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Abstract

In this paper we study i.i.d. sequences of n � 1 vectors Xt; t = 1; :::; T such

that, for each t; Xt has an approximate factor structure with correlated Gaussian

idiosyncratic terms. We develop a test of the null of r factors vs. the alternative that

the number of factors is larger than k but smaller than kmax+1; where kmax is an a priori

maximum number of factors. Our test statistic is equal to the ratio of 
k+1 � 
kmax+1

to 
kmax+1 � 
kmax+2; where 
i is the i-th largest eigenvalue of the sample covariance

matrix 1
T

PT
t=1XtX

0
t:We describe the asymptotic distribution of the test statistic as n

and T go to in�nity proportionally as a function of the Tracy-Widom distribution. We

tabulate the critical values of the test corresponding to k and kmax relevant for �nancial

and macroeconomic applications. As an application, we test di¤erent hypotheses about

the number of factors in arbitrage pricing theory. We reject the nulls of no or a single

factor against alternatives of more than one factors by the test of 5%-level. We cannot

reject the null of 5 factors by the 5%-level test.

1



1 Introduction

Approximate factor analysis of high-dimensional data has attracted a lot of recent attention

from researchers in macroeconomics and �nance. Factors non-trivially in�uencing thousands

of stock returns observed over hundreds of time periods have been used to study the pricing

of �nancial assets, to evaluate the performance of �nancial portfolios, and to test arbitrage

pricing theory. In macroeconomics, pervasive factors extracted from half a century of data

on hundreds of macroeconomic indicators have been used to monitor business cycles, to

forecast individual macroeconomic time series, and to augment vector autoregressions used

for monetary policy analysis.

An important question to be addressed by any study which uses factor analysis is how

many factors there are.

Although there have been many recent studies which develop consistent estimators of

the number of factors in the empirically relevant context of large and comparable time and

cross-sectional dimensions of the data (see, for example, Forni et al (2000), Bai and Ng (2002,

2005), Stock and Watson (2005), Hallin and Liska (2005), Onatski (2005), and Watson and

Amengual (2006)), the corresponding estimates of the number of factors driving stock returns

and macroeconomic time series often considerably disagree. Such a disagreement indicates

that there exists a large amount of statistical uncertainty about the point estimates of the

number of factors. Unfortunately, none of the above studies proposes a formal statistical

test of di¤erent hypotheses about the number of factors that would quantify the amount of

the uncertainty. The purpose of this paper is to develop such a test.

In this paper, we study i.i.d. observations of ndimensional vectors Xt; t = 1; :::; T; of

data which admit the approximate factor structure (see Chamberlain and Rothschild, 1983)

with correlated complex Gaussian idiosyncratic terms. If, as in the majority of the empirical

applications, the original data is real, we construct X by adding the �rst half of the original

sample and the product of the imaginary unit and the second half of the original sample. We

develop a test of the null of k factors vs. the alternative that the number of factors is larger
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than k but smaller than kmax+1; where kmax is an a priori maximum number of factors. Our

test statistics is equal to the ratio of 
k+1� 
kmax+1 to 
kmax+1� 
kmax+2; where 
i is the i-th

largest eigenvalue of the sample covariance matrix 1
T

PT
t=1XtX

0
t. We describe the asymptotic

distribution of the test statistics as n and T go to in�nity proportionally as a function of the

Tracy-Widom distribution (see Tracy and Widom, 1994), and tabulate the critical values of

the test corresponding to k and kmax relevant for �nancial and macroeconomic applications.

The logic of our test is based on the standard identi�cation assumption (see Chamber-

lain and Rothschild, 1983) that the portion of the data�s variation per cross-sectional unit

explained by the factors remains non-trivial as n tends to in�nity, whereas the portion of

the variation per cross-sectional unit due to any idiosyncratic in�uence tends to zero. This

assumption is equivalent to the requirement that the �rst r eigenvalues of the data�s covari-

ance matrix (where r is the true number of factors) rise proportionally to n, whereas the rest

of the eigenvalues stay bounded. If k < r; we would, therefore, expect that 
k+1� 
kmax+1 is

much larger than 
kmax+1 � 
kmax+2: In contrast, when k = r; the eigenvalues 
k+1; 
kmax+1;

and 
kmax+2 remain bounded as n tends to in�nity, and we do not have a reason to expect

the ratio of 
k+1 � 
kmax+1 to 
kmax+1 � 
kmax+2 to be large.

In this paper, we establish the fact that, as both n and T tend to in�nity, the joint dis-

tribution of the centered and scaled eigenvalues ��1
�

r+1 � �

�
; :::; ��1

�

kmax+1 � �

�
; where

the centering and scaling constants � and � depend on n; T; and the covariance structure of

the idiosyncratic terms, converges to the same limit as the joint distribution of the similarly

centered and scaled kmax � r + 1 largest eigenvalues of the sample covariance matrix of the

idiosyncratic terms. Further, we extend recent results of El Karoui (2006) to show that

the latter joint distribution converges to the distribution described by Tracy and Widom

(1994), which does not depend on the parameters of the data generating process. We con-

clude that, under the null hypothesis that k = r; the asymptotic distribution of the ratio of

��1
�

k+1 � �

�
� ��1

�

kmax+1 � �

�
to ��1

�

kmax+1 � �

�
� ��1

�

kmax+2 � �

�
is a function of

the Tracy-Widom distribution. Finally, we note that the latter ratio is equal to the ratio of
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k+1 � 
kmax+1 to 
kmax+1 � 
kmax+2: Therefore, its computation does not require the knowl-

edge of the centering and the scaling constants, and hence, the knowledge of the covariance

structure of the idiosyncratic terms. We take the ratio of 
k+1� 
kmax+1 to 
kmax+1� 
kmax+2
as our test statistics and tabulate the corresponding critical values.

We study the �nite sample performance of our test by running several Monte Carlo

experiments. We �nd that the test has correct size and good power for our Monte Carlo

design and samples as small as n = 50 and T = 50:Moreover, the test seems to be reasonably

robust with respect to di¤erent distributional assumptions about the idiosyncratic terms.

Using Monte Carlo experiments we also study the performance of an analog of our test

which does not require transforming the original real data into the complex form. Although

we are unable to formally establish the asymptotic distribution of the corresponding test

statistics, we conjecture the form of the asymptotic distribution and �nd by simulation that

the test works as well as our test designed for the complex data.

As an application, we test di¤erent hypotheses about the number of factors in arbitrage

pricing theory. Our test rejects the nulls of zero or only one factors against alternatives of

more factors at 5% levels. We also can reject the nulls of 2, 3 and 4 factors at 5% level at

least against some alternatives. We cannot reject the null of 5 factors against alternatives of

more factors at 5% level.

