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Abstract

We show that the limiting distributions of subset extensions of the weak instrument
robust instrumental variable statistics are bounded from above by the limiting distributions
that apply when the remaining structural parameters are well-identified and, when the
number of remaining structural parameters is one, from below by the limiting distributions
which hold when the remaining structural parameter is completely unidentified. Thus
the robust subset statistics are size correct in large samples and their projection based
counterparts are conservative. The power curves of the robust subset statistics are non-
standard as they resemble identification statistics at distant values of the parameter of
interest. The power of a test on a well-identified structural parameter is therefore low at
distant values when one of the remaining structural parameters is weakly identified. It is
identical to the power of a test for a distant value of any of the other structural parameters.

All results extend to tests on the parameters of the included exogenous variables.

1 Introduction

A sizeable literature currently exists on statistics for the linear instrumental variables (IV) re-
gression model whose limiting distributions are robust to instrument quality, see e.g. Anderson
and Rubin (1949), Kleibergen (2002), Moreira (2003) and Andrews et. al. (2006). These weak

instrument robust statistics test hypotheses that are specified on all structural parameters of
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the linear IV regression model. Many interesting hypotheses are, however, specified on subsets
of the structural parameters and/or on the parameters associated with the included exogenous
variables. When we replace the structural parameters that are not specified by the hypothesis of
interest by estimators, the limiting distributions of the robust statistics extend to tests of such
hypotheses when a high level identification assumption on these remaining structural parameters
holds, see e.g. Stock and Wright (2000), Startz et. al. (2006) and Kleibergen (2004,2005). This
high level assumption is rather arbitrary and its validity is typically unclear. It is needed to
ensure that the parameters whose values are not specified under the null hypothesis are replaced
by consistent estimators so the limiting distributions of the weak instrument robust statistics
remain unaltered. When the high level assumption is not satisfied, the limiting distributions are
unknown. The only testing procedures documented in the literature sofar that controls the size
of subset tests without making the high level identification assumption are the projection based
tests, see e.g. Dufour (1997), Dufour and Jasiak (2001) and Dufour and Taamouti (2005,2007).

We show that when we estimate the structural parameters that are not specified by the hy-
pothesis of interest using the limited information maximum likelihood (LIML) estimator that the
limiting distributions of the robust subset statistics are boundedly pivotal. They are bounded
from above by the limiting distributions that apply when the high level assumption holds and,
when the number of unspecified structural parameters is equal to one, from below by the limiting
distributions that apply when the unspecified parameter is completely unidentified. Thus the
robust subset statistics are size correct since their maximum rejection frequency over all possible
values of the nuisance parameters is equal to the significance level of the test. A consequence of
the size correctness of the robust subset statistics is that the projection based tests are conserva-
tive and that they are dominated in terms of power by the robust subset statistics. The results
that we establish do not hold when we use the two stage least squares estimator to estimate the
structural parameters that are not specified by the hypothesis of interest.

We use the critical values that result under the high level identification assumption to compute
power curves of the robust subset statistics. These power curves show that the weak identification
of a particular structural parameter spills over to tests on any of the other parameters. For
distant values of the structural parameter of interest, we show that the robust subset statistics
correspond with tests of the identification of any of the structural parameters. Hence, when a
particular (combination of the) structural parameter(s) is weakly identified, the power curves
of tests on the structural parameters using the robust subset statistics converge to a rejection
frequency that is well below one when the parameter of interest becomes large. The quality
of the identification of the structural parameters whose values are not specified under the null
hypothesis is therefore of equal importance for the power of the tests as the identification of the

hypothesized parameters itself.



The paper is organized as follows. The second section states the robust subset statistics.
In the third section, we discuss the bounds on their limiting distributions. The fourth section
analyses the size and power of the robust subset statistics and shows that they converge to
statistics that test the identification of any of the structural parameters when the parameter of
interest becomes large. The fifth section contains a brief discussion of testing hypotheses that
are specified on the parameters of the included exogenous variables. Finally, the sixth section
concludes.

We use the following notation throughout the paper: vec(A) stands for the (column) vector-
ization of the N x n matrix A, vec(A) = (a}...a)) for A = (ay...a,), Px = A(AA)TA is
a projection on the columns of the full rank matrix A and M, = Iy — P4 is a projection on

the space orthogonal to A. Convergence in probability is denoted by “—” and convergence in
p

distribution by “7” .

2 Subset statistics in the Linear IV Regression Model

We consider the linear IV regression model

y = XB+Wry+te
X = ZIx+Vy (1)
W = Zy + Viy,

with y, X and W N x 1, N xm, and N X m,, dimensional matrices that contain the endogenous
variables, Z a N x k dimensional matrix of instruments and m = m,+m,,. The N x1, N xm_, and
N x m,, dimensional matrices €, Vx and Vjy contain the disturbances. The unknown parameters
are contained in the m, x 1, m,, x 1, k X m, and k X m,, dimensional matrices (3, v, Ilx and IIy .
The model stated in equation (1) is used to simplify the exposition. An extension of the model
that is more relevant for practical purposes arises when we add a number of so-called included
exogenous variables to all equations in (1). The results that we obtain do not alter from such
an extension when we replace the expressions of the variables that are currently in (1) in the
specifications of the robust subset statistics by the residuals that result from a regression of them
on these additional included exogenous variables.

We make, analogous to Staiger and Stock (1997), an assumption on the convergence of the

different variables in (1).

Assumption 1: When the sample size N goes to infinity, the following convergence results

hold jointly:



a. (e Vx i V) (e Vx i Viy) = X, with ¥ a positive definite (m + 1) x (m + 1) matriz
p
Oce OcXx Oew
and ¥ = | ox. Yxx Zxw |, 0=:1Xx1,00x =0 1 Xmy, ooy = oy 1 1 X my,
owe Xwx Zww

. — YV . .
EXX LMy X My, EXW = EWX LMy X My, EWW DMy X My,

b. %Z’Z 7 Q, with @Q a positive definite k X k matriz.

C. ﬁZ’(g P Vx o V) x (Ve i Vzx  Vzw), With Yz 1k X 1, Yy 1k X mg, Yyt kX my,
and vec(Vz. : Vyx P Ygw) ~ N (0,22 Q).

Statistics to test joint hypotheses on [ and 7, like, for example, H* : 8 = 3, and v = ~,,
have been developed whose (conditional) limiting distributions under H* and Assumption 1 do
not depend on the value of IIx and Ilyy, see e.g. Anderson and Rubin (1949), Kleibergen (2002)
and Moreira (2003). These identification robust statistics can be adapted to test for hypotheses
that are specified on a subset of the parameters, for example, Hy : 5 = 3,. We construct such
robust subset statistics which use the LIML estimator 5(/3,) to estimate the unknown value of
~. The identification robust subset statistics are equal to the identification robust statistics that

test the joint hypothesis H* : 5 = 3, and v = ~, for 7, equal to (5,).
Definition 1: 1. The subset AR statistic (times k) to test Hy : B = B, reads
AR(By) = 5y — XBo — WA(By)) Pz (y — XBo — WA (By)), (2)
with 6.:(8) = x5y — X8 = WA(B,)) Mz(y — XB — WA (By)).
2. Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test Ho reads, see Kleibergen

(2004),

KLM(8,) = m(y — XBy — W:V(ﬁo))lpz(ﬁw(ﬂo) : ﬁx(go))(y — X8y — WH(Bo)), (3)

with i A
M (By) = (2'2)71 2 \W = (y = X — W?(ﬁo))?g((fi))] (4)
fix(B0) = (2/2)72 [X = (y = XBo = WA(B0) 32658 ]

and Gew (By) = ﬁ(y — XBy = WA(By)) MzW, 6ox(5y) = ﬁ(y — XBo = WH(By)) MzX.
3. A J-statistic that tests miss-specification under Ho, Hy @ E(Z'(y — X5y — WH(5,))) = 0,

reads,

JKLM(BO) = AR(ﬁo) - KLM(BO)' (5)
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4. A subset extension of Moreira’s (2003) conditional likelihood ratio statistic to test Hy reads,

MQLR(3) = 4 [AR(5) = k() + y/(AR(3) -+ 1K(3u))* ~ 4 (AR(3o) ~ KLM(30)) 1k(50)|.
Q

where Tk(B,) is the smallest characteristic root of Snqrr(B8y) = T(Bo) T(B,) with

T(Bo) = (2'2)[Tx(By) : Tw (Bo)IS (2, wyix « wye (7)
and .

