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We propose a new test to determine whether jumps are present in asset
returns or other discretelly sampled processses. As the sampling interval
tends to 0, our test statistic converges to 1 if there are jumps, and to another
deterministic and known value (such as 2) if there are no jumps. The test is
valid for all Itô semimartingales, depends neither on the law of the process
nor on the coefficients of the equation which it solves, does not require a
preliminary estimation of these coefficients, and when there are jumps the test
is applicable whether jumps have finite or infinite activity and for an arbitrary
Blumenthal-Getoor index. We finally implement the test on simulations and
asset returns data.

1. Introduction. The problem of deciding whether the continuous time process
which models an economic or financial time series should have continuous paths
or exhibit jumps is becoming an increasingly important issue, in view of the high
frequency observations that are now widely available. In the case where a large jump
occurs, a simple glance at the dataset might be sufficient to decide this issue. But
such large jumps are usually infrequent, may not belong to the model itself, can be
considered as breakdowns in the homogeneity of the model, or may be dealt with
separately using other methods such as risk management.
On the other hand, a visual inspection of most such time series in practice does not

provide a clear evidence for either the presence or the absence of small or medium
sized jumps. Since small frequent jumps should definitely be incorporated into the
model, and since models with and without jumps do have quite different mathemati-
cal properties and financial consequences (for option hedging, portfolio optimization,
etc.), it is important to have statistical methods that can shed some light on the
issue.
Determining whether a process has jumps has been considered by a number of

authors. Aït-Sahalia (2002) relies on restrictions on the transition function of the
process that are compatible with continuity of the process, or lack thereof, to derive
a test for the presence of jumps at any observable frequency. Using high frequency
data, Carr and Wu (2003) exploit the differential behavior of short dated options
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to test for the presence of jumps. Multipower variations can separate the contin-
uous part of the quadratic variation, see Barndorff-Nielsen and Shephard (2004)
or Barndorff-Nielsen and Shephard (2006). Andersen et al. (2003) and Huang and
Tauchen (2006) study financial datasets using multipower variations, in order to as-
sess the proportion of quadratic variation attributable to jumps. Jiang and Oomen
(2005) construct a test motivated by the hedging error of a variance swap replica-
tion strategy. Other methods have been introduced as well, see e.g. Lee and Mykland
(2005), and the literature about evaluating the volatility when there are jumps (see
e.g., Aït-Sahalia (2004), Aït-Sahalia and Jacod (2006), Mancini (2001), Mancini
(2004) and Woerner (2006b)) can also be viewed as an indirect way of checking for
jumps. Woerner (2006a) proposes estimators of the Blumenthal-Getoor index or the
Hurst exponent of a stochastic process based on high frequency data, and those can
be used to detect jumps and their intensity.

These are two closely related but different issues: one is to decide whether jumps
are present or not, another one is to determine the impact of jumps on the overall
variability of the observed process. So far, most of the literature has concentrated on
the second issue, and it usually assumes a special structure on the process, especially
regarding its jump part if one is present, such as being a compound Poisson, or
sometimes a Lévy process. We plan to have a systematic look at the question of
measuring the impact of jumps in a future paper, using a variety of distances and
doing so under weak assumptions, and also taking into account the usually non-
negligible market microstructure noise.

In this paper, we concentrate on the first problem, namely whether there are
jumps or not, while pretending that the underlying process is perfectly observed at
n discrete times, and n is large. We introduce a direct and very simple test which
gives a solution to this problem, irrespectively of the precise structure of the process
within the very large class of Itô semimartingales.

More specifically, a process X = (Xt) on a given time interval [0, T ] is observed
at times i∆n for ∆n = T/n. We propose an easy-to-compute family of test statis-
tics, say Sn, which converge as ∆n → 0 to 1 if there are jumps, and to another
deterministic and known value (such as 2) if there are no jumps. This holds as soon
as the process X is an Itô semimartingale, and it depends neither on the law of
the process nor on the coefficients of the equation which it solves, and it does not
require any preliminary estimation of these coefficients. We provide a central limit
theorem for Sn, under both alternatives (jumps and no jumps): again this does not
require any a priori knowledge of the coefficients of the model, and when there are
jumps it is applicable whether the jumps have finite or infinite activity, and for an
arbitrary Blumenthal-Getoor index. Hence we can construct tests with a given level
of significance asymptotically and which are fully non-parametric.

The paper is organized as follows. Sections 2 and 3 describe our setup and the
statistical problem. We provide Central Limit Theorems for our proposed statistics
in Section 4, and use them to construct the actual tests in Section 5. We present



TESTING FOR JUMPS 3

the results of Monte Carlo simulations in Section 6, and in Section 7 examine the
empirical distribution of the test statistic over all 2005 transactions of the Dow Jones
stocks. Proofs are in Section 8.

2. Setting and assumptions. The underlying process X which we observe at
discrete times is a 1-dimensional process which we specify below. Observe that taking
a 1-dimensional process is not a restriction in our context since, if it were multi-
dimensional, a jump would necessarily be a jump for at least one of its components,
so any test for jumps can be performed separately on each of its components.
As already mentioned, we do not want to make any specific model assumption

on X, such as assuming some parametric family of models. We do need, however, a
mild structural assumption which is satisfied in all continuous time models used in
finance, at least as long as one wants to rule out arbitrage opportunities. In any case,
in the absence of some kind of assumption, anything can happen from a continuous
process which is a linear interpolation between the observations, to a pure jump
process which is constant between successive observation times.
Our structural assumption is that X is an Itô semimartingale on some filtered

space (Ω,F , (Ft)t≥0,P), which means it can be written as

Xt = X0 +

Z t

0
bsds+

Z t

0
σs dWs +

Z t

0

Z
E
κ ◦ δ(s, x)(µ− ν)(ds, dx)

+

Z t

0

Z
E
κ0 ◦ δ(s, x)µ(ds, dx).(1)

where W and µ are a Wiener process and a Poisson random measure on [0, 1]× E
with (E,E) an auxiliary measurable space on the space (Ω,F , (Ft)t≥0,P) and the
predictable compensator (or intensity measure) of µ is ν(ds, dx) = ds ⊗ λ(dx) for
some given finite or σ-finite measure on (E,E). Moreover κ is a continuous function
with compact support and κ(x) = x on a neighborhood of 0, and κ0(x) = x− κ(x).
Above, the function κ is arbitrary, a change of this function amounts to a change

in the drift coefficient bt. Also, it is always possible to take (E,E, λ) to be R equipped
with Lebesgue measure.
Of course the coefficients bt(ω), σt(ω) and δ(ω, t, x) should be such that the various

integrals in (1) make sense (see for example Jacod and Shiryaev (2003) for a precise
definition of the last two integrals in (1)), and in particular bt and σt are optional
processes and δ is a predictable function. However we need a bit more than just the
minimal integrability assumptions, and our additional requirements are expressed
as follows :

Assumption 1. (a) All paths t 7→ σt(ω) are right-continuous with left limits.
(b) All paths t 7→ bt(ω) are locally bounded.
(c) All paths t 7→ supx∈E

|δ(ω,t,x)|
γ(x) are locally bounded, where γ is a (non-random)

nonnegative function which satisfies
R
E(γ(x)

2 ∧ 1)λ(dx) <∞.
(d) We have

R t
0 |σs| ds > 0 a.s. for all t > 0.
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Apart from (a), these conditions are simply some local boundedness conditions on
the coefficients, which are satisfied in all concrete models, plus the non-degeneracy
condition (d) which says that almost surely the continuous martingale part of X is
not identically 0 on any interval [0, t] with t > 0. Most results of this paper are true
without (d), but not all, and in any case this condition is satisfied in all applications
we have in mind. For example if we consider a d-dimensional equation

(2) dYt = f(Yt−)dZt

where Z is a multi-dimensional Lévy process with Gaussian components, and f is
a continuous, locally Lipschitz function with at most linear growth, then any of the
components of Y satisfies (a,b,c) of Assumption 1. The same holds for more general
equations driven by a Wiener process and a Poisson random measure.
For some of the results we will derive, we will need more than Assumption 1.

Below, W and µ are as in (1), and W 0 is another Wiener process independent of
(W,µ):

Assumption 2. We have Assumption 1, and the process σ has the form

σt = σ0 +

Z t

0

ebs ds+ Z t

0
eσs dWs +

Z t

0
eσ0s dW 0

s +

Z t

0

Z
E
κ ◦ eδ(s, x)(µ− ν)(ds, dx)

+

Z t

0

Z
E
κ0 ◦ eδ(s, x)µ(ds, dx),(3)

and further:
(a) All paths t 7→ ebt(ω) are locally bounded.
(b) All paths t 7→ bt(ω), t 7→ eσt(ω), t 7→ eσ0t(ω) are right-continuous with left limits.
(c) All paths t 7→ δ(ω, t, x) and t 7→ eδ(ω, t, x) are left-continuous with right limits,

and further eδ satisfies the same condition than δ in (Assumption 1-(c)).

This hypothesis is satisfied for instance if X is a component of a process Y like
in (2) as soon as f is C2, and it also accommodates virtually all models for sto-
chastic volatility, including those with jumps, and allows for correlation between the
volatility and the asset price processes.

3. The statistical problem.

3.1. Preliminaries. Our process X is discretely observed over a given time in-
terval [0, T ], and it is convenient in practice to allow T to vary. So we suppose that
X can be observed at times i∆n for all i = 0, 1, · · · , and we take into account only
those observation times i∆n smaller than or equal to T , whether T is a multiple of
∆n or not. Moreover the testing procedures given below are asymptotic, in the sense
that we can specify the level or the power function asymptotically as n → ∞ and
∆n → 0.
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Recall that we want to decide whether there are jumps or not, for the process
(1); equivalently, we want to decide whether the coefficient δ is identically 0 or not.
A few remarks can be stated right away, which describe some of the difficulties or
peculiarities of this statistical problem:

1. It is a non-parametric problem: we do not wish to specify the coefficients b, σ,
δ.

2. It is an asymptotic problem, which only makes sense for high frequency data.

3. When “n is infinite”, that is in the ideal although unrealistic situation of a com-
plete observation of the path of X over [0, T ], we can of course tell whether our
particular path has jumps of not. However, when the measure λ is finite there
is a positive probability that the path X(ω) has no jump on [0, T ], although
the model itself may allow for jumps.

4. In the realistic case n < ∞ we cannot do better than in the “completely
observed case”. That is, we can hopefully infer something about the jumps
which actually occurred for our particular observed path, but nothing about
those which belong to the model but did not occur on the observed path.

