictly dominates the

other robust subset statistics in each of the Figures contained in Panel 2. The subset MQLR

statistic is always either the most powerful statistic or its power curve is close to the most

powerful one.

The power curves in Panels 1 and 2 indicate that the subset MQLR statistic is the most

appropriate statistic to be used for practical purposes. In order to make a definitive statement

about which statistic we recommend to use, we would need, similar to Andrews et. al. (2006),

to compute the power envelope. We did not construct it because the power envelope for robust

subset statistics is difficult to establish. The likelihood ratio statistic is not necessarily the most

powerful statistic for testing a point null subset hypothesis against a point subset alternative

which principle is used by Andrews et. al. (2006) to establish the power envelope in the linear

IV regression model with one structural parameter. This results since there is still an estimated

parameter under point null and point alternative subset hypotheses so the Neymann-Pearson

lemma does not apply. We therefore consider establishing the power envelope of the robust

subset statistics a challenging topic for further research.

4.2 Power at distant values

A striking phenomenon that is present in all power curves shown in Panels 1 and 2 is the power

of the robust subset statistics at values of β that are distant from the true one. Because of the

reversed identification strengths in the left and righthandside columns, it implies that for the

same robust subset statistic, the power of testing H0 : β = β0 at a value of β0 that is distant

from the true one is identical to the power of testing Hγ : γ = γ0 at a value of γ0 that is distant

from the true one. This indicates that a specific robust subset statistic has the same value at

distant values of β0 and γ0.

Theorem 4. When mx = 1, Assumption 1 holds and for tests of H 0 : β = β0 for values of β0
that are distant from the true value:

2Because of the three conditioning statistics of the subset LR statistic, we used one million (= 4×25×100×100)
conditional 95% critical values for the subset LR statistic while we used only one hundred 95% critical values for
the subset MQLR statistic.
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a. The subset AR statistic AR(β0) equals the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

...

W )Ω̂
− 1
2

XW , with Ω̂XW = 1
N−k (X

... W )0MZ(X
... W ).

b. The eigenvalues of Σ̂MQLR(β0) = T (β0)
0T (β0) are equal to the eigenvalues of∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.(X : W )

... (X
... W )Ω̂

− 1
2

XWR1

¸0
PZ∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.(X : W )

... (X
... W )Ω̂

− 1
2

XWR1

¸
,

(10)

where σ̂Xy =
1

N−kX
0MZy, σ̂Wy =

1
N−kW

0MZy, σ̂yy =
1

N−ky
0MZy, σ̂yy.(X : W ) = σ̂yy −¡

σ̂Xy

σ̂Wy

¢0
Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
and R1 is a m ×mw matrix that contains the orthonormal eigenvectors

of the largest mw eigenvalues of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW .

c. The subset KLM statistic KLM(β0) equals

KLM(β0) = r01Ω̂
− 1
2
0

XW (X
... W )0P

PZ

∙
(y−(X : W )Ω̂−1XW (

σ̂Xy
σ̂Wy
))σ̂

− 12
yy.(X : W )

: (X : W )Ω̂
− 12
XWR1

¸
(X

... W )Ω̂
− 1
2

XW r1,

(11)

with r1 the orthonormal eigenvector associated with the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
...

W )0PZ(X
... W )Ω̂

− 1
2

XW , which is orthogonal to R1, r
0
1R1 ≡ 0.

d. The subset MQLR statistic MQLR(β0) equals

MQLR(β0) =
1
2

∙
νmin − µmin +

q
(λmin + µmin)

2 − 4µmin(λmin −KLM(β0))
¸
, (12)

where νmin is the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
...W )0PZ(X

...W )Ω̂
− 1
2

XW , µmin is the smallest

eigenvalue of (10) and KLM(β0) results from (11).

e. The expressions of the subset AR, KLM and MQLR statistics that test H 0 : β = β0 at

values of β0 that are distant from the true value are identical to their expressions that test

H ∗
0 : α = 0 in the model

(X
... W )Ω̂

− 1
2

XW r1 = εα+ (X
... W )Ω̂

− 1
2

XWR1δ + u

ε = ZΦε + Vε

(X
... W )Ω̂

− 1
2

XWR1 = ZΦR1 + VR1,

(13)

where ε = y −Xβ −Wγ with β and γ the true values of the structural parameters, so Φε
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is a k×1 vector of zeros, α : 1 × 1, δ : mw × 1 and ΦR1 : k ×mw and u, Vε and VR1 are

n× 1, n× 1 and n×mw matrices of disturbances.

Proof. see the Appendix.

Theorem 4 shows that the expressions of the subset AR, KLM and MQLR statistics at values

of β0 that are distant from the true value do not depend on β0. Hence, the same value of the

statistics result when we use them to test for a distant value of an element of γ. This explains

the equality of the rejection frequencies of the subset AR, KLM, JKLM and MQLR statistics for

distant values of β0 in the left and righthandside figures of Panels 1 and 2.

The smallest eigenvalue of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW is identical to Anderson’s (1951)

canonical correlation reduced rank statistic which tests the hypothesis Hr : rank(ΠW
... ΠX) =

mw +mx− 1, see Anderson (1951). Thus Theorem 4 shows that the subset AR statistic is equal
to a reduced rank statistic that tests for a reduced rank value of (ΠW

... ΠX) at values of β0 that

are distant from the true one. Since the identification condition for β and γ is that (ΠW
... ΠX)

has a full rank value, the subset AR statistic at distant values of β0 is identical to a test for the

identification of β and γ.

Theorem 5. When mx = 1, Assumption 1 holds and for tests of H 0 : β = β0 for values of β0

that are distant from the true value, the smallest eigenvalue of Σ̂MQLR(β0) corresponds with a

test for a reduced rank value of (Φε
... ΦR1) whose rank equals at most mw − 1 and its limiting

distribution is bounded by a χ2(k −mw) distributed random variable.

Proof. Since Φε = 0, the rank of (Φε
... ΦR1) is at most equal to mw − 1. The smallest

eigenvalue equals a reduced rank statistic with a χ2(k−mw) limiting distribution which because

of Theorem 2 provides a upper bound in case the rank is less than mw − 1.
Theorem 5 implies that the minimal eigenvalue of Σ̂MQLR(β0) is rather small when Assumption

1 holds and β0 is distant from the true value. For small values of the minimal eigenvalue of

Σ̂MQLR(β0), the value of the subset MQLR statistic (6) is close to that of the subset AR statistic.

Corollary 1. When mx = 1, Assumption 1 holds and for tests of H 0 : β = β0 for values of β0
that differ substantially from the true value, the subset MQLR statistic is approximately equal to

the subset AR statistic.