Although this paper is the �rst to develop a formal statistical test of hypotheses about

the number of factors in a situation when n and T tend to in�nity simultaneously, Connor

and Korajczyk (1993) were the �rst to develop another test of similar hypotheses under

a sequential asymptotics when �rst n goes to in�nity and then T goes to in�nity. The

Connor-Korajczyk test is not directly based on the eigenvalue-separation idea which forms

the basis for our test, although their test�s logic can be traced to this idea. We compare the

performance of the Connor-Korajczyk test and our test using simulated data. We �nd that

in samples of various sizes our test has a much less distorted size than the Connor-Korajczyk

test. At the same time, the power of our test is similar to that of the Connor-Korajczyk
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test.

The logic of our test (and that of Connor and Korajzyk, 1993) di¤ers from the logic of the

standard likelihood ratio test (see Anderson (1984), chapter 14), which is based on the fact

that the idiosyncratic covariance matrix is diagonal under the classical k-factor structure if

the true number of factors is less than or equal to k: The approximate factor structure that

we are concerned with in this paper does not require that all the cross-sectional correlation

be due to the factors as is the case for the classical factor structure. Since the identi�cation

of factors is fundamentally di¤erent in the classical and the approximate factor model cases,

it is not natural, in general, to compare our test and the classical test.

The rest of the paper is organized as follows. In the next section we state our assumptions

and develop the test. Section 3 contains Monte Carlo experiments. Section 4 tests di¤erent

hypotheses about the number of factors in arbitrage pricing theory. Section 5 concludes.

Technical proofs are contained in the Appendix.

2 The number of factors test

We consider a sequence of approximate factor models indexed by n :

X(n) = L(n)F (n)0 + e(n) (1)

where X(n) is an n � T (n) matrix of data; F (n) is a T (n) � r matrix of T (n) observations

of r factors; where r does not depend on n; L(n) is an n � r deterministic matrix of factor

loadings; and e(n) is an n�T (n) noise matrix with i.i.d. NC(0;�(n)) columns independent from

the elements of F (n). Here NC(0;�(n)) denotes a complex normal distribution, which is the

distribution of a complex random variable whose real and imaginary parts are independent

and identically distributed normals N(0;�(n)=2): We assume that (1) satis�es Assumptions

1 and 2 formulated below. In what follows we will omit superscript (n) over the variables

that change with the dimensionality of data to simplify notations.
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Assumption 1. There exist a positive de�nite matrix B and a positive number b such

that (L0L=n) (F 0F=T )
p! B as n and T tend to in�nity so that n=T ! b:

Assumption 1 can be thought of as a part of the identi�cation restriction which allows

us to identify the systematic component LF 0 of the data. The rest of the identi�cation

restriction is given by the �rst inequality of Assumption 2 formulated below. If we further

normalize factors so that F 0F=T = Ir; then the assumption can be used to separately identify

factors and factor loadings and may be interpreted as a requirement that the e¤ects of the

factors per cross-sectional unit measured by L0L=n remain non-trivial as n tends to in�nity.

In this paper we do not impose any separate restrictions on the convergence or divergence of

L0L=n and F 0F=T because we are not going to separately identify factors and factor loadings.

One consequence of putting no separate restrictions on factors and factor loadings is that

much room is left for modeling factors. For example, they are allowed to be deterministic,

or random and stationary, or random and non-stationary.

The proportional n and T asymptotics di¤ers from the asymptotic assumptions made

in the previous literature. Connor and Korajczyk (1993) develop their test using sequential

limit asymptotics when, �rst, n tends to in�nity and, then, T tends to in�nity. Bai and Ng

(2002) allow n and T to go to in�nity without any restrictions on the relative growth rates.

The proportional asymptotics allows us to use the machinery of random matrix theory to

establish the asymptotic distribution of our test statistics. Note that the limit b may be any

positive number so that the asymptotics is consistent with a variety of empirically relevant

�nite sample situations.

Our second assumption restricts the asymptotic behavior of the matrix of the cross-

sectional covariance of the idiosyncratic terms �: Let l1 � ::: � ln be the eigenvalues of �:

Denote by H the spectral distribution of �; that is H(�) = 1 � 1
n
# fi � n : li > �g ; where

# f�g denotes the number of elements in the indicated set. Further, let c be the unique root

in
�
0; l�11

�
of the equation

R
(�c= (1� �c))2 dH(�) = T=n:

Assumption 2. As n and T tend to in�nity so that n=T ! b, lim sup l1 < 1;
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lim inf ln > 0; and lim sup l1c < 1:

Note that l1 is the variance of the most variable or, loosly speaking, the most in�uential

weighted average of the idiosyncratic terms. Hence, the �rst of the three inequalities of

Assumption 2 requires that the strongest cumulative idiosyncratic in�uence on the cross-

sectional units remains bounded as the number of the units tends to in�nity. This require-

ment taken together with Assumption 1 constitute a slight modi�cation of the standard (see

Chamberlain and Rothschild, 1983) identi�cation restriction imposed on model (1). The

second inequality of Assumption 2 requires that, whatever the dimensionality of the data is,

there is no multicollinearity among the idiosyncratic terms. The third inequality is crucial

for the analytic apparatus developed in El Karoui (2006) for the analysis (which we rely on

in this paper) of the spectral distribution of large complex Wishart matrices. In a nutshell,

the inequality requires that the right tail of the spectral distribution of � is not too thin.

More precisely, it is not di¢ cult to see that for the inequality lim sup l1c < 1 to hold, it is

su¢ cient that H weakly converges to a distribution H1 with the upper boundary of support

equal to lim sup l1 and the density bounded away from zero in the vicinity of lim sup l1: As is

pointed out by El Karoui (2006), such a su¢ cient condition would hold, for example, for �

that have a symmetric Toeplitz structure with parameters a0; a1; ::: such that
P
k jakj <1

and for � that have uniformly spaced eigenvalues on a given bounded segment.

In this version of the paper we assume, in addition to Assumptions 1 and 2, that b < 1:

We will get rid of this additional assumption in the later versions of the paper.

Let �1 � ::: � �n be the eigenvalues of ee0=T: De�ne a centering constant � and

a scaling constant � so that �c = 1 + (n=T )
R
(�c) = (1� �c) dH(�) and (�c)3 = 1 +

(n=T )
R
(�c)3 = (1� �c)3 dH (�) ; and let ~�i = T 2=3��1 (�i � �) : Further, let W be a T � T

Hermitian matrix with i.i.d. NC (0; 1=T ) lower triangular entries and (independent from

them) i.i.d N (0; 1=T ) diagonal entries. The collection of such matrices is called Gaussian

Unitary Ensemble. It plays an important role in random matrix theory (see Mehta, 2004).

Let d1 � ::: � dT be the eigenvalues of W; and de�ne ~di = T 2=3 (di � 2). We, �rst, establish

7



the following

Theorem 1. Let Assumptions 1 and 2 hold and let b < 1: Then, as n and T go to

in�nity so that n=T ! b; for any �nite positive integer j; the limiting joint distribution of

~�1; :::; ~�j is equal to the limiting joint distribution of ~d1; :::; ~dj described by Tracy and Widom

(1994).