5. Rather than “testing for jumps”, there are cases in practice where one wants
to estimate in some sense the part of the variability of the process which is due
to the jumps, compared to the part due to the continuous component. This is
what most authors have studied so far, in some special cases at least, and we
will take a systematic look at this question in our further paper in preparation
on the topic, using essentially the same tools as in the present paper. However,
under the null hypothesis that jumps are present, it is not clear how one should
go about specifying the proportion of quadratic variation attributable to jumps
without already assuming not only the type but also the “quantity” of jumps.
The test we propose below does not have this problem.

6. Coming back to testing, an important property of our test statistics is that
they should be scale-invariant (invariant if X is multiplied by an arbitrary
constant). It would also be desirable for the limiting behavior of the statistic
to be independent of the dynamics of the process. We will see that our test has
all these features.

In view of comments 3 and 4 above, the problem which we really try to solve
in this paper is to decide, on the basis of the observations Xi∆n which belong to
the time interval [0, T ], in which of the following two complementary sets the path
which we have discretely observed falls:

(4)

(
ΩjT = {ω : s 7→ Xs(ω) is discontinuous on [0, T ]}
ΩcT = {ω : s 7→ Xs(ω) is continuous on [0, T ]}.
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If we decide on ΩjT then we also implicitly decide that the model has jumps, whereas
if we decide on ΩcT it does not mean that the model is continuous, even on the interval
[0, T ] (of course, in both cases we can say nothing about what happens after T !).

3.2. Measuring the variability of X. Let us now introduce a number of processes
which all measure some kind of variability of X, or perhaps its continuous and jump
components separately, and depend on the whole (unobserved) path of X:

(5) A(p)t =

Z t

0
|σs|p ds, B(p)t =

X
s≤t
|∆Xs|p,

where p is a positive number and

(6) ∆Xs = Xs −Xs−

denotes the jumps of the X process. Of course, ∆Xs = 0 for all s when X is
continuous, and for all s outside a (random) countable set in all cases.
Note that A(p) is finite-valued for all p > 0 (under Assumption 1), whereas B(p)

is finite-valued if p ≥ 2 but often not when p < 2. Also, recall that [X,X] =
A(2) +B(2).
We have ΩjT = {B(p)T > 0} for any p > 0, so in a sense our problem “sim-

ply” amounts to determine whether B(p)T > 0 for our particular observed path,
and with any pre-specified p. Moreover a reasonable measure of the relative vari-
ability, or variance, due to the jumps is B(2)T/[X,X]T , and this is the measure
used for example by Huang and Tauchen (2006); other measures of this variability
could be B(p)T/A(p)T or B(p)T/[X,X]

p/2
T for other values of p (the power p/2 in

the denominator is to ensure the scale-invariance).
In any event, everything boils down to estimating, on the basis of the actual

observations, the quantity B(p)T in (5), and the difficulty of this estimation depends
on the value of p. Let

(7) ∆n
i X = Xi∆n −X(i−1)∆n

,

denote the observed discrete increments of X (all of them, not just those due to
jumps, unlike (6)) and define for p > 0 the estimator

(8) bB(p,∆n)t :=

[t/∆n]X
i=1

|∆n
i X|p.

For r ∈ (0,∞), let

(9) mr = E(|U |r) = π−1/22r/2 Γ
µ
r + 1

2

¶
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denote the rth absolute moment of a variable U ∼ N(0, 1). We have the following
convergences in probability, locally uniform in t:

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p > 2, X a semimartingale ⇒ bB(p,∆n)t
P−→ B(p)t

p = 2, X a semimartingale ⇒ bB(p,∆n)t
P−→ [X,X]t

p < 2, Assumption 1 holds ⇒ ∆
1−p/2
n
mp

bB(p,∆n)t
P−→ A(p)t

Assumption 1 and X is continuous ⇒ ∆
1−p/2
n
mp

bB(p,∆n)t
P−→ A(p)t.

These properties are known: for p = 2 this is the classical convergence of the realized
quadratic variation, for p > 2 this is due to Lepingle (1976), and for the other cases
one may see Jacod (2006) for example.
The intuition for the behavior of bB(p,∆n)t is as follows. Suppose thatX can jump.

Among the increments of X, there are those that contain a large jump and those
that do not. While the increments containing large jumps are much less frequent
than those that contain only a Brownian contribution (in the case where λ is finite,
otherwise a Brownian and many small jumps), they are so much bigger than the rest
that when jumps occur, their contribution to B(p) for p > 2 overwhelms everything
else. This is because high powers (p > 2) magnify the large increments at the
expense of the small ones. Then the sum behaves like the sum coming from the
jumps only: this is the first result in (10). When p is small (p < 2), on the other
hand, the magnification of the large increments by the power is not strong enough to
overcome the fact that there are many more small increments than large ones. Then
the behavior of the sum is driven by the summation of all these small increments:
this is the third result in (10). When p = 2, we are in the situation where these two
effects (magnification of the relatively few large increments vs. summation of many
small increments) are of the same magnitude: this is the second result in (10). When
X is continuous, we are only summing small increments and we get for all values of
p the same behavior as the one in the third result where the summation of the small
increments dominates the sum: this is the fourth result in (10).

3.3. The test statistics. Based on this intuition, upon examining (10), we see
that when p > 2 the limit of bB(p,∆n) does not depend on the sequence ∆n going to
0, and it is strictly positive if X has jumps between 0 and t. On the other hand when
X is continuous on [0, t] then bB(p,∆n) converges again to a limit not depending on
∆n, but only after a normalization which does depend on ∆n.
These considerations lead us to compare bB(p,∆n) on two different ∆n−scales.

Specifically, we choose an integer k and compare bB(p,∆n) with bB(p, k∆n), the latter
obtained by considering only the increments of X between successive multiples of
k∆n. Then we set

(11) bS(p, k,∆n)t =
bB(p, k∆n)tbB(p,∆n)t
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as our (family of) test statistics.
In view of the first and fourth limits in (10), we readily get:

Theorem 1. Under Assumption 1, let t > 0, p > 2 and k ≥ 2. Then the variablesbS(p, k,∆n)t converge in probability to the variable S(p, k)t defined by

(12) S(p, k)t =

(
1 on the set Ωjt
kp/2−1 on the set Ωct .

Therefore our test statistics will converge to 1 in the presence of jumps and, with
the selection of p = 4 and k = 2, to 2 in the absence of jumps. The following corollary
is immediate:

Corollary 1. Under Assumption 1, let t > 0, p > 2 and k ≥ 2. The decision rule
defined by:

=(n) = =(n, t, p, k) =
(
X is discontinuous on [0, t] if bS(p, k,∆n)t < a

X is continuous on [0, t] if bS(p, k,∆n)t ≥ a

is consistent, in the sense that the probability that it gives the wrong answer tends to
0 as ∆n → 0, for any choice of a in the interval (1, kp/2 − 1).

4. Central limit theorems.

4.1. CLT for power variations. The previous corollary provides the first step
towards constructing a test for the presence or absence of jumps, but it is hardly
enough. To construct tests, we need to derive the rates of convergence and the
asymptotic variances when X jumps and when it is continuous.
We start with the following general theorem, to be proved in Section 8 (as above,

k is an integer larger than 1). The asymptotic variances in the theorem involve the
process A(p)t already defined in 5 as well as the more complex process

(13) D(p)t =
X
s≤t

|∆Xs|p (σ2s− + σ2s)

for p > 0. Like B(p)t, and D(p)t is finite-valued if p ≥ 2 but often not when p < 2.

Theorem 2. a) Under Assumption 1, let p > 3. The pair of variables

∆−1/2n

³ bB(p,∆n)t −B(p)t, bB(p, k∆n)t −B(p)t
´

converges stably in law to a two-dimensional variable of the form (Z(p)t, Z(p)t +
Z 0(p, k)t), where both Z(p)t and Z0(p, k)t are defined on an extension (eΩ, eF , ( eFt)t≥0, eP)
of the original filtered space (Ω,F , (Ft)t≥0,P) and conditionally on F are centered,
with Z0(p)t having the following conditional variance:

(14) eE(Z 0(p, k)2t | F) = k − 1
2

p2 D(2p− 2)t.
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Moreover if the processes σ and X have no common jumps, the variables Z 0(p)t are
F-conditionally Gaussian.
b) Under Assumption 2, assume in addition that X is continuous, and let p ≥ 2.

The pair of variables

∆−1/2n

³
∆1−p/2n

bB(p,∆n)t −mpA(p)t, ∆
1−p/2
n

bB(p, k∆n)t − kp/2−1mpA(p)t
´

converges stably in law to a two-dimensional variable (Y (p)t, Y 0(p, k)t) defined on an
extension (eΩ, eF , ( eFt)t≥0, eP) of the original filtered space (Ω,F , (Ft)t≥0,P) and which
conditionally on F is a centered Gaussian variable with variance-covariance given by

(15)

⎧⎪⎨⎪⎩
eE(Y (p)2t | F) = (m2p −m2

p)A(2p)teE(Y 0(p, k)2t | F) = kp−1(m2p −m2
p)A(2p)teE(Y (p)tY 0(p, k)t | F) = (mk,p − kp/2m2

p)A(2p)t

and where

(16) mk,p = E(|U |p|U +
√
k − 1 V |p)

for U , V independent N(0, 1) variables.

The “stable convergence in law” mentioned above is a mode of convergence intro-
duced by Rényi (1963), which is slightly stronger than the mere convergence in law,
and its important feature for us is that if Vn is any sequence of variable converging
in probability to a limit V on the space (Ω,F , (Ft)t≥0,P), whereas the variables V 0n
converge stably in law to V 0, then the pair (Vn, V 0n) converges stably in law again to
the pair (V, V 0).
The reader will observe the restriction p > 3 in (a) above: the CLT simply does

not hold if p ≤ 3, when there are jumps. On the other hand, (b) holds also if p < 2,
under the additional assumption that σ does not vanish, but we do not need this
improvement here. Observe also that (a) requires Assumption 1 only, whereas (b)
requires the stronger assumption Assumption 2.

4.2. CLT for the non-standardized statistics. From this theorem, we deduce a
CLT for our statistics bS(p, k,∆n)t:

Theorem 3. a) Under Assumption 1, let p > 3 and t > 0. Then∆−1/2n (bS(p, n,∆n)t−
1) converge stably in law, in restriction to the set Ωjt of (12), to a variable S(p, k)

j
t

which, conditionally on F, is centered with variance

(17) eE³(S(p, k)jt )2 ¯̄̄ F´ =
(k − 1)p2

2

D(2p− 2)t
B(p)2t

.