2. *% . 2;{?{(5 : W) 0

Z(X: WYX : W)e <2W1W,52WX-682X§(5: " 2_%‘,‘5) (8)

inwhich Sxx.c. wy = 75 X' Miz. w. X, Swxe = v WMz . X, Swwe = v W Mz oW
and & =y — X By — WH(,)-

We analyse the subset extension (6) of the conditional likelihood ratio statistic of Moreira
(2003) instead of the subset likelihood ratio statistic that results under i.i.d. normal disturbances
because it is easier to use than the subset likelihood ratio statistic and results in almost identical
results when used to conduct statistical inference as we show lateron.

In case of one included endogenous variable, m = 1, and i.i.d. normal disturbances with
a known covariance matrix, the MQLR statistic (6) is the likelihood ratio statistic for testing
hypotheses on all structural parameters, see e.g. Moreira (2003) and Hillier (2007). When the
number of included endogenous variables exceeds one, m > 1, the MQLR statistic is no longer
the likelihood ratio statistic that tests a hypothesis that is specified on all structural parameters,
like, for example, H*. In Kleibergen (2007) and Hillier (2006), the likelihood ratio statistic for
testing hypotheses on all structural parameters when m exceeds one is studied. In Kleibergen
(2007), it is shown that the limiting distribution of the likelihood ratio statistic depends on all
the characteristic roots of ZA)MQLR(BO) and that the MQLR statistic provides a upper bound on
the likelihood ratio statistic which results by restricting all characteristic roots to the smallest
one.! The upper bound is sharp when the tested hypothesis coincides with a value of the
structural parameters for which the first order condition holds. In Hillier (2006), it is shown
that the conditioning argument for the likelihood ratio statistic can be improved upon further
such that the limiting distribution of the likelihood ratio statistic essentially depends on only
one conditioning statistic.

The subset likelihood ratio statistic has the same expression as the likelihood ratio statistic

under i.i.d. normal disturbances that tests the joint hypothesis when we replace the value

! This explains why we refer to the MQLR statistic as a quasi-likelihood ratio statistic.



of the non-hypothesized parameters under Hy by their LIML estimate under Hy. Because of
the prevailing first order condition, the conditioning argument for the subset likelihood ratio
statistic is more involved than for the likelihood ratio statistic that tests a hypothesis on all
structural parameters. The number of conditioning statistics for the subset likelihood ratio
statistic therefore exceeds the number for the likelihood ratio statistic that conducts a joint
test on all structural parameters. For expository purposes, we relegate a brief discussion of the
conditioning argument to the Appendix but include the subset likelihood ratio statistic in the
size and power analysis that we conduct in Section 4.

Using a high level assumption with respect to the rank of Iy, Theorem 1 states the (condi-
tional) limiting distributions of the subset AR, KLM, JKLM and MQLR statistics.

Assumption 2: The value of the kxm,, dimensional matriz Iy is fized and of full rank.

Theorem 1. Under Hy and when Assumptions 1 and 2 hold, the (conditional) limiting distri-
butions of AR(5,), KLM(B,), JKLM(j,) and MQLR(5,) given rk(B,) are characterized by

2. KLM(f,) — Ve
3. JKLM(B,) = P

4. MQLR(B)IK(B)) — & [ + g — 1k(Bg) + 1/ (Y, + Y4 + 1R(50))” — 48y k(By)]

(9)

where 1, and V,_,, are independent x*(m,) and x*(k —m) distributed random variables.

~1

Proof. see Stock and Wright (2000) and Startz et. al. (2006) for the subset AR statistic and
Kleibergen (2004), Mikusheva (2007) for all other statistics. m

The (conditional) limiting distributions in Theorem 1 hold under a full rank value of Iy,
which is a high level assumption that is difficult to verify in practice. We therefore establish
bounds on the (conditional) limiting distributions of the statistics from Definition 1 that apply

for all values of Ily .

3 Bounds on the limiting distributions of robust subset

statistics

Theorem 2 states the bounds on the limiting distributions of the robust subset statistics.



Theorem 2. Under Hy and when Assumption 1 holds, the (conditional) limiting distributions
of the robust subset statistics from Theorem 1 provide a upper bound on the (conditional) limiting
distributions for general values of Ily,. When m,, is equal to one, the (conditional) limiting

distributions under a zero value of Ily, provide a lower bound.
Proof. see the Appendix. m

The proof of Theorem 2 consists of two parts. First, the bounds on the limiting distribution
of the subset AR statistic are established. These bounds are obtained by using that the subset
AR statistic is equal to the smallest root of a characteristic polynomial. The matrices in the
characteristic polynomial can be transformed such that the upper bound on the smallest char-
acteristic root results from a ratio of quadratic forms or Rayleigh quotient. A judicious choice
of the vector in the ratio of quadratic forms shows that this upper bound is always less than or
equal to a x?(k — m,,) distributed random variable. Thus the upper bound coincides with the
limiting distribution from Theorem 1 that holds for a full rank value of Il .

When m,, is equal to one, the upper bound is non-decreasing in the value of Ily, which
implies, since the upper bound coincides with the limiting distribution of the subset AR statistic
when Ily, has a full rank value, that the limiting distribution of the subset AR statistic is non-
decreasing in Iy as well. Hence, a lower bound on the limiting distribution of the subset AR
statistic results when Ily is equal to zero. This property presumably holds for other values of
m,, as well but because the lower bound is of less importance than the upper bound we do not
estabilish the result for a general value of m,,.

The second part of the proof of Theorem 2 concerns the (conditional) limiting distributions of
the subset KLM, JKLM and MQLR statistics. The manner in which these are computed is such
that first the subset AR statistic is computed whose limiting distribution is bounded as described
above. Jointly with the subset AR statistic, the LIML estimator is computed. Given the value of
the LIML estimator, the subset KLM and JKLM statistics are then computed as quadratic forms
of a random vector with respect to a random matrix whose limiting distributions are independent
of one another. Given the value of the LIML estimator, the limiting distributions of the subset
KLM and JKLM statistics are independent as well. Hence, since the subset AR statistic is the
sum of the subset KLM and JKLM statistics, the bounds on the limiting distributions of the
subset AR statistic imply the bounds on the limiting distributions of the subset KLM and JKLM
statistics.

Given the value of the LIML estimator, the limiting distribution of the conditioning statistic
for the subset MQLR statistic is independent of the limiting distributions of the subset KLLM
and JKLM statistics. Thus because the derivatives of the subset MQLR statistic with respect
to the subset KLM and JKLM statistics are non-negative, the conditional limiting distribution



of the subset MQLR statistic is also bounded as stated in Theorem 2.

Theorem 2 shows that the (conditional) limiting distributions of the robust subset statistics
are boundedly pivotal. The critical values that result from the (conditional) limiting distributions
in Theorem 1 can therefore be applied in general, so even for (almost) lower rank values of Iy,
since the rejection frequency of these tests is at most equal to the rejection frequency under a full
rank value of IIy,. Thus Theorem 2 shows that the robust subset statistics are size correct since
the maximum rejection probability over all possible values of 1y, is equal to the significance level
of the test.

At present the only existing approach in the literature that controls the size of subset tests
results from using a projection argument, see e.g. Dufour (1997), Dufour and Jasiak (2001) and
Dufour and Taamouti (2005,2007). Projection-based tests do not reject Hy when tests of the
joint hypothesis H* : § = ,,, v = 7, are not significant with respect to the limiting distribution
of the joint test for some values of v,. When the limiting distribution of the joint test does not
depend on nuisance parameters, the maximal value of the rejection probability over all possible

values of the nuisance parameters can not exceed the size of the test.

Theorem 3. When Assumption 1 and Hy : 5 = B, hold, a non-significant value of AR(5,),
KLM(By), JKLM(B,) and MQLR(5,) implies that their projection based counterparts are non-

significant as well.