Corollary 1 explains why the rejection frequencies of the subset AR and MQLR statistics are

almost the same in Panels 1 and 2 at distant values of β0. It also implies that the subset AR

statistic will be slightly more powerful than the subset MQLR statistic at distant values of β0.
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5 Tests on the parameters of exogenous variables

The robust subset statistics extend to tests on the parameters of the exogenous variables that

are included in the structural equation. Their expressions remain almost unaltered when X is

exogenous and is spanned by the matrix of instruments. The linear IV regression model then

reads
y = Xβ +Wγ + ε

W = XΠWX + ZΠWZ + VW ,
(14)

where (X
... Z) is the N × (k +mx) dimensional matrix of instruments and ΠXW and ΠZW are

mx×mw and k×mw matrices of parameters. All other parameters are identical to those defined

for equation (1). We are interested in testing H0 : β = β0 and we adapt the expressions of the

statistics from Definition 1 to accommodate tests of this hypothesis.

Definition 2: 1. The subset AR statistic (times k) to test H 0 : β = β0 reads

AR(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0PZ̃(y −Xβ0 −Wγ̃(β0)), (15)

with Z̃ = (X
... Z), σ̂εε(β0) =

1
N−k (y −Xβ0 −Wγ̃(β0))

0MZ̃(y −Xβ0 −Wγ̃(β0)) and γ̃(β0) the

LIML estimator of γ given that β = β0.

2. The subset KLM statistic to test H 0 reads,

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0PMZ̃Π̃W (β0)
X(y −Xβ0 −Wγ̃(β0)), (16)

with Π̃X(β0) = (Z̃ 0Z̃)−1Z̃ 0X =
¡
Imx
0

¢
, since σ̂εX(β0) =

1
N−k (y − Xβ0 − Wγ̃(β0))

0MZ̃X =

0, Π̃W (β0) = (Z̃ 0Z̃)−1Z̃ 0
h
W − (y −Xβ0 −Wγ̃(β0))

σ̂εW (β0)
σ̂εε(β0)

i
and σ̂εW (β0) =

1
N−k (y − Xβ0 −

Wγ̃(β0))
0MZ̃W.

3. A subset J-statistic that tests miss-specification under H 0 reads,

JKLM(β0) = AR(β0)−KLM(β0). (17)

4. A quasi likelihood ratio statistic based on Moreira’s (2003) likelihood ratio statistic to test H 0

reads,

MQLR(β0) =
1
2

∙
AR(β0)− rk(β0) +

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

(18)

16



where rk(β0) is the smallest eigenvalue of

Σ̂MQLR = Σ̂
− 1
2
0

WW.ε

h
W − (y −Xβ0 − Zγ̃(β0))

σ̂εW (β0)
σ̂εε(β0)

i0
PMXZh

W − (y −Xβ0 − Zγ̃(β0))
σ̂εW (β0)
σ̂εε(β0)

i
Σ̂
− 1
2

WW.ε.
(19)

with σ̂εW (β0) =
1

N−k (y − Xβ0 − Wγ̃(β0))
0MZ̃W, Σ̂WW = 1

N−kW
0MZ̃W, Σ̂WW.ε = Σ̂WW −

σ̂εW (β0)
0σ̂εW (β0)

σ̂εε(β0)
.

Except for MQLR(β0), all statistics in Definition 2 are direct extensions of those in Definition

1 when we note that Π̃X(β0) =
¡
Imx
0

¢
when X belongs to the set of instruments. The alteration

of the expression of Σ̂MQLR for MQLR(β0) partly results from MZ̃X = 0 and since only the

instruments Z identify γ.

All Theorems extend to tests on the parameters of the included exogenous variables. Hence,

the robust subset statistics in Definition 2 are all size correct and their expressions do not depend

on β0 for values of β0 that are distant from the true value. For reasons of brevity, we do not

discuss this case any further. It is important to note though that the 2SLS t-statistic can be size

distorted when it is used to conducts tests on the parameters of the included exogenous variables.

6 Conclusions

The limiting distributions of the robust subset instrumental variable statistics that result under

a high level identification assumption on the remaining structural parameters provide upper

bounds on the limiting distributions of these statistics in general. Lower bounds result from

the limiting distributions under complete identification failure of the remaining parameters. For

distant values of the parameter of interest, the robust subset instrumental variable statistics

correspond with identification statistics. Even if the parameter of interest is well-identified, the

power of tests on it do therefore not necessarily converge to one when the hypothesized value

becomes large. A simplification of the subset LR statistic that is based on an extension of

Moreira’s (2003) conditional LR statistic, is shown to perform equally well as the subset LR

statistic and is much easier to use in practice. The robust subset statistics are more powerful

than their projection based counterparts which, since the robust subset statistics are size correct,

are conservative.
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Appendix

Proof of Theorem 2. The proof of Theorem 2 consists of several components. First, we

establish the bounds on the limiting distribution of the subset AR statistic. Second, we show

that given γ̃(β0) that the random vectors and matrices that constitute the quadratic forms of the

subset KLM and JKLM statistics are asymptotically independent. We also show that given γ̃(β0)

that the subset KLM and JKLM statistics are asymptotically independent as well. Combining

these results with the bounds on the limiting distribution of the subset AR statistic gives the

bounds on the limiting distributions of the subset KLM and JKLM statistics. Third, we show that

the derivatives of the subset MQLR statistic with respect to the subset KLM and JKLM statistics

are non-negative and that given γ̃(β0) that the limiting distribution of conditioning statistic of

the subset MQLR statistic is independent of the limiting distributions of the subset KLM and

JKLM statistics. These results imply the bounds on the conditional limiting distribution of the

subset MQLR statistic.

1. AR(β0) : The subset AR statistic, AR(β0), is equal to the smallest root of the characteristic

polynomial ¯̄̄̄
λΩ̂W − (y −Xβ0

... W )0PZ(y −Xβ0
... W )

¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 − Ω̂
− 1
2
0

W (y −Xβ0
... W )0PZ(y −Xβ0

... W )Ω̂
− 1
2

W

¯̄̄̄
= 0,

with Ω̂W = 1
N−k (y −Xβ0

... W )0MZ(y −Xβ0
... W ). The reduced form model for (y −Xβ0

... W )

reads

(y −Xβ0
... W ) = ZΠW (γ0

... Imw) + (u
... VW ),

with u = ε+ VWγ0 and

1
N
(u
... VW )0(u

... VW )→
p
ΩW =

µ
σεε+σεwγ0+γ

0
0σwε+γ

0
0Σwwγ0

σwε+Σwwγ0

... σεw+γ00Σww
Σww

¶
.

