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Abstract

The objective of this paper is to identify which parameters of a structural model are

stable over time. Existing works only test whether a given subset of the parameters is

stable over time, but cannot be used to find which subset of parameters is stable; our

procedure instead is informative regarding the nature of instabilities affecting macro-

economic models, and sheds light on the economic interpretation and causes of such

instabilities. It provides clear guidelines on which parts of the model are reliable for

policy analysis and which are possibly misspecified. Our empirical findings mainly sug-

gest that instabilities are concentrated in Euler and IS equations and monetary policy

reaction functions, but that the Phillips curve is stable. Such results offer important

insights to guide the future theoretical development of macroeconomic models.
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1 Introduction

The objective of this paper is to identify which parameters of a structural model are stable

over time. This is an important question, as one of the main advantages of structural models

is to offer a framework to qualitatively evaluate the effects of economic policies without being

subject to the Lucas’ critique. However, such experiments make sense only if the parameters

of the model are constant over time: parameter instabilities are a signal of possible model

misspecification, which remains a concern for researchers estimating Dynamic Stochastic

General Equilibrium (DSGE) models (see Del Negro, Schorfheide, Smets andWouters, 2004),

and, if neglected, render the structural model untrustworthy to evaluate the consequences

of alternative policies. But, among the components of the rich structure of DSGE models,

which are the components that are stable and which are unstable?1

This paper considers a representative New Keynesian model that has the basic features of

the models now becoming popular in central banks and academia (Ireland, 2007), and asks

the substantive question: "Which parameters are stable?". An answer to this question pro-

vides important information for both empirical and theoretical researchers regarding which

parts of the model rely on stable parameters and which parts don’t. The former are exactly

the features of the model that policy-makers can rely upon when doing policy evaluation,

and the latter are those that could possibly be mis-specified and therefore require further

theoretical modeling efforts. Our empirical results strikingly show that the parameters of

the standard Phillips curve equation are structurally stable, whereas the parameters in the

Euler equation for consumption and those in the monetary policy reaction function are not.

While the fact that the parameters in the monetary policy reaction function are unstable is

well-known, the finding that, in a prototypical structural New Keynesian model parameter

instability also affects the parameters in the Euler and IS equations (and only those) is new.

This provides important and useful guidelines for future research dealing with the issue of

modeling structural macroeconomic models.

Since there are no appropriate econometric techniques to address this issue, another

substantial contribution of this paper is to propose a new methodology for identifying the

subset of structural parameters of a model (or of other aspects of the data) that are stable

among the set of model’s parameters. Our method has the advantage of identifying which

"blocks" of the model contain parameters that are "structurally invariant", and which are

1This question was raised by both Sims (2001) and Stock (2001) in their comment to the Cogley and

Sargent (2001) paper, and eventually addressed by Cogley and Sargent (2007a,b).
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not, and therefore provide directions as to which parts of the structural model should be

modified in order to build a structural model whose deep parameter are time-invariant. Two

such techniques are discussed. One to construct confidence sets of stable parameters, which

we call the CIS ("Confidence Interval for the set of Stable parameters") procedure, and one

to construct a set of parameters that contains the stable ones with probability one, which

we call the ICS procedure ("Information Criterion for the set of Stable parameters"). The

advantage of the CIS procedure relative to the ICS procedure is that it provides researchers

with a set of stable parameters that contains the true set of stable parameters with a pre-

specified probability level. However, with some probability (that is controlled by the size

of the test) it is possible that a parameter is stable and it is not included in the confidence

set of stable parameters. There is nothing worrisome in this, as it is exactly what would

happen in a standard hypothesis testing procedure, where with some pre-specified probability

the null is rejected even if true. We recognize, though, that in some situation this may be

undesirable, and we offer the ICS procedure, which identifies the set of stable parameters with

probability approaching one asymptotically. However, by construction, the ICS procedure

is less powerful than the CIS procedure.

Many researchers have realized the importance of developing techniques to identify with

parameters are time-varying among a set of possible parameters. There is a considerable in-

terest estimating structural macroeconomic models with time-varying parameters (see Clar-

ida, Gali, and Gertler (2000), Owyang and Ramey (2004), Cogley and Sargent (2005), Prim-

iceri (2005), Fernandez-Villaverde and Rubio-Ramirez (2007), and Justiniano and Primiceri

(2007)), in testing for structural breaks in macroeconomic data (see among others Gurkay-

nak et al. (2005), Fernald (2007) and Ireland (2001)), and in interpreting the causes of the

time variation in macroeconomic aggregates (for example, the Great Moderation phenom-

enon) by relating it to parameter changes in the structural model (Stock and Watson (2002,

2003), and Cogley and Sargent (2001, 2005a,b)). In particular, Cogley and Sbordone (2005)

investigate the stability of the estimated parameters of a Phillips curve relationship in the

face of changes elsewhere in the economy, and Ireland (2001) attempts to identify which pa-

rameters have been subject to breaks by applying standard structural break tests to each of

the parameters separately. However, when used repeatedly to test structural change in more

than one subset of parameters, such tests lead to size distortions in the overall procedure.

Fernandez-Villaverde and Rubio-Ramirez (2007) also question whether the parameters of a

representative New Keynesian model are invariant to shifts in momentary policy by allowing

some of the parameters to shift. Again, as pointed out by Cogley (2007), their results are dif-
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ficult to interpret because they evaluate which parameters are unstable by looking at subsets

of such parameters changing “one-at-a-time”.2 Similarly, in the effort of shedding light on

the causes of the Great Moderation, Stock and Watson (2002) allow either the parameters in

the monetary policy reaction function and/or the variance of the shocks to change over time,

while keeping constant the slope of the Phillips curve and the slope of the IS equation. But

what if the latter had changed as well? Estrella and Fuhrer (1999) also attempt to interpret

results of structural breaks in a joint system of New Keynesian equations versus results of

structural breaks in only the monetary policy block by using the “one-at-a-time” approach

criticized by Cogley (2007). The advantage of our procedure is to provide a tool that can

be used by researchers in exactly those situations and does not rely on a “one-at-a-time”,

ad-hoc approach.3

The technique proposed in this paper is related to recent contributions in the structural

break test literature. Andrews (1993), Andrews and Ploberger (1994) and Nyblom (1989)

propose tests for structural breaks in the parameters, but their tests are for a specific null hy-

pothesis on a subset of the parameters. Our paper instead allows the researcher to determine

the subset of parameters that do not have structural breaks. Our paper is also very different

from Bai and Perron (1998), who consider sequential tests for determining the number and

location of structural breaks, because their procedure is applied to identify possibly multiple

breaks in a specific parameter and it is not a quest of which parameters are subject to breaks.