Proof. Since AR(S,) =AR(By,7(8,)) and when the significance level of the test is «,
1—a > Pr[x*(k—my,) <AR(B,)] > Pr[x*(k) <AR(SB,,7(8,))] which shows that a non-significant
value of AR(/3,) implies a non-significant value of its projection based counterpart as well since

there is a value of v, i.e. v = J(8,), for which AR(3,,~) is non-significant. The same argument
applies to KLM(f3,), JKLM(,) and MQLR(5,). =

Theorem 3 shows that the rejection frequency of the robust subset statistics is strictly larger
than the rejection frequency of their projection based counterparts. Theorem 2 shows that the
robust subset statistics are size correct so Theorem 3 implies that the projection based tests are
under sized and therefore conservative. Theorem 3 also implies that the power of the robust

subset statistics is strictly larger than the power of their projection based counterparts.

4 Size, power and tests at distant values

We conduct a size and power comparison of the different robust subset statistics to analyse the
influence of the strength of the identification of v for tests on 3. We therefore conduct a simulation
experiment using (1) with m, =m,, =1,y =1, N = 500 and vec(e : Vx : Viy) ~ N(0, X ® Iy).



Table 1: Size of the different statistics and of their projection based counterparts (indicated by
“Proj”) in percentages that test Hy at the 95% significance level.

KLM(5,) | LR(3,) | MQLR(5,) | JKLM(3,) | CJKLM(B,) | AR(B,) | 2SLS(Bo)

Figures Proj Proj Proj

1.1,21 33| 0.6 1.9 1.9 0.5 1.3 24 20| 1.6 4.3
1.2,22 |51 1.6 5.7 52| 25 4.9 5.0 5.1 4.1 3.5
13,23 43| 1.1 3.8 39| 1.3 3.6 3.8 441 2.9 4.5
14,24 |50 14 5.5 50| 2.0 4.9 4.8 511 4.1 5.5
1.5,25 46| 1.3 4.7 46| 1.6 4.5 4.6 50| 3.6 4.6
1.6,26 49| 14 5.3 511 1.9 4.9 4.8 5.1 4.1 4.3

The instruments Z are generated from a N (0, I; ® Iy) distribution. We compute the rejection
frequency of testing Hy : § = 0 using the robust subset statistics and the two stage least squares
(2SLS) t-statistic, to which we refer as 2SLS(f3,). The number of simulations that we conduct
equals ten thousand.

We control for the identification of g and « by specifying IIx and Ily in accordance with a pre-
specified value of the matrix generalisation of the concentration parameter, see e.g. Phillips (1983)
and Rothenberg (1984). We therefore analyse the size and power of tests on [ for different values
of ©® = (Z’Z)%(HX : HW)Q;(%,V, with Qxw = (gv);’; giV;) , whose quadratic form constitutes the
matrix concentration parameter. We specify © such that only its first two diagonal elements are
non-zero. To analyse the influence of the strength of identification of v on the power of tests
on [ in an isolated manner, we equate the covariance matrix Y to the identity matrix. This
essentially implies that there is no endogeneity but it allows us to illustrate another important

property of the robust subset statistics in a more straightforward manner.

4.1 Power and size

Table 1 contains the rejection frequencies of the robust subset statistics when we test at the 95%
significance level and of their projection based counterparts. Besides these statistics, Table 1 also
contains the rejection frequency of the 2SLS t-statistic, the subset LR statistic and a combination
of the subset KLM and JKLM statistics that uses a 96% significance level for the subset KLM
statistic and a 99% significance level for the subset JKLM statistic. Because of the independence
of the limiting distributions of the subset KLM and JKLM statistics, the size of the combined
test is at most 5%. The critical values that are used for the subset LR statistic are discussed in
the Appendix. Table 1 also shows which Figures contain the accompanying power curves. These
Figures show the specification of the non-zero diagonal elements of © that indicate the strength
of the identification of 5 and/or 7.




Panel 1: Power curves of AR(f,) (dash-dotted), Projected AR (solid-triangles), KLM(5,) (dashed),
Projected KLM (solid-plusses), MQLR(,) (solid) and Projected MQLR (dotted).
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Panel 2: Power curves of AR(f,) (dash-dotted), LR(3,) (dashed-points), KLM(3,) (dashed),
JKLM(,) (solid-triangles), MQLR(f,) (solid), CJKLM (solid-plusses) and 2SLS(f3,) (dotted)
for testing Hy, : 8 = 0.
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Table 1 shows that the size of all statistics is at most 5%. As stated in Theorem 2, this
result holds in general for all the robust subset statistics but not for the 2SLS t-statistic. For the
2SLS t-statistic, the bounded size results because, since ¥ equals the identity matrix, there is no
endogeneity. When we introduce endogeneity, the 2SLS ¢-statistic can be severly size distorted
especially when the concentration matrix is rather small. Since this is a well known result, we
do not discuss it further. Table 1 shows that the robust subset statistics are under sized when
the non-hypothesized parameter is weakly identified as is the case in the first and third row of
Table 1. The value of O, which shows, because Y equals the identity matrix, the strength of
identification of v, is equal to 3 and 5 in these rows and implies that v is weakly identified. When
~ is well identified, the size of the robust subset statistics is close to 5% regardless of the strength
of identification of 5. Table 1 also shows that the rejection frequency of the projection-based
tests is always less than the rejection frequency of the robust subset statistics.

Panel 1 contains the power curves of the subset AR, KLM and MQLR statistics and their
projection based counterparts. The Figures on the lefthandside in Panel 1 are all such that 3
is well identified, since ©1; = 10, while the quality of identification of « differs from O, = 3 in
Figure 1.1, ©9 = 5 in Figure 1.3 to O9 = 7 in Figure 1.5. The Figures on the righthandside of
Panel 1 are such that v is well identified, since G55 = 10, and the quality of the identification of
G differs from ©1; = 3 in Figure 1.2, ©,; = 5 in Figure 1.4 to ©;; = 7 in Figure 1.6. Hence, for
the same row, the strength of identification of 5 and + is reversed in the righthandside column
compared to the lefthandside column.

The Figures in Panel 1 contain a number of striking features. First, as implied by Theorem
3, the power curves of the subset AR, KLM and MQLR statistics are strictly above the power
curves of their projection based counterparts. Second, the Figures on the lefthandside of Panel
1 show that the strength of the identification of + has large consequences for tests on 5. Third,
the power curves of the same statistic in the two Figures on the same row in Panel 1, for which
the strength of identification of § and ~ is reversed, show that the rejection frequencies are the
same at values of § that are distant from the true one. Fourth, the rejection frequency of the
subset MQLR and AR statistics is almost the same at values that are distant from the true one.

Panel 2 contains the power curves of the robust subset statistics, the subset LR statistic,
combined subset KLM and JKLM test and the 2SLS t-statistic. The value of the concentration
matrix is the same for the Figures in Panel 2 as in Panel 1. Hence, § is well identified in the
lefthandside Figures and + is well identified in the righthandside Figures.

Besides the features discussed for Panel 1, the Figures in Panel 2 also contain some other
important characteristics. First, the 2SLS t-statistic is the most powerful statistic but because of
its size distortion when the strength of identification is rather low and endogeneity is present, its

power performance is missleading. Second, the power curves of the subset LR and subset MQLR
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statistics are almost identical. While not reported, the power curves of these statistics are also
almost identical for other settings of the matrix concentration parameter and the covariance
matrix. This explains why we did not provide an elobarate discussion of the subset LR statistic
since, as the construction of its critical values in the Appendix shows, it is more difficult to
implement as the subset MQLR statistic and is basically as powerful.? Hence, we only discussed
the subset MQLR statistic. Third, none of the robust subset statistics strictly dominates the
other robust subset statistics in each of the Figures contained in Panel 2. The subset MQLR
statistic is always either the most powerful statistic or its power curve is close to the most
powerful one.

The power curves in Panels 1 and 2 indicate that the subset MQLR statistic is the most
appropriate statistic to be used for practical purposes. In order to make a definitive statement
about which statistic we recommend to use, we would need, similar to Andrews et. al. (2006),
to compute the power envelope. We did not construct it because the power envelope for robust
subset statistics is difficult to establish. The likelihood ratio statistic is not necessarily the most
powerful statistic for testing a point null subset hypothesis against a point subset alternative
which principle is used by Andrews et. al. (2006) to establish the power envelope in the linear
IV regression model with one structural parameter. This results since there is still an estimated
parameter under point null and point alternative subset hypotheses so the Neymann-Pearson
lemma does not apply. We therefore consider establishing the power envelope of the robust

subset statistics a challenging topic for further research.