Theorem 1 is, essentially, due to El Karoui (2006). Although he proves the theorem only

for the case of j = 1; his derivations imply that it holds for any �xed positive integer j: An

argument which establishes this fact is the same as that in Soshnikov (2002) which shows that

Johnstone�s (2001) result stated for the largest eigenvalue of the sample covariance matrix

of uncorrelated data easily generalizes to the several largest eigenvalues. We will sketch the

argument in the future version of the paper which will deal with the case b � 1:

Tracy and Widom (1994) studied the asymptotic distribution of a few largest eigen-

values of matrices from the Gaussian Unitary Ensemble when the dimensionality of the

matrices tend to in�nity. They showed that under appropriate centering and scaling the

asymptotic distribution exists and can be expressed in terms of a solution of a system

of partial di¤erential equations. The system simpli�es to a single ordinary di¤erential

equation q00(s) = sq(s) + 2q3(s) when we are interested in the asymptotic distribution

of the largest eigenvalue only. In such a case, the asymptotic distribution is equal to

F (x) � exp
�
�
R1
x
(x� s)q2(s)ds

�
; where q(s) is the solution of the above ordinary dif-

ferential equation which is asymptotically equivalent to the Airy function Ai(s) as s!1:1

We describe the Tracy-Widom distribution in more detail in the Monte Carlo section of our

paper.

Our next theorem shows the equivalence of the joint asymptotic distribution of un-

observable eigenvalues of ee0=T and that of observable eigenvalues of XX 0=T: Let 
1 �

::: � 
n be the eigenvalues of the sample covariance matrix XX
0=T of the data, and let

~
i = T
2=3��1 (
i � �) ; where � and � are as de�ned above. Then, we have:

1For the de�nition and properties of the Airy function see Olver (1974).
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Theorem 2. Let Assumptions 1 and 2 hold. Then, as n and T go to in�nity so that

n=T ! b; for any �nite positive integer j; the limiting joint distribution of ~
r+1; :::; ~
r+j is

equal to the limiting joint distribution of ~�1; :::; ~�j:

A proof of the theorem is given in the Appendix.

Theorem 2 is the basis of our test of the number of factors. To test a hypothesis that

the number of factors is k vs. an alternative that the number of factors is larger than k

but smaller than kmax + 1; we form a test statistics
�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
:

Note that the test statistics is equal to the ratio of the normalized and centered eigenvalues�
~
k+1 � ~
kmax+1

�
=
�
~
kmax+1 � ~
kmax+2

�
: Therefore, by Theorem 2, the asymptotic distribu-

tion of our test statistics under the null of k factors is the same as the asymptotic distribution

of the ratio
�
~�1 � ~�kmax�k+1

�
=
�
~�kmax�k+1 � ~�kmax�k+2

�
: By Theorem 1 and the continuous

mapping theorem, the asymptotic distribution of the latter ratio is equal to the distribution

of (x1 � xkmax�k+1) = (xkmax�k+1 � xkmax�k+2), where x1; :::; xj are random variables with the

Tracy-Widom joint distribution. The critical values of the test statistics can therefore be

tabulated based on the knowledge of the Tracy-Widom law. We do such a tabulation in the

Monte Carlo section of the paper. In contrast, when the alternative hypothesis is true, 
k+1

rises proportionally to n while 
kmax+1 and 
kmax+2 remain bounded. Therefore, under the

alternative hypothesis our test statistics explodes. Theorem 3 summarizes the properties of

our test.

Theorem 3. Let Assumptions 1 and 2 hold and let b < 1: Then, if the true number

of factors is equal to k; the distribution of the ratio
�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
converges to the distribution of (x1 � xkmax�k+1) = (xkmax�k+1 � xkmax�k+2), where x1; :::; xj

are random variables with the Tracy-Widom joint distribution. The convergence takes place

as n and T go to in�nity so that n=T ! b: In contrast, when the true number of factors

is larger than k but smaller than kmax + 1; the ratio
�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
diverges in probability to in�nity.

Theorem 3 is a simple consequence of Theorem 2.
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3 Monte Carlo Study

In this section we use Monte Carlo simulations to describe in some detail the Tracy-Widom

distribution, to tabulate the critical values of our test, and to study its �nite sample prop-

erties. We approximate the Tracy-Widom distribution by the distribution of a few largest

eigenvalues of a 1000 � 1000 matrix from the Gaussian Unitary Ensemble. We obtain an

approximation for the latter distribution by simulating 30,000 independent matrices from

the ensemble and numerically computing their 10 �rst eigenvalues. The left panel of Figure

1 shows the empirical distribution function of the largest eigenvalue centered by 2 and scaled

by T 2=3 = 10002=3. The right panel of Figure 1 shows a scatterplot of 30,000 observations

of the di¤erence between the �rst and the second eigenvalues vs. the di¤erence between the

second and the third eigenvalues (both di¤erences scaled by T 2=3):

Tracy and Widom (2002) report that the mean of their univariate distribution2 is about

-1.77, the standard deviation is close to 0.90, the skewness is slightly larger than 0.22, and

the kurtosis is around 0.09. These characteristics are consistent with the left panel of Figure

1. The right panel of Figure 1 shows that it is not unlikely that x1�x2 is substantially larger

than x2 � x3; where x1; x2; and x3 have joint Tracy-Widom distribution. This observation

suggests that ad hoc methods of the determination of the number of factors based on visual

inspection of the eigenvalues of the sample covariance matrix, and their separation into a

group of �large�and a group of �small�eigenvalues may be misleading. It may happen, for

example, that even though data have no factors, the �rst eigenvalue of the sample covariance

matrix is substantially larger than the second one, while the second eigenvalue is not much

di¤erent from the third one.

Table 1 contains approximate percentiles of the distributions of random variables

(x1 � xj�1) = (xj�1 � xj) for j = 3; 4; :::; 10; where x1; :::; xj have the joint Tracy-Widom

distribution. The approximate percentiles were obtained as the Jackknifed sectioning es-

2They denote the distribution as F2 to distinguish it from the distributions F1 and F4 that correspond
to the limiting distributions of the largest eigenvalues of matrices from the so called Gaussian Orthogonal
and Simplectic Ensenbles, respectively.
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Figure 1: Left panel: a univariate Tracy-Widom distribution. Right panel: 30,000 draws
from the joint distribution of x1�x2 and x2�x3; where x1; x2; x3 have the joint Tracy-Widom
distribution
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j = kmax � k + 2
3 4 5 6 7 8 9 10

99% 8:81
(7:77;9:84)

15:10
(13:93;16:28)

21:30
(19:38;23:22)

28:10
(23:73;32:47)

34:61
(30:26;38:96)

42:57
(37:87;47:28)

45:84
(43:54;48:13)

54:58
(51:97;57:17)

95% 4:52
(4:43;4:61)

8:08
(7:89;8:28)

11:90
(11:67;12:14)

15:66
(15:42;15:90)

