
Minimax Regret Treatment Choice

with Finite Samples

Jörg Stoye�

New York University

October 3, 2006

Abstract

I use the minimax regret criterion to analyze choice between two treatments conditional on

observation of a �nite sample. The analysis is based on exact �nite-sample regret and does not use

asymptotic approximations nor �nite-sample bounds. Core results are the following: (i) Minimax

regret treatment rules are well approximated by empirical success rules in many cases, but di¤er

from them signi�cantly for small sample sizes and certain sample designs. (ii) Without imposing

additional prior information, they prescribe inference that is completely separate across covariates.

This result can be avoided by imposing su¢ cient prior information. (iii) The relative performance

of empirical success rules can be evaluated and is signi�cantly lacking in very small samples.

(iv) Manski�s (2004) analysis of optimal sample strati�cation can be reproduced, with somewhat

di¤erent implications, in terms of �nite sample results as opposed to large deviations bounds. I

conclude by o¤ering some methodological thoughts on minimax regret.
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1 Introduction

In this paper, the minimax regret criterion is used to analyze choice between two treatments based on

a sample of subjects that have been subjected to one treatment each. This setting is similar to the one

recently analyzed by Manski (2004). The main di¤erence to Manski�s approach is technical: I consider

some extensions of the setting and, more importantly, base the analysis entirely on exact �nite sample

regret. As it turns out, moving from from �nite-sample bounds to exact results leads to signi�cant

adjustments of substantive results.

Minimax regret as a criterion for statistical decisions has recently attracted renewed interest (Brock

2004, Hirano and Porter 2005, Manski 2004, 2005, 2006a, 2006b, Schlag 2006, Stoye 2006a). Unfor-

tunately, derivation of �nite sample minimax regret decision rules tends to be extremely hard. As a

result, most of the existing literature either focuses on identi�cation and altogether abstracts from sam-

pling uncertainty (Brock 2004, Manski 2006b, Stoye 2006), states the �nite-sample problem without

attempting to solve it (Manski 2006a, section 4), derives bounds on �nite-sample regret (Manski 2004),

or employs large-sample approximations (Hirano and Porter 2005, Manski 2006a). To my knowledge,

the only exact results for �nite samples so far are found in a related paper by Schlag (2006), in Manski�s

(2006a, section 5) analysis of a case that he calls �curiously simple,�and in his numerical analysis of

the setup considered in proposition 1(iii) below (2005, chapter 3).

One important agenda of this paper is, therefore, to show that much can be learned from exact

�nite-sample analysis. On a substantive level, perhaps the most interesting �nding is that some

conclusions here re�ne �ndings in Manski (2004) in ways that might be considered surprising, or

even controversial. The results also allow one to assess, for the decision situations considered here,

the small sample performance of asymptotic approximations that have been proposed by Hirano and

Porter (2005).

The paper is structured as follows. After setting up the notation and o¤ering some motivation

for minimax regret, I analyze the treatment choice problems without covariates, di¤erentiating the

anmalysis depending on whether one or both treatments are unknown, and in the latter case, how

treatments were assigned to sample subjects. In some cases, the minimax regret rules are similar to

empirical success rules, i.e. simple comparisons of sample means, although signi�cant di¤erences are

uncovered as well. Minimax regret decision rules are generally quite di¤erent from ones informed by

classical statistics.

The analysis is then extended to the situation where treatment outcomes may depend on a covariate

x. This is a central concern in Manski (2004), and the core result here is maybe the most surprising

one: Minimax regret completely separates inference between covariates for any sample size. In section

4 of the paper, I derive this result, comment on it, and suggest a partial solution to the problems it
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raises. In section 5, theoretical results are used to evaluate the �nite sample performance of simple

empirical success rules and to replicate parts of Manski�s (2004) analysis but in terms of exact regret.

Section 6 concludes with re�ections on some interesting features of the results. All proofs are collected

in the appendix.

2 Preliminaries and Motivation

A binary treatment, t 2 f0; 1g induces distributions of potential outcomes Yt 2 R. (Yt may have a

utility interpretation.) Assume that a priori bounds on Y0 and Y1 are �nite and coincide, then it is

w.l.o.g. to set Y0; Y1 2 [0; 1]. A state of nature s speci�es the distributions of potential outcomes and

can, therefore, be identi�ed with a probability measure P (Y0; Y1) 2 �[0; 1]2. The set of possible states

of nature S is a (not necessarily proper) subset of �[0; 1]2 that depends on maintained assumptions.

It is worth noting that Y0 and Y1 are never restricted to be independent. I will use the following

notational conventions: If Yi is a random variable, then �i denotes its expectation and yi a sample

mean.

For any sample point, one treatment t is assigned and the according outcome is recorded. Thus,

the decision-maker observes realizations of (t; Yt). Let SN , with typical element sN , denote the sample

space induced by a sample of size N . (This implies a slight abuse of notation since I allow for N to

be random.) The sample distribution over SN then depends on s, on the sampling rule, and on the

within-sample treatment assignment rule; both of the latter will di¤er across the scenarios considered

below. The decision maker�s strategy set is given by the set of statistical treatment rules D with

typical element � : SN ! [0; 1], where � maps possible sample outcomes into probabilities of assigning

treatment 1. In particular, the decision maker is allowed to randomize.1

Any combination of state and decision rule induces an expected outcome, namely

u(�; s) � E (�(sN ))�1 + [1� E (�(sN ))]�0; (1)

where all expectations are taken conditional on s. The e¢ cacy of � will be measured in terms not of

u, but of expected regret relative to u, that is,

R(�; s) � max
�02D

�
u(�0; s)

	
� u(�; s);

1The decision rule may appear underspeci�ed because I leave open whether randomization is independent across

members of the treatment population, perfectly correlated (i.e., the entire population is assigned to treatment 1 with

probability �(sN ) and to treatment 0 otherwise), or anything in between. It is immediate from the next pargraph�s

de�nitions that only the expected fraction of the population assigned to treatment 1 matters for regret, hence all of these

possibilities are equivalent.
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the expected loss relative to the ex-post utility frontier. In fact, R(�; s) is interpreted as risk function,

and the decision maker aims to achieve uniform performance with respect to this risk, thus she wants

to implement a minimax regret treatment rule

�� 2 argmin
�2D

�
max
s2S

fR(�; s)g
�
:

Although this paper is focused on the implications of minimax regret, I will brie�y comment on

its a priori motivation here.2 The function u : S 7! R de�ned in (1) is the usual risk function of

decision rule �, and the problem of ranking such risk functions is well known in statistical decision

theory. Notice in particular that given a state s, the outcomes experienced by treatment recipients

are uncertain, but this uncertainty is described by objective probabilities, and the de�nition of (1)

implies a decision to resolve it by taking expectations. However, no objective probabilities of states s

are given, i.e. the true state is ambiguous, and in general, many treatment rules will be admissible.

To arrive at well de�ned policy recommendations, one must, therefore, commit to an attitude toward

the ambiguity about s.

Two well-known such attitudes are embodied in the Bayesian and maximin utility approach. The

former aggregates u(�; s) by means of a subjective prior � 2 �S, the latter ranks decision rules

according to their worst-case performance mins2S u(�; s). For the purpose of this paper, and without

meaning to take a general stance pro or contra Bayesianism, I will assume that imposition of priors is

not desired. This leaves maximin utility as the best-known decision rule.

Maximin utility is frequently perceived as extremely pessimistic. In particular, it may be counter-

intuitive to focus one�s attention on the state that is objectively worst, even if one�s choice of action

matters hardly or not at all in that state. This consideration is aggravated by the fact that in the

scenarios considered here, such a focus leads to trivial results. Applied to the case with Y0 and Y1

unknown, maximin utility induces indi¤erence between all treatment rules because they all have the

same worst-case performance (induced by the state of the world where Y0 and Y1 are identically equal

to zero). If the distribution of Y0 is known, then the maximin utility strategy is to always pick Y0

if �0 > 0, which is more determinate but hardly reasonable. Notice especially that in both cases,

maximin utility fails to exclude �no-data rules�which do not take sample informatuon into account.

In contrast, minimax regret focuses on states in which one�s decision matters. Since these will be

states in which the distributions of Y0 and Y1 di¤er, one would expect no-data rules to be avoided,

an expectation that will be borne out, albeit with caveats. Consequently, all examples but one in this

paper show the minimax regret rule to be consistent in the sense of asymptotically choosing the correct

2 In-depth discussions of the following issues, as well as axiomatic characterizations of di¤erent decision rules, are

found in Stoye (2005); see also Hayashi (2005), Stoye (2006b), and the classic paper by Milnor (1954). For statisticians�

discussions, compare Savage (1954) and Berger (1985).
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treatment almost surely. This feature is obviously not shared by no-data rules, and hence not by the

maximin utility approach.