Moreover if the processes σ and X have no common jumps, the variable S(p, k)jt is
F-conditionally Gaussian.
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b) Under Assumption 2, assume in addition that X is continuous, and let p ≥ 2
and t > 0. Then ∆−1/2n (bS(p, k,∆n)t − kp/2−1) converge stably in law to a variable
S(p, k)ct which, conditionally on F , is centered normal with variance

(18) eE ¡(S(p, k)ct)2 ¯̄ F¢ = M(p, k)
A(2p)t
A(p)2t

,

where

(19) M(p, k) =
1

m2
p

³
kp−2(1 + k)m2p + kp−2(k − 1)m2

p − 2kp/2−1mk,p

´
.

Note that (a) and (b) are not contradictory, since Ωjt =Ø when X is continuous.
It is also worth noticing that the conditional variances (17) and (18), although of
course random, are more or less behaving in time like 1/t.

4.3. Consistent estimators of the asymptotic variances. To evaluate the level
of tests based on the statistic bS(p, k,∆n)t, we need consistent estimators for the
asymptotic variances obtained in Theorem 3. That is, we will need to estimate D(p)
when p ≥ 2 and when there are jumps, and also for A(p) when p ≥ 2 and X is
continuous.
To estimate A(p), we can use a realized truncated pth variation: for any constants

α > 0 and ' ∈ (0, 12), we have from Jacod (2006) that, if Assumption 1 holds and
either p = 2, or p > 2 and X is continuous, then

(20) bA(p,∆n)t :=
∆
1−p/2
n

mp

[t/∆n]X
i=1

|∆n
i X|p 1{|∆n

i X|≤α∆'
n }

P−→ A(p)t.

Alternatively, we can use the multipower variations of Barndorff-Nielsen and
Shephard (2004). For any r ∈ (0,∞) and any integer q ≥ 1, we have from Barndorff-
Nielsen et al. (2006a) that if Assumption 1 holds and X is continuous

(21) Ã(r, q,∆n)t :=
∆
1−qr/2
n

mq
r

[t/∆n]−q+1X
i=1

qY
j=1

|∆n
i+j−1X|r P−→ A(qr)t

(when q = 1, we have Ã(r, 1,∆n) = (∆
1−r/2
n /mr) bB(r,∆n)).

It turns out that we also need some results concerning the behavior of bA(p,∆n)t
or Ã(r, q,∆n) when X is discontinuous. These results will be stated below, together
with the consistency of the estimators of D(p)t which we presently describe. Esti-
mators for D(d)t are a bit more difficult to construct because we need to evaluate
σ2s− and σ2s when s is a jump time, and this involves a kind of non-parametric es-
timation. A possibility, among many others, is as follows: take any sequence kn of
integers satisfying

(22) kn →∞, kn∆n → 0,
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and then let In,t(i) = {j ∈ N : j 6= i : 1 ≤ j ≤ [t/∆n], |i− j| ≤ kn} define a local
window in time of length kn∆n around time i∆n, and

(23) bD(p,∆n)t =
1

kn∆n

[t/∆n]X
i=1

|∆n
i X|p

X
j∈In,t(i)

(∆n
jX)

21{|∆n
jX|≤α∆'

n },

where α > 0 and ' ∈ (0, 1/2).
The following theorem establishes the consistency of these estimators:

Theorem 4. a) Under Assumption 1, we have:

(24) p ≥ 2, t > 0, α > 0,
1

2
− 1

p
< ' <

1

2
⇒ lim sup

n

∆n
bA(2p,∆n)tbA(p,∆n)2t

P−→ 0,

(25) r ∈ (0, 2), q ∈ N ⇒ Ã(r, q,∆n)t
P−→ A(qr)t, locally uniformly in t.

b) Under Assumption 2, if α > 0, ' ∈ (0, 1/2) and p > 2, we have

(26) bD(p,∆n)t
P−→ D(p)t, ∀ t ≥ 0.

If further X is continuous, then

(27) ∆1−p/2n
bD(p,∆n)t

P−→ mpA(p+ 2)t, locally uniformly in t.

Note that (26) and (27) are not contradictory, because D(p) = 0 when X is
continuous. In fact we have more than (24), namely the convergence (20) when there
are jumps, but only under some restrictions on the jumps and also some restrictions
on ' connected with the structure of the jumps and the value p > 2; but these
refinements are useless here. Of course (25) reduces to (21) when X is continuous.

4.4. CLT for the standardized statistics. Using Theorem 4, we can immediately
construct consistent estimators of the asymptotic variances of the test statistics
established in (17) and (18), respectively. We deduce from (10), (25) and (26) the
following CLT for the standardized test statistics (recall

R t
0 |σs|pds > 0 a.s., by (d)

of Assumption 1):

Theorem 5. a) Under Assumption 1, let p > 3 and t > 0. With

(28) bV j
n =

∆n (k − 1) p2 bD(2p− 2,∆n)t

2 bB(p,∆n)2t
,

the variables (bV j
n )−1/2

³bS(p, k,∆n)t − 1
´
converge stably in law, in restriction to the

set Ωjt of (4), to a variable which, conditionally on F , is centered with variance 1,
and which is N(0, 1) if in addition the processes σ and X have no common jumps.



12 YACINE AIT-SAHALIA AND JEAN JACOD

b) Under Assumption 2, assume in addition that X is continuous, and let p ≥ 2
and t > 0. The variables (bV c

n )
−1/2

³bS(p, k,∆n)t − kp/2−1
´
converge stably in law to

a variable which, conditionally on F, is N(0, 1), where bV c
n is based on truncations:

(29) bV c
n =

∆nM(p, k) bA(2p,∆n)tbA(p,∆n)2t
,

or is replaced by the multipower estimator:

(30) Ṽ c
n =

∆nM(p, k) Ã(
p

[p]+1 , 2[p] + 2,∆n)t

Ã( p
[p]+1 , [p] + 1,∆n)2t

.

In (30) we have chosen r = p/([p]+1) and respectively q = 2[p]+2 and q = [p]+1.
Any other choice with r ∈ (0, 2) and respectively q = 2p/r and q = p/r would do as
well.

5. Testing for jumps. We now use the preceding results to construct actual
tests, either for the null hypothesis that there are no jumps, or for the null hypothesis
that jumps are present.

5.1. When there are no jumps under the null hypothesis. In a first case, we set
the null hypothesis to be “no jump”. We choose an integer k ≥ 2 and a real p > 3,
and associate the critical (rejection) region of the form

(31) Cc
n,t = {bS(p, k,∆n)t < ccn}

for some sequence ccn > 0, possibly ccn = cc for all n, and possibly even a random
sequence.
The customary way for defining the asymptotic level of this test is as follows: if

αcn,t(b, σ, δ) = P(Cc
n,t), a notation which emphasizes the dependency on the coeffi-

cients (b, σ, δ) of (1), one should take the supremum over all triples (b, σ, δ) in the
null hypothesis (that is with δ ≡ 0) of lim supn αnt (b, σ, δ). However, as mentioned at
the end of Subsection 3.1, we only observe a particular path s 7→ Xs(ω) over [0, t],
and even only at times i∆n ! so there is obviously no way of statistically separating
the genuine null hypothesis from the case where there are jumps, but none occurred
in the interval [0, t]. Therefore, recalling the sets Ωct and Ω

j
t of (4), it is natural to

take the following as our definition of the asymptotic level:

(32) α = sup
b,σ,δ

lim sup
n

P(Cc
n,t | Ωct),

with the convention that P(. | Ωct) = 0 if P(Ωct) = 0. Observe that we take first the
lim sup and next the supremum; should we proceed the other way around, we would
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find α = 1. In a similar way, the power function for the coefficients triple (b, c, δ) is
the following conditional probability:

(33) βcn,t(b, σ, δ) = P(Cc
n,t | Ωjt).

The right side above makes sense as soon as the function δ in restriction to Ω ×
[0, t] × E is not P(dω) ds λ(dx)-almost everywhere vanishing, since P(Ωjt ) > 0 in
that case, whereas otherwise P(Ωjt > 0) = 0 and our process is continuous on [0, t]
(since our setting is non-homogeneous in time, a test based on observations on [0, t]
can of course say nothing about what happens after time t).
For α ∈ (0, 1), denote by zα the α-quantile of N(0, 1), that is P(U > zα) = α

where U is N(0, 1). We have:

Theorem 6. Under Assumption 2, let t > 0, choose a real p > 3 and an integer
k ≥ 2, and let

(34) ccn = kp/2−1 − zα

qbV c
n ,

where bV c
n is given by (29) with α > 0 and 1/2− 1/p < ' < 1/2, or is replaced by Ṽ c

n

of (30). Then:
a) The asymptotic level (32) of the critical region defined by (31) for testing the

null hypothesis “no jump” equals α.
b) The power function (37) satisfies βcn,t(b, σ, δ) → 1 for all coefficients (b, σ, δ)

such that P(Ωjt ) > 0 (and of course satisfying Assumption 2).

5.2. When jumps are present under the null hypothesis. In a second case, we set
the null hypothesis to be that “there are jumps”, in which case the critical (rejection)
region of the form

(35) Cj
n,t = {bS(p, k,∆n)t > cjn}

for some sequence cjn > 0. As in (32), the asymptotic level is

(36) α0 = sup
b,σ,δ

lim sup
n

P(Cj
n,t | Ωjt ),

with the convention that P(. | Ωjt ) = 0 if P(Ωjt ) = 0, and the power function for the
coefficients triple (b, σ, δ) is

(37) βjn,t(b, σ, δ) = P(C
j
n,t | Ωct).

The right-hand side above is simply P(Cj
n,t) when δ = 0, and it makes sense as soon

as P(Ωct) > 0, whereas when P(Ωct) = 0 then the null hypothesis is of course satisfied.
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Theorem 7. Under Assumption 1, let t > 0 and choose a real p > 3 and an integer
k ≥ 2. Let α ∈ (0, 1).
a) Letting

(38) cjn = 1+

qbV j
n/α,

where bV j
n is given by (28), the asymptotic level (36) of the critical region defined by

(31) for testing the null hypothesis “there are jumps” is smaller than α.
b) Suppose that we restrict our attention to models in which the processes X and

σ have no common jumps. If

(39) cjn = 1+ zα

qbV j
n ,

then the asymptotic level (36) of the critical region defined by (31) for testing the
null hypothesis “there are jumps” is equal to α.
c) In all cases the power function (37) satisfies βjn,t(b, σ, δ)→ 1 for all coefficients

(b, σ, δ) such that P(Ωct) > 0.