Our procedure is also more distantly related to the literature on sequential model selection

and hypotheses testing, in particular the works by Hansen et al. (2005) and Pantula (1989).4

The paper is organized as follows. The next section provides an overview of the new

techniques that we propose, Sections 3 and 4 present the main empirical results of the

paper, and Section 5 concludes.

2Fernandez-Villaverde and Rubio-Ramirez (2007) allowed only a subset of the parameters at a time to be

time-varying, and Cogley’s (2007) criticism is that it is difficult to interpret their results, as we don’t know

which of the parameters really changed. However, if one tried to allow all the parameters to be time-varying

and repeatedly use structural break tests to identify which parameters are time-varying, one would incur

into size distortions, as discussed above.
3A similar question to the one addressed in this paper is considered by Del Negro and Schorfheide (2007).

They quantify the degree of misspecification of macroeconomic models due to time-varying parameters, and

provide a diagnostic tool that allows researchers to parameterize the discrepancies between theory and data.
4Our procedure is also different from the approach in Berger (1982), who proposes doing separate t-

tests on each parameter in isolation: in our case, under the alternative that another parameter might be

time-varying, the t-test on a single parameter is not consistent.
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2 The econometric procedures

This section presents our econometric procedure to construct a confidence set for the stable

parameters, and compares it with a naive procedure based on discarding parameters when

their individual tests for parameter stability reject the null. We will show that our testing

procedure controls size, is consistent and produces a confidence set of stable parameters with

a pre-specified coverage, whereas the naive procedure leads to size distortions.

2.1 Notation and definitions

Consider a general parametric model with parameters θt = (βt, δ) ∈ Θ ⊆ Rp+q for t = 1, 2, ...,

where βt ∈ B ⊆ Rp and δ ∈ D ⊆ Rq. Let the parameters βt be time-varying, and the

parameters δ be stable. To formalize the problem, let s ∈ {0, 1}p+q denote a parameter
selection vector and θ (s) denotes a subset of θ selected by the selection vector s, where

si denotes the i-th element of such vector.5 We also let s∗ denote the population selection

vector that selects only the constant parameters: θ (s∗) = δ. Note that it is possible that s∗

is the vector of ones, in which case all parameters belong to the stable confidence set, or s∗

is the vector of zeros, in which case none of the parameters belongs to the stable confidence

set. The problem considered in this paper is that it is not known which parameters are time-

varying and which are stable. In other words, s∗ is unknown. We will propose a sequential

procedure that uses sample information to estimate s∗ by an estimator bs ∈ {0, 1}p+q. With
our procedure, the estimator bs will be equal to s∗ with a pre-specified probability level.
Let the observed sample be W = {Wt : 1 ≤ t ≤ T} and TT (W ; s) be a consistent test

statistic for testing the null hypothesis that the parameters θ (s) are constant over time:

H0 (s) : θt (s) = θ (s) versus the alternative that the parameters θ (s) are time-varying; for

example, in the case of a one-time structural break at an unknown fraction of the sample

size [πT ]: HA (s) : θt (s) = θ1 (s) · 1 (t ≤ πT ) + θ2 (s) · 1 (t > πT ), where π ∈ Π ⊂ (0, 1).6

For notational simplicity, we will omit the dependence of the test statistic on the observed

sample, and use TT (s). For example, let ei be the (p+ q) × 1 vector whose i-th element is
one and the other elements are zero, 1(p+q)×1 be the (p+ q)× 1 vector of ones, and 0(p+q)×1

5For example, when p + q = 3, s0 = (0, 1, 0) indicates that the second element of θ is not time-varying

and the first and third elements are time-varying in population.
6Our procedure could also be used in the presence of multiple breaks, along the lines of Bai and Perron

(1998), and in the presence of structural breaks of the random walk type (as we do in the empirical section

below).
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be the (p+ q)×1 vector of zeros. Then, TT (ei) will denote the individual test for testing the
null hypothesis that the i-th parameter in θ, θ (ei), is constant over time, and TT

¡
1(p+q)×1

¢
will denote the joint test for testing the null hypothesis that the all the parameters in θ are

constant. Also, let kα (s) denote the critical value of TT (s), and pv (s) denotes its p-value.

For example, in the aforementioned case of a one-time structural break at an unknown time,

when using Andrews’ (1993) QLR test statistic, kα (s) is the critical value of such test at

level α for testing a number of restrictions equal to the number of nonzero elements in s.

In what follows, we will propose two procedures: the first is to construct a confidence

set for the stable parameters that contains the true set of stable parameters with a pre-

specified probability level, which we call the “CIS procedure”, and the second is a method

to consistently estimate the set of stable parameters, which we call the “ICS procedure”.