To be sure, these observations do not imply that the (re-)discovery of minimax regret solves all

worries of statistical decision theory. For example, the axiomatic analysis in Stoye (2005) reveals a

trade-o¤: Minimax regret, unlike maximin utility, is consistent with the independence axiom even

though it avoids priors. Thus, it is insensitive to risk that can be considered extraneous to a decision

problem. Yet minimax regret, unlike maximin utility, violates independence of irrelevant alternatives

and thus renders the ordering of two decision rules potentially sensitive to the �menu� of decision

rules. Furthermore, one of this paper�s contributions is the construction of realistic examples in which

minimax regret may be counterintuitive, as well as one case in which it permits no-data rules. My

claim, therefore, is not that minimax regret is the only good decision rule, but merely that it is

worthy of further investigation �especially since it has, so far, attracted much less attention than its

competitors.

The remainder of this paper is mainly concerned with �nding at least one ��, and sometimes the

exact set of minimax regret treatment rules, for di¤erent decision scenarios. The proofs will exploit

the fact that �� can be represented as the decision maker�s Nash equilibrium strategy in a �ctitious

zero-sum game against Nature. The game is explained in detail in the appendix; Nature�s equilibrium

strategy, also known as �worst-case prior,�is sometimes of interest as well and will be labelled ��.

3 Treatment Choice Without Covariates

This section analyzes treatment choice when there are no covariates. I consider three sample designs

that can be seen as stylized � and occasionally exact � descriptions of real-world data gathering

procedures.3

(i) Strati�ed assignment: Let both treatments be unknown, hence P (Y0; Y1) is unrestricted

over �[0; 1]2. The sample size N is known to be even; other than that, its distribution is known but

arbitrary. (In particular, it might be degenerate so that N is known a priori.) Let within-sample

treatment assignment be by even strati�cation, with N=2 sample points assigned to either treatment.

The intuition for this is that sample subjects arrive in pairs and every pair is assigned to di¤erent

treatments.
3The proof of proposition 1 is easily extended to show that all three sampling schemes minimize maximal regret over

possible sampling schemes, given the respective assumptions about N . Further results on endogenous sample design are

found in Schlag (2006).
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(ii) Random assignment: Assume again that both treatments are unknown, but let the distri-

bution of N be completely unrestricted (again, N may also be known). Let within-sample treatment

assignment be by independent tosses of a fair coin.

(iii) Testing an innovation: Assume that one treatment, t = 0 say, is well understood, i.e. the

marginal distribution of Y0 is known. This should be thought of as testing an innovation against a

status quo treatment. Obviously all sample points will be assigned to treatment 1 in this case. For

simplicity, let N be known.

I also begin by assuming that outcomes are binary, i.e. Y0; Y1 2 f0; 1g, where a realization of yt = 1

will be called a success. This restriction will later be dropped, but allows one to isolate some core issues

and to generate �if and only if�-statements. Speci�cally, the set of minimax regret treatment rules is

characterized as follows.4

Proposition 1 (i) In the case of strati�ed sampling, minimax regret is achieved by

��1(sN ) �

8>>><>>>:
0; y1 < y0

1=2; y1 = y0

1; y1 > y0

:

Furthermore, any minimax regret treatment rukle must agree with ��1 except when y0 = y1, and �
� is

the unique minimax regret treatment rule that is measurable with respect to (y0; y1).

(ii) In the case of random assignment, minimax regret is achieved by

��2(sN ) �

8>>><>>>:
0; IN < 0

1=2; IN = 0

1; IN > 0

;

where

IN � N0(y0 � 1=2)�N1(y1 � 1=2)

_ [# (observed successes of treatment 0) + # (observed failures of treatment 1)]

� [# (observed successes of treatment 1) + # (observed failures of treatment 0)] :

Furthermore, any minimax regret treatment rule must agree with ��2 excepot when IN = 0, and ��2 is

the unique minimax regret treatment rule that is measurable with respect to IN .

4Part (i) of this result generalizes, and abbreviates the proof of, a previous �nding by Canner (1970, section 4). The

analysis of case (iii) has been subsequently extended by Manski and Tetenov (2006).
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(iii) In the case of testing an innovation, minimax regret is achieved by

��3(sN ) �

8>>><>>>:
0; Ny1 < n

�

��; Ny1 = n
�

1; Ny1 > n
�

;

where n� 2 f1; : : : ; Ng and �� 2 [0; 1) are uniquely characterized as follows:

max
a2[0;�0]

f(�0 � a) [Pr (Ny1 > n�j�1 = a) + �� Pr(Ny1 = n�j�1 = a)]g =

max
a2[�0;1]

f(a� �0)[Pr(Ny1 < n�j�1 = a) + (1� ��) Pr(Ny1 = n�j�1 = a)]g:

Furthermore, any minimax regret treatment rule must agree with ��3 except when Ny1 = n
�, and ��3 is

the unique minimax regret treatment rule that is measurable with respect to Ny1, the count of successes

of treatment 1.

Proposition 1 not only identi�es minimax regret rules, but is essentially an �i¤�-statement: In all

three cases, minimax regret rules are pinned down up to behavior conditional on some threshold, and

they are the simplest possible rules in the sense that any other rule must use additional (but, as it

turns out, irrelevant) sample information on that threshold.5

Other than this, part (i) of the proposition is not surprising, given the ex ante symmetry of both

decision scenario and risk function. The case might be somewhat di¤erent with part (ii). As the second,

more verbal characterization of IN suggests, an intuition for it goes as follows: Every observation of

either a success of treatment 0 or a failure of treatment 1 constitutes some kind of signal in favor of

treatment 0. Every other observation is a signal in the opposite direction. The decision maker should

just keep a score of these signals, that is, she should decide according to which type of signal occurred

more often.

Parts (i) and (ii) of proposition 1 provide limited support for an aspect of Manski�s (2004) analysis.

To estimate the regret incurred by di¤erent sample designs, he restricts attention to �empirical success�

decision rules of the form �ES(y1; y0) = 1y1>y0 . This is clearly a simpli�cation � in the spirit of

the paper, one would want to use the minimax regret treatment rule if it were known. Proposition

1(i) shows that for binary outcomes and even strati�cation of samples, �ES is reasonably close, the

modi�cation being that the tie-breaking rule must be ex ante symmetric. Di¤erences are larger for the

other scenarios; in case (ii), the decision rule will asymptotically agree with an empirical success rule

5To give a �avor, alternative minimax regret rules can in all cases be constructed as follows: Divide SN into pairs

of sample realizations that are equiprobable conditional on any s 2 S �e.g., elements of a pair might be permutations

of each other. Fix a function  : SN 7! f0; 1g that maps exactly one element of every pair onto 1 and set ��(sN ) = 

conditional on the threshold event.
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 10 N = 20 N = 50 N = 100 N = 500

�0= :05 0 (0:33) 0 (0:48) 0 (0:59) 0 (0:44) 0 (0:74) 1 (0:22) 1 (0:18) 2 (0:68) 5 (0:18) 25 (0:18)

�0= :25 0 (0:64) 0 (0:82) 1 (0:07) 1 (0:33) 1 (0:58) 2 (0:82) 5 (0:32) 12 (0:82) 25 (0:32) 125 (0:32)

�0= :50 1 (0) 1 (0:5) 2 (0) 2 (0:5) 3 (0) 5 (0:5) 10 (0:5) 25 (0:5) 50 (0:5) 250 (0:5)

�0= :75 1 (0:36) 2 (0:18) 2 (0:91) 3 (0:67) 4 (0:42) 8 (0:18) 15 (0:68) 38 (0:18) 75 (0:68) 375 (0:68)

�0= :95 1 (0:67) 2 (0:52) 3 (0:41) 4 (0:56) 5 (0:26) 9 (0:78) 19 (0:82) 48 (0:32) 95 (0:82) 475 (0:82)

Table 1: Testing an innovation: The minimax regret decision rule.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 10 N = 20 N = 50 N = 100 N = 500

�0= :05 1(0) 1(0:5) 1(0:68) 1(0:79) 1(0:87) 2(0:48) 3(0:43) 5(0:81) 9(0:38) 33(0:78)

�0= :25 1(0:8) 2(0:2) 2(0:76) 3(0:02) 3(0:61) 5(0:48) 8(0:85) 18(0:19) 32(0:78) 141(0:58)

�0= :50 1(0:9) 2(0:8) 3(0:6) 4(0:2) 4(0:88) 8(0:11) 14(0:21) 31(0:35) 58(0:74) 268(0:89)

�0= :75 1(0:93) 2(0:91) 3(0:88) 4(0:84) 5(0:79) 10(0:11) 18(0:62) 42(0:90) 82(0:51) 391(0:29)

�0= :95 1(0:95) 2(0:94) 3(0:94) 4(0:94) 5(0:94) 10(0:92) 20(0:86) 50(0:35) 98(0:84) 483(0:27)

Table 2: Testing an innvoation: The classical decision rule (5 percent signi�cance, one-tailed test).

but di¤er from it markedly for small samples. An analysis of the relative performance of the empirical

success rule, i.e. the degree of its ine¢ ciency in terms of regret, will be conducted in section 5.