Finally, let us calculate more explicitly the critical regions for a specific choice of
p. There is no special reason for choosing two different values for p in the case of
the two previous null hypotheses. Since we must have p > 3, a rather natural choice
seems to be p = 4. Also, in (17) and (18) we see that the variances are increasing
with k, so it is probably wise to take k = 2 (although when k > 2 we have to separate
the two points 1 and k, which are further apart than 1 and 2). With such choices,
we obtain that M(4, 2) = 160/3 (or more generally M(4, k) = 16k(2k2 − k − 1)/3)
and the cut-off point in (34) becomes

(40) ccn = 2− zα

s
160 ∆n

bA(8,∆n)t

3 bA(4,∆n)2t
, or ccn = 2− zα

s
160 ∆n Ã(4/5, 10,∆n)t

3 Ã(4/5, 5,∆n)2t
.

In a similar way, (39) becomes

(41) cjn = 1 + zα

s
8∆n

bD(6,∆n)tbB(4,∆n)2t
.

The α-quantiles of N(0, 1) at the 10% and 5% level are z0.1 = 1.28 and z0.05 = 1.64
respectively.

5.3. The effect of microstructure noise. As already said before, the observations
of the process X are blurred with a (small) noise, which messes things up when data
are recorded with high frequency.
We do not intend to provide a deep study of this topic here, but merely to establish

some basic facts from the point of view of the consistency of our statistics (rates of
convergence are more difficult to obtain, and strongly depend on the structure of



TESTING FOR JUMPS 15

the noise). We assume that each observation is affected by an additive noise, that is
instead of Xi∆n we really observe Yi∆n = Xi∆n + εi, and the εi are supposed to be
i.i.d. with E(ε2i ) and E(ε4i ) finite. Then, instead of bB(4,∆n)t (we consider the case
p = 4 here), we actually observe (for k = 1 and also k ≥ 2):

bB0(4, k∆n)t =

[t/k∆n]X
i=1

³
∆n
k(i−1)X + εki − εk(i−1)

´4
= bB(4, k∆n)t + 2

[t/k∆n]X
i=1

(∆n
k(i−1)X)

2(εki − εk(i−1))2

+

[t/k∆n]X
i=1

(εki − εk(i−1))4.

The second term above behaves like 4E(ε2i )
bB(2, k∆n)t, and the third one

like t
¡
2E(ε4i ) + 6E(ε

2
i )
2
¢
/ (k∆n). It follows that the statistics bS0(4, k,∆n)t =bB0(4, k∆n)t/ bB0(4,∆n)t that we actually observe instead of (11) has the following

behavior, as ∆n → 0:

(42) bS0(4, k,∆n)t
P−→ 1

k
.

The relevance of this limit will become clear when we apply the test to real data
in Section 7 below. Finally, note that when ∆n is moderately small, things may be
different: if E(ε2i ) and E(ε4i ) are very small, bS0(4, k,∆n)t will be close to 1 on Ω

j
t

and to k on Ωct .

6. Simulation results. Throughout the simulations, we use p = 4. We cali-
brate the values to be realistic for a liquid stock trading on the NYSE. We use an
observation length of T = 1 day, consisting of 6.5 hours of trading, that is 23, 400
seconds. The simulations contain no microstructure noise.
Under the null of no jumps, the performance of the test in simulations is reported

in Table 1. The distribution of the test statistic in simulations with constant σ is close
to the theoretical normal limit centered at k in simulations: histograms for the test
statistic and the corresponding asymptotic distribution are shown in Figure 1 for the
non-standardized (top panel) and standardized test statistics (lower panel) and the
cases k = 2 (left panel) and k = 3 (right panel.) Large values of k lead to a decrease
in the effective sample size employed to estimate the numerator bB(p, k∆n)t of the
test statistic, which is inefficient. There is a trade-off between using different values
of k: lower values (k = 2) lead to a smaller variance, as can be seen from (19), but
on the other hand larger values such as k = 3 better separate the test statistic under
the null (bS(p, k,∆n)t → k) from its value under the alternative (bS(p, k,∆n)t → 1),
as seen in Theorem 1.
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∆n n k Mean Value of bS(4, k,∆n) Rejection Rate in Simulations
Asymptotic Simulations α = 10% α = 5%

1 sec 23, 400 2 2 1.999 0.098 0.047
1 sec 23, 400 3 3 2.998 0.098 0.044
1 sec 23, 400 4 4 3.997 0.097 0.045

5 sec 4, 680 2 2 1.999 0.104 0.050
5 sec 4, 680 3 3 2.999 0.095 0.048
5 sec 4, 680 4 4 3.996 0.097 0.042

10 sec 2, 340 2 2 2.000 0.091 0.046
15 sec 1, 560 2 2 2.002 0.086 0.038
30 sec 780 2 2 2.003 0.088 0.038

Table 1
Level of the test under the null hypothesis of no jumps.

Note: This table reports the results of 5, 000 simulations of the test statistic under the null
hypothesis of no jumps. the data generating process is dXt/Xt = σdWt, with σ = 0.4.
The test statistic is standardized with the estimator of bV c

n given in (29) with α = 2 and
' = 0.47 in (20).

Under the null that jumps are present, the test statistic is now centered around the
predicted value of 1.We report in Table 2 the performance of the test statistic when
jumps are compound Poisson. Figure 2 plots the distribution of the test statistic
for different values of the jump arrival rate, λ. An interesting phenomenon happens
when multiple jumps can occur with high probability (λ high). While the likelihood
that jumps will take place in successive observations is small, such paths will happen
over a large number of simulations. When that situation happens, we may see inbB(4, 2∆n) the two jumps either compensate each other, if they are of opposite signs,
or cumulate into a single larger jump if they are of the same sign. On the other hand,
no such compensation or cumulation takes place in bB(4,∆n). As a result, their ratiobS(4, 2,∆n) can exhibit a small number of outliers.

Similar results for the case where jumps are generated by a Cauchy process are
reported in Table 3 and in Figure 3 for the non-standardized (top panel) and stan-
dardized test statistics (bottom panel), for different values of the Cauchy scale para-
meter θ. The contrast between the top and bottom panels in Figure 3 illustrates the
role of the standardization in making the test statistic asymptotically normal: re-
call from Theorem 3-(a) that the non-standardized statistic bS(4, 2,∆n) is in general
non-Normal unconditionally, whereas from Theorem 5-(a) the standardized statistic
(bV j

n )−1/2
³bS(4, 2,∆n)− 1

´
is asymptotically N(0, 1) unconditionally.
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No Jumps: Distribution of the Statistic
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Fig. 1. Monte Carlo and theoretical asymptotic distributions of the non-standardized (top row)
and standardized (bottom row) test statistics S(4, k,∆n) for k = 2, 3 and ∆n = 1 second under the
null hypothesis of no jumps. In the standardized case, the solid curve is the N(0, 1) density.

In Figure 4, we illustrate what happens when there are paths containing either
no jumps or jumps that are too tiny to be detected as jumps. In the Poisson case
(left panel), we set λ to correspond to 1 jump per day on average, but keep all
paths, including those where no jump took place. Such paths occur with positive
probability, unlike the Cauchy case. But since we condition on having jumps, we
removed those paths in Figure 2 to compute the distribution of the statistic under
the null that jumps are present. When those paths are kept, we obtain a clear
bimodal result, with the paths where no jumps occurred grouped around 2 and
those where (at least) 1 jump occurred grouped around 1.
In the Cauchy case (right panel of Figure 4), when a small value of θ is selected,

although each path has infinitely many jumps, a sizeable proportion of paths has
no jump large enough to make the path look different from that of a pure Brownian
motion at our observation frequency. As a result, we get a bimodal distribution with
a second mode at the (continuous) value of 2.

7. Empirical application. We now conduct the test for each of the 30 Dow
Jones Industrial Average (DJIA) stocks and each trading day in 2005; the data
source is the TAQ database. Each day, we collect all transactions on the NYSE or
NASDAQ, from 9:30am until 4:00pm, for each one of these stocks. We sample in
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∆n n k Mean value of bS(4, k,∆n) Rejection Rate in Simulations
Asymptotic Simulations α = 10% α = 5%

λ = 1 jump per day

1 sec 23, 400 2 1 1.000 0.101 0.050
4 sec 5, 850 2 1 1.001 0.105 0.057
15 sec 1, 560 2 1 1.002 0.113 0.059

λ = 5 jumps per day

1 sec 23, 400 2 1 1.000 0.108 0.055
4 sec 5, 850 2 1 1.004 0.112 0.064
15 sec 1, 560 2 1 1.015 0.127 0.076

λ = 10 jumps per day

1 sec 23, 400 2 1 1.003 0.107 0.058
4 sec 5, 850 2 1 1.007 0.122 0.064
15 sec 1, 560 2 1 1.027 0.159 0.093

Table 2
Compound Poisson jumps: Level of the test under the null hypothesis that jumps are
present.

Note: This table reports the results of 5, 000 simulations of the test statistic under the null
hypothesis that jumps are present. The model under the null is dXt/Xt = σdWt + JtdNt,
where J is the product of a uniformly distributed variable on [−2,−1]∪[1, 2] times a constant
JS and N is a Poisson process with intensity λ. The total variance of the increments,
σ2 + (7/3)J2Sλ is held constant at 0.4

2. As a result, jumps that are more frequent tend to
be smaller in size. In the simulations, 25% of the total variance is due to the Brownian
motion and 75% to the jumps. Since the test is conditional on a path containing jumps,
paths that do not contain any jump are excluded from the simulated sample and replaced
by new simulations. Thus, in sample, the number of jumps is slightly higher than specified
by the value of λ in the table. The test statistic is standardized with the estimator of bV j

n

given in (28) with kn = [50∆
−1/4
n ] in (23).

calendar time every 5 second. Each day and stock is treated on its own. We use
filters to eliminate clear data errors (price set to zero, etc.) as is standard in the
empirical market microstructure literature.
We plot in Figure 5 a histogram showing the empirical distribution of the statistic

computed on these data. As expected, we see evidence of market microstructure
noise in the form of density mass below 1 (the limit is 1/2, see Section 5.3, if the
noise is i.i.d., but may be different with other kinds of noise). The striking feature
of the results is that most of the observed values are around 1, providing evidence
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Poisson Jumps: Distribution of the Statistic
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Fig. 2. Monte Carlo and theoretical N(0, 1) asymptotic distributions of the standardized test
statistic (V j

n )
−1/2 S(4, 2,∆n)− 1 for ∆n = 1 second under the null hypothesis that jumps are

present, using the same data generating processs with Poisson jumps as in Table 2.

for the presence of jumps, with only few observations around 2, the expected limit
in the continuous case. As we sample less frequently, the distribution spreads out,
consistently with both the asymptotic theory and the simulations above.