2.2 Confidence sets for stable parameters: the CIS procedure

We propose the following recursive procedure: first, test the joint null hypothesis that all

parameters are stable. If the test does not reject, then all the parameters belong to the

confidence set of stable parameters. If it does, calculate the p-values of the individual test

statistics for testing whether each of the parameters are stable. Start by eliminating from the

confidence interval the parameter with the lowest p-value, then test whether the remaining

parameters are jointly stable.7 If they are, then the confidence set of stable parameters

includes such parameters; otherwise, eliminate the parameter with the second lowest p-value

from the set, and continue this procedure until the joint test on the remaining parameters

does not reject stability: this will identify the set of constant parameters. We formalize the

CIS ("Confidence Interval for Stable parameters") procedure in the following Algorithm:

Algorithm 1 (The CIS procedure) Step 0. Initially, let s0 = 1(p+q)×1. Test H
(0)
0 (s0)

against H(0)
A (s0) by using the test TT (s0). If the test does not reject, let bsCIS = s0. If the

test rejects, calculate the vector of test statistics TT (ei) for i = 1, ..., p + q, and order them

such that to their p-values are increasing: pv (e1) ≤ pv (e2) ≤ ... ≤ pv (ep+q) . Without loss

of generality, let e1 identify the parameter with the smallest p-value.8 Continue to step 1.

7Alternative procedures could involve calculating the F-test for every subset of parameters and use that

to choose which parameters to eliminate in the sequential procedure. However, this procedure is more

computationally burdensome, especially when applied to the estimation of DSGE models, so we will not

consider it here.
8Actually, one does not even need to compute p-values: one may simply pick the estimated test statistic
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Step 1. Without loss of generality, let s1 = [0,11×(p+q−1)]0. Test H
(1)
0 (s1) against H

(1)
A (s1)

by using TT (s1). If the test does not reject, let bsCIS = s1. If the test rejects, let e2 identify

the parameter with the second smallest p-value, and continue to step 2.

...

Step j. Without loss of generality„ let sj = [01×j,11×(p+q−j)]0. Test H
(j)
0 (sj) against H

(j)
A (sj)

by using TT (sj). If the test does not reject, let bsCIS = sj. If the test rejects, let ej identify

the parameter with the j-th smallest p-value, and continue to step (j+1).

...

Step (p+q-1). Without loss of generality, let sp+q−1 = [01×(p+q−1), 1]0. Test H
(p+q−1)
0 (sp+q−1)

against H(p+q−1)
A (sp+q−1) by using TT (sp+q−1). If the test does not reject, let bsCIS = sp+q−1.

If the test rejects, let bsCIS = 0(p+q)×1.
Appendix A shows that the algorithm defines a confidence set of stable parameters with

coverage (1− α). Importantly, note that there are size distortions in existing tests for

structural breaks when used repeatedly to test structural change in more than one subsets

of parameters, in the sense that such tests would find a structural break eventually in one

of the parameters with probability approaching one. Proposition (4) in Appendix A shows

that.

2.3 Consistent methods for estimating the set of stable parame-

ters: the ICS procedure

We also consider a procedure that consistently selects the stable parameters (rather than

providing a confidence interval). While an information criterion does not suffer from asymp-

totic size distortions and can be used to consistently estimate the set of stable parameters,

it would be computationally demanding. For example, when there are (p + q) structural

parameters, the standard information criterion procedure requires that the model be esti-

mated 2(p+q) times. Instead we propose a practical procedure to estimate the set of stable

parameters consistently. The idea is to replace the critical values in the CI procedure by

diverging ones. By doing so, it will be more conservative but it will estimate the set of stable

parameters consistently.

Let |s| denote the number of parameters selected by the selection vector s: |s| = Σp+q
i=1 si.

Let νT denote a sequence such that νT → ∞ as T → ∞ and νT = o(T ). This will be the

which is the largest. Because the degrees of freedom for testing each parameter individually are the same,

and therefore the critical values are, the largest test statistic has the smallest p-value.
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basis of our penalty function. Common choices are: BIC-type penalty (for which νT = lnT )

and Hannan-Quinn-type penalty (for which νT = ς ln lnT for ς > 2).9

Algorithm 2 (The ICS procedure ) Step 0. Initially, let s0 = 1(p+q)×1. Test H
(0)
0 (s0)

against H(0)
A (s0) by using the test TT (s0) with critical value |s0|νT . If the test does not

reject, let bsICS = s0. If the test rejects, calculate the vector of test statistics TT (ei) for
i = 1, ..., p + q, and order them such that their p-values are increasing. Without loss of

generality, let e1 identify the parameter with the smallest p-value. Continue to step 1.

Step 1. Let s1 = [0,11×(p+q−1)]0. Test H
(1)
0 (s1) against H

(1)
A (s1) by using TT (s1) with critical

value |s1|νT . If the test does not reject, let bsICS = s1. If the test rejects, let e2 identify the

parameter with the smallest p-value among the parameters associated with s1 and continue

to step 2.

...

Step j. Let sj = [01×j,11×(p+q−j)]
0. Test H(j)

0 (sj) against H
(j)
A (sj) by using TT (sj) with

critical value |sj|νT . If the test does not reject, let bsICS = sj. If the test rejects, let ej
identify the parameter with the smallest p-value among the parameters associated with sj

and continue to step (j+1).

...

Step (p+q-1). Let sp+q−1 = [01×(p+q−1), 1]0. Test H
(p+q−1)
0 (sp+q−1) against H

(p+q−1)
A (sp+q−1)

by using TT (sp+q−1) with critical value νT . If the test does not reject, let bsICS = sp+q−1. If

the test rejects, let bsICS = 0(p+q)×1.
In words, bs identified by Algorithm (1) is the greatest set of parameters for which the

test does not reject the null hypothesis of parameter stability. See Appendix A for a proof

of the consistency of the ICS procedure.

3 Time-variation in a representative New Keynesian

model

We consider a New Keynesian model with the basic features of many recent representative

New Keynesian models. The model is developed in Ireland (2007), and includes a generalized

Taylor rule for monetary policy that allows the central bank’s inflation target to adjust in

9Note that the AIC-type penalty (νT = 2) would result in an inconsistent selection criterion and is ruled

out by our assumptions on νT .
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response to other shocks that hit the economy. This feature is particularly appealing for

our purposes, as it provides an additional way of allowing for time-variation in monetary

policy: since our objective is to construct a confidence set containing the stable parameters,

which may include not only monetary policy parameters but also preference and technology

parameters, we would like our conclusions to be robust to possible misspecification of the

monetary policy rule, including possible time variation in the inflation target of the Central

Bank. The model also allows for a variety of features that have been found to be important

to match the empirical data, namely habit formation, forward-looking price setting, and

adjustment costs. We will refer to this (general) model as the "endogenous inflation target"

model. As special cases, the model includes the "exogenous inflation target" (the case

considered by Clarida, Gali and Gertler (2000), among others, where the Central Bank

inflation target is constant over time) and the "backward looking price setting" model (where

firms set their prices according to a backward looking rule). The log-linearized model is

directly from Ireland (2007) and it is included in Appendix A for reference. The data are

quarterly time series of per-capita GDP in real terms, the GDP price deflator, and the three

month U.S. Treasury bill interest rate from 1959:1 through 2004:2.