4.2 Power at distant values

A striking phenomenon that is present in all power curves shown in Panels 1 and 2 is the power
of the robust subset statistics at values of 3 that are distant from the true one. Because of the
reversed identification strengths in the left and righthandside columns, it implies that for the
same robust subset statistic, the power of testing Hy : § = 3, at a value of 3, that is distant
from the true one is identical to the power of testing H, : v = 7, at a value of v, that is distant
from the true one. This indicates that a specific robust subset statistic has the same value at

distant values of 3, and 7.

Theorem 4. When m, =1, Assumption 1 holds and for tests of Hy : B = B, for values of 3,

that are distant from the true value:

2Because of the three conditioning statistics of the subset LR statistic, we used one million (= 4 x 25x 100 x 100)
conditional 95% critical values for the subset LR statistic while we used only one hundred 95% critical values for
the subset MQLR statistic.
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. The subset AR statistic AR(S,) equals the smallest eigenvalue of Q;%,(,(X WY Pz(X :
Aol A . :
WQRE,, with Qxw = 7 (X W) My(X W),

. The eigenvalues of Syqur(B) = T(8o)'T(8,) are equal to the eigenvalues of

1

= X WO ()0 (X WIS P

UWy

(10)
_1 . . A1

kwwx )05 (”)ﬁﬁgwmﬂXthﬁ#ﬂ,
where 0x, = ﬁX,MZ% owy = ﬁW’MZy, Oyy = ﬁy/MZ% Oyy.(X:W) = Oyy —

5 I A 5 . . . .
(?Xy) Ot (‘TXy) and Ry s a m X my, matriz that contains the orthonormal eigenvectors
Gwy XW 6w,

A1 ) ) A1
of the largest m,, eigenvalues of QX%A//(X W) Pz(X : W)Qy3y

. The subset KLM statistic KLM(3,) equals

Pz y—(X:W)Q;(bV(;;Z))Ayy xwy

KLM(BO) = 7’1QXW(X : W) P {( g -3 X W)y 2 R] (11)

(X W)QXWTM

A1 .
with 1 the orthonormal eigenvector associated with the smallest eigenvalue of €2 X%’,{/(X :
W) Py(X : W)QXW, which is orthogonal to Ry, iRy = 0.

. The subset MQLR statistic MQLR(5,) equals

MQLR(60> - % |:Vmin — Mmin + \/(Amin + Mmin)2 - 4lumin<)\min - KLM(BO)) ; (12)

where Vi, is the smallest eigenvalue of Q;(%[//(X CWY Py (X F W) I%,V
eigenvalue of (10) and KLM(,) results from (11).

Lin 1S the smallest

. The expressions of the subset AR, KLM and MQLR statistics that test Hy : § = B, at
values of B, that are distant from the true value are identical to their expressions that test
H§ oo =0 in the model

~

(X W) = eat (X W3Rl +u
¢ — 704V, (13)
(X P W)QE R, = Z®g, + Vi,

%NI»—‘

where e =y — X3 — W~ with $ and v the true values of the structural parameters, so ®.
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1s a kx1 vector of zeros, a : 1 x 1,0 : my, X 1 and ®r, : k X my, and u, V. and Vg, are

nx 1, nx1and n X m, matrices of disturbances.

Proof. see the Appendix. m

Theorem 4 shows that the expressions of the subset AR, KLM and MQLR statistics at values
of 3, that are distant from the true value do not depend on f3,. Hence, the same value of the
statistics result when we use them to test for a distant value of an element of . This explains
the equality of the rejection frequencies of the subset AR, KLM, JKLM and MQLR statistics for
distant values of 3, in the left and righthandside figures of Panels 1 and 2.

The smallest eigenvalue of Q;(%I/(X W) Py(X W)Q;(%,V is identical to Anderson’s (1951)
canonical correlation reduced rank statistic which tests the hypothesis H, : rank(ITy : IIx) =
My +m, — 1, see Anderson (1951). Thus Theorem 4 shows that the subset AR statistic is equal
to a reduced rank statistic that tests for a reduced rank value of (Ily : ILy) at values of 3, that
are distant from the true one. Since the identification condition for 3 and + is that (IIy : IIy)
has a full rank value, the subset AR statistic at distant values of 3, is identical to a test for the

identification of 3 and ~.

Theorem 5. When m, = 1, Assumption 1 holds and for tests of Hy : B = 3, for values of [,
that are distant from the true value, the smallest eigenvalue of ZA]MQLR(BO) corresponds with a
test for a reduced rank value of (®. : ®r,) whose rank equals at most m,, — 1 and its limiting

distribution is bounded by a x*(k — my,) distributed random variable.

Proof. Since ®. = 0, the rank of (®. : ®g,) is at most equal to m,, — 1. The smallest
eigenvalue equals a reduced rank statistic with a x2(k —m,,) limiting distribution which because

of Theorem 2 provides a upper bound in case the rank is less than m,, — 1. =

Theorem 5 implies that the minimal eigenvalue of i]MQLR( B,) is rather small when Assumption
1 holds and S, is distant from the true value. For small values of the minimal eigenvalue of
Saqrr(Bp), the value of the subset MQLR statistic (6) is close to that of the subset AR statistic.

Corollary 1. When m, = 1, Assumption 1 holds and for tests of Hy : 5 = 3, for values of [,
that differ substantially from the true value, the subset MQLR statistic is approrimately equal to
the subset AR statistic.

Corollary 1 explains why the rejection frequencies of the subset AR and MQLR statistics are
almost the same in Panels 1 and 2 at distant values of (3,. It also implies that the subset AR

statistic will be slightly more powerful than the subset MQLR statistic at distant values of j3,.
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5 Tests on the parameters of exogenous variables

The robust subset statistics extend to tests on the parameters of the exogenous variables that
are included in the structural equation. Their expressions remain almost unaltered when X is
exogenous and is spanned by the matrix of instruments. The linear IV regression model then

reads
y = XB+Wy+e

(14)
W = Xllwx + Zllwz + Viy,

where (X : Z) is the N x (k + m,) dimensional matrix of instruments and Iy and Iz are
mg X m,, and k X m,, matrices of parameters. All other parameters are identical to those defined
for equation (1). We are interested in testing Hy : 5 = [, and we adapt the expressions of the

statistics from Definition 1 to accommodate tests of this hypothesis.
Definition 2: 1. The subset AR statistic (times k) to test Hy : B = B, reads
AR(By) = #ﬁo)@ — XBo — WH(Bo)) Pz(y — X By — WH(Bo)), (15)

with Z = (X :2), 558(50) = ﬁ(y — X8y — Wﬁ(@o))/MZ(y — XBy — Wﬁ(ﬁo)) and 7(50) the
LIML estimator of ~ given that B = f3,.
2. The subset KLM statistic to test Hy reads,

KLM(By) = 525 (y — X8y — WA(B0) Paiyr,_ o, x(y— Xy = WAS)).  (16)

with Ux(8y) = (Z’2)7'Z'X = ('ne), since 6.x(8y) = vy — XBy — WA(By)) Mz X =
0, Tl (B) = (Z/2)72" [W = (y = X8y = Wi(5) 22558 | and G (5) = 55y — X0y —
Wﬁ(ﬁo)),MZW

3. A subset J-statistic that tests miss-specification under Hy reads,
JKLM(8,) = AR(Sy) — KLM(5,). (17)

4. A quasi likelihood ratio statistic based on Moreira’s (2003) likelihood ratio statistic to test H

reads,

MQLR(3,) = % AR(B,) — 1k(By) + \/(ARwo) + rk(ﬁo))Q — 4 (AR(B,) — KLM(5,)) rk(Bo) | ,
(18)
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where rk(5,) is the smallest eigenvalue of

Svotr = Swive [W—( — XBy — Z’Y(ﬁo))ﬂ] Pyyz
(W — (v — X8, — Z3(8) 2282 A

eW
(Bo)

(19)

with Gow(By) = vy — XBy — WA(Bo)) MzW, Sww = v=W'M;W, Sww. = Spw —
UEW(IBO)(gS‘;V(IBO)
Tee(Po

Except for MQLR/(f3,), all statistics in Definition 2 are direct extensions of those in Definition
1 when we note that IIx(8,) = (1"0””) when X belongs to the set of instruments. The alteration
of the expression of fJMQLR for MQLR(,) partly results from M;X = 0 and since only the
instruments 7 identify ~.