The characterization of �� in part (iii) is implicit, but numerical evaluation is easy. Table 1

illustrates the result for a selection of sample sizes N and values of �0.
6 Speci�cally, every cell has the

format �n�(1���),�thus the left-hand number is the critical number of observed successes that leads

to randomized treatment assignment, and the number in parentheses gives the probability with which

this randomization will pick treatment 0. The conversion from �� to (1 � ��) has been performed

because the sum of the two numbers, (n� + 1 � ��), can be seen as a smooth index of the treatment

rule�s conservatism, with higher values indicating more conservative rules.

The minimax regret rule approximates an empirical success rule for rather small samples. This

renders it akin to Bayesian decision rules derived from noninformative priors (see Berger 1985, section

3), but puts it in stark contrast to decision criteria informed by classical statistics. To illustrate this,

table 2 displays the decision rule employed by a statistician who chooses treatment 1 if the data reject

H0 : �1 � �0 at 5% signi�cance. The table can be read in exact analogy to table 1 �for example, if

�0 = 0:25 and N = 10, then decision rule prescribes to adopt treatment 1 with probability 0.52 if 5

successes were observed and with probability 1 if even more successes were observed.7

Although it must eventually converge to an empirical success rule, the classical statistician�s decision

6This table extends table 3.1 in Manski (2005).
7The randomization conditional on a critical number of successes maximizes the test�s power given its size.
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rule is much more conservative than minimax regret. The reason is that it exclusively guards against

the possibility of an inferior Y1 �looking good� in a favorable sample. In contrast, the minimax

regret rule equalizes regret between two worst-case scenarios, one of which is similar but the other one

concerns the possibility of a superior Y1 �looking bad.�

I conclude this section by allowing for Y0 and Y1 to be distributed arbitrarily on the unit interval.

This case seems much more complex than the above, but minimax regret treatment rules for it follow

immediately from proposition 1 via an important observation due to Schlag (2003, 2006). To formalize

it, call a state s a Bernoulli state if it implies Bernoulli distributions of both Y0 and Y1. Observe that

Bernoulli states are fully characterized by triples E(Y0; Y1; Y0Y1). For any state s, call its Bernoulli

equivalent the Bernoulli state s0 such that s and s0 induce the same value of E(Y0; Y1; Y0Y1). Finally,

for any state space S, let S 0 denote its Bernoulli equivalent, generated by replacing every state s 2 S

with its Bernoulli equivalent s0. (S 0 will in general have lower cardinality than S.) Then the following

is true.

Proposition 2 (Schlag 2003, 2006) Consider any state space S that contains its Bernoulli equiv-

alent, i.e. S 0 � S. Let �0 achieve minimax regret over S 0. De�ne the decision rule �� for S as follows:

(i) Replace every observation yt 2 [0; 1] with one independent realization of a Bernoulli variable with

parameter yt. (ii) Operate �
0.

Then �� achieves minimax regret.

The proposition�s hypothesis is ful�lled by all state spaces considered here. Thus, the �ndings of

proposition 1 can be applied to the general case by preceding them with an information coarsening in

which outcome observations other than f0; 1g are replaced by independent tosses of biased coins. The

intuition for why this works is as follows: In the �ctitious game, the coarsening removes any incentive

for Nature to use non-Bernoulli states, thus one can as well presume that she does �but then the

coarsening does not matter. One price of the generalization is that �only if�will generally be lost.

Also, randomization must accord with yt even if the latter is a utility, hence �
� is implementable only

if the decision maker knows her utility function.

A notable feature of this result is that for general treatment outcomes, minimax regret treatment

rules may di¤er much from empirical success rules. For one thing, the information coarsening causes

�� to be randomized even if y0 6= y1. As an example, if one realization of either treatment has been

observed and the values are y0 = :5 respectively y1 = :6, then an empirical success rule would assign

all future subjects to treatment 1, but any minimax regret rule will do so only with probability 55%.8

8 I write �any� because for the special cases of N = 2 with strati�ed sampling, N = 1 with random assignment,

or N = 1 with testing an innovation, �only if�-statements along the line of proposition 1 can be shown. See the web

appendix for details.
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Furthermore, y0 and y1 need not be su¢ cient statistics for the sample under minimax regret. If a

sample of 4 is evenly strati�ed by treatment, then observations of (1; 1) on treatment 1 and (1; 0)

on treatment 0 lead to �� = 1; observations of (1; 1) respectively (1=2; 1=2) will, in contrast, lead to

treatment 1 being adopted with probability 0:875. To be sure, these di¤erences vanish as samples

become large. For all cases of proposition 1, one can verify that for every state s and hence also under

every prior (although not uniformly over S or �S), �� is asymptotically equivalent to an empirical

success rule.

4 Treatment Choice with Covariates

Assume now that there exists a �nite-valued covariate x 2 X = f1; : : : ; Xg with known distribution,

and regret is evaluated conditional on it. One might then wonder whether treatment rules should

take x at least partially into account or rather pool information across covariate values. This question

is at the core of Manski�s (2004) analysis. The answer is intuitively non-obvious for �nite samples

because one encounters a trade-o¤ between the decision rule�s resolution and the size of relevant

sample cells. Using bounds on regret, Manski (2004) establishes that for surprisingly small sample

sizes, covariate-wise empirical success rules dominate any decision rules that pool information. This

conclusion becomes much more stark under exact �nite-sample analysis: In the natural extension

of the previous propositions�setup, the minimax regret treatment rule will separate inference across

covariates for any sample size.

I establish this by showing a more general result which requires some more notation. Outcomes

are now contingent on covariates as well as treatments, thus the outcome variable is Ytx 2 [0; 1], and a

state of the world is a distribution s = P ((Y0x; Y1x)x2X ). A statistical treatment rule maps samples sN

into vectors of treatment assignment probabilities �(sN ) 2 [0; 1]X , whose components �x are identi�ed

with probabilities of assigning treatment 1 to subjects with covariate x.

The natural extension of the previous section�s state space to this situation, and also the extension

analyzed by Manski (2004), is to identify the set of states of the world S with the set of distributions

over [0; 1]2X . The present result, however, only needs the following structure: Let Sx denote the set

of possible distributions P (Y0x; Y1x), then S = �xSx, that is, the overall state space is the Cartesian

product of covariate-wise state spaces.

Fix any decision problem that consists of such a state space S and a sampling rule, implying a sample

space SN with typical element sN = f(tn; xn; yn)gNn=1. Then for any pre-assigned covariate x, one can

think of the problem of a decision maker who only knows Sx, only sees the restricted sample sNx �

f(tn; xn; yn) 2 sN : xn = xg, and only needs to assign treatment to future subjects with covariate

x. Let ��x be a minimax regret treatment rule for this restricted problem. In many cases, f��xgx2X
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will be known from previous propositions. For example, if the covariate is x 2 fmale; femaleg with

Pr(x = male) = 1=2, the sample is a size-N simple random sample from the population, and sample

treatments are assigned by coin toss, then ��female and �
�
male are characterized by proposition 1(ii). The

following proposition, however, is applicable beyond these examples because it holds independently of

whether the ��x are known.

Proposition 3 Let there be a �nite-valued covariate x. Then a decision rule �� achieves minimax

regret if it can be written as ��(sN ) = (��x(sNx))x2X , where the �
�
x are minimax regret solutions to

covariate-wise decision problems as just de�ned.

In words, proposition 3 establishes that the decision maker may completely separate inference

across covariates. The intuition for this is as follows: The �ctitious game�s utility function is additively

separable across treatments. With this in mind, consider a prior constructed such that (i) its marginal

for any covariate is a worst-case prior for the accordingly restricted decision problem and (ii) treatment

outcomes are independent across covariates. Then �� is easily seen to be a best response; in particular,

nothing is to be gained from cross-covariate inference. But the prior can also shown to be a best

response to ��.

Notice that this idea requires independence of treatment outcome distributions across covariates,

but not independence of sampling distributions. For example, it applies to simple random samples

from the population, even though cell sizes will then correlate. Indeed, this is the example given just

before the proposition.

Paradoxically, the recommendation based on exact �nite-sample analysis does not seem desirable

in a world of �nite samples. It requires one to condition on covariates even if this leads to extremely

small or empty sample cells. Whilst medical researchers might want to consider the e¤ect of race on

treatment outcomes, they will hardly want to altogether ignore experiences made with white subjects

when considering treatment for black subjects unless samples are extremely large. And I have not yet

mentioned the idea of conditioning on birthdays!