Our first analysis focuses on the situation in which there is a single, unanticipated, and

once-and-for-all shift in some of the parameters of the structural model at an unknown

time, and in which there is an immediate convergence to a rational-expectations equilibrium

after the regime change. If the time of the change were known and if we had a strong

suspicion about which parameters could possibly have been affected by the change, we could

re-estimate the model in the two sub-samples and test whether there was a break. The

problem arises because we don’t know which parameters could have been affected by the

break: we have a variety of potential candidates (including monetary policy, preference,

and Phillips curve parameters) and we don’t know which ones were affected by the break.

Although single and once-and-for-all shifts in parameters are an important modeling device,

they are only one way to model time-variation. Another possibility that we will consider

later is a framework in which the parameters change continuously over time, captured by

a random walk type behavior, as considered by Cogley and Sargent (2005), Cogley and

Sbordone (2005), and Primiceri (2005).

We use our procedure to address the long-standing question whether structural parame-

ters are structural. As a representative test for structural break, we use Andrews’ (1993)

QLR test.10 The joint test on all the parameters strongly rejects the null hypothesis of

10Note that his LR-like statistics, eq. (4.5), simply becomes the likelihood ratio test calculated as the
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parameter stability. The estimated time of the break (given by the date associated with

the highest value of the QLR test statistic) is 1980:4. Table 1 shows p-values for the t-tests

for structural breaks on individual parameters. According to the individual tests, for exam-

ple, in the "Endogenous inflation target" model both α and δz are constant. However, as

shown in Proposition (4), such procedure is invalid. Therefore, we proceed by considering

our recursive procedure.

Table 1 also shows results for Algorithm (1). For computational simplicity, in the algo-

rithm we fixed the break date to be the estimated one, and we therefore used a standard

Chow test for structural break.11 In order to give an economic interpretation of the sources

of time variation, we divide the parameters in three groups: (i) those influencing the Euler

equation (γ, z, ρa, σz, σa); (ii) those influencing the Phillips curve either in the standard

Phillips curve relationship (α) or measuring the persistence and standard deviation of the

cost-push shock (ρe, σe); and (iii) those influencing monetary policy (either the usual output

gap and inflation aversion parameters (ρgy, ρπ) or the long-term inflation target parameters

(σπ, δz, δe), or the serial correlation and standard deviation of the transitory monetary policy

shock, ρv, σv). In the table, the parameters are ordered according to the value of the Chow

test for structural break using the estimated break data from the ones where the evidence of

time variation is the strongest to the ones where the evidence is the weakest (labeled “QLR

test statistic”). P-values are also reported.

The results are striking. According to our algorithm (1), the set of stable parameters is

{α}. The strongest evidence on time variation comes from the parameters in the monetary

policy reaction function of the Central Bank, a fact first noticed by Clarida, Gali and Gertler

(2000). The table shows that such instabilities affect not only the parameters in the standard

monetary policy reaction function (ρπ, ρgy,σπ, δz, δe), but also the parameters governing the

long-term inflation target of the Central Bank. The most remarkable result is that time

variation afflicts not only the parameters in the monetary policy reaction function, but also

most of the “structural” parameters in the Euler and IS equations. There is a sense in which,

therefore, such parameters are not “structural”. The weakest evidence of time variation is

in the parameter of the Phillips curve, α, which belongs to the set of stable parameters.

difference between the constrained model (that is, the loglikelihood estimated over the full sample) and the

unconstrained one (that is, the weighted average of the loglikelihood estimated separately over all possible

two sub-samples, weighted according to the percentage of observations in each of the two sub-samples).
11Since we evaluate the Chow test statistic at the estimated break date, the p-values are calculated using

Andrews’ (2003) critical values with 1 degree of freedom.
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The latter result reinforces that in Cogley and Sbordone (2005), who also claim that the

estimated parameters of the Phillips curve are stable in the face of changes elsewhere in the

economy.12 However, our results are stronger than theirs, in the sense that: (i) we allowed all

the parameters to be possibly time-varying and chose the set of stable parameters according

to statistical criteria; (ii) we do not have to make a maintained assumption as to the nature of

the time variation (except that our tests are admissible for one-time structural changes, but

have power against random walk time-varying parameters); (iii) we do not make maintained

assumption as to the VAR underlying the data.

In the recent macroeconomics literature the reduction in volatility of the GDP growth

has received significant attention (see Stock and Watson, 2002). We will consider changes in

the standard deviation of five structural shocks in Ireland’s (2007) model: the inflation target

shock, technology shock, preference shock, cost-push shock and transitory monetary shock.

Following Stock and Watson (2002) we impose the break date of 1984:Q1. Table 2 reports

structural parameter estimates and standard deviations where the unstable parameters are

selected by our procedure. Based on these estimates we obtain the standard error of the

structural shocks in Ireland’s (2007) model. The last column of Table 3 shows the ratio of

the standard deviation in the second sample period over the one in the first time period.

The inflation target shock has experienced the largest reduction and the reduction is larger

than any of the reductions in the standard deviations in Table 8 of Stock and Watson (2002).

However, when we calculate the relative contribution of each shock to the total reduction in

the variance of GDP by using the DSGE model, we find that the technology shock seems to

be explaining most of such decrease, although both the monetary policy and the preference

shocks played a role.