All Theorems extend to tests on the parameters of the included exogenous variables. Hence,
the robust subset statistics in Definition 2 are all size correct and their expressions do not depend
on 3, for values of 3, that are distant from the true value. For reasons of brevity, we do not
discuss this case any further. It is important to note though that the 2SLS ¢-statistic can be size

distorted when it is used to conducts tests on the parameters of the included exogenous variables.

6 Conclusions

The limiting distributions of the robust subset instrumental variable statistics that result under
a high level identification assumption on the remaining structural parameters provide upper
bounds on the limiting distributions of these statistics in general. Lower bounds result from
the limiting distributions under complete identification failure of the remaining parameters. For
distant values of the parameter of interest, the robust subset instrumental variable statistics
correspond with identification statistics. Even if the parameter of interest is well-identified, the
power of tests on it do therefore not necessarily converge to one when the hypothesized value
becomes large. A simplification of the subset LR statistic that is based on an extension of
Moreira’s (2003) conditional LR statistic, is shown to perform equally well as the subset LR
statistic and is much easier to use in practice. The robust subset statistics are more powerful
than their projection based counterparts which, since the robust subset statistics are size correct,

are conservative.
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Appendix

Proof of Theorem 2. The proof of Theorem 2 consists of several components. First, we
establish the bounds on the limiting distribution of the subset AR statistic. Second, we show
that given 7(53,) that the random vectors and matrices that constitute the quadratic forms of the
subset KLM and JKLM statistics are asymptotically independent. We also show that given 7(/3,)
that the subset KLM and JKLM statistics are asymptotically independent as well. Combining
these results with the bounds on the limiting distribution of the subset AR statistic gives the
bounds on the limiting distributions of the subset KLM and JKLM statistics. Third, we show that
the derivatives of the subset MQLR statistic with respect to the subset KLM and JKLM statistics
are non-negative and that given 5(3,) that the limiting distribution of conditioning statistic of
the subset MQLR statistic is independent of the limiting distributions of the subset KLM and
JKLM statistics. These results imply the bounds on the conditional limiting distribution of the
subset MQLR statistic.

1. AR(f,) : The subset AR statistic, AR(f3,), is equal to the smallest root of the characteristic

polynomial

1
2

‘)\Imerl - Q;VE/(?J — XBy : W) Pz(y— X8, : W>QW =0,

with Qy = w7y — XBy : W)Y Mz(y — X5, : W). The reduced form model for (y — X3, i W)

reads
(?J — X8, : W) = ZHW(’YO : IWLw) + (U : VW)7

with u = ¢ + Viyy, and

1 . / . _ 065+05w70+7l00'w5+7l02ww70 . 05w+'7/02ww
~ . . — == . .
w(u i V) (u s Vi) — Qw ( CuwetSuuo S

N[

_ o3
Pre-multiplying by (Z Z)’%Z’ and post-multiplying by Q,? = ( - ng ook : 29%> trans-
—(ZwwOweTY0)0ecw ww
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forms the reduced form model into

(Z'2) 7'y — XBy i W)? = (2/2) 47 [ZHW(% L)+ (u VW)]

_1
Ues?w . 0
, 3P
*(Ewwaws‘i"}/o)ass?w S
1 1

(22 My S (—Sui w0t | L)+
(Z'2)32((e — Vig Sl o Yo | VigSnd)
- ®W(pW . Imw) + (Ss.w : gw) + Op(l)?

1 1 1 1 1 1
With 0. = Occ =T i Owe, Piyr = —SweTweOecrw, Ow = (Z'Z): llwSyiy, € = (2'2) 2 2'Vig X020
and £, = (Z'2)"22'(c — Vig Syl 0e) 0. Since O — Qp and €, and £, converge to in-

p
dependent £ x 1 and k x m,, dimensional standard normal distributed random variables, the

characteristic polynomial is for large samples equivalent to
!
M = Bl )+ (€3 60)| [Owlow 1) + (€ )] | =0

We pre- and post-multiply the elements in the characteristic polynomial by A = (a; : A;),
a; : (my +1) x 1, Ay (my + 1) X my; a; = (7;{0)(1 + 0pu) 2 A = (py ¢ I, )B™Y,

1

B = {(pw )Py Imw)’] " such that A4 = L0, and (€, €)= (€, © §,)A, so

=&, &), & = (&L, & )Ar and £, and &, converge to independent standard normal
distributed random vectors as ajA; = 0. The multiplication does not effect the roots of the

characteristic polynomial since A’A = I, 11:

A~ 4 [@mesfmw>+<s€.w25w>]/[@w<pwsfmw>+<f s>] —0e

‘meﬂ - [@W(o B)+ (€, " g;‘;)}/ [@W(o B)+( —0&

A
M = (€0 OB + (0 OB +6)| =0
)

M1 ((ewB+£L)’£Z.w © (OwB+EL) (Ow B+ES, =0
‘)\]me _ ((1) : fgfw(GWB+§Z;)[(Gv}/mijl)’(@WBJrfzj)]1) (g;{wM(@WOB+%)g;_w :
0 11 €, (Ow B+E,)[(Ow B+E,) (Ow B+E;,)] ! -0
(Ow B+E3,) (Ow B+EL,) U Iy '
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The above shows that the roots of the characteristic polynomial are equal to the eigenvalues of

the matrix

Nl

1 7'[(OwB+E;) (0w B+E£,)] ™ My Bren)&iw 0
0 Imy 0 T (OwB+EL,) (0w B+¢7,)
1 1 : 0
[(Ow B+E;,) (OwB+E,)] 20 © Imy

gw

with n = [(OwB + &) (OwB + &) 2 (0w B + £.)'¢* = N(0, I,,,) and independent in large
samples of &' Mo, 1¢:)&5,, and (Ow B+E},) (Ow B+£;,) which are independent of one another
in large samples as well. The eigenvalues of a matrix provide lower and upper bounds on ratio

of quadratic forms or Rayleigh quotients, see Golub and Van Loan (1989):

1
< L (L lOwBe) ©wBHen) 2 ) (Mo et 0
Pmin % 26 (O S ) ( oy (eWB+£;)/(eWB+§:;>>
1 -0
([(GWBJFEL)’(@WBHTU)]%U : zmw> ¢ < Amax;

where ¢ is a (m,, + 1)-dimensional vector and A, is the smallest and A the largest eigenvalue.

If we now use
o= ( e )
—[(Ow B+&;,) (0w B+E)] 20/

we obtain that

_ f;le(e B+§L)§:.w */ * 2
AR(BO) = Amin < 1+77'[(@WBJFGY,V)'(@WBJ&TU)}*W) < SE-wM(@WBJFEfU)Ss.w 7 X (k - mw)>

which shows that AR(/3,) is less than or equal to a x?(k — m,,) distributed random variable.
The upper bound on the limiting distribution of AR(f,) therefore coincides with the limiting
distribution of AR(3,) when Oy is large so it is a sharp upper bound.