What�s more, proposition 3 suggests that as the support of a covariate grows, minimax regret

treatment rules will approach no-data rules, because the proportion of covariate values that have been

observed in the sample vanishes. Indeed, it is possible to extend the result to a continuous covariate,

and it is then true that a no-data rule achieves minimax regret. To formalize this, let X = (0; 1]. Then

a state s can be identi�ed with a pair of functions (�0x; �1x) : X ! [0; 1]2, and a decision rule maps

the sample space onto decision functions � : (0; 1]! [0; 1].

Proposition 4 Let x be continuous. Then min�2D fsups2S R(�; s)g = 1=2. This value is achieved by

the decision rule that sets ��(sN ) � 1=2, independent of sample observations.
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The above no-data rule is weakly dominated � if a covariate value observed in the sample ever

recurs exactly, the according sample information should be used. However this happens with zero

probability, so �� achieves minimax regret.

Propositions 3 and 4 pose a di¢ culty to advocates of minimax regret because no-data rules are

obviously undesirable. What�s more, the existence of easy examples in which the maximin utility

criterion generates them is frequently used against maximin utility, and sometimes in favor of minimax

regret as an alternative (Savage 1954, Schlag 2003, Manski 2004, and section 2 of this paper).

But perhaps, the problem lies not with minimax regret per se, but with underspeci�cation of prior

information. For example, the worst-case prior supporting proposition 3 replicates previous worst-case

priors conditional on any given covariate and furthermore renders (Y0x; Y1x) independent of (Y0x0 ; Y1x0).

Hence, Y1x is allowed to vary extremely widely across covariates; furthermore, signals conditional on

x are presumed to be entirely uninformative for treatment outcomes conditional on x0. One or both

of these implications are inappropriate in many applications. The decision situation should then be

respeci�ed so as to exclude them.

One possibility would be to restrict � to a set � � �S of admissible priors. Obviously, this makes

sense only if one indeed interprets � as a prior, but users who do so might �nd this approach very

helpful. For example, say a medical researcher wants to accommodate the possibility that reactions to

treatments di¤er widely by race and/or gender, yet also believes that across the universe of treatments,

this is the exception rather than the rule.

Alternatively, one can attempt to constrain the state space by means of plausible restrictions that

destroy the product structure of S. This approach should be attractive to non-Bayesians because it

does not rely on committing to priors. One such idea would be to endow S with some distance metric

and restrict attention to states in which (Y0x; Y1x) and (Y0x0 ; Y1x0) are not too far apart. To illustrate

the promise of such restrictions, I will now partially analyze one example along these lines.

Assumption 1 Bounded E¤ect of Covariates (BEC)

j�xt � �x0tj � k;8x; x0 2 X ; t 2 f0; 1g:

This assumption means that treatment outcomes cannot vary too much across covariates. It can be

scaled from �no e¤ect�to vacuousness as k ranges from 0 to 1. For those covariates where propositions

3 and 4 appear absurd, one would certainly be able to specify k rather low. Nonetheless such a

speci�cation will be conceptually subjective even when it is substantively uncontroversial. This matter

will be taken up in the concluding discussion.

A full analysis of the implications of BEC is currently beyond my reach, but the following lemmata

are instructive.

12



Lemma 1 Fix any one sampling scheme from proposition 1 but with covariate x 2 X and with

(Nx)x2X known. Then for any k > 0, there exist Nk s.t. proposition 3 applies if minx2X Nx = Nk.

(Nk can di¤er across sampling schemes.)

Lemma 2 For any case of proposition 1 and sample size N , there exists kN > 0 s.t. if assumption

BEC holds with k < kN , then there exists a minimax regret rule �
� with ���(sN ) � ��x0(sN ), i.e.

treatment assignment does not vary across covariates.

Lemma 1 can be seen as �robusti�cation�of proposition 3. It shows that the proposition does not

require the full Cartesian product structure of S but only an environment that is su¢ ciently permissive

with respect to j�tx � �tx0 j. At the same time, the lemma implies an interesting observation regarding

the asymptotic behavior of minimax regret. Obviously, minimax regret will asymptotically condition

on every covariate in the sense of converging to some decision rule that does so. Lemma 1 implies a

much stronger �nding: As long as k is strictly positive, full separation of inference across covariates

will be achieved for some sample size that is large enough (uniformly over x) but �nite.

Lemma 2 similarly robusti�es a rationale for ignoring covariates. To see this, note that if assumption

BEC is imposed with k = 0, then the covariate should trivially be ignored. This observation may su¢ ce

to resolve the problem with respect to subjects�birthdays, but not with respect to covariates like race

and gender, whose in�uence may sometimes believed to be small but rarely exactly zero. Lemma 2

establishes that complete ignorance of covariates will achieve minimax regret for k positive but small

enough. Thus, the policy of ignoring a covariate is robust to minor deviations from the assumption

that this covariate does not matter. Furthermore, inspection of the proof reveals that lemma 2 does

not require x to be discrete; hence, this result also applies to the problem pointed out in proposition

4.

5 Applications

I will now use �nite-sample results to compare the minimax regret value of di¤erent decision situations

and sample designs. These computations have numerous applications. Consider, therefore, a decision

maker who has to assign treatments contingent on observations from a sample of size N and a certain

pre-speci�ed design. This situation can be varied in several ways: one or both treatments may be

unknown, and there may or may not be a �nite-valued covariate. All in all, I will analyze the following

scenarios.

Case 1: Both treatments are unknown, and there is no covariate.
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Case 2: Both treatments are unknown, there exists a �nite-valued covariate with known distrib-

ution, and the sample is strati�ed according to covariate with Nx � 0.

Case 3: One treatment is known, and there is no covariate.

Case 4: One treatment is known, there exists a �nite-valued covariate with known distribution,

and the sample is strati�ed according to covariate with Nx � 0.

All of these scenarios are covered by previous propositions, so that their value in terms of �nite

sample minimax regret can be computed. Results are displayed below. To keep algebraic expressions

manageable, de�ne

B(n;N; p) �

0@ N

n

1A pn(1� p)N�n;
the probability of n successes in N draws under a binomial distribution with success rate p.

Proposition 5 Exact Minimax Regret Value of Di¤ erent Sample Designs

(i) Assume that case 1 applies, then minimax regret is

R1(N) = max
a2[1=2;1]

8<:(2a� 1)
24 X
0<n�N=20

B(n;N 0; a)

359=;
N 0 = max

M2N
fM � N :M is eveng:

(ii) Assume that case 2 applies, then minimax regret is

R2(N1; : : : ; NX) =
X

x=1;:::;X

Pr(x)R1(Nx):

(iii) Assume that case 3 applies, then minimax regret is

R3(N) = max
a2[0;�0]

8<:(�0 � a)
24 X
n�<n�N 0

B(n;N; a) + ��B(n�; N; a)

359=;
with (n�; ��) as in proposition 3.

(iv) Assume that case 4 applies, then minimax regret is

R4(N1; : : : ; NX) =
X
x2X

Pr(x)R3(Nx):

In all cases, Ri(0) = 1=2.

It is conceptually trivial to determine minimax regret values along the lines of (i) and (iii) for random

sample sizes, but the algebraic expressions will be very cumbersome since the objective functions

must involve an additional integration step. Similarly, (ii) and (iv) could be extended to random

strati�cations but with signi�cant notational and computational e¤ort.
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N0 1 2 3 4 5 6 7 8 9 10

R� :1250 :0870 :0706 :0609 :0543 :0495 :0458 :0428 :0403 :0382

R :25 :1481 :1066 :0883 :0765 :0681 :0617 :0568 :0528 :0495

N0 11 12 13 14 15 16 17 18 19 20

R� :0364 :0348 :0335 :0322 :0311 :0301 :0292 :0284 :0276 :0269

R :0467 :0442 :0422 :0403 :0387 :0372 :0359 :0347 :0336 :0326

N0 21 22 23 24 25 50 100 200 500 1000

R� :0263 :0257 :0251 :0246 :0241 :0170 :0120 :0085 :0054 :0038

R :0317 :0308 :0300 :0293 :0286 :0193 :0132 :0091 :0056 :0039

Table 3: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(two unknown treatments).

5.1 Performance of Empirical Success Rules

The empirical success rule, �ES � 1y1�y0 , is of special interest for at least three reasons. First, it

is probably the most obvious decision rule to employ. Second, it is the one used by Manski (2004).

Third, Hirano and Porter (2005) show how the machinery of Le Cam (1986) can be brought to minimax

regret problems. If their approach is applied to the scenarios considered here, then �ES emerges as

approximation to ��. Yet at the same time, �ES was seen to signi�cantly di¤er from the minimax

regret rule for small samples.

How much do these di¤erences matter in terms of regret incurred? By searching over a restricted

state space, one can numerically bound from below maxs2S R(�
ES ; s), the maximum regret incurred

by �ES . I do this �rst for the setting of proposition 1(i). If anything, this choice biases results in favor

of �ES because compared to proposition 1(ii), it renders �ES relatively similar to ��.