8. Proofs.

8.1. Preliminaries. We use the shorthand notation En
i−1(Y ) for E(Y | F(i−1)∆n

),
and we set

δni = σ(i−1)∆n
∆n
i W, θni = |∆n

i X|1{|∆n
i X|≤α∆'

n }

for a given pair α > 0 and ' ∈ (0, 12). We will consider strengthened versions of
Assumption 1 and Assumption 2:

Assumption 3. We have Assumption 1, and |bt|+|σt| ≤ K and |δ(t, x)| ≤ γ(x) ≤ K
for some constant K.
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∆n n k Mean value of bS(4, k,∆n) Rejection Rate in Simulations
Asymptotic Simulations α = 10% α = 5%

Jump size: θ = 10

1 sec 23, 400 2 1 1.002 0.110 0.058
5 sec 4, 680 2 1 1.010 0.123 0.067
15 sec 1, 560 2 1 1.027 0.142 0.083

Jump size: θ = 50

1 sec 23, 400 2 1 1.000 0.098 0.052
5 sec 4, 680 2 1 1.001 0.096 0.056
15 sec 1, 560 2 1 1.002 0.110 0.071

Table 3
Cauchy jumps: Level of the test under the null hypothesis that jumps are present.

Note: This table reports the results of 5, 000 simulations of the test statistic under the null
hypothesis that jumps are present. The model under the null is dXt/Xt = σdWt + θdYt,
where Y is a Cauchy process standardized to have characteristic function E(exp(iuYt)) =
exp(−t|u|/2). The value of σ is 0.2. Given σ, the parameter θ measures the size of the
jumps relative to the volatility. The test statistic is standardized with the estimator of bV j

n

given in (28) with kn = [50∆
−1/4
n ] in (23).

Assumption 4. We have Assumption 2, Assumption 3 and |ebt| + |eσt| + |eσ0t| ≤ K
and |eδ(t, x)| ≤ γ(x) for some constant K.

A localization procedure shows that for proving Theorems 2 and 4 we can replace
everywhere Assumption 1 or Assumption 2 by Assumptions 3 or 4, respectively: this
localization procedure is described in details in Jacod (2006) and works similarly
here, so we omit it.

Now we state a number of consequences of this strengthened assumptions, to be
used a number of times in the following proofs. Below. K denotes a constant which
may depend on the coefficients (b, c, δ) and (eb, eσ, eσ0, eδ0) and which changes from line
to line. We write it Ka if it depends on an additional parameter a. We also write X 0

t

and X 00
t for the sum of the first three terms, resp. of the last two terms, in (1). First,

for all q ≥ 2 we have the following classical estimates (proved e.g. in Jacod (2006)):

(43)
Assumption 3⇒ Eni−1(|∆n

i X
0|q + |δni |q) ≤ Kq∆

q/2
n , Eni−1(|∆n

i X
00|q) ≤ Kq∆n

Assumption 4⇒ Eni−1(|∆n
i σ|q) ≤ Kq∆n, Eni−1(|∆n

i X
0 − δni |q) ≤ K∆

1+q/2
n .
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Cauchy Jumps: Distribution of the Statistic
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Fig. 3. Monte Carlo distribution of the non-standardized test statistic S(4, 2,∆n) for ∆n = 1
second under the null hypothesis that jumps are present, using the same data generating process
with Cauchy jumps as in Table 3. The asymptotic distribution of the non-standardized statistic is
non-normal as expected (see upper panel). However, the asymptotic distribution of the standardized
test statistic is N(0, 1) (the solid curve in the lower panel).

Next, the proof of Lemma 5.12 of Jacod (2006) applied with ε being the supremum
of the bounded function γ shows that under Assumption 3,

(44) Eni−1(|∆n
i X

00|2
^

η2) ≤ K∆n

µ
η2 +∆n

θ2
+ Γ(θ)

¶
for all η > 0 and θ ∈ (0, 1), and where Γ(θ)→ 0 as θ→ 0. Combining this with the
second line in (43) yields that under Assumption 4 we also have

(45) Eni−1(|∆n
i X − δni |2

^
η2) ≤ K∆n

µ
η2 +∆n

θ2
+ Γ(θ)

¶
Finally let us also mention two elementary (although a bit tedious to show) in-

equalities, valid for all x, y ∈ R and 0 < ε < 1 < A and for p ≥ 2 and 0 < r < 2:

(46)
¯̄̄
|x+y|p1{|x+y|≤ε}−|x|p

¯̄̄
≤ Kp

¡|x|p1{|x|>ε/2} + εp−2(y2 ∧ ε2) + |x|p−1(|y| ∧ ε)¢
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Tiny Jumps or No Jumps: Distribution of the Statistic
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Fig. 4. Monte Carlo distribution of the non-standardized test statistic S(4, 2,∆n) for ∆n = 1
second, computed using a data generating process with either one Poisson jump per day on average
including paths that contain no jumps (left panel) or tiny Cauchy jumps (θ = 1, right panel).

(47)
¯̄̄
|x+ y|r − |x|r

¯̄̄
≤ Kr

¡
εr +Aε+Ar−2(x2 + y2) +Arε−2(y2 ∧ 1)¢ .

8.2. Proof of Theorem 2. For proving Theorem 2 we need to exhibit the limits
Z(p), Z 0(p, k), Y (p) and Y 0(p, k) and it takes some additional notation to do so. We
consider an auxiliary space (Ω0,F 0,P0) which supports a number of variables and
processes:

• four sequences (Uq), (U 0q), (Uq), U
0
q) of N(0, 1) variables;

• a sequence (κq) of uniform variables on [0, 1];

• a sequence (Lq) of uniform variables on the finite set {0, 1, · · · , k − 1} (k ≥ 2
is the integer showing up in the theorem).

• two standard Wiener processes W and W
0
;

and all these processes or variables are mutually independent. Then we put

eΩ = Ω×Ω0, eF = F ⊗F 0, eP = P⊗ P0.
and we extend the variables Xt, bt, ... defined on Ω and W, Uq,... defined on Ω0

to the product eΩ in the obvious way, without changing the notation. We write eE
for the expectation w.r.t. eP. Finally, denote by (Tn)n≥1 an enumeration of the jump
times of X which are stopping times, and let ( eFt) be the smallest (right-continuous)
filtration of eF containing the filtration (Ft) and w.r.t. whichW andW

0
are adapted

and such that Un, U 0n, Un, U
0
n, κn and Ln are eFTn-measurable for all n. We hence

get an extension (eΩ, eF , ( eFt)t≥0, eP) of the original space (Ω,F , (Ft)t≥0,P). Obviously,
W , W 0, W , W 0

are Wiener processes and µ is a Poisson measure with compensator
ν on (eΩ, eF , ( eFt)t≥0, eP).
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Empirical Distribution of the Test Statistic: DJIA30 All 2005 Trading Days

0.5 1 1.5 2 2.5 3

100

200

300

∆ = 15 seconds

0.5 1 1.5 2 2.5 3

50

100

150

200

250

∆ = 30 seconds

0.5 1 1.5 2 2.5 3

200

400

600

800
∆ = 5 seconds

0.5 1 1.5 2 2.5 3

100

200

300

400

500
∆ = 10 seconds

Fig. 5. Empirical distribution of the non-standardized statistic S(4, 2,∆n) for different values of
the sampling interval ∆n. Each sample point is computed using all the transactions for one of the
30 DJIA stocks observed over one trading day in 2005. This produces 7, 560 realizations of the
statistic.

Now we exhibit the limits. If (hs) and (h0s) are adapted processes with right-
continuous or left-continuous paths, defined on (Ω,F , (Ft)t≥0,P), we set

(48) Y (h, h0)t =
Z t

0
hs dBWs +

Z t

0
h0s dW

0
s.

This defines a local martingale on the extension, which conditionally on the σ-field F
is a centered Gaussian martingale. Furthermore if (ks, k0s) is another pair of processes
we have

(49) eE(Y (h, h0)t Y (k, k0)t | F) = Z t

0
(hsks + h0sk

0
s)ds.

In a similar way, with any function g on R which is locally bounded and with
g(x)/x→ 0 as x→ 0, we associate the following two processes

(50) Z(g)t =
X

q: Tq≤t
g(∆XTq)

³√
κq Uq σTq− +

p
1− κq U

0
q σTq

´
,
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(51) Z0(g)t =
X

q: Tq≤t
g(∆XTq)

³p
Lq Uq σTq− +

p
k − 1−Lq U

0
q σTq

´
.

That Z(g) is well defined is proved in Jacod (2006), and the proof that Z0(g) is also
well defined is exactly the same. Again, conditionally on F , these two processes are
independent martingales with mean 0 and

(52)
eE(Z(g)2t | F) = 1

2

P
s≤t g(∆Xs)

2(σ2s− + σ2s)eE(Z 0(g)2t | F) = k−1
2

P
s≤t g(∆Xs)

2(σ2s− + σ2s)

)

Moreover, conditionally on F , Y (h, h0) and (Z(g), Z0(g)) are independent, and the
latter is also a Gaussian martingale as soon as the processes X and σ have no
common jumps.
At this stage we can proceed to proving Theorem 2-(a). As a matter of fact it is

clearer to prove a more general result: with k an integer strictly bigger that 1 and
with any function f on R, we consider the two processes

(53)
V n(f)t =

P[t/∆n]
i=1 f(∆n

i X)

V
n
(f)t =

P[t/k∆n]
i=1 f(∆n

ki−k+1X +∆n
ki−k+2X + · · ·+∆n

kiX).

⎫⎬⎭
We also write V (f)t =

P
s≤t f(∆Xs), which is well defined as soon as f(x)/x2 is

bounded on a neighborhood of 0.

Theorem 8. Under Assumption 1, let f be C2 with f(0) = f 0(0) = f 00(0) = 0 (f 0
and f 00 are the first two derivatives). The pair of processes³ 1√

∆n
(V n(f)t − V (f)∆n[t/∆n]),

1√
∆n

(V
n
(f)t − V (f)k∆n[t/∆n])

´
converges stably in law, on the product D(R+,R)×D(R+,R) of the Skorokhod spaces,
to the process (Z(f 0), Z(f 0) + Z0(f 0)).