When m,, = 1, (OB + &) (OwB + £,) has a non-central x? distribution with k degrees
of freedom and non-centrality parameter B'0j;,Oy,B. Non-central x? distributions are bounded
from above by non-central y? distributions with a larger non-centrality parameter and the same
degrees of freedom parameter.® Hence, the distribution of (O B + &) (Ow B + &) is bounded
from above by its distribution that holds for a larger value of Oy, such that B'O},0w B is
larger as well, and [(Ow B + &) (OwB + &)]7! is bounded from above by its distribution

that holds for a smaller value of ©y. Because n and &I, Mo, p+e:)EL,, are independent of

3This property can be shown by using that a non-central x? distribution is a Poisson mixture of central y?
distributions. Central y? distributions are increasing in the degrees of freedom parameter, see Ghosh (1973),
which property can be used jointly with the Poisson mixing property to show that non-central x2 distributions
are bounded from above by non-central y? distributions with a larger non-centrality parameter and the same
degrees of freedom parameter.
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(OwB + &) (OwB + &) in large samples, the upper bound on the limiting distribution of

AR(B,), 1+n’[(®E;B fzw)ig;;gig T 18 non-decreasing in the value of Oy, . Since the upper bound

*/ M * *
on the limiting distribution of AR(f,) is sharp, as 5 +n’[(éE;B Jf,‘ﬁ"/)ig;v”gig’* T

& Moy, Bre)ée ., for large values of Oy, this also implies that the limiting distribution of

coincides with

AR(fS,) is non-decreasing in the value of Oy .
2. KLM(f,) and JKLM(f3,). The subset AR statistic equals the smallest characteristic root
Amin- When 71 is the (m,, + 1)-dimensional orthonormal eigenvector associated with the smallest

characteristic root, we can specify the subset AR statistic as
AR(BO) =00 = )\minT’lﬁ = Amin,

with § = (&2, : @WB + & )r1 and which shows that the limiting distribution of ¢ given 7 (or
~ . 1 .

(B,) since r; = AQ3 a2 7(B()))\/ﬁ) is normal. ~

) Becau§e My, 5, = Z(Z’Z)*EP(Z,Z),%ﬁW(B L (Z’Z)*EZ’, with Hw (8y) L @ k X (K —my),
My (8,) I (B,) = 0, and (y — X By — WA(B,)) Zw (B,) = 0, we can specify the subset KLM
statistic (3) as

KLM(B,) = 055%50 (y — XBo — (50))Ipz(ﬁw(/30) : ﬁX(BO))@ — XBy — WA(By))
- 055%50)( — X — (50))IPMZﬁW(5O)ZﬁX(//30)(y — XBy = WH(5))
- {(Z/Z)%Zl(y — XPy — Wﬁ(ﬁo)) &515(60)} Pp L (Z'7)31 x (Bo)

(2'2)” 2Ty (By) L

(2242 - X8, - W) 7

o 'p
= oPF (Z'Z)%ﬁx(ﬁo)(S

(Z'Z) EHw(ﬁo)J_

~
| IS

and a similar expression can be constructed for the subset JKLM statistic:

TKLM(B) = o'M, @t = O Mz e
(z A 2HW(I30)L

To obtain the properties of the KLM and JKLM statistics, we use the specification of (Z'Z )% x(By) :

(@ 2)Mlx(Ba) = (22) 82 [X — (y = X6y = W) 56
= (Z’Z)*%Z/X _ §50ex(Ba)

e (5o)
X T WEWWwEWX 1 1
= |Ox +&x — (Lt OwB + §,)rir A’ W Yxx | Ykx
Ly Bw X
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1 1 ;
with Ox = (Z'2)2 xS %, & = (Z'Z) "2 Z'Vx B % and where the expression for 22Xl results
\/ 6ee(Bo)

from using the specification of 9 :

5= (&, OwB+&)r

= [@W(PW )+ (G Ew)} An
2'2) 32y — XBy : W)Qy? Ar,
Z’Z)_%Z/@ — X, — W’?(ﬁo))\/ﬁ
S0

T—k
1 /
2
— I Al Oeciw . 0 o X+’YE)ZWX
= rjA . R ( 5 + 0,(1)
_(Ewwo'w£+'70)0'se,w ww WX

%X*%WEEVIWEWX
— ,,,,iAl \/TEEAW + 0p(1)

rxGy) 1 g0 h lL(y_mo : W)’MZX]

-5/
EWWEWX

snce iy~ XAy | WYMX — (7o)
The above expressions imply that conditional on r; (or 4(8,)), 6 and (2’ Z)%f[X(ﬁO) have

independent normal limiting distributions which are independent since

T X e w S W X
Cov(ng (5:11) : @WB + 52)7’1‘7“1) == 7;,56'W A?"l,

Sy Sw X

which results from the decomposition of § stated above, and var((¢Z,, @ Ow B + &;))ri|r1) = 1
such that

JstaEWE;VlWEWX 1
cov(§x = (§w 1 OwB + &, ) A ( b ) Yxko (o t OwB + &, )nlr) =0.

EWZVVEWX
Given 71, the limiting distribution of ¢ is normal with an identity covariance matrix and since

P 1 M 1-
P 1. (2'2)211x(By)” " P 1. (2'Z)211x (Bo)
(z'z)” 21y (Bo) L (Z2'Z) 2Ty (Bo) 1

=0

the limiting distributions of P, N (2 2y} iy (BO)(S and M, N
(2'2) 2Ty (Bo) L (2'2) 2Ty (Bo) L

(I1x(B,), 1) are independent of one another. Since § and Iy (f,) are given r; (or 7(j3,)) asymp-
totically independent, the limiting distributions of KLM(3,) and JKLM(,) given 71 (or 3(5,))

(22 ix(30)] BV
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are therefore independent of one another.

The manner in which KLM(3,) and JKLM(,) are obtained is such that first AR(S3,) is
computed by minimizing AR(S,,~y) with respect to 7. Given the realized value of 5(53,) or
r1, Hx(B,) is constructed. The realized value of IIx(f3,) is then used to compute KLM(S,)
and JKLM(f,) by essentially decomposing AR(3,) as AR(f,) equals the sum of KLM(j,) and
JKLM(}3,). Hence, since IIx(/3,) is not involved in constructing r; or 5(8,), which results from
minimizing AR(f3,, ) with respect to v, and that given r, or (5,) the limiting distributions of
I1x(53,) and ¢ and of KLM(j3,) and JKLM(f3,) are independent,

!
OF (2'2)" 2Ty (B,

8= AR(8,) = KLM(5g) + JKLM(B,) < x2(k — ),
implies that

J

Ix (Bo)

- 4]

(2/2)2Tix (By)

KLM(3y) = 0P,
(2'Z)” 21y (Bo) .
JKLM(8,) = &'M,,

i
(2'2)” 2y (Bo) .

2 A

X2 (m.)

[

(2'2)

x*(k —m)

2 A

and that these bounding distributions are independent of one another.

When m,, = 1, the lower bound on the limiting distributions of KLM(j,) and JKLM(j,)
results when Oy is equal to zero. This lower bound results since Oy, equal to zero also provides
the lower bound on the limiting distribution of AR(f,) and KLM(5,) and JKLM(f,) are given
r1 or Y(B,) independent in large samples.

3. MQLR(S,). The subset MQLR statistic can be expressed as a function of KLM(f,),
JKLM(8,) and rk(f,),

MQLR(3) = 4 [AR(50) = k() + y/(AR(3) -+ 1K(3u)* ~ 4 (AR(3o) ~ KLM(30)) 1k(50)|.

which expression we can use to show that both the derivative of MQLR(f,) with respect to
KLM(f,) :

OMQLR(Sy) _ 1 (1 4 KLM(8B0)+JKLM(8g)+rk(8,) >0
OKLM(B,) 2 / (KLM(Bo)+JKLM(8,)+1k(8,))2—4JKLM (8,)rk(8,) | —

and the derivative of MQLR(,) with respect to JKLM(S,) :

OMQLR(Sg) _ 1 (1 4 KLM(80)+JKLM (84)—rk(8g)
OJKLM(B,) 2 V/ (KLM(Bq)+JKLM(80)+1k(8,))2—4JKLM (8,)rk(8,) |

are larger than or equal to zero both when KLM(5,)+JKLM(S,)—rk(5,) is larger than or equal
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to zero and when KLM(3,)+JKLM(3,)—rk(5,) is less than zero since in the latter case:

OMQLR(Bg) _ 1 4 KLM(8g)+JKLM(B,)—rk(8,)
OJKLM(B,) 2 V/ (KLM(By)+JKLM(80)+1k(80))2—4TKLM (8,)rk(8,)
- 1 1+ KLM(Bo)+IKLM(B4)—rk(By)
2 / (KLM(80)+JKLM(B,)—1k(80))2 +4KLM (B)rk(By)
= % 1-— L >0, KLM(5,) + JKLM(,) < rk(5,).