In table 3, the lower bound, labelled R, is contrasted with the exact maximal regret R� � as

evaluated from proposition 5 �for di¤erent sample cell sizes N0 = N=2. The table is justi�ed in more

detail in appendix B.

The approximation to �� comes at signi�cant cost when samples are very small, incurring at least

double the true minimax regret for N0 = 1. But the table also reveals convergence: For N0 = 20,

i.e. a sample size of 40, �ES incurs an ine¢ ciency of 21% of true minimax regret, and this percentage

becomes very small for large samples.

A similar exercise can be performed for the case that the expected outcome of one treatment is

known. The results are tables 4 through 6, which use the three values of �0 that were also considered

by Manski (2004). In these tables, the lower bound R sometimes displays erratic behavior, e.g. it

increases in N . This may occasionally re�ect movement in the true regret, but probably also attests to
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N 1 2 3 4 5 6 7 8 9 10

R� :0408 :0358 :0315 :0279 :0248 :0221 :0197 :0176 :0158 :0143

R :2256 :1270 :0859 :0634 :0492 :0396 :0326 :0273 :0232 :0199

N 11 12 13 14 15 16 17 18 19 20

R� :0130 :0120 :0111 :0103 :0096 :0090 :0087 :0087 :0086 :0086

R :0193 :0195 :0197 :0198 :0199 :0200 :0201 :0202 :0203 :0203

N 21 22 23 24 25 50 100 200 500 1000

R� :0085 :0084 :0083 :0081 :0080 :0054 :0037 :0026 :0017 :0012

R :0187 :0172 :0159 :0147 :0136 :0084 :0059 :0037 :0021 :0014

Table 4: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, ţ0=0.05).

N 1 2 3 4 5 6 7 8 9 10

R� :0900 :0516 :0389 :0380 :0345 :0299 :0268 :0265 :0252 :0232

R :1406 :0625 :0705 :0790 :0517 :0431 :0455 :0473 :0353 :0336

N 11 12 13 14 15 16 17 18 19 20

R� :0217 :0215 :0208 :0196 :0187 :0186 :0181 :0173 :0167 :0166

R :0346 :0354 :0279 :0280 :0285 :0289 :0238 :0242 :0245 :0248

N 21 22 23 24 25 50 100 200 500 1000

R� :0162 :0157 :0152 :0151 :0149 :0104 :0074 :0052 :0033 :0023

R :0213 :0215 :0218 :0220 :0193 :0132 :0090 :0060 :0036 :0025

Table 5: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, ţ0=0.25).

the di¢ culty of �nding the regret-maximizing state of nature; certain values of N and �0 allow for more

e¢ cient guesses than others. Nonetheless, it becomes apparent that the relative underperformance, in

terms of regret, of �ES is quite large for small and moderate sample sizes.

5.2 Comparing Sample Strati�cations

Proposition 5 can also be used to compare the value, in terms of minimax regret incurred by the optimal

decision rule, of di¤erent sample strati�cations. This replicates some of Manski�s (2004) analysis but

eliminates two elements of approximation. Firstly, computations are based on exact regret and not an

upper bound on it; secondly, they presume that conditional on sample designs, exact minimax regret

rules are chosen, whereas Manski restricts attention �ES . For the case of a binary covariate with
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N 1 2 3 4 5 6 7 8 9 10

R� :0625 :0625 :0435 :0435 :0353 :0353 :0304 :0304 :0272 :0272

R :1250 :1099 :0531 :0697 :0462 :0533 :0401 :0441 :0356 :0382

N 11 12 13 14 15 16 17 18 19 20

R� :0247 :0247 :0229 :0229 :0214 :0214 :0201 :0201 :0191 :0191

R :0321 :0340 :0294 :0309 :0273 :0284 :0255 :0264 :0240 :0247

N 21 22 23 24 25 50 100 200 500 1000

R� :0182 :0182 :0174 :0174 :0167 :0120 :0085 :0060 :0038 :0027

R :0227 :0233 :0216 :0221 :0206 :0143 :0096 :0066 :0040 :0028

Table 6: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, ţ0=0.5).

strati�cation according to Ntx, the resulting optimal strati�cations are shown in table 7, which can

be compared to Manski�s (2004, table II) display of what he calls �quasi-optimal strati�cations.�The

according comparison values are reproduced in parentheses.9

The table reveals that previous bounds had considerable slack. (Its two sources � suboptimal

performance of �ES and slack of large deviations bounds �are not separated here.) Accordingly, optimal

strati�cations frequently di¤er from the quasi-optimal ones, although not by very much. Furthermore,

proposition 5 allows for very fast computation of the solutions, so that the table can be extended to

much larger sample sizes.

6 Concluding Remarks

This paper contributes to a rather young literature in which a rather old criterion, namely minimax

regret, is applied to models of real-world decisions.10 The aim was to characterize �nite sample

minimax regret rules for the scenario analyzed by Manski (2004) and variations thereof. Important

results include the comparison between �� and �ES , not least because it illuminates the �nite sample

precision of asymptotic approximations as in Hirano and Porter (2005), and the �separate inference�

result on covariates, which reinforces a �nding in Manski (2004) to the point that contrary to its original

interpretation, the result may cast doubt on the minimax regret principle rather than on conventional

practice. On a more general level, I believe to have shown that exact analysis can generate some

signi�cant and rather general insights.

A natural question is whether the minimax regret criterion manages to convince the user. There

9As in Manski (2004) and in proposition 5 above, I restrict attention to deterministic strati�cations.
10The formal introduction of minimax regret is generally attributed to Savage (1951).
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Pr(X = 0) = :05 Pr(X = 0) = :25

N N00;N10 N01;N11 R N00;N10 N01;N11 R

4 0(0) 2(2) :108(:338) 1(1) 1(1) :125(:423)

8 1(0) 3(4) :073(:250) 1(1) 3(3) :084(:293)

12 1(1) 5(5) :058(:203) 2(2) 4(4) :067(:234)

16 1(1) 7(7) :050(:173) 3(3) 5(5) :058(:205)

20 1(2) 9(8) :045(:154) 3(3) 7(7) :052(:182)

24 2(2) 10(10) :041(:143) 4(4) 8(8) :047(:162)

28 2(2) 12(12) :037(:133) 5(5) 9(9) :044(:153)

32 2(2) 14(14) :035(:124) 5(6) 11(10) :041(:144)

36 2(2) 16(16) :033(:115) 6(6) 12(12) :038(:137)

40 3(2) 17(18) :031(:108) 7(7) 13(13) :037(:129)

44 3(2) 19(20) :030(:101) 7(8) 15(14) :035(:122)

48 3(2) 21(22) :029(:094) 8(8) 16(16) :033(:116)

52 3(3) 23(23) :027(:088) 8(8) 18(18) :032(:110)

60 4 26 :025 10 20 :030

80 5 35 :022 13 27 :026

100 6 44 :020 16 34 :023

200 12 88 :014 32 68 :016

500 31 219 :009 81 169 :010

1000 62 438 :006 163 337 :007

Table 7: Optimal (deterministic) sample strati�cations; values from Manski (2004a) in brackets.
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are two ways to investigate this question: One is axiomatic analysis, the other one is to look whether

actual minimax regret rules make sense. I will conclude by re�ecting on the latter in the light of

this paper�s �ndings. In particular, I will reconsider propositions 1(ii) and 3, partly because based on

reception of early drafts of this paper, they may contradict readers�intuitions, and partly because I

think that the discussion highlights signi�cant points.

With proposition 3, the case is rather easy. A minimax regret decider acts as if she had probabilistic

beliefs according to the worst-case prior ��. This need not mean that she actually believes ��, but it

will lead to satisfactory results only if �� is not entirely implausible. Hence, minimax regret treatment

rules �and maximin-type decision rules more generally �require proper speci�cation of all available

prior information. The most obvious way to do this is to restrict S; users who use minimax regret as

a prior selection device could alternatively make the set of admissible priors a subset of �S. Indeed, I

showed how one intuitive restriction on S will alleviate the problem by robustifying the rationale for

ignoring implausible covariates. It must be borne in mind, however, that this resolution is achieved by

introducing additional assumptions that may be uncontroversial but are subjective. One argument for

maximin-type rules as opposed to Bayesianism, namely that the former avoid the imposition of sub-

jective information, accordingly loses some of its force. Indeed, the imposition of BEC with subjective

parameter � blurs the distinction between the �classical�approach considered in this paper and the

robust Bayesians��-minimax regret approach, which imposes a set of priors and then uses minimax

regret to generate point-valued decision rules.