Figure 1 plots impulse response functions estimated by allowing the relevant parameters

to have a structural break. Panel A shows the impulse responses before the break and Panel

B shows the impulse responses after the break. The magnitude of the impulse responses

of each of the variables to the preference shock change considerably before and after the

break, as well as the responses to the inflation target shock. Interestingly, in the case of the

responses to the cost-push shock, not only the magnitude of the impulse responses change,

but also their shape. This suggests that the transmission mechanism in the U.S. economy

has changed starting the early Eighties, and that this might have played a role in the Great

12The sample used in Cogley and Sbordone (2005), 1960:1-2003:4, is similar to the one used here, although

their definition of interest rate is different (they use the Fed Funds rate) and they also include data for real

marginal cost.
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Moderation.

4 Time variation in a VAR with drifting parameters

We also consider estimating a VAR with drifting coefficients and volatilities. Models of this

type have been estimating by Primiceri (2005) and Cogley and Sargent (2005), among others.

We use our procedure to shed light on which parameters are time varying: whether those

in the conditional mean or the volatilities, and in which equations the instabilities the are

concentrated. This provides an answer to the question of whether time series have responded

with a time-invariant impulse responses to possibly time-varying shocks or whether the

impulse responses have themselves changed over time. First, we consider a reduced form

VAR with GDP, inflation, and the interest rate. Then, we identify the for the subset of

parameters that are evolving over time, and we plot their estimated time path. Finally, we

consider a structural VAR in the spirit of Stock and Watson (2001), where the shocks are

identified according to a Cholesky decomposition, and plot the time path of the identified

structural shocks.

We consider the following reduced-form VAR, where yt is per-capita GDP in real terms,

πt is the GDP price deflator, and rt is the three month U.S. Treasury bill interest rate minus

the inflation rate (that is, the real interest rate).13 The lag length is chosen according to the

BIC and is equal to one.

⎛⎜⎜⎝
rt

yt

πt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
k11

k22

k33

⎞⎟⎟⎠
| {z }

K

+

⎛⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎠
| {z }

A

⎛⎜⎜⎝
rt−1

yt−1

πt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝

ur,t

uy,t

uπ,t

⎞⎟⎟⎠
| {z }

ut

where V (ut) = Ω =

⎛⎜⎜⎝
ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

⎞⎟⎟⎠ .

We let both parameters in the conditional mean (K,A) and covariance matrix (Ω) to change

over time according to a random walk:

13For comparability, the time series of the variables are the same as in the previous section. That is, they

are calculated in deviations from their steady state levels.
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Kt = Kt−1 + vK,t

At = At−1 + vA,t

Ωt = Ωt−1 + vΩ,t

Panel A in Table 4 shows the results. Nyblom’s (1989) test for the joint hypothesis of

stability of all parameters rejects the null of stability. Interestingly, the same test applied

to testing the hypothesis of stability of the parameters either in the conditional mean (k0s

and α0s) or in the variance (ω ∈ Ω) shows that only the latter rejects the hypothesis of

stability. Therefore, as pointed out in Cogley and Sargent (2005), instabilities seem to be

concentrated in the parameters governing the variance. However, we cannot really rely on

such tests, as they repeatedly test hypotheses without taking into account the previous step.

Furthermore, such tests do not identify which variances are time-varying. We therefore apply

our testing procedure, and show that the biggest evidence of parameter instability comes

from the variance of GDP.

Finally, we attempt to give our results a structural interpretation by identifying the

shocks according to a recursive VAR identification used, among others, by Stock and Watson

(2001) and Primiceri (2005) for a similar VAR. The Cholesky decomposition follows the order

inflation, output and the interest rate:⎛⎜⎜⎝
ur,t

uy,t

uπ,t

⎞⎟⎟⎠
| {z }

ut

=

⎛⎜⎜⎝
σ11 σ12 σ13

0 σ22 σ23

0 0 σ33

⎞⎟⎟⎠
| {z }

Σ

⎛⎜⎜⎝
ηr,t

ηy,t

ηπ,t

⎞⎟⎟⎠
| {z }

ηt

(1)

where ηt ∼ iid (0, I) are the structural shocks and:

Kt = Kt−1 + vK,t

At = At−1 + vA,t

Σt = Σt−1 + vΣ,t

The interpretation of (1) is as follows: the first equation represents the monetary policy rule,

the second equation is the IS equation and the third is a Phillips curve.

Panel A in Table 5 shows the results and Table 6 reports parameter estimates obtained

over the full sample. Again, a joint test on all parameters rejects the null of parameter

13



stability, and simple joint tests on all σ0s rejects the null of stability whereas a simple

joint test on all the parameters in the conditional mean does not reject stability. However,

the structural VAR analysis uncovers the very interesting result that the evidence of time

variation is concentrated in the transmission mechanism rather than in the impulse: a 95%

confidence set of the parameter only excludes σ13. In other words, the variances of the

structural shocks are constant (i.e. all σii are constant) and the instability is concentrated in

the transmission mechanism, and more specifically in the monetary policy reaction function.

The instability appears to be crucially concentrated in the monetary policy response of the

interest rate to inflation.

For robustness, we also consider one-time breaks in both the reduced-form and the struc-

tural VARs. The break is identified to be in 1985:2 in the reduced form VAR, and we use

such a date in our analysis. The results are again basically similar. Panel B in Table 4 shows

that the instability in the reduced form VAR is concentrated on the variances: a 95% joint

confidence set for the stable parameters excludes all the variances {σ11, σ22, σ33}, including
the variance of GDP growth. However, when we look at the structural shocks (see Panel B

in Table 5), interestingly we again find that instabilities are concentrated in the monetary

policy (as well as the IS equation), as this time the confidence set for the stable parameters

excludes ω33 only.14

5 Conclusions

This paper investigates which of the “structural” parameters of a representative DSGEmodel

are stable over time. We do so by developing new econometric tools that allow researchers

to identify the set of stable parameters of a structural economic model. Our conclusions

are that the empirical evidence is strongly in favor of stability in the parameters of the