1+ 4K LM (Bg)rk(Bg)
(KLM (Bg)+JKLM (Bq)—rk(8p))2

Hence, the derivatives of MQLR(S,) both with respect to KLM(8,) and JKLM(/,) are non-
negative which imply that the bounding arguments that apply to KLM(3,) and JKLM(j,) extend
to the conditional limiting distribution of MQLR(,). Thus the conditional limiting distribution
of MQLR(f,) is bounded from above by its limiting distribution that applies for large values of
Ow and, when m,, = 1, from below by its limiting distribution that applies when Oy = 0.

The conditioning statistic rk(83,) in MQLR(/3,) is a function of Iy (8,) and Iy (8,) both
of which are independent of § given r; in large samples which results since both fIW(BO) and
IIx(f3,) are conditional on 7, normally distributed and their covariances given r; with ¢ are
equal to zero.* The conditioning statistic rk(3,) uses the realized value of 1 (or §(,)) and is

not involved in obtaining 7(3,) or 1.

Proof of Theorem 4. a. When we test Hy : 3 = 3, and 3, is large compared to the true value
3, the different elements of Qyy = 7 (y— X By i W) Mz(y— X By 1 W), can be characterized by

5L(2)N_( Xﬁo) MZ( Xﬁo) = Wxx — %wa + 5_1(2)@1/1/
%N—( Xﬁo) MW = wxw — [%O@yw
mW’Mzw = wa,

! ~ 1 l ~ 1 l ~ !
MZy, OJXX:mXMzX, WXW:mXMZVV; Wyw = szv, SO

1 1
N_kY N_kY

!/
_501 0 QW _601 0 :QXW—% 2AO/'yX Oyw _i_% Oyy 0 7
0 Iy 0 Iy 6w 0 o\ 0 0

4Using the specification of Iy (8,) in (4), we can proof the conditional independence of My (B,) and § given
r1 using the same line of argument as for IIx (8,).

with @, =
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with Qxy = 7 (X 1 W)'Mz(X i W). The LIML estimator (f3,) is obtained from the smallest

root of the characterlstlc polynomial:
')\QW —(y—XBy i W) Py — XBy W)‘ =0,

and the smallest root of this polynomial, A\.;,, equals the subset AR statistic to test Hy. The

smallest root does not alter when we respecify the characteristic polynomial as

‘”’“wﬂ — P (g — XBy i W) Pr(y — XBy W)y, 5‘ = 0.

. Al
Using the specification of y, we can specify ,” as

1 —Byt 0\ a2 _
Qy* = ’ Qxiy + 05, 2)’
0 Iy,

where O(f3;?) indicates that the highest order of the remaining terms is 3;2. Using the above
specification, for large values of 3,, 2 ( — X By i W) Py(y—XB,: W)Q,? is characterized by

-

= A

Oy — XBy WY Psly — X6yt W)Q? = Qi (X T W)Y Po(X 1 W)Q

Aol
xiv OB 1).
A1
For large values of BO, the AR statistic thus corresponds with the smallest eigenvalue of €2 X%,(,(X
S W) Py(X P W)Q,2, which is a statistic that tests for a reduced rank value of (ITy : IIy).
1
b. Let R = (r; : Ry) : m X m contain the eigenvectors of QXW(X W)Y Py (X : W3,

with r; the eigenvector of the smallest eigenvalue and R; contains the eigenvectors of the larger

eigenvalues. The eigenvectors are orthonormal so R'R = I,,,. For large values of 3,

O i — ( ! I)Q 2 11+ O(852).

The LIML estimator 5(/3,) is obtained from the eigenvector that belongs to the smallest eigen-

value which for large values of (3, is such that

~_ 1

A Lsay) = Qw'r
= < ﬁoo I)Q WTl"_O(BO ),

1
with d = 619 +iym1 and where e; equals the first column of I,,,, or the first m-dimensional

unity Vector
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The eigenvalues of Syqrr(8y) = T(8o)'T(B,), with

1.~ .~ A1
T(Bo) = (Z2'Z)2[Ux(Bo) : w (Bo)IE (X . wyx - wyes
S wyx wye = (X W) Mz .y xg,-z3a0) (X P W),

are identical to the roots of the characteristic polynomial

(w8, - Ww@o))“f%fv”)/ (s — )

(W) = (= X8, — W) 22 )| o,

and we therefore analyse the behavior of (X : W) — (y — X3, — Wﬁ(@o))@%ﬁ&em when j, is
large compared to the true value 3. The components of (X : W) — (y— X, — Wﬁ(ﬁo))@%fw)

that depend on (3, are: y — X3, — WH(,), (0ex : 6ew) and ... We use the above expression

of the LIML estimator to determine the behavior of each of these components:

d(ZJ — XBg— Wi(ﬁo)) = d(?/ — X B, : W)(—ﬁéﬂo))
= (X W)QEr + dy + O(?)
d(6ex P oew) = Ty — X By — WA(By)) Mz (X T W)
= O w4 d(6yx | Gw) +O(d)
Pbo. = oy — XBy — WA(Bo)) My (y — X By — WH ()
= O e O+ 2d(Gyx | 6w ) Qi + 26y,

= 1+ Qd(a'yx &yw)rl + d26yy + O(d2)

and since
1
(6ex 1 6ew) _ @y Qxw+d(Gyx : Fyw)
dbee o JR

1+2d(6‘yX : 6yW)QX‘2/VT1+d2&yy
~ 1

AL A o o ALl
= M Qxw + d((6yx oyw) — 2(0yx | Gy )iy riri Qg Qxw) + O(d),
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it also holds that

(X5 W) = (y = Xy = W(8)) 1225228 = (X1 W) — dly — X By — WH(By)) A2
= (X W) - [(X W) + dy} e 1O 2w) 4 0 (2)

142d(6yx : Gyw)Qyiyr1+d26yy

=(X:W)-— {(X W)warl + dy}
{T;Q;%QXW +d((6yx  Gyw) — 2(6yx Gy U2 Q2 Qxw) | + O(d?).

1

A1 a1
We post-multiply this expression by (243,71 : €y, R1), which is a full rank matrix:

~_1

[(X W) — (g — X Gy — Wm»%jﬂ Qb § O RY)
[ dly — (X : W)QXer(ayX : ayW)Q;(%Vrl) :
(X WO Ry —d <(X WO (6 ayW)QXWRlﬂ +O(d),

S O 1 P O |
where we used that 717, Qxw Qi1 = 1, 1 Q3 Qxw iy B = 0. A further post-multiplication

0
RO (N
—1i XW(U )‘7 (xwy Ame

(‘:’Xy)'Q;,V (Z;‘/ ) then yields

. ~ oAl ~ _ Al A — 5 —
, with 0x, = Oyx> OWy = Oywy Oyy(X: W) = Oyy

. Ge( Al . —
(X W) = (3= X8y~ WA 2 | @ £ O )

1
2 0
A,;,

1/\
a%yy. (X : W) 0 +O(d?)

_ [@/ — (X EW)0dy (rar + BBy Q3 (230) (X W)QXWRl] (&yy%w I"?W> o

_ {y_ (X W)y () (X W)QXgVRl] ( woxw 0 )+O(d),

where we used that r 7 + R R| = I,,,. Since the quadratic form of the above matrix with respect

to My equals the identity matrix, the eigenvalues of T'(8,)"T(5,) correspond for large values of
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B, with the eigenvalues of

Y
2

(= (X WO (Giobw O WO R P

= (X WO ()b O WA

=

c. The expression of the subset KLLM statistic in (3) can alternatively be specified as:

KLM(8,) = m(y — X By — WH(By))' P e(x - w)(Bo)

Py {(X: W)= (y=XBo—WH(By)) Gee(Bo)
(y — XBO - W;?(BO)%

which, using the above expressions, is for distant values of 3, equal to

A A1

KLM(3,) = Q% (X I WYP . " (X W2,

Py {(yf(X : W)Q;(%ﬂ/(;‘f/z))&yy)( w (X W)QLE Ry

(S

d. The value of KLM(f,) at distant values of /3, jointly with the above eigenvalue and the value
of the subset AR statistic yield the value of the MQLR statistic at distant values of j3,,.