Pre-multiplying by (Z 0Z)−
1
2Z 0 and post-multiplying by Ω

− 1
2

W =

Ã
σ
− 12
εε.w

−(Σ−1wwσwε+γ0)σ
− 12
εε.w

...
0

Σ
− 12
ww

!
trans-

18



forms the reduced form model into

(Z 0Z)−
1
2Z 0(y −Xβ0

... W )Ω
− 1
2

W = (Z 0Z)−
1
2Z 0

∙
ZΠW (γ0

... Imw) + (u
... VW )

¸
Ã

σ
− 12
εε.w

−(Σ−1wwσwε+γ0)σ
− 12
εε.w

...
0

Σ
− 12
ww

!
= (Z 0Z)

1
2ΠWΣ

− 1
2

ww(−Σ−
1
2

wwσwεσ
− 1
2

εε.w
... Imw)+

(Z 0Z)−
1
2Z 0((ε− VWΣ−1wwσwε)σ

− 1
2

εε.w
... VWΣ

− 1
2

ww)

= ΘW (ρW
... Imw) + (ξε.w

... ξw) + op(1),

with σεε.w = σεε−σεWΣ−1WWσWε, ρW = −Σ−
1
2

wwσwεσ
− 1
2

εε.w,ΘW = (Z 0Z)
1
2ΠWΣ

− 1
2

WW , ξw = (Z
0Z)−

1
2Z 0VWΣ

− 1
2

WW

and ξε.w = (Z 0Z)−
1
2Z 0(ε − VWΣ−1wwσwε)σ

− 1
2

εε.w. Since Ω̂W →
p

ΩW and ξε.w and ξw converge to in-

dependent k × 1 and k × mw dimensional standard normal distributed random variables, the

characteristic polynomial is for large samples equivalent to¯̄̄̄
λImw+1 −

∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸0 ∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸¯̄̄̄
= 0.

We pre- and post-multiply the elements in the characteristic polynomial by A = (a1
... A1),

a1 : (mw + 1) × 1, A1 : (mw + 1) × mw; a1 =
¡
1
−ρw
¢
(1 + ρ0wρw)

− 1
2 , A1 = (ρw

... Imw)
0B−1,

B =

∙
(ρw

... Imw)(ρw
... Imw)

0
¸ 1
2

, such that A0A = Imw+1, and (ξ
∗
ε.w

... ξ∗w) = (ξε.w
... ξw)A, so

ξ∗ε.w = (ξ
∗
ε.w

... ξ∗w)a1, ξ
∗
w = (ξ

∗
ε.w

... ξ∗w)A1 and ξ
∗
ε.w and ξ

∗
w converge to independent standard normal

distributed random vectors as a01A1 = 0. The multiplication does not effect the roots of the

characteristic polynomial since A0A = Imw+1:¯̄̄̄
λImw+1 −A0

∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸0 ∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸
A

¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
∙
ΘW (0

... B) + (ξ∗ε.w
... ξ∗w)

¸0 ∙
ΘW (0

... B) + (ξ∗ε.w
... ξ∗w)

¸¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 − (ξ∗ε.w
... ΘWB + ξ∗w)

0(ξ∗ε.w
... ΘWB + ξ∗w)

¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
µ

ξ∗0ε.wξ∗ε.w
(ΘWB+ξ∗w)0ξ∗ε.w

... ξ∗0ε.w(ΘWB+ξ∗w)
(ΘWB+ξ∗w)0(ΘWB+ξ∗w)

¶¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
µ
1
0

... ξ∗0ε.w(ΘWB+ξ∗w)[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]−1
Imw

¶µ
ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w

0

...

0
(ΘWB+ξ∗w)0(ΘWB+ξ∗w)

´ µ
1
0

... ξ∗0ε.w(ΘWB+ξ∗w)[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]−1
Imw

¶0 ¯̄̄̄
= 0.
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The above shows that the roots of the characteristic polynomial are equal to the eigenvalues of

the matrix µ
1
0

... η0[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]
− 12

Imw

¶µ
ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w

0

... 0
(ΘWB+ξ∗w)0(ΘWB+ξ∗w)

¶
µ

1

[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]
− 12 η

... 0
Imw

¶
with η = [(ΘWB + ξ∗w)

0(ΘWB + ξ∗w)]
− 1
2 (ΘWB + ξ∗w)

0ξ∗ε.w →
d
N(0, Imw) and independent in large

samples of ξ∗0ε.wM(ΘWB+ξ∗w)ξ
∗
ε.w and (ΘWB+ξ∗w)

0(ΘWB+ξ∗w) which are independent of one another

in large samples as well. The eigenvalues of a matrix provide lower and upper bounds on ratio

of quadratic forms or Rayleigh quotients, see Golub and Van Loan (1989):

λmin ≤ 1
c0cc

0
µ
1
0

... η0[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]
− 12

Imw

¶µ
ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w

0

... 0
(ΘWB+ξ∗w)0(ΘWB+ξ∗w)

¶
µ

1

[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]
− 12 η

... 0
Imw

¶
c ≤ λmax,

where c is a (mw+1)-dimensional vector and λmin is the smallest and λmax the largest eigenvalue.

If we now use

c =
¡ 1

−[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]
− 12 η

¢
,

we obtain that

AR(β0) = λmin ≤ ξ∗0ε.wM(ΘWB+ξ∗w)ξ
∗
ε.w

1+η0[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]−1η
≤ ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w →

d
χ2(k −mw),

which shows that AR(β0) is less than or equal to a χ2(k − mw) distributed random variable.

The upper bound on the limiting distribution of AR(β0) therefore coincides with the limiting

distribution of AR(β0) when ΘW is large so it is a sharp upper bound.

When mw = 1, (ΘWB + ξ∗w)
0(ΘWB + ξ∗w) has a non-central χ

2 distribution with k degrees

of freedom and non-centrality parameter B0Θ0
WΘWB. Non-central χ2 distributions are bounded

from above by non-central χ2 distributions with a larger non-centrality parameter and the same

degrees of freedom parameter.3 Hence, the distribution of (ΘWB + ξ∗w)
0(ΘWB + ξ∗w) is bounded

from above by its distribution that holds for a larger value of ΘW , such that B0Θ0WΘWB is

larger as well, and [(ΘWB + ξ∗w)
0(ΘWB + ξ∗w)]

−1 is bounded from above by its distribution

that holds for a smaller value of ΘW . Because η and ξ∗0ε.wM(ΘWB+ξ∗w)ξ
∗
ε.w are independent of

3This property can be shown by using that a non-central χ2 distribution is a Poisson mixture of central χ2

distributions. Central χ2 distributions are increasing in the degrees of freedom parameter, see Ghosh (1973),
which property can be used jointly with the Poisson mixing property to show that non-central χ2 distributions
are bounded from above by non-central χ2 distributions with a larger non-centrality parameter and the same
degrees of freedom parameter.
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(ΘWB + ξ∗w)
0(ΘWB + ξ∗w) in large samples, the upper bound on the limiting distribution of

AR(β0),
ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w

1+η0[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]−1η
, is non-decreasing in the value of ΘW . Since the upper bound

on the limiting distribution of AR(β0) is sharp, as
ξ∗0ε.wM(ΘWB+ξ∗w)ξ

∗
ε.w

1+η0[(ΘWB+ξ∗w)0(ΘWB+ξ∗w)]−1η
coincides with

ξ∗0ε.wM(ΘWB+ξ∗w)ξ
∗
ε.w for large values of ΘW , this also implies that the limiting distribution of

AR(β0) is non-decreasing in the value of ΘW .