19:09
(18:69;19:49)

22:90
(22:18;23:61)

26:72
(26:22;27:21)

30:54
(30:03;31:04)

90% 3:33
(3:28;3:38)

6:18
(6:09;6:27)

9:02
(8:91;9:12)

12:04
(11:81;12:27)

14:72
(14:62;14:83)

17:81
(17:45;18:18)

20:75
(20:48;21:02)

23:68
(23:41;23:96)

Table 1: Approximate percentiles of the test statistics for the tests of k factors vs. an
alternative of more than k but less than kmax factors

timator (reference here) of the corresponding percentiles of the distribution of the ratio

(y1 � yj�1) = (yj�1 � yj) ; where y1; :::; yj are the �rst j eigenvalues of 1000 � 1000 matrices

from the Gaussian Unitary Ensemble. The sectioning estimator uses 5 equal-length sections

of 10,000 i.i.d. draws of (y1 � yj�1) = (yj�1 � yj) : The 90% con�dence intervals for the true

percentiles of the distribution of (y1 � yj�1) = (yj�1 � yj) are given in the parenthesis.

The con�dence intervals reported in Table 1 underestimate the uncertainty about the

true percentiles of the asymptotic distribution of our test statistics because y1; :::; yj are

distributed according the joint Tracy-Widom law only asymptotically, as the dimensionality

of the matrix of which yi�s are eigenvalues increases to in�nity. We hope that the amount of

the additional uncertainty due to the fact that we used 1000�1000 matrices to simulate yi�s

is small and do not try to improve the uncertainty estimates. Our hope is supported by El

Karoui�s (2006a) �nding that the cumulative distribution function of y1 converges to that of

the univariate Tracy-Widom law at the very fast rate of n�2=3; where n is the dimensionality

of the corresponding matrix:

Table 1 can be used to �nd critical values of our test that the number of factors is k

vs. an alternative that it is more than k but less than kmax + 1: According to Theorem 3,

to determine, say, 5% critical value of the test, we need to consult Table 1 and �nd the

95-th percentile of the distribution of (x1 � xj�1) = (xj�1 � xj) ; where j = kmax � k + 2: For

example, the 5% critical value of our test of the hypothesis that there are 3 factors vs. an

alternative that there are more than 3 factors but less than 7 factors is equal to 11.90.

To study the �nite sample properties of our test, we simulated 1000 data sets having
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kmax
4 5 6 7 8 9 10 11

99% 0:008 0:010 0:011 0:009 0:012 0:011 0:008 0:013
95% 0:044 0:058 0:050 0:056 0:048 0:058 0:053 0:070
90% 0:090 0:112 0:111 0:102 0:097 0:103 0:125 0:126

Table 2: Empirical size of the tests of 3 factors vs. di¤erent alternatives, n=T=100

factor structure X = �F + e; where � is an n� r matrix with i.i.d. standard normal entries,

F is a r � ~T matrix with standard normal entries (hence, the true number of factors is r),

and e is an n � ~T matrix with i.i.d. N (0;�) columns, where �ij = �ji�jj: We considered

three di¤erent choices of n and ~T :
�
n; ~T

�
= (100; 200) ; (50; 100) ; and (25; 50) ; ten di¤erent

choices of � : � = 0; 0:1; 0:2; :::; 0:9; and nine di¤erent choices of r : r = 3; 4; :::; 11:.To create

complex-valued data sets we added the �rst ~T=2 columns of X and
p
�1 times the last ~T=2

columns ofX: Hence, the dimensionality of our complex data sets were n�T; where T = ~T=2:

Using the simulated data we tested a hypothesis that there are 3 factors vs. alternatives

that there are more than 3, but less than 5, 6,..., 12 factors.

Table 2 reports the empirical size of the performed tests for n = 100; ~T = 200; and � = 0.

The last 3 rows of the table correspond to the tests with theoretical size equal to 1%, 5%,

and 10%. Di¤erent columns of the table correspond to the tests that share the null of 3

factors but have di¤erent alternatives indexed by kmax: We see that the size distortions due

to the small sample size are small.

Figure 2 shows contour plots of the empirical size and power of our tests (with theoretical

size 5%) for di¤erent choices of � and
�
n; ~T

�
: The contour plots are drawn in the space of �

(horizontal axis) and kmax�1 (vertical axis). The left panel of Figure 2 shows the tests�size,

and the right panel shows the tests�power when the true number of factors is equal to kmax:

The �rst row of the �gure corresponds to the sample size n = 100; ~T = 200; the second row

corresponds to n = 50; ~T = 100; and the third row corresponds to n = 25; ~T = 50: We see

that the size of our tests deteriorates when the amount of dependence in the idiosyncratic

terms rises. This is especially noticeable for tests corresponding to large kmax and for n = 25:
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Figure 2: Contour plots of the empirical size and power of the tests of 3 factors vs. alter-
natives of less than kmax + 1 factors. Horizontal axis: �: Vertical axis: kmax � 1: Left panel:
size. Right panel: power when the true number of fators is kmax: First row: n = T = 100;
second row: n = T = 50; third row: n = T = 25:

For n � 50 and kmax = 4; the size distortions are small for all �: For n � 50 and relatively

large kmax; the size distortions are larger. The power of the tests is very good for n � 50

and virtually all � and kmax; but becomes small for n = 25; large �; and small kmax.

The fact that the power of our test deteriorates as the amount of the idiosyncratic de-

pendence rises and the sample size falls accords with the following intuition. When the true

number of factors is kmax; the eigenvalue 
kmax+1 measures the largest contribution of the

idiosyncratic terms into the data�s variance. As the amount of the dependence in the idio-

syncratic terms rises, this contribution increases so that it may become comparable to the

factors�shares of the data�s variance measured by 
1; :::; 
kmax : Furthermore, since factors
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are common to all idiosyncratic units, their share in the data�s variance rises proportionally

to the number of the cross-sectional units. Therefore, eigenvalues 
1; :::; 
kmax would be rel-

atively small when the sample size is small and the gap between 
k and 
kmax+1 can become

small even for relatively small amount of the idiosyncratic dependence. Hence, for a large

amount of the idiosyncratic dependence or for small sample sizes, the numerator of our test

statistics
�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
may become relatively small even when the

true number of factors is kmax. This explains deterioration of the power of our test when the

amount of the idiosyncratic dependence rises or the sample size falls.