e. Since

y—(X: W)Q;&,Vc‘iz) = e— (X W)Q;{%/V(&Xs)7

&Ws
where e = y— Xf—Z~vand 6x. = ﬁX’MZ&‘, Owe = ﬁX’Mzg, since (g;‘/?;) = wa(f)+(;’f$€€),
the expressions of the robust subset statistics are for large values of /3, identical to the expressions
of these statistics that test Hj : o = 0 in the model
A1 , Al
(X :W)Q3rm = ca+ (X W)Q 3 Rid+u
€ = Zd.+ V.
) Al
(X iWQ3 R = ZPg, + Vg,
where o : 1 X 1, 0 : my x 1, @, : k x 1 and ®Pg, : k X my and u, V. and Vg, are n x 1, n x 1
and n X m,, matrices of disturbances, the expressions of the subset AR, LR and MQLR statistics
that test Hf : o = 0 result from noting that 0 = 0 such that
1, 1
AR(Oé _ 0) _ Q3 (X : W) Pg(X : W)QX%,rl _ )\1'

1 1
QX WY My (X W) 2m
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Similarly, if ® is the estimator of ® and Z is the estimator of the covariance matrix of (V. : Vg, ) :

A—2 ) N e 2L S Ak
(e 5 (X W) R — (0 1 W)y T O WY Mse (X WmX%VRl)]

o= (2/2)7'7 1 :
rQ 2 (X WY My (X W) 2

Al AL, . . AL
= (Z22)'7 [(g— (X W)QX%,VTMQQX%A//(ZV’;Z) (X W)QX%VRl)
L . /

= L (e — (X WO (29) (X E WA R | My

n—k 6’Wy

[1]:

(e — (X W)Q2rr Qg (29) F(X F W)QL2,Ry)

O'Wy

and 23 7' ZH="1 is identical to

(e — (X W0 (G20 F w £ (X WE R Py
(e — (X W)y (2o 0y w (X WG R, | =
(= (X W, (G Nonte w £ (X WRE R Py
(v — (X E ) (CX)8 0w (X WG Ry

which we used to construct the subset KLM and MQLR statistics to test Hy : 5 = 3, for distant

values of f3,.
Subset LR statistic The subset LR statistic LR(5,) that tests Hy : 5 = 3, equals

LR(BO) = AR(BO) = Amin

where A, is the smallest root of the polynomial

Yo ¢'S
Mot = ( Sy 88 )‘ -0

E=y—Xp,— W35, and U and S result from a singular

: =L s
with ¢ = U'(Z'Z) 2Z€m,
value decomposition of T'(3,) defined in (7)

T(Bo) =USV'
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in whichd : kxk, UU =T, V:mxm, V'V =1,V = Vs : Vi), Vx : mz xXm, Vi : my, X m;
and S is a diagonal k£ x m dimensional matrix with the singular values in decreasing order on

the main diagonal.

Proof. The LR statistic® to test Hy reads
LR’(BO) = AR(ﬁo) — Amin,

with Ay, the smallest root of the characteristic polynomial

‘)\Q—(yEXEW)’PZ(yEXEW)':O,

and ) = 5y i X W) Mg(y : X W). The roots of the characteristic polynomial do not alter

when we pre- and post-multiply by a triangular matrix with ones on the diagonal:

/

1 0 0 1 0
-6y Im, O {)\Q —(y: X :iW)YPy(y: X: W)} —By I, O -0
—3(Bo) 0 I, —5(By) 0 I,
AS(By) — (B X PW)YPy(2 i X W)‘ =0,

where & = y — X3, — W3(8,),

1 0 0 1 0 0
SB)= | “Bo Im. 0 | Q| —By In 0
~3(Bo) 0 Iy, ~3(Bo) 0 I,
_ ( &se(ﬁo) &E(XA: W)(Bo))
5(x - we(Bo) Qxw

Te(X - W)(ﬁo) = (OEX(BO) Gew (Bo))

and QXW— T (X WY MZ(X W) :m xm.
We decompose 5(B,)

~

S(By) 7t = 2(50)7%,2(50)7%,
2(5())_% _ Gee(By) 2 —Gee(Bo) 10 A,% (50) (X W W |
0 2(X: WYX : W).e

®We essentially use a monotone transformation of the LR statistic, see e.g. Hausman (1983).
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1
2

with i(x: wyx: wye = w7m(X P W) Mgz, (X i W), such that 3(Bo) "2 S (B0)2(Bg)

Iiy(m+1), and we can specify the characteristic polynomial as

'Mmﬂ Sy X WY Py X WGy

=0&
~ ~ ~ 1 !
! —1 71 é : : -2 !
')\Im+1 — K(Z Z)Z Nk l(HX(ﬁo) : HW(@))} XX wyx - W).s)} 7'z
K(Z’Z)IZ’ﬁBO) : {ﬁx(ﬁo) : ﬁw(ﬁo)] S wyx W).s):| =0«
1 /
Mg — (0G24 ° )
' i 0 E(X2: W)(X : YV)e ,
éjPZé HX(B(()))/Z,é 655(50)7% 1 0 - O
(ﬁx(ﬂo)'Z'é> (ﬁxwo)'Z'Zl”}X(Bo) flxwo)'Z'ijIW(ﬂo)) 0 22 wyx: we e
0 Iy (80)' 2’ Z11x (Bo) Tw (Bo)' Z' Z11w (Bo)

A1
When we use a lower triangular decomposition to construct Z( vy WYX - W)e the block structure
of the matrix in the characteristic polynomial is preserved:

1
S
2_% . ExX(e: W) 0
X: W)X : W)e fl1 e L1 o=
( )( ) 7ZWW'SEWX,EEXA%(‘(E: w) EVVVVf

so the characteristic polynomial becomes

~ A1 .
8Pyt (701 —' 7 (B0) Sk w o)

)\]erl - 2,%, i 3 )’Z“ 1 = O
( ey m) T (5T (o)
We conduct a singular value decomposition of T'(53,), see e.g. Golub and van Loan (1989),

T(By) = (2'2)% lﬁx(ﬁo) : ﬁw(ﬁo)} 2(_)(% WYX s W)e = UsSV' <

(Z'Z)z lﬁx(ﬁo) : ﬁw(ﬁo)] ( P w) ) =USV

_EEVIW@iWX-Si;(?C(E: w)
~ A1
(Z'Z) 2Ty (Bo) Snt. = USV},

where U -k x k,UU=1,,V:mxm, VV =1,

= (Vi Vi), Vx i me X my, Vi : My, X m;
and S is a diagonal k£ x m dimensional matrix with the singular values in decreasing order on
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the main diagonal, to specify the characteristic polynomial as,

n'n nUSV'y O)

Moyt — o ( * — 0
(»5Hm) sy
1 mo 10

Mooy — 0 nn  nUS 0 0o
o v |\ sun ss 0V

/ /8

My — [ €97 o,

Sy S'S

with 7 = (Z’Z)*%Z’\/ﬁ and fUSV}, =0, ¢ =U'n and ¢'SV}, = 0. =

Critical values for LR(3,) when m=2. Since the limiting distribution of ¢ is N(0, I.), the
above construction of LR(/3,) shows that its limiting distribution is conditional on the diagonal
elements of S and the orthonormal matrix V, since ¢'SVy;; = 0. When m = 2, S has two non-zero
elements and V has one unrestricted element since it is orthonormal: V'V =I,. Depending on its

realized value, V can be classified to have one of the following four orthonormal specifications:

_ cos(a) sin(a) 0 <
LY sin(a) —cos(a) ) f=as
B cos(a) —sin(a) W<
2 V= sin(a) cos(a) V=as
5 Yo cos(a) sin(a 0<a<
—sin(a) cos(a)
LoV cos(a) — sm((a) ) 0<a<n

These four orthonormal specifications reflect all possible values of V in a unique manner. They
are functions of a whose value lies between 0 and 7. We therefore compute the conditional (95%)
critical values of LR(f3,) given s11, g2 and a for each of the four different specifications of V. We
use hundred possible values of both s, s99 and twenty-five for a. Thus we compute one million
95% critical values (=4 x 25 x 100 x 100).

To compute the size and power when testing at the 95% significance level, we conduct a
singular value decomposition of the realized value of T'((,) for every data-set and determine
which of the above specifications of V' accords with the computed one. We then compute a and
determine the appropriate 95% critical value given s11, S92 and a for the respective specification
of V.
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