We have the (stable) convergence in law of the above processes, as elements
of the product functional space D(R+, R)

2, but usually not as elements of the
space D(R+, R

2) with the (2-dimensional) Skorokhod topology, because a jump
of X entails a jump for both components above, but “with a probability close to
j/k” the times at which these two component jump differ by an amount j∆n, for
j = 1, · · · , k − 1.
Proof. As said in the beginning of this Section, we can assume Assumption 3. The
proof is an extension of the proof of Theorem 2.12-(i) of Jacod (2006). We start the
proof under the additional assumption that f vanishes on [−2kε, 2kε] for some ε > 0.
Let Sq be the successive jump times of the Poisson process µ([0, t]×{x : γ(x) > ε}).
Let Ωn(t, ε) be the set of all ω such that each interval [0, t]∩(i∆n, (i+k)∆n] contains
at most one Sq(ω), and S1(ω) > k∆n, and |X(i+1)∆n

(ω)| − Xi∆n(ω)| ≤ 2ε for all
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i ≤ t/∆n and |X(i+1)k∆n
(ω)|−Xik∆n(ω)| ≤ 2ε for all i ≤ t/k∆n. Next, on the set

{(ik + j)∆n < Sq ≤ (ik + j + 1)∆n} for i ≥ 1 and 0 ≤ j < k, we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(n, q) = j

K(n, q) =
Sp
∆n
− (ik + j)

α−(n, q) = 1√
∆n
(WSq −W(ik+j)∆n

), α+(n, q) =
1√
∆n
(W(ik+j+1)∆n

−WSq)

β−(n, q) = 1√
∆n
(W(ik+j)∆n

−Wik∆n), β+(n, q) =
1√
∆n
(W(i+1)k∆n

−W(ik+j+1)∆n
)

R−(n, q) = X(ε)(ik+j)∆n
−X(ε)ik∆n , R0+(n, q) = X(ε)(i+1)k∆n

−X(ε)(ik+j+1)∆n

Rn
q = ∆

n
(ik+j+1)∆n

X(ε), R0nq = Rn
q +R−(n, q) +R+(n, q)

Rq =
√
κq Uq σSq− +

p
1− κq U

0
q σSq

R−(q) =
p
Lq Uq σSq−, R+(q) =

p
k − 1− Lq U

0
q σSq

We can extend the proof of Lemma 6.2 of Jacod and Protter (1998) in this more

complicated context, and with
L−(s)−→ denoting the stable convergence in law, in

order to obtain that³
L(n, q),K(n, q), α−(n, q), α+(n, q), β−(n, q), β+(n, q)

´
q≥1

L−(s)−→
³
Lq, κq,

√
κq Uq,

p
1− κq U

0
q,
p
Lq Uq,

p
k − Lq − 1 U 0q

´
q≥1

.

From this we deduce, as in Lemma 5.9 of Jacod (2006), that
(54)³

Rn
q /
p
∆n, R−(n, q)/

p
∆n, R+(n, q)/

p
∆n

´
q≥1

L−(s)−→
³
Rq, R−(q), R+(q)

´
q≥1

.

Now, since f(x) = 0 if |x| ≤ 2kε, on the set Ωn(t, ε) and for all s ≤ t we have

V n(f)s − V (f)∆n[s/∆n] =
X

q: Sq≤∆n[s/∆n]

¡
f(∆XSq +Rn

q )− f(∆XSq)
¢

=
X

q: Sq≤∆n[s/∆n]

f 0(∆XSq + eRn
q ) R

n
q

where eRn
p is between ∆XSq and ∆XSq +Rn

p . In a similar way, we get

V
n
(f)s − V (f)k∆n[s/k∆n] =

X
q: Sq≤k∆n[s/k∆n]

f 0(∆XSq + eR0nq ) R0nq ,
with eR0nq between ∆XSq and ∆XSq +R0n− . Since Rn

p , R−(n, p) and R+(n, p) go to 0,
we deduce that eRn

p and eR0np also go to 0 (for each ω), whereas Ωn(t, ε) → Ω. Since
f 0 is continuous, we readily deduce the result of the theorem from (54).
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Now we turn to the general case, where f does not necessarily vanish around 0.
With ψρ a C2 function equal to 1 on [−ρ, ρ] and to 0 outside [−2ρ, 2ρ] and with
fρ = fψρ, we have for all η > 0 :

lim
ρ→0 lim supn

P
³
sup
s≤t

¯̄
(V n(fρ)s − V (fρ)∆n[s/∆n]

¯̄
/
p
∆n > η) = 0

which is (5.48) in Jacod (2006). We obviously have the same for V
n
. Since we have

the stable convergence in law when we take the functions f−fρ, and since obviously
Z(f 0ρ) and Z 0(f 0ρ) converge locally uniformly in time to Z(f 0) and Z0(f 0) respectively,
we readily deduce the stable convergence in law for the function f .

We now prove part (a) of the theorem.

Proof of Theorem 2-(a) under Assumption 3. If we apply the previous theorem with
the function f(x) = |x|p (recall p > 3), we obtain the stable convergence in law of
the processes³ 1√

∆n
( bB(p,∆n)t −B(p)∆n[t/∆n]),

1√
∆n

( bB(p, k∆n)t −B(p)k∆n[t/k∆n])
´

towards (Z(f 0)t, Z(f 0)t + Z0(f 0)t), and f 0(x) = p|x|p−1sign(x). Hence if Z 0(p, k)t =
Z 0(f 0)t the formula (14) follows from (52).
Hence it remains to prove that (B(p)t−B(p)k∆n[t/k∆n])/

√
∆n

P−→ 0 for all integers
k. Since |δ(ω, t, x)| ≤ γ(x) ≤ K we have

E(B(p)t −B(p)k∆n[t/k∆n]) = E

⎛⎝ X
k∆n[t/k∆n]<s≤t

|∆Xs|p
⎞⎠

= E

ÃZ t

k∆n[t/k∆n]
ds

Z
E
|δ(s, x)|qλ(dx)

!

≤
Z t

k∆n[t/k∆n]
ds

Z
E
γ(x)qλ(dx) ≤ Kk∆n

where K =
R
γ(x)pλ(dx) is finite (recall p > 3), and the result follows.

For Theorem 2-(b) it is also convenient to prove a more general result. Let g =
(gj)1≤j≤2 be an R2-valued C2 function on Rk with second partial derivatives having
polynomial growth, and which is globally even (that is g(−x) = g(x)) and set

(55) V n(g)t =

[t/k∆n]X
i=1

g(∆n
ki−k+1X/

p
∆n,∆

n
ki−k+2X/

p
∆n, · · · ,∆n

kiX/
p
∆n).

We also denote by ρy the normal law N(0, y), and by ρk⊗y its k-fold tensor product,
and by ρk⊗y (f) the integral of any function f w.r.t. it. With the above assumptions
we then have the following (a d-dimensional version is also available):
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Lemma 1. Under Assumption 2, assume in addition that X is continuous. Then

(56) ∆nV
n(g)t

P−→ V (g)t :=
1

k

Z t

0
ρk⊗σu (g).

Furthermore the processes 1√
∆n
(∆nV

n(g)− V (g)) converge stably in law to the 2-
dimensional process (Y (h, 0), Y (h0, h00)) (recall (48), where the processes (ht), h0t) and

(h00t ) is such that the matrix
µ
ht 0
h0t h00t

¶
is a square-root of the matrix Θt = (Θ

ij
t )1≤i,j≤2

given by

(57) Θij
t =

1

k

³
ρk⊗σt (gigj)− ρk⊗σt (gi)ρ

k⊗
σt (gj

´
.

Proof. The proof of this lemma is similar to the uni-power case in Barndorff-Nielsen
et al. (2006a). We indicate the few changes that are necessary. Everywhere the sums
over i from 1 to [nt] are replaced by sums from 1 to [t/k∆n]. In (4.1) of that paper we
replace βni =

√
n σ(i−1)/n ∆n

i W by the collection βni (j) =
1√
∆n

σk(i−1)∆n
∆n
k(i−1)+jW

for j = 1, · · · , k. Then the same proof as for Proposition 4.1 of that paper shows
that if eV n(g) =

[t/k∆n]X
i=1

g(βni (1), β
n
i (2), · · · , βni (k)),

we have (56) and the stable convergence in law with eV 0n(g) instead of V
0n(g), and

the same process V 0(g). Next, similar to Theorem 5.6 of that paper, and with ζni =
g(∆n

ki−k+1X/
√
∆n, · · · ,∆n

kiX/
√
∆n), the processes

p
∆n

[t/k∆n]X
i=1

¡
ζni − E(ζni | Fk(i−1)∆n

)
¢

converge stably in law to (Y (h, 0), Y (h0, h00)), and this easily yields (56) for V 0n(g).
For the stable convergence in law, it remains to prove that the array

ζ 0ni =
p
∆n

Ã
E(ζni | Fk(i−1)∆n

)− 1

k∆n

Z ki∆n

k(i−1)∆n

ρk⊗σu (g)du

!

satisfies
P[t/∆n]

i=1 |ζ 0ni | P−→ 0. This is proved as in Barndorff-Nielsen et al. (2006a):
the fact that g is a function of several variables makes no real difference, and since g
here is C2 we are in the case of Hypothesis (K) of that paper (and not in the more
complicated case of Hypothesis (K’)).

Finally, we prove part (b) of the theorem.

Proof of Theorem 2-(b) under Assumption 4. We simply apply the previous theo-
rem to the even function g with components

g1(x1, · · · , xk) = |x1|p + · · ·+ |xk|p, g2(x1, · · · , xk) = |x1 + · · ·+ xk|p



28 YACINE AIT-SAHALIA AND JEAN JACOD

(recall that p ≥ 2, hence g is C2). The matrix Θt of (57) is then

Σ11t = (m2p−m2
p)|σt|2p, Σ12t = (mk,p−kp/2m2

p)|σt|2p, Σ22t = kp−1 (m2p−m2
p)|σt|2p.

Then a version of the triple (h, h0, h00) is given by ht = α|σt|p and h0t = α0|σt|p and
h00t = α00|σt|p, where

α =
p
m2r −m2

r, α0 =
1

α
(mk,r − kr/2m2

r), α00 =
p
kr−1(m2r −m2

r)− αα0.

Hence the result obtains, with Y (p)t = Y (h, 0)t and Y 0(p, k)t = Y (h0, h00)t, upon
noting that (15) follows from (49).

8.3. Proof of Theorem 3.

Proof. a)Write Un = (∆n)−1/2 ( bB(p,∆n)t−B(p)t) and Vn = (∆n)−1/2 ( bB(p, k∆n)t−
B(p)t). Then

bS(p, k,∆n)t − 1 =
bB(p, k∆n)

n
tbB(p,∆n)t
− 1 = (∆n)

1/2 Vn − UnbB(p,∆n)t
.

Theorem 3 yields that under Assumption 1 and if p > 3, then Vn − Un converges
stably in law to Z0(p, k)t, and the result follows from (14).
b) Write U 0n = (∆n)−1/2 (∆

1−p/2
n

bB(p,∆n)−mpA(p)) and V 0n = (∆n)−1/2 (∆
1−p/2
nbB(p, k∆n)− kp/2−1mpA(p)). Then

bS(p, k,∆n)t − kp/2−1 =
bB(p, k∆n)

n
tbB(p,∆n)t
− kp/2−1 = (∆n)

1/2 V 0n − kp/2−1U 0nbB(p,∆n)t
.