2. KLM(β0) and JKLM(β0). The subset AR statistic equals the smallest characteristic root

λmin.When r1 is the (mw+1)-dimensional orthonormal eigenvector associated with the smallest

characteristic root, we can specify the subset AR statistic as

AR(β0) = δ0δ = λminr
0
1r1 = λmin,

with δ = (ξ∗ε.w
... ΘWB + ξ∗w)r1 and which shows that the limiting distribution of δ given r1 (or

γ̃(β0) since r1 = A0Ω
1
2
W

¡
1

−γ̃(β0)
¢

1√
σ̂εε(β0)

) is normal.

Because MZΠ̃W (β0)
= Z(Z 0Z)−

1
2P

(Z0Z)−
1
2 Π̃W (β0)⊥

(Z 0Z)−
1
2Z 0, with Π̃W (β0)⊥ : k × (k − mw),

Π̃W (β0)
0
⊥Π̃W (β0) ≡ 0, and (y −Xβ0 −Wγ̃(β0))

0ZΠ̃W (β0) = 0, we can specify the subset KLM

statistic (3) as

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0PZ(Π̃W (β0) : Π̃X(β0))
(y −Xβ0 −Wγ̃(β0))

= 1
σ̂εε(β0)

(y −Xβ0 −Wγ̃(β0))
0PMZΠ̃W (β0)

ZΠ̃X(β0)
(y −Xβ0 −Wγ̃(β0))

=

∙
(Z 0Z)−

1
2Z 0(y −Xβ0 −Wγ̃(β0))

1√
σ̂εε(β0)

¸0
P
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)∙

(Z 0Z)−
1
2Z 0(y −Xβ0 −Wγ̃(β0))

1√
σ̂εε(β0)

¸
= δ0P

P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ

and a similar expression can be constructed for the subset JKLM statistic:

JKLM(β0) = δ0M
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ = δ0M
(Z0Z)

1
2 (Π̃W (β0) : Π̃X(β0))

δ.

To obtain the properties of the KLM and JKLM statistics, we use the specification of (Z 0Z)
1
2 Π̃X(β0) :

(Z 0Z)
1
2 Π̃X(β0) = (Z 0Z)−

1
2Z 0

h
X − (y −Xβ0 −Wγ̃(β0))

σ̂εX(β0)
σ̂εε(β0)

i
= (Z 0Z)−

1
2Z 0X − δ σ̂εX(β0)√

σ̂εε(β0)

=

"
ΘX + ξX − (ξ∗ε.w

... ΘWB + ξ∗w)r1r
0
1A

0
Ã

σεX−σεWΣ−1
WW

ΣWX√
σεε.W

Σ
− 12 0
WWΣWX

!
Σ
− 1
2

XX

#
Σ

1
2
XX
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withΘX = (Z
0Z)

1
2ΠXΣ

− 1
2

XX , ξX = (Z
0Z)−

1
2Z 0VXΣ

− 1
2

XX and where the expression for
σ̂εX(β0)√
σ̂εε(β0)

results

from using the specification of δ :

δ = (ξ∗ε.w
... ΘWB + ξ∗w)r1

=

∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸
Ar1

= (Z 0Z)−
1
2Z 0(y −Xβ0

... W )Ω
− 1
2

W Ar1

= (Z 0Z)−
1
2Z 0(y −Xβ0 −Wγ̃(β0))

1√
σ̂εε(β0)

so
σ̂εX(β0)√
σ̂εε(β0)

= r01A
0Ω
− 1
2

W

∙
1

T−k (y −Xβ0
... W )0MZX

¸
= r01A

0
Ã

σ
− 12
εε.w

−(Σ−1wwσwε+γ0)σ
− 12
εε.w

...
0

Σ
− 12
ww

!0 ³
σεX+γ

0
0ΣWX

ΣWX

´
+ op(1)

= r01A
0
Ã

σεX−σεWΣ−1
WW

ΣWX√
σεε.W

Σ
− 12 0
WWΣWX

!
+ op(1)

since 1
T−k (y −Xβ0

... W )0MZX →
p

³
σεX+γ

0
0ΣWX

ΣWX

´
.

The above expressions imply that conditional on r1 (or γ̃(β0)), δ and (Z
0Z)

1
2 Π̃X(β0) have

independent normal limiting distributions which are independent since

cov(ξX , (ξ
∗
ε.w

... ΘWB + ξ∗w)r1|r1) =
Ã

σεX−σεWΣ−1
WW

ΣWX√
σεε.W

Σ
− 12 0
WWΣWX

!0
Ar1,

which results from the decomposition of δ stated above, and var((ξ∗ε.w
... ΘWB + ξ∗w)r1|r1) = 1

such that

cov(ξX − (ξ∗ε.w
... ΘWB + ξ∗w)r1r

0
1A

0
Ã

σεX−σεWΣ−1
WW

ΣWX√
σεε.W

Σ
− 12 0
WWΣWX

!
Σ
− 1
2

XX , (ξ
∗
ε.w

... ΘWB + ξ∗w)r1|r1) = 0.

Given r1, the limiting distribution of δ is normal with an identity covariance matrix and since

P
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

M
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

= 0

the limiting distributions of P
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ andM
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ given

(Π̃X(β0), r1) are independent of one another. Since δ and Π̃X(β0) are given r1 (or γ̃(β0)) asymp-

totically independent, the limiting distributions of KLM(β0) and JKLM(β0) given r1 (or γ̃(β0))
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are therefore independent of one another.