Proposition 1(ii) poses a more subtle challenge to intuitions and may even appear perfectly ac-

ceptable to many readers. But consider the following example (due to Chuck Manski): A sample of

size 1100 has been drawn, 1000 of which were allocated to treatment 0. Among these observations,

550 successes and 450 failures were observed. Among the 100 subjects assigned to treatment 1, 99

successes and 1 failure were observed. Then the minimax regret treatment rule prescribes to assign

all future subjects to treatment 0. Intuitively, this conclusion is less than obvious, and indeed, many

other decision criteria will prescribe treatment 1. What is going on here?

Some understanding can be gained by reconsidering the maximin utility criterion. Here as well

as in other papers, maximin utility generates trivial decision rules. The reason is that it optimizes

against a worst-case prior �� under which treatments are uniformly catastrophic even if sample evidence

overwhelmingly shows that this prior cannot be right. I suspect that this unresponsiveness to likelihoods

is the true problem of maximin utility, and that the triviality results are just symptoms. Furthermore,

the problem with proposition 1(ii) might be just the same. Given the worst-case prior that supports

�� (�either (�0; �1) = (a; 1 � a) or (�0; �1) = (1 � a; a)�), the prescription to choose treatment 0 is

doubtlessly correct. But the example presumes a sample outcome which is an extreme tail event under

either support point of this prior, thus it renders this prior overwhelmingly unlikely. If proposition
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1(ii) is seen as a problem, then I suggest that its cause lies in minimax regret�s selective ignorance of

likelihoods, or in other words, in the fact that the worst-case prior can be dogmatic on some dimensions.

These arguments are not intended to �prove�minimax regret �wrong.�On the contrary, I believe

that it deserves much further investigation, and also that other criteria, from classical statistics to

Bayesianism, have signi�cant drawbacks too. But obviously, these should not keep proponents of

minimax regret from being candid about potential drawbacks of this rule.

A Proofs

Preliminaries Most proofs proceed by analyzing the following zero-sum game: (i) The decision

maker chooses a statistical treatment rule � : sN ! [0; 1], Nature chooses a mixed strategy � 2 �(S)

over states s 2 S. (ii) A neutral meta-player draws s according to �, then sN according to s. (iii) The

decision maker�s payo¤ is E (R(�; s)). By standard results, the game has Nash equilibria in all cases

analyzed below. It is useful because of the following, well-known implication of the Maximin Theorem

(e.g., Berger 1985, section 5):11

Lemma 3 (i) A treatment rule �� achieves minimax regret i¤ there exists �� 2 �(S) s.t. (��; ��) is

a Nash equilibrium of the above game.

(ii) If the pair (��; ��) has this property, then ��� [���] achieves minimax regret i¤ (���; ��)

[(��; ���)] has the property as well.

Whilst I will not give a complete proof, here is an intuition for why this works. A minimax regret

treatment rule must solve

�� 2 argmin
�eD

�
max
s2S

R(�; s)

�
= argmin

�eD

�
max
�2�S

Z
R(�; s)d�

�
;

where the equality holds because the expectation is a linear operator, hence both maximization prob-

lems have the same value. But then one can write

�� 2 argmin
�eD

�Z
R(�; s)d��

�
;

where

�� 2 arg max
�2�S

�Z
R(��; s)d�

�
:

Yet these two conditions just say that (��; ��) must be a �xed point of the �ctitious game�s best-

response correspondence.

11The statement of the result presumes that S is compact, which is given in all applications in this paper; a more

general formulation would require the use of limit operators.
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In general, a state s is given by a distribution P
�
(Y0x; Y1x)

X
x=1

�
2 �[0; 1]2X , where Ytx is the

outcome induced by treatment t and covariate x. Since joint realizations of (Y0x; Y1x) are never

observed, the distribution of sN depends on the distribution of (Y0x; Y1x) only through the latter�s

marginals. Furthermore, regret directly depends on this distribution only through (�0x; �1x). Hence,

it is w.l.o.g. to impose that Y0x and Y1x are independent. When covariates are not considered, x

is dropped from notation. When outcomes are binary, the distribution of Ytx is Bernoulli and fully

characterized by �tx � E(Ytx). Thus, in the setup of proposition 1(i)-(ii), a state is really a couplet

s = (�0; �1), and in the setup of proposition 1(iii), a scalar s = �1.

In any given state s, one treatment is better, and that treatment�s expected outcome de�nes the

utility frontier. Absent covariates, regret is therefore given by

R(�; s) = max f�0; �1g � [�0E(1� �(�)) + �1E�(�)]

= (�1 � �0)
+
E(1� �(�)) + (�0 � �1)

+
E(�(�));

where Y + � maxfY; 0g is the positive restriction of Y . (The second expression has a direct intuition:

For a given s, only one summand is nonzero, and it equals the utility loss caused by choosing the

wrong treatment, weighted by the probability of doing so.)

I will frequently use the fact that any s in the support of �� must individually maximize R(��; s).

Proposition 1

(i) Let �� be as stated in the proposition, then �� is a best response i¤ it is supported on

arg max
(�0;�1)2[0;1]2

�Z
(�1 � �0)

+

��
Pr(y0 > y1jN) +

1

2
Pr(y0 = y1jN)

��
dP (N)

+

Z
(�0 � �1)

+

�
Pr(y1 > y0jN) +

1

2
Pr(y1 = y0jN)

�
dP (N)

�
where P (N) is the distribution of N .

This argmax is nonempty since the objective is continuous and the feasible set is compact, and it

is symmetrical in �0 and �1. Hence, it contains (a; b) i¤ it contains (b; a), and �
� can be chosen to

randomize evenly between s0 � (a; b) and s1 � (b; a) for some a > b. The best response to this �� will

equal 1 if the posterior probability of s1 exceeds the one of s0 and 0 otherwise, where the tie-breaking

rule is not restricted. Since s0 and s1 have equal prior probability, the posterior probability of s1

exceeds that of s0 i¤ the sample is more likely given s1. The following argument shows that this is the
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case i¤ y1 > y0:

Pr((Ny0; Ny1) = (n0; n1)js0) > Pr((Ny0; Ny1) = (n0; n1)js1)

() B(n0; N; a)B(n1; N; b) > B(n0; N; b)B(n1; N; a)

()

0@ N

n0

1A an0(1� a)N�n0
0@ N

n1

1A bn1(1� b)N�n1 >

0@ N

n0

1A bn0(1� b)N�n0
0@ N

n1

1A an1(1� a)N�n1
()

�
a

1� a

�n0�n1
>

�
b

1� b

�n0�n1
() n0 � n1 > 0:

Thus (��; ��) is a Nash equilibrium. As any other minimax regret decision rule ��� must be best

against ��, �� is unique whenever it is a strict best response, that is, except when y0 = y1. Restrict

attention to decision rules that depend only on (y0; y1), then it follows that �
� is unique up to the

tie-breaking probability. Assume this probability favors treatment t, then Nature will want to deviate

to the pure strategy concentrated on s1�t. Thus tie-breaking must be even.

(ii) Assume �� randomizes evenly between s0 � (a; 1�a) and s1 � (1�a; a) for some a 2 [1=2; 1],

thus treatment t is the correct choice in state st. Conditional on a sample of size N having been

observed, the best response to �� equals 0 if the likelihood ratio between s0 and s1 exceeds 1. Every

realization of y0 = 1 or y1 = 0 increases this likelihood ratio by a factor a=(1�a), whereas every other

event reduces it by the same factor, thus the likelihood ratio induced by the sample is

LN =

�
a

1� a

� #(observations of y0=1)
+#(observations of y1=0)

�
1� a
a

� #(observations of y1=1)
+#(observations of y0=0)

=

�
a

1� a

�IN
and �� is indeed a best response to ��. It remains to verify that some �� of the hypothesized form is

a best response to ��, i.e. it is supported on

arg max
(�0;�1)2[0;1]2

�
(�1 � �0)

+

�
Pr(IN > 0) +

1

2
Pr (IN = 0)

�
+ (�0 � �1)

+

�
Pr(IN < 0) +

1

2
Pr (IN = 0)

��
:

As before, this argmax is nonempty and symmetric in the sense that it contains (a; b) i¤ it contains

(b; a). It therefore su¢ ces to show that it contains an element (a; 1� a). This is done by establishing

that the objective function depends on (�0; �1) only via (�1 � �0).

It clearly su¢ ces to show that IN is independent of �0 given (�1 � �0), for any N . The proof will

be by induction over N , thus assume the result for N = n and consider Pr(In+1 = x). This event can

occur in four ways: Either the �rst n sample points induced In = x� 1 and the last observation was
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y0 = 1 or y1 = 0, or In = x+ 1 and one of the other events happened. Thus

Pr(In+1 = x) = Pr(In = x� 1) �
�
1

2
�0 +

1

2
(1� �1)

�
+ Pr(In = x+ 1) �

�
1

2
(1� �0) +

1

2
�1

�
= Pr(In = x� 1) �

�
1

2
+
1

2
(�0 � �1)

�
+ Pr(In = x+ 1) �

�
1

2
+
1

2
(�1 � �0)

�
:

The proof is concluded by observing that I0 is deterministically equal to zero and therefore independent

of �0 given (�1 � �0). Uniqueness can be shown as in (i).