Phillips curve, whereas instabilities are mostly a concern for the monetary policy reaction

function and the Euler equation for consumption. Since parameter instabilities are indicative

of model misspecification, our results validate the empirical success of models of the Phillips

curve. Our contribution therefore sheds light on the economic interpretation and cause of

such instabilities. It provides clear guidelines on which parts of the model are reliable for

policy analysis and which are possibly mis-specified. Such results offer important insights to

14In the analysis of Panel B in Table 5 we used a recursive F-test for structural breaks to order the

parameters rather than the individual p-values, as most individual p-values were equal to one. For simplicity,

we focused on searching over permutations over the variances.
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guide the future theoretical development of macroeconomic models.
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6 Appendix A - Propositions and proofs

6.1 The CIS procedure

For any two vectors a and b, let max (a, b) denote the vector whose i-th element is the

maximum of a (i) and b (i), where a (i) denotes the i-th element of a. We make the following

assumption:

Assumption 1. For all s∗ ∈ {0, 1}p+q such that s∗ 6= 01×(p+q), TT (s) ⇒
d
D(s) if s = s∗

and TT (s)→
p
∞ if max (s, s∗) > |s∗|, where |s| denotes the number of components in s that

are different from zero.

Remarks. Assumption 1 requires that TT (s) has a well-defined asymptotic distribution
under the null hypothesis, and diverges to positive infinity when testing includes at least a

parameter that is unstable under the alternative hypothesis of parameter instability. This

assumption, for example, is satisfied in the Andrews’ (1993) QLR test, the Andrews and

Ploberger’s (1993) Exp-W and Mean-W tests, and Elliott and Muller’s (2005) qLL test.15

The following Proposition shows that, by selecting the parameters associated with bs
identified in Algorithm (1) one obtains a confidence set of the stable parameters that has

coverage (1− α) .

Proposition 3 Let Assumption 1 hold, and let bs be estimated as described by Algorithm
(1). Then:

lim
T→∞

Pr {ŝ = s∗} = 1− α (2)

for any s∗ ∈ {0, 1}p+q such that s∗ 6= 01×(p+q),

lim
T→∞

Pr {ŝ = s∗} = 1 (3)

for s∗ = 01×(p+q), and

lim
T→∞

Pr {ŝ 6= s∗ and ŝ ≥ s∗} = 0. (4)

for any s∗ ∈ {0, 1}p+q.

Proof of Proposition (3). Let kα(s) denote the critical value of TT (s) of the null
distribution D(s) at the level of significance, α. Recall that p = p + q − |s∗| is the number
15Notice however that the Elliott and Muller’s (2005) statistics rejects for small values of the statistics,

whereas all other statistics reject for large values.
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of unstable parameters. First, suppose that p = 0. Then lim
T→∞

Pr (TT (s0) < kα (s0)) =

lim
T→∞

Pr (TT (s∗) < kα (s
∗)) = 1 − α, thus proving (2) under H(0)

0 (s0). When p = 0, (3)

does not apply and (4) trivially holds. Next, suppose that p > 0 and q > 0. Note that

|max(sj, s∗)| > |s∗| = q for any sj and j = 0, 1, 2..., p−1. By the consistency of TT (sj) for sj
such that |max(sj, s∗)| > |s∗|, the null hypotheses in steps 0, 1, 2, ..., p−1 are all rejected and
each of the p unstable parameters is selected in these p steps with probability approaching

one. Therefore the null model in step p, sp, converges in probability to s∗ and (4) holds.

Because lim
T→∞

Pr (TT (sp) < kα (sp)) = lim
T→∞

Pr (TT (s∗) < kα (s
∗)) = 1 − α, (2) holds. When

p > 0 and q > 0, (4) does not apply. Lastly, suppose that q = 0. Then the null hypotheses

in steps 0, 1, 2, ..., p are all rejected and each of the p unstable parameters is selected in these

steps with probability approaching one. Therefore ŝ converges in probability to s∗, and (3)

and (4) hold.

Proposition 4 Let the naive testing procedure be as follows: es = s, where the i-th component

of s, es (i), is such that:
es (i) = ( 1 if TT (ei) < kα (ei)

0 otherwise

Then limT→∞ Pr (es 6= s∗|si = s∗) > α for every s∗ ∈ {0, 1}p+q provided p+ q − i > 1.

Proof of Proposition (4). Without loss of generality, consider the case s∗ =

[0p×1,1q×1]
0. Suppose that p+ q − j = 2. Then:

Pr (es 6= s∗| sj = s∗) = Pr (TT (ej+1) > kα (ej+1) or TT (ej+2) > kα (ej+2))

= Pr (TT (ej+1) > kα (ej+1)) + Pr (TT (ej+2) > kα (ej+2))

−Pr (TT (ej+1) > kα (ej+1) and TT (ej+2) > kα (ej+2))

= 2α− Pr (TT (ej+1) > kα (ej+1) and TT (ej+2) > kα (ej+2))

> α

where the last inequality follows since Pr (TT (ej+1) > kα (ej+1) and TT (ej+2) > kα (ej+2)) <

α provided that the joint distribution is non-singular. The proof for cases in which p+q−j >
2 is analogous although it is notationally more complicated.
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6.2 The ICS procedure

We make the following assumption:

Assumption 2.

(a) Let νT be a sequence such that νT →∞ and νT = o(T ).

(b) For all s∗ ∈ {0, 1}p+q such that s∗ 6= 01×(p+q), TT (s)⇒
d
D(s) if s = s∗ and TT (s)→

p
∞

if max (s, s∗) > |s∗|, where |s| denotes the number of components in s that are different

from zero, and c(s) > 0 is some positive constant.

Remarks. Assumption 2(a) is a slight modification of Assumption 1 and is satisfied by

most structural break tests, including Andrews (1993) and Andrews and Ploberger (1994).