The manner in which KLM(β0) and JKLM(β0) are obtained is such that first AR(β0) is

computed by minimizing AR(β0, γ) with respect to γ. Given the realized value of γ̃(β0) or

r1, Π̃X(β0) is constructed. The realized value of Π̃X(β0) is then used to compute KLM(β0)

and JKLM(β0) by essentially decomposing AR(β0) as AR(β0) equals the sum of KLM(β0) and

JKLM(β0). Hence, since Π̃X(β0) is not involved in constructing r1 or γ̃(β0), which results from

minimizing AR(β0, γ) with respect to γ, and that given r1 or γ̃(β0) the limiting distributions of

Π̃X(β0) and δ and of KLM(β0) and JKLM(β0) are independent,

δ0P
(Z0Z)−

1
2 Π̃W (β0)⊥

δ = AR(β0) = KLM(β0) + JKLM(β0) ≤
a
χ2(k −mw),

implies that
KLM(β0) = δ0P

P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ ≤
a
χ2(mx)

JKLM(β0) = δ0M
P
(Z0Z)−

1
2 Π̃W (β0)⊥

(Z0Z)
1
2 Π̃X(β0)

δ ≤
a
χ2(k −m)

and that these bounding distributions are independent of one another.

When mw = 1, the lower bound on the limiting distributions of KLM(β0) and JKLM(β0)

results when ΘW is equal to zero. This lower bound results since ΘW equal to zero also provides

the lower bound on the limiting distribution of AR(β0) and KLM(β0) and JKLM(β0) are given

r1 or γ̃(β0) independent in large samples.

3. MQLR(β0). The subset MQLR statistic can be expressed as a function of KLM(β0),

JKLM(β0) and rk(β0),

MQLR(β0) =
1
2

∙
AR(β0)− rk(β0) +

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

which expression we can use to show that both the derivative of MQLR(β0) with respect to

KLM(β0) :

∂MQLR(β0)
∂KLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)+rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
≥ 0

and the derivative of MQLR(β0) with respect to JKLM(β0) :

∂MQLR(β0)
∂JKLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
,

are larger than or equal to zero both when KLM(β0)+JKLM(β0)−rk(β0) is larger than or equal
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to zero and when KLM(β0)+JKLM(β0)−rk(β0) is less than zero since in the latter case:

∂MQLR(β0)
∂JKLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
= 1

2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)−rk(β0))2+4KLM(β0)rk(β0)

¶
= 1

2

⎛⎝1− 1r
1+

4KLM(β0)rk(β0)
(KLM(β0)+JKLM(β0)−rk(β0))2

⎞⎠ ≥ 0, KLM(β0) + JKLM(β0) < rk(β0).
Hence, the derivatives of MQLR(β0) both with respect to KLM(β0) and JKLM(β0) are non-

negative which imply that the bounding arguments that apply to KLM(β0) and JKLM(β0) extend

to the conditional limiting distribution of MQLR(β0). Thus the conditional limiting distribution

of MQLR(β0) is bounded from above by its limiting distribution that applies for large values of

ΘW and, when mw = 1, from below by its limiting distribution that applies when ΘW = 0.

The conditioning statistic rk(β0) in MQLR(β0) is a function of Π̃W (β0) and Π̃X(β0) both

of which are independent of δ given r1 in large samples which results since both Π̃W (β0) and

Π̃X(β0) are conditional on r1 normally distributed and their covariances given r1 with δ are

equal to zero.4 The conditioning statistic rk(β0) uses the realized value of r1 (or γ̃(β0)) and is

not involved in obtaining γ̃(β0) or r1.

Proof of Theorem 4. a. When we test H0 : β = β0 and β0 is large compared to the true value

β, the different elements of Ω̂W = 1
N−k (y−Xβ0

... W )0MZ(y−Xβ0
... W ), can be characterized by

1
β20

1
N−k (y −Xβ0)

0MZ(y −Xβ0) = ω̂XX − 2
β0
ω̂yX +

1
β20
ω̂yy

− 1
β0

1
N−k (y −Xβ0)

0MZW = ω̂XW − 1
β0
ω̂yW

1
N−kW

0MZW = Ω̂WW ,

with ω̂yy =
1

N−ky
0MZy, ω̂XX =

1
N−kX

0MZX, ω̂XW = 1
N−kX

0MZW, ω̂yW = 1
N−ky

0MZW, so

Ã
−β−10 0

0 ImW

!0
Ω̂W

Ã
−β−10 0

0 ImW

!
= Ω̂XW − 1

β0

Ã
2σ̂yX σ̂yW

σ̂0yW 0

!
+ 1

β20

Ã
σ̂yy 0

0 0

!
,

4Using the specification of Π̃W (β0) in (4), we can proof the conditional independence of Π̃W (β0) and δ given
r1 using the same line of argument as for Π̃X(β0).
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with Ω̂XW = 1
N−k (X

... W )0MZ(X
... W ). The LIML estimator γ̃(β0) is obtained from the smallest

root of the characteristic polynomial:¯̄̄̄
λΩ̂W − (y −Xβ0

... W )0PZ(y −Xβ0
... W )

¯̄̄̄
= 0,

and the smallest root of this polynomial, λmin, equals the subset AR statistic to test H0. The

smallest root does not alter when we respecify the characteristic polynomial as¯̄̄̄
λImw+1 − Ω̂

− 1
2
0

W (y −Xβ0
... W )0PZ(y −Xβ0

... W )Ω̂
− 1
2

W

¯̄̄̄
= 0.

Using the specification of Ω̂W , we can specify Ω̂
− 1
2

W as

Ω̂
− 1
2

W =

Ã
−β−10 0

0 ImW

!
Ω̂
− 1
2

XW +O(β−20 ),

where O(β−20 ) indicates that the highest order of the remaining terms is β
−2
0 . Using the above

specification, for large values of β0, Ω̂
− 1
2
0

W (y−Xβ0
... W )0PZ(y−Xβ0

... W )Ω̂
− 1
2

W is characterized by

Ω̂
− 1
2
0

W (y −Xβ0
... W )0PZ(y −Xβ0

... W )Ω̂
− 1
2

W = Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW +O(β−10 ).

For large values of β0, the AR statistic thus corresponds with the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW which is a statistic that tests for a reduced rank value of (ΠX
... ΠW ).

b. Let R = (r1
... R1) : m × m contain the eigenvectors of Ω̂

− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW

with r1 the eigenvector of the smallest eigenvalue and R1 contains the eigenvectors of the larger

eigenvalues. The eigenvectors are orthonormal so R0R = Im. For large values of β0,

Ω̂
− 1
2

W r1 =
³
−β−10
0

0
Ik

´
Ω̂
− 1
2

XW r1 +O(β−20 ).

The LIML estimator γ̃(β0) is obtained from the eigenvector that belongs to the smallest eigen-

value which for large values of β0 is such that

d
¡

1
−γ̃(β0)

¢
= Ω̂

− 1
2

W r1

=
³
−β−10
0

0
Ik

´
Ω̂
− 1
2

XW r1 +O(β−20 ),

with d = − 1
β0
e01Ω̂

− 1
2

XW r1 and where e1 equals the first column of Im, or the first m-dimensional

unity vector.