(iii) Assume that �� is as stated, then �� must be supported on

arg max
a2[0;1]

f(�0 � a)
+
[Pr(Ny1 > n

�j�1 = a) + �� Pr(Ny1 = n�j�1 = a)]

+ (a� �0)+ [Pr(Ny1 < n�j�1 = a) + (1� ��) Pr(Ny1 = n�j�1 = a)]g:

Assume by contradiction that �0 � a a.s. given ��, then the decision maker�s best response would

be to always choose treatment 0, but then �� would cause zero regret and therefore fail to maximize

regret (strictly positive regret can obviously be enforced). A similar argument excludes the possibility

that �0 � a a.s. given ��. Thus �� must randomize over at least one a s.t. �0 � a and one a0 s.t.

�0 � a0. This, however, requires that both of these be in the above argmax and therefore that

max
a2[0;1]

f(�0 � a) [Pr(Ny1 > n�j�1 = a) + �� Pr(Ny1 = n�j�1 = a)] =

max
a2[0;1]

f(a� �0) [Pr(Ny1 < n�j�1 = a) + (1� ��) Pr(Ny1 = n�j�1 = a)]g :

This is the condition stated. De�ne � � n+1�� 2 [0; N + 1]. This is a smooth indicator of a treatment

rule�s conservatism, with � = 0 respectively � = N+1 indicating no-data rules that always respectively

never assign treatment 1. It is easy to see that Pr(Ny1 > nj�1 = a) + �Pr(Ny1 = nj�1 = a) strictly

decreases in � for any a; thus the l.h.s. of the above equation strictly decreases in � and similarly,

the r.h.s. increases in it. Furthermore, both l.h.s. and r.h.s. are continuous in �, the l.h.s. is zero for

� = 0 and one for � = N + 1, and the r.h.s. is zero for � = N + 1 but one for � = 0. It follows that

equality obtains at exactly one intermediate value of � and, by implication, of (n; �).

To prove that this value is (n�; ��), it remains to show that �� can be found s.t. �� is a best

response. Conjecture that �� randomizes over two states a and b with a < �0 < b. Denote by �
�
a the

probability of state a. For the decision maker to randomize at Ny1 = n
�, this observation must induce

indi¤erence between the treatments conditional on Bayesian updating of ��, hence

(b� �0) Pr(�1 = bjNy1 = n�) = (�0 � a) Pr(�1 = ajNy1 = n�)

=) (b� �0) Pr(Ny1 = n�j�1 = b) � (1� ��a) = (�0 � a) Pr(Ny1 = n�j�1 = a) � ��a

=) ��a =
(b� �0) Pr(Ny1 = n�j�1 = b)

(b� �0) Pr(Ny1 = n�j�1 = b) + (�0 � a) Pr(Ny1 = n�j�1 = a)
2 (0; 1);
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so an appropriate ��a can always be found. Since the Binomial distribution has the Monotone Likelihood

Ratio property, it is immediate that for this ��a, the decision maker will strictly prefer treatment 1 [0]

i¤ Ny1 > [<]n
�. Thus, uniqueness can be shown as before.

Proposition 2 Consider the �ctitious game in which Nature�s action space is restricted to S 0. Let

(�0; �0) be a Nash equilibrium. Conditional on �0, �� as de�ned in the proposition coincides with �0

and is, therefore, a best response to it as well. But on the other hand, R(��; s) depends on s only

through (�0; �1), implying that R(�
�; s) = R(��; s0). This is obvious for the direct e¤ect of s; as to its

indirect e¤ect via ��(sN ), it is achieved by stage (i) in the construction of �
�. Since S 0 � S, it follows

that �0 is a best response to �� on �S. Hence, (��; �0) is a Nash equilibrium of the original game.

Proposition 3 Fix a sampling scheme and presume that for every covariate x, f(��x; ��x)g is a Nash

equilibrium of the appropriately restricted game. Assume now that the decision maker uses �� as

de�ned in the proposition. Nature then seeks to maximize

R(��; s) =
X
x2X

Pr(X = x) �
�
(�1x � �0x)

+
E(1� ��x(sNx)) + (�0x � �1x)

+
E(��x(sNx))

�
;

Due to its additive separability, this objective function will be maximized by every element of�x2X supp(��x).

Let �� be the prior that has marginals (��x)x2X and furthermore renders (Y0x; Y1x) independent of

(Y0x0 ; Y1x0) for every x 6= x0. Technically, if ��x(sx) denotes the probability that ��x assigns to sx, then

�� assigns probability ��(s) �
Q
x2X

��x(sx) to s � (sx)x2X . This prior is supported on �x2X supp(��x)

and hence a best response to ��. Furthermore, since draws from �� generate no signals across covari-

ates, �� is a best response to ��.

Proposition 4 Fix N and assume for simplicity that X is distributed uniformly over (0; 1]; this

can always be achieved by reparameterization. The proof will be by construction of a sequence of

priors f�ig s.t. limi!1min�2D
�R
R(�; s)d�

	
= 1=2. Fix i 2 N and de�ne the partition Pi �

f(0; 1=i]; : : : ((i � 1)=i; 1]g. Consider the set of mappings
n
f ji

o2i
j=1

from (0; 1] into f0; 1g that are

measurable on Pi. (There are 2i di¤erent such mappings since they can be identi�ed with the set of

i-tuples of zeros and ones. Let j index them in an arbitrary order.) Identify the state sji with the

degenerate distribution P (Y0x; Y1x) concentrated at

Y0x = 1fji (x)=1

Y1x = 1� Y0x:

Let �i be the uniform distribution over states
n
sji

o2i
j=1
.
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Consider now the Bayes act for �i contingent on observation of a sample f(tn; xn; yn)gNn=1. To

write it down, de�ne P xi to be the element of Pi that contains x. Then

�� �

8>>><>>>:
0;

�
P xi 2 [Nn=1P xni

�
^ [xn 2 P xi ) yn = 1� tn]

1;
�
P xi 2 [Nn=1P xni

�
^ [xn 2 P xi ) yn = tn]

1=2 otherwise.

is a Bayes act. This is obvious from a verbal description: The sample has revealed P (Y0x; Y1x) for all

x s.t. P xi occurred in the sample, i.e. whenever P
x
i 2 [Nn=1P xni . In this case, �� follows the signal in

the obvious way. The sample is completely uninformative otherwise; �� re�ects this by the (arbitrary)

tie-breaking probability of 1=2. The expected regret incurred by �� can be computed by evaluating

E (R(��; s)) over any state sji . The numerical result is

E
�
R
�
��; sji

��
= 0 � Pr

�
P xi 2 [Nn=1P xni

�
+
1

2
� Pr

�
P xi =2 [Nn=1P xni

�
� 1

2
� i�N

i
! 1

2

as i!1. Here, the inequality uses the fact that a sample of size N can be distributed over at most

N elements of Pi. This establishes the claim. Notice �nally that although I use step functions s
j
i , the

result holds if (�0x; �1x) is restricted to be continuous in x since the s
j
i could easily be smoothed.

Lemma 1 I show the proof for strati�ed samples only. From propositions 1(i) and 3, the minimax

regret treatment rule without assumption BEC is supported by a worst case prior �� that randomizes

evenly over �x2X f(ax; 1� ax) ; (1� ax; ax)g, where the notation suppresses that ax 2 [1=2; 1] is a

function of Nx. The regret incurred conditional on x can be written as

R(��x; �
�
x) = (ax � (1� ax))E(1� ��x(sNx))

= (2ax � 1)

0@ X
n<Nx=2

B(n;Nx; ax) +
1

2
B(n;Nx=2; ax)

1A
d! (2ax � 1)�

�
�N1=2

x

ax
1� ax

(ax � 1=2)
�
;

where the last step approximates the binomial distribution by a Normal one. Because ax > 1=2,

ax=(1 � ax) does not vanish. Suppose by contradiction that limNx!1 ax > 1=2, then R(��x; �
�
x)

vanishes at exponential rate (according to the tails of the Normal distribution). In contrast, assume

that ax�1=2 = O
�
N
�1=2
x

�
, then � (�) converges to a positive number and R(��x; ��x) = O

�
N
�1=2
x

�
, i.e.

the convergence is slower. It follows that limNx!1 ax = 1=2 and hence limNx!1 (ax � (1� ax)) = 0.

Clearly the result holds uniformly over x, so if minx2X Nx is large enough, then the worst-case prior

is consistent with assumption BEC, and the �ctitious equilibrium is unchanged.