Basically, it requires that the moment conditions converge in probability to some limit-

ing nonzero value when evaluated when including parameters that have a break: since the

parameters will converge to some pseudo-true parameter value different from the true, time-

varying parameter, the expected value of such moment conditions will not be zero. Such

limiting value will be zero when the moment conditions are evaluated only at stable para-

meters, otherwise will be a positive number. Note that when max (s, s∗) > |s∗| there will be
at least one moment condition that is in expectation different from zero, and given that the

test statistic is asymptotically equivalent to a quadratic form of such moment conditions, it

will be positive.

Assumption 2(b) defines the properties required for the penalty function. The penalty

function is necessary to offset the increase in the value of the test statistic T T (s) that

typically occurs when testing instabilities on a larger number of parameters even if the

additional parameters are stable. For example: a BIC-type penalty involves νT = ln (T ), a

Hannan-Quinn-type penalty involves νT = ς ln ln (T ) for some ς > 2. An AIC-type penalty

would involve νT = 2 but, as well known, AIC-type penalties does not result in a consistent

selection criterion and in fact it does not satisfy our Assumption 2(b).

Proposition 5 (Consistency of the ICSeq procedure) Let Assumption 2 hold, and letbsICSeq be estimated as described by Algorithm (2). Then,

bsICSeq →
p
s∗ (5)
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Proof of Proposition (5). Because νT (s) is diverging, the tests have size zero, i.e.,

α = 0. Because the test statistics diverge faster than νT (.) under the alternative hypothesis,

the tests remain consistent. Therefore (5) follows from (2).
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7 Appendix B - The economic model

Ireland’s (2007) model loglinearized around the steady state where consumption, output,

and the marginal utility of consumption grow at the rate of technological process (a random

walk with drift) is as follows. Let byt, bπt, bet, bzt, bat, bvt, bλt bπ∗t denote the deviation of output,
inflation, the cost-push shock, technology, the preference shock, the transitory monetary

policy shock, the marginal utility of consumption, and the time-varying inflation target from

the their steady state levels, and the following hold:

bgyt = byt − byt−1 + bzt,bgπt = bπt − bπt−1 + bπ∗t ,bat = ρabat−1 + σaεat,bet = ρebet−1 + σeεet,bzt = σzεzt,bvt = ρvbvt−1 + σvεvt

The model builds on a series of parameters: z (the steady state level of technology), β (the

discount factor), γ (the habit formation), α (the parameter measuring the extent to which

price setting is backward or forward looking — α = 0 means purely forward looking), ψ (a

function of the magnitude of the adjustment cost and of the long-run level of the cost-push

shock), ρπ (the Fed’s inflation aversion), ρgy (the Fed’s aversion to the output gap), σπ (the

standard deviation of the shock to the inflation target), δe (the reaction of the time-varying

inflation target to the shock to the time varying elasticity of demand for each intermedi-

ate good), δz (the reaction of the time-varying inflation target to the temporary shock to

aggregate technology). The parameters β, z, ψ are calibrated prior to estimation.

The core of the model is formed by the following equilibrium conditions:

(1) the IS curve:

(z − γ) (z − βγ) bλt = γzbyt−1 − (z2 + βγ2) byt + βγzEtbyt+1 + (z − γ) (z − βγρa)bat − γzbzt
(2) the Euler equation:bλt = Et

bλt+1 + brt −Etbπt+1
(3) the Phillips curve:

(1 + βα) bπt = αbπt−1 + βEtbπt+1 + ψ
³bat − bλt´− bet − αbπ∗t

(4) the Monetary Policy reaction function:brt − brt−1 = ρπbπt + ρgybgyt − bπ∗t + bvtbπ∗t = σπεπt − δeεet − δzεzt
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Ireland (2007) considers three specifications:

(i) the endogenous inflation target case (all parameters are estimated freely);

(ii) the exogenous inflation target case (δe = δz = 0);

(iii) the backward looking price setting (α = 1).
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8 Tables and Figures

Table 1. Empirical results for the one-time structural change scenario.

Models: Endog. infl. target Exog. infl. target Backward-looking price

Individual Recursive Individual Recursive Individual Recursive

Parameter: p-value p-value p-value p-value p-value p-value

ρgy 0 0 σa 0 0 ρv 0 0

δe 0 0 ρv 0 0 ρπ 0 0

ρe 0 0 ρe 0 0 σv 0 0

ρv 0 0 ρgy 0 0 ρa 0 0

σz 0 0 σπ 0 0 δe 0 0

σv 0 0 γ 0 0 ρe 0 0

σπ 0 0 σz 0 0 σπ 0 0

γ 0 0 σv 0 0 σz 0 0

σe 0 0 ρπ 0 0 σe 0 0

ρπ 0 0 σe 0.72 0.31 γ 0 0

ρa 0.04 0 ρa 0.80 1 σa 0 0

σa 0.015 0 α 1 1 α 0 0

δz 0.365 0.013 - - ρgy 0.016 0.402

α 0.999 1 - -

Set of stable parameters Set of stable parameters Set of stable parameters

at 95% confidence level: at 95% confidence level: at 95% confidence level:

S = {α} S = {α, ρa, σe} S =
©
ρgy
ª

Note to table 1. The table reports values of the QLR test statistic for testing one-time structural

breaks on individual parameters, and their p-values. The tests are implemented in a Wald form,

using standard errors obtained by bootstrap with 1,000 replications.
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Table 2. Parameter Estimates

Parameters 1959:Q1-1984:Q4 1985:Q1-2004:Q1

γ 0.234 0.426

(0.001) (0.001)

α 0.000 0.000

(0.000) (0.000)

ρπ 1.143 0.722

(0.368) (0.154)

ρgy 0.228 0.206

(0.062) (0.048)

ρa 0.895 0.939

(0.003) (0.003)

ρe 0.026 0.599

(0.003) (0.155)

ρv 0.053 0.237

(0.001) (0.001)

σa 0.028 0.028

(0.009) (0.009)

σe 0.001 0.001

(0.000) (0.000)

σz 0.016 0.011

(0.002) (0.002)

σv 0.004 0.001

(0.001) (0.000)

σπ 0.000 0.000

(0.002) (0.000)

δe 0.002 0.000

(0.000) (0.000)