25



The eigenvalues of Σ̂MQLR(β0) = T (β0)
0T (β0), with

T (β0) = (Z 0Z)
1
2 [Π̃X(β0)

... Π̃W (β0)]Σ̂
− 1
2

(X : W )(X : W ).ε,

Σ̂(X : W )(X : W ).ε =
1

T−k (X
... W )0M(Z : y−Xβ0−Zγ̃(β0))(X

... W ),

are identical to the roots of the characteristic polynomial¯̄̄̄µ
(X

... W )− (y −Xβ0 −Wγ̃(β0))
(σ̂εX : σ̂εW )

σ̂εε

¶0 ¡
µ

T−kMZ − PZ

¢µ
(X

... W )− (y −Xβ0 −Wγ̃(β0))
(σ̂εX : σ̂εW )

σ̂εε

¶¯̄̄̄
= 0,

and we therefore analyse the behavior of (X
... W ) − (y −Xβ0 −Wγ̃(β0))

(σ̂εX : σ̂εW )
σ̂εε

when β0 is

large compared to the true value β. The components of (X
...W )− (y−Xβ0−Wγ̃(β0))

(σ̂εX : σ̂εW )
σ̂εε

that depend on β0 are: y −Xβ0 −Wγ̃(β0), (σ̂εX
... σ̂εW ) and σ̂εε. We use the above expression

of the LIML estimator to determine the behavior of each of these components:

d(y −Xβ0 −Wγ̃(β0)) = d(y −Xβ0
... W )

¡
1

−γ̃(β0)
¢

= (X
... W )Ω̂

− 1
2

XW r1 + dy +O(d2)

d(σ̂εX
... σ̂εW ) = d

T−k (y −Xβ0 −Wγ̃(β0))
0MZ(X

... W )

= r01Ω̂
− 1
2
0

XW Ω̂XW + d(σ̂yX
... σ̂yW ) +O(d2)

d2σ̂εε =
d2

T−k (y −Xβ0 −Wγ̃(β0))
0MZ(y −Xβ0 −Wγ̃(β0))

= r01Ω̂
− 1
2
0

XW Ω̂XW Ω̂
− 1
2

XW r1 + 2d(σ̂yX
... σ̂yW )Ω̂

− 1
2

XW r1 + d2σ̂yy

= 1 + 2d(σ̂yX
... σ̂yW )r1 + d2σ̂yy +O(d2)

and since

(σ̂εX : σ̂εW )
dσ̂εε

=
r01Ω̂

− 12
XW Ω̂XW+d(σ̂yX : σ̂yW )

1+2d(σ̂yX : σ̂yW )Ω̂
− 12
XW r1+d2σ̂yy

= r01Ω̂
− 1
2

XW Ω̂XW + d((σ̂yX
... σ̂yW )− 2(σ̂yX ... σ̂yW )Ω̂−

1
2

XW r1r
0
1Ω̂
− 1
2

XW Ω̂XW ) +O(d2),
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it also holds that

(X
... W )− (y −Xβ0 −Wγ̃(β0))

(σ̂εX : σ̂εW )
σ̂εε

= (X
... W )− d(y −Xβ0 −Wγ̃(β0))

d(σ̂εX : σ̂εW )
d2σ̂εε

= (X
... W )−

∙
(X

... W )Ω̂
− 1
2

XW r1 + dy

¸
r01Ω̂

− 12
XW Ω̂XW+d(σ̂yX : σ̂yW )

1+2d(σ̂yX : σ̂yW )Ω̂
− 12
XW r1+d2σ̂yy

+O(d2)

= (X
... W )−

∙
(X

... W )Ω̂
− 1
2

XW r1 + dy

¸
∙
r01Ω̂

− 1
2

XW Ω̂XW + d((σ̂yX
... σ̂yW )− 2(σ̂yX ... σ̂yW )Ω̂−

1
2

XW r1r
0
1Ω̂
− 1
2

XW Ω̂XW )

¸
+O(d2).

We post-multiply this expression by (Ω̂
− 1
2

XW r1
... Ω̂

− 1
2

XWR1), which is a full rank matrix:∙
(X

... W )− (y −Xβ0 −Wγ̃(β0))
(σ̂εX : σ̂εW )

σ̂εε

¸
(Ω̂
− 1
2

XW r1
... Ω̂

− 1
2

XWR1)

=

∙
−d(y − (X ... W )Ω̂

− 1
2

XW r1(σ̂yX
... σ̂yW )Ω̂

− 1
2

XW r1)
...

(X
... W )Ω̂

− 1
2

XWR1 − d

µ
(X

... W )Ω̂
− 1
2

XW r1(σ̂yX
... σ̂yW )Ω̂

− 1
2

XWR1

¶¸
+O(d2),

where we used that r01Ω̂
− 1
2

XW Ω̂XW Ω̂
− 1
2

XW r1 = 1, r
0
1Ω̂
− 1
2

XW Ω̂XW Ω̂
− 1
2

XWR1 = 0.A further post-multiplication

by

⎛⎝ −1
d
σ̂
− 1
2

yy.(X : W ) 0

−R01Ω̂−
1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢
σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠ , with σ̂Xy = σ̂0yX , σ̂Wy = σ̂0yW , σ̂yy.(X : W ) = σ̂yy −¡
σ̂Xy

σ̂Wy

¢0
Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
, then yields

∙
(X

... W )− (y −Xβ0 −Wγ̃(β0))
σ̃ε(X : W )(β0)

σ̃εε(β0)

¸
(Ω̂
− 1
2

XW r1
... Ω̂

− 1
2

XWR1)⎛⎝ −1
d
σ̂
− 1
2

yy.(X : W ) 0

−R01Ω̂−
1
2
0

XW (σ̂yX : σ̂yW )
0σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠
=

∙
d(y − (X ... W )Ω̂

− 1
2

XW r1r
0
1Ω̂
− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢
)
... (X

... W )Ω̂
− 1
2

XWR1 − d

µ
(X

... W )Ω̂
− 1
2

XW r1(σ̂yX : σ̂yW )Ω̂
− 1
2

XWR1

¶¸
⎛⎝ −1

d
σ̂
− 1
2

yy.(X : W ) 0

−R01Ω̂−
1
2
0

XW (σ̂yX : σ̂yW )
0σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠+O(d2)

=

∙
y − (X ... W )Ω̂

− 1
2

XW (r1r1 +R1R
0
1) Ω̂

− 1
2

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWR1

¸µ
σ̂
− 12
yy.X W

0
0

ImW

¶
+O(d)