Lemma 2 Consider the �ctitious game in which (i) Nature is restricted to play states which ful�l

(�x1 � �x0)(�x01 � �x00) � 0;8x; x0 2 X , i.e. optimal treatment does not vary across covariates, (ii)
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the decision maker is restricted to play decision rules with ��x(sN ) = �
�
x0(sN );8x; x0 2 X . This game

has a Nash equilibrium which supports a minimax regret decision rule as described in the lemma, and

which has some value R� > 0. It is easy to see that at this equilibrium, (ii) does not constrain the

decision maker. It remains to show that for k small enough, (i) does not constrain Nature.

Consider, therefore, a deviation by Nature to a state where the correct treatment di¤ers across

covariates. Clearly, the regret such achieved is bounded above by maxx2X fj�x1 � �x0jg. For any

x 2 X with �x1 � �x0, pick x
0 2 X with �x01 � �x00 (x

0 exists due to the presumed nature of the

deviation) and write

�x1 � �x0 = �x1 � �x01| {z }
�k

+ �x01 � �x00| {z }
�0

+ �x00 � �x0| {z }
�k

� 2k:

Clearly the same bound applies to �x0 � �x1 and hence to expected regret, thus Nature will not want

to deviate from the original equilibrium if k � R�=2.

Proposition 5

(i) I �rst establish the claim for the setting of proposition 1(ii). The minimax regret value of the

game is the value function of Nature�s best-response problem at the equilibrium, hence

R1(N) = max
�0;�12[0;1]

�
(�1 � �0)

+

�
Pr(IN > 0) +

1

2
Pr (IN = 0)

��
;

where I can omit the term (�0 � �1)
+ �
Pr(IN < 0) +

1
2 Pr (IN = 0)

�
because of the objective function�s

symmetry. Recalling also that in equilibrium, �1 = 1� �0, one immediately �nds that for odd N ,

R1(N) = max
a2[1=2;1]

f(2a� 1)Pr(IN > 0)g = max
a2[1=2;1]

8<:(2a� 1)
(N�1)=2X
n=0

B(n;N; a)

9=; :
If N is even, then IN must be even as well. Consider ignoring the last sample point. If IN 6= 0, this will

not a¤ect the treatment rule. If IN = 0, then since the treatment assignment rule is symmetric, this

amounts to an even ex ante randomization (although not, in general, an ex post randomization). Hence,

the treatment rule that ignores the last sample point achieves minimax regret, hence R(N) = R(N�1)

for even N .

It remains to show that the same value applies to the setting of proposition 1(i). To do this, consider

the �ctitious game used to prove proposition 1. The worst-case prior is an even randomization between

two states s0 � (a+�; a) and s1 � (a; a+�) for some � � 1=2 and � � 1�a. If one restricts Nature

to choose priors that can be parameterized in this form, the constraint on her strategy set does not

bind at the equilibrium, hence the game�s value is una¤ected. I therefore analyze this restricted game.

Consider the signal generated by any pair of sample points that have been assigned di¤erent treat-

ments. This signal can be written as (y0; y1) and can take values in f(0; 0); (1; 1); (0; 1); (1; 0)g. The
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�rst two of these induce the same likelihood ratio between s0 and s1 �namely, 1 �and therefore the

same updating from any prior �namely, none. Hence, � � y1 � y0 is a su¢ cient statistic for (y0; y1),

and the game�s equilibrium path is una¤ected by replacing the signal (y0n; y1n)
N=2
n=1 with (�n)

N=2
n=1.

The distribution of �n is characterized as

(Pr(� = �1);Pr(� = 0);Pr(� = 1)) = (a(1� a��); 1� a(1� a��)� (a+�)(1� a); (a+�)(1� a)):

Evaluation of �rst- and second-order conditions shows that both Pr(� = �1) and Pr(� = 1) are

maximized, and Pr(� = 0) is minimized, when a = (1 ��)=2. In particular, the minimized value of

Pr(� = 0) equals (1 � �2)=2. Now consider the following, further manipulation of the game: �n is

replaced by �0n, which is distributed as �n except that

�
�0nj�n = 0

�
�

8>>><>>>:
0 with probability (1��2)

2 Pr(�n=0)

1 with probability 1
2

�
1� (1��2)

2 Pr(�n=0)

�
�1 with probability 1

2

�
1� (1��2)

2 Pr(�n=0)

� ;

where all these probabilities lie on [0; 1] due to arguments immediately preceding the expression.

(Intuitively, the neutral signal is sometimes replaced by a coin toss.) For any (a;�), the regret incurred

by the decision maker�s best response increases through this manipulation. To see this, �x any (a;�),

then expected regret under the best response is the product of � and the probability that the decision

maker will incorrectly infer which of fs0; s1g was realized. But the latter probability increases as the

signal (�n)
N=2
n=1 is garbled. It follows that the manipulated game has a higher regret value than the

original game.

I now solve the manipulated game. Straightforward algebra reveals that for any (a;�), the full

distribution of �0n is as follows:

�0n �

8>>><>>>:
0 with probability (1��2)

2

1 with probability
�
1+�
2

�2
�1 with probability

�
1��
2

�2 :

This distribution does not depend on a. Without loss of generality, I can therefore restrict nature

to choose a = 1��
2 . But now, it is easily veri�ed that a Nash equilibrium for this game is given by

the objects (��; ��) from proposition 2. It follows that the game�s value is R1. Recalling that the

manipulated game must have a higher value than the original one, it follows that the minimax regret

value for proposition 1 is bounded from above by R1. But Nature can enforce R1 in that game by

playing ��; thus, its value is also bounded from below by R1.

(ii)

Straightforward.

(iii)
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This follows from proposition 3 just like part (i) follows from proposition 2 (without any adjustments

for N being even).

(iv)

Straightforward.

B Explanation of Tables 3-6

In this section, I elaborate how the lower bounds on regret R, displayed in tables 3 and 4, have been

computed.

Consider the problem of maximizing regret against an empirical success rule,

max
P (Y0;Y1)2�[0;1]2

�
(�1 � �0)

�
Pr (y0 > y1) +

1

2
Pr(y0 = y1)

��
:

A full treatment of this problem appears very hard. But its value can be bounded from below by

searching over a restriction of �[0; 1]2. In particular, I consider the following cases:

� Both treatments induce Bernoulli distributions, i.e. the search space is restricted to � f0; 1g2;

similar to previous arguments, the search parameters are then just (�0; �1).

� Treatment 0 induces a degenerate distribution concentrated at some point �0, whereas treatment

1 has a Bernoulli distribution. This case has two subcases according as �1 > [<]�0.

All of these cases incur an open set problem. This is easily seen when both outcomes are binary.

In case that y0 = y1, the decision rule will assign the correct treatment half the time. Regret can,

therefore, be increased by letting the better of the two treatments be supported (with unchanged

probabilities) on f0; 1 � "g rather than f0; 1g. By letting " ! 0, one can approximate the e¤ect of a

decision rule whose tie-breaking goes in the wrong direction. A similar problem exists with case 2. To

generate well-behaved problems, I therefore rig the tie-breaking rule against the decision maker in all

cases. As a result, I strictly speaking establish that the bounds displayed in the tables are approachable

as opposed to achievable.

With these remarks in mind, alternative lower bounds on the regret can be computed as follows. In

these expressions, B stands for binomial probabilities as above, and F represents the binomial c.d.f.,

i.e. F (n;N; �) �
Pn

i=0B(i;N; �).

� Case 1: max�0;�12[0;1]
n
(�1 � �0)

PN
n=0B(n;N; �0) � F (n;N; �1)

o
:

� Case 2, �rst subcase: max�0;�12[0;1] f(�1 � �0)F (�0N;N; �1)g.

� Case 2, second subcase: max�0;�12[0;1] f(�0 � �1) (1� F (�0N � 1; N; �1)g.
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Table 3 is generated by numerical evaluation of all of these. The two subcases of case 2 turn out

to yield identical regrets. Cases 1 and 2 coincide for N = 1. Otherwise, case 2 binds, i.e. yield the

highest regret, for N = 2, and case 1 binds thereafter.

Table 4 only uses case 1, but with the variation that the support of Y1 is generalized to f0; xg.

The idea here is the following: If one evaluates case 1 only, then R sometimes sharply increases in N ;

for example, this occurs if �0 = 0:25 and N moves from 3 to 4. In the speci�c example, this happens

because for N = 4, treatment 1 will be rejected even if one success is recorded. For any given Bernoulli

distributed treatment, the probability of it being adopted therefore jumps downward, which means

that for any such treatment with parameter exceeding �0 �i.e. one that should, in fact, be adopted

�, regret increases.

This observation spawns an intuition: Perhaps for N = 3 and �0 = 0:25, one might want to

consider distributions Y1 supported on f0; 3=4g because in this case, one success in 4 trials will still

lead to rejection. Indeed, this is how the according cell of table 4b has been found. More generally,

I search over some salient guesses of the upper support point and also execute an algorithm in which

this variable is handed down to the maximizer.
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