Since V 0n − kp/2−1U 0n converges stably in law to Y 0(p, k)t − kp/2−1Y (p)t under As-
sumption 2 and when p ≥ 2 and X is continuous, the result easily follows from
(15).

8.4. Proof of Theorem 4.

Proof of (24) under Assumption 3. We fix p ≥ 2, t > 0, ' ∈ (1/2 − 1/p, 1/2) and
α > 0. Apply (46 to get, for any B ≥ 1:¯̄̄̄

¯̄∆1−p/2n

[t/∆n]X
i=1

|∆n
i X|p1{|∆n

i X|≤
√
B∆n} −∆1−p/2n

[t/∆n]X
i=1

|∆n
i X

0|p
¯̄̄̄
¯̄

≤ Kp(An +A0n +A00n),(58)

where ⎧⎪⎪⎨⎪⎪⎩
An = ∆

1−p/2
n

P[t/∆n]
i=1 |∆n

i X
0|p1{|∆n

i X
0|>√B∆n/2}

A0n = Bp/2−1P[t/∆n]
i=1 (|∆n

i X
00|2 ∧B∆n)

A00n = ∆
1−p/2
n

P[t/∆n]
i=1 |∆n

i X
0|p−1(|∆n

i X
00| ∧√B∆n).
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Then if we apply (43) and (44) with η =
√
B∆n and θ = ∆

1/4
n , and also Bienaymé-

Chebyshev for An and Cauchy-Schwarz for A00n, and with the notation ε2n = ∆
1/2
n +

Γ(∆
1/4
n ) (so ε→ 0), we readily obtain (recall B ≥ 1):

E(An) ≤ Kpt

B
, E(A0n) ≤ KptB

p/2ε2n, E(A00n) ≤ KptBεn.

On the other hand we can apply the last property in (10) to X 0, which satisfies
Assumption 3 and is continuous, to get ∆1−p/2n

P[t/∆n]
i=1 |∆n

i X
0|p P−→mpA(p)t. Com-

bining this with the above estimates and (58), and since εn → 0, we obtain for some
constant K = Kp and all η > 0:

(59) P

⎛⎝∆1−p/2n

[t/∆n]X
i=1

|∆n
i X|p1{|∆n

i X|≤
√
B∆n} < mpA(p)t − K

B
− η

⎞⎠ → 0.

Now, for any B ≥ 1 we have α∆'
n >

√
B∆n for all n large enough because

' < 1/2. Therefore (59) remains valid if we replace the sets {|∆n
i X| ≤

√
B∆n} by

{|∆n
i X| ≤ α∆'

n }. Since A(p)t > 0 a.s. and B is arbitrarily large and η arbitrarily
small, we deduce that Cn =

P[t/∆n]
i=1 |∆n

i X|p1{|∆n
i X|≤α∆'

n } satisfies

(60) P

Ã
1

∆
1−p/2
n Cn

>
2

mpA(p)t

!
= P

µ
∆1−p/2n Cn <

mpA(p)t
2

¶
→ 0.

At this stage, the proof of (24) is straightforward. Indeed, since |∆n
i X|2p ≤

αp∆p'
n |∆n

i X|p when |∆n
i X| ≤ α∆', one deduces from (20) that

∆n
bA(2p,∆n)tbA(p,∆n)2t

≤ K∆p'
n

Cn
=

K∆
p'+1−p/2
n

∆
1−p/2
n Cn

.

Since p' + 1− p/2 > 0, the result readily follows from (60).

Proof of (25) under Assumption 3. Barndorff-Nielsen et al. (2006b) proved a similar
result under more restrictive conditions. Apply (44) with η =

√
∆n and ε = ∆

1/4
n to

get

(61) Eni−1
³¯̄
∆n
i X

00 ¯̄2^∆n

´
≤ ∆nαn

for a (deterministic) sequence αn going to 0. Next, we apply (47) with 0 < r < 2
and x = ∆n

i X
0/
√
∆n and y = ∆n

i X
00/
√
∆n and we use (43) and (61) to get

∆−r/2n Eni−1
³¯̄̄
|∆n

i X|r − |∆n
i X

0|r
¯̄̄´
≤ K

¡
εr +Aε+Ar−2 +Arεr−2αn

¢
.

Hence by taking first n → ∞, then ε0 → 0, then A→ ∞, we deduce that for some
deterministic sequence α0n going to 0,

(62) ∆−r/2n sup
i
Eni−1

³¯̄̄
|∆n

i X|r − |∆n
i X

0|r
¯̄̄´
≤ α0n.
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We know that the result holds when X is continuous : the processes V 0(r, q,∆n)
defined by (21) withX substituted withX 0 converge in probability, locally uniformly
in time, to the process A(qr) (this holds even when r ≥ 2). Therefore it is enough
to prove that

(63) E
µ
sup
s≤t

|V (q, r,∆n)s − V 0(q, r,∆n)s|
¶
→ 0.

The left side of (63) at time t is smaller than
P[t/∆n]

i=1 E(ζni ), where

ζni =
∆
1−qr/2
n

mq
r

¯̄̄̄
¯̄ qY
j=1

|∆n
i+j−1X|r −

q−1Y
j=1

|∆n
i+j−1X

0|r
¯̄̄̄
¯̄ = 1

mq
r

qX
l=1

ζni (l),

ζni (l) = ∆
1−rq/2
n

l−1Y
j=1

|∆n
i+j−1X|r

¯̄̄
|∆n

i+l−1X|r − |∆n
i+l−1X

0|r
¯̄̄ qY
j=l+1

|∆n
i+j−1X

0|r,

where an empty product is set to be 1. Taking successive conditional expectations,
and using (43) and (62), we readily obtain that E(ζni (l)) ≤ Kα0n∆n. Then obviouslyP[t/∆n]

i=1 E(ζni (l)) ≤ Ktα0n → 0 for each l = 1, · · · , q, hence (63).
Lemma 2. Under Assumption 4 and if

(64) bD0n
t :=

1

kn∆n

[t/∆n]X
i=1

|∆n
i X|p

X
j∈In,t(i)

(δnj )
2 P−→ D(p)t,

and also, when X is continuous,

(65) bD00n
t :=

1

kn∆
p/2
n

[t/∆n]X
i=1

|δni |p
X

j∈In,t(i)
(δnj )

2 P−→ mpA(p+ 2)t,

then (26) holds, as well as (27) when X is continuous.

Proof. In (27) both members are increasing in t and the limit is continuous in t, so
it is enough to prove the convergence separately for each t. To unify the proof of
the two results, we write un = 1 and D = D(p) if X jumps, and un = ∆

1−p/2
n and

D = mpA(p+ 2) if X is continuous, in which case we also set

bD0n
t :=

un
kn∆n

[t/∆n]X
i=1

|∆n
i X|p

X
j∈In,t(i)

(δnj )
2.

With this notation, (26) and (27) amounts to un bD(p,∆n)t
P−→ Dt, and in a first

step we show that this is equivalent to bD0n
t

P−→ Dt.
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Apply (46) with p = 2 and x = δni and y = ∆n
i X − δni and ε = α∆'

n , and use
Cauchy-Schwarz and Bienaymé-Chebyshev and (43), and also (45) with η = ηn =

α∆'
n and ε = η

1/2
n , to get after some simple calculations that, with K = Kα: :

1

∆n
E
¡|(θni )2 − (δni )2| | F(i−1)∆n

¢
≤ bΓn := K

µ
∆n +∆

'
n + Γ(η

1/2
n ) +∆n +∆

'/2
n +

q
Γ(η

1/2
n )

¶
→ 0,(66)

where the final convergence follows from ηn → 0, hence Γ(η1/2n ) → 0 as well. Ob-
serve that un bD(p,∆n) is the same as bD0n, with δnj substituted with θni . Hence
the difference un bD(p,∆n)t − bD0n

t is the sum of less than 2kn[t/∆n] terms (strictly
less, because of the border effects at 0 and [t/∆n]), each one being smaller than
un

kn∆n
|∆n

i X|p| |(θnj )2 − (δnj )2|, for some i 6= j. Then, by taking two successive con-
ditional expectations and using (43) and (66), we see that the expectation of such
a term is smaller than Kp∆n

bΓn/kn in both cases (X continuous or not). Therefore
E(|un bD(p,∆n)t − bD0n

t |) ≤ KptbΓn. Since bΓn → 0, the claim of this step is complete.
So far we have proved that (64) implies (26). For proving that (65) implies (27)

when X is continuous, it remains to show that in this case E(| bD0n
t − bD00n

t |) → 0.
Exactly as above, bD0n

t − bD00n
t is the sum of less than 2kn[t/∆n] terms, each one

being smaller than ζ,i,j =
un

kn∆n

¯̄̄
|∆n

i X|p| − |δnj |p
¯̄̄
(δnj )

2, for some i 6= j. Since
¯̄̄
|x +

y|p − |x|p
¯̄̄
≤ Kp(|x|p−1|y| + |y|p), and since X = X 0 because X is continuous,

we deduce from (43) and by taking two successive conditional expectations that
E(ζni,j) ≤ Kpun∆

1/2+p/2
n /kn, hence E(| bD0n

t − bD00n
t |) ≤ Kpt

√
∆n, and we are done.

Proof of (26) under Assumption 4. Step 1) For any ρ ∈ (0, 1) we set ψρ(x) = 1 ∧
(2− |x|/ρ)+ (a continuous function with values in [0, 1], equal to 1 if |x| ≤ ρ and to
0 if |x| ≥ 2ρ), and we introduce two increasing processes:

Y (ρ)nt =
1

kn∆n

[t/∆n]X
i=1

ψρ(∆
n
i X)|∆n

i X|p
X

j∈In,t(i)
(δnj )

2, Z(ρ)nt = bD0n
t − Y (ρ)0nt .

By the previous lemma we need to prove (64), and for this it is obviously enough to
show the following three properties, for some suitable processes Z(ρ):

(67) lim
ρ→0 lim supn

E(Y (ρ)nt ) = 0,

(68) ρ ∈ (0, 1), n→∞ ⇒ Z(ρ)nt
P−→ Z(ρ)t,

(69) ρ→ 0 ⇒ Z(ρ)t
P−→ Dt.
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Step 2) By singling out the cases 2|x| > |y| and 2|x| ≤ |y|, we check that (recall
ρ < 1):

ψρ(x+ y)|x+ y|p ≤ Kp(|x|p + (y2 ∧ ρ2)).
Using this with x = δni and y = ∆n

i X − δni , plus (43) and (45) with η = ρ and
ε =
√
ρ, we obtain

1

∆n
Eni−1(ψρ(∆n

i X)|∆n
i X|p) ≤ Γ0n(ρ) := Kp(∆

p/2−1
n + ρ+ Γ(

√
ρ) +∆nρ

−1).