=

∙
y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWR1

¸µ
σ̂
− 12
yy.(X : W )

0

0
Imw

¶
+O(d),

where we used that r1r1+R1R
0
1 = Im. Since the quadratic form of the above matrix with respect

to MZ equals the identity matrix, the eigenvalues of T (β0)
0T (β0) correspond for large values of
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β0 with the eigenvalues of∙
(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸0
PZ∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸
.

c. The expression of the subset KLM statistic in (3) can alternatively be specified as:

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃(β0))

0P
PZ

∙
(X : W )−(y−Xβ0−Wγ̃(β0))

σ̃ε(X : W )(β0)

σ̃εε(β0)

¸
(y −Xβ0 −Wγ̃(β0)),

which, using the above expressions, is for distant values of β0 equal to

KLM(β0) = r01Ω̂
− 1
2
0

XW (X
... W )0P

PZ

∙
(y−(X : W )Ω̂−1XW (

σ̂Xy
σ̂Wy
))σ̂

− 12
yy.X W : (X : W )Ω̂

− 12
XWR1

¸(X ... W )Ω̂
− 1
2

XW r1.

d. The value of KLM(β0) at distant values of β0 jointly with the above eigenvalue and the value
of the subset AR statistic yield the value of the MQLR statistic at distant values of β0.

e. Since

y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
= ε− (X ... W )Ω̂−1XW

¡
σ̂Xε

σ̂Wε

¢
,

where ε = y−Xβ−Zγ and σ̂Xε =
1

T−kX
0MZε, σ̂Wε =

1
T−kX

0MZε, since
¡
σ̂Xy

σ̂Wy

¢
= Ω̂XW

¡
β
γ

¢
+
¡
σ̂Xε

σ̂Wε

¢
,

the expressions of the robust subset statistics are for large values of β0 identical to the expressions

of these statistics that test H∗0 : α = 0 in the model

(X
... W )Ω̂

− 1
2

XW r1 = εα+ (X
... W )Ω̂

− 1
2

XWR1δ + u

ε = ZΦε + Vε

(X
... W )Ω̂

− 1
2

XWR1 = ZΦR1 + VR1,

where α : 1 × 1, δ : mW × 1, Φε : k × 1 and ΦR1 : k ×mW and u, Vε and VR1 are n × 1, n × 1
and n×mw matrices of disturbances, the expressions of the subset AR, LR and MQLR statistics

that test H∗0 : α = 0 result from noting that δ̃ = 0 such that

AR(α = 0) = r01Ω̂
− 12 0
XW (X : W )0PZ(X : W )Ω̂

− 12
XW r1

r01Ω̂
− 12 0
XW (X : W )0MZ(X : W )Ω̂

− 12
XW r1

= λ1.
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Similarly, if Φ̃ is the estimator of Φ and Ξ̃ is the estimator of the covariance matrix of (Vε
... VR1) :

Φ̃ = (Z 0Z)−1Z 0
"
(ε
... (X

... W )Ω̂
− 1
2

XWR1)− (X ... W )Ω̂
− 1
2

XW r1
r01Ω̂

− 12 0
XW (X : W )0MZ(ε

... (X
... W )Ω̂

− 12
XWR1)

r1Ω̂
− 12 0
XW (X : W )0MZ(X

... W )Ω̂
− 12
XW r1

#
= (Z 0Z)−1Z 0

∙
(ε− (X ... W )Ω̂

− 1
2

XW r1r
0
1Ω̂
− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWR1)

¸
Ξ̃ = 1

n−k

∙
(ε− (X ... W )Ω̂

− 1
2

XW r1r
0
1Ω̂
− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWR1)

¸0
MZ∙

(ε− (X ... W )Ω̂
− 1
2

XW r1r
0
1Ω̂
− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWR1)

¸
and Ξ̃−

1
2
0Φ̃0Z 0ZΦ̃Ξ̃−

1
2 is identical to∙
(ε− (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸0
PZ∙

(ε− (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸
=∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸0
PZ∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWR1

¸
which we used to construct the subset KLM and MQLR statistics to test H0 : β = β0 for distant

values of β0.

Subset LR statistic The subset LR statistic LR(β0) that tests H0 : β = β0 equals

LR(β0) = AR(β0)− λmin,

where λmin is the smallest root of the polynomial¯̄̄̄
¯λIm+1 −

Ã
ϕ0ϕ ϕ0S
S 0ϕ S 0S

!¯̄̄̄
¯ = 0,

with ϕ = U 0(Z 0Z)−
1
2Z 0ε̂ 1√

σ̂εε(β0)
, ε̂ = y − Xβ0 −Wγ̃(β0) and U and S result from a singular

value decomposition of T (β0) defined in (7)

T (β0) = USV 0
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in which U : k×k, U 0U = Ik, V : m×m, V 0V = Im, V 0 = (V 0X
... V 0W ), VX : mx×m, VW : mw×m;

and S is a diagonal k ×m dimensional matrix with the singular values in decreasing order on

the main diagonal.

Proof. The LR statistic5 to test H0 reads

LR(β0) = AR(β0)− λmin,

with λmin the smallest root of the characteristic polynomial¯̄̄̄
λΩ̂− (y ... X ... W )0PZ(y

... X
... W )

¯̄̄̄
= 0,

and Ω̂ = 1
N−k (y

... X
... W )0MZ(y

... X
... W ). The roots of the characteristic polynomial do not alter

when we pre- and post-multiply by a triangular matrix with ones on the diagonal:¯̄̄̄
¯̄̄̄
⎛⎜⎝ 1 0 0

−β0 Imx 0

−γ̃(β0) 0 Imw

⎞⎟⎠
0 ∙
λΩ̂− (y ... X ... W )0PZ(y

... X
... W )

¸⎛⎜⎝ 1 0 0

−β0 Imx 0

−γ̃(β0) 0 Imw

⎞⎟⎠
¯̄̄̄
¯̄̄̄ = 0⇔

¯̄̄̄
λΣ̂(β0)− (ε̂

... X
... W )0PZ(ε̂

... X
... W )

¯̄̄̄
= 0,

where ε̂ = y −Xβ0 −Wγ̃(β0),

Σ̂(β0) =

⎛⎜⎝ 1 0 0

−β0 Imx 0

−γ̃(β0) 0 Imw

⎞⎟⎠
0

Ω̂

⎛⎜⎝ 1 0 0

−β0 Imx 0

−γ̃(β0) 0 Imw

⎞⎟⎠
=

Ã
σ̂εε(β0) σ̂ε(X : W )(β0)

σ̂(X : W )ε(β0) Ω̂XW

!
σ̂ε(X : W )(β0) = (σ̂εX(β0)

... σ̂εW (β0))

and Ω̂XW = 1
N−k (X

... W )0MZ(X
... W ) : m×m.