To check the robustness of our test to violations of Gaussianity and time independence of

the idiosyncratic terms, we perform the following three experiments. First, we use an AR(1)

process ei;t = �ei�1;t +"it; where "it are i.i.d. random variables having Student�s t distribution

with 5 degrees of freedom,3 to generate relatively heavy-tailed idiosyncratic terms. Second,

we use the same AR(1) process but assume that "it are i.i.d. random variables having �2(1)

distribution centered so that its mean is equal to zero. Hence, in the second experiment

the idiosyncratic terms are skewed to the right. Finally, we simulate idiosyncratic terms

that satisfy a version of the constant conditional correlation multivariate GARCH model

of Bollerslev (1990): ei;t =
p
hi;tui;t; ui;t = �ui�1;t +"it; "i;t are i.i.d. N (0; 1� �2) ; and

hit = 0:1 + 0:8hi;t�1 + 0:1u
2
i;t�1: In the �rst two experiments, we simulate data using the

idiosyncratic terms after normalizing them so that they have unit sample variance. In the

last experiment, the theoretical unconditional variance of eit is equal to 1, so we do not

normalize the idiosyncratic terms. An equivalent of Figure 2 for the simulated data looks

very similar to Figure 2 for all three experiments and it is not reported here. Instead, Figure

3 reports the size and the power of the test of the null of 3 factors vs. the alternative that

the number of factors is 4 for the case N = 50; ~T = 100.

The left panel of Figure 3 shows the size of the test and the right panel shows the

3We chose to consider Student�s t distribution with 5 degrees of freedom because we wanted the distrib-
ution to have 4 moments, which is a necessary condition for many Large Random Matrix theory results to
hold (see Bai, 1999).
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Figure 3: Size and power of our test of 3 factors vs. 4 factors. Left panel: size. Right panel:
power. Horizontal axis: �: N = 50; ~T = 100: Solid line: no violations of the assumptions.
Dashed line: multivarite GARCH model for the idiosyncratic terms. Dash-dot line: skewed
idiosyncratic terms. Dotted line: heavy tails.
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power. The solid line corresponds to the benchmark simulations when no assumptions of

the paper were violated. The dashed line corresponds to the idiosyncratic terms satisfying

the multivariate GARCH model. The dash-dot line corresponds to the idiosyncratic terms

heavily skewed to the right. The dotted line corresponds to the idiosyncratic terms which

have heavy tails. We see that the small sample properties of our test are reasonably robust

to di¤erent violations of our assumptions. The worst distortion of the size and the power

happens when heavy tails are assumed for the idiosyncratic process. However, the distortions

do not become prohibitively large until the amount of the cross-sectional correlation in the

idiosyncratic terms measured by � becomes as large as 0.7 even in the heavy-tail case.

Our next task is to compare the �nite sample properties of our test and that proposed

by Connor and Korajczyk (1993). The procedure of the Connor-Korajczyk test of a null of

k factors vs. an alternative of k+1 factors is as follows. First, a k-factor model and a k+1-

factor model are estimated from the data, say, by principle components estimator. Then,

the average over the cross-sectional units or the squared residuals for each of the models and

each time period are obtained. Let us denote these averages as �1;t and �2;t; where the �rst

subscript is equal to 1 if the average corresponds to the k-factor model and it is equal to 2 if

the average corresponds to the k + 1-factor model. After that, a vector � with components

�1;2��1 � �2;2� ; � = 1; :::; T=2 is formed. Connor and Korajzcyk (1993) show that, under

the null, when n tends to in�nity and T remains �xed, the asymptotic joint distribution of

the components of � is zero mean Gaussian with some unspeci�ed covariance matrix. In

contrast, under the alternative, we would expect the residuals from the k+1-factor model to

be much smaller than those from the k-factor model. Therefore, the components of � should

be large. Hence, Connor and Korajzcyk propose as their test statistics a ratio of the mean

of the components of � and the heteroskedasticity and autocorrelation robust estimate of

its standard error. Under the null, such a ratio should be asymptotically distributed as a

standard normal random variable as �rst n goes to in�nity and then T goes to in�nity.

We implemented the Connor-Korajzcyk test of 3 factors relative to the alternative of 4
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factors using the same 1000 simulations of the real data that we used to study the �nite

sample properties of our test. We focused on those simulations for which the true number

of factors equals 3 or 4. Figure 4 shows the size and the power of our test (thick lines)

and that of the Connor-Korajzcyk test (thin lines) for di¤erent amounts of the idiosyncratic

dependence. The left panel of the �gure shows the size and the right panel of the �gure shows

the power of the tests. The solid lines correspond to the sample size n = 100; ~T = 200; the

solid lines with dot markers on them correspond to the sample size n = 50; ~T = 100; and

the dashed lines correspond to the smallest sample size n = 25; ~T = 50: We see that the

Connor-Korajzcyk test has much too large a size (the theoretical size is equal to 5%) for

all � (horizontal axis). The size of the test becomes extremely distorted even for moderate

amounts of the idiosyncratic dependence. The empirical size of our test behaves strikingly

better than that of the Connor-Korajzcyk test. The power of both tests is very good for small

amounts of the idiosyncratic dependence. For relatively large amounts of the idiosyncratic

dependence and for relatively small sample sizes, the power of our test becomes much worse

than that of the Connor-Korajzcyk test. However, given the huge size distortions of the

latter, such a power advantage cannot exploited. Overall, the properties of our test are

much better than those of the Connor-Korajzcyk at least in our Monte Carlo experiments.

Before we turn to an application of our test, we would like formulate a conjecture which

is an analog Theorem 1 for the case of real data.

Conjecture 1: Assume that the columns of the matrix of idiosyncratic terms e(n) are

multivariate real random variables with covariance matrix �:Let Assumptions 1 and 2 hold.

Then, as n and T go to in�nity so that n=T ! b; for any �nite positive integer j; the limiting

joint distribution of ~�1; :::; ~�j is equal to the limiting joint distribution of T 2=3 (di � 2) ; i =

1; :::; j; where di is the i-th largest eigenvalue of a matrix from the Gaussian Orthogonal

Ensemble described by Tracy and Widom (1996) (denoted as TW1)..

Conjecture 1 has been supported by numerical simulations in El Karoui (2006). If the

conjecture is correct, then we have:
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Figure 4: Empirical size and power of our test of 3 vs. 4 factors (thick lines) and the Connor-
Korajzcyk test of 3 vs. 4 factors (thin lines). Left panel: size. Right panel: power. Solid
lines: n = 100; ~T = 200: Solid lines with dot markers: n = 50; ~T = 100: Dashed lines:
n = 25; ~T = 50: Horizontla axis: �:
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j = kmax � k + 2
3 4 5 6 7 8 9 10

99% 16:56
(14:79;18:33)

28:75
(25:97;31:53)

41:57
(36:02;47:12)

55:07
(48:49;61:65)

67:53
(61:28;73:78)

79:13
(72:87;85:40)

91:90
(74:13;109:67)

106:01
(89:03;122:99)

95% 6:89
(6:64;71:5)

12:41
(12:07;12:75)

18:16
(17:49;18:83)

23:99
(23:26;24:73)

29:41
(28:33;30:50)

35:05
(34:30;35:79)

39:89
(38:27;41:52)

47:35
(45:49;49:21)

90% 4:54
(4:45;4:63)

8:53
(8:44;8:62)

12:46
(12:13;12:78)

16:40
(16:18;16:62)

20:29
(20:03;20:55)

24:34
(23:98;24:71)

27:42
(26:37;28:46)

32:62
(31:87;33:37)

Table 3: Approximate percentiles of the test statistics for the tests of k factors vs. an
alternative of more than k but less than kmax factors. Real data.