Now, Y (ρ)nt is the sum of less than 2kn[t/∆n] terms, all smaller than 1
kn∆n

|∆n
iX|p |δnj |2

for some i 6= j. By taking two successive conditional expectations, as in the previous
lemma, and by using (43) and the above, we see that the expectation of such a term
is smaller than Kp∆nΓ

0
n(ρ)/kn. Thus E(Y (ρ)

n
t ) ≤ Ktγ0n(ρ), and since obviously

limρ→0 lim supn Γ
0
n(ρ) = 0 we obtain (67).

Step 3) Now we define the process Z(ρ). Let us call Tq(ρ) for q = 1, 2, · · · the
successive jump times of the Poisson process µ([0, t]× {x : γ(x) > ρ/2}), and set

Z(ρ)t =
X

q:Tq(ρ)≤t
|∆XTq(ρ)|p (1− ψρ(∆XTp(ρ))) (σ

2
Tq(ρ)− + σ2Tq(ρ)).

For all ω ∈ Ω, q ≥ 1, ρ0 ∈ (0, ρ) there is q0 such that Tq(ρ)(ω) = Tq0(ρ
0)(ω), whereas

1− ψρ increases to the indicator of R\{0}. Thus Z(ρ)t(ω) ↑ D(p)t(ω), and we have
(69).
Step 4) It remains to prove (68). Fix ρ ∈ (0, 1) and write Tq = Tq(ρ). Recall that

for u different from all Tq’s, we have |∆Xu| ≤ ρ/2. Hence, for each ω and each t > 0,
we have the following properties for all n large enough: there is no Tq in (0, kn∆n],
nor in (t− (kn+1)∆n, t]; there is at most one Tq in an interval ((i−1)∆n, i∆n] with
i∆n ≤ t, and if this is not the case we have ψρ(∆n

i X) = 1. Hence for n large enough
we have

Z(ρ)t =
X

q: kn∆n<Tq≤t−(kn+1)∆n

ζnq ,

where

ζnq =
1

kn∆n
|∆n

i(n,q)X|p(1− ψρ(∆
n
i(n,q)X))

X
j∈I0(n,q)

(δnj )
2,

and i(n, q) = inf(i : i∆n ≥ Tq) and I 0(n, q) = {j : j 6= i(n, q), |j − i(n, q)| ≤ kn}.
To get (68) it is enough that ζnq

P−→ |∆XTq |p (1−ψρ(∆XTq)) (σ
2
Tq−+σ2Tq) for any

q. Since |∆n
i(n,q)X|p(1 − ψρ(∆

n
i(n,q)X)) → |∆XTq |p (1 − ψρ(∆XTp)) pointwise, so it

remains to prove that

(70)
1

kn∆n

X
j∈I0−(n,q)

(δnj )
2 P−→ σ2Tq−,

1

kn∆n

X
j∈I0+(n,q)

(δnj )
2 P−→ σ2Tq ,
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where I 0−(n, q) and I 0+(n, q) are the subsets of I 0(n, q) consisting in those j smaller,
respectively bigger, than i(n, q). We write

Un
q =

1

kn∆n

X
j∈I0−(n,q)

(∆n
jW )2, snq = inf

u∈[Tq−kn∆n,Tq)
σ2u, Sn

q = sup
u∈[Tq−kn∆n,Tq)

σ2u.

On the one hand, both snq and Sn
q converge as n→∞ to σ2Tq−, because kn∆n → 0.

On the other hand the left side of the first expression in (69) is in between the two
quantities snqU

n
q and Sn

q U
n
q . Moreover the variables ∆

n
i W are i.i.d. N(0,∆n), so Un

q

is distributed as U 0n =
1
kn

Pkn
i=1 Vi where the Vi’s are i.i.d. N(0, 1), and by the usual

law of large numbers we have U 0n → 1 a.s., hence Un
q

P−→ 1: these facts entails the
first part of (70), and the second part is proved in the same way.

Proof of (27) under Assumption 4. Step 1) We have to prove that when X is con-
tinuous, then (65) holds. We have

∆−p/2n

[t/∆n]X
i=1

|δni |p+2 P−→ mp+2A(p+ 2)t,

which can be deduced from (10) exactly as bD0n
t − bD00n

t
P−→ 0 in the end of the proof

of Lemma 2. Therefore it is enough to prove that

Y n
t :=

1

kn∆
p/2
n

[t/∆n]X
i=1

X
j∈In,t(i)

ζni,j
P−→ 0, where ζni,j = mp+2|δni |p|δnj |2 −mp|δni |p+2.

Let T (n, i) = (i− kn − 1)+∆n. When j > i we have (recall σt is bounded):

|Eni−1(ζni,j)| =
¯̄̄
Eni−1

³
mp+2|σ(i−1)∆n

|p(σ2(j−1)∆n
− σ2(i−1)∆n

)|∆n
i W |p|∆n

jW |2

+ |σ(i−1)∆n
|p+2(mp+2|∆n

i W |p|∆n
jW |2 −mp|∆n

i W |p+2)
´¯̄̄

≤ Kp∆nEni−1(|σ2(j−1)∆n
− σ2(i−1)∆n

| |∆n
i W |p|).

When i− kn ≤ j < i we have

|E(ζni,j | F(j−1)∆n
)| =

¯̄̄
E
³
mp+2|σ(j−1)∆n

|2(|σ(i−1)∆n
|p − |σ(j−1)∆n

|p)|∆n
i W |p|∆n

jW |2

+ |σ(j−1)∆n
|p+2(mp+2|∆n

i W |p|∆n
jW |2 −mp|∆n

i W |p+2) | F(j−1)∆n

´¯̄̄
≤ Kp∆

p/2
n E

³¯̄̄
|σ(i−1)∆n

|p − |σ(j−1)∆n
|p
¯̄̄
|∆n

jW |2| | F(j−1)∆n

´
.

Therefore, since
¯̄̄
σ(i−1)∆n

|q − |σ(j−1)∆n
|q
¯̄̄
≤ Kq|σ(i−1)∆n

− σ(j−1)∆n
| for any q ≥ 1,

we deduce from (43) and Cauchy-Schwarz and the two estimates above that

(71) j ∈ In,t(i) ⇒ |E(ζni,j | FT (n,i))| ≤ Kp∆
3/2+p/2
n .
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Moreover, as a trivial consequence of (43) again, we get

(72) j ∈ In,t(i) ⇒ E(|ζni,j|2 | FT (n,i))| ≤ Kp∆
2+p
n .

Now we set

ηni =
1

kn∆
p/2
n

X
j∈In,t

ζni,j , Zn =

[t/∆n]X
i=1

E(ηni | FT (n,i)), Z0n = Y n
t − Zn.

On the one hand (71) yields |Zn| ≤ Kpt
√
∆n → 0. On the other hand Z0n =P[t/∆n]

i=1 (ηni − E(ηni | FT (n,i)), whereas ηni is FT (n,i+2kn+1)-measurable. Hence (72)
gives

E(Z02n) =
X

i,i0:1≤i,i0≤[t/∆n]

E
³³

ηni − E(ηni | FT (n,i)

´³
ηni0 − E(ηni0 | FT (n,i0)

´´
≤

X
i,i0:1≤i≤[t/∆n],|i−i0|≤2kn+1

E
³³

ηni − E(ηni | FT (n,i)
´³

ηni0 − E(ηni0 | FT (n,i0)

´´
≤

X
i,i0:1≤i≤[t/∆n],|i−i0|≤2kn+1

E
³
|ηni ηni0 |

´
≤ (4kn + 3)[t/∆n] Kp∆

2
n ≤ Kpt(kn∆n),

which goes to 0 by virtue of (22). It then follows that Y n
t

P−→ 0, and we are done.

8.5. Proof of Theorem 6.

Proof. a) When X is continuous the variables Un = (bV c
n )
−1/2 (bS(p, k,∆n)t−kp/2−1)

converge stably in law to N(0, 1) by Theorem 5-(b), for both choices of bV c
n . In

particular if ccn is given by (34) we have that P(Cc
n,t) = P(Un < −zα) → α, and we

even have more, because of the stable convergence in law: namely, for any measurable
subset B of Ω, then

(73) P(Cc
n,t ∩B) = P({Un < −zα} ∩B) → αP(B).

Now, this is not quite enough to prove (a), since it may happens that X is not
continuous but the observed path is continuous on [0, t]. To deal with this case, we
denote by X 0 the process given by (1) with the same bt and σt as X, and with δ
identically 0. Put a “prime” for the variables defined on the basis of X 0, writing for
example bV 0cn or bS(p, k,∆n)

0
t or C

0c
n,t. Then (73) applied with the continuous process

X 0 shows that P(C 0cn,t ∩B)→ αP(B) for any B ∈ F . However, on the set Ωct where
X is continuous between 0 and t we have bV 0cn = bV c

n and bS(p, k,∆n)
0
t = bS(p, k,∆n)t,

hence C 0cn,t ∩Ωct = Cc
n,t ∩Ωct . Therefore P(Cc

n,t ∩Ωct)→ αP(Ωct), and (i) follows.
b) Finally assume P(Ωjt) > 0. Then Theorem 1 yields that bS(p, k,∆n)t

P−→ 1 on
the set Ωjt . On the other hand if we use the version (29) for bV c

n we deduce from
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(24) that ccn
P→ kp/2−1 > 1, whereas if we use the version (30) we have bV c

n/∆n
P→

M(p, k)A(2p)t/A(p)
2
t , hence again ccn

P→ kp/2−1 > 1: so the result is obvious.

8.6. Proof of Theorem 7.

Proof. Relative to the proof of the previous theorem, we need to make a few changes.
First we replace (a) of Theorem 6 by two statements (a) and (b) here: the case (b)
corresponds to the situation where the limit in Theorem 5-(a) is normal, and so this
is similar to Theorem 6-(a); the case (a) here corresponds to a non-normal limit with
variance 1, and for this limit we cannot evaluate exactly the quantiles and we rely
upon Chebyshev’s inequality: this is why we only give a bound on the level in this
situation. Apart from these changes, the proof for the level is the same.
For (c) we suppose that (b, σ, δ) are such that P(Ωct) > 0, and we denote by X 0

the process with the same (b, σ) as X and with δ = 0. Then similar to the previous
proof, we see that on the set Ωct we have bS(p, k,∆n)t

P−→ kp/2−1 and bV j
n

P−→ 0 (use
(22) and (27) for the latter), hence the result.
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