δz 0.000 0.000

(0.000) (0.000)

Note to Table 2. In parentheses are standard errors.
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Table 3. Standard Deviations of Macroeconomic Shocks

1959:Q1-1983:Q4 1984:Q1-2004:Q1 s2/s1 Relative Contribution

to GDP Var. Reduction

Inflation Target∗ 0.125 0.047 0.378 -0.006

Technology Shock∗ 1.589 0.798 0.502 0.816

Preference Shock 6.080 7.825 1.287 0.119

Cost-Push Shock 0.081 0.195 2.395 -0.129

Transitory Monetary Shock 0.330 0.169 0.512 0.132

Notes to Table 3. The standard deviations are multiplied by 100. For the processes with asterisk

(*), the variance of the disturbance term, not the variance of the process, is reported because they

are unit-root processes. Results are qualitatively very similar in the case of a break in 1980:Q1.
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Table 4. Reduced form VAR

Panel A. Random walk parameters Panel B. One-time break

Parameter Individual p-value Parameter Individual p-value

k11 0.682 k11 1

a11 0.212 a11 1

a12 1 a12 1

a13 0.507 a13 1

k22 1 k22 1

a21 1 a21 1

a22 1 a22 1

a23 0.18 a23 1

k33 1 k33 1

a31 0.394 a31 1

a32 0.299 a32 1

a33 0.534 a33 1

ω11 0.334 ω11 0.139

ω12 1 ω12 1

ω13 0.21 ω13 1

ω22 0 ω22 0.062

ω23 1 ω23 1

ω33 0.088 ω33 0.054

Joint test — all param: 0.021 Joint test — all param: 0

Joint test — all a, k: 0.305 Joint test — all a, k: 1

Joint test — all ω: 0 Joint test — all ω: 0

Set of stable parameters at 95% confidence level: Set of stable parameters at 95% confidence level:

S = {k11, a11, a12, a13, k22, a21, a22, a23, S = {k11, a11, a12, a13, k22, a21, a22, a23,
k33, a31, a32, a33, ω11, ω12, ω13, ω23, ω33} k33, a31, a32, a33, ω12, ω13, ω23}

Note to Table 4. The table reports the p-values of the Nyblom’s (1989) test statistic for testing

random-walk-type structural breaks on individual parameters in Panel A and the p-values of the

Andrews’ (1993) test statistic for testing one-time structural breaks on individual parameters in

Panel B. In panel B, the break is dated 1985:2. ωij denotes the i-j-th element of the vech of
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the covariance matrix. The tests are implemented by using Li and Muller’s (2007) procedure.

Subscripts are as follows: i = 1 denotes the real interest rate, i = 2 denotes GDP, i = 3 denotes

the inflation.

29



Table 5. Structural VAR

Panel A. Random walk parameter Panel B. One-time break

Parameter Individual p-value Parameter Individual p-value

k11 0.682 k11 1

a11 0.212 a11 1

a12 1 a12 1

a13 0.507 a13 1

k22 1 k22 1

a21 1 a21 1

a22 1 a22 1

a23 0.18 a23 1

k33 1 k33 1

a31 0.394 a31 1

a32 0.299 a32 1

a33 0.534 a33 1

σ11 0.334 σ11 1

σ12 1 σ12 1

σ13 0 σ13 1

σ22 1 σ22 0

σ23 0 σ23 1

σ33 0 σ33 1

Joint test — all param: 0.021 Joint test — all param: 0

Joint test — all a, k: 0.305 Joint test — all a, k: 1

Joint test — all σ: 0 Joint test — all σ: 0

Set of stable parameters at 95% confidence level: Set of stable parameters at 95% confidence level:

S = {k11, a11, a12, a13, k22, a21, a22, a23, S = {k11, a11, a12, a13, k22, a21, a22, a23,
k33, a31, a32, a33, σ11, σ12, σ22, σ23, σ33} k33, a31, a32, a33, σ33}

Note to Table 5. The table reports the p-values of the Nyblom’s (1989) test statistic for testing

random-walk-type structural breaks on individual parameters in Panel A and the p-values of the

Andrews’ (1993) test statistic for testing one-time structural breaks on individual parameters in

Panel B. σij denotes the i-j-th element of the vech of the variance in Choleski factor. The tests
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are implemented by using Andrews’ (1993) procedure. Subscripts are as follows: i = 1 denotes the

real interest rate, i = 2 denotes GDP, i = 3 denotes the inflation.

Table 6. Structural VAR param. estimates

Parameter Estimate Parameter Estimate

k11 0.0006 σ11 0.0032

a11 0.8558 σ12 0.0020

a12 0.0258 σ13 -0.0022

a13 0.2371 σ22 0.0082

k22 0.0040 σ23 0.0002

a21 -0.1214 σ33 0.0017

a22 0.2734

a23 0.1033

k33 -0.0003

a31 0.0473

a32 0.0241

a33 -0.2630

Note to Table 6. The table reports parameter values of the Structural VAR estimated over the

full sample. Subscripts are as follows: i = 1 denotes inflation, i = 2 denotes GDP, i = 3 denotes

the interest rate.
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Figure 1 (Panel A). Impulse responses in Ireland’s model before 1984
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Figure 1 (Panel B). Impulse responses in Ireland’s model after 1984
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Figure 2 (Panel A). SVAR impulse responses before the Great Moderation
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Figure 2 (Panel B). SVAR impulse responses after the Great Moderation
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Notes to the figures.

Note to Figure 1. Figure 1 reports impulse responses from Ireland’s (2007) unconstrained model

with endogenous inflation target. Each panel shows the percentage-point response of one of the

model’s variables to a one-standard deviation shock. The inflation and interest rates are expressed

in annualized terms. Panel A shows Impulse Responses before the estimated break, and Panel B

shows Impulse Responses after the estimated break.

Note to Figure 2. Figure 2 reports impulse responses from the SVAR (1). Panel A shows

Impulse Responses before the estimated break, and Panel B shows Impulse Responses after the

estimated break.
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