Conjecture 2. Assume that the columns of the matrix of idiosyncratic terms e(n)

are multivariate real random variables with covariance matrix �:Let Assumptions 1 and

2 hold. Then, if the true number of factors is equal to k; the distribution of the ratio�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
converges to the distribution of

(x1 � xkmax�k+1) = (xkmax�k+1 � xkmax�k+2), where x1; :::; xj are random variables with the Tracy-

Widom (TW1) joint distribution. The convergence takes place as n and T go to in�nity so

that n=T ! b: In contrast, when the true number of factors is larger than k but smaller than

kmax + 1; the ratio
�

k+1 � 
kmax+1

�
=
�

kmax+1 � 
kmax+2

�
diverges in probability to in�nity.

Table 3 below is the analog of Table 1 for the test based on Conjecture 2.

4 The number of factors in asset returns

As an application of our test, we would like to test di¤erent hypotheses about the number

of pervasive factors driving stock returns. There is a large amount of controversy about

this number in the literature. For example, Connor and Korajcyk (1993) �nd evidence for

between one and six pervasive factors in the stock returns. Trzcinka (1986) �nds some

support to the existence of �ve pervasive factors. Five seems also to be a preferred number

for Roll and Ross (1980) and Reinganum (1981). A study by Brown and Weinstein (1983)

also suggested that the number of factors is unlikely to be greater than �ve:4 Huang and Jo

(1995), Bai and Ng (2002), and Onatski (2005) identify only two common factors

4Dhrymes, Friend, and Gultekin (1984) �nd that the estimated number of factors grows with the sample
size. However, their setting was the classical factor model as opposed to the approximate factor model.
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To test hypotheses about the number of factors in stock returns we use CRSP data on

monthly returns of 171 company for a period from January 1960 to December 2005. Our

data set includes those and only those companies for which CRSP provides monthly holding

period return data for all months in the studied time interval. To compute the excess returns

we used monthly returns on 6-month Treasury bills provided by the Board of Governors of

the Federal Reserve System.

The cross-sectional dimensionality of our data is n = 171; and the time series dimension-

ality is ~T = 552: To get a complex valued data set, we divide the real-valued data set into

two periods: the �rst containing all observations from January 1960 to December 1982, and

the second containing all observations from January 1983 to December 2005. Then we add

the data from the �rst time period and square root from -1 times the data from the second

period. The dimensionality of the obtained complex-valued data set is n = 171 and T = 276:

Using the obtained data, we test hypotheses that the number of factors is 0,1,...,7 vs.

alternatives that the number of factors is more than the null-hypothesis number but no more

than up to 8 factors. the resulting test statistics are reported in Table 4. The numbers in

parentheses given below the values of the test statistics are approximate p-values of the test.

The approximate p-values were computed as the proportion of 30,000 simulated draws from

the null distribution that fall above the corresponding test statistics.

We see that the null hypothesis of no factors vs. any of the alternatives of the form:

positive number of factors no larger than kmax is overwhelmingly rejected by the data. The

null of one factor vs. more factors is rejected at 5% level for all corresponding alternatives

except the alternative that the number of factors is larger than 1 but no larger than 4. The

null of 2 factors is not rejected at 5% level for all corresponding alternatives except the

alternative that the number of factors is more than 2 but no larger than 5. The situation is

the same for the null of 3 and 4 factors. The nulls of 5, 6, and 7 factors are not rejected by

the data even at at 29% level.

To interpret these results it is useful to analyze the largest eigenvalues of the sample
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kmax H0 number of factors
0 1 2 3 4 5 6 7

1 9:72
(0:008)

2 75:19
(0:000)

7:01
(0:012)

3 126:71
(0:000)

13:33
(0:010)

1:66
(0:286)

4 46:88
(0:002)

5:26
(0:279)

0:98
(0:944)

0:37
(0:923)

5 592:27
(0:000)

77:44
(0:000)

24:46
(0:005)

16:91
(0:004)

12:37
(0:002)

6 204:54
(0:000)

27:04
(0:016)

8:78
(0:155)

6:18
(0:171)

4:61
(0:132)

0:34
(0:928)

7 257:62
(0:000)

35:15
(0:011)

12:57
(0:121)

8:99
(0:138)

7:03
(0:120)

1:69
(0:682)

1:25
(0:401)

8 349:00
(0:000)

48:78
(0:007)

17:89
(0:072)

13:49
(0:087)

10:84
(0:080)

3:62
(0:449)

3:04
(0:295)

1:35
(0:360)

Table 4: Value of test statistics and approximate p-values for the tests of the number of
factors in the second row vs. alternative of more factors but less than or equal to the
number in the �rst column

covariance matrix of the data. Note that the eigenvalues can be interpreted as reductions

in the mean square error which result from using an extra principal component to model

systematic part of the data. The eigenvalues turned out to be (in percentage units relative

to the largest eigenvalue):

100:00; 18:40; 10:00; 8:80; 8:09; 6:12; 5:96; 5:51; 5:14; 4:87; etc.

The rejection of the null of no factors means that the gap between the explanatory power of

the �rst principal component and any consequent principal components is too large relative

to the gaps between the explanatory power of more distant components. It is too large in the

sense that such a gap is not consistent with the null that all principal components, including

the �rst one, represent just idiosyncratic in�uences. The �rst principal component must,

therefore, contain a systematic or pervasive in�uence on the cross-sectional units. Similarly,

the gap between the explanatory power of the second principal component and virtually all

consequent principal components is too large (in relative terms) to be consistent with the

idiosyncratic nature of the second component.
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As to the nulls of 2, 3 and 4 factors, they are rejected at 5% level only vs. an alternative of

no more than 5 factors. Technically, this happens because the gaps between the explanatory

power of, say, the second principal component and that of the 6th, 7th, 8th, and 9th principal

components do not seem large (at 5% level) relative to all gaps but the gap between the

explanatory power of the 6th and the 7th components. An important question arises whether

we should consider the closeness of the 6th and 7th eigenvalues as a �uke in the data,

and, therefore, �accept� the null of only two factors, or we should interpret our results as

suggesting that there are likely to be �ve factors.

We favor the latter interpretation. It is because, although we cannot reject the nulls of

2, 3 and 4 factors vs. alternatives of more factors but less than 7, 8, and 9 factors at 5%

level, we reject these nulls vs. the alternatives at about 17% level, which is not a high level.

Had the relative closeness of the 6th and 7th eigenvalues been just a �uke, we would not

expect the p-values of the tests against the alternatives of less than 7, 8, and 9 factors to

be consistently �at the low end�. Note in this context, that the nulls of 5, 6 and 7 factors

cannot be rejected with the corresponding p-values being �everywhere� in the range from

0.295 to 0.928.