We decompose Σ̂(β0)
−1 as

Σ̂(β0)
−1 = Σ̂(β0)

− 1
2
0Σ̂(β0)

− 1
2 ,

Σ̂(β0)
− 1
2 =

⎛⎝ σ̂εε(β0)
− 1
2 −σ̂εε(β0)−1σ̂ε(X : W )(β0)Σ̂

− 1
2

(X : W )(X : W ).ε

0 Σ̂
− 1
2

(X : W )(X : W ).ε

⎞⎠ ,

5We essentially use a monotone transformation of the LR statistic, see e.g. Hausman (1983).
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with Σ̂(X : W )(X : W ).ε =
1

N−k (X
... W )0M(Z : ε̂)(X

... W ), such that Σ̂(β0)
− 1
2
0Σ̂(β0)Σ̂(β0)

− 1
2 =

Ik(m+1), and we can specify the characteristic polynomial as¯̄̄̄
λIm+1 − Σ̂(β0)

− 1
2
0(y
... X

... W )0PZ(y
... X

... W )Σ̂(β0)
− 1
2

¯̄̄̄
= 0⇔¯̄̄̄

λIm+1 −
∙µ
(Z 0Z)−1Z 0 ε̂√

σ̂εε(β0)

...
∙
(Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε

¶¸0
Z 0Z∙µ

(Z 0Z)−1Z 0 ε̂√
σ̂εε(β0)

...
∙
Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε

¶¸¯̄̄̄
= 0⇔¯̄̄̄

λIm+1 −
µ

σ̂εε(β0)
− 12

0

0

Σ̂
− 12
(X : W )(X : W ).ε

¶0
⎛⎝ ε̂0PZ ε̂

³
Π̃X(β0)

0Z0ε̂
0

´0³
Π̃X(β0)

0Z0ε̂
0

´ ³
Π̃X(β0)

0Z0ZΠ̃X(β0)

Π̃W (β0)
0Z0ZΠ̃X(β0)

Π̃X(β0)
0Z0ZΠ̃W (β0)

Π̃W (β0)
0Z0ZΠ̃W (β0)

´ ⎞⎠µ σ̂εε(β0)
− 12

0

0

Σ̂
− 12
(X : W )(X : W ).ε

¶¯̄̄̄¯̄ = 0.

When we use a lower triangular decomposition to construct Σ̂
− 1
2

(X : W )(X : W ).ε, the block structure

of the matrix in the characteristic polynomial is preserved:

Σ̂
− 1
2

(X : W )(X : W ).ε =

Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εΣ̂
− 12
XX.(ε : W )

0

Σ̂
− 12
WW.ε

!

so the characteristic polynomial becomes¯̄̄̄
¯̄̄̄
¯λIm+1 −

⎛⎜⎜⎜⎝
1

σ̂εε(β0)
ε̂0PZ ε̂

µ
1√

σ̂εε(β0)
ε̂0ZΠ̃X(β0)Σ̂

− 1
2

XX.(ε : W )

... 0
¶

Ã
Σ̂
− 12 0
XX.(ε : W )

Π̃X(β0)
0Z0ε̂ 1√

σ̂εε(β0)

0

!
T (β0)

0T (β0)

⎞⎟⎟⎟⎠
¯̄̄̄
¯̄̄̄
¯ = 0.

We conduct a singular value decomposition of T (β0), see e.g. Golub and van Loan (1989),

T (β0) = (Z
0Z)

1
2

∙
Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε = USV 0 ⇔⎧⎪⎪⎨⎪⎪⎩
(Z 0Z)

1
2

∙
Π̃X(β0)

... Π̃W (β0)

¸Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εΣ̂
− 12
XX.(ε : W )

!
= USV 0X

(Z 0Z)
1
2 Π̃W (β0)Σ̂

− 1
2

WW.ε = USV 0W

where U : k × k, U 0U = Ik, V : m×m, V 0V = Im, V 0 = (V 0X
... V 0W ), VX : mx ×m, VW : mw ×m;

and S is a diagonal k ×m dimensional matrix with the singular values in decreasing order on
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the main diagonal, to specify the characteristic polynomial as,¯̄̄̄
¯̄̄λIm+1 −

⎛⎜⎝ η0η
µ
η0USV 0X

... 0
¶

³
VXS0U 0η

0

´
VS 0SV 0

⎞⎟⎠
¯̄̄̄
¯̄̄ = 0⇔

¯̄̄̄
¯λIm+1 −

Ã
1 0

0 V

!Ã
η0η η0US
S 0U 0η S 0S

!Ã
1 0

0 V

!0 ¯̄̄̄
¯ = 0⇔¯̄̄̄

¯λIm+1 −
Ã

ϕ0ϕ ϕ0S
S 0ϕ S 0S

!¯̄̄̄
¯ = 0,

with η = (Z 0Z)−
1
2Z 0 ε̂√

σ̂εε(β0)
and η0USV 0W = 0, ϕ = U 0η and ϕ0SV 0W = 0.

Critical values for LR(β0) when m=2. Since the limiting distribution of ϕ is N(0, Ik), the

above construction of LR(β0) shows that its limiting distribution is conditional on the diagonal

elements of S and the orthonormal matrix V, since ϕ0SV 0W = 0.Whenm = 2, S has two non-zero
elements and V has one unrestricted element since it is orthonormal: V 0V =I2. Depending on its
realized value, V can be classified to have one of the following four orthonormal specifications:

1. V =
Ã
cos(a) sin(a)

sin(a) − cos(a)

!
0 ≤ a ≤ π

2. V =
Ã
cos(a) − sin(a)
sin(a) cos(a)

!
0 ≤ a ≤ π

3. V =
Ã

cos(a) sin(a)

− sin(a) cos(a)

!
0 ≤ a ≤ π

4. V =
Ã

cos(a) − sin(a)
− sin(a) − cos(a)

!
0 ≤ a ≤ π.

These four orthonormal specifications reflect all possible values of V in a unique manner. They
are functions of a whose value lies between 0 and π.We therefore compute the conditional (95%)

critical values of LR(β0) given s11, s22 and a for each of the four different specifications of V. We
use hundred possible values of both s11, s22 and twenty-five for a. Thus we compute one million

95% critical values (= 4× 25× 100× 100).
To compute the size and power when testing at the 95% significance level, we conduct a

singular value decomposition of the realized value of T (β0) for every data-set and determine

which of the above specifications of V accords with the computed one. We then compute a and
determine the appropriate 95% critical value given s11, s22 and a for the respective specification

of V.
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