To check our �nding that there likely be 5 factors driving the stock returns, we run

the real data tests (which are conjectured but not proven to be correct procedures) on the

untransformed real data. We get very similar results to those reported in Table 4. To check

robustness of the �nding to the choice of the data, we run our complex-data test on the CRSP

data for 1148 stocks traded on the NYSE, AMEX, and NASDAQ during the period from

January 1983 to December 2003, which we use in our previous work (see Onatski (2005)).

For these data, the nulls of zero and one factors are, again, overwhelmingly rejected. The

nulls of 2, 3, and 4 factors are rejected (at 5% level) again only vs. the alternatives of no

more than 5 factors. This time, however, the p-values corresponding the alternatives of less

than 7, 8, and 9 factors are not consistently �small�. They �span�a range between 0.225 and

0.885. Moreover, when we run the real-data test on the new data, we still overwhelmingly
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reject hypotheses of zero and one factors, but no longer reject the hypotheses of 2, 3, etc.

factors at any reasonable critical levels against any alternatives (the smallest p-value being

0.368 for the test of two factors vs. the alternative of more than two but no more than four

factors).

The partial robustness of the our �nding that there likely be 5 factors in the stock returns

may be due either to the fact that much more stocks were included into the second data

set, or to a possibility that the number of factors driving the stock returns decreased over

time so that the second data set which spans more recent data period does not support the

5-factor hypothesis as strongly as the �rst data set. To check the latter possibility, we split

the original data set into two periods and then run our tests separately for the complex data

constructed from the �rst and the second periods. For both periods the nulls of zero and one

factors are rejected, as usual. However, the nulls of 2 and 3 factors are now rejected at about

5% level against two alternatives: no more than 4 factors and no more than 7 factors for both

time periods. The null of 4 factors is not rejected for any conventional critical levels against

any of the studied alternatives for both time periods. Hence, the 5-factor phenomenon does

not hold in both subsamples.

To summarize, we �nd that our tests overwhelmingly reject the hypotheses that there

are either no factors or only one factor driving stock returns. There is some evidence that

the number of factors may be �ve, but this evidence is only partially robust with respect

to the choice of the stocks to be included to the data set and with respect to the di¤erent

choice of time periods.

5 Conclusion

The new test shows good �nite sample properties and uses simultaneous large n- large T

asymptotics. It strongly outperforms the Connor-Korajczyk (1993) test for a variety of �nite

sample situations. The biggest weakness of the test is that it is developed for the situation
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when the data are Gaussian and independent over time. The Monte Carlo experiments

show, however, that the test is robust with respect to violations of the Gaussianity and the

independence assumptions. We apply the test to test di¤erent hypotheses about the number

of pervasive factors driving US stock returns. Our test rejects the nulls of zero or only one

factors against alternatives of more factors at 5% levels. We also can reject the nulls of 2, 3

and 4 factors at 5% level at least against some alternatives. We cannot reject the null of 5

factors against alternatives of more factors at 5% level. The 5-factor �nding turns out to be

only partially robust with respect to di¤erent choices of the time interval and stocks to be

included into the dataset. The rejection of zero and 1 factor hypotheses is very robust.

6 Appendix

Proof of Theorem 2:

We will �rst formulate and prove a lemma, which our proof of Theorem 2 will be based

upon. Let A(1) be a symmetric non-negative de�nite n�n matrix and A be an n�n diagonal

matrix of the form A = diag (a1; :::; ak; 0; 0; :::; 0) ; a1 � a2 � ::: � ak > 0: Note that A and

A(1) can be interpreted as matrix representations of linear operators acting in the space Rn:

For any linear bounded operator on Rn; B; we de�ne its norm as kBk = (max eval (B�B))1=2 ;

which is the operator norm induced by the standard Euclidean norm of vectors in Rn: We

denote the j-th largest by absolute value eigenvalue of B as �j(B); and the j-th largest by

absolute value eigenvalue of B restricted to its invariant subspaceM as �i(BjM). LetM0 be

the invariant subspace of A corresponding to the eigenvalue 0 and let P0 be the orthogonal

projection on M0: We have the following

Lemma 1: Let A ({) = A + {A(1) and let r0 = ak=2: For real { such that 0 < { <

r0=


A(1)

 we have:

���k+1 (A ({))� {�1 �P0A(1)P0jM0

��� � 3r0 j{j2


A(1)

2

(r0 � j{j kA(1)k)2
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Proof of Lemma 1: Let R (z;{) = (A ({)� zIn)�1 be the resolvent of A ({) de�ned

for all complex z not equal to any of the eigenvalues of A ({) : Then R (z; 0) is the resolvent

of A: We will denote R (z; 0) as R(z): Let � be a positively oriented circle in the complex

plain with center at 0 and radius r0: According to Kato (1980), pages 67-68, R (z;{) can be

expanded as R (z;{) = R (z) +
X1

j=1
(�{)j R (z)

�
A(1)R (z)

�j
; where the sum on the right

hand side is uniformly convergent on � for j{j < minz2�
�

A(1)

 kR (z)k��1 = r0=



A(1)

 ;
where the last equality follows from the fact that

kR (z)k = r�10 (2)

for any z 2 �: Furthermore, for j{j < r0=


A(1)

 ; there are exactly n�k eigenvalues (counted

as many times as their algebraic multiplicity) inside the circle �:We will call these eigenvalues

0-group eigenvalues and denote them as a(1) ({) � ::: � a(n�k) ({) :

Denote the direct sum of the invariant subspaces of A ({) corresponding to the 0-group

eigenvalues asM0({). Let P0 be the orthogonal projection onM0 and P0 ({) be a projection

on M0({) de�ned as P0 ({) = � 1
2�i

R
�
R (z;{) dz: We have:

P0 ({) = P0 �
1

2�i

1X
j=1

(�{)j
Z
�

R (z)
�
A(1)R(z)

�j
dz (3)

where the series absolutely converges for j{j < r0=


A(1)

 (see Kato (1980), pages 75-76).

Equations (3) and (2) imply, that

kP0 ({)� P0k �
1X
j=1

j{jj


A(1)

j
rj0

=
j{j


A(1)



r0 � j{j kA(1)k
: (4)

Now consider an operator ~A(1) ({) � 1
{A ({)P0 ({) : Since M0 ({) is the invariant sub-

space of A ({) corresponding to the 0-group eigenvalues we have:

�1

�
~A(1) ({) jM0 ({)

�
=
1

{
a(1) ({) : (5)
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As explained in Kato (1980), see his formulae 2.17, 2.37, and 2.38 on pages 77 and 81,

~A(1) ({) =
1

2�i

1X
n=0

(�{)n
Z
�

R (z)
�
A(1)R (z)

�n+1
zdz; (6)

~A(1) (0) � ~A(1) = P0A
(1)P0; (7)

where the series is absolutely convergent for j{j < r0=


A(1)

 : Equations (6) and (7) imply

that 


 ~A(1) ({)


 � r0 1X
n=0

j{jn


A(1)

n+1
rn+10

=
r0


A(1)



r0 � j{j kA(1)k
(8)

and 


 ~A(1) ({)� ~A(1)



 � r0 1X

n=1

j{jn


A(1)

n+1
rn+10

=
j{j


A(1)

2

r0 � j{j kA(1)k
: (9)

Consider the discrepancy between �m
�
~A(1) ({) jM0 ({)

�
and �m

�
~A(1)jM0

�
for m =

1; :::; n� k: For real positive {; we have:

����m � ~A(1) ({) jM0 ({)
�
� �m

�
~A(1)jM0

���� � sup
i=1;:::;n

����i �P0 ({) ~A(1) ({)P0 ({)�� �i � ~A(1)���� :
(10)

Indeed, clearly,M0 ({) is an invariant subspace of P0 ({) ~A(1) ({)P0 ({) and �m
�
~A(1) ({) jM0 ({)

�
;

m = 1; :::; n� k are eigenvalues of P0 ({) ~A(1) ({)P0 ({) : Note that since we assume that {

is positive and since, by assumption of the lemma A and A(1) are symmetric non-negative

de�nite, eigenvalues �m
�
~A(1) ({) jM0 ({)

�
; m = 1; :::; n � k are non-negative. The rest

of the eigenvalues of P0 ({) ~A(1) ({)P0 ({) must be zero because M?
0 ({) is the null-space

of P0 ({) ~A(1) ({)P0 ({) : Similarly, (7) implies that �m
�
~A(1)jM0

�
; m = 1; :::; n � k; are

non-negative eigenvalues of ~A(1) and the rest of the eigenvalues are zero. To summarize,

�m

�
~A(1) ({) jM0 ({)

�
= �m

�
P0 ({) ~A(1) ({)P0 ({)

�
and �m

�
~A(1)jM0

�
= �m

�
~A(1)
�
: These

two equalities imply (10).

Inequality (10) and Weyl�s inequalities (see Theorem 4.3.1 in Horn and Johnson (1985))
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imply that

����m � ~A(1) ({) jM0 ({)
�
� �m

�
~A(1)jM0

���� � 


P0 ({) ~A(1) ({)P0 ({)� ~A(1)



 :

We have:




P0 ({) ~A(1) ({)P0 ({)� ~A(1)



 �




(P0 ({)� P0) ~A(1) ({)P0 ({)


 (11)

+



P0 ~A(1) ({) (P0 ({)� P0)




+



P0 � ~A(1) ({)� ~A(1)

�
P0





Note that, for real {; P0 and P0 ({) are orthogonal projections because A and A ({) are

self-adjoint. Therefore,

kP0k � 1; and kP0 ({)k � 1: (12)

Using (4), (8), (9), and (12) to estimate right hand side of (11), we get:




P0 ({) ~A(1) ({)P0 ({)� ~A(1)



 � �2r0 + r0 � j{j

A(1)

� j{j



A(1)

2
(r0 � j{j kA(1)k)2

:

Finally, combining the latter inequality with (10) and (5) and recalling that ~A(1) = PA(1)P

so that �m
�
~A(1)jM0

�
= �m

�
PA(1)P jM0

�
; we get the statement of Lemma 1.�

Now, we are ready to prove Theorem 2. Let us assume that the T �r matrix of factors F

has all but the �rst r rows zero. There is no loss of generality in such an assumption because

we can always �nd a unitary matrix Q such that QF has the above form. Multiplying the

data matrix X = �F 0 + e from the right by Q0 does not change neither the eigenvalues of

XX 0=T nor the joint distribution of the elements of e: The latter fact follows from the complex

Gaussianity of e; from the mutual independence of its columns, and from the independence

of e from F:5

5Our assumption of the independence of F and e is used only at this point in the paper. It is possible to
relax the assumption at the cost of more complicated technical proofs.
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Denote the matrix that consists of the nonzero rows of F as ~F ; the matrix of the �rst

r columns of e as e1; and the matrix of the last T � r columns of e as e2: Then we can

decompose XX 0=T into a sum of two terms:
�
� ~F 0 + e1

��
� ~F 0 + e1

�0
=T and e2e02=T: Now,

let R0AR be a spectral decomposition of the �rst term. Since the �rst term has rank r;

diagonal matrix A can be chosen so that it has all but �rst r nonzero diagonal elements. We

will denote these elements as a1 � a2 � ::: � ar > 0: Note that Assumptions 1 and 2 imply

that lim inf ar=n � 2r0 > 0 as n and T go to in�nity so that n=T ! b:

Let us denote R � e2 as ~e2: Note that ~e2 has complex normal columns with Hermitian

covariance matrix R�R0: Further, let us denote the matrix of the �rst r rows of ~e2 as

~e21; and the matrix of the last n � r rows of ~e2 as ~e22: Then, we have: RXX 0R0=nT =

A=n+ (1=n) (~e2~e
0
2=T ); and therefore, by Lemma 1:

j�r+i (RXX 0R0=nT )� (1=n)�i (~e22~e022=T )j � 3r0
(1=n)2 k~e22~e022=Tk

2

(r0 � (1=n) k~e22~e022=Tk)
2 : (13)

Now, Theorem 1 of El Karoui (2006) implies that k~e22~e022=Tk � �1 (~e22~e022=T ) converges in

probability to a �nite number. Therefore, (13) implies that j�r+i (XX 0=T )� �i (~e22~e022=T )j =

Op (1=n) : It remains to show that T 2=3��1 (�i (~e22~e022=T )� �) ; i = 1; :::; j has the Tracy-

Widom asymptotic joint distribution. Indeed, in such a case, since the di¤erence between

�i (~e22~e
0
22=T ) and �r+i (XX

0=T ) is of order 1=n and n is asymptotically proportional to T;

the random variables T 2=3��1 (�r+i (XX 0=T )� �) ; i = 1; :::; j will have the same asymptotic

joint distribution as T 2=3��1 (�i (~e22~e022=T )� �) ; i = 1; :::; j:

To prove that T 2=3��1 (�i (~e22~e022=T )� �) ; i = 1; :::; j has the Tracy-Widom asymptotic

joint distribution, we will use Theorem 1 of El Karoui (2006). By the theorem (check

conditions), (T � r)2=3 ~��1 (�i (~e22~e022= (T � r))� ~�) ; i = 1; :::; j has the Tracy-Widom as-

ymptotic distribution, where ~�; ~�; and ~c are de�ned relative to the covariance matrix ~�;

which consists of the intersection of the last n � r columns and rows of R�R0; in the

same way as �; �; and c are de�ned relative to �: Since the spectral distribution ~H of
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matrix ~� is asymptotically equivalent to the spectral distribution H of matrix �; vari-

ables (T � r)2=3 ~��1 (�i (~e22~e022= (T � r))� ~�) ; i = 1; :::; j and T 2=3��1 (�i (~e22~e022=T )� �) ;

i = 1; :::; j have the same asymptotic distribution.�
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